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DISTRIBUTION OF INTEGER LATTICE POINTS IN A
BALL CENTRED AT A DIOPHANTINE POINT

HYUNSUK KANG AND ALEXANDER V. SOBOLEV

Abstract. We study the variance of the fluctuations in the number of lattice
points in a ball and in a thin spherical shell of large radius centred at a Diophantine
point.

§1. Introduction.The distribution of lattice points has been extensively
studied in the literature for its own sake, as well as with the aim of understanding
the clustering of eigenvalues of quantum Hamiltonians associated with integrable
systems. The eigenvalues of the “shifted” Laplacian (−i∇ − α)2, α ∈Rd ,

d ≥ 2, on the torus Rd/(2πZ)d are given by the numbers |m− α|2, m ∈ Zd , and
hence their counting function coincides with the number N (t) of lattice points
inside a ball of a radius t , centred at α. It is immediately seen that

N (t)= Bd td(1+ o(1)), t→∞,

where Bd is the volume of the unit ball in Rd . Our object is the distribution
of N (t), as a function of large t for a fixed α, in two regimes. First, we study

F(t) :=
N (t)− Bd td

t (d−1)/2
, (1)

i.e. the normalized deviation of N (t) from its asymptotic value. Secondly, for
ρ ∈ (0, 1), we investigate

S(t, ρ) :=
N (t + ρ)− N (t)− Bd((t + ρ)d − td)

√
ρt (d−1)/2

, (2)

which is the normalized deviation of the number of lattice points in the spherical
shell between the spheres of radii t + ρ and t from its asymptotics. Our aim is
to study the asymptotics of weighted averages of F and S as t→∞ and, in the
case of S, as ρ→ 0.

Introduce a non-negative function ω ∈ C∞0 (R) such that ω(t)= 0 for all
t ≤ t0 with some t0 > 0 and

∫
ω(t) dt = 1. With the smooth measure induced by

ω, we define for all T > 0 an averaging operator for a function f ∈ L1
loc(R) by

〈 f 〉T =
∫
∞

−∞

f (t)ωT (t) dt, ωT (t)=
1
T
ω

(
t

T

)
.

Received 11 June 2009.
MSC (2000): 11P21 (primary), 42B05 (secondary).



DISTRIBUTION OF INTEGER LATTICE POINTS IN A BALL 119

If necessary, the dependence on the weight ω is reflected in the notation: 〈 f 〉ω,T .
Regarding ωT as a distribution density of the “random variable” t , we first
prove that the expectation values 〈F〉T (〈S(· , ρ)〉T ) tend to zero as T →∞
(T →∞, ρ→ 0), and then find the asymptotics of the variances 〈|F |2〉T and
〈|S(· , ρ)|2〉T under appropriate conditions on T and ρ.

Throughout the paper we write a� b (a� b) for two quantities a and b if
a ≤ Cb (b ≤ Ca) with a positive constant C independent of t ≥ 1, T ≥ 1, ρ ≥ 0
and the “smoothing” parameter M ≥ 1, which will be defined in §2.

The asymptotic result for the expectation values is relatively simple.

THEOREM 1.1. Let d ≥ 2. For any α ∈Rd we have:

(1) 〈F〉T → 0, as T →∞;
(2) if T−Z < ρ� 1 with some Z > 0, then 〈S(· , ρ)〉T → 0, as T →∞.

The results for the variances require that α should be Diophantine in the
following sense.

Definition 1.2. A vector α ∈Rd is called Diophantine of type κ , if there
exists a constant C > 0 such that∣∣∣∣α − m

q

∣∣∣∣> C

qκ
,

for all m ∈ Zd and q ∈N.

The smallest possible value of κ is 1+ d−1, in which case α is called badly
approximable; see [13, pp. 217, 218].

For any non-negative integer p, denote

rα(p)=
∑

m∈Zd ,

|m|2=p

e−2π iα·m. (3)

The results for the variances are contained in the next two theorems.

THEOREM 1.3. Let d ≥ 2. Suppose that the components of (α, 1)
are linearly independent over Q, and that α is Diophantine of type
κ < (d − 1)(d − 2)−1. Then the series

Aα =

∞∑
p=1

|rα(p)|
2 p−(d+1)/2 (4)

converges and, moreover,

〈|F |2〉T →
1

2π2 Aα, T →∞. (5)

For the function S(t, ρ) the formula is more explicit.

THEOREM 1.4. Let d ≥ 2. Suppose that the components of (α, 1)
are linearly independent over Q, and that α is Diophantine of type
κ < (d − 1)(d − 2)−1. Assume that ρ� T−σ with some σ ∈ (0, 1). Then

〈|S( · , ρ)|2〉T → d Bd , (6)

as ρ→ 0.
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Note that we regard the formula (6) as asymptotic in two parameters: small ρ
and large T , related only via the inequality ρ� T−σ . We do not need to assume
that ρ = ρ(T ) or T = T (ρ).

Observe also that the asymptotic coefficients in (5) and (6) do not depend on
the weight ω. This allows one to study the variances of F(t) and S(t, ρ) for
the “uniform” distribution density, i.e. when ω is a characteristic function of an
interval, as in [3, 5]. For this it suffices to approximate the characteristic function
by smooth weights ω from below and from above, and use Theorems 1.3 and 1.4.

For d = 2, the existence of the limiting distribution (as T →∞) of F was
proved for α = 0 in [6], and this was later generalized to arbitrary α in [2]
where the asymptotic formula (5) for d = 2 was derived as a by-product of the
proof; see [2, p. 442]. The case d ≥ 3 was addressed in [1] where the existence
of the limiting distribution of F was announced under the assumption that the
vector α is multiplicatively Diophantine, which is a stronger restriction than the
Diophantine property in Definition 1.2.

In dimensions d ≥ 3, the variance of F was studied for α = 0; see [8] for
d ≥ 3 and also [3] for d = 3. For d = 3 and α = 0, instead of (5), one gets a
formula with an extra factor log T on the right-hand side.

The variance of S has been studied well for d = 2. A variety of asymptotic
formulae were obtained in [5] under the same conditions on the parameters ρ
and T as in Theorem 1.4, with various assumptions on the lattice and the vector
α. In particular, (6) was proved for all Diophantine α. For α = 0, more detailed
information about the distribution of S was obtained in [7]: under the condition
that ρ→ 0 and ρ� T−δ for all δ > 0, it was shown that S has a Gaussian
distribution. A similar result was established in [14] for “strongly” Diophantine
rectangular lattices.

In the case ρtd−1
∼ 1, which is not covered by Theorem 1.4, one recovers (6)

from the results of [10, 11] under the same conditions on α as in Theorem 1.4.
This case is especially interesting since it is related to the so-called Berry–
Tabor conjecture about the distribution of eigenvalues of quantum Hamiltonians
associated with integrable systems. We refer to [9–11] for references and
discussion.

Our argument follows the usual scheme: first we introduce a “smoothed-
out” version FM of the quantity F , depending on the smoothing parameter M ,
and find the asymptotics of 〈FM 〉T and 〈|FM |

2
〉T as T →∞. Then we obtain

the appropriate asymptotics for the original function F(t) by showing that the
variance of F − FM tends to zero as M→∞ and T →∞. This leads to
Theorems 1.1 and 1.3. The proof of Theorem 1.4 is also based on the properties
of the smoothed-out quantity FM . In the process, a crucial ingredient is the
asymptotics of the sum

Rα(N )=
N∑

p=1

|rα(p)|
2, N →∞, (7)

which was established in [12] under the condition that α is Diophantine of type
κ < (d − 1)(d − 2)−1; see Proposition 2.3. We emphasize that this is the only
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reason why this condition is required in Theorems 1.3 and 1.4: the rest of the
argument is independent of Diophantine properties of α.

The authors are grateful to the referee for his remarks regarding the
asymptotics of the expectation values of F(t) and S(t, ρ).

§2. Lattice points in a ball: proof of Theorem 1.3.

2.1. Regularized counting function. We begin by introducing a convenient
regularization of the counting function N (t). Using the notation χ(·) for the
characteristic function of the unit open ball in Rd , we can write the number of
lattice points m ∈ Zd inside the ball of radius t > 0 (i.e. |m|< t) centred at a
point α ∈Rd as

N (t)=
∑

m∈Zd

χ((m− α)t−1).

For f in the Schwartz space S(Rd), its Fourier transform is defined by

f̂ (k)=
∫
Rd

f (x)e−2π ix·k dx.

To construct a regularized version of N (t), let ψ ∈ S(Rd) be a non-negative
function normalized by the condition

ψ̂(0)=
∫
Rd
ψ(x) dx= 1.

For all ε > 0, denote

9ε(x)= ε−dψ(xε−1), χε(x)= χ ? 9ε(x),

and

NM (t)=
∑

m∈Zd

χε((m− α)t−1), ε =
1

t M
,

where M ≥ 1 is the t-independent parameter taken to be large later on. We
assume that ψ is a radial function, i.e. it depends only on |x|, so that its Fourier
transform ψ̂(ξ) is also radial. In a slight abuse of notation, we sometimes write
ψ(|x|) and ψ̂(|ξ |) instead of ψ(x) and ψ̂(ξ). The function χε is in S(Rd) so that
one can use the Poisson summation formula∑

m∈Zd

f (m)=
∑

m∈Zd

f̂ (m), f ∈ S(Rd),

to obtain

NM (t) = td
∑

m∈Zd

exp(−2π iα ·m)χ̂ε(tm)

= td
∑

m∈Zd

exp(−2π iα ·m)χ̂(tm)ψ̂(εtm)

= Bd td
+ td

∑
m∈Zd\{0}

exp(−2π iα ·m)χ̂(tm)ψ̂(|m|M−1). (8)
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The Fourier coefficients of χ can be found via the Bessel function:

χ̂(ξ) = |ξ |−(d/2) Jd/2(2π |ξ |)

=

N∑
l=0

Pl |ξ |
−(d+1)/2−l cos(2π |ξ | + φl)+ O(|ξ |−(d+1)/2−N−1),

P0 =
1
π
, φ0 =−

d + 1
4

π, (9)

where Pl and φl , l = 1, 2, . . . , are real coefficients and phases respectively,
whose precise value is of no importance here. The above asymptotics are
valid for all N ≥ 0. Along with the quantity F defined in (1), we define its
regularization,

FM (t)= t−(d−1)/2(NM (t)− Bd td).

Using (8) and (9), we represent the function FM (t) as a sum

FM (t)=
N∑

l=0

F̃ (l)M (t)+ R̃(N+1)
M (t),

where

F̃ (l)M (t) = Pl t
−l

∑
m∈Zd\{0}

cos(2π t |m| + φl)

|m|(d+1)/2+l

× exp(−2π iα ·m)ψ̂(|m|M−1), l ≥ 0.

Under the condition N > (d − 3)/2, the function R̃(N+1)
M (t) is continuous in

t > 0 and satisfies the bound

|R̃(N+1)
M (t)| � t−N−1, N >

d − 3
2

,

uniformly in the parameter M . In particular, in the case d = 2, one can simply
take N = 0. For convenience we truncate the sums F̃ (l)M . Split each of them
into two sums: over |m| ≤ M1+ζ/2 and |m|> M1+ζ/2 with some ζ > 0. Since
|ψ̂(ξ)| � (1+ |ξ |)−H with an arbitrary H > 0, the sum over |m|> M1+ζ/2 is
bounded by

M H
∑

|m|≥M1+ζ/2

|m|−(d+1)/2−l−H
� M−ζH/2+d .

Denote

F (l)M (t) = Pl t
−l

∑
m∈Zd\{0}:|m|≤M1+ζ/2

cos(2π t |m| + φl)

|m|(d+1)/2+l

× exp(−2π iα ·m)ψ̂(|m|M−1), l ≥ 0,

and include the remaining part of the sum in the new remainder, which we denote
by R(N+1)

M (t), so that

FM (t)=
N∑

l=0

F (l)M (t)+ R(N+1)
M (t), (10)
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with

|R(N+1)
M (t)| � t−N−1

+ M−H , t > 0, N >
d − 3

2
, (11)

with an arbitrary H > 0. Using the notation (3), we can rewrite F (l)M in a concise
form:

F (l)M (t)= Pl t
−l

M2+ζ∑
p=1

cos(2π t
√

p + φl)

p(d+1+2l)/4
rα(p)ψ̂(

√
pM−1). (12)

The proof of Theorem 1.1 relies on the following result.

THEOREM 2.1. Let d ≥ 2, and let α ∈Rd be arbitrary. Let g ∈ C∞(0,∞)
be a real-valued function such that∣∣∣∣ dm

dtm g(t)

∣∣∣∣≤ Cm t−m, t > 1, (13)

for all m = 0, 1, . . . . Then for all l = 1, 2, . . . , N,

|〈F (l)M (· + a)g〉T | � T−X ,

for any X > 0, uniformly in M ≥ 1 and a ≥ 0, with the implied constant which
depends only on the constants Cm in (13).

The main ingredient in the proof of Theorems 1.3 and 1.4 is the following
theorem.

THEOREM 2.2. Let α be as in Theorem 1.3, and let Aα be as defined in (4).
Suppose that M ≤ T H with some H > 0. Then 〈|F (l)M |

2
〉T � T−2l , for all l ≥ 1,

and

〈|F (0)M |
2
〉T →

1

2π2 Aα, M→∞.

The proof of Theorem 2.1 is elementary and is given next.

2.2. Proof of Theorem 2.1. Compute the expectation value of F (l)M (· + a)g:

〈F (l)M (· + a)g〉T =
1
T

∫
∞

0
F (l)M (t + a)g(t)ω(tT−1) dt

= T−l Pl

M2+ζ∑
p=1

ψ̂(
√

pM−1)

p(d+1+2l)/4
rα(p)

∫
∞

0
cos(2π(T t + a)

√
p + φl)

× ω(t)(t + aT−1)−l g(T t) dt

= T−l Pl

M2+ζ∑
p=1

ψ̂(
√

pM−1)

p(d+1+2l)/4
rα(p)Re(exp(−iφl − i2πa

√
p)ĥ(T

√
p; T )),

where we have denoted h(t; T )= ω(t)(t + aT−1)−l g(T t). In view of (13),
the Fourier transform ĥ(s; T ) satisfies the bound |ĥ(s; T )| � (1+ |s|)−X for
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any X > 0 uniformly in T > 0. Thus we have |ĥ(T
√

p; T )| � T−X p−X/2, and
hence

|〈F (l)M (· + a)g〉T | � T−l−X
∞∑

p=1

|rα(p)|p
−X/2.

Estimating |rα(p)| � pd/2 and taking a sufficiently large X , we arrive at the
required estimate.

For Theorem 2.2 we need more information about the sum (7).

2.3. Properties of rα(n). The proof of Theorem 2.2 relies on the following
delicate asymptotic result for Rα(N ) (see (7)), established in [12].

PROPOSITION 2.3. Let the components of (α, 1) be linearly independent
over Q, and let α be Diophantine of type κ < (d − 1)(d − 2)−1. Then

lim
N→∞

1

N d/2 Rα(N )= Bd . (14)

For d = 2, the above asymptotic formula was proved for Diophantine α

in [4]. The estimate of the form Rα(N )� N d/2+ε was announced in [1] under
a stronger condition that α should be multiplicatively Diophantine. We refer
to [12] for further comparison and more detailed discussion.

Note that for the proof of Theorem 1.3, it would suffice to know the
asymptotic estimate Rα(N )� N d/2. On the other hand, Theorem 1.4 hinges
on the asymptotic formula (14). We reiterate that Proposition 2.3 is the
only ingredient of our proof that necessitates the Diophantine properties of α.
Otherwise our argument goes through for arbitrary α.

Proposition 2.3 has a number of useful elementary consequences which we
gather below.

LEMMA 2.4. Assume that Rα(n)� nb with some b > 0. Then for any
1≤ N1 ≤ N2 <∞ and any β ∈R, we have

N2∑
p=N1

|rα(p)|2

pβ
�

{
N b−β

1 + N b−β
2 , b 6= β,

log N1 + log N2, b = β.

Proof. Using the “summation by parts” formula

N2∑
n=N1

( f (n + 1)− f (n))g(n)

=−

N2∑
n=N1+1

f (n)(g(n)− g(n − 1))+ f (N2 + 1)g(N2)− f (N1)g(N1),
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with f (n)= Rα(n) and g(n)= (n + 1)−β , we get

N2∑
p=N1

|rα(p)|2

pβ
=

N2−1∑
p=N1−1

( f (p + 1)− f (p))g(p)

= −

N2−1∑
p=N1

Rα(p)((p + 1)−β − p−β)

+ Rα(N2)N
−β

2 − Rα(N1 − 1)N−β1 .

Now the required estimates follow. 2

By virtue of Proposition 2.3, Lemma 2.4 implies that the series (4) converges.
The following lemma will be used in §3.

LEMMA 2.5. Suppose that α satisfies the conditions of Proposition 2.3.
Then for any positive numbers L1 and L2 with L1 < L2,

lim
ρ→0

ρd
∑

L1≤ρ
2 p<L2

|rα(p)|
2
= Bd Ld/2

2 − Bd Ld/2
1 . (15)

Proof. Let us find an upper bound:

lim sup
ρ→0

ρd
∑

L1≤ρ
2 p<L2

|rα(p)|
2

≤ lim
ρ→0

(ρd Rα([L2ρ
−2
] + 1)− ρd Rα([L1ρ

−2
]))

= Bd Ld/2
2 − Bd Ld/2

1 .

Similarly the lower bound follows. 2

2.4. Proof of Theorem 2.2. Before proceeding to the proof, we write out the
F (l)M -variance:

〈|F (l)M |
2
〉T =

1
T

∫
∞

0
|F (l)M (t)|2ω(tT−1) dt

= T−2l P2
l

M2+ζ∑
p,q=1

ψ̂(
√

pM−1)ψ̂(
√

q M−1)

(pq)(d+1+2l)/4
rα(p)rα(q)

×

∫
∞

0
cos(2π t

√
p + φl) cos(2π t

√
q + φl)

× ω(tT−1)(tT−1)−2l 1
T

dt.

The integral on the right-hand side equals

1
2 Re(e−2iφl ω̂l(T (

√
p +
√

q)))+ 1
2 Re(ω̂l(T (

√
p −
√

q))),

where we have denoted ωl(t)= ω(t)t−2l . As in the proof of Theorem 2.1
above, the Fourier transform ω̂l(s) satisfies the bound |ω̂l(s)| � (1+ |s|)−X for
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any X > 0. Thus |ω̂l(T (
√

p +
√

q))| � T−X p−X/4q−X/4, and hence the terms
containing ω̂l(T (

√
p +
√

q)) are bounded by

T−2l−X
∑

p

|rα(p)|2

p(d+1+2l)/2+X/4

∑
q

1

q X/4 .

By Proposition 2.3 and Lemma 2.4, this does not exceed T−2l−X . Thus these
terms give a negligible contribution to 〈|F (l)M |

2
〉T .

Let us concentrate on the terms containing ω̂l(T (
√

p −
√

q)). This sum splits
in two parts: diagonal, that is the sum with p = q ,

D(l)(M, T )=
ω̂l(0)

2
P2

l T−2l
M2+ζ∑
p=1

|ψ̂(
√

pM−1)|2

p(d+1)/2+l
|rα(p)|

2, (16)

and off-diagonal, that is the sum with p 6= q ,

K (l)(M, T ) =
1
2

P2
l T−2l

M2+ζ∑
p,q=1
p 6=q

ψ̂(
√

pM−1)ψ̂(
√

q M−1)

(pq)(d+1+2l)/4

× rα(p)rα(q) Re(ω̂l(T (
√

p −
√

q))). (17)

Note that D(0) depends only on M and thus we write D(0)(M).
Let us investigate the quantities (16) and (17).

LEMMA 2.6 (Diagonal part). Under the conditions of Theorem 1.3, we have

lim
M→∞

D(0)(M)=
1

2π2 Aα, (18)

and
D(l)(M, T )� T−2l , l ≥ 1. (19)

Proof. The estimate (19) follows from the boundedness of the function ψ̂
and from Lemma 2.4. To prove (18), recall that |ψ̂(

√
pM−1)|2 ≤ |ψ̂(0)|2 = 1,

ω̂(0)= 1 and P2
0 = 1/π2 so that, by the Lebesgue convergence theorem, the

result for D(0) follows. 2

LEMMA 2.7 (Off-diagonal part). Under the conditions of Theorem 1.3 and
the assumption that M ≤ T H for some H > 0, we have

K (l)(M, T )� T−η−2l , l ≥ 0, (20)

for any η ∈ (0, 1).

Proof. Fix the index l. By Hölder’s inequality,

|K (l)(M, T )| � T−2l
M2+ζ∑
p,q=1
p 6=q

|ψ̂(
√

p M−1)|2

p(d+1)/2+l
|rα(p)|

2
|ω̂(T (

√
p −
√

q))|. (21)
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Split the sum on the right-hand side into two sums: K1 = K1(M, T ) for
|
√

p −
√

q| ≥ T−η, η ∈ (0, 1), and K2 = K2(M, T ) for |
√

p −
√

q|< T−η.
Since |ω̂(s)| � |s|−X with any X > 0, we have

K1 � M2+ζ T−X (1−η)−2l
M2+ζ∑
p=1

p−(d+1)/2−l
|rα(p)|

2

≤ M2+ζ T−X (1−η)−2l Rα(M
2+ζ ).

In view of (14), this implies that

K1� M (2+ζ )((d/2)+1)T−X (1−η)−2l .

As M ≤ T H , choosing X sufficiently large, one obtains that K1� T−η−2l .
To estimate the sum K2, note that for p and q satisfying 0< |

√
p −
√

q|<
T−η, we have

0< |
√

p −
√

q| =
|p − q|
√

p +
√

q
< T−η,

so that
0< |p − q|< T−η(

√
p +
√

q) < 3
√

p T−η.

Thus, for each p, there are at most 6
√

p T−η of qs contributing to the sum K2.
Thus, according to (14) and Lemma 2.4,

K2� T−η−2l
M2+ζ∑
p=1

|rα(p)|
2 p−(d/2)−l

�

{
T−η log M, l = 0,

T−η−2l , l ≥ 1.

Modifying η suitably, one concludes that K2� T−η−2l for all l ≥ 0 and any
η ∈ (0, 1). 2

Proof of Theorem 2.2. Combine Lemmas 2.6 and 2.7. 2

2.5. Proof of Theorems 1.1 and 1.3. The final step of the proof of
Theorems 1.1 and 1.3 is to show that FM (t) is a good approximation of F(t).
Now we make one further assumption on the function ψ . Namely, we suppose
that ψ has support in the unit ball {x : |x| ≤ 1} so that

|N (t)− NM (t)| =

∣∣∣∣ ∑
m:||m−α|−t |≤M−1

(χ((m− α)t−1)− χε((m− α)t−1))

∣∣∣∣
≤

∑
m:||m−α|−t |≤M−1

1, (22)

with ε = (t M)−1.

LEMMA 2.8. Let ψ be as above. Then for any α ∈Rd , and any T ≥ 1,
M ≥ 1, we have

〈|F(· + a)− FM (· + a)|2〉T � T d−1 M−1,

uniformly in a such that 0≤ a� T .
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Proof. Let x′ = x− α for x ∈Rd . It follows from (22) that

|F(t + a)− FM (t + a)| ≤ t (1−d)/2
∑

m:||m′|−(t+a)|≤M−1

1.

Since the function ω is supported on the positive semi-axis t ≥ t0, we have

〈|F(t + a)− FM (t + a)|2〉T �
1

T d

∫
∞

0

( ∑
m:||m′|−(t+a)|≤M−1,

n:||n′|−(t+a)|≤M−1

1
)
ω

(
t

T

)
dt

�
1

T d

∑
m:|m′|�T,

n:||m′|−|n′||<1

∫
||m′|−(t+a)|≤M−1

dt

�
1

T d M

∑
m:|m′|�T,

n:||m′|−|n′||<1

1�
T d−1

M
.

The estimate is proved. 2

Proof of Theorem 1.1. Let g be a function as in Theorem 2.1, and let a ≥ 0
be some number. By (10),

〈FM (· + a)g〉T =
N∑

l=1

〈F (l)M (· + a)g〉T + 〈R
(N+1)
M (· + a)g〉T .

Assuming that M = T Y with some Y > 0, and choosing sufficiently large N , we
obtain from (11) and Theorem 2.1 that

|〈FM (· + a)g〉T | � T−X ,

for any X > 0, uniformly in a ≥ 0. On the other hand, due to Lemma 2.8, we
have

〈|F(· + a)− FM (· + a)|g〉2T � 〈|F(· + a)− FM (· + a)|2〉T � T d−1−Y ,

uniformly in a such that 0≤ a� T . Since Y > 0 is arbitrary, this implies that

|〈F(· + a)g〉T | � T−X , (23)

for any X > 0 uniformly in a. Taking a = 0, g(t)= 1 proves part 1 of
Theorem 1.1.

In order to prove part 2, rewrite (2) in the following form:

S(t, ρ)=
1
√
ρ
(1+ ρt−1)(d−1)/2 F(t + ρ)−

1
√
ρ

F(t), (24)

and assume that T−Z < ρ� 1 with some Z > 0. In view of (23) with a = ρ and
g(t)= 1, the second term on the right-hand side of (24) tends to zero as T →∞.
For the first term we use (23) with a = ρ and g(t)= (1+ ρt−1)(d−1)/2. This
is legitimate since this choice of the function g satisfies (13) for ρ� 1. This
completes the proof of part 2. 2
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Proof of Theorem 1.3. Choose the parameter M to satisfy the conditions
M ≤ T H , with some H > 0, and MT 1−d

→∞ as T →∞. For instance, one
can take M = T d .

Denoting ‖ f ‖ =
√
〈| f |2〉T , we have, by (10),

|‖FM‖ − ‖F
(0)
M ‖| ≤

N∑
l=1

‖F (l)M ‖ + ‖R
(N+1)
M ‖.

In view of (11) and Theorem 2.2, the above inequality leads to the asymptotics

‖FM‖
2
→

1

2π2 Aα, T →∞.

Theorem 1.3 now follows from the inequality |‖F‖ − ‖FM‖| ≤ ‖F − FM‖ and
Lemma 2.8 since MT 1−d

→∞. 2

To conclude this section we make a remark of a technical nature. As we have
already mentioned in the introduction, our proof follows the standard strategy,
that is, we study first the smoothed-out quantity FM , after which we return
to the initial F(t) by proving that FM (t)− F(t) is small in the appropriate
sense. For lattice counting problems in general, in order to implement this plan,
one usually needs to make a very careful choice of the smoothing parameter
(which is M in this paper), to ensure that the smoothed-out quantity admits an
asymptotic formula, and at the same time does not differ too much from the
unsmoothed one. These two requirements usually impose quite tight upper and
lower bounds on the smoothing parameter: see, for example [3, 5, 7]. This
necessitates more precise bounds at various steps of the proof. For instance,
in [3, 5], the unsmoothing part of the proof (Lemma 2.8 in this paper) requires
subtle estimates for close pairs of lattice points. In the present paper, however,
the choice of M is virtually unrestricted (see Theorem 2.2), the unsmoothing
argument is quite elementary, and a very crude estimate for the close pairs
suffices (see Lemma 2.8). The explanation of this freedom of choice of M lies
with the asymptotics (14) of the function Rα(N ) for Diophantine αs. A naive
upper bound for Rα(N ), obtained by estimating rα(p) via the number of lattice
points on the sphere of radius

√
p, would not be sufficient.

§3. Lattice points in a thin shell: proof of Theorem 1.4.

3.1. Regularized counting function. Rewrite (24) as

S(t, ρ)=
F(t + ρ)− F(t)

√
ρ

−
1
√
ρ
(1− (t + ρ)(d−1)/2t−(d−1)/2)F(t + ρ).

(25)
We make an elementary observation concerning the shifted quantities of the form
F(t + ρ) and others. Recalling that ω(t)= 0 outside some interval [t0, t1]where
0< t0 < t1 <∞, define a non-negative function ν ∈ C∞0 (R) such that

ν̃(t)=

{
maxt ω(t), t ∈ [t0/2, 2t1],

0, t ≤ t0/4.
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Then for any function f , assuming that ρ is sufficiently small, we have

〈| f (· + ρ)|〉ω,T ≤ ‖̃ν‖L1〈| f |〉ν,T , ν =
ν̃

‖̃ν‖L1
. (26)

The next lemma reduces the study of S(·, ρ) to finding the asymptotics of a
smoothed-out quantity

S(t, ρ; M) :=
F (0)M (t + ρ)− F (0)M (t)

√
ρ

.

LEMMA 3.1. Let α be as in Theorem 1.4. Let M = T d and ρ� T−σ with
some σ ∈ (0, 1). Then

〈|S(· , ρ)− S(· , ρ; M)|2〉T → 0, ρ→ 0.

Proof. As before, denote ‖ f ‖ =
√
〈| f |2〉T . Moreover, for any functions f

and g depending on ρ, M and T , we write f � g if ‖ f − g‖→ 0 as ρ→ 0,
M→∞ and T →∞.

Consider each term in (25) separately. The average of the square of the last
summand in (25) is bounded by

ρT−2
‖F(· + ρ)‖2,

which, by Theorem 1.3 and observation (26), tends to zero as ρ→ 0, so that

S(t, ρ)�
F(t + ρ)− F(t)

√
ρ

.

Now consider the first term on the right-hand side of (25). Since M = T d , it
follows from Lemma 2.8 that

1
ρ
‖F − FM‖

2
� ρ−1T−1

� T σ−1
→ 0, T →∞,

and the same bound holds for the difference F(· + ρ)− FM (· + ρ). This shows
that

S(t, ρ)�
FM (t + ρ)− FM (t)

√
ρ

.

We now estimate the contribution of each summand in (10). First of all,
R(N+1)

M � 0 in view of (11). Furthermore, by Theorem 2.2,

ρ−1
‖F (l)M (·)‖2 + ρ−1

‖F (l)M (· + ρ)‖2� ρ−1T−2l
� T−1, l ≥ 1,

so that

S(t, ρ)�
F (0)M (t + ρ)− F (0)M (t)

√
ρ

,

as required. 2
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3.2. Proof of Theorem 1.4. Now we compute 〈|S(· , ρ; M)|2〉T . From (12)
we have

F (0)M (t + ρ)− F (0)M (t)

=
1
π

M2+ζ∑
p=1

(cos(2π(t + ρ)
√

p + φ0)− cos(2π t
√

p + φ0))

×
rα(p)

p(d+1)/4
ψ̂(
√

pM−1)

=−
2
π

M2+ζ∑
p=1

sin(2π(t + ρ/2)
√

p + φ0) sin(πρ
√

p)
rα(p)

p(d+1)/4
ψ̂(
√

pM−1),

where φ0 is defined in (9). Therefore

〈|S(· , ρ; M)|2〉T
= 4ρ−1π−2

∑
1≤p,q≤M2+ζ

sin(πρ
√

p) sin(πρ
√

q)

× rα(p)rα(q)ψ̂(
√

pM−1)ψ̂(
√

q M−1)(pq)−(d+1)/4

×

〈
sin
(

2π
(

t +
ρ

2

)
√

p + φ0

)
sin
(

2π
(

t +
ρ

2

)
√

q + φ0

)〉
T
.

The average 〈 · 〉T on the right-hand side equals

−
1
2 Re(exp(i2φ0 + iπρ(

√
p +
√

q))ω̂(−T (
√

p +
√

q)))

+
1
2 Re(exp(−iπρ(

√
p −
√

q))ω̂(T (
√

p −
√

q))). (27)

As in the proof of Theorem 2.2, by the fast decay of |ω̂|, the first term in (27)
makes a small contribution as T →∞. The remaining sum splits into two parts,
〈|S(· , ρ; M)|2〉T = D(ρ, M)+ K (ρ, M, T ), where D(ρ, M) and K (ρ, M, T )
are the diagonal part and the off-diagonal part, respectively:

D(ρ, M)=
2

ρπ2

∑
1≤p≤M2+ζ

sin2(πρ
√

p)|rα(p)|
2
|ψ̂(
√

pM−1)|2 p−(d+1)/2

(28)
and

K (ρ, M, T ) =
2

ρπ2

M2+ζ∑
p,q=1
p 6=q

ψ̂(
√

pM−1)ψ̂(
√

q M−1)

(pq)(d+1)/4
rα(p)rα(q)

× sin(πρ
√

p) sin(πρ
√

q)

× Re(exp(−iπρ(
√

p −
√

q))ω̂(T (
√

p −
√

q))).

As in the proof of Theorem 1.3, we show that the off-diagonal part K (ρ, M, T )
does not contribute to the asymptotics, and explicitly compute the asymptotics
of the diagonal part D(ρ, M).
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LEMMA 3.2. Suppose that α is Diophantine of type κ < (d − 1)(d − 2)−1

and the components of (α, 1) are linearly independent over Q. Then

D(ρ, M)→ d Bd ,

as ρ→ 0 and Mρ→∞.

LEMMA 3.3. Suppose that α is Diophantine of type κ < (d − 1)(d − 2)−1

and the components of (α, 1) are linearly independent over Q. If M ≤ T H with
some H > 0, then

K (ρ, M, T )� ρ−1T−η, (29)

for all ρ > 0 and any η ∈ (0, 1).

Proof of Lemma 3.3. By Hölder’s inequality ρK (ρ, M, T ) satisfies the
bound (21) with l = 0, and hence ρK (ρ, M, T ) satisfies the estimate (20) with
l = 0. Thus ρK (ρ, M, T )� T−η for any η ∈ (0, 1), as required. 2

3.2.1. Proof of Lemma 3.2. Let ε and L be some fixed number with 0< ε <
L <∞ and split the sum (28) into three components:

S<(ε; ρ)=
∑

1≤p<ερ−2

· · · , S̃0(ε, L; ρ)=
∑

ερ−2≤p<Lρ−2

· · · ,

S>(L; ρ)=
∑

Lρ−2≤p≤M2+ζ

· · · .

Estimating sin2(πρ
√

p)≤ π2ρ2 p, we deduce from Proposition 2.3 and
Lemma 2.4 that

S<(ε; ρ)� ρ
∑

1≤p<ερ−2

|rα(p)|
2 p−(d−1)/2

�
√
ε. (30)

Estimating |sin(πρ
√

p)| by 1, we also get

S>(L; ρ)� ρ−1
∑

Lρ−2≤p≤M2+ζ

|rα(p)|
2 p−(d+1)/2

� L−1/2. (31)

Now compare S̃0(ε, L; ρ) with

S0(ε, L; ρ)= 2ρ−1π−2
∑

ερ−2≤p<Lρ−2

sin2(πρ
√

p)|rα(p)|
2 p−(d+1)/2. (32)

Recall that |ψ̂(0)| = 1. Since

sup
ερ−2≤p≤Lρ−2

|ψ̂(
√

pM−1)− ψ̂(0)| �
√

Lρ−1 M−1,

we have S̃0(ε, L; ρ)− S0(ε, L; ρ)→ 0 as Mρ→∞.
Let us concentrate on the asymptotics of S0.
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LEMMA 3.4. Suppose that α is Diophantine of type κ < (d − 1)(d − 2)−1

and the components of (α, 1) are linearly independent over Q. Then for any ε
and L where 0< ε < L <∞, the sum S0, defined in (32), satisfies

lim
ρ→0

S0(ε, L; ρ)=
d Bd

π2

∫ L

ε

sin2(π
√

t)

t3/2 dt.

Proof. Partition the interval [ε, L) into A equal intervals of length δ =

(L − ε)A−1, and divide S0 into A corresponding sub-sums of the form

S(k)0 (ε, L; ρ) = 2ρ−1π−2
∑

ε+δk≤ρ2 p<ε+δ(k+1)

sin2(πρ
√

p)|rα(p)|
2 p−(d+1)/2,

k = 0, 1, . . . , A − 1.

With the notation

U (t)= t−(d+1)/2 sin2(π
√

t), t > 0,

rewrite

S(k)0 (ε, L; ρ)= 2π−2ρd
∑

ε+δk≤ρ2 p<ε+δ(k+1)

U (ρ2 p)|rα(p)|
2.

Since
|U ′(t)| � t−(d+2)/2, t > 0,

we have∣∣∣∣S(k)0 (ε, L; ρ)− 2π−2ρdU (ε + δk)
∑

ε+δk≤ρ2 p<ε+δ(k+1)

|rα(p)|
2
∣∣∣∣

� ρdδε−(d+2)/2
∑

ε+δk≤ρ2 p<ε+δ(k+1)

|rα(p)|
2.

By Lemma 2.5, this implies

lim
δ→0

δ−1
(

lim
ρ→0

S(k)0 (ε, L; ρ)− dπ−2δBdU (ε + δk)(ε + δk)d/2−1
)
= 0.

Therefore

lim
ρ→0

S0(ε, L; ρ)= lim
δ→0

A−1∑
k=0

V (ε + δk)δ, (33)

where

V (t)= dπ−2 BdU (t)td/2−1
= dπ−2 Bd t−3/2sin2(π

√
t), t > 0.

Since V is continuous on [ε, L], the limit on the right-hand side of (33) equals∫ L
ε

V (t) dt , as claimed. 2

Proof of Lemma 3.2. By virtue of (30) and (31), it follows from Lemma 3.4
that

lim
ρ→0

D(ρ, M)= dπ−2 Bd

∫
∞

0

sin2(π
√

t)

t3/2 dt = d Bd ,

as required. 2
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3.2.2. Proof of Theorem 1.4. Let M = T d and let ρ� T−σ , for some
σ ∈ (0, 1), so that Mρ→∞ as ρ→ 0. Lemmas 3.2 and 3.3 imply that
〈|S(· , ρ; M)|2〉T → d Bd as ρ→ 0. Then one concludes the proof by using
Lemma 3.1.
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