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THE MANIFEST ASSOCIATION STRUCTURE OF THE SINGLE-FACTOR

MODEL: INSIGHTS FROM PARTIAL CORRELATIONS

Abstract

The association structure between manifest variables arising from the

single-factor model is investigated using partial correlations. The additional

insights to the practitioner provided by partial correlations for detecting a

single-factor model are discussed. The parameter space for the partial

correlations is presented, as are the patterns of signs in a matrix containing

the partial correlations that are not compatible with a single-factor model.

Key words: anti-image correlation matrix, elliptical tetrahedron, factor

analysis, factor partial correlation, manifest partial correlation.
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1. Introduction

Factor analysis is a classical approach to modeling multivariate data where all

variables are treated on an equal footing. Traditionally, these are thought of as models

for covariances or correlations, but partial correlations can be used.

Guttman (1953) advocated that all off-diagonal elements of the inverse correlation

matrix close to zero was a criteria for ruling out a common-factor space for the

population. Kaiser (1970), in a Presidential address to the Psychometric Society, stated

that “among Guttman’s landmark papers . . . one particular theme appears repeatedly:

given a correlation matrix, we should always look carefully at its inverse, in order to

assess the sampling adequacy of the data for factor-analytic purposes”. The scaled, to

have ones on the diagonal, inverse variance matrix has off-diagonal elements (i, j) equal

to the negatives of the partial correlation between variables i and j, after conditioning

on the remaining variables (Whittaker, 1990, page 143). This matrix is known as the

anti-image correlation matrix and is available in standard statistical packages such as

SPSS, SAS and STATA. For further details on the relationship between correlation

matrices and anti-image correlation matrices, see Yanai and Mukherjee (1987).

This paper presents three main results and two corollaries that provide extra

insights into single-factor models, based on partial correlations and on the pattern of

their signs. Section 2 presents necessary, but not sufficient, constraints on the

parameter space of the population partial correlations implied by a single-factor model.

Section 3 defines factor partial correlations and derives the association structure

between manifest variables after marginalizing over the latent variable in a single-factor

model. Also presented in Section 3 are patterns of signs of partial correlations that are

not compatible with a single-factor model. Section 4 re-expresses the classical tetrad

conditions as a function of the manifest partial correlations. Section 5 contains a

discussion.
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2. The Parameter Space of the Single-Factor Model

The classical single-factor model can be written as XM = λL + δ, where XM is

the vector of the p manifest variables X1, X2, . . . , Xp, L is the factor or latent variable,

λ is a p × 1 vector of factor loadings, and δ is a vector of p variables representing

random measurement error and indicator specificity. Variables are considered to be

measured as deviations from their means, so E[XM] = 0 and E[L] = 0. The classical

single-factor model assumes that E[Lδ] = 0, E[δ] = 0, var[δ] is diagonal and that L

and δ are multivariate normal, although the results presented in this paper do not

require these normality assumptions. To identify the model, the latent variable L is

scaled to have unit variance. The variance matrix for XM, with elements denoted by

σij , is ΣM = λλT + Θ, where Θ is the p × p diagonal variance matrix of δ, with

non-negative elements. A necessary and sufficient condition for ΣM to be a variance

matrix of a single-factor model is that p(p − 1)/2 − p independent tetrad conditions are

satisfied and 0 ≤
σkiσij

σkj
≤ σii for one pair (j 6= k) for each i (Anderson and Rubin, 1956).

The tetrad conditions are σkiσlj − σliσkj = 0, for all distinct i, j, k and l, from 1 to p.

Results in this paper are presented under the assumption that variances are

positive and that all variance matrices are positive definite. Therefore, a necessary but,

as will be seen later, not sufficient condition on the scaled inverse variance matrix is

that it is positive definite.

Result 1. The p × p anti-image correlation matrix is positive definite if and only if its

determinant is strictly positive and, for p ≥ 4, all its symmetric (p − 1) × (p − 1)

submatrices are positive definite. Hence, when p = 3, the positive definiteness

constraint on the anti-image correlation matrix implies

1 − 2 ρ12.3 ρ13.2 ρ23.1 − ρ2
12.3 − ρ2

13.2 − ρ2
23.1 > 0, (1)

where ρij.k is the partial correlation coefficient between Xi and Xj given Xk.

The proof of Result 1 follows from Hadley (1961), Equation 7-69. The different

combinations of the three ρij.k form a convex set which is symmetric with respect to

rotations corresponding to permutations of the components of (ρ12.3, ρ13.2, ρ23.1).
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Figure 1 displays the boundary of the convex set in a three-dimensional plot. These

plots should be contrasted to those in Figure 1 of Rousseeuw and Molenberghs (1994):

both are elliptical tetrahedrons, but with different orientations.

=========================

Insert Figure 1 about here

=========================

Ignoring for the moment the shaded area, Figure 2 supports the statement that any

horizontal cross section of the surface defined by Figure 1 is an ellipse.

=========================

Insert Figure 2 about here

=========================

3. The Relationship Between the Manifest and the Factor Partial

Correlations

Let X be the vector of the p + 1 random variables, partitioned as
[

XM

T L
]T

,

with positive definite scaled inverse variance matrix partitioned as

T =





I TML

TLM 1



 ,

where I is a p × p identity matrix since the single-factor model assumes that the

manifest variables are conditionally independent, given the latent variable. The p × 1

vector TML = TLM

T contains the non-zero elements −τiL.(iL), the negative of the

partial correlation between manifest variable Xi and latent variable L, where (iL)

denotes the remaining p − 1 variables in X, after removing Xi and L. Henceforth, the

τiL.(iL) are called factor partial correlations.

The positive definiteness constraint on the matrix T implies that its determinant is

positive, i.e., |1 − TLMTML| > 0, and that the determinants of all its symmetric

submatrices are also positive. Therefore,
p

∑

i=1

τ 2
iL.(iL) < 1. (2)
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Also, because the τ are partial correlations, −1 < τiL.(iL) < 1. The parameter space for

the factor partial correlations is defined by Equation 2, with the additional constraint

that τiL.(iL) 6= 0. Indeed, for the single-factor model to be of interest all factor partial

correlations need to be of substantive interest, and not only non-zero mathematically.

Note that Equation 2 defines an open unit hyper-sphere.

Result 2. The manifest partial correlations can be written as a function of the factor

partial correlations as

ρij.(ij) =
τiL.(iL) τjL.(jL)

{(1 − τ 2
iL.(iL))(1 − τ 2

jL.(jL))}
1/2

, i 6= j ∈ {1, 2, . . . , p}, (3)

where ρij.(ij) is the manifest partial correlation between Xi and Xj, given the remaining

p − 2 manifest variables.

The proof follows. Inverting T , the scaled inverse variance matrix of X, gives

T−1 =





I TML

TLM 1





−1

=





(I − TMLTLM)−1 −(I − TMLTLM)−1TML

−TLM(I − TMLTLM)−1 (1 − TLMTML)−1



 .

(4)

The correlation matrix of XM is given by scaling (I − TMLTLM)−1. Hence, the

anti-image correlation matrix is given by scaling I − TMLTLM to have ones on the

diagonal. The off-diagonal element (i, j) is given by −
τiL.(iL) τjL.(jL)

{(1−τ2
iL.(iL)

)(1−τ2
jL.(jL)

)}1/2 . Since the

off-diagonal elements of the population anti-image correlation matrix are the negatives

of the population manifest partial correlations, Equation 3 follows.

Two corollaries of Result 2 follow.

Result 2a. Marginalizing the single-factor model over the latent variable L yields a

joint distribution for the manifest variables with no zero manifest partial correlations,

that is, with no zero entries in the anti-image correlation matrix.

Since all factor partial correlations are assumed non-zero, and the manifest partial

correlations are given by Equation 3, all τiL.(iL) 6= 0 imply all ρij.(ij) 6= 0. Therefore,

there are no zero entries in the anti-image correlation matrix and the proof is complete.
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From Equation 3, the sign of ρij.(ij) equals the product of the signs of τiL.(iL) and

τjL.(jL). Let τ = −TML be a p × 1 column vector of the factor partial correlations and

let ρ be a p × p symmetric matrix containing the manifest partial correlations as

off-diagonal elements. Recall that λ is the vector of factor loadings.

Result 2b. The off-diagonal elements of sign(ρ) represent a pattern of signs for the

manifest partial correlations that is compatible with a single-factor model if

sign(ρ) = sign(τ τ T ) = sign(λλT ) (5)

(for the off-diagonal elements). This result refers to population parameters and assumes

the tetrad conditions are satisfied. The second equality follows from Salgueiro (2003,

Equation 5.16): λ⋆
i =

τiL.(iL)

1−
∑p

k=1 τ2
kL.(kL)

. Indeed, up to scaling, each factor loading can be

written as a function of the factor partial correlations.

Note that, when p = 3, Equation 3 defines a system of three equations of the form

τ 2
iL.jk =

1

1 +
ρjk.i

ρij.kρik.j

. (6)

Since 0 < τ 2
iL.jk < 1, then

ρjk.i

ρij.kρik.j
> 0. Hence, three manifest variables can only define a

single-factor model if their anti-image correlation matrix is positive definite and the

product of the three manifest partial correlation coefficients is positive. Revisiting

Figure 2, the shaded area represents the admissible region for the three manifest partial

correlation coefficients in a single-factor model. The ellipse represents the positive

definiteness constraint given by Equation 1. Additionally, there is now the constraint of

a positive product of the three partial correlations. Indeed, it is not possible to have a

single-factor model with three manifest variables in which just one or all three ρij.k are

negative. Also, if τiL.jk is negative and the other two factor partial correlations are

positive (or the opposite), then all manifest partial correlations in column (row) i of the

anti-image correlation matrix will be negative, and all the remaining manifest partial

correlations will be positive.

When p ≥ 4, Equation 5 can be used to derive possible patterns of signs for the

manifest partial correlations, given the hypothesized structure of signs for the factor
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partial correlations. Alternatively, by considering all possible patterns of signs for the

factor partial correlations, Equation 5 can be used to obtain all possible patterns of

signs for the manifest partial correlations.

4. An Extension of the Tetrad Conditions

The classical tetrad conditions for the single-factor model can be re-expressed in

terms of partial correlations.

Result 3. When p ≥ 4, the following p(p − 1)/2 − p tetrad conditions for the partial

correlations have to be satisfied in a single-factor model:

ρki.(ki)ρlj.(lj) − ρli.(li)ρkj.(kj) = 0, (7)

with i, j, k and l distinct, from 1 to p, where ρki.(ki) is the partial correlation coefficient

between Xk and Xi, given the remaining p − 2 manifest variables.

The proof follows by repeated substitution of Equation 3 into the left hand side of

Equation 7.

5. Discussion

This paper has provided some useful results for the practitioner. Inspection of

sample partial correlations between manifest variables can provide evidence for and

against the single-factor model. If the pattern of signs of the sample partial correlations

do not obey Result 2b, then, provided this is not due to sampling error, the

single-factor model can be rejected. Indeed, population partial correlations between

manifest variables in a single-factor model should be non-zero. Therefore, provided

there is adequate power for the tests that these are zero, from Result 2a, sample partial

correlations not significantly different from zero also rule out the single-factor model.

However, if power for these tests is small, the single-factor model should still be

considered, even if there are non-significant sample partial correlations. Methods for

estimating overall power for graphical Gaussian models were investigated by Salgueiro

et al. (2005). As the single-factor model can be parameterized as a graphical Gaussian
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model, the results presented by Salgueiro et al. (2005) can be used for the single-factor

model.
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Figures

Figure 1.

Set of all possible partial correlation coefficients (ρ12.3, ρ13.2 and ρ23.1) between three variables.
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Figure 2.

The admissible region (shaded) for the three partial correlation coefficients compatible with a single-
factor model: ρ13.2 on the horizontal axis, ρ23.1 on the vertical axis and ρ12.3 taking values of a) 0.1,
b) 0.5, c) 0.9, d) −0.1, e) −0.5, f) −0.9. The ellipse represents the positive definiteness constraint for
partial correlations.


