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Two meanings of phenomenal

Whatever meaning the reader might attach to the word ‘phenomenal’, it seems 
that in the broad public perception, mathematics is far from phenomenal. 
A quick look at Yahoo Answers (responding to the question, ‘Why is maths 
boring?’) reinforces the idea that, far from being ‘outstanding’, as in one usage 
of the word ‘phenomenal’, mathematics is perceived as boring:

Respondent X: You may not feel like it leads to anything. It’s a bit pointless 
really, but proves your [sic] clever so get a good grade. It’s boring because 
you can’t see how it is helping you in later life.

A second response in Yahoo Answers suggests that some people are hard-wired 
for mathematical thinking and others are not:

Respondent Y: It’s not you have to know how to understand it and all its 
intricacies, but even some simple bits like the Fibonacci sequences can 
be fascinating. Just depends how your mind works.

I am aware that appealing to Yahoo Answers is somewhat unconventional as a 
research methodology, but there is no shortage of anecdotal and seriously rigorous 
research to support the notion that those of us who find mathematics outstanding 
are the oddities because generally mathematics ‘is perceived as “hard“, “boring“ 
and “useless”’ (p. 2) (Osborne et al., 1997, in a report on attitudes for 16-year-olds 
towards future participation in mathematics, quoted in Brown et al., 2008).

These statements are not surprising to those of us who have worked in 
mathematics education for many years, but they remind us that we have not 
yet realised our aspiration that mathematics be seen by the many rather than 
the few as an extraordinary, indeed ‘phenomenal’, discipline.

Despite being perceived as pointless, mathematics also carries with 
it a perceived high level of prestige, perhaps among the most impressive 
achievements of the human mind. Respondent Y above claimed that 
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mathematics is only for those whose minds work in a particular way; indeed, 
mathematics is often described as abstract and perhaps this relates to the 
disconnection with reality that renders the subject pointless, according to 
Respondent X.

This perception of mathematics as abstract is not a recent development. 
In Plato’s Theory of Forms, the highest and most fundamental kind of reality 
lies in non-material ideas, and perceived reality is merely a shadow of those 
concepts. Certainly, pure mathematicians might see the power of their subject 
in the decontextualized axioms and theorems that rely on logic and not in 
any requirement that the mathematics speaks directly to the material world; 
fortunately, it often does, but this is typically portrayed as happenstance rather 
than the object of the enterprise.

From this point of view, mathematics is not perceived through the 
senses but lies in an abstract world, which could never really aspire to being 
accessible to the many. Accordingly, mathematics is in fact the antithesis of 
phenomenal, not experienced out there, but an internal cerebral activity. My 
argument will seek to justify and exemplify a different view, one that emerges 
less from the discipline of mathematics and more from pedagogic and 
philosophical considerations. I will argue that, to be accessible to the many, 
the teaching of mathematics needs to present the subject not only as cerebral 
but also as perceived through sensation, like any other phenomenon, and that 
this is one of the ways in which the many and not just the few will engage with 
the discipline.

My position is fundamentally shaped by two related influences, one 
pedagogic and the other philosophical. First, when thinking about teaching 
and learning, Harel and Papert (1991) have proposed a Constructionist 
approach, which places emphasis on student ownership that gives them 
control over their own learning. After decades of developing new visions of 
schooling based around student-centred use of Logo programming, Harel and 
Papert argued that the making of artefacts, such as Logo-based projects that 
are publicly shared, offers an especially powerful context for mathematising. In 
fact, Logo provided a paradigmatic case of how it might be possible to make 
mathematics phenomenal, as became clear to me, when, as a teacher, I used 
Logo with students and witnessed their natural and committed engagement 
with the power of algebra to communicate with a machine that could create 
wonderful pictures and animations for them.

Second, when reflecting on the relationship between the mind and 
the world out there, I am influenced by recent philosophical developments on 
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inferentialism (Brandom, 2002). Inferentialism contests the notion that initial 
awareness of a concept is grasped solely by reference to its representation. 
Rather, initial engagement takes place within a web of reasons through 
which purposes and significances can be inferred. Representations are 
situated within that inferential structure through the giving and taking of 
reasons. In applying the inferential argument to education, connections with 
Constructionism become apparent. Constructionism recognises the primary 
importance of the giving and taking of reasons by placing the student at the 
centre of the learning process. The role of the computer in the Constructionist 
vision is as a machine whose power can be released through mathematical 
communication, reason enough perhaps to invest in using and learning 
(mathematical) representations.

Making mathematics phenomenal is a design challenge that embraces 
both meanings of phenomenal: if mathematics is seen as extraordinary in its 
power to explain and ‘get stuff done’, students might engage more readily with 
its key ideas; and the argument below proposes that such an aspiration might 
be facilitated by creating an experiential version of those ideas.

To begin the argument, I need to review the notion of mathematical 
abstraction beyond Plato to its current articulation in the mathematics 
education literature.

What is mathematical abstraction?

In attempting to explore the nature of mathematical abstraction, the key 
question that emerges above is the extent to which abstraction depends 
on decontextualisation, the absence of a material presence. If mathematical 
abstraction is the hallmark of mathematics and mathematics is seen as purely 
cerebral, not experienced through the world out there, then it is reasonable to 
deduce that mathematical abstraction requires a removal from the material 
world. Certainly, an inspection of the pure mathematics presented in textbooks 
and university courses reveals little or no reference to contexts and situations 
(other than in self-evidently contrived ways) and so easily suggests that, if 
mathematical abstraction is the achievement we see in those textbooks, it 
is surely decontextualised. Whereas mathematicians may see their ultimate 
achievement as the creation of formal expressions of mathematics, however, 
teachers and mathematics educationalists might look elsewhere; their focus 
is on learning and they may wish to understand more about the process 
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that leads to that achievement. Is the abstraction that takes place in learning 
mathematics simply a question of getting rid of the context or is there rather 
some sort of blurring of contexts that takes place?

Many researchers have portrayed abstraction as a strictly hierarchical 
process, progressing through a series of stages. Dubinksi (1991), for example, 
proposes that repeatable actions are internalised to form processes, before 
being transformed into mathematical objects. Sfard (1991) also views the 
reification of processes into mathematical objects as being the key achievement 
of abstraction, and later (1994) describes reification as the birth of a metaphor. 
Gray and Tall (1994) also describe abstraction in terms of processes and 
concepts, though they see the potential for achievement in the flexibility and 
freedom to think in terms of either processes or concepts (what they refer to as 
‘proceptual thinking’) and they point to the parallel ambiguity in mathematics 
itself. For them, the mathematical symbol plays a key role in facilitating this 
flexibility, so, for example, the proceptual thinker can regard 3 + 5 either as the 
process of adding 5 to 3 or as the concept, 8. Although these theories present 
different stories about mathematical abstraction, they share a common belief 
that there is an ascension to a decontextualised achievement, whether it be a 
reified object or a procept.

This deep idea has been critiqued, for example by Confrey and Costa 
(1996), since it remains unclear how the various states of abstraction are 
achieved. Plato’s Forms seem to haunt these process–object accounts of 
mathematical abstraction. This view of abstraction furnishes a danger that the 
teaching of mathematics will be hampered by a sense that the mathematics is 
elusive, only accessible to proceptual minds or to those who are able to reify. 
These accounts of mathematical abstraction describe the nature of high-level 
thinking (and here I intentionally emphasise the hierarchy) in the organism. 
In contrast, teachers of mathematics are focused at a micro-level, needing to 
understand how mathematical abstraction might be taking place here and 
now, and how it might be influenced by experience; at this level, abstraction is 
not so much an achievement as an emergent process. Whereas at the macro-
level the specific setting is inconsequential, at the micro-level it is reasonable 
to suppose that the structuring forces in a setting might play a key role in 
mathematical abstraction (Lave, 1988).

Noss and Hoyles (1996) have proposed a view of mathematical 
abstraction that embraces the role of the setting. They refer to a complex 
network of resources, some of which are internal and some of which are 
external (artefacts, peers, tools) and propose that meaning-making takes place 
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by forging and re-forging connections across that network, a process they 
call ‘webbing’. A key construct in webbing is that of ‘situated abstraction’. The 
situated abstraction is an internal resource that emerges through webbing 
activity. This resource serves as a fairly general heuristic for making sense of 
situations that arise in a setting and is inevitably couched in the terminology 
and discourse of that setting. The heuristic may be conjectural in the sense 
that it proposes how systems and objects within the setting seem to behave, 
and further webbing may test that proposal. At other times, the heuristic may 
seem more like a conclusion or inference. Either way, the situated abstraction 
provides an active description, perhaps temporary, of how things get done 
across a setting. The webbing perspective, and its key construct of situated 
abstraction, in effect propose that abstraction takes place in a situation and is 
articulated through that situation, in contrast to the view of formal abstraction, 
which seeks to remove all reference to situation.

The ideas of Noss and Hoyles emerge from the observation of 
students who are trying to make sense of the behaviour of on-screen virtual 
objects through the use of carefully designed tools. The early work referred 
to programming in Logo, a high-level language designed to support 
mathematising and problem solving through a microworld, in which a turtle 
object can be animated to create pictures and movement. In Logo, the tools 
are essentially symbolic, commands and structures within the language. More 
recent work has drawn on iconic representations, in the form of quasi-concrete 
objects that represent powerful ideas in mathematics. In this respect, the 
role of digital technology becomes a key focus for the phenomenalisation of 
mathematics (Pratt, 1998).

Pratt and Noss (2002) have described the micro-evolution of knowledge 
that takes place when students abstract mathematical meanings when 
webbing with external tools and resources. This paper will first summarise their 
model in order to establish the theoretical framework that will underpin the 
subsequent illustrations of how principled design with digital technology can 
make mathematics phenomenal.

The micro-evolution of mathematical knowledge

Pratt and Noss’s (2002) model of the micro-evolution of knowledge develops 
out of diSessa’s Knowledge-in-Pieces (KiP) theory (1993), in which he argues 
that conceptual knowledge (or co-ordination classes in diSessa’s terminology) 
emerges out of a fractured sense-making mechanism. At the outset, knowledge 
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consists of many small pieces, referred to as phenomenological primitives 
(p-prims for short). An example is ‘I push; it moves’, though diSessa insists 
that p-prims are so very small that their articulation in language overstates 
their grain size. P-prims are typically disconnected and so are triggered 
independently by incoming data. To the observer, a student’s response might 
appear inconsistent from moment to moment as the sense-making apparatus 
triggered is sensitive to small differences in what is attended to within the 
external phenomena. Learning, or tuning towards expertise, takes place as 
p-prims gradually become connected when they are triggered simultaneously 
and consistently by specific phenomena. P-prims contain cueing and reliability 
priorities, which change as a result of their consistency or otherwise with other 
p-prims and their evident post-hoc explanatory power. As the priorities change, 
‘successful’ p-prims or collections of connected p-prims become increasingly 
likely to be cued in the future.

Pratt and Noss (2002) reported on students’ initial naive mathematical 
and statistical articulations, but recognised in them potential resources for more 
sophisticated knowledge. By working with carefully designed digital tools, they 
traced the emergence of situated abstractions that captured relatively general 
behaviour and yet were articulated in terms of the setting being experienced. 
They borrowed from diSessa’s KiP theory the notion that the student’s initial 
knowledge was fractured; the situated abstractions that began to emerge 
seemed to reflect clusters of p-prims though nevertheless still possessing the 
essential p-prim causal structure in which one condition entails another (vis-
à-vis ‘I push; it moves’). They also observed how the students were reluctant 
to re-use situated abstractions recently learned; rather they would tend to 
draw on long-standing knowledge. Insofar as these situated abstractions were 
underpinned by p-prims, this observation was consistent with a low priority 
associated with the recent knowledge and a relatively high priority attached to 
the more established knowledge. Nevertheless, Pratt and Noss also observed 
students, who were striving to make sense of on-screen stochastic behaviour 
(see Scenario 4 below), drawing on recently constructed situated abstractions 
when feedback demonstrated that the more established ideas simply lacked 
explanatory power.

This observation suggests that the assertion that knowledge is 
situated and essentially not transferable (indeed, according to Lave, 1988, 
transfer simply does not exist as a construct) is consistent with the reluctance 
to apply situated abstractions in novel ways where the associated priorities 
might be low when compared to those of long-standing knowledge. At the 
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same time, Pratt and Noss’s study suggests that such knowledge does have 
the potential to be re-used if the activity framework supports tuning towards 
expertise.

As proposed by the ‘Street Mathematics’ research (Nunes et al., 1993), 
the meaningfulness of the mathematics seems key. In terms of the micro-
evolution of knowledge, meaningfulness across situations seems to be tied to 
a contextual neighbourhood that describes the essential conditions, purposes 
and features under which the situated abstraction was constructed. As will be 
illustrated below, many so-called reported misconceptions can be interpreted 
as: (i) a lack of awareness of the power of a mathematical idea to extend to other 
situations, reflecting a contextual neighbourhood that is currently too narrow; 
(ii) an over-generalisation where the limitations of the idea have not yet been 
recognised, indicating a contextual neighbourhood that is too broad. Evidence 
from the Pratt and Noss research suggests that the contextual neighbourhood 
can gradually extend so that, at this micro-level, decontextualisation is illusory; 
the mathematical knowledge represented in textbooks and university courses 
demonstrates the wide contextual neighbourhood that gives the knowledge 
wide scope and power.

Meaningfulness not only emerges out of experience, but also promotes 
engagement out of growing awareness of the power of the subject so that 
the two meanings of ‘phenomenal’ begin to merge. In the next section, I will 
illustrate the micro-evolution of mathematical knowledge through a series 
of short examples, and infer design principles that might facilitate not only 
the micro-evolution of mathematical knowledge but also engagement in the 
power of mathematics.

Illustrative scenarios

Five brief scenarios are presented below to illustrate aspects of making 
mathematics phenomenal.

Scenario 1: Using Newton’s Laws before ‘knowing’ them

The first example revisits work that took place during my time as a school teacher 
in the 1980s. Newton’s Laws of Motion offer a singular challenge to A Level 
students. Some researchers refer to the misconceptions or pre-conceptions 
students have for Newton’s Laws (for example, Clement, 1982). For example, a 
student might believe that objects gradually slow down unless a force propels 
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them forward, an Aristotelian view of motion. To support a Newtonian view, 
I  designed physical experiments, such as sliding objects down slopes, but 
found them to be unhelpful; it seemed that, because friction was ever present 
in these material situations, there was a need to create an artificial world in 
which any object would move only according to Newtonian forces explicitly 
created by the students.

The software, Newton, was built in Logo with the explicit aim of 
situating students in such an artificial microworld (Pratt, 1988). Newton was 
built on top of Logo so that the students would be able to develop extended 
projects in the spirit of Harel and Papert’s Constructionism (1991). One example 
of a sub-task within Newton is given below. The student is challenged to make 
an object slide down a slope.

In Figure 1, the student has applied a weight force vertically down the 
screen and a friction force against the direction of motion down the slope. 
These are two forces that students at this age typically already know about. 
However, when the system is set in motion, the two forces combine in such a 
way that the object accelerates parabolically into the slope, rather than down 
it. Only later, when the student adds a normal reaction force (Figure 2), might 
the object slide down the plane. 

Figure 1 Figure 2

In this way, the student might recognise the need for a normal reaction force 
if objects are to behave consistently with everyday observation. The normal 
reaction force lives in the student’s web of reasons. The material world supports 
an Aristotelian view of motion since objects slow down naturally through the 
action of hidden friction and only maintain speed, accelerate, or slow suddenly 
through the action of external forces (such as braking). The reason for a 
normal reaction force remains obscure. In Newton, all forces have equal status; 
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weights, frictions, reaction and tractive forces all have to be programmed into 
the system by the student. In this virtual world, the need for a force to bring 
about a change in velocity and the lack of need for a force if velocity is merely 
to be maintained becomes apparent.

This example illustrates the Constructionist idea that using can 
happen before knowing (Hoyles and Noss, 1987). Here, the students operate 
within a world in which Newton’s Laws apply – but not automatically, as in 
the everyday world. In this artificial world, the students have to use Newton’s 
Laws to create motion even though their knowledge of these laws is only 
emergent. Papert (1996) describes the Power Principle, in which he asserts 
that, conventionally, mathematics education inverts the normal way in which 
people learn. In most situations, he argues, people learn about a tool by using 
that tool. In mathematics, the normal trajectory is inverted insofar as people 
are presented with procedures for calculating, drawing and measuring 
without having the opportunity to use the mathematics for a meaningful 
purpose. Papert argues that digital technology offers the opportunity to re-
invert that inversion since it is possible to create quasi-concrete on-screen 
versions of the mathematics that can be used during the creation of virtual 
products. The Newton task above offers a clear example of the Power Principle 
in operation.

Scenario 2: The utility of graphing and algebraic notation

Gaining knowledge about graphs in school curricula typically involves learning 
how to draw many different representations, such as bar charts, pie charts, line 
graphs, scatterplots and histograms. Each has its own set of conventions to 
be remembered and each presents challenging cognitive demands, such as 
scaling. Much research has shown how difficult children find it to learn these 
skills (Padilla et al., 1986; Swatton and Taylor, 1994). Worse still, the effort 
needed to learn how to represent data dominates teaching and learning to the 
extent that little emphasis is given to the interpretation of graphs, which many 
might feel is a key understanding. The Swatton and Taylor research has shown 
that a very low percentage of secondary school-age children successfully 
interpret graphs.

The example below illustrates not only the use of knowledge even 
as it is emerging (as above) but also how graphing and algebra can be 
understood as synergetic productivity tools towards a defined goal. In the 
classic MaxBox investigation, students are challenged to find the maximum 
capacity open box that can be made from a piece of A4 paper by cutting 
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equal squares from each corner. What size square creates the largest volume 
box (see Figure 3)? 

Figure 3

An active approach is to require the students physically to make the boxes and 
measure the dimensions of the box. These measurements are then entered 
into a spreadsheet, which automatically calculates the volume of the box. 
Figure 4 shows one student’s graph when only four boxes had been made and 
measured. Ainley (1996) reported how this 11-year-old, after making several 
boxes out of A4 paper, began simply to enter box dimensions directly into 
the spreadsheet. The student was evidently mentally calculating the length 
and width of the boxes. The researcher intervened to suggest that, if he was 
doing a mental calculation, it should be possible to ‘teach’ the rule to the 
spreadsheet. Since he was already familiar with spreadsheets, he knew that if 
he were able to enter a formula (below, more detail is given on how difficult 
this was) and fill the formula down, he would be able to create instantly many 
different results, each with its calculated volume. Figure 5 depicts a graph that 
included some measured data alongside some data that had been generated 
from a formula.
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Figure 4 Figure 5

Creating the formula was a non-trivial step. There are many forms that the 
mental calculation might take. Here is one possibility: ‘Double the size of the 
square, 5, to get 10. What do I need to add on to 10 to reach 21, the width of 
the paper? 11, so the width of the box is 11cm.’ The spreadsheet requires a 
formula such as: ‘= 21 – 2 * B1’, where the size of the square is in cell B1. The 
translation task from the mental formulation to the formal algebraic expression 
is challenging. Nevertheless, some students in the research succeeded. One 
reason was that the students were able to try out their ideas and benefit from 
feedback. Often the spreadsheet fed back an error message because the 
algebra was not properly formulated or it did not generate the known correct 
value. A second reason was that the students were familiar with the pay-off 
for succeeding. They understood that, once the formula had been entered 
correctly, many results could be generated very quickly by filling the formula 
down the columns of the spreadsheet. The power of filling down provided 
the incentive to persist in trying to teach the formula to the spreadsheet in its 
correct formulation.

In fact, the power of filling was sometimes further exploited. Some 
students filled the formula down many rows of the spreadsheet. In Figure 6, 
the volumes of the boxes become negative once the side of the square cut out 
exceeds half the width of the paper and then become positive again once the 
side of the square also exceeds half the length of the paper.
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Figure 6

In this approach to MaxBox, the student might learn that both graphing and 
algebra have utility. The graph, usually seen as a presentational tool when 
the emphasis is on how it is drawn, might instead be regarded as a powerful 
analytical tool where the emphasis is on interpretation within an experiment 
or investigation. Similarly, algebra, so often seen as meaningless, can be 
experienced as a tool for communicating with a machine to ‘get the job done’. 
Using before knowing and generating utility are common themes throughout 
these five scenarios. In the third example below, the focus is on linking utility 
to purpose.

Scenario 3: Purposeful geometric construction

Pratt and Ainley (1997) reported on their early work with dynamic geometry 
software working with primary school-age children. Their aim had been 
to exploit the newly available (as it was then) power of Cabri Geometry to 
explore the construction of figures. The challenge lay in the fact that such 
young children possessed very little geometric knowledge and yet, following a 
Constructionist approach, they sought tasks that would engage these children 
in such a way that they would appreciate the power of geometric construction.

Other researchers (Healy and Hoyles, 2001) had reported the notion of 
‘messing up’. The properties of a figure that was simply drawn in Cabri Geometry 
would not remain invariant when the figure was dragged. To avoid the shape 
becoming messed up, it must be constructed using its properties. ‘Messing up’ 
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seemed to offer a promising direction. One boy, Bernard (pseudonym), had 
drawn a wonderfully detailed soccer pitch (Figure 7). 

Figure 7

Pratt approached Bernard with the pedagogic construct of messing up in 
mind and proposed to Bernard that, if he were to pick up one corner of his 
soccer pitch, the rectangular pitch would lose its shape. Bernard’s response 
was memorable. Bernard said, ‘But, Dave, you wouldn’t do that, would you?’  
The light-hearted remark does perhaps reflect the good relationship that the 
researchers had with these children, but it also spoke about something more 
profound. Though powerful, messing up retained an element of contrivance. 
Bernard was happy with his drawn rectangular soccer pitch. There was no need 
for it to be constructed. Worse still, construction would have transformed an 
interesting project into one that was much more challenging, but for no reason 
that was evident to Bernard. The children in this class produced many such 
carefully drawn pictures for the sheer fun of it, but they did not see any need 
for geometric construction.

After several months of failing to find ways of exploiting the 
constructional power of Cabri Geometry, Pratt and Ainley finally designed some 
tasks that seemed to provide a sense of how construction might be powerful. 
One such task drew on the fact that these children, aged 10, would regularly 
meet with younger reading partners, aged 6, to help them with their reading. 
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The 10-year-olds were challenged to design a drawing kit for their reading 
partners. The aim was to create a set of shapes that could be the building bricks 
for a drawing, which their reading partners would put together. There was a 
self-evident need for the shapes to be constructed, since the shapes would 
lose their essential features, as soon as they were dragged into position by 
their reading partners. Within this context it made sense to provide some initial 
starting points, such as how to construct an equilateral triangle. The children 
worked for extended periods to create elements of their drawing kit. Figure 
8 shows a wheel and a house shape, both perfectly constructed so that the 
properties would remain invariant when dragged by the reading partners.

Figure 8

Figure 9 shows one child’s final report after the task was completed.

Figure 9



15

Making Mathematics Phenomenal

The drawing kit task illustrates how children can gain a sense of the power 
of a mathematical idea, in this case geometric construction, when engaged 
in purposeful activity. The story also indicates that designing tasks that 
potentially connect purpose with utility is far from trivial; in fact, this design 
skill, which seeks to offer child-friendly inferential reasons for the mathematical 
notion, will need to be emphasised in the effort to make mathematics more 
phenomenal.

Scenario 4: Controlling and representing the behaviour of a die

The above three examples illustrate how making mathematics phenomenal 
involves transforming mathematical concepts into a form that allows students to 
engage directly with them, and that virtual environments such as microworlds, 
spreadsheets and dynamic geometry can support such an endeavour. 
Considerable emphasis is also placed in these examples on task design, in such 
a way that the mathematics is experienced through purposeful activity that 
engenders a sense of the power or utility of the concept. The ChanceMaker 
study (Pratt, 1998) continues to illustrate this theme, but identifies a particular 
design construct that supports designing for abstraction (Pratt and Noss, 2010), 
a design construct that places control in the hands of the student in such a way 
that the control becomes a representation of the concept.

The ChanceMaker study created gadgets, digital simulations of 
everyday devices that generate random outcomes. The students were 
challenged to decide which of the gadgets were ‘working properly’. One 
such case is the standard six-sided die. Students, aged 11, were able to play 
with the computer die to generate results much like throwing a standard 
die by pulling on the strength control as in Figure 10. In fact, this gadget 
was intentionally ‘broken’ in that it was programmed to generate more 
sixes. Later, they were further challenged to ‘mend’ the die to make it ‘work 
properly’ using the tools revealed when the die was opened up. In Figure 11, 
the student has already thrown the die 14 times. The set of results is listed 
and can be scrutinised by scrolling down. A pie chart graphically displays 
the results of those 14 throws. The research demonstrated how students 
would typically decide at this point that the die was generating too many 
sixes and mend the gadget by editing the workings box to read ‘choose-
from [1 2 3 4 5 6]’.
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Figure 10 Figure 11

It might be thought that the problem was thus solved, but the research 
revealed how the students did not realise this. When they threw the die to 
test their apparent solution, it would not generate the uniform pie chart they 
expected. If the pie chart showed too few 3s (for example), they might remove 
the 3 from the workings box and try again. This time there would be no 3s and 
perhaps too few 1s (say) as well. So they might then reinsert the 3 and add an 
additional 1. This process would continue until, either out of exasperation or 
by good fortune, they would hit upon the idea of throwing the die more times. 
Using the ‘repeat’ control, the students could throw the die as many times as 
they liked but, until that point, such an action had not been thought to be 
necessary. Once they tried this, the students began to deduce that ‘the more 
times they throw the die, the more even is its pie chart’. Later, some students 
recognised the pivotal role of the workings box and that, provided the die 
was thrown a lot of times, the pie chart would reflect the distribution in the 
workings box, whatever it might be.

In ChanceMaker, the students were given the workings box so that they 
were able to control the configuration of the die (and the other gadgets) and 
so mend it. The students were able to experience randomness and began to 
discern differences between short-term and long-term behaviour. Eventually 
some of the students were able to inspect any given workings box and predict 
the long-term behaviour of the corresponding die without conducting the 
experiment. In this sense, the workings box had become a representation of 
the mathematical notion of distribution. The activity in ChanceMaker illustrates 
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perfectly the critical role of experience in providing opportunity to test out 
personal conjectures, to refute certain ideas and develop new ones. The task, 
to identify and then mend broken gadgets, generated purposeful activity 
that led to a sense of the utility of the workings box to predict behaviour. The 
workings box ultimately fused initial control over activity with representation 
of predicted behaviour. The design objective could be stated as seeking to blur 
control and representation to create what Noss and Hoyles (1996) have referred 
to as auto-expressive tools. The blurring of control and representation in effect 
acknowledges the relationship between reasons (‘the workings box provides 
me with a means to explore my ideas’) and representations (‘the workings box 
states the expected behaviour of the die’) in the mind, as proposed by the 
inferentialist philosophy.

Scenario 5: Expressing mathematics in socially complex situations

Another key aspect of the above four examples has been that the environment 
encourages the students to express their mathematical ideas. In Newton, 
the students were able to create motion by applying forces. Beyond this, 
they could use the broader Logo language to develop larger projects, such 
as simulating the elliptical motion of planets. When using a spreadsheet to 
create scattergraphs, the children expressed their ideas for the formula that 
connected the side of the square cut out to the length and width of the open 
box. In the drawing kit task, the children created constructed figures that could 
be used by their reading partners as elements of a picture. In ChanceMaker, the 
workings box was used to express how the die gadget should behave.

The final scenario elaborates a situation that is focused on a less well-
defined concept than any of the above. Mathematics as it is applied in everyday 
contexts typically manifests itself in models in which decision making requires 
consideration of elements that are not so easily mathematised. Yet, the social 
context for the application of such mathematics can offer a sense of the power 
and limitations of the discipline that cannot be found in its more conventional 
teaching. Two brief illustrations will suffice.

As part of the Bowland project (www.bowlandmaths.org.uk/casestudies.
htm), one case study was to plan a highway link around a village. The students 
needed to consider which route the by-pass should take. Figure  12 shows 
the map that was given to the students and two possible routes under 
consideration. These two routes had been created and can be measured using 
the digital tools. 
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Figure 12

The upper route is far shorter than the lower route and so, when the students 
calculate the cost of building this route, it will be considerably lower than 
the cost of the lower route. The social cost of the upper route may, however, 
be thought to be much higher since it would involve deforestation and the 
destruction of a hospital. As well as considering costs and ethical issues, the 
students would need to check safety information. For example, the curvature, 
which can be measured using another tool in the software, of the final bend 
in the lower route may be too acute and so break regulations. Perhaps the 
planning meeting that the class would hold at the end of the exploration 
would reject both of these routes and agree a compromise solution.

The second illustration of the use of mathematics in social contexts 
focuses on risk-based decision making. In a recent project funded by the 
Wellcome Foundation, secondary school mathematics and science teachers’ 
understanding, including pedagogic knowledge, of risk was explored. The 
project was a starting point for a longer-term enterprise to inform the teaching 
and learning of risk, which has recently entered the mathematics and science 
curricula.
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During the project, a microworld called Deborah’s Dilemma was 
designed in which the teachers were required to consider the plight of a fictitious 
young woman, Deborah. Deborah suffered from a back condition for which 
she could decide to have an operation. The teachers were given information 
about the working and social life of Deborah. They were also informed about 
the condition itself, the operation and the possible consequences. Much of this 
data was inconsistent. For example, Deborah had consulted three different 
doctors and she had also done some personal research on the internet. The 
results were sometimes contradictory and sometimes vague, rather like 
everyday decision making.

The teachers were asked to create models of what might happen if 
Deborah were to choose to have the operation. In Figure 13, the teachers have 
entered an overall success rate of 70 per cent and chosen to focus on three 
side-effects of varying degrees of seriousness, each with its own estimated 
likelihood. The teachers have decided on these values according to their 
interpretation of the information given. The patchwork chart shows what 
might happen in 1,000 of Deborah’s possible futures. In this set of outcomes, 
no paralysis occurred, though there is an instance of superbug infection and 
several cases of nerve damage. In most cases, the operation was successful.

Figure 13
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To consider further Deborah’s plight, the teachers also needed to consider 
what might happen if Deborah did not choose to have the operation. In Figure 
14, the teachers have modelled Deborah’s life using three activities.

Figure 14

Each of these activities might take place frequently or rarely and each creates 
additional pain or relieves some pain. The teachers decide on these settings 
according to their interpretation of the information they have read. The bar in 
the top right indicates the level of pain that Deborah is experiencing hour to 
hour as a result of the model being run. The teachers can judge whether this 
level of pain is tolerable or not.

The intention in Deborah’s Dilemma is to probe the teachers’ knowledge 
about risk by observing how they create their models. Further developments 
might seek in a similar way to sensitise students to the issues in making 
judgements about risk. In particular, risk-based decision making needs to 
consider impact and likelihood of hazards, but exactly how these factors might 
be co-ordinated depends critically on subjective judgements involving the 
values of the decision maker (Pratt et al., 2011).

In the Highway Link and Deborah’s Dilemma, the students began to map 
out the inferentialist domain of the territory of mathematics. These examples 
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emphasise that an aspect of making mathematics phenomenal is to experience 
the power and scope of mathematics in socially oriented decision making.

Abstraction and the power to engage

In this final section, I wish to re-examine the notion of making mathematics 
phenomenal in the light of the above five scenarios. The project requires 
that the mathematical ideas are phenomenalised as on-screen tools in such 
a way that situated abstractions of the concepts are constructed. The design 
of the tools is extremely important. We have seen the benefits when the tools 
are expressive and connect control and representation. The task design is 
equally crucial. The examples demonstrate the need for tasks, which will be 
seen as purposeful by the students. In these scenarios, purpose is generated 
because the task involves a problem that piques curiosity, exercises creativity 
or interfaces with social concerns (Ainley et al., 2006). Purpose is, however, 
insufficient. The mathematics teacher has an agenda to observe and this 
agenda requires introducing students to powerful mathematical ideas.

In the above examples, mathematics is experienced as something 
with utility. Utility is a difficult word since it might be taken to infer pragmatic 
usefulness such as when compound interest might be taught because one day 
it will be useful to the students when they have to deal with bank accounts, 
mortgages and investments. Utility refers to the power of a mathematical 
idea to get things done that are meaningful and important to the student 
in that moment. For some students, utility might even emerge in pure 
mathematics. Imagine a microworld focused on symmetry and permutations, 
and the excitement that could be triggered for some students when the same 
group language might be used to create combinations of either symmetries 
or permutations.

Utility is an aspect of mathematical understanding that has been 
largely forgotten. When Skemp (1976) discussed instrumental understanding, 
he referred to the sort of routine and procedural knowledge that might, for 
example, underpin the execution of certain algorithms such as subtracting by 
decomposition. When he referred to relational understanding, the focus was on 
the appreciation of how the mathematics worked and connections between 
apparently different aspects of the discipline. For example, decomposition 
might be understood through place value. Neither the instrumental nor the 
relational components properly capture utility-based understanding, which 
focuses on when mathematics might be powerful.
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By making mathematics phenomenal, the claim is that it is possible 
to engender utility-based understanding. In the context of the five scenarios 
above, the students make sense of the behaviour of on-screen objects through 
carefully designed tools. There is committed purpose in that sense-making 
activity, a need to find an explanation. In inferentialist language, the students 
initially find their reasons for engagement in the nature of the task, but this 
develops into an appreciation of the power of the mathematics itself to get 
the job done. In this sense, the locus of the reasons for engagement in the task 
merges with reasons for engagement with the mathematics. Their expressions 
of general behaviour, referred to above as situated abstraction, are sometimes 
wrong or only half true from the perspective of an informed outside observer 
and reflect the gradual cohering of fractured knowledge, as in diSessa’s 
framework. Let us further review utility by revisiting each of the five scenarios.

In Newton, the creative application of forces in a problem-solving or 
project context offered purposeful activity that could lead to the construction 
of situated abstractions for Newton’s Laws, such as ‘the normal reaction force 
makes the turtle stay on the slope’. The power or utility of Newton’s Laws lies in 
how they get that job done; it keeps the turtle on the slope. This is not of course 
the whole story. Situated abstractions are only ever a partial truth.

In the MaxBox scenario, the clear challenge of finding the maximum 
volume box, set initially in a practical exercise, created a purposeful setting in 
which students could construct utility for algebra. The spreadsheet formula 
‘=21 – 2 * B1’ can be filled down to generate many boxes enabling a graph to 
be generated from which the maximum can be read. A situated abstraction 
might be ‘the spreadsheet formula generates lots of results’.

In the drawing kit task, the children are excited by the idea of creating 
a tool for their reading partners, but that task is carefully linked to the utility 
of geometric construction since the job can only get done through that 
approach. The children appeared to construct situated abstractions such as, ‘the 
constructed wheel does not get messed up when my reading partner uses it’.

In ChanceMaker, the purposeful activity is generated by the challenge 
of mending the gadgets and this can lead to situated abstractions such as 
‘the more times I throw the die, the more uniform is the pie chart’ and ‘the pie 
chart matches the workings box, provided I throw the die lots of times’. These 
situated abstractions express utilities for repetition over the long term and for 
the notion of distribution.

In the Highway Link and Deborah’s Dilemma, there is a sense of the 
utility of mathematics in decision making. In the former, there might be a 
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situated abstraction ‘longer routes cost more but they might be better because 
they avoid knocking down the hospital’. In the latter, a situated abstraction 
might be ‘I need to decide, so as to balance the impact of hazards with their 
likelihoods’.

In each scenario, key mathematical ideas are phenomenalised in the 
sense that the tools and tasks offer direct experience of the mathematics. 
The utility emerged out of a sense of purpose; it is such power to engage 
that could create a widely felt sense of the extraordinariness of mathematics. 
Making mathematics phenomenal involves respecting students’ reasons for 
engagement, recognising that human knowledge is inferential. In contrast, 
typical mathematics curricula set out syllabi that place huge emphasis on lists 
of graphical and numerical representations.

Consider, for example, the handling data attainment target in the 
current National Curriculum. This is replete with various graphs such as bar 
charts, line graphs, scatterplots and histograms and measures such as mean, 
mode and median, interquartile range and standard deviation, to name just a 
few. Little emphasis is given to the data handling cycle and statistical inference 
that might better approximate what it means to do statistics and map out the 
territory by establishing the power and scope of statistical ideas to elaborate 
meaningful questions. As a result, our students can become proficient in 
drawing graphs and making calculations without ever knowing what statistics 
is fundamentally about. A statistics curriculum that paid proper attention to the 
discipline as a human enterprise might be founded on inferentialist philosophy 
and developed upon Constructionist design principles.

Inferentialism offers a powerful philosophical account of how the 
Constructionist emphasis on the creation of public products might offer 
purposeful tasks that generate utility for mathematical ideas by placing priority 
on reasons for engagement. Through the connection of purpose and utility, 
perhaps mathematics might be made phenomenal.
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