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ABSTRACT To understand functions of a single neuron, such as propagation and generation of synaptic or action potentials,
a detailed description of the kinetics and distribution of the underlying ionic conductances is essential. In voltage-clamp
experiments, incomplete space clamp distorts the recorded currents, rendering accurate analysis impossible. Here, we present
a simple numerical algorithm that corrects such distortions. The method performs a stepwise approximation of the conductance
density at the site of a local voltage clamp. This is achieved by estimating membrane conductances in a simulation that yields
simulated clamp currents, which are then fitted to the distorted recordings from the non-space-clamped structure, relying on
accurately reconstructed cell morphology and experimentally determined passive properties. The method enabled accurate
retrieval of the local densities, kinetics, and density gradients of somatic and dendritic channels. Neither the addition of noise
nor variation of passive parameters significantly reduced the performance of the correction algorithm. The correction method
was applied to two-electrode voltage-clamp recordings of K1 currents from the apical dendrite of layer 5 neocortical pyramidal
neurons. The generality and robustness of the algorithm make it a useful tool for voltage-clamp analysis of voltage-gated
currents in structures of any morphology that is amenable to the voltage-clamp technique.

INTRODUCTION

Understanding the function of a single neuron requires

quantitative description of the ionic channels it expresses.

Such a description is usually achieved using the voltage-

clamp technique (Hodgkin and Huxley, 1952). However,

voltage-clamp recordings can only be properly analyzed in

isopotential structures. Problems that occur upon incomplete

space clamp have been addressed extensively (Armstrong and

Gilly, 1992; Augustine et al., 1985; Johnston et al., 1996;

Koch, 1999; Larsson et al., 1997; Major, 1993; Major et al.,

1993; Müller and Lux, 1993; Rall et al., 1992; Rall and Segev,

1985; Spruston et al., 1993; White et al., 1995). Typically,

voltage-clamp recordings from neurons are severely dis-

torted, which makes it impossible to directly determine

properties of ionic conductances, even for small neurons. So

far, only a few theoretical and experimental techniques enable

true voltage-clamp recordings from specific branched struc-

tures either by analytical transformations (Cole and Curtis,

1941), or by recording conditions (Adrian et al., 1970;

Augustine et al., 1985). Currently available reduced models

only partially correct for space-clamp errors in somatic

recordings of simple structures (Nadeau and Lester, 2000).

Recently, there have been advancements in the visualiza-

tion and recording from dendrites (Johnston et al., 1996;

Stuart et al., 1997). So far, information on dendritic channels

has mainly been obtained from excised or cell-attached

patch-clamp recordings (Bekkers, 2000; Bischofberger and

Jonas, 1997; Hoffman et al., 1997; Korngreen and Sakmann,

2000; Magee, 1999; Magee and Johnston, 1995; Stuart and

Sakmann, 1994) and from dendrosomes (Benardo et al.,

1982; Kavalali et al., 1997; Takigawa and Alzheimer, 1999).

However, cell-attached and outside-out recordings are lab-

orious, and due to small currents and high variability in

patch area, a large number of recordings is necessary to

obtain an accurate description of dendritic channel density in

such systems.

Here we present analytical, numerical, and experimental

evidence, demonstrating that in general membrane conduc-

tances can be calculated from clamp-current recordings of

nonregenerative conductances in a nonisopotential structure.

We developed a numerical algorithm that performs this

calculation and tested it on simplified potassium-channel

models with systematically varied model parameters, and

on a variety of potassium-channel models taken from the

literature. Distortions due to the lack of space clamp were

clearly seen and corrected in simulations carried out with an

unbranched cylindrical cable, as well as in the soma and

apical dendrite of a computer-reconstructed, layer 5 (L5)

neocortical pyramidal neuron. This required i), the knowl-

edge of morphology and passive parameters, and ii), an ionic

current with hyperpolarized reversal potential. To explore

the locality of the method, the cylinder was equipped with

channel-density steps and gradients of various slopes were

inserted into the apical dendrite of a L5 pyramidal neuron.

Limitations of the correction algorithm were assessed by

testing its sensitivity to incomplete knowledge of passive

parameters, incorrect morphological reconstruction, and ex-

perimental noise. For voltage regions accessible to the

activation voltage-clamp protocol, all channel parameters

could be extracted faithfully under realistic conditions. In

addition, the method was shown to be applicable to two-
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electrode voltage-clamp recordings from the apical dendrite

of L5 neocortical pyramidal neurons.

METHODS

Simulations

All simulations were carried out using NEURON 4.1.1, 4.3.2, and 5.0.0

(Hines and Carnevale, 1997) on a Silicon Graphics Origin 2000 or on

a Pentium III, 650 MHz. The integration time step used was 25 ms; changing

the time step did not alter the algorithm performance provided it stayed

smaller than the channel activation time constants. Potassium-channel

models were taken from the literature (for a full description see Appendix):

delayed rectifier Kv, (Mainen et al., 1995), muscarinic potassium channel

Km, (Mainen et al., 1995), A-type potassium channel Ka (Hoffman et al.,

1997), and two types of K1 channels (Kslow and Kfast), which we recently

described in neocortical pyramidal neurons (Korngreen and Sakmann,

2000). Simulation data were evaluated on a Macintosh Power PC G4 using

custom-written routines in IgorPro 4 (Wavemetrics; Lake Oswego, OR). The

unbranched cable (cylinder) had a diameter (d) of 3 mm and a length (l) of

2000 mm (Figs. 1, 4, 5 C and D, 6, 7, and 8). When comparison with

analytical calculations in an infinite cylinder was attempted during

simulations, a much longer cylinder was used to approximate this situation

(d¼ 2 mm and l¼ 50,000 mm, Figs. 2, 5 A and B, and 11). For determination

of morphological parameters, a L5 neocortical pyramidal neuron of a 48-

day-old Wistar rat was biocytin-filled, computer-reconstructed (except for

parts of the axonal arborization), and converted to the format of NEURON as

previously described (Stuart and Spruston, 1998). The passive parameters

were Ri ¼ 250 Vcm; Rm ¼ 20,000 Vcm2, and Cm ¼ 0.75 mF cm�2 with

a passive reversal potential of Eleak ¼ �65 mV and a potassium reversal

potential of Ek ¼ �80 mV, unless otherwise noted. All voltage-clamp

simulations used the built-in MOD file SEClmp.mod. Dendritic two-

electrode voltage-clamp configuration was simulated using the linear circuit

builder in NEURON 5.0.0. Simulated voltage protocols consisted of an 8–15

s prepulse of –110 mV to relieve channels from inactivation, followed by

a voltage step to the test potential. Series resistance was set to 10�5 V to

simulate an ideal voltage clamp. The total time necessary for correcting

a 100-ms voltage-clamp experiment in a full model of a layer 5 pyramidal

neuron sampled at 10 kHz was 6 h on a single processor of the SGI Origin

2000 and 8 h on the Pentium III PC.

Direct contributions of the passive membrane properties were accounted

for by simulating voltage-clamp experiments in morphologies that lack

active conductances. Subtraction of these latter traces from those simulated

in the presence of active conductances is referred to as leak subtraction.

Similar results have been obtained by scaling and subtraction of currents

from voltage steps to hyperpolarized potentials as performed experimentally

(Augustine et al., 1985). The code of the correction algorithm can be

downloaded from http://sun0.mpimf-heidelberg.mpg.de/~alon.

Slice preparation

Slices (sagittal, 300 mm thick) were prepared from the somatosensory cortex

of 40–45 days old Wistar rats using previously described techniques (Stuart

et al., 1993). Slices were perfused throughout the experiment with an

oxygenated artificial cerebrospinal solution containing: (mM) 125 NaCl, 15

NaCO3, 2.5 KCl, 1.25 NaH2PO4, 1 MgCl2, 2 CaCl2, 25 Glucose (pH 7.4

with 5% CO2, 310 mosmol kg�1) at room temperature (20–228C). Pyramidal

neurons from L5 in the somatosensory cortex were visually identified using

infrared differential interference contrast videomicroscopy (Stuart et al.,

1993).

Solutions and drugs

The standard pipette solution contained (mM): 125 K-gluconate, 20 KCl, 10

HEPES, 4 MgATP, 10 Na-phosphocreatin, 0.5 EGTA, 0.3 GTP, and 0.2%

biocytin (pH 7.2 with KOH, 312 mosmol kg�1). The bath solution for two-

electrode voltage-clamp experiments contained (mM) 125 NaCl, 15 NaCO3,

2.5 KCl, 1 MgCl2, 2 CoCl2, 25 Glucose, 0.03 ZD2788, 0.001 tetrodotoxin

(TTX pH 7.4 with 5% CO2, 308 mosmol kg�1). TTX (Tocris, Bristol, UK)

was stored at �208C as stock solutions in doubly distilled water and added

directly to the bath solution. ZD2788 (Tocris) was stored at 48C as stock

solutions in doubly distilled water and added directly to the bath solution.

Two-electrode voltage clamp

Dendritic two-electrode voltage-clamp recordings were made with an

Axoclamp-2B amplifier (Axon Instruments, Foster City, CA). Two HS-

2Ax0.1M headstages were used. Whole-cell recordings were performed

with two patch pipettes at a distance of 30–40 mm apart. Simulations have

shown that the accuracy and stability of the correction algorithm were not

affected by an interelectrode distance that was smaller than 50 mm (data not

shown). No series resistance compensation was used. Capacitive coupling

between the electrodes was minimized by placing a grounded shield that

extended almost to the bath fluid level between the electrodes. To increase

clamp gain, the feedback current injected via the current injecting electrode

was low pass filtered by a built-in filter of the Axoclamp-2B (phase-lag

control) with a time constant of 1–5 ms. Voltage and current were filtered at

10 kHz and sampled at 50 or 20 kHz using the program ‘‘Pulse’’ (Version

8.1, Heka Electronic, Lambrecht, Germany), digitized by an ITC-16

interface (Instrutech, Greatneck, NY, USA), and stored on the hard disk

of a Macintosh computer. Capacitive and leak currents were subtracted off-

line by scaling of pulses taken at hyperpolarized potentials. Patch pipettes

FIGURE 1 The space-clamp problem for a basic voltage-clamp protocol.

A voltage protocol of 8.4 s to �110 mV (truncated to facilitate presentation),

followed by a 25-ms pulse to voltages between �80 mV and 180 mV at 20

mV increments is shown in C. (A) The kinetics of the Kfast channel as it

would be recorded in an isopotential structure (short cylinder with length ¼
50 mm and diameter ¼ 50 mm, left; density of Kfast was 30 pS/mm2). The

kinetics were distorted when recorded in an unbranched cable ((B) long

cylinder, length ¼ 2000 mm, diameter ¼ 3 mm; density of Kfast was 30 pS/

mm2). Conductance densities were estimated by assuming that the entire

membrane area contributed to the measured current (i.e., g ¼ Iclamp/((total

membrane area)�(Vclamp � E)). Note different scales.
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(5–10 MV) were pulled from thick-walled borosilicate glass capillaries (2.0

mm outer diameter, 0.5 mm wall thickness, Hilgenberg, Malsfeld, Germany)

and were coated with Sylgard before the experiment. The distance of the

dendritic recording from the soma and the interelectrode distance was

measured from video pictures taken by a frame grabber.

Histology and morphology

At the end of the experiments, the slices were fixed in cold 100 mM

phosphate buffer (PBS, pH ¼ 7.4) containing 4% paraformaldehyde. After

fixation, the slices were incubated for 2 h in avidin-biotinilated horseradish

peroxidase (ABC Elite, Vector Laboratories, Peterborough, UK) and the

stain was developed using 0.015% diaminobenzidine. The slices were

mounted in Mowiol (Hoechst, Frankfurt, Germany) and stored at 48C. The

stained neurons were digitally traced using Neurolucida (MicroBrightField,

Colchester, VT, USA).

Passive membrane parameters

The passive membrane parameters (Rm, Ri, and Cm) were determined as

previously described (Roth and Häusser, 2001; Stuart and Spruston, 1998).

Briefly, before engaging the two-electrode voltage clamp, both electrodes

were in bridge mode of the Axoclamp-2B. In this configuration, a 0.5 ms

pulse of 0.5 nA of current was injected via one of the electrodes and the

voltage deflection was monitored by both electrodes. The passive membrane

properties were determined simultaneously by direct fitting of the average of

30 voltage traces measured in the same cell (Clements and Redman, 1989;

Roth and Häusser, 2001; Stuart and Spruston, 1998). The fitting was carried

out using NEURON by routines kindly provided by A. Roth (for details see

Roth and Häusser, 2001).

RESULTS

The voltage-clamp protocol routinely applied to measure

channel activation consists of a long prepulse to a hyper-

polarized voltage V0, which relieves voltage-gated channels

from inactivation, followed by steps to various voltages V1 at

which the channels activate (Fig. 1 C). In isopotential

structures, this yields current recordings that, upon process-

ing (i.e., leak subtraction, followed by division by the driving

force and membrane area), provide changes of conductance

density with time (Fig. 1 A). The resulting conductance

densities can then be fitted to a model (Hodgkin-Huxley or

other) that describes the kinetics of that channel. In

nonisopotential structures this procedure results in distorted

kinetics (Fig. 1 B) and also yields a poor prediction of

channel density (note different scales in Fig. 1, A and B) since

the contributing membrane area varies for different channel

types in an a priori unpredictable manner. Therefore in the

following, with the exception of Fig. 1, distorted currents

were not converted to conductance densities, but only dis-

played as conductance values with different scale bars.

The reverse problem in cable theory

Cable theory enables calculation of membrane currents in

an arbitrary voltage-clamp experiment when the geometry,

conductance-density distribution, and conductance kinetics

are known (Rall, 1959). However, when obtaining clamp

currents from voltage-clamp recordings, we are faced with

the reverse problem, namely to determine the conduc-

tance kinetics, distribution, and density from the recorded

currents. With a space-clamped structure, all the missing

kinetic parameters can usually be extracted directly from

the recorded currents, thus automatically solving the re-

verse problem, resulting in a full description of channel

kinetics.

However, with nonisopotential structures, solution of the

reverse problem is far from obvious. Our line of argument for

the solution of this problem is presented in Figs. 2–4 for time-

independent conductances of increasingly complex voltage

dependence. In general, the reverse problem is equivalent to

extracting multiple parameters (i.e., several gn(Vn) sufficient

to accurately describe the conductance g(V)) from multiple

measurements (i.e., the clamp currents In measured in various

voltage-clamp experiments). As shown below, this multipa-

rameter problem can be split into successive one-parameter

problems such that only one conductance gn at a time has to be

extracted from an appropriately chosen clamp-current re-

cording. As argued above, with the conductance gn known,

the clamp current I(gn) can be calculated by cable theory. If

this function is unique, it can be inverted, yielding gn(In), and

thus solving the reverse problem. In the one-parameter case,

monotonicity of the clamp current-conductance relation is

sufficient for the function I(gn) to be invertible.

Solving the reverse problem for
simple conductances

A conductance with a hyperpolarized reversal potential, such

as potassium, was distributed homogenously into a cylinder.

A voltage clamp was applied (Fig. 2, A and D) and the steady-

state situation was examined. First, a voltage-independent

conductance was studied (Fig. 2, A and B). The relation

between the measured clamp current Iclamp and the underlying

ohmic conductance g can be determined analytically by cable

theory as IclampðgÞ ¼ 2 � ðV � EKÞ
ffiffiffiffiffiffiffiffiffi
g=Ri

p
ðpd3=2=2Þ (diam-

eter d, intracellular resistivityRi, and reversal potentialEk (see

Koch, 1999, chapter 2, adapted from Eq. 2.17)), which is

indeed monotonic for a given clamp voltage V (Fig. 2 C).

A slightly more complex conductance was examined in

Fig. 2 E: the conductance had a step dependence on voltage,

i.e., being constant up to a voltage V0 and constant again for

voltages larger than V0. Voltage clamping to voltages smaller

than V0 yields the same situation as in Fig. 2, A–C: The entire

cable was exposed to voltages more negative than V0 (Fig. 2

D), due to the assumption of a reversal potential at

hyperpolarized voltages. Since g(V) is constant throughout

the entire voltage range V \ V0, g is therefore in this

experiment constant throughout the entire cable (cf. Fig. 2 E).

Thus, g0 ¼ g(V, V # V0) can be uniquely determined from

a voltage-clamp experiment with a voltage step to V0 as

described above for a nonvoltage-dependent conductance. In
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a second step, g1 ¼ g(V, V [ V0) can be extracted from

a voltage-clamp experiment to V1: Since g(V, V # V0) is

known from the first step, again only one parameter, g1,

remains to be determined. The relation between the clamp

current and the conductance g1 is again monotonic as shown

in the Appendix (Eqs. 1, 3, and 4, Fig. 2F). Therefore, also for

a one-step voltage-dependent conductance as in Fig. 2E, g(V)

can be calculated from the recorded clamp currents, solving

the reverse problem.

This argument can be extended to an arbitrary conduc-

tance g(V) as follows: First, consider a g(V) that is a multistep

function (‘‘staircase’’) with identical voltage stepwidth DV

FIGURE 2 The reverse problem in steady state. (A) A voltage-clamp experiment was simulated in a long cable (l ¼ 50,000 mm, d ¼ 2 mm). The voltage

attenuation in steady state is shown for a simulated voltage clamp to �20 mV in the middle of the cable with an ohmic membrane conductance of 30 pS/mm2

(B). (C) Increasing the ohmic membrane conductance increased the required clamp current. The solid line depicts the clamp current required in simulation. For

comparison, the analytical solution for an infinite cylinder with the same membrane properties is given in gray (see Appendix and Fig. 11). Comparison of the

calculated clamp current with a target clamp current (Iexp, dashed line) resulted in a unique estimate of the underlying membrane conductance (gest, dotted line).

D–F same as A–C except a voltage-dependent conductance was inserted. The membrane conductance was voltage-independent, g0 ¼ 5 pS/mm2 for voltages

V\�30 mV, and g1 ¼ 40 pS/mm2 for voltages V $ �30 mV. (F) Increasing g1, the membrane conductance for voltages V $ �30 mV, again increased

the required clamp current. The analytical solution for an infinite cylinder with the same membrane properties is given in gray (see Appendix and Fig. 11).
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with N points (e.g., black line in the lower panel of Fig. 3 A).

Then we can argue the following regarding the correction of

one of the conductance steps (k).

At the first stage of the correction (k ¼ 1), assuming, that

g(V) is negligible for V\ V0, (e.g., as in Fig. 3 A for V0 \
�80 mV) a voltage-clamp experiment with a voltage step to

V1 ¼ V0 1 DV will be faced with the same situation as in Fig.

2, D–F: Only one parameter has to be determined (that is the

conductance g1 ¼ g(V, V0 \ V # V1), as no voltages above

V1 occur and the conductance for voltages less than V0 is

known (i.e., assumed to be negligible). Since, as in Fig. 2,

D–F, the relationship between clamp current and g1 is

monotonic (see also Appendix), g1 can be determined

unambiguously, thus yielding g(V, V\ V1).

At the second stage of the correction (k ¼ 2), perform-

ing a voltage-clamp experiment to V2 ¼ V1 1 DV results

in a similar situation again: Only one parameter has to be

determined as V is more negative than V2 in the entire

structure (due to the assumption of a hyperpolarized

reversal potential) and g(V) is known for V \ V1. This

missing parameter is g2 ¼ g(V, V1 \ V # V2). Since the

clamp current-g2 relationship I(g2) is again monotonic (as

FIGURE 3 Proceeding of the correction algorithm. (A) Sketch of the proceeding for the correction of a Boltzmann activation curve in steady state. In the first

step, the conductance between �80 mV and �70 mV was varied (black arrow in the upper panel) to fit the ‘‘corrected clamp current’’ to the ‘‘experimentally

determined current’’ for a voltage-clamp experiment to �70 mV. This was repeated with successively higher voltage steps, until the estimated conductances

(black) reflected the actual activation curve (gray) across the entire voltage range of interest. (B) Flow chart of the proceeding of the correction algorithm. The

adjusting of g(V) occurs either in a ‘‘stepwise constant’’ (as in A) or stepwise linear approximation. In the former, g(V) ¼ ga for V0 � DV# V\V0; in the latter

g(V) ¼ gc 1 (V � V0 1 DV)/DV�(ga � gc) for V0 � DV# V\V0. In both cases, only ga is varied to fit the ‘‘corrected’’ to the ‘‘experimental’’ clamp current.

The flow chart describes the function of the entire algorithm including the correction over time. The rationale of the correction over time is described in Fig. 6.

Examples and NEURON code can be downloaded from http://sun0.mpimf-heidelberg.mpg.de/~alon.
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in Fig. 2, cf. Appendix), g2 can be determined from the

clamp current, resulting in the knowledge of g(V) for all

voltages up to V2: g ¼ 0 for V # V0, g ¼ g1 for V0 \ V #

V1; g ¼ g2 for V1 \ V # V2. At this step, g is still

unknown for voltages above V2.

At the rest of the correction stages (2 \ k \ N),

continuing this procedure in steps of DV results in

a stepwise calculation of g(V) for all voltages of interest.

The conductance g(V, Vn�1 \ V # Vn) can be calculated

from a voltage step to a voltage Vn ¼ Vn�1 1 DV, relying

on the knowledge of g(V, V # Vn�1) from previous

calculation steps (see Fig. 3). Essentially every smooth

function g(V) can be approximated by a multistep

‘‘staircase’’ function with sufficiently small stepwidth

FIGURE 4 Correction of a K1 channel with a Boltzmann activation curve in steady state. (A and B) A voltage-clamp experiment was simulated in a cable (l
¼ 2000 mm, d ¼ 3 mm). The clamp was inserted in the middle of the cable, and voltage steps from �110 mV to �80 mV, �70 mV . . .160 mV were applied.

The voltage-dependent membrane conductance was time-independent, and consisted of a single Boltzmann activation curve gðVÞ ¼ gmax=ð11 e�ðV�V1=2Þ=kÞ;
V1/2 ¼�20 mV, gmax ¼ 30 pS/mm2, inverse slope k¼ 8 mV (dashed line). The solid line indicates the direct estimate of the activation curve from the distorted

clamp currents (clamp currents divided by the driving force). Note the shallow slope, lack of saturation at higher voltages, and different scales (nS versus pS/

mm2) since normalization to the membrane area was not possible. The parameter estimates were gmax ¼ 48 6 1 nS, V1/2 ¼ �14 6 0.8 mV, and inverse slope k

¼ 15.8 6 0.8 mV. The corrected conductance densities are depicted as triangles (gmax ¼ 30.3 6 0.1 pS/mm2, V1/2 ¼ �19.1 6 0.1 mV, inverse slope ¼ 8.2 6

0.1 mV). The voltage-clamp experiment was simulated for different slopes (C) and different V1/2 (D) of the Boltzmann activation curve. The three conductance

parameters that fully describe the conductance were calculated from a Boltzmann fit to the corrected conductance-voltage relation (triangles in B). Error bars

indicate the goodness of the Boltzmann fit depicted as standard deviation in fit parameters estimated from the residuals. The actual parameters of the underlying

conductances are shown as dashed lines.
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DV. Thus, in approximation, the reverse problem in

a cylinder can be solved for any voltage-dependent

conductance (with little activation at hyperpolarized

potentials and a hyperpolarized reversal potential) by

applying successive voltage-clamp experiments and using

the data obtained from previous experiments to process

current recordings for higher voltages.

The correction algorithm

To implement the approximation technique described above,

we relied on i), accurate knowledge of passive properties

and morphology (discussed in detail below); ii), the ionic cur-

rent being nonregenerative (i.e., the reversal potential be-

ing below the region of activation for this channel—for

FIGURE 5 Spatial resolution. (A) A voltage-clamp experiment was simulated in a long cable as in Fig. 2. Distances were measured from the position of the

clamp. The cable was equipped with an ohmic conductance of gD ¼ 10 pS/mm2 for distances greater than l and gM ¼ 20 pS/mm2 around the clamp electrode.

(B) gD was decreased by 50%, and the ensuing change in the steady-state clamp current was calculated both analytically (gray line) and by simulation (black

dots) for various gD (see Appendix). This was repeated for three different distances l. Rside is the input resistance of the white cylinders, and R‘,middle the input

resistance of a semi-infinite cylinder with the properties of the middle, gray cylinder. Therefore, Rside=R‘;middle ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gM=gD

p
; lmiddle indicates the space constant

of the middle cylinder lmiddle ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðRa � gMÞ � d=4

p
. (C) A voltage-clamp experiment was simulated in a cable equipped with a Boltzmann-like conductance

as in Fig. 4. The conductance density, gmax(x), was g0 for x\1000 mm and g1 for x$ 1000 mm. For each position, the simulated clamp currents were corrected

assuming a homogenous conductance distribution. The corrected g(V) obtained was analyzed as in Fig. 4. Therefore, for each electrode position, three

parameters could be obtained, that attempt to fully describe the underlying voltage-dependent conductance. Error bars indicate the goodness of the Boltzmann

fit to the corrected conductance densities depicted as standard deviation in fit parameters. The estimate of the corrected conductance density (dots) deviates

from the actual step function (dashed line) and was fitted with a sigmoid (thin line). (D) Voltage-clamp experiment and correction were repeated for various

combinations of g0, g1, Ra, and Rm. The spatial resolution of the correction was calculated as the inverse slope parameter of the sigmoid. For every parameter

combination, the space constant lactive was determined as lactive ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðRa � gMembraneÞ � d=4

p
, with the membrane conductance gMembrane ¼

ð1=RmÞ=21 ðg0 1 g1Þ. Error bars indicate the goodness of the sigmoidal fit depicted as standard deviation in fit parameters.
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simplicity, a potassium current with a hyperpolarized re-

versal potential was assumed); and iii), the conductance

being negligible at resting membrane conditions, so that g(V,

V\�80 mV) ¼ 0 could be assumed as a starting condition.

In the first step of the correction algorithm, the conductance

between �80 mV and �70 mV (that was assumed to be

constant throughout this voltage range) was determined from

the clamp current I1 obtained from a voltage-clamp protocol

stepping from �110 mV to �70 mV (see Fig. 1 C). This was

achieved by simulating the voltage-clamp experiment in the

given morphology with a time-independent potassium

conductance that was different from 0 (but constant g1) only

for voltages above �80 mV. The magnitude g1 of the po-

tassium conductance was varied systematically to minimize

the squared difference (Iclamp,simulated � Iexp,1)2 (using the

golden section algorithm (Press et al., 1992)).

In the next step, the conductance was now known between

�80 mV and �70 mV from the first correction step and

assumed constant again but yet unknown for the next voltage

region from �70 mV to �60 mV, in analogy to Fig. 2, D–F.

The conductance for this more depolarized voltage region

could again be obtained from the voltage-clamp data, this time

FIGURE 6 Temporal resolution. (A) Step conductance. A voltage-clamp experiment was simulated in a cable as in Fig. 4. The voltage clamp was inserted in

the middle of the cable, and consisted of a voltage step from �80 mV to 0 mV. Time was measured from the beginning of the voltage step. The cable was

equipped with an ohmic conductance; g(t) ¼ 0 for t\ ton, and g(t) ¼ 10 pS/mm2 for t[ ton (left panel). The clamp current was calculated and plotted against Dt

¼ 100 ms � ton (squares). The temporal resolution was defined as the half maximum of a sigmoid fit (thin line, right panel) to the clamp current-logDt relation.

(B) Gap conductance: Same conditions as in A, except the cable was equipped with an ohmic conductance of g(t) ¼ 10 pS/mm2 for t\ toff, g(t) ¼ 0 for toff # t\
100 ms, and g(t) ¼ 10 pS/mm2 again for t[ toff (left panel, thus resulting in a time window (‘‘gap’’) when the conductance is not active). The clamp current was

calculated and plotted against Dt ¼ 100 ms � toff (triangles). (C) The temporal resolution was determined for situations as depicted in A (squares) and B

(triangles) for various peak conductances, Rm and Cm. The tactive was calculated as: tactive ¼ Cm=gMembrane, with gMembrane ¼ ðgPeak=2Þ 1 ð1=RmÞ. (D) A

voltage-clamp experiment was simulated as in Fig. 4. Conductances are shown for every second voltage step only. The voltage-dependent membrane

conductance was time-dependent: dgðV; tÞ=dt ¼ �ðgðV; tÞ � g‘ðVÞÞ=tchannelðVÞ; with g‘ðVÞ ¼ gmax=ð11 e�ðV�V1=2Þ=kÞ, V1/2 ¼ �20 mV, gmax ¼ 10 pS/mm2,

inverse slope k¼ 8 mV, and tchannel(V) ¼ 8 ms (shown in gray), thus the conductance could be fully characterized by four parameters. Corrected conductances

were determined independently for each time point without a priori knowledge about the kinetic structure of the underlying conductance. (E) The simulation

and correction described in D was repeated for a conductance with systematically varied activation time constants (tchannel). The 50-ms time points of the

resulting corrected conductances were fitted as in Fig. 4 to determine gmax, V1/2, and inverse slope. The corrected t, which was obtained by fitting a single-

exponential rise to the �10 mV conductance trace, is depicted normalized to the actual underlying tchannel. The actual conductance parameters are shown for

comparison (dashed lines). Error bars indicate the goodness of the sigmoidal and exponential fit depicted as standard deviation in fit parameters.
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using the recorded clamp current I2 for a voltage step from

�110 mV to �60 mV. Again, simulations of the voltage-

clamp experiment were performed in the given morphology

with the potassium conductance g¼ 0 (for V#�80 mV); g¼
g1 (for �80 mV\V#�70 mV), and g¼ variable (for �70

mV\V#�60 mV; higher voltages did not occur due to the

assumption of a hyperpolarized reversal potential). To obtain

g2¼ g(V,�70 mV\V#�60 mV), it was varied to minimize

the difference (Iclamp,simulated � Iexp,2)2.

This process was continued in 10 mV steps until the entire

activation curve g(V) of the conductance was retrieved by this

approximation technique (Fig. 3 A). In the following, the

accuracy was increased by replacing the stepwise constant

approximation with a stepwise linear approximation of the

conductance (see also legend to Fig. 3B and Appendix). As the

voltage profile narrowed with increasing voltage, the step size

was increased to 20 mV for (V�Ek)[80 mV, i.e.,V[0 mV.

In general, rather than correcting distorted clamp currents,

then converting the corrected current to a conductance and

finally to a conductance density, the algorithm is used to

directly estimate the conductance density to fit the resulting

clamp currents to the ‘‘experimentally recorded’’ ones.

FIGURE 7 Effects of noise and incomplete knowledge of passive parameters on performance of the correction algorithm. (A) A cylinder was prepared as in

Fig. 6 D; conductance parameters were V1/2 ¼ �20 mV, gmax ¼ 10 pS/mm2, inverse slope ¼ 8 mV, and tchannel ¼ 7 ms. A voltage-clamp experiment was

simulated, and random Gaussian noise added (10 pA rms) to the simulated currents. The corrected conductance estimate was plotted (thin lines) and compared

to the true conductance (thick lines). (B) Noise of increasing magnitude was added to the recordings. The resulting corrected conductances were analyzed as

described for Fig. 6 D and compared to the actual conductance parameters (dashed lines). (C–F) During the correction, passive parameters were changed in

comparison to the simulated experiment, as indicated by the ‘‘% error’’, to emulate inaccurate knowledge of the underlying parameters. Conductance

parameters were calculated from the corrected conductances as described for Fig. 6 D and compared to the actual conductance parameters (dashed line). Note

the different scales for the channel parameter errors in C compared to D–F.
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FIGURE 8 Space-clamp distortions

and corrections for realistic potassium

conductances in a cable. The uncor-

rected currents were simulated as in

Fig. 4, with 30 pS/mm2 of Kfast, 10 pS/

mm2 of Km, 30 pS/mm2 of Kslow, 100

pS/mm2 of Kv, and 100 pS/mm2 of Ka.

The prepulse (for 8.4 s to –110 mV)

was truncated to facilitate presentation.

The current was corrected for the

passive leak, and converted to a con-

ductance by dividing by the driving

force (A, black lines). The conductance-

density estimates obtained with the

correction algorithm are displayed as

blue lines. For comparison, the true

kinetics are shown as red lines in all

panels. Scale bars apply to the (un-

corrected) conductance in the left panel

(conductance in nS), and to the true

kinetics and corrected traces (conduc-

tance density in pS/mm2). (B) Cables as

in A were prepared with different

conductance densities (Kfast: 3, 10,

and 30 pS/mm2; Km: 1, 3, and 10 pS/

mm2; Kslow: 3, 10, and 30 pS/mm2; Kv:

10, 30, and 100 pS/mm2; and Ka: 10,

30, and 100 pS/mm2). Peak conductan-

ces were calculated from the corrected

kinetics, normalized to the value at 160

mV, and shown as blue markers in B for

the three conductance densities (low

(open squares), medium (open trian-

gles), and high (solid diamonds)). The

uncorrected conductances are shown in

black symbols similar to those used to

describe the corrected conductance.

The red lines were calculated directly

from the original kinetics (Kfast: 5 pS/

mm2; Km: 10 pS/mm2; Kslow: 5 pS/mm2;

Kv: 100 pS/mm2; and Ka: 100 pS/mm2).

The pseudo-steady-state approach was

modified for these simulations by

replacing the constant, time-indepen-

dent conductance model with a mono-

exponential one. The necessary time

constants (t) were roughly estimated as

the rise time of the distorted clamp-

current recordings (half the time in

which 86% of the peak current was

reached). Changing t up to 10-fold did

not significantly alter the correction

result.
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Testing the algorithm

To test the algorithm, we used known conductances to obtain

simulated voltage-clamp currents, distorted by a lack of space

clamp. Here, the term ‘‘simulated currents/conductances’’

refers to these currents, and the term ‘‘corrected currents/

conductances’’ describes currents/conductances generated

by the correction algorithm. It has to be emphasized that the

simulated currents were analyzed by the correction algorithm

without any prior knowledge of the kinetics or distribution of

the conductance that had been used to generate them.

First, a simple time-independent potassium conductance

was implemented in an unbranched cable (Fig. 4 A). Its

Boltzmann activation curve is depicted in Fig. 4 B (dashed
line; gmax ¼ 30 pS/mm2, V1/2 ¼ �20 mV, inverse slope ¼ 8

mV). Direct estimation of the activation parameters from

the distorted clamp-current recording (solid line in Fig. 4 B)

yielded a shallow slope and no saturation at high voltages.

However, the correction algorithm accurately retrieved the

activation parameters: gmax ¼ 30.3 6 0.1 pS/mm2, V1/2 ¼
�19.1 6 0.1 mV, inverse slope ¼ 8.2 6 0.1 mV. The range

of parameters that can be accurately retrieved was assessed

systematically by varying the slope and V1/2 of the

activation curve (Fig. 4, C and D, respectively). Steep

activation curves yielded increasingly worse fits for inverse

slopes smaller than 2 mV (i.e., 25–75% activation within 4

mV). For shallow activation curves with inverse slopes[32

mV, a decrease of the accuracy of the fit was observed as

a result of significant activation at the starting potential (V
¼ –80 mV). When V1/2 was varied (Fig. 4 D), accurate

values for all Boltzmann parameters were retrieved for V1/2

[ �40 mV. For smaller values of V1/2, once again

significant activation at –80 mV resulted in deviations

from the original Boltzmann activation curve. Similar

results were obtained with a nonmonotonic conduct-

ance-voltage relation gðVÞ ¼ 10 ps=mm2=ð11 expððV1

10 mVÞ=20 mVÞ2Þ (data not shown).

These findings indicate that our correction algorithm is

capable of extracting steady-state activation parameters in a

non-space-clamped situation for all but extremely steeply

activating channels or those with a substantial activation at

rest. Thus, the algorithm can in principle solve the reverse

problem.

Spatial resolution of the algorithm

In realistic situations, the membrane properties are neither

known completely nor necessarily homogenous. Thus, we

investigated whether i), distal regions of unknown structure

affect the precision of the algorithm, and whether ii), the

obtained activation curve reflects local membrane properties

or rather some average across parts of the structure.

These concerns were assessed by first studying the influ-

ence of changes in distal membrane properties on clamp-

current recordings (see Fig. 5, A and B, and Appendix). A

cylinder was divided into a middle region and two distal ones

(Fig. 5 A). For simplicity, these cylindrical regions were

modeled with constant membrane conductances gM and gD,

respectively. Then, gD was varied and the relative change in

Iclamp was noted for different gM/gD (or Rside/R‘,middle, cf.

Appendix) ratios. Even when the distal region was as close as

ð1=2Þlmiddleðlmiddle ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=Ri � gMÞ � ðd=4Þ

p
Þ, 50% changes

of the distal membrane conductance gD did not alter Iclamp by

more than 12% (Fig. 5 B, middle trace). The alteration of

Iclamp was most prominent for situations where gD approx-

imately equaled gM (Fig. 5 B).

In addition, a spatial conductance step was implemented in

a cylinder. The simulated clamp currents at various positions

(Fig. 5 C) were corrected without any a priori assumptions

about the channel distribution. Since channel distributions

are in general not known in an experimental situation,

a homogenous channel distribution was assumed for cor-

rection of the individual recordings at different positions.

The corrected conductance parameters for a conductance

step from 3 to 30 pS/mm2 at various positions are depicted in

Fig. 5 C: Both V1/2 and the inverse slope of the activation

curve were retrieved accurately throughout the cylinder.

Deviations from the actual values (dashes) were small and

occurred primarily close to the conductance step. The con-

ductance density was retrieved as a sigmoid, whose inverse

slope indicated the spatial resolution of the correction

algorithm. Repetition of this simulation and correction

procedure for various conductance densities and passive

parameters showed the dependence of the resolution on the

‘‘active space constant’’, lactive. This term refers to the

apparent space constant when voltage-gated channels are

open, lactive ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gpas=gact

p
� lpas. For Rm ¼ 30,000 Vcm2

(gpas ¼ 0.33 pS/mm2) and gact ¼ 30 pS/mm2, lactive �ffiffiffiffiffiffiffiffiffi
0:01

p
� lpas; which is only 10% of the passive space

constant. Thus, information obtained was averaged over

a small region that extended only on the order of lactive

around the recording electrode (Fig. 5 D).

Temporal resolution of the algorithm

The applicability of the algorithm to non-steady-state sit-

uations was tested by studying the sensitivity of clamp-

current recordings to temporal changes in channel activation,

and in addition by correcting clamp-current recordings from

potassium channels with various activation times. For the

non-steady-state case, we have to assume a kinetic model for

the time course of g(V,t), this model being as simple as

possible. Therefore, clamp currents recorded during activa-

tion of voltage-gated channels were corrected independently

for every time point t1: For each t1, we assumed a simple

kinetic ‘‘model’’ g ¼ const for all times less than t1 and

approximated the voltage-dependent conductance g(V) to

fit the corrected clamp current at time t1 to the simulated

current, thus obtaining the activation curve at time t1: g(V,t1).
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This was repeated independently for each time point to yield

the complete activation kinetics g(V,t) as outlined in Fig. 3.

To assess the errors made by this ‘‘pseudo-steady-state’’

approach, the dependence of the clamp current on the recent

history of the membrane conductance was examined. A

voltage clamp with a voltage step from �80 mV to 0 mV at

t ¼ 0 was performed, and the clamp current was measured at

t1 ¼ 100 ms. Then a constant membrane conductance was

implemented in the cylinder and switched on at varying

times ton, 0\ ton\ t1 (Fig. 6 A). This conductance made the

clamp current change as a function of Dt ¼ t1 � ton. The half

maximum of a log-sigmoid fit to Iclamp(Dt) yielded a measure

of the temporal resolution (‘‘memory’’) of the clamp-current

recording. The same procedure was applied to a conductance

that was initially on, switched off at varying times toff, and on

again at t1 ¼ 100 ms (Fig. 6 B), and to a conductance that

increased linearly from 0 at time ton to a maximum value at t1
¼ 100 ms (data not shown). The dependence of the temporal

resolution of the system on the apparent membrane time

constant upon activation of all conductances (active mem-

brane time constant: tactive, cf. legend to Fig. 6) is shown in

Fig. 6 C.

Active time constants are usually small (tactive � 300 ms

for a conductance with a density of 30 pS/mm2), which

encouraged us to take the approach described above, i.e.,

not to assume a special kinetic model for the underly-

ing conductances, but rather to fit every time point indepen-

dently with a time-independent conductance. The fitted

conductance is expected to reflect the time course of the

actual underlying conductance with an accuracy of about

tactive.

The validity of this ‘‘pseudo-steady-state’’ approach was

further assessed by implementing a simplified potassium-

channel model in a cable (Fig. 6 D). This channel model

consisted of one activation particle with a voltage-inde-

pendent activation time (tchannel ¼ 8 ms) and a first-order

steady-state activation model as in Fig. 4 (gmax ¼ 10 pS/

mm2, V1/2 ¼ �20 mV, inverse slope ¼ 8 mV). Channel

kinetics directly estimated from the simulated distorted

clamp currents deviated from the actual values (V1/2 ¼
�12.8 6 0.8 mV, inverse slope ¼ 15.6 6 0.7 mV, tchannel

¼ 10.4 6 0.1 ms; tchannel was determined for the voltage

step to �10 mV). In contrast, by using the correction

algorithm, the channel parameters could be retrieved

accurately (gmax ¼ 10.10 6 0.04 pS/mm2, V1/2 ¼ –18.7

6 0.2 mV; inverse slope ¼ 8.9 6 0.2 mV and tchannel ¼
8.8 6 0.4 ms). Variation of tchannel indicated that, for all

activation time constants, the steady-state parameters were

determined correctly (Fig. 6 E). However, estimation of the

channel activation time was less precise for fast channels

(tchannel \ 300 ms), which confirmed the prediction based

on Fig. 6 C. Higher or lower channel densities (from 1 to

1000 pS/mm2) or membrane resistances (from 2000 to

128,000 Vcm2) did not influence algorithm performance

(not shown).

Sensitivity and numerical stability

The algorithm, due to its structure, cannot be tested an-

alytically for numerical stability. Therefore, stability was

tested by adding various white noise levels to a simulated

current recording from a cylinder with a simple underlying

conductance (Fig. 7 A; gmax ¼ 10 pS/mm2, V1/2 ¼ �20 mV,

inverse slope ¼ 8 mV, tchannel ¼ 7 ms). The corrected

conductance density for a noise level with root mean square

(rms) of 10 pA (;1% of steady-state current at 0 mV) is

depicted in Fig. 7 A. The original kinetics were easily

retrieved. The activation curve was markedly distorted only

for noise levels above 100 pA rms. (Fig. 7 B). Thus, for

experimentally observed noise levels numerical stability of

the algorithm can be obtained.

The sensitivity of the correction algorithm to morpholog-

ical and electrical parameters was also examined. Recordings

from a cylinder, equipped with the same conductance as

in Fig. 7 A, were made with the same passive parameters

as described above. However, for the correction algorithm,

passive parameters were modified, thus simulating an in-

correct estimate of the true passive parameters. Global in-

creases or decreases in the diameter of the cylinder were used

to simulate incorrect morphological reconstruction. Changes

in the corrected conductance parameters occurred mainly

with incomplete knowledge of the morphology (Fig. 7 C,

compare to 7, D–F). Overall, neither noise nor variations in

passive parameters or morphology to an extent expected

from experimental accuracy resulted in significant deviations

of the correction results from the actual underlying channel

parameters.

Full channel models

The correction algorithm was tested on more complex

channel kinetics by implementing several published models

of potassium channels in a 2-mm long cable. Simulations of

voltage-clamp experiments produced clamp currents with

distortions due to lack of space clamp (black in Fig. 8 A). As

expected, apparent activation and inactivation time constants

increased and the voltage dependence of the steady-state

conductance flattened. The correction algorithm yielded

estimates for the conductance kinetics (blue trace in Fig. 8

A) that accurately reflected the underlying channel properties

(red trace in Fig. 8 A). The kinetics of fast inactivating

channels (Kfast and Ka) and channels with a steep conduc-

tance-voltage relation (Kv) were not corrected as properly as

slower channels (Km and Kslow). This deviation corresponded

to the predictions depicted in Figs. 4 and 6. The contributing

membrane areas varied significantly, thus no a priori pre-

diction could be made for the conductance densities.

Therefore, the distorted currents are displayed as conductan-

ces rather than conductance densities and with different scales

to facilitate comparison. The results of applying the algorithm

to several conductance densities of each of the five realistic
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conductances (Kfast: 3, 10, and 30 pS/mm2; Km: 1, 3, and 10

pS/mm2; Kslow: 3, 10, and 30 pS/mm2; Kv: 10, 30, and 100 pS/

mm2; and Ka: 10, 30, and 100 pS/mm2) are shown in Fig. 8 B.

The maximal conductance obtained at each voltage was

normalized to the conductance at the maximal voltage (V¼ 60

mV). The results obtained by applying the algorithm to these

realistic channels demonstrated that correcting every time

point independently is sufficient to accurately obtain the

kinetics of a wide range of potassium channels.

Correcting in neuronal morphologies

The major goal in designing the correction algorithm was to

devise a method that could overcome space-clamp problems

in elongated and branched structures, such as large cortical

neurons. Therefore, the algorithm was tested on a fully re-

constructed L5 neocortical pyramidal neuron (Fig. 9 A), into

which was inserted the fast inactivating potassium channel

Kfast (Korngreen and Sakmann, 2000). This type of neuron

was selected for the simulations because it provided a worst

case of problems that arise from improper space clamp. As

expected, in somatic recordings the uncorrected conductance

calculated from currents that were obtained from a simulated

somatic voltage clamp did not properly reflect the underlying

kinetics (Fig. 9 A, bottom panel, black versus red traces). In

this morphology, as with the cylinder, application of the

correction algorithm considerably reduced the error (Fig. 9 A,

bottom panel, blue traces). The same was true for simulated

currents from the apical dendrite (Fig. 9 A, upper panels).
Note that the uncorrected dendritic currents obtained at the

indicated positions not only display distorted kinetics, but

also incorrect values of the relative channel densities (Fig. 9

A, black traces).
In both hippocampal (Hoffman et al., 1997) and neo-

cortical (Korngreen and Sakmann, 2000) pyramidal neurons,

potassium-channel densities change along the apical den-

drite. Therefore, we tested whether the correction algorithm

could retrieve correct local conductance densities without

a priori knowledge of a conductance density gradient. The

same reconstructed pyramidal neuron was used with a Kfast

conductance density that was constant across soma, axon,

and basal dendrites, but increased linearly along the api-

cal dendrite. Again, uncorrected conductances from several

recording sites as in Fig. 9 A displayed distorted channel

kinetics (not shown). For the correction algorithm, a homog-

enous density of potassium channels was assumed, since

a priori knowledge about the existence of an inhomogene-

ous distribution is usually not available. Nevertheless, the

correction resulted in a correct estimate of the local channel

density (Fig. 9 B) and retrieval of the correct kinetics as

predicted by the spatial (Fig. 5) and temporal (Fig. 6)

resolutions of the algorithm. The correction was successful

for all tested locations; the conductance density slope along

the apical dendrite was accurately retrieved (Fig. 9 B,

inverted triangles). Results of this and of the correction of

both a steeper (solid circles) and shallower (triangles)
upwards gradients are summarized in Fig. 9 B. A decreasing

gradient was also accurately extracted (Fig. 9 C).

Dendritic recordings

All our simulations were performed under the assumption

of a negligible series resistance. However, experimentally

reached series resistances are at least several MV, especially

for dendritic recordings that can easily be above 20 MV

(Stuart and Spruston, 1995; Stuart and Sakmann, 1994). The

current injected by the voltage-clamp amplifier results in

a voltage drop across the series resistance generated in the

whole-cell configuration. Therefore, the voltage reported by

most single-electrode voltage-clamp amplifiers is not correct

(Armstrong and Gilly, 1992). The bigger the current injected

by the amplifier, the bigger will be the error due to the series

resistance. Conventional series resistance compensation,

a part of any modern patch-clamp amplifier, can reasonably

compensate resistances of up to 20 MV if the series re-

sistance is measured accurately. When recording from neu-

rons, the large currents and the high series resistance will

greatly increase the error, thus rendering the use of patch-

clamp amplifiers impossible. In principle, series resistance

problems could be overcome by discontinuous voltage-

clamp amplifiers. In these amplifiers, the current is injected

for short durations followed by periods during which the

voltage is recorded. Since the voltage is recorded during

a time in which there is no current flowing across the series

resistance, it is a true recording of the membrane potential.

When this cycle is repeated at a high enough frequency, it is

possible to voltage-clamp a cell even in the presence of

a relatively high series resistance. However, application of

such amplifiers to dendrites is not trivial because of the many

membrane time constants inherent to neurons (Major, 1993;

Wilson and Park, 1989). Furthermore, the existing discon-

tinuous voltage-clamp amplifiers cannot cycle fast enough

to accurately follow fast and large conductance changes.

Therefore, the current method of choice for implementing

our correction algorithm is the two-electrode voltage clamp.

In this method, one electrode injects current while the other

records the voltage. Both electrodes have series resistance

due to the whole-cell configuration. However, since no cur-

rent is injected via the voltage-sensing electrode, it is re-

porting the correct membrane potential. Furthermore, this

technique can be tuned to follow very fast and large changes

in membrane current.

To comply with the assumptions made while developing

the correction algorithm, the morphology of the neuron and

the passive parameters were determined as detailed in the

methods. To isolate only K1 currents, we blocked voltage-

gated Na1 channels with 1 mM TTX, voltage-gated Ca21

channels by complete substitution of the Ca21 in the bath

with Co21, and Ih with 30 mM of ZD2788. Two simultaneous

whole-cell dendritic recordings were established at an in-
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FIGURE 9 Space-clamp errors and correction of dendritic and somatic recordings of potassium channels. (A) The Kfast channel with a homogenous density

of 30 pS/mm2 was inserted into a partially reconstructed morphology of a layer 5 neocortical pyramidal neuron (left panel). Voltage-clamp experiments were

simulated at 0 mm, 250 mm, 500 mm, and 750 mm from the middle of the soma. The leak-subtracted and converted current recordings (black lines) and the

corrected conductances (blue lines) are shown in the right panel. For comparison, the red lines indicate the true conductance kinetics and densities for the given

positions. Scale bars apply to the uncorrected conductance (conductance in nS) and to the corrected and original kinetics (conductance density in pS/mm2). (B)

The reconstructed layer 5 pyramidal cell from A was equipped with a homogenous density of Kfast (gmax ¼ 10 pS/mm2) throughout the soma, the partially
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terelectrode distance of 30–40 mm. Under these conditions it

was possible to record K1 currents from the dendrites of L5

neocortical pyramidal neurons. Fig. 10 A displays the

schematic representation of the two-electrode voltage-clamp

circuit with the current-injecting electrode at 220 mm and the

voltage-sensing electrode at 180 mm measured from the

center of the soma. The distorted currents, recorded voltage,

and corrected conductance density are shown alongside the

neuron (Fig. 10 B). Due to the initial overshoot of the

potential (Fig. 10 B), the activation time course of the current

was distorted and therefore not analyzed. The decay of the

corrected conductance density was faster than the distorted

currents as expected from our simulations. The correction

clearly revealed a biexponential decay of the conductance

density that was obscured in the distorted currents. This

biexponential decay is probably the manifestation of the fast

inactivating and slow inactivating K1 conductances that are

known to be present in the dendrites of layer 5 neocortical

pyramidal neurons (Bekkers, 2000; Korngreen and Sakmann,

2000). The steady-state activation curve of the distorted

conductances, calculated by dividing the distorted currents

by the driving force, could be fitted to a Boltzmann function

to obtain a V1/2 ¼ 27 mV and k ¼ 22 mV (average of 21 6 3

mV and 17 6 2 mV, n ¼ 3). After correction, these

parameters had values of V1/2 ¼ 18 mV and k ¼ 16 mV

(average of 17 6 2 mV and 14 6 1 mV, n¼ 3). The corrected

slope factor was not different (P[ 0.1, ANOVA) from that

obtained using somatic nucleated patches (12 6 1 mV, n¼ 6)

(Korngreen and Sakmann, 2000). The V1/2, after correction

for a liquid junction potential of 12 mV, was significantly

different (P\0.05, ANOVA) from the published value (�1

6 2 mV, n ¼ 6) (Korngreen and Sakmann, 2000).

DISCUSSION

Space-clamp errors render proper analysis of ionic currents

impossible in any branched or elongated structure. Here we

present an algorithm (Fig. 3) that accurately extracts channel

properties from distorted recordings (Figs. 4–9). Counterin-

tuitively, the lack of space clamp offers the opportunity to

obtain very local information about potassium-channel

kinetics and densities (Fig. 5 and 9). The correction al-

gorithm was not sensitive to added noise or to errors in

passive membrane parameters (Fig. 7). Up until now, while

performing voltage clamp in neurons, extreme measures

were taken to increase the voltage control over a membrane

area (Augustine et al., 1985). Such measures essentially

flatten the voltage attenuation from the point of the clamp,

thus reducing the error in the voltage. However, this only

applies to structures with relatively short dendritic trees.

Here we demonstrate that our algorithm performs best in the

almost complete absence of space clamp. Since voltage

attenuation upon channel activation is much narrower than in

the well-studied passive case, the region that significantly

influences the clamp current is limited to a narrow region

around the electrode (‘‘poor space clamp’’). Thus, any

method for estimation of membrane conductances will re-

trieve an averaged conductance only over this region,

enabling high spatial resolution for poorly space-clamped

structures (a small active l; Fig. 5). The same principle

applies to the temporal domain as follows. Many channel

kinetics are slow compared to the membrane time constant

for activated conductances (that is again much smaller than

the well-known passive membrane time constant), therefore

facilitating adaptation of our correction algorithm for the

study of channel kinetics (Fig. 6).

With simplified channel models, which are described by

only four parameters (three parameters for the activation

curve in steady state and one voltage-invariant activation

time constant), the correction algorithm accurately retrieved

the entire channel model. Limitations of the algorithm were

addressed by varying the four parameters (Figs. 4 and 6).

Channels with a steep steady-state activation curve (inverse

slope of the Boltzmann curve, k # 4 mV) could not be fully

corrected due to the finite step size of the linear interpolation.

Similarly, with very fast channel activation times (tchannel �
tactive) a poorer correction was achieved, since essentially no

kinetic model was assumed. Although these two difficulties

are not a major concern in realistic channel models, they

could be accounted for by including a priori assumptions

about the activation curve or underlying channel kinetics.

However, such assumptions substantially reduce the gener-

ality of the correction approach. Other problems, such as

decreases in correction accuracy with decreasing V1/2 of the

Boltzmann activation curve, can be overcome by minor

modifications of the algorithm, such as omission of the

assumption of no channel activation at rest.

Correct implementation of the algorithm requires de-

termination of both the morphology and passive parameters

of the structure being studied. Given enough reconstructions,

implementation might be simplified by building a canonical

view of the specific neuron to obtain at least a first-order

correction at a much reduced computation time, especially

since the correction is sensitive primarily to local morpho-

reconstructed axon, and basal dendrites, and with a linearly increasing gradient along the apical dendrite (up to 50 pS/mm2 at 1000 mm away from the soma).

Correction was performed without any a priori knowledge of the gradient. The local recording was corrected with the underlying assumption of a homogenous

distribution of a potassium conductance (inverted triangles). This procedure was repeated on a cell prepared with gradients of different steepness and sign: 20

pS/mm2 (soma) to 40 pS/mm2 (1000 mm distance), triangles; 7 pS/mm2 to 70 pS/mm2, solid circles; and (C) 70 pS/mm2 down to 7 pS/mm2, solid diamonds.

Peak conductance densities were calculated and fitted with a Boltzmann function: g=gmax ¼ ð1=ð11 e�ðV�V1=2Þ=kÞÞn; where g/gmax is the conductance

normalized to its maximal value, V is membrane potential, V1/2 is the voltage at which half of the ‘‘gates’’ of all channels are in the open configuration, and k is

the slope factor. gmax was normalized to the true somatic value for display purposes.
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logical features (Fig. 5). The effects of changes in distal

morphology are in general minor (as partially discussed in

the Appendix). Simplifying distant parts of the dendritic tree

could thus substantially both ease and speed up the

reconstruction process and enhance computational efficacy.

This becomes important not mainly for the demonstration of

the basic principles (that are assessed in a cylinder model)

but for the application to various complex dendritic trees. We

observed significant errors in the correction only if the

reconstruction became poor in regions closer than ;200 mm

to the recording site on the dendrite (data not shown). For

experimental implementability it could therefore be useful to

extract the local dendritic morphology during the experiment

(e.g., by imaging methods) and combine it with a simple

generic cell morphological model to result in a quick semi-

online correction. In a post hoc analysis, a slightly more

detailed morphological measurement might already be

sufficient. This can always be tested by further simplifying

the morphology and testing whether any significant changes

in the corrected conductance values occur. If this is not

the case, it is safe to assume that the morphological

reconstruction is sufficient.

Of concern also is the accuracy of the passive membrane

parameters (Rm, Ri, and Cm). A 10–20% error in the passive

parameters did not significantly affect the final outcome (Fig.

7). The passive parameters of a given neuron can be

estimated with reasonable accuracy once its morphology is

known (Clements and Redman, 1989; Major et al., 1994;

Roth and Häusser 2001; Stuart and Spruston, 1998). This

requires an additional pulse protocol in current-clamp mode,

before the voltage-clamp experiment, and a full reconstruc-

tion of the neuron afterward (Clements and Redman, 1989;

Major et al., 1994; Roth and Häusser 2001; Stuart and

Spruston, 1998). As the neuron usually is to be reconstructed

for use in the correction algorithm, only additional pulse

protocols in current clamp need to be performed. Previously,

many recorded sweeps were claimed to be needed to obtain

a sufficiently accurate estimate of the passive parameters

(Major et al., 1994). However, using two electrodes to record

such sweeps (Roth and Häusser, 2001; Stuart and Spruston,

1998) greatly reduces the number of sweeps required. Thus,

obtaining the passive parameters for each neuron before

starting the voltage-clamp experiment does not require more

than an additional 5–10 min. Another advantage of the two-

electrode voltage clamp is that the series resistance of the two

electrodes can be considerably higher than the one required

FIGURE 10 Dendritic two-electrode voltage-clamp recording of K1 currents. (A) The schematic representation of a two-electrode voltage-clamp circuit is

shown at the recording site on the dendrite of the reconstructed neuron. (B) The distorted currents, membrane voltage, and corrected conductance density are

shown from top to bottom. The data was sampled at 10 kHz and filtered at 5 kHz. Both the current-injecting and the voltage-sensing electrodes had series

resistances of 25 MV. The passive parameters determined as detailed in Methods were Ri ¼ 90 Vcm, Rm ¼ 51,000 Vcm2, and Cm ¼ 1.1 mF cm�2.
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for the accurate application of a single-electrode voltage

clamp. We were able to voltage-clamp dendrites even when

both electrodes had series resistance of 25–30 MV. Although

more recordings are required to establish the full kinetic and

density profile of the K1 conductances along the apical

dendrite of L5 pyramidal neurons, it is clear that the

correction algorithm was able to correct currents recorded in

the absence of space clamp.

Here, we present an algorithm that extracts only activation

curves of single or mixtures of potassium channels. Much

more information can be obtained from the voltage-clamp

technique with carefully planned voltage protocols. Using

the correction of the activation curve as a cornerstone,

inactivation properties and activation kinetics can also be

corrected (M.H., A.T.S., B.S., and A.K., in preparation). We

applied the algorithm to a variety of potassium channels. As

outlined in the text, the algorithm works best for non-

regenerative currents. Thus, under physiological conditions,

the algorithm can be applied to potassium channels, as

shown in Fig. 10, and chloride channels, as well as, in the

opposite direction, to Ih and inward rectifier channels.

Sodium and calcium channels, the two other important

classes of voltage-gated ion channels in neurons would, due

to the lack of space clamp, generate regenerative events,

which will be observed as ‘‘voltage escapes’’ to the

recording electrode. Such events do not comply with the

basic assumption of the correction algorithm that the mem-

brane potential does not exceed the clamp voltage anywhere

in the entire structure. This problem might be overcome by

designing an experiment in which the probability of regen-

erative events is low.

The principle we developed for the correction of currents

from voltage-gated channels could in general be applied

to estimate the conductance density of ligand-gated chan-

nels and that of synaptic currents as well. However, several

problems need to be addressed first. It is possible to design

an experiment in which a puff of a neurotransmitter will be

applied to the dendrite at the location of a voltage-clamp

electrode. This experiment will suffer from the lack of

knowledge of the membrane area onto which the neuro-

transmitter was applied because of the dense structure of

the brain slice and the speed of the perfusion system. It is

important to stress that the neurotransmitter must be applied

to the location of the voltage clamp. Application to a site on

the dendrite farther away from the electrode introduces more

free parameters to be estimated by the algorithm: knowledge

of the site of application and the distance to the recording,

active contributions to the signal propagation by voltage-

gated channels, and nonuniformity of the passive parameters

between the application site and the recording electrode.

Above all, at a site of a remote application, there is virtually

no control of the membrane potential by the voltage-clamp

electrode. Thus, we cannot use the same iterative approach as

detailed in this paper. This problem is worse for the

correction of synaptic currents. The release of neurotrans-

mitter is variable and dependent on the properties of the

presynaptic terminal. Thus, we have very little control over

the amount of neurotransmitter released and over the voltage

at both pre- and postsynaptic terminals. To allow the

correcting of space-clamp distortions of synaptic currents,

it may be possible to combine our approach with new ways

of influencing the membrane potential at the synapse or

measuring the membrane potential at multiple positions to

facilitate estimates regarding the signal propagation.

Many voltage-clamp recordings are limited by the absence

of proper space clamp. Even neurons with relatively short

dendrites will produce erroneous current recordings due to

voltage drop in the dendrites. Here we present an algorithm

to correct for such distortions with the aid of computer-

simulated experiments, and described its application to L5

pyramidal neurons. Since the functionality of this correction

algorithm does not depend on specific properties of the

studied structure, it can be used to analyze voltage-clamp

recordings in any type of nonisopotential cell or fiber.

APPENDIX

The reverse problem: monotonicity of the clamp
current-conductance relation

With complete knowledge of conductance kinetics and distributions, cable

theory allows calculation of clamp currents from the conductance properties.

As outlined in the Results section, in voltage-clamp experiments one is faced

with the far more difficult reverse problem: to determine the conductance

distribution and kinetics from the clamp-current recording. The algorithm

described above breaks down this multiparameter problem into several one-

parameter problems, each linking one current recording (e.g., the clamp

current I in the steady state of a voltage-clamp experiment to �40 mV) to

a single yet unknown conductance value (the steady-state conductance g for

voltages �50 mV\V#�40 mV). The reverse problem is thus to invert the

relation I(g) to determine the conductance g0 that matches the experimen-

tally measured clamp current Iexp ¼ I(g0). A sufficient and in most cases

essential prerequisite for solving the reverse problem is therefore mono-

tonicity of this clamp current-conductance relation. However, an increase in

the membrane conductance results in a narrowing of the voltage profile.

Therefore only a smaller region contributes substantially to the clamp

current. Whether the increase in the membrane conductance is not usually

overcompensated by the decrease in the activated region due to the

narrowing voltage profile must hence be examined.

In the following, we analytically examine the clamp current-conductance

relation in several scenarios. In the general case of an arbitrary voltage-

dependent conductance g(V) a complete analytic solution is impossible to

obtain. In a simplified situation with a very simple voltage dependence g(V)

¼ g0 (for V\V0) and g(V) ¼ g1 (for V$ V0), a complete analytical solution

can be derived as outlined in the first paragraph. For more complex voltage

dependencies, this is not possible any more. Thus, we describe approx-

imations of the clamp current-conductance relation that allow to qualitatively

predict its overall shape (and thus its monotonicity). These solutions are then

compared to the exact analytical solution and numerical calculations.

Let us consider the steady-state situation in an infinite cylinder

(equipped with a voltage-dependent conductance density g measured per

membrane area) that is voltage-clamped to Vclamp at position x ¼ 0 (Fig.

11 A). The voltage dependence of g to be g(V) ¼ g0 (for V \ V0) and

g(V) ¼ g1 (for V $ V0; higher voltages do not occur in the clamp

experiment: V # Vclamp throughout the cylinder as reversal potentials are

assumed to be hyperpolarized (as described in the Results section)), as
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shown in Fig. 11 B. The cylinder can be divided into three parts: one

finite cylinder with length 2lDec around the voltage clamp (gray in Fig.

11 A) and two semi-infinite cylinders (white). lDec indicates the length

over which the voltage attenuates from the clamp voltage Vclamp to the

voltage V0. Therefore, in the gray cylinder, the membrane voltage is

larger than V0 at each position. With the voltage-dependent conductance

defined as above, i.e., constant for V $ V0, this results in an ohmic

membrane conductance g ¼ g1 for the gray cylinder. For the white

cylinders, V \ V0, therefore g ¼ g0. All the properties of the white

cylinders are independent of g1, since changes in g1 only influence lDec, not

the length nor membrane properties of the white cylinders (at this point the

assumption of an infinite cylinder substantially simplifies the calculation).

The analytical solution

For a finite cylinder with an ohmic membrane conductance and a terminating

resistance RL (Fig. 11, RL being the known input resistance of the semi-

infinite cylinder (white) with membrane conductance g0), the input

resistance is Ginp ¼ 2G‘ðR‘ 1RL tanhðLÞÞ=ðRL 1R‘ tanhðLÞÞ (for deriva-

tion see e.g., Koch, 1999, chapter 2.2, page 37), with L ¼ lDec=lgray ¼
2lDec

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rig1=d

p
and G‘ ¼ 1=R‘ ¼

ffiffiffiffiffiffiffiffiffiffiffi
g1=Ri

p
pd3=2=2 being the input conduc-

tance of a semi-infinite cylinder with the membrane properties of the gray

cylinder. Ri is the morphology-independent, specific axial resistance of the

cylinder; d its diameter. The clamp current can then be calculated as

Iclamp ¼ ðV � EkÞ � Ginp ¼ 2ðV � EkÞG‘

R‘ 1RL tanhðLÞ
RL 1R‘ tanhðLÞ ;

(1)

which is depicted in Fig. 11 D as a dotted line. No free parameters needed to

be fitted.

FIGURE 11 Monotonicity of the clamp current-conductance relation. (A) A voltage-clamp experiment was simulated in a long unbranched cable as for Fig. 2.

Outer regions of the cylinder are clipped for displaying purposes. The voltage attenuation in steady state is shown for a simulated voltage clamp to�20 mV in the

middle of the cable. lDec, the decreasing length, is the length for which the voltage drops from �20 to �30 mV. (B) The voltage-dependent membrane

conductance was time-independent, g0 ¼ 5 pS/mm2 for voltagesV\�30 mV, and g1 ¼ 40 pS/mm2 for voltagesV$�30 mV. (C) Dependence of the decreasing

length lDec on the membrane conductance g1. (D) Dependence of the clamp current on the membrane conductance g1. The calculations underlying the analytical

(gray and dotted lines) and approximate (dashed line) traces in C and D are detailed in the Appendix. Simulation results in C and D are indicated by black lines.
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Approximate solutions

The clamp current required can—in very general terms—be written as

Iclamp ¼ Iwhite 1 Igray; (2)

Iwhite being the contribution of the white cylinders (independent of g1) and

Igray being the contribution of the gray cylinder that is dependent on g1. This

holds true for both the situation described above (g ¼ const in the white

cylinder) and for an arbitrary voltage dependence g(V \ V0). For a first

approximation, a rough estimate of the g1-dependence of Igray can be

calculated from the membrane conductance and the membrane area as Igray

� c 2lDecg1. The constant c could be derived from the driving force and the

cylinder diameter. What is important for the estimate is, however, that c is

almost independent of g1. With increasing g1, the voltage profile narrows,

thus resulting in a smaller lDec. To assess the question, whether the current-

conductance relation is monotonic, in this first estimate it remains to be

shown that the decrease in lDec does not overcompensate the increase in g1.

With the intrinsic length scale of the gray cylinder being lgray, a first estimate

for lDec is ldec } lgray } 1=
ffiffiffiffiffi
g1

p
and therefore Igray � c � ð1= ffiffiffiffiffi

g1
p Þ � g1 ¼

c
ffiffiffiffiffi
g1

p
. Substitution of this approximation into Eq. 2 yields a first

approximation for the clamp current

Iclamp ¼ Iwhite 1 c
ffiffiffiffiffi
g1

p
: (3)

Since Iwhite and c are (almost) g1-independent fit parameters, it becomes

evident, that Iclamp is indeed monotonic, and a first approximation (dashed

line in Fig. 11 D) of the actual (calculated in simulation, black line) clamp

current-conductance relation can be obtained.

As outlined above, for a more general conductance (g(V) is arbitrary for V

\ V0 and g(V) ¼ g1 for Vclamp $ V $ V0), the only difference to the step

conductance is in the contribution of the white cylinders. Therefore, the

above argument still holds for arbitrary voltage dependence for voltages V\
V0, with the only change being in the parameters Iwhite and c.

To more accurately assess the validity of the g1-dependence of lDec, it was

calculated analytically for the step-conductance as follows (depicted in Fig.

11 C): From the general voltage distribution VðX\ LÞ ¼
a coshðL� XÞ1b sinhðL� XÞ, the boundary condition for the gray

cylinder Vo=RL ¼ �ð1=ralÞðdV=dXÞjX¼L (ra indicates the axial resistance

per unit length, see also Koch, 1999, pages 33–37), and the boundary

condition V(L) ¼ V0, one obtains Vo=RL ¼ ð1=ralÞðVclamp�
Vo coshðLÞÞ=sinhðLÞ. Since L ¼ lDec=l � 1, a Taylor expansion for the

hyperbolic functions yields a square equation for lDec, and

finally lDec ¼ �k1=g1 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2

1=g
2
1Þ1 ðk2=g1Þ

p
; with k1 ¼ 1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0d=Ri

p
and k2 ¼ ððVclamp=V0Þ � 1Þðd=2RiÞ.

The clamp current can then be approximated by:

Iclamp ¼ 2 ðV0 � EkÞ
1

RL

1
V0 1Vclamp

2
pdlDecg1

� �
(4)

as shown in gray in Fig. 11 D.

Effects of distal membrane properties on
clamp-current recordings

The sensitivity of conductance estimates from the correction algorithm to

changes in distal membrane properties (which reflects incomplete

knowledge about the spatial distribution of e.g., passive properties)

was assessed by studying the dependence of the clamp-current record-

ings on the membrane conductances in regions distal to the recording

electrodes (Fig. 5). For this purpose, an infinite cylinder was divided into

three regions: a middle region around the voltage-clamp electrode with

a length of 2l and an ohmic membrane conductance gM (Fig. 5 A, gray),
and two semi-infinite cylinders with ohmic membrane conductances

gD (Fig. 5 A, white). The clamp current was calculated according to

Eq. 1

Iclamp;gD ;gM
¼ 2ðV � EkÞG‘

R‘;middle 1Rside tanhðl=lmiddleÞ
Rside 1R‘;middle tanhðl=lmiddleÞ

;

lmiddle, R‘,middle, G‘, and Rside being the space constant of the middle

cylinder, the input resistance, input conductance of a semi-infinite cylinder

with the membrane conductance gM, and the input resistance of the white

semi-infinite cylinder, respectively. The relative change in the clamp current

ðIclampð0:5gD; gMÞ � IclampðgD; gMÞÞ=IclampðgD; gMÞwas calculated as a func-

tion of the relative input resistances Rside=R‘;middle ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gM=gD

p
of the

cylinders indicating the sensitivity of the clamp-current recording to changes

in distal membrane properties.

Piecewise linear conductance models

To increase the accuracy of the conductance calculations, the staircase

conductance approach was changed to a piecewise linear conductance

model. Again, in the first step of the correction algorithm, the conductance g1

¼ g(�70 mV) was estimated. To achieve this, the voltage-clamp experiment

stepping to �70 mV was simulated as described above with the only

difference that the conductance model was g(V) ¼ 0 (V \ �80 mV) and

gðVÞ ¼ ðV1 80 mVÞ=10 mV � g1 (�80 mV \ V # �70 mV, higher

voltages do not occur). This resulted in a conductance-voltage relation that is

continuous and piecewise linear. The conductance g1 (and thus the slope of

the conductance voltage relation for �80 mV\V#�70 mV) was varied to

minimize the clamp current difference. Similarly, at higher voltages Vn, the

conductance for Vn � 10 mV\V# Vn was assumed to be linear across this

voltage region. From the last correction step, gn � 1 ¼ g(Vn � 10 mV) was

known. Thus the conductance for the voltage region of interest can be

written as gðVÞ ¼ gn�1 1 ðV� ðVn � 10 mVÞÞ=10 mV � ðgn � gn�1Þ. Dur-

ing the fitting procedure, gn (and thus the slope of the conductance-voltage

relation for voltages V with Vn � 10 mV \ V # Vn) is varied to match the

clamp currents.

Potassium-channel models

For all realistic channel models used, potassium currents were calculated as

IK ¼ gmaxa
xb(v � E), where gmax is the local conductance density; a and

b indicate the activation particle with an x-order kinetic and the inactivation

particle, respectively; v is the local membrane voltage; and E the potassium

reversal potential. Activation and inactivation variables are expressed in

terms of a steady-state value a‘(v) and a time constant ta(v). For Kv, Km,

Kfast, and the activation of Kslow, steady-state value and time constant were

determined as a‘ ¼ a=ða1bÞ and ta ¼ 1=ða1bÞ. The rate functions a

and b were as follows (v in mV, t in ms, and a and b in ms�1):

Delayed rectifier K1 channel Kv (Mainen et al., 1995):

ðno inactivation; x ¼ 1Þ; a ¼ 0:02
ðv� 25Þ

1 � e
�ðv�25Þ=9

;

b ¼ �0:002
ðv� 25Þ

1 � e
ðv�25Þ=9

:

Muscarinic K1 channel Km (Mainen et al., 1995):

ðno inactivation; x ¼ 1Þ; a ¼ 0:001
ðv1 30Þ

1 � e
�ðv130Þ=9

;

b ¼ �0:001
ðv1 30Þ

1 � e
ðv130Þ=9

:
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Fast inactivating K1 channel from neocortical neurons Kfast (Korngreen

and Sakmann, 2000):

Activation ðx ¼ 4Þa ¼ 3:4

11 e
�ðv�10Þ=30

;

b ¼ 0:7 e
v�6=180 � 0:45:

Inactivationa ¼ 0:0001 eð�0:06vÞ;

b ¼ 0:12

11 eð�ðv1 50Þ=8Þ 1 0:002:

Slow inactivating K1 channel from neocortical neurons Kslow (Korn-

green and Sakmann, 2000):

Activation ðx ¼ 2Þa ¼ 0:0052
v� 11:1

1 � e
�ðv�11:1Þ=13:1 ;

b ¼ 0:01938 e
�ðv11:27Þ=71 � 0:0053:

Inactivation was described as bðt; vÞ ¼ c1ðvÞb1ðt; vÞ1 c2ðvÞb2ðt; vÞ with

first order rate equations for b1 and b2.

b1‘ ¼ b2‘ ¼ 1

11 e
ðv158Þ=11

;

tb1 ¼ 3601 ð10101 23:7ðv1 54ÞÞe�ððv1 75Þ=48Þ2
;

tb2 ¼ 3330 � 4v;

c2 ¼
1 v [ � 10

0 v # � 10
; c1 ¼ 1 � 0:55c2:

�

Fast inactivating K1 channel from hippocampal neurons Ka (Hoffman

et al., 1997):

Activation ðx ¼ 1Þ:

a‘ ¼ 1=ð11 e
�0:001ð1:5�ð39ðv�11Þ=ð11 e

ðv1 40Þ=5ÞÞÞÞ;

ta ¼ e
�0:0015�ð21:5ðv�11Þ=ð11 e

ðv140Þ=5ÞÞ � a‘ðvÞ:

Inactivation : b‘ ¼ 1

11 e
0:117ðv156Þ ; tb ¼ 0:26ðv1 50Þ:
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