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Proposal for a Chaotic Ratchet Using Cold Atoms in Optical Lattices
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We investigate a new type of quantum ratchet which may be realized by cold atoms in a double-well
optical lattice, pulsed with unequal periods. The classical dynamics is chaotic and we find the classical
diffusion rate D is asymmetric in momentum up to a finite time tr. The quantum behavior produces a
corresponding asymmetry in the momentum distribution which is ‘‘frozen-in’’ by dynamical local-
ization provided the break time t� � tr. We conclude that the cold atom ratchets require Db= �h� 1,
where b is a small deviation from period-one pulses.
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ing conditions cover all regions of phase space uniformly.
A key result was a sum rule showing transport in the

usual realization of DL, the quantum kicked rotor
(QKR), the kicks are equally spaced. For the ratchet,
Cold atoms in optical lattices provide an excellent
experimental demonstration of the phenomenon of dy-
namical localization [1,2]. Dynamical localization
(DL) has been described as the so-called ‘‘quantum sup-
pression of classical chaos.’’ In the usual realizations, a
periodically driven or kicked system makes a transition
to chaotic classical dynamics for sufficiently strong per-
turbation. The classical energy is unbounded and grows
diffusively with time. For the corresponding quantum
system, in contrast, the diffusion is suppressed after an
�h-dependent time scale, the ‘‘break time’’ t�. The final
quantum momentum distribution is localized with a char-
acteristic exponential profile. The formal analogy estab-
lished with Anderson localization [2] forms a key
analysis of this phenomenon. A series of recent experi-
ments on cesium atoms in pulsed optical lattices [3] gave a
classic demonstration of this effect.

The possibility of experiments with asymmetric lat-
tices, in particular, with asymmetric double wells [4,5],
leads us to investigate the possibility of constructing a
‘‘clean’’ atomic ratchet, where the transport results purely
from the chaotic Hamiltonian dynamics, with no Brown-
ian or dissipative ingredients. Ratchets are spatially
periodic systems which, by means of a suitable spatial-
temporal asymmetry, can generate a current even in the
absence of a net force. There is already an extensive body
of work on Brownian and deterministic ratchets with
dissipation [6,7], driven by the need to understand bio-
physical systems such as molecular motors and certain
mesoscopic systems. Some of this work encompasses the
quantum dynamics [8]. For a full review see [9]. However,
to date there has been very little work on Hamiltonian
ratchets. One notable exception is the work by Flach et al.
[10] where the general form of the spatial and temporal
desymmetrization required to generate transport was in-
vestigated. The only substantial study of quantum Hamil-
tonian ratchets, however, is the work of Dittrich et al. [11]
which showed how transport can occur in mixed phase
spaces. They demonstrated that transport is zero if start-
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chaotic manifold is balanced by transport in the adjoin-
ing regular manifolds (stable islands/tori). Very recently
[12], it was shown that a kicked map with a ‘‘rocking’’
linear potential leads to confinement in the chaotic region
between a pair of tori which are not symmetrically lo-
cated about p � 0.

Here we propose a new type of Hamiltonian ratchet
which, classically, is completely chaotic. This ratchet is
not inconsistent with the rules established in [10,11], but
has a quite different mechanism. It is the first example of a
clean, nondissipative ratchet which is fully chaotic and,
hence, does not require initial preparation on a specific set
of islands/tori.

The basic mechanism relies on a hitherto unnoticed
effect. In brief: consider particles in the asymmetric
lattice, subject to a repeating cycle of kicks, of strength
Keff , perturbed from period one by a small parameter b.
We find that the classical diffusion rates for positive and
negative momenta (D� and D�, respectively) are (in
general) different up to a finite time, tr. For t < tr,
an asymmetry in the classical momentum distribution
Ncl�p� accumulates with kick number. Beyond this
‘‘ratchet’’ time tr, the rates equalize, we have D� �
D� �D (where D� K2

eff=2 is the total diffusion rate),
and the net classical current hpcli saturates to a constant,
nonzero value. The energy, of course, continues to grow
with time as hp2

cli �Dt. The corresponding quantum
current depends on t�=tr: if the quantum break time is
too short, no asymmetry in the quantum Nqm�p� accu-
mulates and there is no quantum transport. If t� � tr, the
localization length L becomes large and the effective
quantum momentum asymmetry �hpqmi=L decreases.
We find that tr �

1
b2D

. A quantum ratchet will have the
clearest experimental signature if t� � tr. Since t� �
D= �h2, the main conclusion of our Letter is that the cold
atom ratchets need Db= �h� 1.

Consider the quantum dynamics for a Hamiltonian
given byH � p2

2 � KV�x�
P
n;i ��t� nTi�. The ratchet po-

tential is given by V�x� � fsinx� a sin�2x���g. In the
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they are unequal but we can use a rescaled time such that,
without loss of generality, we take hTii � 1 over each
cycle.We take a repeating cycle of ‘‘chirped’’ kick period
spacings, 1� jb, 1� �j� 1�b . . . , 1� �j� 1�b, 1� jb
where j > 0 is an integer and b is a small time increment.
N � 2j� 1 for N odd and N � 2j for N even. Then, our
N � 3 cycle corresponds to a repeating set of kick spac-
ings T1 � 1� b, T2 � 1, T3 � 1� b while an N � 2
cycle corresponds to T1 � 1� b, T2 � 1� b, and
so forth.

The time-evolution operator for the ith kick of the nth
cycle factorizes into a free and a ‘‘kick’’ part Ui �
Ufree
i Ukick. In the usual plane wave basis, for a given

quasimomentum q, the matrix elements of Ui can be
shown to take the form:

U�i�
ml�q� � e�i� �hTi�l�q�

2=2�
X
s

eis�Jl�m�2s

�
K
�h

�
Js

�
aK
�h

�
;

(1)

where the J are ordinary Bessel functions. The time-
evolution operator for one period U�T �

P
i Ti� �Qi�N

i�1 Ui. In the experiments, an important parameter is
an effective �heff � 8!rT, where !r is the recoil fre-
quency. In [3], �heff � 1, so here we have considered the
range �h � 1 ! 1=10.

In Fig. 1 we compared the evolution of a quantum wave
packet with equal kick times (Ti � 1) with a correspond-
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FIG. 1. Effect of equal and unequal kick spacings on a
minimal uncertainty Gaussian wave packet with �h � 1=2
with initial hpi � 0, for kick strength K � 2 and a � 1=2,
for different �. (a) Evolution of energy and momentum for
T � 1 (dw-QKR). (b) Evolution of energy and momentum for a
repeating N � 3 cycle of kicks with b � 0:1, hence Ti �
1:1; 1:0; 0:9 (cdw-QKR). (a) and (b) show that there is no
transport for the equal kick case, but that there is a substantial
net momentum ( � constant if t > t�) for the cdw-QKR. Setting
� �  reverses the current relative to � � 0. The insets show
the first moment of the p distribution: The current is the
difference in area between the positive p and negative p
‘‘bumps.’’ The DL form jpj:N�jpj� � jpj

2L exp�jpj=L [with L �
27:5� 3:5D0= �h (see Fig. 3)] is superposed, showing the DL
form is regained for large enough p.
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ing unequal-kick case with N � 3, b � 0:1. Since V�x� in
general represents a double-well potential, we refer to it
as the dw-QKR to distinguish it from the standard map
case with V � K sinx. We refer to the unequal-kick case
as the chirped or cdw-QKR.

The upper graph in Fig. 1 shows that, in both cases, the
average quantum energy initially increases linearly, i.e.,
hp2i �Dt. The straight line corresponding to the classi-
cal energy is also shown. Neglecting all classical cor-
relations, we find D�D0 � K2

eff=2, where Keff �
K

��������������������
�1� 4a2�

p
. The � dependence lies in neglected corre-

lations, which in this case appear as products of Bessel
functions [13]. However, beyond a time scale t� t�, the
quantum energy saturates to a constant value hp2i � L2,
where L is the localization length.

The dw-QKR shows a typical, exponentially localized,
momentum distribution. However, for the cdw-QKR, the
quantal N�p� is evidently asymmetric, but regains the DL
form at large p. There is no net current in the T � 1 case:
asymptotically, hpi ’ 0. However, for the chirped case,
for t > t�, in general we have hpi � constant. A mean-
ingful way to quantify the asymmetry is a rescaled
momentum pL � hpi=L which also tends to a constant
for t > t� [e.g., pL ’ 1=8 in Fig. 1(b) for � � 0]. Taking
� �  reverses the symmetry of V�x� and the direction of
motion relative to � � 0. Intermediate values of � typi-
cally give hpi within these extremes.

In summary, the cdw-QKR shows a ratchet effect and
dynamical localization, with an asymmetric profile at
short range, but a DL form for large p. The quantal
current increases from zero for a finite time, then satu-
rates to constant magnitude. This is surprising, since it is
thought that in the fully chaotic regime a Hamiltonian
ratchet current should not persist. In order to understand
this behavior, we now compare with the corresponding
classical current.

In Figs. 2(a) and 2(b) we show that, in fact, both
quantum and classical currents hpi increase in magni-
tude, then saturate to a constant value after a finite time;
but the saturation time is generally different: t� in the
quantum cases in Fig. 2(a) and another, ratchet time scale
tr in the classical cases shown in Figs. 2(a) and 2(b).
Figure 2(a) shows, in particular, the dependence on �h.
The hpqmi are negligible for �h > 1 but increase rapidly
with decreasing �h, up to �h� 0:25. This is important
for any experiment : for these parameters (D� 2:5,
b � 0:1), an experiment with �heff � 0:8 would show little
asymmetry, but just halving �heff to �0:4 would show
substantial asymmetry. Beyond �h� 0:4, hpqmi is compa-
rable to the saturated classical value. But since the most
experimentally ‘‘detectable’’ ratchet is one which maxi-
mizes the asymmetry N�p�, this means maximizing a
rescaled momentum pL � hpqmi=L, so there is no advan-
tage in reducing �h much below �0:4 since L� �h�1.
Figure 2(b) shows that, for a given b (b � 0:05 in
this graph), the classical saturation time tr falls with
194102-2
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FIG. 2. Quantal versus classical ratchet currents are com-
pared in (a) and (b) for N � 3. Both the classical and quantum
hpi reach a constant value after a finite time (t� and tr,
respectively). (a) The quantum current is very sensitive to �h
if the quantum (Gaussian) wave packet localizes before the
classical equivalent saturates. The values of �h, (0:8 ! 0:125)
are indicated. K � 1:6, a � 0:5 (hence,D0 � 2:5), and b � 0:1.
The asymptotic quantum hpi increases with �h and ‘‘catches’’ up
with the classical results for �h� 0:25 where t� � tr.
(b) Evolution of hpi for a classical ‘‘wave packet’’ (500 000 par-
ticles with a Gaussian random distribution in x; p, of width
& � 1:5 for b � 0:05 but different D). The current increases
and then saturates for t > tr � 1=�Db2�. (c) Differential clas-
sical diffusion rates [D��t; b�; D��t; b�]: hp2i is evaluated sepa-
rately at each kick for particles with positive and negative
momenta for K � 1:6, a � 0:5, D0 � 2:5, and different b. We
see that hp2i� diverge from linear growth by a quantity, which
is similar in magnitude but opposite in sign for the negative
and positive components. The � and � indicate hp2i�, hp2i�,
respectively. But once t > tr, we see linear growth: D� �
D� �D� 2:5. The lower graphs show ��b� � hp2i��� �
hp2i��� (for these parameters, D� > D� so the current is
negative). ��b� / bt3=2 for small t.
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increasingD. The fact that hpcli saturates at all is surpris-
ing: after all, the ensemble of classical trajectories is
continually expanding and exploring new phase-space
regions corresponding to higher momenta.

While t� is well studied, tr is quite new; we find that it
can be understood in terms of differential rates of absorp-
tion of energy for particles moving left or right. To
illustrate this, we calculated—separately—hp2i��� for
those particles with p < 0 and hp2i��� for those with
p > 0. The results are shown in Fig. 2(c) for D0 � 2:5
and different b. They are quite striking: hp2i��� and
hp2i��� separate gradually, more or less symmetrically,
about the line �2:5t, but beyond a certain time, they run
parallel to each other and their slopes become equal with
D� �D� � 2:5. Also in Fig. 2(c) we plot ��b� �
194102-3
hp2i��� � hp2i��� for each b since this shows the saturation
effect more clearly. We find numerically and from theory
that, for small t, ��b� ’ b�D0t�3=2f�K; a�, where f�K; a� is
a function of K; a.

The so-called ‘‘quasilinear’’ approximation for the
energy diffusion D0 ’ K2=2 [14] neglects correlations
between sequences of consecutive kicks; for the standard
map, these give well known corrections to the dif-
fusion constant in the form of Bessel functions: D �
K2

2 f1� 2�J1�K��
2 � 2J2�K� . . .g [14,15]. These corrections

have even been measured experimentally with cold ce-
sium atoms in pulsed optical lattices [16,17]. For example,
the 2J2�K� term originates from two-kick correlations of
the form C�2� � 2hV 0�xi�V 0�xi�2�i. In general, if we work
out the change in hp2i for successive kicks, we obtain a
diffusion rate D which is the same whether we average
the momentum from 0 ! 1 or from 0 ! �1. Odd terms
in p such as hsin2pi average to zero once the cloud has an
appreciable spread, while the even terms hsin2pi �
hcos2pi ’ 1=2 are insensitive to the sign of p: in the
standard map, D� � D�. But if we consider the first
kick of the nth cycle of the cdw-QKR, we have:

xn1 � xn0 � Pn0�1� b�; (2)

Pn1 � Pn0 � KV 0�xn0 � Pn0�1� b��: (3)

The unequal kicks allow free evolution for an additional
small distance �1 � Pn0b. To first order,

Pn1 � Pn0 � KfV0�xn0 � Pn0� � Pn0bV
00�xn0 � Pn0�g:

(4)

Hence, we now have correlations which depend on the
sign of p and which scale with b. More precisely, we have
averages of typical form I�p� � hsinpb sin2pi. For pb
small, I�p� ’ hp�ib=2 ’ � b

2

��������
D0t

p
when we average posi-

tive and negative momenta separately. The average over x
yields a function f�K; a�. Hence, clearly the correspond-
ing energy hp2i� �D0t� �D0t�

3=2bf�K; a�. f�K; a� is a
very complicated function involving sums of products of
Bessel functions [13], but yields good estimates of ��b�.
In [18] we have investigated the rocking ratchet of [12] in
the chaotic regime and found the same physics. We ob-
tained excellent agreement between a curve / bt3=2 and
numerics and can predict successfully repeated current
reversals without any detailed study of phase space.

For pb large, I � hsinpb sin2pi ’ 0, so there is no
ratchet correction. The associated saturation time tr is
very important since then the classical ratchet speed
reaches its maximum and for t > tr, hpcli � cst. We
identify it as a point where I � 0; hence, we take

b
���������������
hp2i���

q
�  for the positive component and

b
���������������
hp2i���

q
�  for the negative component. For an order

of magnitude estimate of the mean time scale involved,
we take b

������
Dt

p
�  . Hence, we obtain tr �

 2

Db2
. In [12]
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FIG. 3. (a) Relation between classical diffusion rate D and
the quantum localization length L for the cdw-QKR. The solid
line corresponds to L � 3:5D

�h . (b) Current against D for a
quantum wave packet (crosses) and a classical ‘‘Gaussian
wave packet’’ (circles). The graph illustrates the fact that if
the quantum break time is too short (low D) the quantum
momentum is small, but catches up with the classical momen-
tum at t� � tr.
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a long-ranged periodicity in p, of order 2 =b, was
identified. We note that for our study of systems with
zero initial current, this is not significant, since by the
time the periodicity boundary is sampled I�p� ’ 0.
However, it is an important consideration if we start
with nonzero initial current [18].

Numerically, we estimated tr �
5
Db2

which is not incon-
sistent with the above. This explains the counterintuitive
behavior that the larger deviation from period-one kick-
ing (i.e., the larger b) give a smaller ratchet effect. Though
the perturbation scales as b, the time for which it is
important scales as b�2.

For the standard map/QKR, there is a well known
relation between the quantum localization length and
the classical diffusion constant: L� 'D

�h , where the con-
stant ' was found to be 1=2 [15]. The N � 3, b � 0:1
cdw-QKR takes a modified proportionality constant, i.e.,
L� 3:5D

�h .
In Fig. 3(a) we plot a set of calculated L (which range

from L� 10–80) againstD for �h � 1=2 together with the
line corresponding to L � 3:5D

�h . The agreement is excel-
lent. From L2 �Dt� we obtain t� � 12D= �h2.

In Fig. 3(b), for the quantum distributions in Fig. 3(a),
we have also plotted the current as a function of D,
together with their classical equivalents, obtained from
an ensemble of 500 000 classical particles.We see that the
classical hpi fall monotonically with D, apart from fine
structure which we attribute to cantori. The quantum
results, however, for low D are much smaller than the
classical values but increase in magnitude until there is a
‘‘crossover’’ point at D� 3, after which they are much
closer to the classical values.

We do not expect perfect agreement with the classical
results for �h � 1=2; a cleaner comparison might be ob-
194102-4
tained for smaller �h, but this might be harder to achieve in
an experiment.

We estimate the quantum break time at the cross-
over t� � 12D= �h2 � 150 kicks. The ratchet time tr � 5=
�Db2� � 160 kicks. Such good agreement is somewhat
fortuitous, since there are larger uncertainties in the
time scales. Nevertheless, it does provide us with a useful
guide for the best parameters for an experiment.

So one of our key results is that the requirement t� � tr
implies that we need Db= �h� 1. The L values should, of
course, be experimentally plausible (L� 10–100), so this
places a constraint on D= �h.

In conclusion, we have proposed a mechanism for the
first generic, completely chaotic Hamiltonian ratchet.
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