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Abstract 

Perceptual grouping by luminance similarity and by proximity was 

investigated in infants with Williams syndrome (WS) aged between 6 and 36 months 

(visit 1, N=29). WS infants who were still under 36 months old, 8 months later, 

repeated the testing procedure (visit 2, N=15). Performance was compared to typically 

developing (TD) infants aged from 2 to 20 months (N=63). Consistent with the 

literature, TD participants showed grouping by luminance at the youngest testing age, 

2 months. Grouping by proximity had not previous been charted in typical 

development: this study showed grouping by proximity at 8 months. Infants with WS 

could group by luminance. Developmental progression of the WS group showed some 

similarities to typical development, although further investigation is required to 

further address this in more depth. In contrast, infants with WS were not able to group 

by proximity. This pattern of emergence and development of grouping abilities is 

considered in relation to the pattern of grouping abilities observed in adults with WS.
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The Development of Perceptual Grouping in Infants with Williams Syndrome 

 

Introduction 

 

Perceptual grouping or perceptual integration was first introduced by Gestalt 

psychologists. It is a low-level process in which local elements are grouped together 

according to shared properties or Gestalt principles. These include grouping by 

colour, orientation or shape similarity, by common fate (movement) and by proximity. 

Perceptual grouping is important for many aspects of visuo-spatial cognition. It 

functions to form objects for object recognition, to direct attention, and to increase the 

efficiency of processing by grouping redundant elements (see Gillam, 2001).  

In typically developing infants, different forms of perceptual grouping emerge at 

different developmental time-points within the first few months of life. Grouping by 

luminance similarity is the earliest form of grouping, evidenced in neonates (Farroni, 

Valenza & Simion, 2000). Grouping by common fate has emerged by 4 months 

(Kellman & Spelke, 1983) and grouping by shape similarity has been observed in 

infants aged 3 to 4 months (Quinn & Bhatt, 2005). Furthermore, infants aged 4 

months are able to perceive parts of an occluded object as one object, based on the 

shared properties of texture, colour similarity, and good continuation (Johnson & 

Aslin, 1996). It is not known when grouping by proximity emerges, although work in 

our lab suggests that it does not emerge within the first six months (Farran, Brown, 

Cole, Houston-Price & Karmiloff-Smith, submitted). 

Taken together, the processes involved in perceptual grouping emerge early in 

development. As such, a deficit in processing any form of perceptual grouping could 

have cascading effects on later development. This is particularly pertinent for the 
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development of directly related functions such as local and global processing, 

selective attention and object recognition. The present study investigated perceptual 

grouping in infants and toddlers with Williams syndrome (WS) a rare genetic disorder 

in which attention and visuo-spatial processing are known to be poor (Brown et al., 

2003; Farran & Jarrold, 2003). 

Williams syndrome occurs in 1 in 20, 000 live births (Morris & Mervis, 1999). 

Individuals with this developmental disorder have an average IQ of approximately 60 

(Mervis, 1999). However, this masks an uneven cognitive profile in which visuo-

spatial cognition is markedly poorer than verbal cognition (e.g. Udwin & Yule, 1991).   

Visuo-spatial cognition in WS is not simply delayed, but shows a number of atypical 

characteristics. For example, although individuals with WS are able to perceive both 

the local and global aspects of an image (Deruelle, Rondan, Mancini & Livet, 2006; 

Farran, Jarrold & Gathercole, 2001; 2003), in some areas of cognition individuals 

with WS attend more to the local details of an image than to the configuration of the 

elements or the global percept. This is apparent in the relative strength observed in 

face processing in WS (e.g. Karmiloff-Smith, 1997; Karmiloff-Smith et al., 2004). 

However, such a processing style also accounts for the relative deficit in visuo-spatial 

construction and drawing in WS: solutions to drawing and construction tasks lack 

organisation, and show poor global cohesion (e.g. Bellugi, Sabo & Vaid, 1988; Farran 

et al. 2003; Landau, Hoffman & Kurz, 2006).  

It has been hypothesised that other aspects of the profile of visuo-spatial 

abilities in WS reflect a „vulnerable‟ dorsal visual stream (e.g. Atkinson et al., 1997; 

2003; Braddick et al., 2003). For example, individuals with WS demonstrate 

impairment on a motion coherence task, which activates areas of the dorsal visual 

stream, relative to a form coherence task which activates areas of the ventral stream 
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(Atkinson et al., 1997, 2006). However, this pattern of performance is not specific to 

WS (Braddick et al., 2003). Furthermore, note that individuals with WS are able to 

perceive biological motion from the lights of a point-light walker (PLW), also a dorsal 

stream function (Jordan, Reiss, Hoffman & Landau, 2002). Thus, as the term 

„vulnerable‟ suggests, dorsal stream functions and their relative levels of ability are 

fractionated in WS. As such, the dorsal stream vulnerability hypothesis will not be 

addressed in this study. 

The atypical profile of visuo-spatial cognition in WS, particularly the evidence 

relating to dorsal stream vulnerabilies emphasises that one cannot assume that cortical 

functioning in the WS brain relates to parts intact and parts impaired. Brain plasticity 

dictates that atypical functioning at the infant start-state influences subsequent brain 

development. Thus, both behavioural and cortical developmental pathways may not 

be typical in WS. One can begin to establish the nature of such pathways by 

examining performance from early in development. For example, research into the 

development of numerosity has shown that the performance of adults with WS is 

inferior relative to adults with Down Syndrome (DS) (Bellugi, Wang & Jernigan, 

1994). However, infants and toddlers with WS show relatively superior understanding 

of numerosity compared to infants and toddlers with DS (Paterson, Brown, Gsodl, 

Johnson & Karmiloff-Smith, 1999). This suggests that the developmental pathways 

for the development of the concept of number are different for these two disorders, 

and that the underlying deficit in WS is different from the deficit observed in DS. 

The present study investigates perceptual grouping in infants and toddlers with 

WS. To date we are only aware of a single study relating to visual cognition in early 

development in WS. Scerif, Cornish, Wilding, Driver and Karmiloff-Smith (2004) 

investigated visual search in WS toddlers aged two- to three-years using a touch 
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screen paradigm. Targets were determined by their size, relative to the distracters. 

They found that toddlers with WS, although as quick as mental age (MA) matched 

controls, were more likely to confuse targets with distracters than controls. Thus, at 

the early stages of the developmental trajectory, sensitivity to differences in local 

elements when determined by size appears atypical in WS. The present study 

investigates sensitivity to perceptual grouping by proximity and luminance at two 

developmental time-points. This is only the second study to investigate visual 

cognition in infants with WS and this is the first study to track performance across 

two time-points in infancy and toddlerhood in WS. 

Neuroanatomical abnormalities observed in adults with WS might relate to 

areas involved in perceptual grouping. All forms of perceptual grouping implicate 

early visual areas V1 and V2 (Kapadia, Westheimer & Gilbert, 1998; Ross, Grossberg 

& Mingolla, 2000). Investigation of the layers of V1 in adult WS brains (Galaburda, 

Holinger, Bellugi & Sherman, 2002) showed increased cell packing and abnormal 

neuronal size, compared to control brains.  

Schmitt, Eliez, Bellugi and Reiss (2002), using MRI,  report increased 

gyrification (cortical folding) in adults with WS in the right parietal and occipital 

lobes, whilst Reiss et al. (2000) observed a disproportionate reduction in parietal-

occipital regions and a left dominance of occipital lobe in adults with WS relative to 

controls. These abnormalities show consistency with activation during perceptual 

grouping in the typical population: in an ERP study, Han, Song, Ding, Yund and 

Woods (2001) demonstrated that grouping by proximity in the typical population 

activated from striate (V1) or prestriate cortex to medial occipital and parietal cortex, 

whilst grouping by shape similarity activated occipitotemporal areas. Thus, whilst our 

knowledge of brain activation during perceptual grouping cannot address the dorsal 
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stream vulnerability hypothesis, brain abnormalities at the adult end-state clearly 

predict that perceptual grouping in WS may be atypical. It is not clear, however, 

whether these abnormalities are present from the infant start-state, or are the product 

of atypical development. 

In line with the neuroanatomical evidence above, Farran (2005) demonstrated 

impaired perceptual grouping abilities in older children and adults with WS. 

Participants were asked to determine whether a matrix of local elements were grouped 

into columns or rows. Six forms of perceptual grouping were employed. The 

performance of the WS group was compared to that of a control group of typically 

developing (TD) children matched by non-verbal ability. Results showed that whilst 

the WS group showed a similar level of performance to controls for grouping by 

luminance similarity, closure, and alignment, performance was significantly poorer 

than the controls for grouping by shape similarity, orientation similarity and 

proximity. This adds to our knowledge of local and global processing in WS; the 

grouping together of local parts into a global percept is based on common local 

properties. We now know that individuals with WS can perceive a global percept (e.g. 

Deruelle et al., 2006). However, the uneven profile of perceptual grouping abilities at 

the adult end-state suggests that global perception may not be typical in WS, i.e. it is 

possible that individuals with WS rely on their relative strengths in grouping by 

luminance similarity, closure and alignment to group local elements together into a 

global whole. Furthermore, it is possible that atypical perceptual grouping abilities 

contribute to the global impairments observed in image production (drawings or 

construction tasks) in WS. 

The present study will enable us to determine whether perceptual grouping is 

atypical in WS from the start of the development of these processes or whether 
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processing becomes atypical with development. Infants will participate twice, with 8 

months between visits. We aim to observe the early stages of development for two 

types of perceptual grouping, luminance similarity and proximity. These were chosen 

as they represent relatively strong and relatively weak forms of perceptual grouping in 

WS adults respectively, and so are likely to have different developmental trajectories. 

If perceptual grouping is impaired from early in the developmental trajectory, it is 

possible that this deficit has cascading effects on a number of developmental 

processes. 

Method 

 

Participants 

Williams Syndrome Infants 

Twenty-nine Williams Syndrome infants and toddlers were recruited from 

across the UK via the Williams Syndrome Foundation (WSF-UK).  All individuals 

had received a positive genetic diagnosis for WS. Diagnosis was by a Fluorescent in-

situ Hybridisation (FISH) test, which checks for the deletion of elastin on the long 

arm of chromosome 7. Elastin is one of the twenty-four genes typically deleted in WS 

(Tassabehji, 2003) and is deleted in approximately 95% of individuals with WS 

(Lenhoff, Wang, Greenberg & Bellugi, 1997). All individuals had also been 

diagnosed phenotypically by a clinician. Participant chronological ages ranged from 6 

to 36 months. Infants who were below 28 months of age at first test (visit 1) repeated 

the testing procedure 8 months later (visit 2) to assess any development of the group 

over time. Participant mental ages were assessed using the Bayley‟s Scale of Infant 

Development II (BSID II, Bayley, 1993). Mental ages ranged from 2 to 30 months. 

Typically developing (TD) infants 
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Forty-three TD infants and toddlers were recruited from the infant research 

database held at the School of Psychology and Clinical Language Sciences, 

University of Reading. The majority of the infants on the database were initially 

recruited from local maternity wards in Reading, Berkshire.  These consisted of four 

age groups: 8 months (N=11), 12 months (N=11), 16 months (N=10) and 20 months 

(N=11). Mental age was also assessed in this group, again using the BSID II (Bayley, 

1993). Mental ages ranged from 8 to 24 months, and did not differ significantly from 

CA (t(42)=0.29, p=.77). 

In addition to the TD infants detailed above, data is also included from infants 

from another study (Farran et al., submitted). These infants were part of a cohort of 

sixty-one infants who had taken part in a longitudinal study which, among other tasks, 

involved completing the same grouping tasks administered here. The infants included 

in the present analysis were the first 10 2-month-old infants who contributed a full set 

of data (three infants were excluded using exclusion criteria described below, and a 

further four had incomplete datasets). The same selection criteria were employed to 

identify 10 4-month-olds (six infants were excluded using exclusion criteria described 

below and a further two due to incomplete datasets), with the additional restriction 

that infants who had been selected at 2 months were exempt from selection at 4 

months. This formed two independent groups (2 months, N=10; 4 months, N=10). As 

these infants were assessed for a different study, mental ages are not available, thus 

we assume that MA did not differ from CA. 

Due to fussiness, not all infants completed all four grouping experiment tasks. 

In addition, some data was excluded from analysis due to infants demonstrating a side 

bias (>95% of looking time was to one side), a bias toward either vertical or 

horizontal stripes at baseline (>95% of looking time was to vertical or horizontal 



 10 

stripes), or overall disinterest in the task (determined as spending less than 15% of 

available time attending to either test stimulus). The resulting WS and TD participant 

numbers for each grouping task at each age are shown in Table 1. For clarity, the WS 

data and the TD data at 8, 12, 16 and 20 months are exclusive to this study, whilst the 

TD data at 2 and 4 months are also presented as part of another study (Farran et al., 

submitted). 

Table 1 about here 

 

Stimuli 

 All stimuli were equated for luminance (all had an overall luminance of 50 to 

55 cd/m
2
).  Examples of familiarisation stimuli are shown in Figure 1. Each 

familiarisation stimulus was a matrix of local elements which subtended a visual 

angle of 14.5 degrees squared and contained local elements which were grouped 

either horizontally or vertically. The luminance stimulus displayed 16 circles in a 4-

by-4 formation. In order to give the best opportunity for grouping to occur, circles 

were black or white (the highest possible luminance contrast). The proximity stimulus 

displayed 24 squares in a 4-by-6 formation. The choice to include 6 elements in the 

more proximal dimension was dictated by the number of elements that could be fitted 

within the square of the matrix, while keeping the size of each element consistent with 

the luminance stimulus. Local elements subtended a visual angle of 2.2 degrees 

squared. Test stripe stimuli subtended an overall visual angle of 14.5 degrees squared, 

each stripe subtending 14.5 by 2.2 degrees of visual angle (Figure 2). The 

dishabituation stimulus was a set of varying grey concentric circles on a black 

background, subtending overall visual angle of 14.5 degrees. 

Figures 1 and 2 about here 
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Design and Procedure 

 Infants were tested using a preferential looking laboratory, seated on their 

parent‟s lap, within a viewing booth.  They viewed stimuli back projected onto a large 

screen, at a distance of 100cm. The infants aged 2 months and 4 months had a 

viewing distance of 50cm. Note that this dictated slightly different visual angles 

(matrices of elements, test stripes and dishabituation stimulus: 16.5 degrees squared; 

local elements and strip width: 24 degrees squared). Attention noises (a voice 

recording of “look!”) were played from a small speaker above the centre of the screen 

at the onset of each stripe stimuli presentation, and at the onset of the first 

familiarisation stimulus presentation.  This was in order to ensure attention towards 

the screen. The testing session included two other experiments not reported here 

(covert attention, and attention shifting tasks) and took no longer than 20 minutes 

overall, depending on individual habituation times. The order of the three experiments 

was fixed, although this was subject to change, dependent on infant temperament. In 

most instances, infants viewed an attention task, the perceptual grouping task, 

followed by a second attention task. The order of the attention tasks was 

counterbalanced, as was the order of presentation of grouping types within the 

perceptual grouping task. Breaks were given between grouping types or experiments 

if the child became agitated. In addition, horizontal/vertical stimuli arrangement was 

counter-balanced across infants. 50% of infants started with horizontal presentations, 

and the other 50% started with vertical presentations. 

 For each grouping type, a baseline preference for vertical versus horizontal 

stripes was established by measuring infant looking times to two test stimuli presented 

simultaneously to the left and right of the screen. One test stimulus depicted a set of 

vertical stripes, and the other a set of horizontal stripes (Figure 2). These were 
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presented for a ten second duration, followed by a left-right reversal for a further ten 

seconds.  Participants were then presented with a familiarisation stimulus (Figure 1), 

composed of a matrix of local elements, which could be grouped vertically (columns) 

or horizontally (rows).  Each presentation of the familiarisation stimulus was five 

seconds in duration (10 seconds at 2 months and 4 months), and was presented 

repeatedly until habituation towards the stimulus occurred.  This was determined by 

online coding of infant looking behaviour, using a 50% decrement habituation 

procedure. Specifically, habituation was assumed when looking time to three 

consecutive 5-second presentations (10 seconds: 2 months, 4 months) of a stimulus 

had reduced by 50% of the infant‟s total looking time on the first three 5-second 

stimuli presentations. 

Five-second presentations were employed to ensure that habituation was truly 

infant lead; longer presentation times risk habituation occurring before the minimum 

number of presentations needed to determine habituation, have been administered (a 

ceiling effect). As younger infants take longer to habituate, the risk of a ceiling effect, 

with the 10-second presentation times used at 2 months and at 4 months, was 

minimal. 

After habituation had occurred, infants‟ preferences for horizontal versus 

vertical stripes were then tested again, in the same manner as at baseline. This was 

followed by a 5 second duration dishabituation stimulus in an attempt to remove any 

residual effects of habituation to one grouping type on to the subsequent grouping 

type. This procedure was then repeated for the remaining grouping type. 

Eye movements were captured via cameras positioned at the top of the 

presentation screen in left, central and right positions, in order to measure looking 
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behaviour towards all stimuli. Video footage of all eye movements was coded frame 

by frame off-line and analysed using the Observer software package. 

 

Results 

The primary and secondary observer was naïve to whether a familiarity or 

novelty preference was anticipated.  The second observer coded a random 20% of the 

data for each group. Inter-rater reliability showed consistent substantial agreement or 

almost perfect agreement (see Viera & Garrett, 2005), Cohen‟s Kappa: TD group, 

mean (SD) = 0.85 (0.07); WS, mean (SD) =0.84 (0.08). 

Exposure duration 

The exposure duration of each familiarisation stimulus was infant controlled 

using a habituation procedure. Exposure durations for each TD age group and for the 

WS group at visit 1 and at visit 2 were significantly above the lowest possible 

duration of 25 seconds (50 seconds at 2 months and 4 months) (p <.05 for all). 

Infants aged 2 and 4 months were habituated using 10-second presentations, 

whilst WS and TD infants aged 8 to 20 months received consecutive 5-second 

presentations until habituation. Due to this procedural difference, group comparisons 

were explored where 5-second presentations were employed only. WS visit 2 data is 

not included in this analysis as it is not independent of WS visit 1 data. Separate t-

tests between the TD group and WS visit 1 data were carried out for grouping by 

luminance similarity and for grouping by proximity. Both analyses revealed 

significantly longer exposure durations in the WS group than the TD infants 

(luminance: t(58)=3.08, p<.01; proximity: t(57)=2.90, p<.01). This demonstrates that 

the WS infants took longer to habituate than the TD infants. Exposure durations are 

shown in Table 2. Separate regression analysis of the exposure duration for each 
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group revealed no significant relationships between cumulative exposure duration and 

mental age for either perceptual grouping type (WS visit 1, WS visit 2, TD: p>.05 for 

all).  

Table 2 about here 

Perceptual grouping 

When an infant had viewed a familiarisation stimulus that showed vertical 

grouping, horizontal and vertical test stripes were coded as novel and familiar 

respectively. When an infant had viewed a horizontally grouped familiarisation 

stimulus, test stripes were coded in the opposite manner. Preferences to horizontal and 

vertical stripes were measured using a difference score between the looking time 

(msecs.) to the novel and to the familiar stripes. This was calculated by subtracting the 

looking time to the familiar stripes from the looking time to the novel stripes for each 

of the two ten second presentations. The average of these two scores was employed. 

Thus, a positive difference score indicates a novelty preference and a negative 

difference score indicates a familiarity preference. Performance at baseline and at test 

was compared to chance (a looking time difference score of zero msecs). 

WS performance 

Baseline trials indicated no spontaneous preferences for luminance similarity or 

proximity at visit 1 or visit 2, p>.05 for all. For test trials at visit 1 and visit 2, infants 

and toddlers with WS showed a marginal familiarity preference for grouping by 

luminance similarity at visit 1 (t(21)=-1.85, p=.08), which was significant by visit 2 ( 

t(13)=-2.28, p=.04). This appears to indicate progression in grouping ability with 

development. However, within participant analysis across visits 1 and 2 (N = 10 as 

not all participants completed the grouping by luminance condition at both visits) did 

not support this, t(9)=0.964, p=.36. Grouping by proximity was not evident at visit 1 
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or visit 2 (p>.05 for both), and showed no within participant development (N=12), 

t(11)=0.15, p=.88. This is illustrated in Figure 3, and shows that infants with WS are 

able to group by luminance similarity, but not by proximity. 

It is possible that within participant development was not apparent due to the 

age range of the WS group, and the overlap in mental age and chronological age 

between visits 1 and 2. Performance was therefore also analysed at each visit using 

linear regression against mental age (MA) and chronological age (CA). At visit 2, 

grouping by luminance similarity showed a marginal relationship with mental age and 

with chronological age: mental age, F(1, 12)=4.69, p=.051, r
2
=.28; chronological age, 

F(1, 12)=3.41, p=.09, r
2
=.22. This was due to a reduced familiarity effect with 

increasing mental/chronological age, and is illustrated in Figure 4. Interestingly, this 

indicates that the ability to group by luminance similarity is linked to development. 

However, this was not evident at visit 1 (F<1 for both).  

Regression analysis for grouping for proximity was consistent with the 

preference data above. There was no relationship between mental age or 

chronological age and grouping by proximity at either visit 1 or visit 2 (p>.05 for all). 

Figure 3 about here 

Typically developing performance 

Performance at baseline did not differ significantly from zero for grouping by 

luminance similarity or grouping by proximity (p>.05 for all). Performance on test 

trials was analysed for each age group separately. Grouping by luminance similarity 

was observed as a familiarity effect at 2 months, t(9)= -2.29, p=.05. However, at 4, 8, 

12, 16, and 20 months, this effect was no longer evident (p>.05 for all). Grouping by 

proximity was not available at 2 months and 4 months (p>.05 for both), but was 
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observed as a familiarity effect at 8 months, t(9)= -3.24, p=.01. At 12, 16 and 20 

months, grouping by proximity was no longer evident (p>.05 for all). 

The preferences observed in the TD groups were both familiarity preferences. It 

is therefore possible that the subsequent loss of an effect of grouping reflects a linear 

progression from familiarity towards novelty preferences with increasing age (CA and 

MA did not differ in this group) (see Hunter & Ames, 1988). To investigate this, 

linear regression was carried on the relationship between grouping performance and 

CA, from the age at which a grouping preference had been observed (luminance 

similarity, from 2 months; proximity, from 8 months). For grouping by luminance 

similarity, the relationship between performance and CA was observed in the 

predicted direction (F(1, 56)=2.92, p=.09, r
2
=.05). However, the effect was marginal 

and so cannot be said to truly support progression from familiarity to novelty 

preferences. Grouping by proximity was not related to CA (F<1). Performance at each 

age group is illustrated in Figures 5a and b. 

Figures 4, 5a and 5b about here 

Discussion 

This study demonstrated that grouping by luminance similarity emerges earlier 

than grouping by proximity in WS. Infants and toddlers with WS aged between 14 

and 36 months (visit 2) showed evidence of grouping by luminance similarity 

(familiarity preference). Grouping ability was assessed across two time-points, spaced 

8 months apart (visit 1, visit 2). Grouping by luminance similarity was marginally 

evident at visit 1, and had fully emerged at visit 2. We suggest that this difference is 

accounted for by a lack of grouping ability in the youngest WS participants at visit 1 

(range: 6 to 36 months). Thus, we can conclude that the ability to group by luminance 

similarity has emerged in WS by 14 months, but not by 6 months. In addition, when 
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present (visit 2) grouping by luminance was marginally related to mental age (MA) 

and chronological age (CA), which could indicate that the ability to group by 

luminance is, to some extent, linked to general development. In contrast, grouping by 

proximity was not evident in this group at either the first or second time-point and 

showed no progression with MA or CA. This suggests that the ability to group by 

proximity (at least for the stimuli employed here) develops beyond 36 months of age 

in WS, a substantial delay relative to typical development. 

Comparisons between the infant start-state and the adult end-state can inform 

how that end-state transpired. For perceptual grouping, the pattern of performance 

observed in older children and adults with WS appears to stem from infancy. At the 

adult end-state, grouping by proximity is relatively weaker than the ability to group by 

luminance similarity in WS (Farran, 2005). Thus, both the infant data presented here 

and Farran‟s (2005) adult data suggest that, in WS, luminance similarity is a more 

robust form of grouping ability than grouping by proximity, and we suspect, other 

forms of grouping as well. The late emergence of grouping by proximity is likely not 

only to have a negative effect on the subsequent development of this grouping ability, 

as observed by Farran (2005), but may also have cascading effects on the emergence 

of other related abilities such as focussed attention (see Karmiloff-Smith, 1997). 

In the present study, TD participants, consistent with the literature, demonstrated 

early emergence of grouping by luminance similarity, which compared to later 

emergence of grouping by proximity. The ability to group by luminance similarity 

was present at the youngest testing age, 2 months (familiarity), whilst the ability to 

group by proximity was evident only at 8 months (familiarity). Previous studies have 

shown grouping by luminance in neonates (Farroni et al., 2000). Indeed, luminance 

similarity is described as the most robust form of grouping ability in typical 
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development (Bremner, 1994). The emergence of grouping by proximity, before the 

current study, had not been charted. However, Farran et al. (submitted) found no 

evidence of its emergence within the first 6 months. As such, the current finding of 

grouping by proximity in typical development at 8 months is, itself, a novel finding. 

Although one must note that emergence at this age could be specific to the stimuli 

employed. Further experimentation could determine whether a higher ratio of vertical 

and horizontal proximity elicits evidence of grouping at an earlier age. 

After the appearance of grouping by luminance at 2 months, subsequent age 

groups showed no significant evidence of grouping by luminance similarity. A 

possible move from familiarity to novelty preferences with development was 

explored, but not supported. For grouping by proximity, the TD groups showed 

grouping at 8 months, but not at subsequent months. One explanation for the pattern 

observed, and also a possible explanation for the pattern observed for grouping by 

luminance is that the tasks failed to capture grouping abilities at older ages due to a 

lack of interest rather than a lack of ability. Perhaps, in this study, the tasks were not 

attractive enough for the older infants employed here. This account would predict that 

the time taken to habituate would reduce with age. However as exposure duration was 

low for all TD infants, no reduction was observed.  

The relatively long exposure durations in the WS group demonstrate that both 

tasks were set at an appropriate level to capture grouping ability in this population. 

This supports our conclusion that the WS group lacked the ability to group by 

proximity, and that they did not lack interest. Despite this, as the pattern of results of 

the TD group was not as expected, this dictates that the novel and interesting finding 

from the WS group should nevertheless be treated with caution.  
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The relatively early ability to group by luminance observed in WS appears 

consistent with typical development. This indicates that, although delayed, the 

developmental pathway has the potential to be typical. In turn, if it is relatively robust, 

it is less likely to be affected by later atypical development in other areas of cognition. 

In contrast, it appears from the substantially delayed emergence of the ability to group 

by proximity in WS, and subsequent deficit in adulthood, that the developmental 

pathway for grouping by proximity is likely to be atypical in WS. 

Developmental trajectories of performance were observed using linear 

regression. This method is particularly relevant for the participant group employed for 

two reasons. First, few individuals with WS are diagnosed within the first year of life, 

and so the participants employed had wide age range, ideally suited for examining 

developmental pathways. Second, individuals with WS show large individual 

differences. This can be taken into account by substituting chronological age (CA) 

with mental age (MA) as the predictor variable. 

For grouping by luminance similarity, performance in the WS group at visit 2 

demonstrated a marginal linear relationship such that the familiarity preference was 

strongest for lower MA and CA, and became weaker with development. The same 

pattern was also marginally observed in the TD group, in relation to CA. This gives 

some further indication of relatively typical development of this grouping ability in 

WS, although as the results are marginal, this suggestion is tentative. In contrast, the 

ability to group by proximity was not related to MA or CA in WS. However, this is 

not surprising given that this ability had not yet emerged in the WS group. 

Individuals with WS were assessed at two time-points, spaced 8 months apart. 

Despite some evidence, from separate analyses at each visit, that the ability to group 

by luminance similarity emerged within this period, a within group comparison did 
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not reveal any development change. Development is slower in WS than in the typical 

population: the fifteen individuals who took part in visits 1 and 2 increased in mental 

age on average by just less than 5 months. It might be that a time window of just 8 

months (5 months developmental time) was not adequate to observe development, 

particularly given the within group variability. 

The evidence for grouping is observed in this study as familiarity effects and 

not as novelty effects. This is surprising, given that infants were habituated to the 

familiarisation stimuli. This is also not consistent with previous studies which have 

looked at perceptual grouping in infancy, where novelty preferences are reported (e.g. 

Farroni et al., 2002; Quinn et al., 1993). In their model of infant attention, Hunter and 

Ames (1988) proposed that a familiarity preference occurs when infants require time 

to consolidate the familiarisation stimulus with the test stimulus. With development, 

consolidation requires less time, and a novelty preference is more likely to be 

observed. One could argue that in the present experiment, as the test stripes differed 

from the familiarisation stimuli, the infant noticed the similarity in organisation 

(horizontal or vertical), but the differences in the stimuli required further 

consolidation. Hence, infants showed a preference to the „familiar‟ test stripes. 

However, this argument is difficult to support for two reasons. First, in the present 

study, the reduction in familiarity preferences with age, for grouping by luminance 

similarity, was only marginal. This does not appear to constitute a progression from 

familiarity to novelty. Second, novelty preferences have been reported in similar 

experiments, in which the familiarisation stimuli and test stimuli were different 

(Quinn et al., Experiment 1, 2002; Farroni et al., Experiments 2 & 3, 2000). 

In addition to the perceptual grouping experiments reported here, participants 

also took part in an attention shifting task and a covert attention task. The stimuli in 
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the attention tasks were more attractive (coloured and moving stimuli) than the 

perceptual grouping stimuli. Thus, although habituated to the perceptual grouping 

stimuli, where this was preceded by an attention task, the static and dynamic changes 

in luminance of the attention stimuli might have had some residual effect on 

perceptual grouping performance. If this is the case, consolidation of the similarity 

between the familiarisation and test stripes might have been required, hence the 

resulting familiarity effects. This could explain the difference between the present 

results and previous studies (e.g. Farroni et al., 2000). We concede that there is 

uncertainty as to why familiarity preferences occurred given the habituation procedure 

employed. Nevertheless, it is clear that the familiarity effects observed can only result 

from infants‟ ability to perform perceptual grouping. 

In summary, the profile of grouping abilities observed in adults with WS 

appears to relate to the emergence of perceptual grouping in infancy. In this study, the 

ability to group by two grouping principles was assessed at two time-points in early 

development. Results showed that infants and toddlers with WS can perform 

perceptual grouping. However, not all forms of grouping emerge at a developmental 

time-point predicted by typical development. Grouping by luminance similarity is 

available in infancy, whilst grouping by proximity emerges later. Luminance appears 

to be the most robust grouping type in WS as it remains a relative strength in 

adulthood in WS. This data can also be treated as preliminary evidence that groping 

by luminance might also show a similar developmental pattern in infancy as observed 

in typical development. The lack of evidence for the emergence of the ability to group 

by proximity suggests that this ability emerges relatively late in development. This 

could be a precursor to the poor level of ability observed for grouping by proximity in 

WS adults. Impairment at the infant start-state is likely to indicate an atypical 
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developmental trajectory, which will then have cascading effects on the development 

of other functions. Therefore, it is also likely, that the late emergence of grouping by 

proximity affects the subsequent development of related functions such as focussed 

attention.  
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Table 1.  Participant Details 

 

Group CA days 

mean (sd) 

MA days 

mean (sd) 

Luminance 

N 

Proximity 

N WS  

Visit 1 (N=29) 754.59 

(252.35) 

401.38 

(183.78) 

22 26 

Visit 2 (N=15) 828.20 

(225.97) 

464.00 

(196.68) 

14 13 

TD      

Whole Group 

(N=63) 

320.29 

(197.19) 

Na 58 53 

2m (N=10) 57.10 (1.29) Na 10 10 

4m (N=10) 122.60 (3.92) Na  10 10 

8m (N=11) 245.27 (6.40) 250.91 

(20.23) 

11 10 

12m (N=11) 366.82 (6.35) 346.36 

(28.03) 

9 8 

16m (N=10) 487.50 (8.03) 483.00 

(49.89) 

9 7 

20m (N=11) 615.72 (4.56) 627.27 

(60.68) 
9 8 



 29 

Table 2: Exposure Durations required to Habituate 

Group Exposure duration (sec): Mean (S.D.) 

 Luminance Proximity 

WS visit 1 35.43(8.11) 38.15(14.42) 

WS visit 2 37.14 (7.52) 38.46(11.07) 

TD (8 to 20 months) 30.92(4.63) 30.15(4.92) 
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Figure Captions 

Figure 1: Familiarisation stimuli 

Figure 2: Test stimuli 

Figure 3: Mean looking time difference scores: participants with Williams syndrome 

(error bars represent standard error) 

Figure 4: Grouping by luminance similarity, WS Visit 2: looking time difference 

scores plotted against mental age 

Figure 5a: Grouping by luminance similarity, TD participants: mean looking time 

difference scores plotted against chronological age group (error bars represent 

standard error) 

Figure 5b: Grouping by proximity, TD participants: mean looking time difference 

scores plotted against chronological age group (error bars represent standard error) 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5a 
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Figure 5b 
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