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Abstract: External representations have been shown to play a key role in mediating 

cognition. Tangible environments offer the opportunity for novel representational formats 

and combinations, potentially increasing representational power for supporting learning. 

However, we currently know little about the specific learning benefits of tangible 

environments, and have no established framework within which to analyse the ways that 

external representations work in tangible environments to support learning. Taking external 

representation as the central focus, this paper proposes a framework for investigating the 

effect of tangible technologies on interaction and cognition. Key artefact-action-

representation relationships are identified, and classified to form a structure for 

investigating the differential cognitive effect of these features. An example scenario from 

our current research is presented to illustrate how the framework can be used as a method 

for investigating the effectiveness of differential designs for supporting science learning.

Keywords: Conceptual framework, tangible user interfaces, external representation, 

cognition, interaction, learning.



1 Introduction

Tangibles, in the form of physical artefacts embedded with wireless, sensor and actuator

technologies,  offer  the  opportunity  to  flexibly  combine  digital  information  (e.g.  sound, 

images, text) with artefacts (Zuckerman et al., 2005), the environment (Rogers et al, 2002; 

WAAG, 2005) or action (Raffle et al., 2006; Price and Rogers, 2003) to provide different  

information than is normally available in the immediate physical environment. Theories of 

learning  and  cognition  offer  a  compelling  rationale  for  using  tangible  and  embodied 

interaction for supporting learning (e.g. O’Malley and Fraser, 2004), being compatible with 

socio-constructivist  theoretical  concepts  including  hands-on  engagement;  experiential 

learning  (Bruner,  1979);  construction  of  models  (Papert,  1980;  Resnick,  1998); 

collaborative  activity  and  transformative  communication  (Pea,  1994).  Successful 

application of tangible environments in various learning contexts has been demonstrated,  

e.g. narrative (Annany and Cassell, 2001), exploration and construction (Zuckerman et al.,  

2005;  Raffle  et  al.,  2006),  models  of  phenomena  (Moher,  2005),  and  pattern  based 

interaction (Yonnemoto et al., 2006). The implications for learning are considerable, but  

little  research  offers  any  significant  understanding  of  the  specific  learning  benefits  of 

tangible environments. Real learning gains from tangible interaction are being questioned 

(Marshall, 2007) and the need for rigorous empirical work is evident.

However, we currently lack an effective structure within which to establish such learning 

benefits.  Marshall  (2007) proposes six perspectives to guide research on tangibles for 

learning, but given the versatility of the ‘tangible’ space, a more detailed framework for 

structuring  research  within  these  perspectives  is  needed.  Several  frameworks  for 

conceptualizing tangible environments have been described over the last decade, many 

focusing on taxonomies of systems, or as a basis for analysis (e.g. Ullmer and Ishii, 2001; 

Fishkin,  2004;  Antle,  2007).  None  provide  a  framework  for  structuring  systematic 

investigation of the cognitive effects of tangible environments. External representations are 

a central feature of tangible environments, and are well known to play an important role in 

cognition. The potential to exploit different forms of digital representations and flexibly link 

them with physical artefacts and action promises greater representational power. However,  

such flexibility of couplings brings with it an exponential number of factors for research. 

Extending our initial framework (Price, 2008), this paper presents a detailed framework for 

conceptualising tangible environments from an external representation perspective. Taking 

this as the core concept, the representation-tangible relationship is outlined, followed by 



the framework, which focuses on the relationship between different artefact-representation 

and action-representation combinations, and the role that they play in shaping cognition.

2 Background
2.1. Tangible learning environments

A number  of  tangible  systems for  learning  in  different  contexts  have  been  developed 

during  the  last  decade.  Studies  of  such  systems  primarily  inform  us  about  levels  of 

engagement  and  enjoyment,  and  the  technical  achievements  of  mapping  to  learning 

activities  that  may  be  promoted  through  tangible  interfaces.  Concrete  findings  about 

learning gains are minimal, and the role of the representational relationships in supporting 

learning  is  rarely  explicit.  In  this  section,  contributions  from  the  field,  with  particular 

reference to the role of representation are explored.

Several  tangible  environments  involve  digitally  embedding  objects  with  e.g.  LEDs  or 

accelerometers. These have been used to communicate and show motion patterns (e.g. 

SystemBlocks,  Resnick  et  al.,  1998);  generate  visual  representations  of  behaviour 

according to the way the objects are combined (e.g.  Stackables, Resnick et al., 1998); 

record and transmit information about the object’s own movement (e.g.  Bitball, Resnick, 

1998);  and  record  and  playback  physical  motion  to  facilitate  children’s  learning  about 

movement  and  locomotion  (e.g.  Topobo,  Raffle,  2004).  Collectively  these  digital 

manipulatives are claimed to be engaging, and enable ‘natural’ interaction through use of  

popular  objects  such  as  blocks  and  balls.  Blocks  have  also  been  used  for  tangible 

programming,  where  users  explore  basic  concepts  of  programming  languages  by 

arranging blocks with different functions (Wyeth and Purchase, 2002; Schweikardt and 

Gross, 2008). Again children were reported to show great interest, besides being able to 

use  them without  help.  Although  these  systems  demonstrate  applications  for  relevant 

learning concepts, studies show little about their cognitive effectiveness and often focus on 

the  artefact’s  capabilities  for  use  in  a  variety  of  contexts  (Raffle,  2004),  or  levels  of  

engagement (Xie et al., 2008) rather than learning effectiveness.

Other tangible environments rely on direct mappings between physical action with objects 

and representations on computer screens, providing scaffolding and guidance according to 

children’s actions (e.g. TICLE, Scarlatos et al., 1999; SmartStep and FloorMath, Scarlatos 

and  Scarlatos,  2000).  In  contrast,  other  research  suggests  that  different  mappings 

between objects  or  action and representation  can result  in  different  kinds of  cognitive 



activity, for example, introducing some level of ambiguity can provoke children’s interest,  

curiosity and reflection (Price et al., 2003; Randell et al., 2004). A clearer understanding of 

the effect of different representational mappings in tangible environments is evident.

One application explicitly exploring different representational designs (Sensetable, Patten 

et al.,  2001) showed that users preferred information displayed on the sensing surface 

rather than on a separate screen, precluding the need to divide their attention between the 

input (sensing surface) and the output (separate screen display). This is interesting in the 

context of our work, which seeks to go beyond user preference to understand the cognitive 

effect of such different designs.

2.2. Tangible interface conceptual frameworks

A number of frameworks and taxonomies for conceptualising tangible user interfaces are 

emerging.  Primarily  they  provide  a  way  of  classifying  tangible  interfaces  to  describe, 

compare or analyse the different systems. However, none focus on defining the role of  

external representations in tangible environments or how they might be designed to

support learning.

Ullmer and Ishii  (2001),  Koleva et al.  (2003) and Fishkin (2004) all  provide descriptive 

taxonomies, which formulate categories for configuration of different systems, but say little 

about the relative strengths and weaknesses of different designs in terms of interaction.  

Ullmer and Ishii (2001) provide a descriptive taxonomy for configuring and conceptualising 

the  interactive  space of  tangible  interfaces,  but  do  not  specify  the different  ways  that 

physical-digital  coupling  can  take  place.  Koleva  et  al.  (2003)  focus  on  computational 

coupling around the concept of degree of coherence i.e., how closely physical and digital 

objects,  their  links  and  properties  map  onto  one  another  physically  and  conceptually.  

These features primarily take a systems-based perspective and do not include the physical  

design of  the physical  space nor  the representational  properties in  any detail.  Fishkin 

(2004)  provides  a  taxonomy  to  locate,  compare  and  integrate  research  in  tangible 

interfaces defining them in terms of ‘levels of tangibility’ using two dimensions each with  

four levels: ‘embodiment’ specifies the relative distance between the physical and digital 

display; ‘metaphor’ specifies how close the effect of user action is to the real world effect of  

similar  actions.  These  concepts  are  echoed  in  our  framework,  where  the  concept  of 

tangibility is considered an important, but not sufficient, mediating factor, as it does not  

take into account the representational  properties of the system. Furthermore, Fishkin’s 



metaphor  concept  makes  assumptions  about  interaction  and  cognition  i.e.,  that  direct  

mapping  to  the  physical  world  using  tools  that  we  are  currently  familiar  with  is  more 

powerful, than what might be termed indirect. As yet we know too little about the impact of  

other mappings on cognition or interaction to make any claims about their powerfulness.  

Nor  do  we  know  about  the  cognitive  effect  of  the  relationship  between  the  level  of 

embodiment and cognitive distance, to reliably inform design.

More recent theoretical approaches have placed a stronger focus on human interaction

experience.  Zuckerman  et  al.  (2005)  describe  tangible  interfaces  in  terms  of 

implementation  designs  and  related  types  of  interaction.  The  taxonomy  is  useful  for  

classifying types of interaction based on implementation options, but does not provide a 

means of analysing interactions and their effects in detail. Hornecker and Burr’s (2006) 

approach encompasses design, interaction and bodily movement, highlighting the need to 

design physical tools and their interrelations as well as digital representations.

Few frameworks attempt to define tangible interfaces from the perspective of learning. 

Edge and Blackwell  (2006) classify features of tangible environments in terms of their 

usability for  programming languages,  identifying  design features  through their  physical 

properties of expression, but we know little about the impact of such design configurations 

on  knowledge  construction  in  various  learning  domains.  Antle  (2007)  provides  a 

descriptive analysis to inform the design of tangible systems for play-based

applications, highlighting four areas of cognitive development, which tangible systems may 

support: embodied cognition; development of spatial cognition; development of symbolic 

reasoning; and development as a non-linear dynamic system, but advocates the need for 

more empirical evidence.

A detailed framework for empirical  research is lacking. Indeed, the question of how to 

explore  such  environments  and  need  for  more  principled  approaches  for  supporting 

research and analysis of tangible environments are widely claimed (e.g. Dourish, 2001;  

Hornecker and Burr,  2006).  External  representations are particularly powerful  cognitive 

tools,  and  their  importance  in  conceptualizing  the  value  of  tangible  environments  for 

learning is central.

2.3. External representation and cognition

Theories of external cognition highlight the importance of external representations (Scaife 



and Rogers, 1996), and their function in supporting problem solving and learning through 

forms of computational offloading (e.g. Larkin and Simon, 1987; Bauer and Johnson-Laird,  

1993). External representations that explicitly depict aspects of a problem  are shown to 

ease  problem solving,  support  the  learner  to  make  inferences,  and  free  up  cognitive  

activity to focus on relevant aspects of the task (Zhang and Norman, 1994).  However, 

dynamic  representations,  being  a  transient  media,  show  a  more  complex  picture  for 

cognition.  Dynamic  representations  demand  integration  across  representations  (e.g. 

Stenning, 1998; Price, 2002), raising issues of increased memory load and subsequent  

impact on students’ inferences (Price, 2002), multidimensionality (Price, 2002), integration 

of  representations  (e.g.  Rogers  and  Scaife,  1998),  and  meaningful  linking  between 

physical interaction and abstract conception (Clements, 1999).

Much  of  this  research  has  focused  on  visual  representation,  but  the  emergence  of 

ubiquitous  technologies  has  increased  interest  in  the  value  of  other  representational 

media. Audio has been found to mediate understanding of large amounts of abstract data 

in  complex  systems  (Childs,  2001;  Garcia-Ruiz,  2001);  and  different  modes  of 

representation (descriptive, experimental, kinaesthetic, embodied) are thought to support 

students to handle a diversity of representations and identify conceptual links between 

them during scientific reasoning (Prain and Waldrip, 2006). Tangible environments also 

offer  opportunities  for  capitalizing  on  physical  representations  in  the  form of  artefacts 

(Marshall, 2007) conveying newer forms of information when combined with other forms of 

representation. Such features result  in an inherently dynamic environment,  where both 

physical  and  digital  representations  can  change  in  form,  space  or  time.  Furthermore, 

explicit  depiction of  phenomena through external  representations (physical  and digital) 

may reduce cognitive computation and the active ‘working out’ that  is  instrumental  for 

learning (Jones and Scaife, 2000).

Some research has begun to identify ways in which interaction and learning activity might  

be mediated by representation-device relationships. For example, Randell  et al.  (2004) 

showed that representations with more ambiguous mappings promoted higher levels of  

collaborative reflection through discussion than direct mappings; and Price et al. (2003) 

suggest  the value of  unexpected or  unfamiliar  events (between action or  artefact  and 

representation)  for  attracting  attention  and  promoting  reflection.  The  value  of  more 

idealized  and  less  realistic  representations  has  also  been  shown  through  empirical  

research.  Despite  the  common belief  that  abstract  concepts  are  more  easily  grasped 



through experience with  concrete  representations  (being explicitly  designed to  support 

abstract  reasoning),  connection  between  physical  objects  and  underlying  abstract 

concepts is not always transparent to students (Goldstone and Son, 2005). Another aspect 

of concrete representations is the risk of them narrowing students’ comprehension, limiting 

it to a specific context, and blinding them to the general nature of the abstract concept  

(Goldstone  and  Son,  2005).  The  key  point  here  is  how  to  combine  the  perceptual  

scaffolding provided by concrete materials with the necessary abstraction of more 

symbolic representations.

2.4. Action, embodiment and representation
In tangible environments external representations are not only coupled with objects, but 

also with the action that is placed upon them. Theories of embodied cognition argue that 

such actions are central to our understanding of the world, embodiment being “the 

property of our engagement with the world that allows us to make it meaningful” (Dourish, 

2001:126). Embodied cognition describes how the mind, body and world work together 

and influence one another to create and manipulate meaning. The relationship between 

physical experience and cognition has been broadly demonstrated, for example, through 

Gibson’s (1977) theory of affordance for action based on perception; the importance of 

sensori-motor experience in cognitive development (Piaget, 1972); enquiry-base discovery 

learning (Bruner, 1979) and the relationship between abstract concepts and bodily 

experience through metaphorical expression (Lakoff and Johnson, 1980).

Embodied cognition then, is a meaning-making process that occurs through embodied 

interaction. In tangible environments external representations are a central part of this 

interaction and meaning-making process. Although this concept of embodiment is 

becoming increasingly prominent in the underlying design of tangible environments, little 

focus is placed on the representation-action relationship. Antle (2007) suggests an 

embodied cognition perspective is particularly relevant for children where the interplay of 

action and cognition serves to improve both motor and cognitive processes. At a more 

concrete level Fishkin (2004) describes embodiment in terms of how much attention users 

need to pay to the device rather than what that device represents. He argues that as 

embodiment increases, the ‘cognitive distance’ between input and output increases, thus if 

it is important to maintain ‘cognitive dissimilarity’ between input and output ‘objects’ then 

the degree of embodiment should be decreased. This concept relates to the role of

‘stepping in, stepping out’ in learning (Ackerman, 1999) and notions of expressive versus 

exploratory interaction with tangibles (Marshall et al., 2003).



To understand the value of tangible environments for learning it is essential to consider 

how action affects cognition, and gain a clearer understanding of the relationship between 

representation-action couplings, and the subsequent cognition e.g. in terms of inferences, 

conceptual understanding.

3 The Framework
Our framework builds on concepts from previous frameworks and seeks to address some 

of the issues raised by focusing the external representation-action-artefact relationships 

that occur in tangible environments as a way of conceptualising physical-digital links and 

analysing their effects from a learning perspective. Little research in tangible environments 

places external representation at its centre. A focus on representation offers the means to 

better understand the role of tangibles for learning, not only in terms of representation 

linked to artefacts but also in terms of the manipulative as representation, rather than as 

an object in itself. Physical manipulatives also require various actions to be performed so, 

not only is the object itself (as a representational entity) computationally coupled with 

digital information, but also the action or movement placed upon it. At the same time 

learners are required to make meaningful inferences and mappings between both artefacts 

and action. This framework provides a comprehensive focus on different physical-digital 

couplings that form a structure for exploring the different roles of external representations 

play in supporting learning in tangible environments. The location parameter refers to the 

distance in space between physical and digital components of the system; dynamics is 

related to the flow of information throughout the interaction, including links between action, 

intention, and feedback; and correspondence depicts the metaphors involved in the nature 

of representations of artefacts and actions upon them. The modality of representation 

impacts on different aspects of the whole interaction and is therefore considered in parallel 

to all other categories (see fig. 1).

3.1 Location
This parameter consists of three categories, which specify the location of representation in 

relation to the object, or action, in physical space. These location couplings are important 

for cognition in terms of making links between object, action and representation, and the 

effect of this both conceptually and on computational offloading. Key concepts include: 

attention demands required to make appropriate links e.g. whether distant coupling 

engenders more cognitive effort (hence improved reasoning) in making mappings between 



action and representation, or hinders meaningful cognitive interaction; ease of problem 

solving or making inferences through explicitness of representation e.g. whether location 

couplings affect levels of explicitness; the potential for representing multiple levels of 

abstraction and the related demand for integration across representations. Furthermore, 

the object-representation relationship has an impact on the kind of action that can take 

place. For example, co-located coupling action is essentially constrained to placing and 

moving objects on a surface and removing them from the surface. This contrasts with the 

broader kinds of movements facilitated through linking with discrete and embedded 

representations, and enables exploration of action possibilities for cognition (see 2.4 and 

3.3).

Discrete

Input and output are located separately, i.e., a manipulated object triggers a digital 

representation on a separate screen display (fig.2). For example, Chromarium, a tangible 

environment to support children’s exploration of colour mixing, used an adjacent digital 

display to show the effects of mixing colours on cubes embedded with RFID technology 

(Gabrielli et al., 2001).

Co-located

Input and output are contiguous, i.e., the digital effect is directly adjacent to the artefact or 

action (fig. 3). For example, Urp, a model urban planning environment displays effects of 

architectural structures, such as shadows or wind patterns, onto a surrounding horizontal 

table surface (Underkoffler and Ishii, 1999).

Embedded

A digital effect occurs within an object, e.g. the object lights up, moves, exerts force or 



changes shape or colour according to actions placed upon it (fig. 4). For example, Flow 

Blocks, embedded with sensors, send light signals through the blocks when connected 

together, to help children explore different causal structures (Zuckerman et al., 2006).

3.2 Dynamics (information flow)
This parameter consists of two categories that relate to the ‘flow’ of information through 

different networked links that occur between artefact and representation, and action and 

representation. The categories are based on characteristics of information flow that may 

have important consequences for learning, in particular the relationship between system 

causality and perceived causality (both in relation to action and conceptual phenomena); 

and the relationship between intentional information access and learning activity. Digital 

effects, or feedback, can be immediate or delayed, or may be dependent on multiple

objects or interactions to be triggered. The resultant causal relationships can be quite 

complex, requiring better understanding of the impact of such flow of information on 

cognition. Embodied interaction also plays a role in dynamic information flow through 

intentional action and corresponding digital effects, and serendipitous triggering of 

information. Different information couplings have been shown to influence attention and 

reflection through ‘unexpected’ couplings, both in time and ‘effect’ (i.e representation). 

 Inadvertent elicitation may attract attention (guiding learning) or engender unexpected 

discovery or discussion (Randell et al., 2004), but a clearer understanding of how learners 

integrate unexpected effects into their activity and the impact on attention and conceptual 

understanding is needed.

Causality

Defined according to system-based feedback associations allows investigation into the 

difference between system based causality and perceived causality, as well as the 

subsequent effect in conceptual causality (i.e. of the subject domain)

• Simple: Digital effect is immediate and constitutes a direct association between 

object/action and effect. For example, placing a cube on a surface makes a 

corresponding square appear on a separate screen.

• Complex: Occurs when representation and meaning are changing or developing 

over time through continued interaction with artefacts, and/or cumulative information

• recorded by the system from a series of events or learner interaction. Such 

feedback, dependent on multiple actions, often occurs with a time delay and may 

create an ambiguous association between object/action and effect.



Intentionality
Embraces the user-control perspective of technology-based environments focusing on 

action-representation couplings to account for intentional and serendipitous information 

triggers.

• Intentional: Digital effects can occur contiguously with intentional action, generating 

an expected effect.

• Serendipitous: Digital effects inadvertently triggered through actions on objects

according to pre-determined configurations often causing an unexpected effect.

3.3 Correspondence
This parameter refers to the metaphorical mappings between objects, representations and 

action and the learning concept. Metaphorical mappings can form the conceptual basis of 

ideas or phenomena. In tangible environments multiple metaphorical correspondences 

occur and interact with one another. Three correspondence categories focus on the 

physical object characteristics, representational mappings, and action mappings. 

Investigating how these mappings facilitate understanding of scientific concepts, or 

engender effective learning strategies (e.g. cognitive conflict, reflection, exploration) is 

essential for understanding how such correspondences can best support learning. For 

example, the effects of ambiguous versus direct mappings or the level of perceptual 

scaffolding between concrete materials and symbolic representations on computational 

offloading, ease of interpretation, and meaning making (see sec. 2.3).

Physical correspondence

This category refers to the degree to which the physical properties of the objects are 

closely mapped to the learning concepts. Although similar to structural correspondence 

(Edge and Blackwell, 2006), the emphasis here is on degree of correspondence to the

metaphor of the learning domain, and how this constrains or influences inferences and 

conceptual understanding.

• Symbolic: defines objects that act as common signifiers, where the object may have 

little or no characteristics of the entity it represents e.g. a block could represent a 

book or abstract entities, like chromosomes or circuit components.

• Literal: defines objects whose physical properties are closely mapped to the 

metaphor of the domain it is representing, e.g. a rigid block representing 



chromosomes reveals none of the fragility that is inherent in the process of genetic 

changes, whereas loosely magnetically connected ‘strips’ could convey relevant 

underlying ‘fragile’ features.

Representational correspondence

This category encompasses design considerations of the representations themselves and 

their metaphorical mapping within the learning domain. Meaning mappings between 

physical and digital representations can be designed such that the representations 

themselves differ in levels of association (direct to ambiguous) between symbol and 

symbolised according to the concept being displayed. Ambiguous mappings are shown to

engender different levels of reflection about meaning in context (Randell et al, 2004), but 

direct mappings may support computational offloading. This category is also concerned

with understanding how to facilitate the grasp of abstract concepts for example, through 

the notion of perceptual scaffolding between the concrete materials and their related 

symbolic representations (Goldstone and Son, 2005).

Action correspondence

Gibson’s (1977) theory of affordance describes the “action possibilities” that can be 

performed on an artefact in relation to an actor’s physical capabilities. We broaden this

view to include active sensorimotor exploration. Tangible environments offer opportunities 

for exploration, meaning-making and non-verbal expression through action. Such action is 

apparent not only through the movement itself but also through associated digital 

representations. A key question concerns the relationship between action, external 

representation and cognition, for example, understanding how different representations 

are interpreted in relation to particular kinds of action.

Actions can be impactive, requiring physical contact with an artefact, e.g. grasp and grip, 

or non-impactive, e.g. gesture. Here Sheridan et al.’s (2003) classification is expanded to 

include descriptions of movement, to enable investigation of the cognitive effect of different 

correspondences between physical action and related representation.

• Manipulation: is a type of action. A grasping manipulation might be “hold” or “press”;

a gripping manipulation might be “squeeze” or “turn”; and, a gesture manipulation

might be “moving hand left and right.” Turning might be described as manipulating 

an artefact around its y-axis. Manipulations can be further sub-categorized into 

events. For example “rotation” is a subcategory of “turn” where rotating a cube with 



the fingers might be described as “to turn about the axis or centre in a continuous, 

fluid motion, exposing sides” (ibid). 

• Movement: refers to the characteristics of the action being performed and include:

• Duration: whether a movement is discrete (e.g. pressing a key once) or 

continuous (rotating a dial)

• Flow: refers to speed of a movement (slow, fast) and whether it is jerky or 

smooth

• Regularity: describes the rhythm of movement which can be regular or 

irregular

• Directionality: describes movements up, down, left or right, and includes 

movement around an axis, e.g. rotating a cube requires consideration of two-

fold (vertex), three-fold (edges), and four-fold (faces) axis.

3.4 Modality

Although the visual mode is a predominant form of representation the potential for audio 

and tactile modes in tangible computing requires a broader understanding of their role for 

learning. A key issue is to understand the value of different dynamic representation 

modalities, and their effects when integrated with each other and with physical interaction. 

For example, verifying the conceptual links student make and to what degree different 

modalities convey newer forms of information (see 2.3).

Visual

Currently, most information presented by computers uses different forms of visual 

representations on screens, such as textual, graphic, tabular and pictorial (Prain and 

Waldrip, 2006). The visual modality allows large amounts of detailed information to be 

displayed. However, information can be missed if the user is not looking to the right place 

at the right time or due to screen overload (Brewster, 2002).

Tactile

Our skin possesses a high sensitivity that conveys a rich understanding of objects we 

touch (Hoggan et al., 2007), recognizing texture and detecting slip, flexibility and direction 

of edges. With the development of touch as an interaction technique, skin can

be used as a medium to communicate information (Brewster and Brown, 2004). Touch is 

kinaesthetic (information arising from forces and positions sensed by the muscles and 

joints) and cutaneous (sensations of vibration, temperature, pain and indentation). Also, 



information can be encoded according to different vibro-tactile parameters such as

rhythm, roughness, intensity, frequency and spatial location (Brown et al., 2006).

Audio

While our visual sense provides detailed information about a relatively small area of focus, 

our auditory system captures general information from all around, directing our attention to 

things outside our vision (Brewster, 2002). Verbal sound is already common for narrative 

and instructions in multimedia applications. Non-speech sound is used as alarms and 

warnings (calling attention to some event) or in multimedia applications as music and 

sound effects (creating an ambiance). Using sound to convey information may reduce 

screen overload, grab attention more easily and represent some objects or actions more 

naturally. However, presenting absolute data with sound is difficult (often dependent on 

subjective interpretation); information is transient and must be remembered or replayed by 

user; and auditory feedback can become annoying with repetition (Brewster, 2002).

This framework essentially illustrates the different representational possibilities associated 

with artefacts and actions in tangible systems. It aims to provide a structure within which 

research can be positioned rather than provide a prescriptive comparative system for 

research, which demands consistency of metaphor across the tangible interfaces. The 

different artefact-action-representation relations in tangible interfaces inherently contain 

and lend themselves to different metaphorical associations.

4 Working with the framework
The framework presented in this paper forms the basis for the EPSRC funded Designing 

Tangibles for Learning project, which aims to systematically investigate and understand 

how different ways of linking together objects, environments and information affect the way 

that learners interact with and understand scientific ideas. A purpose built reactable 

environment (Jordà, 2003), together with digitally embedded objects and a separate 

screen display will be used to investigate aspects of the framework with students learning 

of scientific phenomena.

Applications are based on children’s common misconceptions of scientific concepts 

involving physical phenomena whose underlying theory is not apparent in the everyday 

world. For purposes of illustration we present designs to support reasoning about colour 

concepts in relation to reflection, absorption and transmission of light waves. In this 

application a set of different-coloured objects and an object to represent a light source 



(e.g. a torch) will be used. Below we give a simple example illustrating our study design for 

investigating ‘location’ (section 3.1), where the same concepts are conveyed through 

different representations to enable analysis of the cognitive and interactive effects of each.

• Discrete: users manipulate the objects on the sensing surface and see the effects of 

their actions on a separate screen. For example, when the torch is pointed to a red

object on the surface, representations of the torch beam and the reflected red light 

rays bouncing off the object will appear on a vertical screen. Absorbed light 

frequencies could be shown by illuminating the on-screen representation of the 

object with the corresponding colours or showing a rainbow-like representation 

around the object on the screen (fig. 5).

• Co-located: users manipulate the objects on the sensing surface, and 

corresponding effects are shown through a projector placed under the table as well. 

In this case, the user can see the reflected light rays on the table itself, i.e. in a 

contiguous space and the absorbed light as a rainbow-like representation around 

the concrete object (fig. 6).

• Embedded: users freely manipulate a transparent object and the torch. The object 

itself is set to simulate the behaviour of a coloured object. When directing light the 

object reacts by emitting light back to the user to represent the reflected rays. 

Furthermore, using a hole on the top of the object, users can look inside the object 

and see an area illuminated by the colours it is absorbing (fig. 7).

Studies will investigate the relationship between different locations and aspects like:

• attention demands (whether having a separate screen for feedback requires a 

specific shift of attention and how this affects reflection and comprehension); 

• ease of making inferences (e.g. whether location couplings affect explicitness of 

representation);

• levels of abstraction (with combined locations representing local and global effects 

of phenomena) e.g. effect on ease of integration across representations and 

understanding of causality

• action (meaning-making through mappings between action and representation).

Further aspects of the framework can then be built in for future studies. For example, in 

terms of physical correspondence general-shaped objects e.g. cubes (symbolic) and real 

world objects e.g. a wooden bowl, a yellow tennis ball (literal) can be used. As real-world 



objects are made of different materials, this will form a key aspect when analysing 

children’s reasoning about light behaviour. Representational correspondence mappings 

will vary according to modality. For example, objects could react by emitting different 

sounds according to the concepts in question, introducing ambiguous representational 

correspondence, while we expect that visual representations will have more direct 

mappings to the metaphor of the underlying theories of light behaviour. Our study design 

will begin with the example above, focusing on location, followed by variation of the other 

parameters to analyse the consequences of each one.

5 Conclusion
Recent technology development makes the combining of digital information with physical 

artefacts, environment and action more feasible, providing new possibilities for conveying 

and representing information. This shows particular promise for education, enabling 

hands-on activity to be enhanced through various forms of digital augmentation and offers 

the potential for learners to act and think at different levels of abstraction through the 

combinations of concrete manipulatives and more abstract or more formal representations 

of concepts they are learning. However, little research offers significant insight into the 

cognitive effects of tangible environments or provides the means for structuring such 

investigation. This paper proposed a framework for conceptualising tangible environments 

from an external representation perspective, and for structuring related research. External 

representations are central to tangible environments, which have potential to exploit 

different forms of digital representations, and link them with physical artefacts and action. 

The flexibility of such couplings gives rise to a number of different representational 

relationships that form the basis of the framework. These representational features are 

identified in terms of: location (location of representation in relation to the object, or action, 

in physical space); dynamics (different information associations or the networked links and 

‘flow’ of information that occur between artefact and representation, and action and 

representation); correspondence (concerning metaphorical mappings between objects, 

representations and action and the learning concept); and modality (the different 

representation modalities that can be used in conjunction with physical interaction). As part 

of the current research, the value of this framework will be assessed and iteratively 

refined.
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Figures

Figure 1 – Schematic overview of the framework

Fig. 2 – Chromarium (Gabrielli at al., 2001)

Fig. 3 – Urp (Underkoffler and Ishii, 1999)

Fig. 4 – Flowblocks (Zuckerman et al., 2006)



Fig 5 – Schematic representation of the discrete approach

Fig. 6 – Schematic representation of co-located approach

Fig. 7 – Schematic representation of embedded approach


