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Abstract

Measurements in educational research are often subject to error. Where it is desired to

base conclusions on underlying characteristics rather than on the raw measurements of

them, it is necessary to adjust for measurement error in the modelling process.

In this thesis it is shown how the classical model for measurement error may be extended

to model the more complex structures of error variance and covariance that typically occur

in multilevel models, particularly multivariate multilevel models, with continuous response.

For these models parameter estimators are derived, with adjustment based on prior values

of the measurement error variances and covariances among the response and explanatory

variables. A straightforward method of specifring these prior values is presented.

In simulations using data with known characteristics the new procedure is shown to be

effective in reducing the biases in parameter estimates that result from unadjusted

estimation. Improved estimates of the standard errors also are demonstrated. In

particular, random coefficients of variables with error are successfully estimated.

The estimation procedure is then used in a two-level analysis of an educational data set. It

is shown how estimates and conclusions can vary, depending on the degree of

measurement error that is assumed to exist in explanatory variables at level 1 and level 2.

The importance of obtaining satisfactory prior estimates of measurement error variances

and covariances, and of correctly adjusting for them during analysis, is demonstrated.
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1 Introduction

Most measurements in educational and other social research are subject to error, in the

sense that an independent repetition of the measurement process does not produce an

identical result. For example, measurements of cognitive outcomes in schools such as

scores on standardised tests can be affected by item inconsistency, by fluctuations

within individuals, and by differences in the administration of the tests and in the

environment of the schools and classes where the tests take place. Measurements of

non-cognitive outcomes also, such as behaviour, self-concept, and attitudes, can be

similarly affected.

Of course, it is important to distinguish between measurement error in the sense just

outlined and growth or change over time in the subject being measured. Longitudinal

studies of educational progress, for example, depend for their validity on that

distinction. In addition in this context certain forms of repeated testing, which might

appeal on the ground of mininiising unwanted fluctuation, are ruled out because

learning and other effects associated with repetition lead to bias in the measurement.

As is explained in more detail in the next chapter, this thesis does not deal with

systematic bias in measurement. But it is well known that random fluctuation in

measurement, if untreated in analysis, can itself lead to biased estimates of effects and

hence to mistaken causal attributions (see, for example, Goldstein, 1979, p134).

Biemer and Trewin (1997, pp628-9) have tabulated the effects of random errors on

parameter estimators and data analysis in the context of surveys. Plewis (1985)

reviewed methods of correcting for measurement error proposed by Degracie and
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Fuller (1972) and by Joreskog (1970) in the context of longitudinal studies, and

explored the effects of various methods on the conclusions obtained. Fuller (1987) has

given an account of methods for dealing with errors of measurement in regression

models.

All of these studies are based on classical, single-level, methods of analysis. Social

research data, however, often have a hierarchical structure and are most efficiently

analysed by means of multilevel models, which provide a convenient way to study

structures of heterogeneous variance that occur naturally in many populations.

Paterson and Goldstein (1991) give a readable introduction, and Goldstein (1995,

Chapters 1, 2, and part of 4) provides the background that is prerequisite to

understanding this thesis.

A simple example arises when schools differ in their relative 'effectiveness' for

different kinds of pupils, as illustrated in Figure 1.1 for a hypothetical data set.

Figure 1.1	 School summary lines linking reading scores at age 10
with reading scores at age 8.

Score at ages

Each line in Figure 1.1 is a simple summary for one school which predicts, on the basis

of all the data obtained in the sample, how a pupil in that school who obtains a given
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reading score at age 8 years will perform (on the average) in two years' time. The

graph suggests that schools vary more in their predicted scores for low-attaining pupils

than for high-attaining ones. This is an example of heterogeneous variance at the level

of the school and illustrates a general finding, that it is not always possible to make

simple comparisons between groups. Indeed, matters are typically much more

complicated than in this illustration. For example, boys may show different average

patterns of progress from girls, and may vary from the average pattern in different

ways. Such patterns of variation are of considerable research interest, and have policy

implications also. See Woodhouse et a!. (1996a) for more detail on the present

example.

Figure 1.1 has further implications. Given a set of estimates such as those illustrated a

researcher or policy-maker might conclude that some schools acted so as to 'narrow

the gap' over time between the less able and the more able while others did not. But

such a conclusion could be false. The measurements taken on the pupils will have been

subject to error. In the absence of adjustment during the analysis, this error will have

led to bias in the estimates of the slopes of the lines, and in the estimate of the variation

between them. As we show in Chapter 4, in such a simple model the bias in the

estimated slopes and in their estimated variation would move them towards zero: in

other words the tendency would be to obtain a graph such as Figure 1.2 and fail to find

a real difference in the slopes. In more complicated models the effects of failing to

adjust for measurement error can be substantial but not easily predictable.
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Figure 1.2	 School summary lines linking reading scores at age 10
with reading scores at age 8 (with measurement error).

Score at age $

Absent from both the above graphs is an indication of the uncertainty associated with

the estimates. It is to be expected that measurement error, by introducing noise into

the data, should increase this uncertainty and this is confirmed in the analyses we

describe later. The effect of such uncertainty, when correctly estimated, is sometimes

to obliterate differences like those that appear in Figure 1.1, sometimes not.

Thus, the effect of measurement error on the analysis of multilevel models is pervasive.

Failure to adjust for it can lead to a variety of possible misinterpretations of data.

Fuller (1991, p618), in reviewing the literature of survey analysis, estimated the

fraction of researchers explicitly recognising the presence of measurement error in their

analyses to be 'not large'. Despite the uncertainty in the estimate it seems fair to say

that this fraction is not exceeded in the population that uses multilevel models. It is

also fair to say that the tools available for analysis lag behind the needs of this research

community (see Chapter 2). My aim in this thesis is to make a modest contribution

towards correcting this problem.
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After a brief review of the literature we go on to show, in Chapter 3, bow the classical

model for random additive errors of measurement may be developed to model some of

the more complicated error structures that typically arise in multilevel analysis. For

example, errors at more than one level may occur in both response and explanatory

variables; errors in response and explanatory variables may covary, again at more than

one level; errors may occur in different variables of a multivariate response, some of

whose values are missing; errors in multivariate response variables may covary; and so

on. We develop a consistent, straightforward method by which the user may specify

such complex error structures. We then show how the iterative generalised least

squares (IGLS) estimation method described by Goldstein (1986) may be adapted to

adjust for these errors when their variances and covaiiances are known. In particular,

we give for the first time a method, based on IGLS, for estimating random coefficients

of variables subject to error. We also define a new, clear, and concise notation for the

expressions used in the estimation process, a notation that is designed to be adaptable

to more complicated problems.

In Chapter 4 we describe the results of simulation studies using the new procedures,

and in Chapter 5 we show in an illustrative analysis of a two-level educational data set

bow estimates and conclusions can vary, depending on the degree of measurement

error that is assumed to exist at each level. After discussion in Chapter 6 we review in

Chapter 7 the achievements and limitations of the procedures so far developed and

suggest directions for further work.

Some of the limitations are self-imposed. This thesis does not deal with non-linear

models. Nor are errors in categorical variables treated. Errors at all levels are
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assumed to have zero expectation over repeated sampling and to be Normally

distributed independently of the true values of the variables. These restrictions enable

the development in Chapter 3 to be kept within reasonable bounds. Further

developments will be reported in due course.
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2 Literature Review

Errors of measurement have an extensive literature, and this review of it will be

selective. The thesis is concerned with the multilevel analysis of data that are subject

to error with a known covariance structure. Accordingly I shall not cite works,

important as they are, that are devoted to identi!ring sources of error and procedures

to minimise it. Nor shall I follow the development of measurement error models

further than is necessary to justi1r my own conception and to place it in context. The

main methodological references are Fuller (1987), Lord and Novick (1968), and

Carroll, Ruppert and Stefanski (1995).

The literature on multilevel models also has burgeoned, particularly in the last five

years. But work that explicitly takes measurement errors into account has been rare.

Main references in the area are Goldstein (1986, 1995), Bryk and Raudenbush (1992),

and Longford (1993a).

2.1 Error, measurement, and true value

A review of measurement error in surveys is provided by O'Muircheartaigh (1997).

He was opening the conference Survey Mearement and Process Qualny, reported in

Lyberg et a! (1997), a conference from whose title the word 'error' had been

deliberately excluded in favour of a more general characterisation of the measurement

problem and procedures for handling it. His definition of error as 'work purporting to

do what it does not do' was in keeping with this more general approach and, as he

claimed, forces consideration of the needs for which data are being collected. It is not

an operational definition, but it is a useful reminder that measurement error models and
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adjustment procedures are to be used with care to serve the wider purpose of

improved quality in the conduct and reporting of research.

O'Muircheartaigh went on to classif r what he called 'dimensions' of sources of error

as 'representation, randomisation, and realism'. He also identified three 'perspectives',

from government and official statistics, from academic and social research, and from

commercial and market research. Following Kiaer (1897) the dominant methodology

in the 'official statistics' strand became that of the sample survey, and before

Mahalonobis (1946) survey statisticians were concerned mainly with measuring the

effect of sample design on the precision of survey estimates. According to

O'Muircheartaigh, Mahalonobis was the first statistician to emphasise the human

agency in surveys, and he classified errors as those of sampling, recording, and physical

fluctuations. His work was built on by Hansen eta! (1961) in what has become known

as the US. Bureau of the Census model (see also Groves, 1991; Fuller, 1991 and

1995; Biemer and Trewin, 1997). From our point of view, the important aspect of this

model is its characterisation of an observation as consisting of two parts, a true value

(relative to what they termed essential survey conditions) and an additive response

deviation.

Kruskal, in his introduction to Measurement Errors in Surveys (Biemer et a!, 1991),

touched on the problem of true value. He contrasted the attitude to truth of the

historians Parrington (in Trilling, 1951) and Handlin (1979) - briefly, that truth is

absolute and the world is real - with that of the statisticians Deming (1950) and

Shewhart (1939). Shewhart was 'not able even to conceive of a physical operation of

observing a true length X' and wished to distinguish clearly between this concept and

that of the limiting average of an observed length. A posited true length X is an
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example of a Platonic true score or true value (Sutcliffe, 1965), which in this sense

means that it is an ideal measurement to which a particular practical measurement is an

approximation.

In education, however, we typically study characteristics - for example, mathematical

knowledge - that are not directly measurable. Following Lord and Novick (1968,

sections 2.2 to 2.4), given an individual i we conceive of a sequence of independent

observations 1 yielding measurements X, and assume that over this sequence the

individual's knowledge (in this example) remains constant, while other effects on X,

for example, of the subject's emotional state, or of the environment of the test, are

random. We further assume the existence of a propensity distribution of the X,

being the probability distribution function defined over repeated statistically

independent measurements on the same individual 1. Then the true score of individual i

on measurement Xis the quantity;,

;
	 (2.1)

where the expectation is with respect to the propensity distribution, and is assumed to

be finite. Typically in our work we have only one measurement per individual, X

(say), and we write

x =E(X).	 (2.2)

We generally use the term true value of X, rather than true score.

This is an example of a classical true score or value. Lord and Novick (1968, section

5.4) go on to demonstrate that x with the definition (2.1) can be interpreted
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semantically as the average value of X over infinitely many independent repeated

measurements, thus identifying for an unobservable trait the two concepts that

Shewhart wished to keep separate for lengths.

The discrepancy between the tme value x, and an observed value X1 is called the

measurement error of X for the ith individual, or simply the error in X,. We shall

denote this by . By definition,

, x —x, =X1 _E(X1).	 (2.3)

It follows immediately that

=0.	 (2.4)

The propensity distribution variance for individual i, otherwise known as the

measurement error variance of X,, or simply the error variance of Xi,, is the

quantity

var(1)=var(x)=E{(x, _x) 2 }.	(2.5)

We allow that the error variance of a measurement of a given characteristic may differ

for different individuals.

In particular, Lord and Novick derived:

E,()=0,	 (2.6)

cov ( , x1 ) = 0,

coy1 (,x21 ) = 0,
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where E1 , coy, denote expectation and covariance over persons, and subscripts 1 and

2 refer to different measurements. Under the further assumption that Xb, X2, are

independently distributed for each i (conditionally on ;) we have also

coy, (,21) =0. Properties (2.6), together with the latter assumption and the

definitions X, x, + , etc., are the assumptions of the classical model. The

assumptions are taken to hold in every (non-empty) subpopulation of a given

population. We show in section 3.4 how a multilevel formulation allows us to relax

some of these assumptions in order to model more complex situations.

2.2 Bias, reliability, and validity

The above definitions and properties imply that the observed values X are unbiased

estimators of the true values x,. Lord and Novick adapted an example from Sutdiffe

(1965) of a Platonic true score x that necessarily yielded conditionally biased

observed scores. In this example the activity is chicken-sexing and the true score; for

the ith chicken is defined as:

x, =0 ifithchickenisapullet,
I ifacockerel.

The chicken-sexer briefly examines each chicken and assigns it an observed score X

on the same scale. Clearly, the expected value of X for true pullets is the probability

that a pullet is misclassified as a cockerel, and for true cockerels it is the probability

that a cockerel is correctly classified. Thus (unless the chicken-sexer does a perfect

job) X, is positively biased fur pullets and negatively biased for cockerels and, in

addition to bias in the X, , we also have coy,	 <0, which contradicts another of
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the assumptions of the classical model. These problems may be removed in this case

by transforming the (arbitrary) true-score scale to coincide with the probabilities above

and retaining the observed-score scale as originally defined.

As Lord and Novick pointed out, there are certain scales (in particular, absolute scales

based on counts) that do not admit such transformations. Many of the scales used in

education, however, are arbitrary. In this thesis we develop procedures to adjust for

measurement error in variables that may be regarded as continuous, and we shall

assume that the measurement scales have been transformed if necessary so that

observed values may be regarded as unbiased estimators of the corresponding true

values.

The reliability of a test is defined by Lord and Novick as the squared correlation

between observed score and true score. In our notation this is equal to the ratio

var(;)
where the variances are over the members of a defined population of

var(X)

individuals i, and this is Fuller's (1987) definition of the reliability ratio of X.. It is

clear from this definition that if var() is constant over a given population and we

restrict attention to a subpopulation over which var(x), or equivalently var(X), is

lower than over the whole population, the reliability of X, in the subpopulation is

lower than in the whole population. Thus, as Goldstein (1995) has pointed out, the

use of published reliabilities of tests is often inappropriate when these tests are applied

to restricted groups. Further problems of definition arise when the error variance is

not constant. We use the concept of reliability for illustration only, in Chapters 4 and

5.
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For validity, it is useful to consider Lord and Novick's distinction between empirical

and theoretical validity (1968, p261), in particular construct validity (p278). They

were applying these concepts to tests. From our perspective there are two important

points. The first is that a measure may have several validities, depending on the

criterion that it is supposed to measure. The second is that the notion of validity

extends also to the interpretation of model estimates. As to the first point, we assume

that a researcher using a substantive model has satisfied herself that the true value of

any variable in the model is an adequately close approximation to the corresponding

underlying characteristic of interest. As to the second, model-based inference is always

open to the challenge that the model is misspecified. The misspecification may take

several forms: important variables may be missing, the random structure (in a

multilevel model) may be insufficiently elaborated, or the sampling method may not

justily the analysis, for example if the sample is an opportunity sample. To this list

must be added the possibility of misspeciflcation, or misinterpretation, of measurement

error variance and covariance. For example, if the aim is to predict performance (of an

individual or school, say) on an observed measure it may not be appropriate to adjust

for measurement error in the formation of all the estimators. For a general discussion

about valid model inference in the context of school performance indicators see B!yk

and Raudenbush (1992, p126).

2.3 Adjustment for measurement error in regression models

Hansen et a!. (1961) and other survey analysts regarded measurement error chiefly as a

component of imprecision in the estimation of a single population parameter.

O'Muircheartaigh (1997) observed a subsequent shill in emphasis away from 'design-

based' inference to the finite population sampled (based on the joint probabilities of
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selection of the elements), and towards 'model-based' estimation, in which a formal

model relates the different variables in the analysis regardless of the configuration of

the sample. In this respect survey analysts were moving closer to the practice of

economists, psychologists, and epidemiologists, for example. He gives references to

substantive work from the early 1980s. See also Degracie and Fuller (1972) and Fuller

(1995).

Fuller (1987) gave a comprehensive treatment of the estimation of singe-level linear

models containing measurement error. The simplest such model may be written

y =fi0 ^fi1; +Eg , i=1,2,....,N,
	 (2.7)

where (x1 ,x2 ,. . , X4 is either fixed in repeated sampling (the functional model) or a

random sample from N(p,cr,,) (the Normal structural model) and the s are

independent random variables. The; are measured by the observed variable X,,

x =;
	 (2.8)

E()=O,

=

where it is assumed that cov(5 ,e) =0. Assuming Normality of x (x1 } and

= { J and writing X = (X ), Fuller derived consistent estimators for 13= ()T

and for the conditional covariance matrix of the parameter estimators cov(X), when

var(r.)
the ratio	 is constant and known. Under the stronger assumption that r 1 =

VarXI)

where is constant and known he derived a consistent estimator for the variance of

21



the first-order approximation of /1 as a Taylor series about the population values of

the moments (the so-called delta approximation).

Fuller extended this work, using the method of maximum likelihood, to the case of

vector explanatory variables (1987, Chapter 2) and to the case of unequal error

variances and covariances (1987, Chapter 3), where he derived a 'sandwich' estimator

for the covariance matrix of the estimators. He also derived estimators of the true x

values and true residuals, suitable for model checking.

Carroll el a!. (1995), in that part of their book that is not specific to non-linear model

estimation, went over similar ground to that of Fuller (1987, Chapter 2). In addition,

they described the so-called SIMEX method, which uses simulation and extrapolation

to estimate parameters of a model based on true values when one of the predictors, X,

is measured with known or estimable constant measurement error variance r. In the

simulation phase of this method, for a series of different positive values .,

independent pseudo-random variables with zero mean and variance ,%r are added to

the X and the model is estimated without adjustment. This yields a sequence of

biased estimates of the model parameters. In the extrapolation phase, each biased

estimate /3, is regarded as a function g,(Z), say, with parameters y, to be estimated

by fitting a model (often quadratic, but possibly non-linear, for example,

g,(2) = 7,o +	 ) to the estimates produced in the simulation phase. On the

assumption that this model may be extrapolated, g,(-1) then provides an unbiased

estimate of /3,. Further details are given in Cook and Stefanski (1994), and the

22



asymptotic behaviour of the estimators and their covariances is described in Carroll et

aL (1996).

The advantage of the SIMEX method is that it is relatively simple to implement. It can

be applied to any model for which an estimation procedure exists. The disadvantage is

that it is computer-intensive. In practice, for each value of A the model is estimated a

large number (typically 100) times and mean values of the estimates are taken. To

form satisfactory estimates of the g(2), the number of values of A also must be

large. Moreover, while the method could be adapted to the case of several predictors

with covarying errors, the number of separate estimations required is an exponential

firnction of the number of error variances and covariances. Thus it is unsuitable for

model exploration, and of limited use in the estimation of multilevel models, where

typically there are multiple predictors, with errors covarying across levels.

Another approach to the treatment of measurement error is through the modelling of

latent variables and covariances. In this approach the manifest variables measured with

error are considered to be indicators of unobservable latent variables, and a stochastic

model of these dependencies is proposed in order to explain the covariances between

the observed variables. The approach, sometimes known as structural modelling, is

capable of considerable generalisation. We describe in the next section an adaptation

to the multilevel case.

2.4 Multilevel models and measurement error

Educational, social, and biological data frequently arise from populations that are

hierarchical in structure. For example, school pupils are taught in classes within

schools, people live in groups within neighbourhoods; and schools, groups,
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neighbourhoods and so on may be clustered into larger units, perhaps geographically

or administratively. Further examples of hierarchical structure occur when individuals

are measured repeatedly.

It has long been known that clustering induces correlations among the observations

within a cluster, and techniques have been developed by survey analysts to adjust for

such correlations in computing estimated standard errors (see for example Moser and

Kalton, 1971). Where the clustering is inherent in the population, however, as in the

examples just given, it is of interest to study the characteristics of, and differences

between, units at more than one level in the hierarchy. Indeed one may wish to be able

to generalise from a sample to a population of such units, and to model the differences

between units at different levels simultaneously. Multilevel models provide the means

to do this. The chief methodological references are Goldstein (1986 and 1995), Bryk

and Raudenbush (1992), and Longford (1993a).

Raudenbush and WilIms (1991) edited a collection of papers describing applications of

multilevel models in education. It is instructive to note that only one of these papers

(that of Longford, 1991) mentioned measurement error in explanatory variables despite

the fact that the data being analysed were subject to it. (Another chapter, that of

Rowan eta!., 1991, used variances estimated at different levels of a multilevel model in

a definition of measurement error and reliability - see below.) One reason for this

neglect is that the software chiefly used in the analyses - HLAf (Bryk et a!., 1988) and

ML3 (Prosser et a!., 1991) - lacked procedures for adjusting for measurement error.

The Junior School Project (described in Mortimore et aL, 1988) used the procedures

developed by Fuller and his colleagues (Hldiroglou et aL, 1980) in the adjustment of
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single-level estimates, but the multilevel estimates were unadjusted, again because

procedures for their adjustment were not available.

Bryk and Raudenbush (1992) mentioned measurement error at two points. The first

mention was in connection with a measurement model for school climate (also

described by Raudenbush et a!., 1991, and Rowan et a!., 1991). In this study

questionnaires were administered to 1867 teachers in 110 schools. Each of 35 Likert-

scaled items was considered to measure one of five latent constructs, principal

leadership, staff cooperation, teacher control, teacher efficacy, and teacher satisfaction.

They defined a 3-level model, with items at level 1, teachers at level 2, and schools at

level 3. Five dummy variables, one for each construct, and each with a coefficient

random at all 3 levels, were used to predict the item scores, resealed so that the level-i

variance of each of the five coefficients was equal. Interpreting this level-i variance as

error variance in the item scores they used the model to investigate other psychometric

properties of the measures.

Biyk and Raudenbush (1992) made one other mention of measurement error, in the

Appendix to Chapter 9(J)225), but they did not pursue it.

Goldstein (1986), in addition to setting out the main lines for the analysis of multilevel

models by the method of iterative generalised least squares (iterative GLS, or IGLS),

also outlined a method of adjustment for measurement error. This outline has been

developed and extended by Goldstein and co-workers within the Multilevel Models

Project at the Institute of Education, University of London, and applied to the

illustrative analysis of some data from the Junior School Project (see Woodhouse et

a!., 1996b). A summary of the method has been given in Goldstein (1995, Appendix

25



10.1). The method does not work for random-coefficients models with error in a

variable with a random coefficient, that is, where both predictors and their coefficients

are random.

Muthén and Satorra (1989) commented on the paucity of research into such models.

Their approach, through structural models with random coefficients, is one way of

characterising the measurement error problem in multilevel analysis. They considered

a standard two-level random-coefficient model, which we may express in the notation

of Goldstein (1995, Chapter 2) as:

y , =a, +fi,x +e,	 (2.9)

a =a+u0j,

Pj

where j=1,2,...,J indexes groups (at level 2) and within each group i=1,2,...,n

indexes individuals (at level 1). The y and x variables are obseived, the stochastic

variables ;. u11 are, in Muthén and Satorra's terms, latent variable influences of

groupj, possibly covarying, and the ç are random disturbances, independent of these.

They then considered the generalisation of (2.9) to a model with a latent explanatory

variable , say, and listed four ways in which group membership might induce

variation in the model parameters:

1. random group variation of the structural regression of y, on

2. random group variation of the structural mean parameter E(),

3. random group variation of the structural variance parameter var(),
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4. random group variation in the measurement parameters describing the

regressions of the x variables on .

They did not discuss how these four might combine in a single model.

Longf'ord (1993a, Chapter 7, and 1993b) developed these ideas further. He described

a two-level model,

Yj =x+ç,	 (2.10)

in which the design matrix x of explanatory variables was partitioned into two

submatrices, one (x,) of variables directly observed without error, the other (x.) of

latent variables for which vectors 5q of manifest variables were observed. These

manifest variables were related to the latent variables by a linear regression formula,

generalised to a two-level model, as in the following scheme:

=	 +IrJJ3, +6g.

-N(t31,E2),

Ct^

= Ax, +2) +4'),

(2) N(O,02),

,	 1/'
(I)1,4 ii,	

2) +ç ,
N(O, 2)

N(O,'I'1),

(2.11)

where	 e,	 4D,	 are mutually independent and A is a constant

matrix. This very general formulation can be adapted to a variety of estimation

problems. For example, with no outcomes y, and unknown A we have two-level
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factor analysis, as used by Longford and Muthén (1992) in an analysis of mathematics

achievement data on U.S. eighth-grade students from the Second International

Mathematics Study (Crosswhite et a!., 1985). See also Muthén (1997). Known A

corresponds to an assumption of varying group means for the s.

Longford (1993b), in an illustrative analysis of simulated data, considered the case of

two exchangeable indicators .s,; of a single latent explanatory variable x in the

model

= a1 +/fr +6.	 (2.12)

In the notation of (2.11), A 
= () 

and each of f3,, D.	 0 'P2 , 'P1 is a2''2' 1'

single parameter to be estimated. The within- and between-group covariances of the

manifest variables ;,; are not identified and are assumed to be zero. Note that,

general as the formulation (2.11) is, it does not permit between-group variation in the

coefficients Dr of the latent variables. Longford points out (1993b, p3 10) that to do

so implies that the outcomes are not Normally distributed. Nor does (2.11) allow for

errors of measurement in the response variable. Thus, the focus is on between-group

variation in the latent variables and in the measurement parameters (cases 2 and 4 in

Muthén and Satorra's list, above).

In the present thesis we begin the generalisation to the multilevel case of the work of

Fuller that we have cited. We extend the class of multilevel models that can be

estimated, within the IGLS paradigm, given prior knowledge of the measurement error

variances and covariances. In particular, the procedure we develop allows the
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estimation of random parameters of variables subject to error. Multivariate multilevel

models, with measurement error in the responses, also can be estimated. The error

variances and covariances themselves may have a multilevel structure, and we develop

a straigjitforward method for specifying this. We also derive 'adjusted sandwich'

estimators of the conditional covariance matrices of the estimators for the fixed and

random parameters, to reflect the adjustments for measurement error that are made in

the formation of the estimators, and we give further corrections for sampling error in

the fixed and random parameters.
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3 Model specification and estimation

3.1 Scope

In this chapter we show how the classical model for random additive errors of

measurement may be developed within a multilevel framework to model more

complicated error structures. We go on to develop a method of adjustment to reduce

the bias in parameter estimators for multilevel models in the presence of such error

structures. These models may include multivariate response, with errors in different

responses possibly covarying amongst themselves, and random coefficients of

explanatory variables measured with error. A straightforward extension, described

briefly below in Section 3.4.4 but not developed in detail, allows the inclusion of

randomly cross-classified units. We do not consider errors in discrete variables.

The method can be adapted to the estimation of models containing imputed values for

randomly missing data. Goldstein and Woodhouse (1998) describe a method for

estimating variance components models with randomly missing data. That method,

however, is not applicable to the random coefficients case.

We first define some notation and then review the basic multilevel model with

measurement error.

3.2 Notation and terminology

We shall make no distinction in notation between a variable and a value of it. We

denote observed values (vectors or matrices) by capital letters X, Y, Z, and true values
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(or estimates of them) by corresponding lower-case letters x, y, z. Errors of

measurement contained in the observed values are denoted by corresponding Greek

letters , r, . An initial subscript r, s, etc. (or a numeral), to a data matrix denotes

a column number within that matrix, that is, a particular variable. Thus, for example,

X 2 represents the column with index 2 in the matrix X, typically an explanatory

variable. The subscripts i,i', if present, refer always to units at level 1. Subscripts

j,j', k,k' refer to units at higher levels, not necessarily levels 2 and 3.

A variable is said to be defined at level £ and referred to as a level- £ variable if its

values are separately measured or computed for each level- £ unit and may differ

between any two of these. If 1>1, each level-I unit within a given level-I unit is

assigned the value of the variable corresponding to that level-I unit. An error of

measurement of a variable is said to be defined at level £ if it is identically the same

for all level-I units for which a measurement exists and that are within a given level- £

unit, but not identically the same for level-I units in different level-I units. Thus, a

measurement on a child at level 1 produces a value of a level-I variable, but this may

include separate errors defined at different levels, for example if the same measurement

instrument or tester is assigned to a group of children.

A standard convention for indicating a particular instance of a variable is to use a

sequence of subscripts, starting at the level of definition of the variable and ending at

the highest level in the model, each subscript corresponding to a subunit within the

next unit in the hierarchy. Thus the value of the level-I variable X 2 corresponding to

level-i unit i within level-2 unitj within level-3 unit k would be represented by X2yk.
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This convention can be cumbersome, particularly when it is necessary to refer to an

element in a cross-product matrix. Therefore we shall generally omit all unit indices

after the first and denote the above-mentioned value, for example, as X. The row of

X corresponding to the i th level-i unit will be denoted X. There will also be cases

where a symbol subscripted i represents a column vector or a matrix, for example a

vector of random variables for a particular unit. The subscripts j, k, etc., also may

indicate rows, columns or matrices, though this will always be clear from the context.

Indices at a given level take all integer values from 1 to the total number of units at

that level in the data set. We shall assume that the total number of level-i units is N,

and thus 1 ^ I ^ N. Ifj indexes units at level £ and k indexes units at level t' we shall

use .4, K for the total numbers of units at those levels. Throughout the remainder

of this work the term error, when unqualified, refers to an error of measurement in a

variable.

3.3 The basic model

Our purpose is to estimate the parameters of a multilevel model based on the true

values of the response and explanatory variables. We may write such a model as:

y, = i,(3+zc, i=1,2,....,N,	 (3.1)

where y1 is the i th response, ; the i th row of the design matrix x of explanatory

variables in the fixed part, (3 the vector offixed parameters, to be estimated, z1 the

I th row of the design matrix z of explanatory variables in the random part, and c, a

vector of random variables whose expectations are zero and whose variances and
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covariances are the random parameters, to be estimated subject to standard

assumptions about the structure of the covariance matrix v of the z1 a,. If there are p

fixed parameters and the vector CE has q elements we write

y= (y1 y2 ... YN),
	 (3.2)

X= {; }Av xp)	 = (x0 x ... x,, 1,,), Ir = (Xri X,. 2 ... XrN 
)T 0 ^ r ^ p—i,

Z (Zj }qxq , z1 =(z0,, ;, •.. Zq_ij ), z,	 Z,2 ... z3N), O^s^q-1,

D=(fl0 I3 •.. fl,,-1)T,

= (s	
...

with E(E ) =0. The variables represented in z may or may not include variables

represented in x. We assume for the moment that x, y, and z are defined at level 1.

The observed values X, Y, Z of the variables are assumed to be related to the true

values by the measurement model:

= , + r'	 r = (4r,i r.2	
)T	 (3.3)

Y = Y + 11, 1 = (7, 72

= z +,, C, = (.i C •.. CN)T

E(,)=O, E(i1)=O, E(C,)=0,

where for r = 0,1,..., p—i, s = 0,1,... ,q —1, r' 11, , are unknown random errors in

the observed variables Xr,Y Z, respectively. We assume for the moment that the

errors are defined at level 1 and we assume we have prior values of the error variances

and covariances	 E(C3), E(c3 ç, 1), E(,, ij), E(,) 77I ) for each unit

1.
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We maintain the following assumption throughout:

Assumption 3.1 Errors defined at a given level do not covary between units at (or

above) that level.

The standard assumptions about v are most easily explained in the context of a 2-level

model, and one such explanation is given by Goldstein (1995, Appendix 2.1). We give

an adapted version here for completeness, and give an alternative statement in Section

3.5 when we describe the thU model to be estimated. The reader familiar with the basic

ideas may safely skip to Section 3.4.

We assume that the responses have been sorted to reflect the multilevel hierarchy and

denote by B1 the set of unit identifiers for the level-i units in level-2 unit j, where j

may take any integer value between I and "2' the total number of Ievel-2 units.

Suppose that I E B1 . Then for a 2-level model we may rewrite equation (3.1) as:

= xj, +ze +'ze,
	 (3.4)

r=O	 r=O	 r=O

	

(2)	 (2)	 T

-	
...	 E2 = (e	 6.j	 Sq,_,j) ,- (	

(1)

(2)	 (2)	 (2) \-	
-	 ...	 z2 = (z	 zU ...- (z

z,c, =	 + Z22

Thus the design matrix z of explanatory variables in the random part of the model

(3. 1)-(3.3) has been replaced by two design matrices, 	 and	 The variables

represented in zW are said to be random at level 1; variables in z 2 are said to be

random at level 2, and may include variables in z0.
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The level-I random variable vectors c are assumed not to covary with explanatory

variables, either between or within level-i units. The random variables e

(r =0,1,..., q1 —1) may covary within level-i units and these covariances, together

with the variances of the c, constitute the random parameters at level 1. Equivalent

statements at level 2 apply to the level-2 random variable vectors t. Also, within a

given level-2 unit j, c	 is replicated across all the level-i units. This induces

covariances between the elements of Er across the level-i units within Ievel-2 unitj.

None of the random variable vectors	 Er covaries with any measurement error.

We define, for i EB1 , 1'	 j,j' E{1,2,...,J2),

(2)	 (2) (2)	 (35)e' z'c", eD	 e2 z 2 c 2 e	 z
I' '	 Z	 j '

E(e' )) = E(e,i') = E(e 2)) = E(e2)) =0,

v	 E(e'e,c'),	 {v)j,

E(
ee 'I V2i	 a,

v v +V2

and we assume E(efle2)) - 0 for all 1,1'. The eD, e,? are assumed to be uncorrelated

across level-i units, so 	 is diagonal with (1,1) th element

(I)T
,	 = cov(e' >),

and we assume that L" is constant for all level-i units in the data set. The 	 2)

are assumed to be uncorrelated across level-2 units, so 	 is block-diagonal with jth

block

(3.6)
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z2(2)z(2PT	 (2) = cov(c2)), z2' {z2))
Cf	 (njxq2)

	 (3.7)

where iz is the number of level-i units in the jth level-2 unit, and 	 is assumed

constant for all level-2 units. Thus the jth block of v can be written

v =	 (z1	 1)z(I)l) +z22)z2)T
I iE8

	 (3.8)

The extension to higher levels is straightforward.

3.4 Extensions to the basic model

We now show how the basic model just described can be extended to apply to data

with more complex structure. In this section, for ease of interpretation, we depart

from the convention of using x for variables in the fixed part and z for variables in the

random part, and use the same symbol for a given variable wherever in the model it

appears. We use an educational example to describe the principles.

3.4.1 Errors at higher levels

The assumption in the previous section that the variables and their errors are defined at

level i is over-restrictive. It is important to be able to include in models variables

defined at higher levels, and any errors in such variables will be defined at or above the

level of the variables.

Consider the following 2-level variance-components model:

= fi0x +	 + /32 x ,1 +	 +
	 (3.9)

var(4) = cr, var(ej) =
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x2 =-1--x1,1,

ni EEBJ

(3.10)

where the level-I units are pupils and the level-2 units are schools. The ith pupil is in

thejth school, which we denote by the statement i € B1 , and for that pupil ; 1 and

y1 , ;, ;, are the unknown true values of ], X1 , X2 , respectively. Suppose

] is the pupil's observed score in mathematics at age 10 years,

X is the pupil's observed score in a test of general aptitude taken at age 8, and

is the mean of the X1 for the pupils in schoolj, as estimated from the sample.

The X2 , are defined at level 2 and have error at that level arising from the errors in

the X from which they are calculated and from sampling error. Thus, if the sampled

pupils from thejth school are n, in number and chosen at random without replacement

from a known cohort of size N, we have

	

and the error	 in X21 is given by

2J =	 -	 = (x2 - )+( —x)
	

(3.11)

i•i —x2J,

where x is the mean of the true scores for the pupils sampled, and 	 =

We have
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var(2J) -!.var() ^var(.)
	

(3.12)

'va) 
N-n.

-	 +	
.7	 .7

--

where cr 1 is the variance of the true scores ; within the cohort in schoolj.

In practice all variables are specified as N x I vectors and we shall often use a level-I

identifier to specify a particular instance of a higher-level variable, for example X2.

With this convention, for two pupils in a given schoolj the elements of X2 are equal

and so are the elements of 2• For each i,i' EB1 we have cov(, 2 .) = var(2),

and we assume that prior values of these variances for each level-i unit are contained

in an N x I error variance vector, denoted by C, where the superscript indicates the

level and the subscripts indicate the variables (the same variable in this case).

Secondly, the level-i error	 for a pupil in schoolj correlates with the level-2 error

42J it in addition to assumption 3.1 (p34), we assume that errors do not covary with

true values then for each i,i' cB we have

cov( IJ , 2J.) = cov(

cov[& 
,-_	

+ - x2J
j €H

= _!_var(&)

(3.13)
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We assume that prior values of these covariances are contained in an error covariance

vector,	 where by convention if there is a difference in level between the errors to

be included in the covariance the first subscript denotes the variable whose included

errors are at the lower level. We do not require that cov( ,	 should be constant

for all units i within a given level-2 unitj, although in many cases there will be no other

information, but if these covariances differ, that is CJ ^ Cj. for some i,i' e B, we

shall have cov(4 ,,) = C, not C 2 because it is 2 that is defined at level 2.12J '

3.4.2 Multiple sources of error

It is clearly possible for errors in a given variable to arise from more than one source.

In the case just described, of a school-average score estimated from a sample of

observed individual scores, it is not necessary for the purpose of model estimation to

distinguish between the two sources (error in the level-i measure and sampling error),

but it may become necessary if errors in a given variable arise in distinct ways from

different levels of a hierarchy. As in the previous case, the point here is to ensure that

all appropriate error covanances within and across units (more properly, expected

error products, which may depend on the association of variables with units) are

correctly adjusted for in the estimation.

In model (3.9), for example, random errors in X 1 may arise from factors that depend

on the pupil and also from factors common to the pupils in a given school. This

structure of errors may be specified by providing prior values of the error variances in

X1 at the two levels, for each pupil, in separate vectors C and	 By definition

there is no covariance, either within or between pupils, between errors in X 1 at level 1
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and errors in X1 at level 2. The errors in X 1 at level 2, however, will covaiy between

pupils in the same school, and the elements of C, which will be the same for pupils

in a given school, are these covariances.

3.4.3 Multivanate multilevel models

Consider now a bivariate model for scores in mathematics and reading:

= p011	 +pz2 x0 , +fi z1 x, +fi12z2,,x +	 +	 (3.14)

(2)	 (2)var(e',) =	 var(4,.) =	 cov(011,e021) = a.

Here level 1 exists in order to define the bivariate structure of the response, level-2

units are pupils, and we ignore for the moment the school level. For each pupilj there

exist at most 2 units, 1, 1': an odd-numbered unit (i = 2j— 1) corresponding to a

mathematics score ] at age 10 years and an even-numbered unit (1' = 2j)

corresponding to a reading score	 at the same age. For each j, ;, I and x1

the unknown true value of X, which as before is the pupil's score on a test of

general aptitude taken at age 8. The z1,, take the value 1 if i is odd and 0 if i is even,

and Z2 =1— z. Thus the model (3.14) permits the estimation of an intercept and a

fixed effect of general aptitude at age 8 for each of mathematics and reading at age 10.

The level-2 variances and covariance (assumed constant) are the residual between-

pupil variances and covariance of these two scores.

The analysis of model (3.14) requires the use of two explanatory variables containing

error: LI3,, zIJXLJ and (14,, z2,,X11 . Table 3.1 illustrates how the errors w 3,,, w4,,

in these two variables are related, for three typical pupils.
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Table 3.1 Error structure for eiplanatory variables in model (3.14)

Pupil (f)
1

1

2

3

3

Response(i)

1:maths

2: reading

4: reading

5: maths

6: reading

	

U3	 U4	 (03

	31	 0

	

o	 31	 0

	

o	 27	 0

	

29	 0	 03,5

	

o	 29	 0

04

0

(04 ,2 =

04,4

0

04,6 = 03,5

Pupil 2 is missing a maths score at age 10, so that record does not appear. X 1 is

defined at level 2 (pupil level) and its errors	 are the same for both level-i units

(response measurements) within the same level-2 unit (pupil). 	 Because

U3 = diag(zjX1 and 114 = diag(z2 )X1 , errors in 113 , 114 for a given pupil are the

same where present and errors corresponding to zero elements in ;, z2 , respectively,

are zero. Assuming that we have a vector C of prior values of the error variances of

X1 for each pupil (replicated over the level-i units 1,1' within each pupil) we may

specifr level-2 error variances for 11 3 , U4 by the vectors

(3.15)= diag(z 'C2 g(2) - diag(z2)C,i) ii'	 '44

respectively.

We may also spedilr a vector

C2 - C234_ II
(3.16)

of level-2 error covariances between 11 3 and U 4 for each unit. Thus, for example,

E(w31o42) = var(1,j.
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It will be important in processing these vectors not to set up spurious covanances, for

example between w 31 and W32 (-0), or between 32 and w 11 . We shall show in

Section 3.6 how the use of error incidence matrices derived from the error variance

vectors avoids this problem.

We may elaborate model (3.14) by adding a further level for schools, and model the

effects on the response of the true school-average year-8 score 12 as follows:

= /301z1 x0,, +fiZ2, Xo +fi11zx13 +fizx +/J2lZlX2k +fiflZ2,2Xzk 	 (3.17)

+e 1zjx 1 +	 +	 +

	

(p)) - 
(2) var(4) - (2)	 (42) (2) - (2)

-	 -	 '	 OIJ6O2JJ - 012

- (3)var () = a, v&(e) - a, cov(e k, e k) = a.

We define U3 zX2,1 , U6 z2, X2,k , where X2k is the mean 8-year score for

school k as estimated from the values X11 for the pupils j sampled from school k.

Where in model (3.9) we assumed the existence of a level-2 error variance vector for

X2 we now assume a level-3 error variance vector C from which we may derive

level-3 error variance vectors g3) C 3> and covariance vector C for U 5 and U6,'55' 66

containing the required prior values for each level-i unit. Similarly, we may derive

level-3 error covariance vectors g3) C3 (3) C3 from	 The procedure to be'35 ' 45 ''36 ' 46

described in Section 3.6 generates an expected error product at level 3 for a specific

ordered pairing of units and variables if, and only if, the units are nested in the same

level-3 unit, error variances exist for the variable and unit on each side of the pairing,

and a covariance at level 3 has been specified.
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3.4.4 Cross-classified data structure

Returning to the univariate case, if the pupils represented in model (3.9) are tested at

age 8 by different examiners, this imposes further structure on the errors in X1 . If no

examiner examines in more than one school we have a cross-classification of pupils

with examiners at level 1, nested within schools at level 2. If examiners are not nested

within schools, as for example when a Local Education Authority or school board

administers the test across schools, then we have pupils at level 1 nested within a

cross-classification of examiners with schools at level 2. Rasbash and Goldstein (1994)

showed how such multilevel random cross-classified structures can be specified and

estimated using a purely hierarchical formulation. The method involves defining a new

sequence of levels, one for each classification, together with a set of dummy variables

for each classification after the first in each level of the original hierarchy. From the

point of view of error specification the resulting structure is similar to that of th

multivariate multilevel model. The additional requirement is for the estimr

procedure to be able to constrain the random parameters associated wit

variables in the same set for a given classification to be equal. We do not

issue further in this thesis.
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3.4.5 Errors in the response

Estimation of the model parameters must adjust also for error variances and

covariances for the response, including covariances with errors in the explanatory

variables. In the case of a univariate continuous response these variances and

covariances can be specified as for explanatory variables. The response may be subject

to error at more than one level, in which case there will be covariances between errors

in different responses as well as with the errors in explanatory variables.

Multivariate and cross-classified responses may have additional error structure. For

example, in model (3.17), mathematics scores and reading scores may each contain

errors at both pupil and school levels. Within a given school the school-level errors for

mathematics for all pupils will have a constant variance and an induced covariance

across pupils. The same will be true for the school-level errors for reading, but

typically the errors for reading will have different variances and covaiiances from the

errors for mathematics, and they may or may not covary with them. Similar patterns of

covarying errors may be induced by different examiners. Such error structures can be

specified conveniently in a manner that we now illustrate.

In model (3.17) the response variable y has a sequence of pairs of values, the first

element of each pair being a mathematics score and the second a reading score. (Some

pupils may lack one of these.) Identifiers at level 1 distinguish mathematics from

reading. We may write the observed values Y as the sum Y1 + Y2 , where
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) is the mathematics score of pupil L±1 if! is odd and zero if i is even,

} isthe reading score of pupil - if i is even and zero if i is odd.

Now Y1 has errors	 at pupil and school levels respectively, and	 has errors

1, T. Their variances may be specified in each case as variances at level 2 or

level 3, but existing only for level-i units corresponding to the appropriate

measurement. Prior values of covariances between these errors and with errors in

explanatory variables can then be specified as vectors in the same way as for error

covariances of explanatory variables. The extension to further response variates is

straightforward, and specification for cross-classified structures is achieved similarly.

3.5 The model to be estimated

We consider an extension of the basic model described in section 3.3. We write, as

before,

)' =xj+zc,,
	 (3.18)

where YE, 1, f3, z1 , and; have the meanings assigned to them in section 3.3. We

assume that there arep fixed parameters, the vector; has q elements, and there are L

levels. The total response vector y is now the sum of m vectors, m ^ 1, and typically

for a given value of i the !th elements of all but one of these vectors will be identically

zero. The elements of y are sorted to reflect the multilevel hierarchy. We write:
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d' for all i' EB',5,1'	 zJ

s	 if 1'

(3.20)

m	 m

Y	 Y11	 L =	 Yu,2	 Y.1,N 
)T, )'
	 (3.19)

I = (1,) (Nxp) x = (x0	 x	 ...	 (X,	 x ,2 ... XrN 
)T,

z = {Z} (N xq ), ; = (z,,	 z^1	... Z,.q_), z = (z 1 z8,2 ...

= (P0 P1 ... 
fi)T

L

	

(1)	 (t)	 (1)
= (e,,,, e + ... s)T	 =	 E1> = (e,,,	 p+i.j	 6p+q-Ij) ,

where r€{0,i,...,p-1), sE{p,p+l,...,p+q-1}, and E(c) =0 for

For a given £, 1 ^ £ ^ L, and a given j, I ^ j ^ J,, we define BJ" to be the set of

identifiers for the level-i units nested in level-.e unitj. For a given 1 EB' and a given

sE{p,p+I,...,p+q-1} we have by definition

As before, the variables represented in z may or may not include variables represented

in x. The variable indices for i run as usual from zero. The variable indices for z

continue the sequence begun by the indices fbr x. The variable indices u for y run from

I and we shall often use the index ii —u. This indexing structure will enable us to

define vectors and matrices serving similar purposes for different sets of variables

without too much proliferation of symbols. Thus, negative indices correspond to y-

variates, indices from 0 to p—i correspond to i-variates, and indices from p to
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p + q —1 to z-variates. This convention implies that we may have i,. z with r ^ s,

but we shall see that in such cases no problems arise from treating x, and z, as

distinct.

The fixed parameters to be estimated are the /i,, r = O,1,...,p— 1. The random

parameters to be estimated will be denoted by 9k' h =1,2,.. .,H. To each h there

correspond indices ii,; {p,p + 1,..., p + q —1) (where we may have rh = h) and a

level 4 such that we may regard 0h as a 'covariance' between random variables 'at

level 1k.

9k	 = c(1 ) g(6)' jE'	 assumed constant forj = l,2,...,J,,. (3.21)' 4J'/' '

For £ =1,2,..., L and any s, s' E {p, p +1, ..., p + q —1), we define

oi °h if {s,s'} = {rh ,sh } and £ = 4 for some h, I < h ^ H,	 (3.22)

0 otherwise.

Further, if I	 and i'	 then cov(6,6) =0 for all s,sY and if £ ^ £ then

cov(e, E) =0 for all i,i', s, s'.

The structure of the random part of the model can be restated as follows. Suppose

that the fixed parameters are known. Then the true raw residuals are defined by:

y y -
	 (3.23)
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and we have

=
	 (3.24)

E(jT) =

v=
1—I

v =
1=l

p+q—I

=

where ai is as defined in (3.22) and z, is the vector of values z for i EBr)

Thus we assume a block-diagonal structure for the residual covariance matrix v of the

responses and the e,, are the parameters of that structure, which are to be estimated.

The measurement error model linking the observed values X, Y, and Z to the true

values of the variables is:

Xr = + r' r (4r,i r.2	 4r,N 
)T, 0 ^ T ^ p1,	 = {r }(Nxp) ,	 (3.25)

m	 m

= YM 4t1, 1 = ('i, q,,,2	 ,N)T 1 ^ u ^m, T =	 =
.1=1

Z = z.+, C, = (C., Cs,2	 ,)T,p^s^p+q-1, (={s)(zq),

where each measurement error may have a component at each level, thus:

L	 L	 L

=	 = ,/], c5 = c? I ^ i ^ N,	 (3.26)
1=1

each component having expectation zero.
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By definition an error at level £ in the measurement of a given variable is the same for

every level-i unit in a given level-I unit, provided a measurement on the variable

exists for that level-i unit. We assume that errors at level I in a given variable do not

covary between level-i units in different level-I units, nor with errors at different

levels in the same variable within or between any level-I units. They may, however,

covary with errors at any level in a different variable. We assume finite second

moments and define errors in terms of their variances and covariances within and

across units at a specified level. We assume further that we have prior values of these

in the form of error variance and covariance vectors as outlined in Section 3.4 and

prescribed more formally in Section 3.6. We also make the following assumption:

Assumption 3.2 Errors at any level do not covary either with the true values of any of

the variables or with any residuals.

The adjustment procedures developed in this chapter and tested and applied in the

remainder of the thesis assume that the errors are samples from a multivaiiate Normal

distribution (with mean vector zero). Thus, in particular, all moments of the error

distribution are determined by the variances and covariances. It is in principle possible

to specify other distributions, and to allow errors to covary with the true values of their

variables; the methods of adjustment derived here can in principle be extended to apply

to such cases. The assumptions of Nonnality and of independence from the true values

are, however, a useful starting point. We shall see later that it is convenient also to

assume multivariate Normality for the distribution of the random variables c, in (3.19),
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whose variances and covariances are estimated as the random parameters of the model.

Therefore we state:

Assumption 3.3 The errors , t, are distributed multivariate Normally with

expectation 0.

Assumption 3.4 The random variables i are distributed multivanate Normally with

expectation 0, and are independent of x, z, and the errors , i, .

3.6 Vectors and matrices associated with the measurement errors

We now define the error variance and covariance vectors, error incidence matrices,

error product matrices, and adjusted product matrices that we shall use as the basis

for the estimation of the model described in Section 3.5.

3.6.1 Error variance and covariance vectors

Foreacht,r,s suchthat 1^^L, —m^r^p+q-1,and —m^s^p+q-1,we

assume the existence of an N x 1 error covariance vector that is one of C, C.

Not more than one such vector may be specified for a given choice of £, r, s: suppose

for the purpose of explanation that this is 	 The ith element of	 is the

covariance at level £ between the measurement errors w,,o in the observed

variables U,.,U1 forlevel-luniti. Ifr^-1 then U,YIOrlu with u=—r;if

O^r^p-1 then UrXr,ør,; if r^p thenU,Zr,w r C,; with similar

meanings for U,,o . If for a given choice of £, r, s there is no prior specification of

nor one of C then it is assumed that	 =0.
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If the variables denoted by r and s are distinct we allow the possibility that an error at

level 1>1 in the second-named variable may covary with errors at level £' ^ £ in the

first, for example if the second variable is derived from the first by an aggregation

process. Assume that this is the case and consider a level-i unit 1, in level- £ unitj, for

which an error w exists at some level £' ^ 1. Then we define the error covariance

at level £ for unit i between 0r and o by setting

C" - E(ww]), wherersj -

t
=	 r(t')

rJ
(=1

(3.27)

and i' E B denotes a level-i unit for which	 exists. Because this latter error is at

level £ it takes the same value for all i' eB' for which it exists and we have, for the

unit i that we are considering and for each 1' c

E(waJ) = C if wi') exists,	 (3.28)
0 otherwise.

As the components of w may differ for different level-I units within the same level-.

£ unit j, it is possible that for some i,i' E	 we may have non-zero C,,'j and Cr3.

with C ^ C..

If r and s denote the same variable the corresponding vector 	 = C = C is more

properly called an error variance vector. We do not permit errors in the same variable
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at different levels to covary, thus the element C is the variance of o4'] alone, if this

exists, otherwise C' =0	 C'	 are both non-zero for some 1,1' BJ" (1>1)i'r,I

then we must have	 - 1t)
-

3.6.2 Error incidence matrices

For each r we use the error variance vectors C for £ =1,2,..., L to form the

N x N error incidence matrix K, diag{K,.1 }. We define

K,.,,=l ifC^Oforsomet,	 (3.29)
0 otherwise.

3.6.3 Error product matrices

For each 1, r, s we now define the (expected) error product matrix at level £ for the

ordered pair of measurement errors o,, w :

-'I

	

= i(K,C iT K	 if C exists,rS,f flj	 S,J)

T
	(I) 1K C" 1T K	 if C exists,

IJ fi ,J/

(3.30)

where n, is the number of level-i units in the jth level- £ unit, l is an x I vector

of ones, and elsewhere the subscript j denotes the jth level-I block of a vector or

matrix. This definition ensures that 	 =0 unless three conditions are satisfied.

First, there must existj, 1 ^ j ^ J, for which i,i' €B°, that is, level-i units i and 1'

must be in the same unit at level 1. Second, var(w,),var(w,) must both be non-

zero, that is, an error must exist for unit i in the variable denoted by r, and for unit 1'
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in the variable denoted by s. Thirdly we must have either C, C. both non-zero or

C, C. both non-zero, that is, an error covariance at level £ for the two variables

U,,U, must be specified and be non-zero for the units i and 1'. Thus

= E(o$w']) if C exists,	 (3.31)

if C exists.

In either case, M. is the level- £ contribution to the total covariance between the

error o, in U, for level-i unit i and the error w, in U, for level-i unit i'. We

define the total (expected) error product matrix for o,., o,:

M,,	 (3.32)

In many cases only one of the matrices in this sum will be non-zero; but the definition

allows the specificaf ion of a measurement error model in which errors in given

variables U,, U arise and covary at different levels. With appropriate prior

specification of either C or C for £ 1,2, .., L, we have

M,, 1 . = E(co,,1w,,),	 (3.33)

M = E(co,w),

and we note that M1 M. A worked example based on model (3.14) and the

illustrative data in Table 3.1 appears in the next section.
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For convenience we write

M,.	 M.	 Mir M
	 (3.34)

is=1

In addition we require to define error product matrices associated with the observed

raw residuals c. If the fixed parameters (3 are known we define

(3.35)

=+x,

We have

= E[Ur(11_3)T]
	

(3.36)

= E(Dr11_E(UrDTT)

We define

M, E M
	 p—I
	

(3.37)

Thus

E(Or?J)=
	 (3.38)

E(o)= M,.
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We define

(3.39)M	 M,

p-I

= M, —fl1M1,

M

and we have

E(iT)= M,

EnT) M,.

(3.40)

We also have

p4T).....	 (3.41)

= E(i T) - E[(J3)rIT ] - E[rl(t3)T J + E[(J3Xj3)T],

E(rpiT) = M,

p-I	 p-I

E[(j3)1IT}= p	 PtMM,
1-0	 1=0

p-I
E[(j3)T] =

1=0

p-I	 p-I

E[(jXj3)TJ = 
PIflI. E(1) = I3tfltMa

t.t'=o	 t,t,=0

and we define

p-I	 p-I	 p-I

M M —fi1M —/J,M 1 + /3fl1M0..	
(3.42)

1=0	 1=0

Thus

= M,.	 (3.43)
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The expressions in (3.35) to (3.43) assume knowledge of . Corresponding

expressions based on an estimator of 3 are denoted by attaching a 'hat' ('), thus:

(3.44)

y—xE,

p-I

M1

M-

M M — fl M	 +fitfirMu..

/
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3.6.4 Some examples

Consider again model (3.9) in section 3.4.1, which contains a general aptitude score;

and its mean 12 as explanatory variables, with observed values X1 , X2,, for each

pupil i. A covariance between the errors in X1 and X2 exists across pupils in the

same school, and in the absence of other information this covariance is assumed to be

constant for all pupils in a given school. Thus, for a given school j and any

i,i' €B, = BJ2 , we have C = C 2 The matrices K 1 and K2 are unit matrices12,1	 12,1'

because errors in both variables exist for all pupils. In this case M12 =	 is the

direct sum of j2 square submatrices, where J2 is the number of schools, each

submatrix having elements equal to the constant error covariance between X1 and X2

for pupils in the corresponding school.

If in a different case we had values on two such variables for all level-I units but it was

believed that the error covariance between the two was not constant within a level-2

unit then for somej we should have non-zero but unequal values of CJ and CJ. for

some i,i' EB1 . Once again K 1 and K2 would be unit matrices and M' would be

the direct sum of square submatrices. In the jth submatrix the elements in each row

would be constant but the values in rows i and i' would differ. In such a case

would be non-symmetric.

The analysis of the bivariate model (3.14) for scores in mathematics and reading,

described in section 3.4.3, uses explanatory variables U 3 and U4 that are derived from

the same variable X. The error variance vectors for U 3 and U4 are specified at level
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2 (the pupil level), and C" =	 = 033	 . The error covariance vector C for U3 and

U4 is just the error variance vector C for X 1 , and C =0. If we write

var() for the error variance of X 1 for pupil j (j =1,2,3), the illustrative

data in Table 3.1 require the following error variance and covariance vectors to be

specified:

	

101	 I2. I 	 ITI

- 0 
C2 

I 2 I 
C2 

I T

	

"331 21'	 IoI'	 ITII T3 I

	

L0J	
LJ

(3.45)

They generate the following error incidence matrices:

I
	

0
	

(3.46)

0
	

1
0
	

I
K3 =	

,K4=
	

0
0
	

I

and the following error product matrices:

T2 0
00

M33 =M =

(3.47)00
0

0 
2	 M=M=

T3 0
00

00

0 v ••
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(0 .r;2

0

M =M2 
I	 0

34	 34=[

00

S.'	 (00

IrO
I	 0

M

J

00
r 0

The (l,2)th element of M34 , for example, is E(w31w42 ). The (1,2)th element of M43

is E(w4,1 tu32). The values produced are the appropriate ones, as w = 	 =	 and

=	 =0. The error incidence matrices derived from the error variance vectors

control the generation of the expected error products: provided the error variance

vectors contain values only for units for which errors exist, and zeros elsewhere, the

user may specifj error covariance vectors as full vectors.

3.6.5 Adjusted product matrices

In addition to the error product matrices we shall require estimates of the cross-

product matrices of the true values of the variables. In the notation of Section 3.6.1, if

U,, U, are the true values of U,., IJ,, respectively, then

E(UrU)= E[(u, 
+UrXUs 

+w,)T]
	

(3.48)

= E(UrlJ +W rU +U,.W +Wr)

= UrU +E(O,.a), from assumption 3.2,

= UU +M,,

from equation (3.33), provided suitable error variance and covariance vectors have

been specified.
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For —m ^ r,s ^ p + q —1 we define the adfusted product matrix

N,, UU - M,,,	 (3.49)

and now

E(N,,) = U,U.	 (3.50)

We shall use N,, as an estimator of the cross-product matrix u,u of the true values

when required.

For convenience we write

(3.51)N,,	 N,,,, N,,,	 N1,, N,,,	 N11..
i=l

For the residuals we define

N,	 N,

NUT—M.,NF	 )•	 y	 ,y

(3.52)

and we shall use N, Ni,, etc. as estimators of 	 etc. when required.

We also define

Nfl	 T_M, Nfl yijT_M, Nb yT_M,,	 (3.53)

NT-M,

and use Nfl , N,, Nb, etc. as estimators of pgT gT	 etc.
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3.7 Estimating the fixed parameters

3.7.1 Introduction

The procedure we propose in order to estimate the parameters of the model described

in Section 3.5 is an adaptation of the iterative generalised least squares method

(iterative GLS, or IGLS) described by Goldstein (1986). It begins with the estimation

of (the fixed parameters) by ordinary least squares (OLS) following the procedure

described in Section 3.7.2. These estimators are then used to obtain initial (OLS)

estimators of the random parameters as described in Section 3.8.2. Thereafter the

fixed and random parameters are estimated alternately as described in the remainder of

Sections 3.7 and 3.8, using existing estimators where these are required, until a

convergence criterion is met.

Assume that the first two stages have been completed. The GLS estimator for f is

= (1Tif••l1)4 iTv_1y, 	 (3.54)

where v is the residual covariance matrix of the responses and we assume v exists.

We do not know i, y, or v 1 and we seek an expression involving known (observed)

values of the variables, suitably adjusted so that in expectation it approximates

(ITv_1x)1ITv1y. Our general strategy, in fact, will be to work with expressions that

in expectation approximate the desired, but unknown, quantities. The first step here is

to find matrices t, A, such that

E(L') = xTVlX, E(A) = xTv ly	 (3.55)
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In the remainder of Chapter 3 we shall use the symbol to mean '(which) may be

estimated by' in the sense that the expectation of the expression on the right of the

symbol approximates the value of the expression on the left, possibly with some bias

which we may attempt to reduce by a further approximation.

Recalling the definition of o-1 in equation (3.22) and writing &i for its current

estimator we define, for each £

p+q-1
y1 ) = a'Z ZT

-	 a? s.f a'J'
'."=I'
pf q-1

= aM-	 :s dj'
z.d=p

Jt	 L
TI)	 '7(i)	 21T),

j=I

.li	 L

t'
j=1

(3.56)

where the subscriptj denotes the jth level- £ block of a vector or matrix. Note that for

given s, s' with s ^ s', for given 1, and for each j E (1, 2,..., J}, V contains

separate terms &ZSJZ J and &ZS. JZL and 't	 contains separate tenns

&MS? and &MJ,J . If s = s' only one such term exists in each case.

By assumption 3.2 (p49), and ignoring error in the values from which the Ma? are

derived, we have

v=E(V)_T,	 (3.57)

and we write

(3.58)

Assuming the existence of ' a first approximation to iv'x,, that is the (r,r') th

element of iTvhi for r,r' € (0,1,..., p —1), is given by
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(3.59)

for we have

= tr(x hx,,) = tr(z,.x') = tr(x,x'), and	 (3.60)

E(x,i) = N,,.,

from (3.50). Likewise a first approximation to x 'v'y is

tr(N,,'),	 (3.61)

and, writing f = {i',,.} , A 
=	

we have, as a first approximation,

(3.62)

But, although N,,., N,, ' are unbiased estimators of x,x, 1T, v, respectively,

they each typically contain measurement error and the correlations between these

errors will typically produce bias in one or both of the products N,,.ir', N,, 1 , for

example if an explanatory variable with error has a coefficient with fixed and random

components as in the standard 'random-coefficients' model. We now show how these

biases may be reduced.

If we again ignore error in the prior values on which the M,, are based, the matrix

contains error from two sources: measurement error in the Z and sampling error in

the &i. We may write:
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=v+w+u, where
L	 .J	 p4-q-1

w	 w"	 w°	 &(z1	 +Cz	 _MdJ),

	

j'	 j
j=I

L	 .11	 p+q-1

u	 u, u
j=I	 .r,I=p

&i—cii.

(3.63)

Thus, w is the error in resulting from the measurement errors , etc., including their

contributions in respect of the sampling error in the &i; u is the error due to

sampling which remains in ' after all measurement errors are accounted for. We

assume E(w)=E(u)=O.

It is convenient to express 	 u° also as double sums of N x N matrices:

J pf-q-1

w" =	 &i(z,(J)C(f) +t$(J)Z/(J) +Cs(J)Cd(j) - Md(.f)), 	
(3.64)

j=l Id=p

.J p+q-I
(1)	 '

U = L.
j=I :,z'=p

where Z3(J) , for example, is defined as the N x 1 vector whose jth level-I block is

equal to z 1 and which is zero elsewhere and M ) is the N x N matrix whose jth

level-I block is equal to	 and which is zero elsewhere.

Now

(v^w+u)' =(I+v1(w+u))v.I
	

(3.65)

= v —v(w+u)v 1 +v((w+u)v)2 v-1((+)-1)3 + ...,

provided this series converges, and therefore
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Eir(N,,)	 (3.66)

= E lr[(xri: ^x,	 _M,,.Xv —v(w^u)v' +v'((w+u)vj2 -...)]

= ir(xxv')

- E	 +	 )vwv')

+E (1rX v ' (( WV') +(uv_I)2))

+E tr((x7 +	 )v (wv'uv + uv-'w'vj)

_M,)v1(wv)2)

- E tr((x,. + x)v'((wv' 
)3 

+ wv'(uv' )2 + uv v'uv + (uv)2 wvj)

- E	 ^	 - M,,,. )v' ((..i 
)2 

uv' + wvuv'wv + uv' (wv )2))

- E

where we have used assumption 3.3 (p50) to eliminate terms of odd degree in the

measurement errors. We may now write

= tr(x,xv')	 (3.67)

+ EtT((Xr +ri)V'WV')

- E	 r1_1((F_1)2 + (uv_1)2))

- E tr((X. +	 )v(wvuv-' + uv-'wv))

+...,

where in each case denotes an estimator of the corresponding expectation.

The convergence of the right-hand side of (3.67) and the terms to be included in the

estimators depend on assumptions about the moments of the measurement errors and

of the sampling errors. We recall that M,r may be non-symmetric, and this

complicates any general theoretical treatment of the convergence problem. Simulation

may be used to find practical limits to the validity of the procedure which we now

outline. An alternative procedure, which avoids use of the expansion in equation
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(3.65) at the expense of some loss of efficiency in the resulting estimators, is given in

Section 3.7.2.

Consider the term tr((xr +,X)v-1w,-1) in equation (3.67). We write

Etr((x, +,x)vwv_1) = Etf((Xr +ri)VIW(tI)V_I)	
(3.68)

and the contribution from w for given £ is

1. p+q—I

E ti[(x, + ,x.)v' (z (J1)C (f1) + çUl)zSUI))v].	
(3.69)

JI=1g1,"=p

We simpli1r notation by writing

ar, br',	 .s(j1),	 s(j1).	 (3.70)

The trace in (3.69) now becomes

E	 + aX)V 1 (zj + cz)v' 
J	

(3.71)

= 
E tr Ia V Iztv..-1) + E

+ E tr(Lxv'Z v) ^ E

= t[iaZ ' E( bC)v h ] + ü.(zTy—I) [E(v)]

+ tr(xv'z) [E(a)V'] + tIfIbZ4 V E()v 
J

+ tr(M'Nb')

+ tr(Nbft) Mir') + tr(Mbpi' l ) tr(N4'),

where, for example,

N	 Ng(j) N (.J)	 (3.72)
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is defined as the N x N matrix whose ith column matches that of N when i

and which is zero elsewhere.

Using (3.67), we can now begin to write down the second approximation to iv'x,,:

Iv—I1r,

tr(N,,.iv')

r'.c(j)L si p+-q—I	 {tNrsi(.fi)'_1Mr.S(.Ji)T1) + fr(M,,1(.J)N	 )	

}
tr(N,(.J1)-') tr(M,(.J1)-') ^ tr(Mr. (.fi )v) fr(N (.A) )L=Ij-lz,a=p	 +

(3.73)

The second approximation still contains bias, which we should remove. For example,

the product	 contains terms of order m4u, where m4 indicates a

product of measurement errors of order 4 and u is the reciprocal of a 4th-degree

product of true values of explanatory variables. Such terms are generally not

negligible. Thus, a third approximation is required, and so on, until all such non-

negligible biases have been removed.

3.7.2 Estimation of (3 with an error-free weight matrix

The complexity of the procedure outlined in the last section stems mainly from the

presence of measurement error in the matrix . But instead of using we may use

the matrix v obtained from V (equation 3.56) by removing all terms in it containing

measurement error. This does not affect the consistency or inconsistency of the

resulting estimators , O, though these will not be filly efficient. (Note that we do

not demonstrate consistency of any estimator that we propose: our first priority is to

find estimators that appear to be effective in practice in reducing bias.) We shall use
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the term purged-V estimators to describe estimators obtained by using such a weight

matrix j . OLS estimators are obtained by setting i = I,, the identity matrix.

We first develop the estimators ignoring all moments of the sampling errors and then

consider a ftirther adjustment for sampling error in t3. With the notation of Section

3.7.1, we write:

= tr(Nth ),	 =
	 (3.74)

and now the estimator

(3.75)

provides a first approximation to . The estimator in this form is in theory biased on

account of the correlation of the measurement errors still present in I'' and A,

although in the simulations that we have carried out, and which we report in Chapter 4,

relative bias has been found to be small. We outline a possible further adjustment in

Section 3.7.3.

We now develop a robust, 'sandwich' estimator for cov() with 3 = f 1 A as in

(3.74}-(3.75). Our model is based on true values of the variables x, y, and z, and we

estimate cov(jx,V), the covariance of 13 that would occur in repeated sampling from

a population characterised by those true values. If we knew the true values x, y, z and

used these in the estimation of 13 we should have:
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cov( Ix, V) E[( - EfrIx,V))(D - E(f3Jx,))]	
(3.76)

= E{[(XTV 'i)' 1T1 (y - xt3)J(xT 'i) ' xTT'(y - 
)]T}

In fact we have used estimators f, A for 1T 1, 1Tq_l respectively. If there were

no error in the observed variables X and Y we could rewrite (3.76) as

cov(Ix,v) = (XTV-IX)' XTV I E[(Y - xj)(Y - xi)TIx,v}v 1x(xTv 1 x) i ,	 (3.77)

and form the sandwich estimator by replacing the expectation 14(Y - X13)(Y - X3)T]

by a matrix of the same form using the observed raw residuals V - X3. Since

E[(Y -	 - X)T] is block-diagonal at level L the sandwich replacement would

be

1='
	 _x)(y _x)T.	 (3.78)

We should then write

P = XTV '1±( - x(y, - xj )T ]1x. 	 (3.79)
L 1=

cov(IIX,V) = (XTV-IX)'P(XTV_IX)'

For the case with measurement error in X and Y one approach is to seek a p x p

matrix (, based on P and suitably adjusted, and then write

A cov(jIx,v) =
	 (3.80)
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The adjustment to P should reflect the adjustments made in the estimation of $3, in this

case the use of I to estimate 1T711 and A to estimate 1TVIy. Variances and

covariances of errors remaining in $3 should be present in the expression for A.

Let a,b E {O,I,...,p— 1) and consider again equation (3.76). We have

- i13)= (x- )T.1( -	 (3.81)
= XTV - XTV -	 +

= XTirhi -	 -	 - Tv—1,

and therefore, using assumption 3.2 (p49),

xv'i—tr(M,y')
	

(3.82)

=

This suggests that we should write the (a,b) th element of (f), given $3 = f'A, as:

b = ti, (Nv-') tr (NV1),
J='

(3.83)

where tr1 indicates that only the jth blocks of the matnces in the product are to be

used in computing the trace and we use $3 in place of $3 throughout. The 'adjusted

sandwich' estimator A for the covariance of $3 = JT'A follows from equation (3.80).

The formation of the expression in (3.83) entailed separating the factors in the

summand of [ 
fr' 

- x1)(, - x)T], premultiplying the first factor by XTV'

and postmultiplying the second by v ix, adjusting the resulting products for

measurement error, and then recombining. It could be argued that separating the
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factors in this way is not appropriate for a sandwich estimator. If we followed this line

of argument then no adjustment to P would be admissible, for it is not appropriate to

remove error variances and covariances either from ('vi - x1i)(1 - x)T or from

XTX, since these adjustments were not made in the formation of 13. In that case we

should have

r
=xTrhI(v _x)(1 _xj)T]v1x,

[J=

Qjb =	 (-') 
,(xb@v1),

j=I

(3.84)

but this is conditioning on the observed values.

A more substantial objection to the estimator Q, in (3.83) is that the use of 13 in place

of 13 introduces bias. With no error in X and no error in Y the expectation in (3.77),

for which we seek an estimator based on raw residuals, may be written:

E(T) = E[{+X(13_13)}{^X(13_13))]
	

(3.85)

= E(T) +E[X(13_13X13_13)XT].

Given an existing sandwich estimator A côv(1). initially zero, we should form a new

estimator by replacing this expectation in (3.77) by

Jil-.
+ XJAX.	 (3.86)

j=I

When there is measurement error in X or Y we have:
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(3.87)

p—i

(NJ ')+ tI (NarXPr Pr)
r=0

where the error remaining in the right-hand side of (3.87) is 	 +x'V'.

This suggests that we should write, in place of (3.83):

p—IL

=	 ti (NV- ')tr, (Nb v ')+ )I,, tr(Nv')tr (N11)}.	
(3.88)

where A, is the current estimator, initially set to zero, of cov(fl,,fl,). Equation

(3.80) then yields a new estimator A by iteration.

3.7.3 Further approximations

We now return to the issue of possible bias in the estimator 3 = JT'A as defined in

(3.74)—(3.75). The magnitude of the bias is clearly dependent on prior assumptions

about the measurement error variances and covariances, and simulations have shown

that there are cases where the measurement error is substantial and the relative bias in

= 1A is negligible. See Chapter 4. We outline here a possible further adjustment.

We may write

y E(f')= xTvhx,	 1' y , Yai = t4ia +aX•	 _M4%rI,	 (3.89)

6 =J(A)= iTV1y	 A—&, a = tr[x alT + ayT +aTlT_Ma,i1V1,

and we have:
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= y8 - E(y'y) + E(y' (i)2(8 +	 - E(y 1 (-')(o +	 + E(y -'(z-')6)

+ O(m6u),

(3.90)

where m6 indicates a product of moments of the measurement errors of total order 6

and u is the reciprocal of a 6th-degree product of values ofi, y, or z. Lt then, we

can find estimators I ,E2 ,E3,E for the four expectations in (3.90), each with

expected error of order m6u, we can form a second approximation

ji=t-'A+E, —E2 ^E3 —E4 ,	 (3.91)

with expected error of the same order of magnitude. The assumption here is that this

magnitude will be small in comparison to the bias in 3= F 'A, and this assumption

would need to be tested in simulation.

Subject to this assumption, we illustrate the method by considering the contribution of

the term E(y_1y1) to the element fia• The a-th element of E( 'f'&) is

r.z,t=O 

EfrJ,j)1),
	 (3.92)

where j,,, j, are respectively the (a,r)th and (s,t) th elements of y'. We

approximate this by
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(3.93)

p-i	 -	 1
=

r,s,t=O	 xtr(xtiT	 +,iT _M)V-1j

IE tr(x, 1T _I
	 TV-1) + E tr(,vix,yTv1) 1

p-I
=	 + E tr(; xV I,iiTV_1) + E fr( TVix yTv-1)

rzt=O	

[+E[tr(r/5 - Mrs)V' r(TlT - Mfr']	
J

INM 31 i-') +
p-i

}

r,s,t=O	

[^ tr(,v') tr(, ifv')] - tr(MV') tr(MV')

p-i
	 {

ü(N iM r1 ) + r(MfrV'NqV') + (Mfr MSy') 1

tr(NV'M,V') + tr(MV'N,,V') ++

where i,, f' are the corresponding elements of L'.

Now, using (3.91), the second approximation to /a begins:

I	 1(NfrviMir1)+ tr(Mfrv'N57v')^ tr(My'M.,1V') 1

1± fr(NbV'M,,y') + tr(MbV'N,,V' ) + tr(M,v' M,V1 )J •• -,

(3.94)

where the second sum is an approximation to the a-th element of E 1 . Since we are

constrained to use elements of r ' , A in the correction terms these still contain bias: a

third approximation can remove such biases up to order m4u. For each such

approximation there are corresponding adjustments to be made to the expression for

A cov(AJxv).
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3.7.4 Summary

In Section 3.7.2 we derived an approximate estimator of the fixed parameters of the

multilevel model with measurement error, as defined in equations (3.18) to (3.26) in

Section 3.5. We also derived a sandwich estimator A of cov(13). adjusted both for

measurement error and for the sampling error in 3. We repeat here, for convenience,

the assumptions on which the method is based.

Assumption 3.1 Errors defined at a given level do not covaly between units at (or

above) that level.

Assumption 3.2 Errors at any level do not covary either with the true values of any of

the variables or with any residuals.

Assumption 3.3 The errors , i, are distributed multivariate Normally with

expectation 0.

Assumption 3.4 The random variables E are distributed multivariate Normally with

expectation 0, and are independent of x, z, and the errors , t , .

We further assume the existence of prior values of the error variances and covariances

at all levels.

The usual GLS estimator = (XTV IX)'XTV_IY for the fixed parameters (where V

is the residual covariance matrix based on the observed random-part explanatory

variables Z) is biased as a result of the variances and covariances of the measurement

errors in X, Y, and V. We showed in Section 3.7.1 how to obtain an unbiased

estimator ' of V. In Section 3.6.5 we defined the unbiased estimators N,,., N,, of
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the cross-product matrices Xr1 IrYT, respectively, of true values of the response

and fixed-part explanatory variables. But these unbiased estimators still contain error,

and as a result the first approximation to 3, based on equation (3.62), is biased. In

Section 3.7.1 we went on to show how this bias can be removed by successive

approximation subject to the assumptions above, and assuming also the existence of

' and the convergence of the series expansion in (3.65).

That method, however, is complicated and lengthy, and we did not describe it in full.

Instead we developed in Section 3.7.2 a simpler method based on the use of a weight

matrix V' containing no measurement error. There are several possible choices for

V. For variance components models, and other models whose random-part

explanatory variables contain no error, we may use V = i'. For other models we may

choose, for example, v = 'N' the identity matrix, yielding OLS estimators, or we may

choose to remove from V (the estimator of V based on the current estimators of the

random parameters and the observed values of the random-part explanatory variables)

all terms involving variables with error. We term the resulting parameter estimators in

this case 'purged-V' estimators. (In Section 4.3 we compare the results of these two

strategies for the estimation of a 2-level model with a random coefficient on a variable

with measurement error.)

This method, too, is not exact, and we may expect some biases in the resulting

estimators. The most important of these is the bias in the sandwich estimator of the

covariance matrix of the parameter estimators (and hence in their estimated standard

errors) which results from using t in place of j3 in the computation of the residuals on
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which the sandwich estimator is based. In Section 3.7.2 we gave details of an

adjustment for this bias, and we shall demonstrate its effect in Section 4.2.

We indicated in Section 3.7.3 some further adjustments for the remaining biases in

and A. We do not in this thesis develop these, but rely on the expressions (3.74),

(3.75), (3.80), and (3.88).

77



E y—x3,
• -

y =yy

y_ vecy=®.

(3.95)

3.8 Estimating the random parameters

3.8.1 Introduction

Adapting the notation of Goldstein (1986), for known D we write:

Thus y is the cross-product matrix of true residuals and we have E(y) = v. We

require to estimate the linear model

y =zO+e,	 (3.96)

where Z(N 2 1i) is the design matrix, based on the true values z, for the random

parameters, and e is an N2 x 1 vector of residuals.

In the notation of (3.21), the hth column z of z (h =1,2,..., H) is given by

I
Zh —VeCZk,

•	 I
= .(2 -	 ) ( Zr jZ: j +

j=1

= 1 ifrh=sh,

0 otherwise,

(3.97)

and

cov(e) =	 0	 0 1T I -	 ®	 0 )1T	 (3.98)

= E(3T 0 yiT) - vec v(vec v)T
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where 5N is the vec permutation matrix of order N2 . We give in the Appendix what

we believe to be a new derivation of this latter result, which clarifies the role of the

Normality assumptions.

Now the GLS estimator of 0 in (3.96) is

's.T -1	 -i	 -i	 (3.99)0= z (v 0 v) (I + SN) z ) z (v 0 v) (i + SN) y

= z (v 0 v)'(I + 5N )2z')' z*T(v® v)'(I + 5N )'2y'.

The (h,h') th element of z v 0 v) (I + 5N ) 2z, for each h,h' E {i, 2,..., H), is

given by:

-i	 I	 ,T
Zk v 0 v) (1 + SN) 2z, = (vec zh) (v 0 v) ' (I + N) 2 vec z,,	 (3.100)

where z, zi. are symmetric, block-diagonal N x N matrices as defined in (3.97).

Therefore, using standard results (see, for example, Searle et a!., 1992, App. Mi and

M.9, and Searle, 1982, Section 12.9),

SN VecZh =vecz,	 (3.101)

so that

2vecz =(I+SN)vecz,	 (3.102)

and

Z,, V0VJ .I+SN ) 2z, =(vecz)T(v®v)'(I+ 5N)(5N)Teczh	 (3.103)

= (vecz)T (v ®v')vecz.

=
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I •	 • _

trZhV zWv ) =

/ • -1 • -1trzhv yv

(3.105)

Similarly, the hth element of z T (v 0 v)(i + N )'2y" is

-1	 -I	 . -i • -I
Zh (vOv) (I+s,,) 2y =tr(zhv yv ). (3.104)

We do not know z, y, or 'v and, in similarity with the case of the fixed parameters,

we seek matrices 1, 'I' such that to a sufficiently close approximation

A first approximation to 0 will then be the estimator

=	 ii	 (3.106)

In Section 3.8.2 we derive approximations for 	 ,	 based on the use of a weight

matrix F 1 in place of v', where V' contains no term with measurement error.

3.8.2 Estimation of 0 with an error-free weight matrix

Consider tr(zv'z _1) 
first. The first point to note is that by the definition in (3.97)

z and z	 are block-diagonal at levels 4 and 4, respectively.	 Suppose

= a, 9, =	 for some a,b,c,d E {p, p+ 1,..., p+q— 1) not necessarily

distinct, and use Jh. J? to index units at levels 4,4,, respectively, with

I^Jk^Jh,l^J,j^J,,,. Then

irv'z.v')	 (3.107)
J J

=	 - 8 X2 -	 + Z,,<,)Z J ) )v '(zCuW) z ) + Zd(JW)ZC(J))V],
.41 4=1
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where Zjk), for example, is the N x 1 vector whose jhth level- Lb block is equal to

Zaj and which is zero elsewhere.

Now write:

a(jh), ib(jh), ëc(j), äd(j).
	 (3.108)

The trace on the right-hand side of (3.107) becomes

tr[(z z +	 + zdz)v']
	

(3.109)

and we consider the term zz'v-'zzv-'). As a first approximation we have:

tr(zazv 1zczv 1 ) = tr(zv_1z) tr(zv_1zd)
	

(3.110)

NV') tr(NjV').

Using the Normality assumption,

E[tr(Nby') tr(N,v')J

=E{ tr[(zb z +ZbCJ +çz ^ç _M&jV'1tr[(zaz +z
d +JZ	 Mj)v1

= r(zazVzzV')

+ E(tr[(zb +cz )v '1tr[(z +cz)v' 
II

+ E(tr[(	 - M&)V'1fr[(	 _MM)V']}.

(3.111)

This yields the second approximation:
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tr(z4zv'z4v')

= E[fr(N5fl) tr(Nvi)]

- E(tr[(z6 +bzC) I tr[(z	 +cz)v']}

- E ftr[(cc - Mb)V' ] fr[( C - M)V' ]}

- (N 1 v 'Mv ') - tr(MNJ')

- tr(Nv 1M& v) -

—tr(Mv'My') - tr(MaMaV').

(3.112)

We write the sum of these traces over all sub-block combinations (as implied by the

double sum in equation 3.107) as:

FabCd N x N
	

(3.113)

Nj -	 Nac - Med. Nab - Mab. Nc

Mac.MMMab. M.

Each N and M in (3.113) is assumed to be post-multiplied by V 1 . We use the 'dot'

product to indicate that the resulting matrices are to be multiplied before extraction of

the trace, and the 'cross' product to indicate that the traces are extracted before

multiplication. The products are understood to be computed for each sub-block at

level tk (for a and b) and level 4 (for c and ci) and then summed over all

combinations of these. In practice, because of the block-diagonal structure of V', the

only non-zero products in the sum are those for sub-blocks which share a level-L

block.
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We now define

ê,	 (3.114)

Given an estimator 13 for 13 we define	 in the obvious way, by substituting for

c or d whenever either of these occurs as a subscript of N, and substituting ). for c or

d when either occurs as a subscript of M, in the right-hand side of (3.113), with

implied blocking at level L. We now define

!1',,	 (2-8) (i+i)
	

(3.115)

and an estimator of 0 is given by cI'W.

This estimator is in theory biased on account of the correlation of the measurement

errors still present in b' and 'P and we may adjust for these biases in a manner

analogous to that indicated in Section 3.7.3. It is biased also because the use of 5 in

(3.115) introduces variances and covariances of the sampling errors in 13. A method

for removing this latter bias known as restricted unbiased iterative generalised least

squares (or RIGLS) estimation has been described by Goldstein (1989, and 1995, p40),

and we now adapt it to the measurement error case.

We require that	 !t',,	 should be an unbiased estimator of

2— &) tr[(z0z + zbzO )v ( -	
- J3)T_i] 

If the true values x and z are

known and fixed in repeated sampling and Y = y is measured without error then
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E[(y -	 - iE)TIxv] +
	 (3.116)

= E[fy - x	 -	 - x + -

= (y - 't3Xy -

Thus, for the case with measurement error, we should add to the expression for 	 in

(3.115) an expression which approximates

- o,) t4(ZZ + ZbZQ)V cov(A)xTv_1 
1 

or
	 (3.117)

- &) tr[(ZaZ +

The adjusted estimator for !P, becomes

p-I

=(2_8){P +P +	 +1L)}.	 (3.118)
r,z=O

and now the product D'1' yields a RJGLS estimator for 0.

Turning to the covariance matrix of 0, we consider IGLS estimation first. If there is

no error in X, Y, or Z, then equation (3.99) yields

..T— _-Io = (z T(v®v) Iz1z (v®v) Y

cov(OIX,Z,v) = (Z T (V®V) tZ) I

xZ'T(Vøii)' E[(Y' _z"o)(Y _zo)TIx,z,v](vevi1z1

x(zT(v®v)1z)

(3.119)
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and the sandwich estimator of cov(Ô) is formed by replacing the expectation

E[(Y** - zo)(Y _z.*o)T] by a matrix of the same form using the raw residuals

- ZÔ of the linear model for the random parameters.

The expectation E[(Y_ZO)(Y_ZO)T] is equal to (I+SN)(V®v). A matrix

of the same form may be constructed as the sum of two cross-product matrices:

Jzr	
-	 Vec(Y(J)YJ) -
	 (3.120)

and

,= 

'L 

I VeC(YY + ' f)Y J))JveG(Y I)Y f) +Yf)YJ))].	
(3.121)

The second of these arises from terms such as 	 where i1 ,i2 represent level-

1 units in different level-L blocks. Such terms, though zero in expectation, still have

variances and a covanance. Neglecting sampling error in V, we replace the product

z (v ® v)' E[(Y -	 - z o)nIx, z,v](v ® z

in (3.119) by the H x H matrix
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T

R	 I Z " (V® v) 1 vec(, ) - I))Jz(v® V' vec( 0,3 - Vi,))]	
(3.122)

L

	

JL' 'L 
[[Zr(V® v) ' VCC(Y(J)Y) 

+	 J] 1
+	

vec(J)t.)	 )]J
j1 Jaj+1

and for each h,h' E {1,2,. . ,H) we have

R =[Z(V®V)1 VeC(YO)Y ) _V(11))Jzw(v®v) VeG(YU)Y) _,)]T

ir
JI 1 Ji iL	

(v®v) VeC(Y(J)Y(f)+Y(f)Y,))]

+	
(v ® V) VeC() + Y)Y)) }

f=I j'=j+I

=	 -	 -

1jI "2	 a a	 a	 a	 a A	 a	 a

+ Y(f)Y(J))V ]tr[Zkv (Y(J)Y(f) + YU.)Y(J))V]
3 Ij j+1

= .'	
-	

][z;v'(U)) -

(3.123)

since Z, Z., and V' are block-diagonal.

Adopting the approach used for the fixed parameters in Section 3.7.2, we seek a

matrix , based on R and suitably adjusted, so that we can write

fl côv(ÔIz,z,V) =
	 (3.124)
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The final expression for R. in (3.123) is the sum of products of traces. It is

appropriate to adjust each trace by removing measurement error variances and

covariances since this is done in the estimation of 0. Errors that remain will in

expectation generate variances and covariances when the traces are multiplied

together, but these properly form part of the covanance matrix of 0.

Consider, therefore, the expression

(3.125)
L tIl ZkV ((J)) - v)vJ.

L

By definition,

L	 p+q-1

=	 cTZ3 (J)Z4 (f).
J:8cBj z,4=p

(3.126)

Using the notation of(3. 108) and writing j, a(Jj,	 s (jj, we have:

L	 pfql

= !(2 - a4	 &? tr[(zz + zbz)v'zPzv'}
i,=i Ja:8B	 =1

(3.127)

ow suppose that, for given k,k' €{1,2,...,H) ,	 9k' o. We define

	

GObk	 (2 - 8f k )(fr Sh +Pabs&,)'
	 (3.128)

	

e *	^1t), etc.

rhen
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(3.129)
-

(2_&4P +Fba 	 9k(Gabk bth)].

We now write the (h,h') the element of S as:

-.	 1	 (3.130)

k=I

f-	
+F	 0k(Gc* +&.)]

k=I	
f

where the subscriptsj indicate that the square brackets are to be evaluated for the jth

evel-L block. This estimator ignores sampling error in ', that is, in the current

stimators of the random parameters. With no error in X, Y, or 4 the expectation in

:3.119) n be written:

E[{Y'* — zö +z(o _o)}{ —zè +z(ê _o)} T]	 (3.131)

= E[(Y - ZOXY - ZO)] + E{z(O - o)(e - o)TzT].

3iven an estimator fi côv(Ô), initially set to zero, we adjust the expression for ,,,

n (3.130) by adding the quantity

+Gb4	 +&.J,	 (3.132)

k=I

nd a new adjusted sandwich estimator of the covariance matrix of the IGLS

stimators 0 follows from (3.124) by iteration.

or the RIGLS estimators we write, instead of (3.130):
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S,,h.	 (28abX28c1J)
	

(3.133)

+Fba; +	 trs(1airs +PbaJ.․)	 k(Gabk 1Gb*)]
L	 rs=O	 k1

j=1 x[ftCd	
'dc + JAr.s (Itir'z' +P)— k'(O. +O.)]

the further adjustment for sampling error in is, as before, to add the expression

3.132).
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L9 Summary

n Section 3.4 we showed how the classical model of measurement error, defined in

hapter 2, could be extended to model more complicated error variance and

ovariance structures, such as those arising in multivariate multilevel models. We used

n educational example to show how these error structures might arise in practice.

Ehis led us to define in Section 3.5 a multilevel model in which the response was the

urn of m variates, m ^ 1, with m =1 representing the univariate case.

n Section 3.6 we defined the error variance and covariance vectors (the C vectors) to

e used to speci1r to the estimation procedure the prior values of the error variances

nd covariances. We also gave the convention to be followed when spedil'ing cross-

vel covariances (which occur, for example, when a variable and its aggregate are

oth present). In multivariate models the error covariances between dummy variables

enerated from the same explanatory variable can have a complex structure. The error

ariances and covariances used in the estimation are held in what are termed error

roduct matrices (the M matrices), and we showed how to derive these from the C

ectors. The required adjusted product matrices (the N matrices), being estimators of

ross-product matrices of true values of the variables, then followed.

ri Section 3.7 we showed how to use the M and N matrices to derive an IGLS

stimator of 3, using a weight matrix V' containing no measurement error, subject to

ie assumptions which we summarised in Section 3.7.4. We also derived an adjusted

indwich estimator of cov(J), conditional on the true values of the variables, and

irther corrected for sampling error in t3. There are a number of possible choices for
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. OLS estimation is provided by v = I, and what we have termed 'purged-V'

stimation by removing from the current estimator V (see equation 3.56) all terms

ontaithng measurement error. Although we did not give details, it would be quite

traightforward to enable the user to speci1r a weight matrix.

rhe reason for using an error-free weight matrix V', rather than the unbiased

stimator	 derived from V by removing error variances and covariances, is that in

my given case ' will still contain errors of measurement which covary with the

errors of measurement remaining in the N matrices in the expression for 13. Although

t is possible to remove these (up to, say, 4th moments) the procedure for doing so,

which we indicated in Section 3.7.1, is complex, and subject to further assumptions

hat would need to be tested.

ñ Section 3.8 we derived IGLS and RIGLS estimators of the random parameters 0

nd corresponding adjusted sandwich estimators of cov(0), the latter corrected also

br sampling error in Ô, again using a weight matrix based on V'.

We have not demonstrated the consistency of any of these estimators, and there are

urther adjustments that we have indicated but not pursued. In the next chapter we

xplore for some simple models how well the estimators that we have defined perform

ri practice.
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For convenience, we now summarise the steps for IGLS estimation in the general case:

1. Using the C vectors specified by the user, form M and N matrices for the

explanatory and response variables as defined in Section 3.6.

2. With V = I,, use equations (3.74) and (3.75) to form OLS estimates of the fixed

parameters 3.

3. Using the existing estimates of , form the M and N matrices that concern

residuals.

4. Use equations (3.80) and (3.88), with A =0 as input, to form an initial estimate of

A cov(1x,v).

5. Again with V = 'N' use equations (3.1 13)-(3. 115) to form OLS estimates of the

random parameters 0, and equations (3.124), (3.128), (3.130), and (3.132) with

fi =0 as input, to form an initial estimate of H cov(Otx, z,V).

6. Using the existing estimates of 0, form V as defined in (3.56). Then remove all

terms containing measurement error to form V.

7. Use equations (3.74), (3.75) to form a new estimate of f; form new versions of

the M and N matrices for the residuals; use (3.80) and (3.88), with the existing

estimates A, as input to (3.88), to form a new estimate of A.

3. Use equations (3.1 13)-(3. 115), (3.124), (3.128), (3.130), and (3.132), with the

existing estimates 4k' as input to (3.132), to form new estimates of 0 and H.
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. Repeat steps 6 to 8 until a convergence criterion is met, for example, that current

estimates of all parameters are within 1% of the previous estimates.

[0. Iterate equation (3.88) until convergence to form a final estimate of A.

11. Iterate equation (3.130), with the addition of (3.132), until convergence to form a

final estimate of H.

['his method yields what we have termed purged-V estimators. These are true IGLS

stimators for the case where there is no measurement error in the random part of the

nodel, for example, the case of simple variance components. OLS estimators are

)btalned by executing steps 1,2, 3,4, 10, and 11.
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4 Simulation studies

4.1 Introduction

The estimation algorithm developed in Chapter 3, with limitations which we shall

describe, has been implemented as a suite of macros to be executed by the program

MLwIN (Goldstein et a!., 1998). An earlier algorithm, suitable for estimating models

with no error in the random part explanatory variables (and with other restrictions

which we do not describe here), has been implemented in MLn, Version 1 .OB (B.asbash

and Woodhouse, 1996). That version conditions on the observed values of variables

when estimating covariances of the parameter estimators. It has been summarised by

Goldstein (1995, Appendix 10.1).

The limitations of the new implementation are as follows. Only IGLS, and not RIGLS,

estimation of the random parameters has been implemented. Secondly, estimation of

the covariances of the parameter estimators has been implemented only for models

with no error in the random-part explanatory variables. Thirdly, the covariances for

the random parameters are not adjusted for sampling error in the random parameter

estimators: the expression in (3.130) for SM, is used without the addition of the

expression in (3.132). Thus we may anticipate some bias in the estimates we obtain for

the random parameters and for their standard errors.

The macros were designed to handle arbitrary numbers of levels and to be easily

enhanced, for example to incorporate RIGLS estimation and the procedures outlined in

Sections 3.7.1 and 3.7.3 and their analogues for the random parameters. The macros

are not pre-compiled but interpreted during execution by ML wiN. In consequence they
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run rather slowly, and simulation studies have been more limited in scope than would

have been ideal. The purpose of the simulations has been to indicate the general

behaviour of the estimation procedure under conditions frequently met in practice, and

to explore whether it offers a sound basis for further development. The simulations

have also shown the effects on the model estimates of ignoring measurement error

when it is present.

The models described in this chapter are as follows:

i. a 2-level variance components model with one predictor with measurement error at

level 1 and one other continuous level-i predictor (see Section 4.2.1),

ii. a 2-level variance components model with two predictors with measurement error,

one at level 1 and one (correlated) at level 2, and one other continuous level-i

predictor (see Section 4.2.2),

iii. a 2-level random coefficient model with one predictor with measurement error at

level 1 and a coefficient random at level 2, and one other level-i predictor (see

Section 4.3).

The data sets for all the simulation studies were balanced, and contained 30 level-2

units each with 20 level-i units. With this size of data set the estimation of a simple

model using the macros takes between 20 and 30 minutes on the fastest available

machine (300MHz Pentium Pro). Simulation for larger data sets with the current

implementation is not feasible on the present generation of personal computers.

In the descriptions of the models in this chapter we use j to index a level-2 unit.

Whenever the context requires it, level-i unit i is assumed to belong to level-2 unitj.
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Superscripts (1) and (2) indicate the level of a random parameter, and these

superscripts are applied also to the corresponding random variables.

4.2 Variance components models

For variance components models with univariate response and no error in the response

variable the parameter estimates given by the new macros are the same as those given

by the MLn implementation (version l.OB, Rasbash and Woodhouse, 1995). The

weight matrix 	 in this case is already free of measurement error, and action such as

'purging' or replacement by the identity matrix, as described in Sections 3.7.2 and

3.7.4, is unnecessary.

The new macros differ in the estimation of the standard errors of the parameter

estimates. Thus, for the two models described in this section, we used MLn directly to

study the characteristics of the estimates themselves, including their empirical standard

deviations. Then the macros were used in a more limited simulation to obtain mean

values of the sandwich estimates of the standard errors and compare these with the

empirical standard deviations from the simulation with ML,z. Two sets of standard

error estimates for the fixed parameters were compared, one set including the

correction for sampling error in 13 given in equation (3.88) - these are termed

sandwich corrected - and the other not including that correction - termed sandwich,

uncorrected. We also compared the standard error estimates obtained using MLn,

which as we indicated earlier are conditioned on the observed values of the variables.

These estimates are based on model estimators of cov(y) and cov(y) and we term

them model-based standard errors.
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We carried out analyses using measurement error variances r equal to 0%, I 0%,

20%, and 30% of the total variance of the variable with error.

4.2.1 The simplest case

The first model to be studied was

= fl0r0 + /31x1, + /32x2,, +	 +
	 (4.1)

var(e'j) = oj, var(c3) =

where ; = 1 is constant, x is the true value for unit i of X 1 , a level-i variable

measured with random error distributed as N(0, and x2, is the true value for unit i

of 12, a level-i variable measured without error. The designed values of

fl0 fi1, and /2 were each 1. The designed value of a was 5, and that of a was

1.

True values i and 12 were formed by generating two independent samples of 600

from N(0,l). These values remained the same throughout the simulation for this

model. To estimate the parameters and obtain empirical standard deviations of the

estimates we used the following scheme.

For a given measurement error variance r,

1. form the error variance vector C as a column containing 600

copies of r,

2. take an independent sample of 600 from N(0, z-) and add to ; to

form X1,

3. take an independent sample of 600 from N(0,5) for the e, and

one of 30 from N(0,1) for the c3,
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4. for each i generate YE by adding to the fixed linear predictor

+ x1,, ^ x2 , the appropriate member from each set of random

variables e' and e3,

5. estimate the parameters of model (4.1) using x, = 1, X 1 , and '2 as

explanatory variables and y = {y } as the response, using C to

adjust for the measurement error in X 1 , as described in Chapter 3

and summarised in Section 3.9,

6. repeat steps 2 to 5 a total of 10,000 times, and calculate the mean

and standard deviation of each parameter estimate over these 10,000

replications.

The bias and mean squared error statistics that we tabulate below are in relation to the

designed values. Finally, we estimated model (4.1) over 200 repetitions of steps 2 to 5

to obtain similar statistics for the standard errors of the estimators, using the empirical

standard deviations from the first set of simulations as the basis for comparison.

Error variances approximately 10%, 20%, and 30% of the total variance of X were

specified by setting zj equal to .}, ., and , respectively. If we define the reliability

R1 of X1 as the ratio of the variances of; and X1 , these values of r correspond to

values of R approximately 0.9, 0.8, and 0.7, respectively.

We report first on the parameter estimates and then on the standard errors. Table 4.1

summarises the parameter estimates obtained with X1 =;, that is, R1 =1.0. Recall

that these estimates were obtained using MLn.
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Table 4.1	 Parameter estimates for model (4.1).
R1 = 1.0.

	designed	 mean	 relative	 relative	 bias2

	

_________	 value	 estimate	 bias RMS error	 MSE

	

p0	 1.000	 0.997	 —0003	 0.202	 0.000

	

p1	 1.000	 1.001	 +0001	 0.097	 0.000

	

fl2	 1.000	 1.000	 —0.000	 0.088	 0.000

	

1.000	 0.960	 —0.040	 0.317	 0.016

	

5.000	 4.982	 —0.004	 0.059	 0.004

as a proportion of the designed value

(We display values to at least 3 d.p. in most tables in order to illustrate patterns of

behaviour of the adjusted estimates as measurement error increases.) We note the

relative bias —0.040 in the estimate of the Ievel-2 intercept variance, which is

characteristic of the IGLS estimation procedure when applied to a data set of this size.

This bias is corrected (to —0.003) for this data set by the RIGLS procedure of MLn.

Table 4.2 compares the estimates for model (4.1) that were obtained by repeating steps

2to5200tiznesfor	 , ( R1 a0.9, 0.8, 0.7)butwithnoadjustmentforthe

measurement error variance of X1 . Note that with relatively few repetitions the mean

values of the residual variances actually achieved in the simulated data, which we have

labelled 'designed value', differ somewhat from 1 and 5 respectively.

The main purpose of the table is to illustrate the biases in the estimates of /1, the

parameter associated with the variable with error, which are similar to those expected

in the single-level case. We note also a corresponding increase in the estimated

99



residual variance at level 1. Estimates of the other parameters are affected only

slightly.

Table 4.2	 Unadjusted parameter estimates for model (4.1).
R1 = 0.9,0.8,0.7. 200 replications.

	designed	 mean	 relative	 relative	 bias2

	

________	 value	 R	 estimate	 bias' RMS error'	 MSE

	

fi0	 1.00 0.9	 1.02	 +0.02	 0.23	 0.01

	

0.8	 1.03	 +0.03	 0.23	 0.01

	

_________ ________ 0.7	 1.03	 +0.03	 0.23	 0.02

	

p1	 1.00 0.9	 0.88	 -0.12	 0.15	 0.63

	

0.8	 0.78	 -0.22	 0.24	 0.87

	

________ _______ 0.7	 0.67	 -0.33	 0.34	 0.94

	

fi2	 1.00 0.9	 1.01	 +0.01	 0.10	 0.02

	

0.8	 1.02	 +0.02	 0.10	 0.03

	

________ _______ 0.7	 1.02	 +0.02	 0.10	 0.03

	

1.02 0.9	 0.98	 -0.05	 0.33	 0.02

	

0.8	 0.97	 -0.05	 0.33	 0.02

	

_________ ________ 0.7	 0.97	 -0.05	 0.33	 0.02

	

4.97 0.9	 5.05	 +0.02	 0.06	 0.07

	

0.8	 5.15	 +0.04	 0.07	 0.26

	

_________ ________ 0.7	 5.24	 +0.05	 0.08	 0.45

'as a proportion of the designed value

Table 4.3 surnmarises the parameter estimates obtained for decreasing values of the

reliability R, using the procedure described in steps 1 to 6 above. The biases in the

estimates of /3 and c,rj are almost fully corrected. The bias in & remains, but is

no greater than for the case = LO. There are slight increases in the RMS errors of

the estimates reflecting increasing uncertainty as measurement error increases. For

each estimate the squared bias remains a very small proportion of the mean squared

error throughout this range of measurement error variances.
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Table 4.3	 Adjusted parameter estimates for model (4.1).
R1 = 0.9,0.8,0.7.

k 2
designed	 mean	 relative	 relative	 VIS

	value R estimate	 bias RMS error	 MSE

	

1.000 0.9	 0.998	 -0.002	 0.203	 0.000

	

0.8	 0.997	 -0.003	 0.203	 0.000
________ ________ 0.7	 0.997	 -0.003	 0.204 0.000

p1	 1.000 0.9	 1.001	 +0.001	 0.104	 0.000

	

0.8	 1.002	 +0.002	 0.113	 0.000
_______ _______ 0.7	 1.003	 +0.003	 0.124 0.000

fi2	 1.000 0.9	 1.000	 -0.000	 0.089	 0.000

	

0.8	 1.000	 -0.000	 0.091	 0.000
________ ________ 0.7	 1.000	 -0.000	 0.092 0.000

	

1.000 0.9	 0.960	 -0.040	 0.319	 0.016

	

0.8	 0.959	 -0.041	 0.321	 0.016
________ ________ 0.7 	 0.959	 -0.041	 0.324 0.016

	

5.000 0.9	 4.982	 -0.004	 0.060	 0.004

	

0.8	 4.98 1	 -0.004	 0.062	 0.004
________ ________ 0.7 	 4.978	 -0.004	 0.064 0.005

a proportion of the designed value

The achieved variance t of the measurement errors sampled at step 2 in each

replication itself varies about the designed value r. We should expect from the

results in Table 4.2 that the estimator fi1 should be negatively correlated, and &j

positively correlated, with the achieved measurement error variance for a given value

of r. The estimator & is affected also by the achieved variance of the values e)

sampled at step 3 of the scheme, so in Table 4.4 we correlate the biases in the

estimators, which we denote by /3 and j.
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Table 4.4	 Correlations between the estimator biases fi1 and	 and

the achieved measurement error variance ti'. Model (4.1).

	___________	 R=0.9	 R=0.8	 R=0.7

	

coi-r(, ,t)	 0.06	 0.13	 —021

	

COIT(C4,l)	 +0.08	 +0.13	 +0.18

	

corr(fi1,&)	 —022	 0.37	 —0.49

The results confirm our expectations.

We turn now to the estimates of the standard errors of the parameter estimators.

Tables 4.5 to 4.7 summarise these for the case 	 = LO. For the fixed-parameter

standard errors we compare the model-based estimators provided by MLn with two

forms of sandwich estimator, one of them corrected for sampling error in (I using

equation (3.88), the other uncorrected. The corresponding correction for the random-

parameter standard errors, given in equation (3.132), was not implemented, so for

these we compare the model-based estimators with the uncorrected sandwich

estimators. The 'empirical s.d.' for a given standard error estimate is the standard

deviation over 10,000 replications of the corresponding parameter estimate.
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Table 4.5	 Standard error estimates for model (4.1). R1 =1.0.
Model-based.

	

empirical	 mean	 relative	 relative	 bias2

	

_________	 s.d.	 estimate	 bias'	 RMSE'	 MSE

s e

	

	 0.202	 0.200	 -0.009	 0.135	 0.005
.v.,o J ______ ______ _______ ________ _____

	

0.097	 0.096	 -0.009	 0.030	 0.097

	

1" \	 0.088	 0.088	 -0.001	 0.028	 0.002s.e.fl2,

	0.315	 0.315	 +0.001	 0.270	 0.000

	

0.294	 0.293	 0.001	 0.058	 0.000

'as a proportion of the empirical s.d.

Table 4.6	 Standard error estimates for model (4.1). R1 =1.0.
Sandwich, uncorrected.

	

empirical	 mean	 relative	 relative	 biaS2

	

_________	 s.d.	 estimate	 bias'	 RMSE	 MSE

	

( \	 0.202	 0.200	 -0.009	 0.135	 0.005

	

S.	 __________	 __________	 ___________

	

s.e.(Jij)	 0.097	 0092	 0.051	 0.135	 0.144

	

0.088	 0.086	 0.029	 0.135	 0.046

	

0.315	 0.289	 0.083	 0.316	 0.068

	

0.294	 0.285	 0.028	 0.153	 0.034

'as a proportion of the empirical s.d.
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Table 4.7	 Standard error estimates for the fixed parameters of model (4.1).
=1.0. Sandwich, corrected.

	empirical	 mean	 relative	 relative	 bias2

	

_________	 s.d.	 estimate	 bias'	 RMSE'	 MSE

( \	 0.202	 0.204	 +0.008	 0.137	 0.003a. e.kpoJ ___________ ___________ _____________ ______________ _________

	

0.097	 0.094	 —0.033	 0.131	 0.064

	

0.088	 0.088	 —0.009	 0.135	 0.005S. e.1.F2)

'as a proportion of the empirical s.d.

The uncorrected sandwich estimates in Table 4.6 matched those obtained using MLn

directly with IGLS estimation of the parameters and sandwich estimation of the

standard errors. In other words, when there is no measurement error, the sandwich

estimation method of the macros, uncorrected for sampling error in the parameter

estimates, gives the same results as MLn. Table 4.6 confirms the expected downward

bias in that estimate of s.e.(&). Correction for sampling error in reduced the

negative bias in the sandwich estimate of all fixed-parameter standard errors, as is

shown in Table 4.7. (This procedure was not implemented for the random-parameter

standard errors.) The model-based estimators appear to perform somewhat better for

these data than the sandwich estimators, which generally are downwardly biased. The

data in this case were constructed in such a way that the distributional assumptions

underlying the model-based estimators were correct. Moreover, the tabulated

estimates are based on only 200 replications. In particular, in the absence of

measurement error the model and the data are symmetrical in /J and /2 and there is

no reason to expect a significant difference in the estimates of their standard errors.
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Tables 4.8 to 4.10 summarise the standard error estimates of each type, for increasing

levels of measurement error in X1.

Table 4.8	 Standard error estimates for model (4.1). R1 = 0.9, 0.8, 0.7.
Model-based.

	empirical	 mean	 relative	 relative	 bias2

	

_______ ____ - s.d. estimate	 bias RMSE	 MSE

(fr \ 0.9	 0.203	 0.201	 -0.009	 0.135	 0.005
.	 J	 0.8	 0.203	 0.201	 -0.010	 0.135	 0.005

________ 0.7	 0.204	 0.202	 -0.010	 0.136	 0.005

s e (fr	 0.9	 0.104	 0.108	 +0.040	 0.053	 0.559
" '/	 0.8	 0.113	 0.122	 +0.080	 0.092	 0.750

________ 0.7	 0.124	 0.137	 +0.110	 0.126	 0.758

(fr	 0.9	 0.089	 0.089	 -0.001	 0.028	 0.000
" /	 0.8	 0.091	 0.090	 -0.000	 0.028	 0.000

________	 0.7	 0.092	 0.092	 -0.001	 0.028	 0.001

0.9	 0.316	 0.318	 +0.005	 0.270	 0.000
0.8	 0.3 18	 0.320	 +0.005	 0.272	 0.000

________	 0.7	 0.321	 0.322	 +0.003	 0.271	 0.000

0.9	 0.300	 0.301	 +0.003	 0.058	 0.003
0.8	 0.308	 0.309	 +0.003	 0.058	 0.002

________ 0.7	 0.319	 0.319	 +0.000	 0.056	 0.000

as a proportion of the empirical s.d.
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Table 4.9	 Standard error estimates for model (4.1). R1 = 0.9,0.8,0.7.
Sandwich, uncorrected.

	empirical	 mean	 relative	 relative	 bias2

	

_________	 R1	 s.d. estimate	 bias	 RMSE	 MSE

	

s e ( \ 0.9	 0.203	 0.201	 -0.010	 0.135	 0.005
	0.8	 0.203	 0.201	 -0.010	 0.135	 0.006

	

________ 0.7	 0.204	 0.202	 -0.010	 0.135	 0.006

s e (	 0.9	 0.104	 0.099	 -0.051	 0.134	 0.146

	

k '1	 0.8	 0.113	 0.107	 -0.049	 0.132	 0.138

	

________	 0.7	 0.124	 0.118	 -0.047	 0.133	 0.127

	

s e ( \ 0.9	 0.089	 0.087	 -0.029	 0.135	 0.045
	1 2/	 0.8	 0.091	 0.088	 -0029	 0.135	 0.046

	

________ 0.7	 0.092	 0.089	 -0.029	 0.135	 0.047

	

s.e.(5) 0.9	 0.316	 0.291	 -0.081	 0.316	 0.066

	

0.8	 0.318	 0.293	 -0.081	 0.315	 0.065

	

________ 0.7	 0.321	 0.295	 -0.080	 0.315	 0.065

	

(u)\ 0.9	 0.300	 0.292	 -0.026	 0.154	 0.028.1000,'	 /	 0.8	 0.308	 0.300	 -0.025	 0.155	 0.026

	

_________ 0.7	 0.319	 0.311	 -0.025	 0.155	 0.026

•as a proportion of the empirical s.d.

Table 4.10 Standard error estimates for the fixed parameters of model (4.1).
R1 = 0.9,0.8,0.7. Sandwich, corrected.

	empirical	 mean	 relative	 relative	 bias2
_________ _____	 s.d. estimate	 bias RMSE	 MSE

	

s e (fr \ 0.9	 0.203	 0.204	 +0.007	 0.137	 0.003

	

0/	 0.8	 0.203	 0.205	 +0.007	 0.137	 0.003
________ 0.7	 0.204	 0.205	 +0.007	 0.137	 0.003

	

s e (fr \ 0.9	 0.104	 0.101	 -0.032	 0.130	 0.062

	

1 '/	 o. g	 0.113	 0.109	 -0.030	 0.128	 0.054
________ 0.7	 0.124	 0.120	 -0027	 0.130	 0.044

s e	 \ 0.9	 0.089	 0.088	 43.009	 0.135	 0.004

	

- 1 2/	 0.8	 0.091	 0.090	 -0.009	 0.135	 0.004
________ 0.7	 0.092	 0.091	 -0.009	 0.135	 0.004

as a proportion of the empirical s.d.
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The empirical standard deviations of all parameter estimators increase with increasing

measurement error, as we should expect, and this effect is seen to be most marked for

/1 which is associated with the variable with error. In Table 4.8 we see also

progressive over-estimation of s.e.(fl) by the model-based procedure of MLn,

resulting from the assumption of fixed observed values X1 . The biases in each of the

sandwich estimators remain virtually unchanged across the range of measurement error

variances we have considered, and the correction for sampling error in J appears to

give satisfactory estimates for the fixed parameter standard errors. The biases in the

sandwich standard error estimators for the random parameters appear to be unaffected

by measurement error in this range.

Another measure of the performance of a standard error estimator in simulation is the

proportion of replications in which a coverage interval around the parameter estimate

constructed using the estimated standard error contains the true value of the

parameter. Table 4.11 provides this information for the corrected sandwich estimators

of the fixed parameter standard errors, based on 200 replications.

Table 4.11 Proportion of 200 trials in which true values of fixed parameters
lay within ±2 estimated standard errors of their estimates.
Model (4.1). Sandwich standard errors, corrected.

_________	 =1.0	 = 0.9	 = 0.8	 = 0.7

P0	 0.920	 0.920	 0.920	 0.920

P1	 0.940	 0.935	 0.930	 0.930

0.920	 0.925	 0.930	 0.930
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Although apparently somewhat low, these proportions are based on only 200 trials.

There is no evidence of substantial deterioration in performance on this indicator as

measurement error increases.

4.2.2 Errors at Level 2

The second model to be studied was:

y, = fl0x0 +/Ix, +fi2x +fi3x3 +	 +	 (4.2)
- (2)var(4) = cr, var(ej) - cr,

which is model (4.1) with the additional predictor i, defined at level 2. The variable

13 is the true level-2 unit mean on;. It is measured by X 3 where, for givenj, X31

is the mean of the values X over the sample units I which belong to level-2 unitj. In

this situation X 3 is subject to error from two sources: first, the measurement error in

X1 , and second, sampling error. Thus model (4.2) is similar to model (3.9), with an

additional level-i predictor. In particular, the errors in X 1 covary with those in X3.

The designed values of /0, /3k , and /32 were each 1, and that of fi was —0.3. The

designed values of o and a were 0.3 and 0.06, respectively. These values are of

a similar order of magnitude to those for model (5.1), which we use for the substantive

application in Chapter 5.

The x were formed by first sampling 600 values independently from N(0,i), then

adding level-2 variance 0.125 by sampling 30 values independently from N(0,0.125)

and adding the appropriate value from this set to each x. This ievel-2 variance

proportion also is similar to that of the data for model (5.1). The values 2 were

generated as in the data for model (4.1). For 13 the diflculty arises that if; and 13
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remain fixed in repeated sampling then any sampling error in X3 also remains fixed.

To avoid possible resulting bias in the estimation we adopted the following scheme.

For each j c (1,2,...,30}, 13, , was calculated as the mean of the x 1 for i €B 2 : thus,

for the purpose of generating the y, , we assumed that our sampled values of x gave

an accurate estimate of the corresponding level-2 means, that is, the sampled members

were assumed for this purpose to be perfectly representative of their respective level-2

units. The values 11 , 12, 13 , and hence the linear predictor of y, remained the same

throughout. For each j E {1,2,. . .,30}, random 'sampling error' was added to x 31 to

simulate the error that would occur in a 50% simple random sample without

replacement (SRSWOR) from a level-2 unit of total size 40. The method we used was

2 40-20 2 =fi_andc2to take a random sample of 30 from N(0,z), where 2 = 2(401)cI 39

was the within-level-2-unit variance of the x1 ,, assumed constant and estimated as

0.931. Random measurement errors were then added to the ; and their level-2 unit

means added to

Specifically, after formation of the values x, 12, and 13 as above, the procedure

followed for each measurement error variance r E	 was:

1. form the error variance vectors C, C and the error covariance

vector C2 such that for each i, C = v,	
- 20'13

C'2 - +	 where the latter two expressions are derived from
39'

equations (3.12) and (3.13),
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2. take an independent sample of 30 from N(0, r) as above to form

sampling errors v,,

3. take an independent sample of 600 from N(0, r) and add to; to

form X,,

4. for each j € (1,2,... ,30}, calculate the mean p, of the

measurement errors sampled for the fib level-2 unit and form

= ;J +p + v1,

5. take an independent sample of 600 from N(0,03) for the e'j, and

one of 30 from N(0,0.06) for the s,

6. for each i generate y, by adding to the fixed linear predictor

+ + x - 03; the appropriate member from each set of

random variables e'j and e,

7. estimate the parameters of model (4.1) using x =1, X1 , 12, and

X3 as explanatory variables and y = j) as the response, using

C, C, and C to adjust for the measurement error in X1 and

the measurement and sampling error in X3 , as summarised in

Section 3.9,

8. repeat steps 3 to 7 200 times, and calculate the mean and standard

deviation of each parameter estimate over these 200 replications,

9. repeat steps 2 and 8 200 times, and calculate the grand mean and

the mean standard deviation of each parameter estimate over the 200

distinct realisations of the sampling errors.

This 'nested loop' gave 200 realisations of the 'sampling errors' in X3 via step 2. For

each such realisation 200 sets of measurement errors were generated for X1 and X3 in

steps 3 and 4, and 200 sets of residuals in step 5 for addition to the fixed linear
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predictor to form y in step 6. Thus, in all, 40,000 replications of the data were

generated for each value of r and analysed at step 7. Bias and mean squared error

statistics for the parameter estimators were calculated for each realisation of the

sampling errors, using for comparison the designed values of the fixed parameters and

the mean achieved values of the variances o and a over the 200 replications for

that realisation. These statistics then were averaged over the 200 realisations of the

sampling errors, and it is these averages that are tabulated.

The point of this scheme was to simulate the variation that would occur in repeated

sampling keeping fixed x1, 2' and x, and hence also the sampling error in X3,

without incurring the risk of bias from using only a single set of sampling errors. An

alternative strategy would have been to form an initial 'pooi' of 1,200 values in 30 sets

of 40, from which to take 50% samples for the x. This, however, would have

entailed forming a new linear predictor for each such sample. Although this scheme

would have mirrored the practical application of model (4.2) more accurately, we took

the view that it might introduce unwanted uncertainty into the error variances and

covariances actually realised in the simulated data. Since our concern was to evaluate

the performance of the estimation procedure in the presence of known error variances

and covariances we preferred the former scheme.

For the estimated standard errors we carried out a separate series of estimations. For

each measurement error variance r 	 step 1 above was performed,

followed by 200 repetitions of steps 2 to 7. Thus, to obtain statistics for the estimated

standard errors, we used a single set of measurement errors and residuals for each

realisation of the sampling errors. Each realisation of the sampling errors in the first
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set had yielded an empirical standard deviation for each parameter estimator. The

means of these empirical standard deviations over the 200 realisations of the sampling

errors in the first set were used as true values in the calculation of bias and mean

squared error statistics for the standard error estimators in the second set.

Table 4.12 summarises the estimates obtained for model (4.2) with no measurement

error and no sampling error in the data.

Table 4.12 Parameter estimates for model (4.2).
R1=1.O. No sampling error.

	designed	 mean	 relative	 relative	 bias2

	

________	 value	 estimate	 biass	 RMS error*	 MSE

fi0	 1.000	 1.000	 -0000	 0.050	 0.004

	

1.000	 1.000	 -0.000	 0.024	 0.005

P2	 1.000	 1.000	 -0.000	 0.022	 0.006

p3	 -0.300	 -0.300	 -0.001	 0.391	 0.005

	

0.060	 0.055	 -0.083	 0.323	 0.068

	

0.300	 0.299	 -0.003	 0.059	 0.004

as a proportion of the designed value

Note again the negative bias in the IGLS estimate of cr.
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Table 4.13 shows the effect on these estimates of the addition of sampling error and

measurement error, when no adjustment for these is made.

Table 4.13 Unadjusted parameter estunates for model (4.2).
R1 =1.0,0.9,0.8,0.7. Sampling error as for 50% SRSWOR
from each level-2 unit. 200 replications.

	designed	 mean	 relative	 relative	 bias2

	

value	 estimate	 bias' RMS error'	 MSE

	

1.00	 1.0	 1.00	 +0.00	 0.05	 0.00

	

0.9	 1.00	 1-0.00	 0.05	 0.00

	

0.8	 1.00	 +0.00	 0.05	 0.00

	

_________ ________	 0.7	 1.00	 +0.00	 0.05	 0.00

p1	 1.00	 1.0	 1.00	 -0.00	 0.02	 0.00

	

0.9	 0.89	 -0.11	 0.12	 0.95
	0.8	 0.79	 -0.21	 0.21	 0.99

	

_________ ________	 0.7	 0.68	 -0.32	 0.32	 0.99

fi2	 1.00	 1.0	 1.00	 +0.00	 0.02	 0.01

	

0.9	 1.00	 +0.00	 0.02	 0.04

	

0.8	 1.01	 +0.01	 0.03	 0.08

	

_________ ________	 0.7	 1.01	 +0.01	 0.03	 0.13

p3	 -0.30	 1.0	 -0.25	 -0.16	 0.38	 0.17

	

0.9	 -0.17	 -0.43	 0.56	 0.58

	

0.8	 -0.10	 -0.68	 0.77	 0.77

	

_________ ________	 0.7	 -0.03	 -0.91	 0.98	 0.85

	

0.063	 1.0	 0.059	 -0.06	 0.31	 0.03

	

0.9	 0.056	 -0.12	 0.33	 0.13

	

0.8	 0.053	 -0.16	 0.36	 0.20
_________ ________	 0.7	 0.051	 -0.19	 0.38	 0.24

	

0.30 LO	 0.30	 -0.00	 0.06	 000

	

0.9	 0.40	 +0.33	 0.34	 0.94

	

0.8	 0.50	 -1-0.66	 0.67	 0.98
_________ ________	 0.7	 0.59	 +0.98	 0.99	 0.99

'as a proportion of the designed value

The relative biases in /3 are similar to the single-level case. The estimates of fi3

become more severely attenuated, such that at R = 0.7 this estimate is less than 10%
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of its true value. There are concomitant biases in the estimates of the random

parameters.

Table 4.14 shows the average results when the same model is analysed with adjustment

for the measurement and sampling error variances, as in the procedure described

above.

Table 4.14 Adjusted parameter estimates for model (4.2).
R1 1.0,0.9,0.8,0.7. Sampling error as for 50% SRSWOR
from each level-2 unit.

relative

	

designed	 mean	 relative	 RMS	 bias1

	

value	 R	 estimate	 bias	 error	 MSE

p0	 1.000	 1.0	 0.999	 -0.001	 0.051	 0.034

	

0.9	 0.999	 -0.001	 0.052	 0.033

	

0.8	 0.999	 -0.001	 0.053	 0.031
_________ ________	 0.7	 0.999	 -0.001	 0.054	 0.029

fi	 1.000 1.0	 1.000	 +0.000	 0.024	 0.005

	

0.9	 1.001	 +0.001	 0.030	 0.005

	

0.8	 1.001	 +0.001	 0.038	 0.006
_________ ________	 0.7	 1.003	 +0.003	 0.049	 0.008

112	 1.000 1.0	 1.000	 -0.000	 0.022	 0.006

	

0.9	 1.000	 -0.000	 0.025	 0.006

	

0.8	 1.000	 -0.000	 0.029	 0.006

	

________ _______	 0.7	 1.000	 -0000	 0.034	 0.006

	

-0.300 1.0	 -0.302	 +0.006	 0.424	 0.029

	

0.9	 -0.300	 +0.001	 0.442	 0.027

	

0.8	 -0.298	 -0.006	 0.466	 0.025
	________ _______	 0.7	 -0296	 -0.015	 0.502	 0.024

	

0.060	 1.0	 0.054	 -0.091	 0.334	 0.077

	

0.9	 0.054	 -0.095	 0.348	 0.078

	

0.8	 0.054	 -0101	 0.364	 0.080

	

________ _______	 0.7	 0.053	 -0.108	 0.385	 0.082

	

0.300 1.0	 0.299	 -0.003	 0.059	 0.003

	

0.9	 0.299	 -0005	 0.082	 0.006

	

0.8	 0.298	 -0.007	 0.110	 0.008

	

________ _______	 0.7	 0.297	 -0011	 0.145	 0.010

as a proportion of the designed value
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The biases in the fixed parameter estimators are virtually eliminated as is the bias in

&. The downward bias in & increases from approximately 8%, its value when

there is no error in the data (see Table 4.12), to approximately 11%. It would be

worth while to investigate the extent to which a RIGLS procedure could reduce this

bias. We note again the progressive increases in the relative RMS errors of all

estimators. The proportion of mean squared error accounted for by squared bias

remains small except in the case of &, where it remains roughly constant at 8%.

We now tabulate the correlations, that are of interest, among the parameter estimator

biases and between these and the achieved values of the measurement error variances.

We use t to denote the achieved measurement error variance at level 1 and 1 for the

achieved total of measurement error and sampling error variance at level 2, and as

before we denote parameter estimator biases by a tilde. For t we show in Table 4.15

the correlations within a realisation of the sampling errors, averaged over the 200

realisations. For 1 we show in Table 4.16 the correlations across these 200

realisations between the mean biases and achieved measurement error variances for

each realisation. We omit from the tables any correlation less than 0.15 in absolute

value. On this criterion the correlations with the achieved measurement error

correlation between the two levels were not of interest.
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Table 4.15 Mean correlations between the estimator biases /3k , P
and	 and the achieved measurement error variance t,

for fixed sampling error in X 3 . Model (4.2).

___________	 R=0.9	 R=0.8	 R=0.7

	

corr(1 i 2 )	 —023	 —0.41	 0.54

	con(,t)	 +037	 +0.52	 +0.63

	

Co!T(fi1,/13)	 —0.25	 —0.30	 —0.35

	corr(1,i)	 —0.33	 0.49	 —0.61

The designed value of 	 is positive. The negative correlation between /1 and the

achieved measurement error variance 1 reflects the attenuation that occurs when

measurement error is inadequately adjusted for (and the inflation which typically arises

from over-adjustment). Within a given realisation of the sampling errors, a high value

of f, is associated with a high value of t and hence with attenuation of 83 towards

zero. Since /J3 is negative this corresponds to positive bias, hence the negative

correlation between ft1 and ft3 . Also, with ft1 >0, negative bias in its estimator is

associated with greater unexplained level-i variance. This accounts for the negative

correlation between fl and	 and the positive correlation between	 and t.

The correlations in Table 4.16 below likewise have the signs expected.
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Table 4.16 Correlations between mean estimator biases fi1, fi3, and
and the mean achieved total level-2 error variance t, over
200 realisations of the sampling error in X3 . Model (4.2).

	

____________	 =1.0	 1?, = 0.9	 = 0.8	 = 0.7

	

COff(/13,t)	 +0.39	 ^0.37	 +0.35	 ^0.33

	

corr(j,f)	 -i-0.46	 --O.44	 +0.43	 +0.41

	

corr( 1 fi)	 0.29	 028	 028	 028

	

Corr(fi3,cr4))	 +0.40	 +0.35	 +0.29	 +023

We now compare the estimated standard errors, for model (4.2) with no error in the

data, with the mean empirical standard deviations of the estimators obtained earlier.

Table 4.17 summarises the model-based estimates obtained using MLn. Table 4.18

shows the sandwich estimates, corrected for the fixed parameters in respect of

sampling error in f but not corrected for the random parameters.
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Table 4.17 Standard error estimates for model (4.2).
R1=1.O. No sampling error.
Model-based.

	mean	 relative

	

empirical	 mean	 relative	 RMs	 bias2

	

_________	 s.d.	 estimate	 bias	 error	 MSE

	

( \	 0.050	 0.049	 -0.020	 0.126	 0.025

	

S.	 ____________	 __________ ___________	 ____________	 _________

	0.024	 0.024	 -0.004	 0.031	 0.014

	

0.022	 0.022	 +0.005	 0.032	 0.026s.e.f32 j __________ _________ _________ __________ _______

	

0.117	 0.114	 -0.025	 0.121	 0.042
S.

	0.019	 0.019	 -0.004	 0.250	 0.000

	

0.018	 0.018 -	 0.005	 0.062	 0.005

as a proportion ot me mean empiricai s.o.

Table 418 Standard error estimates for model (4.2).
R1 =1.O. No sampling error.
Sandwich, corrected for sampling error for fixed parameters.

mean

	

empirical	 mean	 relative	 relative	 bias2

	

_________	 s.d.	 estimate	 bias	 RMSE	 MSE

	

( \	 0.050	 0.050	 +0.014	 0.131	 0.011

	

0.024	 0.024	 0.001	 0.134	 0.000

	

( \	 0.022	 0.022	 4-0.007	 0.134	 0.003s.e. fi11 __________ _________ _________ __________ ________

	

0.117	 0.116	 -0.007	 0.187	 0.013

	

s.e.(&j)	 0.019	 0.017	 0.069	 0.307	 0.050

	

0.018	 0.018	 0.011	 0.155	 0.005

as a proportion of the mean empirical s.d.
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As with model (4.1), the sandwich estimator of s. e(&j), which was uncorrected for

sampling error in Ô, was appreciably downwardly biased. For these data the corrected

sandwich estimators of the fixed-parameter standard errors are preferable to the

model-based estimators, even in the absence of measurement error.

Tables 4.19 and 4.20 summarise the standard error estimates of each type for

increasing levels of measurement error in X 1 , together with sampling error and

measurement error in X3.

Table 4.19 Standard error estimates for model (4.2). R1 =1.0,0.9,0.8,0.7.
Sampling error as for 50% SRSWOR from each level-2 unit.
Model-based.

mean

	

empirical	 mean	 relative relative	 biaS2
_________ ______	 s.d. estimate	 bias RMSE	 MSE

	

s e (jj \	 1.0	 0.050	 0.050	 -0.004	 0.130	 0.001

	

0/	 0.9	 0.051	 0.051	 -0.005	 0.130	 0.001

	

0.8	 0.052	 0.052	 -0.005	 0.13 1	 0.001

	

________	 0.7	 0.053	 0.053	 -0.004	 0.132	 0.001

e (fr	 1.0	 0.024	 0.024	 -0.001	 0.032	 0.002

	

1 '1	 0.9	 0.030	 0.031	 +0.020	 0.041	 0.238

	

0.8	 0.038	 0.038	 +0.004	 0.045	 0.010
_________	 0.7	 0.049	 0.048	 -0.030	 0.065	 0.212

	

e (fr \	 1.0	 0.022	 0.022	 +0.005	 0.032	 0.028

	

k 2/	 0.9	 0.025	 0.025	 +0.005	 0.030	 0.025

	

0.8	 0.029	 0.029	 +0.003	 0.026	 0.010

	

________	 0.7	 0.034	 0.034	 +0.001	 0.026	 0.000

	

1.0	 0.125	 0.132	 +0.055	 0.174	 0.101

	

-' 3)	 0.9	 0.131	 0.139	 +0.065	 0.192	 0.114

	

0.8	 0.138	 0.148	 +0.070	 0.207	 0.116

	

________	 0.7	 0.149	 0.159	 +0.070	 0.222	 0.099

	

s.e.(&)	 1.0	 0.019	 0.019	 +0.002	 0.255	 0.000

	

0.9	 0.020	 0.020	 -0.005	 0.253	 0.000

	

0.8	 0.021	 0.021	 -0.007	 0.253	 0.001

	

________	 0.7	 0.022	 0.022	 -0.008	 0.251	 0.001

	

1.0	 0.018	 0.018	 0.004	 0.062	 0.004

	

0.9	 0.024	 0.024	 -0002	 0.059	 0.002

	

0.8	 0.033	 0.033	 -0.002	 0.053	 0.001
_________	 0.7	 0.043	 0.043	 -0.002	 0.052	 0.001

a proportion of the mean empirical s.d.
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Table 4.20 Standard error estimates for model (4.2). R1 =1.0,0.9,0.8,0.7.
Sampling error as for 50% SRSWOR from each level-2 unit.
Sandwich, corrected for sampling error for flied parameters.

	mean	
.2

	empirical	 mean	 relative relative	 bias

	

_________	 R	 s.d. estimate	 bias	 RMSE	 MSE

	

s e (fr 1	 1.0	 0.050	 0.050	 +0.034	 0.140	 0.059
•	

0/	 0.9	 0.051	 0.052	 +0.033	 0.141	 0.053

	

0.8	 0.052	 0.054	 +0.033	 0.143	 0.055
	_________	 0.7	 0.053	 0.055	 +0.036	 0.146	 0.061

s e	 1.0	 0.024	 0.024	 -0.000	 0.134	 0.000•	 /	 0.9	 0.030	 0.030	 -0.005	 0.128	 0.002

	

0.8	 0.038	 0.038	 -0008	 0.131	 0.004

	

________	 0.7	 0.049	 0.049	 -0.010	 0.144	 0.005

	

s e (fr \	 1.0	 0.022	 0.022	 +0.007	 0.134	 0.003

	

2/	 0.9	 0.025	 0.025	 -0.003	 0.136	 0.000

	

0.8	 0.029	 0.029	 -0.009	 0.135	 0.004

	

________	 0.7	 0.034	 0.033	 -0.013	 0.134	 0.010

s e	 1.0	 0.125	 0.130	 +0.038	 0.210	 0.032

	

•k 3/	 0.9	 0.131	 0.135	 +0.033	 0.217	 0.023

	

0.8	 0.138	 0.143	 +0.032	 0.225	 0.020

	

_________	 0.7	 0.149	 0.154	 +0.033	 0.237	 0.019

	

1.0	 0.019	 0.018	 0.063	 0.324	 0.038

	

0.9	 0.020	 0.019	 -0072	 0.307	 0.055

	

0.8	 0.021	 0.019	 -0.074	 0.301	 0.060

	

_________	 0.7	 0.022	 0.020	 -0.073	 0.295	 0.061

	

s.e.(&j)	 1.0	 0.018	 0.018	 0.011	 0.155	 0.005

	

0.9	 0.024	 0.024	 -0.021	 0.145	 0.022

	

0.8	 0.033	 0.032	 -0.027	 0.142	 0.036

	

________	 0.7	 0.043	 0.042	 -0.030	 0.142	 0.045

as a proportion of the mean empirical s.d.
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As in model (4.1), the corrected sandwich standard error estimators for the fixed

parameters were virtually unaffected by increasing measurement error in this range,

and appear to be satisfactory. The model-based estimators, which are wrongly

conditioned, progressively over-estimated s.e.(2i3). The downward bias in the

uncorrected sandwich estimator for s.e.(&) remained at roughly 7%, which is

comparable to the bias with no measurement or sampling error obtained using MLn

directly, with IGLS estimation of the parameters and sandwich estimation of the

standard errors.

Finally in this section we show for the fixed parameters the proportion of the 200 trials

in which their true values lay within ±2 estimated standard errors of their estimates.

Table 4.21 Proportion of 200 trials in which true values of the fixed
parameters lay within ±2 estimated standard errors of
their estimates.
Model (4.2). Sampling error as for 50% SRSWOR from
each level-2 unit.
Sandwich standard errors, corrected.

=1.0	 = 0.9	 R1 = 0.8	 R1 = 0.7

P0	 0.945	 0.940	 0.940	 0.945

0.965	 0.955	 0.945	 0.925

P2	 0.960	 0.935	 0.955	 0.965

P3	 0.940	 0.945	 0.925	 0.940
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4.3 A random coefficient model

The final model to be studied was

=	 + fi1x1) +	 + $j3x0 +	 + c)x,	 (4.3)

var(i) = a, var(s 33) = o, var(]) = o, cov(e23,e)) =

where ;, x1 , and ;,, are as in model (4.1). Macros have not yet (November 1997)

been written to compute estimates for the covariances of the parameter estimators for

the random coefficients case, and for model (4.3) we record the characteristics of the

parameter estimators only.

The designed values of /0, /1, and /12 in model (4.3) were each 1. The designed

value of a was 15. The designed values of a, o, and a were 0.6, 0.7, and

-0.162, respectively, reflecting a correlation -0.25 between 4j and e. For this

model with measurement error the faster MLn implementation does not work, and

each set of statistics that we tabulate is derived from 200 replications only of the data.

(We retain 3 decimal places in most tables to illustrate patterns of change.) For each

replication the level-i residuals and the measurement errors were generated from

univariate Normal distributions with zero mean and appropriate variance. The level-2

( r 0.6 -0.1621'
residuals were generated from the bivariate distribution NO[O 162 0.7 

JJ• 
The

y were then generated by adding to the fixed linear predictor the quantity

^	 + e]x computed directly from the appropriate residuals and values

of x.
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Table 4.22 summarises the parameter estimates for this model, obtained using the

IGLS procedure of MLn with no measurement error in the data.

Table 4.22 IGLS estimates for model (4.3).
R1 = 1.0.

k 2
	designed	 mean	 s.d. of	 relative	 relative	 _____________	 value	 estimate	 estimate	 bias' RMS error'	 MSE

	

fi0	 1.000	 1.005	 0.217	 +0.005	 0.217	 0.001

	

p1	
1.000	 0.993	 0.240	 -0.007	 0.240	 0.001

	

fi2	 1.000	 1.003	 0.158	 +0.003	 0.157	 0.001

	

4>	 0.600	 0.567	 0.366	 -0.054	 0.611	 0.008

	

cy)	 -0.161	 -0.175	 0.259	 +0.087	 1.605	 0.003

	

0.705	 0.666	 0.366	 -0.055	 0.521	 0.011

	

14.973	 14.939	 0.974	 -0.002	 0.065	 0.001

'as a proportion of the designed value

Note that with only 200 repetitions the mean values of the random parameters actually

achieved in the simulated data, and which we have labelled 'designed value', depart

slightly from the true designed values. In all tables the relative bias and RMS statistics

are relative to the values of the parameters actually achieved in the data.

The standard deviations of the estimates give an empirical estimate of the standard

errors and we note, in particular, that the level-2 random parameters are imprecisely

estimated for this small data set. There are non-negligible biases, too, in these

estimators. RIGLS estimation reduces the biases in the level-2 variance estimators (to

+0.022 and +(1019 respectively), though not in the covariance estimator.

Table 4.23 compares the estimates for model (4.3) obtained for R = 0.9, 0.8, 0.7

using MLn with IGLS estimation and no adjustment for the measurement error in X1.
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Table 4.23 Unadjusted parameter estimates for model (4.3).
R1 = 0.9,0.8,0.7.

b 2
	designed	 mean	 relative	 relative	 _____

	

value	 R	 estimate	 biai RMS error	 MSE

P0	 1.00 0.9	 1.01	 +0.01	 0.22	 0.00

	

0.8	 1.02	 +0.02	 0.22	 0.01

	

_________ ________ 0.7	 1.02	 +0.02	 0.22	 0.01

ft1	 1.00 0.9	 0.88	 -.0.12	 0.25	 0.22

	

0.8	 0.78	 -0.22	 0.30	 0.54

	________ ________ 0.7	 0.67	 -0.33	 0.38	 0.76

ft2	 1.00 0.9	 1.00	 +0.00	 0.16	 0.00

	

0.8	 1.01	 +0.01	 0.16	 0.00

	

________ _______ 0.7	 1.01	 +0.01	 0.16	 0.00

	

0.60 0.9	 0.56	 -0.06	 0.61	 0.01

	

0.8	 0.56	 -0.07	 0.61	 0.01

	

_________ ________ 0.7	 0.55	 -0.08	 0.61	 0.02

	

-0.16 0.9	 -0.16	 -0.02	 1.52	 0.00

	

0.8	 -0.15	 -0.09	 1.43	 0.00

	

_________ ________ 0.7 	 -0.13	 -0.20	 1.32	 0.02

	

0.71 0.9	 0.53	 -0.25	 0.53	 0.22

	

0.8	 0.41	 -0.42	 0.58	 0.53

	

_________ ________ 0.7	 0.30	 -0.57	 0.67	 0.75

	

14.98 0.9	 15.12	 +0.01	 0.07	 0.02

	

0.8	 15.29	 +0.02	 0.07	 0.09

	

________ _______ 0.7	 15.46	 +0.03	 0.07	 0.19

as a proportion of the designed value

The relative biases in the estimates for ft1 are again similar to those expected in the

single-level case. The biases in the estimates of the level-2 variance cr also become

substantial, such that for R = 0.7 this estimate is only 43% of the true value, and there

are concomitant biases in the estimates of o.

The adjustment procedure developed in Sections 3.7.2 and 3.8.2 and summarised in

Section 3.9 uses a weight matrix V' that is entirely free from measurement error. We

study the results of using two such weight matrices. In one case we use V = I: this
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gives OLS estimators. In the second case we form by removing from i all terms

involving X1 . These we term purged-V estimators. We first compare the OLS and

purged-V estimators with the IGLS estimators for the model without error. See

Tables 4.22,4.24, and 4.25.

Table 4.24 OLS estimates for model (4.3).
R1 = 1.0.

k 2
	designed	 mean	 s.d. of	 relative	 relative	 _____

	

________	 value	 estimate	 estimate	 bias RMS error	 MSE

fi0	 1.000	 1.006	 0.218	 +0.006	 0.217	 0.001

	

1.000	 0.993	 0.236	 -0.007	 0.236	 0.001

fi2	 1.000	 1.004	 0.158	 +0.004	 0.158	 0.001

	

0.600	 0.564	 0.361	 -0059	 0.603	 0.009

	

-0.161	 -0.171	 0.271	 +0.064	 1.679	 0.001

	

0.705	 0.667	 0.371	 -0.054	 0.527	 0.010

	

14.973	 14.939	 0.981	 -0.002	 0.065	 0.001

*as a proportion of the designed value
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Table 4.25 Purged-V estimates for model (4.3).
R1 = 1.0.

b 2
	designed	 mean	 s.d. of	 relative	 relative	 _____

	

________	
value	 estimate	 estimate	 bias' RMS error'	 MSE

fi0	 1.000	 1.006	 0.218	 +0.006	 0.217	 0.001

p1	 1.000	 0.992	 0.238	 -0.008	 0.238	 0.001

fi2	 1.000	 1.003	 0.158	 +0.003	 0.157	 0.001

	

0.600	 0.568	 0.363	 -0.053	 0.606	 0.008

	

-0.161	 -0.175	 0.266	 +0.087	 1.646	 0.003

	

0.705	 0.666	 0.368	 -0.056	 0.524	 0.011

	

14.973	 14.938	 0.979	 -0.002	 0.065	 0.001

'as a proportion of the designed value

For the model without error all three sets of estimators show virtually identical

characteristics.

In Tables 4.26 and 4.27 on the following pages we compare the OLS and purged-V

estimators for decreasing values of R1 , obtained using the adjustment summarised in

Section 3.9. Such differences as there are between these two sets of results are very

slight. In both the bias in /11 observed in Table 4.23 has been almost eliminated. All

estimates become progressively less precise as measurement error increases. This

effect is most marked in the case of &, the variance of the coefficient of the variable

with error. The bias also in this estimator increases somewhat over the range, but

remains of the order of 0.1 standard deviation. The estimates for o also become

progressively more biased, leading to large relative RMS errors. This estimator is the

most sensitive to errors in the estimates of the other random parameters.
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Table 4.26 Adjusted OLS estimates for model (4.3).
R1 =0.9, 0.8, 0.7.

.	 2

	

designed	 mean	 s.d. of	 relative	 relative	 _____

	

value	 R estimate estimate	 bias* RMSE	 MSE

	fi0	 1.000 0.9	 1.006	 0.220	 +0.006	 0.220	 0.001

	

0.8	 1.006	 0.222	 +0.006	 0.221	 0.001
______ ________ 0.7	 1.006	 0.224	 +0.006	 0.223	 0.001

	

fl1	
1.000 0.9	 0.988	 0.248	 -0.012	 0.248	 0.002

	

0.8	 0.985	 0.259	 -0.015	 0.259	 0.003
______ ________ 0.7	 0.984	 0.273	 -0.016	 0.273	 0.004

	

p2	
1.000 0.9	 1.003	 0.157	 +0.003	 0.157	 0.000

	

0.8	 1.003	 0.157	 +0.003	 0.157	 0.000
______ _______	 0.7	 1.001	 0.157	 +0.002	 0.157	 0.000

	

(y)	 0.600 0.9	 0.564	 0.362	 -0.060	 0.605	 0.010

	

0.8	 0.563	 0.363	 -0.061	 0.608	 0.010
______ _______	 0.7	 0.562	 0.366	 -0.063	 0.612	 0.011

	

2)	 -0.161 0.9	 -0.181	 0.289	 +0.124	 1.793	 0.005

	

0.8	 -0.185	 0.306	 +0.149	 1.899	 0.006
______ _______	 0.7	 -0.188	 0.326	 +0.168	 2.023	 0.007

	

0.705 0.9	 0.668	 0420	 -0.054	 0.597	 0.008

	

0.8	 0.662	 0.468	 -0.061	 0.665	 0.008
______ ________ 0.7 	 0.654	 0.528	 -0.073	 0.751	 0.009

	

14.973 0.9	 14.945	 1.010	 -0.002	 0.067	 0.001

	

0.8	 14.951	 1.039	 -0.001	 0.069	 0.000
______ ________ 0.7	 14.958	 1.076	 -0.001	 0.072	 0.000

as a proportion of the designed value
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Table 4.27 Adjusted purged-V estimates for model (4.3).
R1 =0.9, 0.8, 0.7.

k 2
	designed	 mean	 s.d. of	 relative	 relative	 _____

	

value	 R estimate estimate	 bias	 RMSE	 MSE

fi0	 1.000 0.9	 1.006	 0.220	 +0.006	 0.220	 0.001

	

0.8	 1.006	 0.222	 +0.006	 0.221	 0.001
______ ________ 0.7	 1.006	 0.224	 +0.006	 0.223	 0.001

p1	 1.000 0.9	 0.988	 0.249	 -0.014	 0.248	 0.003

	

0.8	 0.984	 0.259	 -0.016	 0.259	 0.004
______ ________ 0.7	 0.983	 0.272	 -0.018	 0.272	 0.004

fi2	 1.000 0.9	 1.002	 0.157	 +0.002	 0.157	 0.000

	

0.8	 1.002	 0.157	 +0.002	 0.157	 0.000
______ _______	 0.7	 1.001	 0.157	 +0.002	 0.157	 0.000

	

0.600 0.9	 0.567	 0.363	 -0.054	 0.607	 0.008

	

0.8	 0.567	 0.365	 -.0.055	 0.610	 0.008
______ ________ 0.7	 0.566	 0.367	 -0.056	 0.614	 0.008

	

-0.161 0.9	 -0.184	 0.282	 +0.145	 1.753	 0.007

	

0.8	 -0.188	 0.298	 +0.167	 1.851	 0.008
______ ________ 0.7	 -0.191	 0.317	 +0.185	 1.969	 0.009

	

0.705 0.9	 0.665	 0.413	 -0.057	 0.586	 0.009

	

0.8	 0.659	 0.459	 -0.065	 0.652	 0.010
______ _______	 0.7	 0.650	 0.517	 -0.079	 0.735	 0.011

	

14.973 0.9	 14.945	 1.005	 -0.002	 0.067	 0.001

	

0.8	 14.951	 1.033	 -0.001	 0.069	 0.000
______ _______	 0.7	 14.959	 1.068	 -0.001	 0.071	 0.000

'as a proportion of the designed value

Correlations of the estimator biases with the achieved measurement error variances in

no case reached 0.15 in absolute value.
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5 A substantive application

The analyses in the previous chapter were of data sets that conformed to known

models. Residuals of known variance and covariance were added to the response

variables and measurement errors of known variance and covariance to the explanatory

variables. The point of the analyses was to judge the effectiveness of the estimation

procedure of Chapter 3 in retrieving the model parameters. We now apply that

procedure to an educational data set whose characteristics are, a priori, unknown.

The purpose here is to show how substantive conclusions may change as we change

assumptions about the extent of measurement error in explanatory variables.

5.1 The data and the model

The data are derived from the Junior School Project (JSP), a longitudinal study of an

age cohort of pupils who entered junior classes in September 1980 and transferred to

secondary school in September 1984. (The first junior year in English and Welsh

primary schools is now called Year 3 of the National Curriculum: pupils typically reach

their eighth birthday during this year.) The schools used by the JSP were a random

sample from the 636 primary schools that were maintained by the Inner London

Education Authority at the start of the project. A hull account of the project is given in

Mortimore eta!. (1988).

For our illustrative application we use a sub-sample of 1,075 pupils from 48 schools.

We consider the data to have a two-level structure, with pupils (indexed by 1) at level I

and schools (indexed byj) at level 2. Table 5.1 shows for each schoolj the number n1
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of pupils in the sample, the total N, in the age cohort within the school, and the

sampling fraction.

Table 5.1	 Sample size n1 , cohort size N1 , and sampling fraction
for each schoolj.

3	 N, /N1	 3	 ii,	 N, /N,

1	 6	 20	 0.30	 25	 19	 32	 0.59
2	 7	 25	 0.28	 26	 21	 25	 0.84
3	 7	 43	 0.16	 27	 21	 37	 0.57
4	 11	 22	 0.50	 28	 21	 45	 0.47
5	 12	 22	 0.55	 29	 21	 51	 0.41
6	 12	 29	 0.41	 30	 23	 34	 0.68
7	 14	 29	 0.48	 31	 23	 40	 0.58
8	 14	 29	 0.48	 32	 24	 43	 0.56
9	 14	 32	 0.44	 33	 24	 47	 0.51

10	 14	 33	 0.42	 34	 25	 31	 0.81
11	 15	 26	 0.58	 35	 25	 41	 0.61
12	 15	 31	 0.48	 36	 26	 53	 0.49
13	 15	 39	 0.38	 37	 28	 55	 0.51
14	 15	 43	 0.35	 38	 29	 53	 0.55
15	 15	 44	 0.34	 39	 29	 58	 0.50
16	 16	 31	 0.52	 40	 32	 54	 0.59
17	 16	 38	 0.42	 41	 32	 82	 0.39
18	 16	 59	 0.27	 42	 33	 65	 0.51
19	 18	 28	 0.64	 43	 35	 49	 0.71
20	 18	 29	 0.62	 44	 38	 53	 0.72
21	 18	 37	 0.49	 45	 39	 52	 0.75
22	 18	 51	 0.35	 46	 44	 61	 0.72
23	 18	 53	 0.34	 47	 52	 92	 0.57
24	 19	 31	 0.61	 48	 68	 116	 0.59

It can be seen that there is considerable variability both in the size of the level-2

samples and in the sampling fractions. The total of the N, is 2,093, giving an overall

sampling fraction of 0.51.
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For the analysis we have four variables Y, X1 , X2 , and X3 where, for i = 1,2,..., 1075

and j=l,2,...,48,

} is the pupil's observed score on a reading test at age 10 years, transformed by

using Normal scores to have a standard Normal distribution,

X,, is the pupil's observed score on a reading test taken at age 8, similarly Normalised,

X2 is the pupil's family socio-economic status (SES), coded 1 if the father is in non-.

manual work and 0 otherwise,

X31 is the mean of the X for the pupils in school), as estimated from the sample.

We illustrate the use of these four variables to model the effects on a pupil's true

reading score at age 10 of that pupil's true score at age 8, the pupil's true family SES,

and the true mean reading score at age 8 of the pupil's cohort in the school. It is well

known that a pupil's prior achievement on a related test is a poweriful predictor of

subsequent performance. Family socio-economic status, too, has been shown to have

a positive association with progress in reading over this age range. The effect, if any,

of the mean reading score for the pupil's cohort in the school is sometimes called a

'context' effect: such effects are of considerable educational interest.

Since our concern is to show the effects of measurement error we omit details of data

description and pass straight to multilevel modelling. The simplest linear model for our

purpose is:

= fi0x0, + fl1x1, +	 + P3 + cJx +

var(ej) = a, var(4) - (2)-U00,

(5.1)
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where ; 1, xi ,,, x3, are the unknown true values of X13 , X3 ,, respectively, and

= y,, X21 =	 are both assumed to have been measured without error. We

assume

XU =xI,I
	 (5.2)

X3, = X3 + 3J'

where the measurement errors , obey assumptions 3.ito 3.3 of Chapter 3 (see

pp69, 70). The random variables ,	 obey assumption 3.4 and we assume further

that the measurement errors have constant variance.

Thus, model (5.1H5.2) is formally the same as model (4.2), and similar to model (3.9)

with an additional explanatory variable at level 1. In its present form it cannot be

proposed as a satisfactory model for the data. For example, it is unrealistic to assume

complete reliability of either the response variable or the SES variable. It is probable

that the coefficient of x, varies from school to school. It is also a simplification to

assume that each pupil's score at age 10 will be affected equally by the mean score at

age 8 for the full cohort in the school. Our purpose is not to arrive at the best possible

model for the data, but to illustrate in a simple multilevel context the effects of

adjusting, and of thiling to adjust, for measurement error.

5.2 Measurement error variances and covariances, and reliabifity

Before carrying out the analysis, we require a prior value for the measurement error

variance of X 1 , and for each school j an estimate of the variance of the total error in

X3 due to sampling and measurement error and of its covariance with the errors
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for pupils within the school. Ecob and Goldstein (1983) discussed the difficulty of

obtaining satisfactory estimates of measurement error variances and covariances. They

cast doubt on the assumptions underlying standard procedures and proposed an

alternative procedure based on the use of instrumental variables. In the present case,

no dependable prior estimate is available either for the measurement error variance v

of X 1 or for its reliability in the population under study. Nor have we developed a

method for using instrumental variables. Accordingly, we study the effects on the

analysis of different assumed values of r. We also show some of the effects of

incomplete adjustment for the sampling and measurement error in X3.

From equation (3.12), we have:

N1—n
	

(5.3)

ni

where a is the variance of the true scores ; within the cohort for school j. We

also have, from equation (3.13),

cov( 1 , 3 ,) = 
"I
	 (5.4)

We can estimate model (5. 1)—(5.2) provided that we have prior estimates of or make

assumptions about, v and cr.
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We assume that o, ç holds for all schools, where ç 2 is constant. Since the

measurement error variance r in X1 is constant it follows that the within-school

variance of X1 also is constant, with value ç + r. We may obtain a reasonable

estimate of this value as the level-i variance &2(X1) obtained when fitting X1 to its

mean in a two-level variance components model. We define the level-I reliability R

of X1 by:

'' =&2(x)'&2(x1J'

	 (5.5)

and now, given a series of assumed level-i reliabilities R, we can derive

corresponding values of and ç and hence the prior values required for the

estimation of the model.

5.3 Model estimation

We describe three analyses of model (5. I)-(5.2) to show the effects of progressively

more complete adjustment for measurement error:

i. analysis A, adjustment for measurement error at level 1 only, that is, no

adjustment for measurement or sampling error in X3,

ii. analysis B, adjustment for errors in X1 and X3 , but not for the covariance

between these errors,

iii. analysis C, fill adjustment.
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Each analysis was carried out for values of R ranging from 1.0 to 0.7. Unadjusted

results were provided by analysis A with R = 1.0.

The level-i variance estimator &2(X1) was found by variance components analysis to

have the value 0.89. For each value of R1 equation (5.5) gives the corresponding

values of and of	 = . The total error variance r at level 2 for schoolj and

the error covariance r11 follow from (5.3) and (5.4). For analysis C (fi.ill adjustment)

the error variance vectors C, C and the error covariance vector	 were formed

C2)=._^ 
N—n1 2suchthat,forpupiiinschoolj CW =r cj=11,and ' 

n	 (Ni)'
,	 'U	 1'

For analysis B the vector C was omitted, and for analysis A both C and C

were omitted.

The estimates that were affected by adjustment for measurement error at level 2 were

those of the level-2 variance a and the fixed parameter ,83 associated with the

level-2 aggregate variable 13 . The other parameter estimates were essentially the same

in each of analyses A, B, and C, for a given value of R. The results are summarised

in Tables 5.2 and 5.3, where we give in parentheses the sandwich estimates of the

standard errors, corrected (for the fixed parameters) for sampling error in 3.
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Table 5.2	 Adjusted estimates of parameters that were essentially
unaffected by measurement error at level 2.
Model (5.1)—(5.2). Standard errors in parentheses.

	

_________	 ISO __________	 P2 _________

	

1.0	 —0.037 (0.04)	 0.77 (0.02)	 0.17 (0.05)	 0.30 (0.02)

	

0.9	 —0.026 (0.04)	 0.86 (0.03)	 0.13 (0.05)	 0.24 (0.02)

	

0.8	 —0.012 (0.04)	 0.97 (0.03)	 0.08 (0.04)	 0.17 (0.02)

	

0.7	 0.006 (0.04)	 1.12 (0.05)	 0.00 (0.05)	 0.07 (0.02)

In Table 5.2 we see the progressive disattenuation of fI and accompanying

attenuation of & as the assumed reliability of X1 decreases, which we should expect

from the analysis of model (4.2) above. The estimate /9 varied approximately in

inverse proportion to R, and its precision decreased slightly as R decreased

(although the estimated effect remained statistically highly significant).

The parameter fi2 is the predicted difference in outcome score between two pupils in

the same school and with the same true score at age 8, where one pupil's fhther is in

non-manual employment and the other's is not. With no adjustment for measurement

error in X1 , the benefit to the pupil with a non-manual background was estimated to

be 0.17 on the outcome scale (that is, 0.17 standard deviation), and to be statistically

significant. When R1 = 0.8 and adjustment was made, that estimate was attenuated by

a factor 0.44. When R1 = 0.7 no SES effect on reading progress was found with this

model.
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Table 5.3	 Adjusted estimates of parameters that were
affected by measurement error at level 2.
Model (5.1)-(5.2). Standard errors in parentheses.

/33 . mean score at age 8

	__________	 Analysis A	 Analysis B	 Analysis C

	1.0	 0.00 (0.10)	 0.01 (0.11)	 0.01 (0.11)

	

0.9	 -0.08 (0.10)	 -0.10 (0.12)	 -0.07 (0.12)

	

0.8	 -0.19 (0.10)	 -0.23 (0.13)	 -0.17 (0.13)

	

0.7	 -0.33(0.11)	 -0.41(0.14)	 -0.30(0.14)

&: level-2 variance

	_________	 Analysis A	 Anaysis B	 Analysis C

	1.0	 0.059 (0.012)	 0.059 (0.012)	 0.059 (0.0 12)

	

0.9	 0.060 (0.012)	 0.059 (0.012)	 0.060 (0.012)

	

0.8	 0.059 (0.012)	 0.058 (0.013)	 0.061 (0.012)

	0.7	 0.056 (0.013)	 0.051 (0.013)	 0.063 (0.012)

The estimation of fi and, to a lesser extent, of the level-2 residual variance cr were

affected by measurement error at level 2. The parameter /33 predicts the difference

between pupils' outcomes in different schools that is attributable to the difference

between the true mean scores at age 8 in the schools. Its negative sign indicates that,

according to model (5.1)-(5.2), if two pupils have equal true scores at age 8 and are

equal on the family SES indicator, the pupil in the school with the lower true mean

score is predicted to do better two years later.

We may bypothesise a number of possible reasons for this finding. First, if it is

believed that being in a high-scoring group tends, on average, to enhance individual

performance rather than to depress it, then it may be argued that a child in a low-
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scoring group who nevertheless achieves score x by the age of 8 is likely to be more

able than a child in a high-scoring group who also scores x by the same age. If the

supposed group effect decreases over time, the former child will be likely to do better

eventually than the latter. An alternative hypothesis focuses on the difference between

the individual's performance and the average performance of the group. Under this

hypothesis a pupil with a low score (and below the average for the group) will tend to

do worse if the difference is large (perhaps through loss of confidence), while a pupil

with a high score is relatively unaffected by the group score, and possibly motivated by

a large difference. Further analysis would be needed to test either hypothesis, and this

is beyond the scope of the present study.

Table 5.3 shows how it Is possible to be misled by insufficient, or incomplete,

adjustment for measurement error. Of the three analyses, analysis C is clearly to be

preferred. Analysis A, which did not adjust at all for the errors at level 2,

overestimated the precision of estimation of /33 . Analysis B, which adjusted for the

variance of the combined sampling and measurement errors in X3 but not for their

covariance with the errors in X1 , overestimated the magnitude of fig.

Analysis C turned out to be the most conservative of the three in its estimates of the

precision of /33 for each assumed value of R. Because the coefficients /J and /33

are of opposite sign, the effect of adjusting for the positive covariance between the

errors in X1 and X3 is to reduce in magnitude the estimates /3. (If /3 and /13 were

of like sign, the effect of this adjustment would be to increase the magnitude of fig.)

With an assumption of only slight measurement error in X1 , analysis C found no
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statistically significant effect on reading progress of the school context as measured by

the mean reading score at age 8. 1f however, R was assumed to have the value 0.7,

the school context effect was found to be statistically significant, though it was still

poorly estimated and we must enter a caveat about possibly underestimated standard

error.

We may expect that the IGLS estimates of the Ievel-2 residual variance shown for

analysis C are downwardly biased, but that this bias does not increase as measurement

error increases. On this assumption, the estimates of analyses A and B are more

biased, for moderate values of R1 . The estimates of the standard error also are likely

to be downwardly biased, though this is unlikely to affect model interpretation here.
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6 Discussion

This thesis has addressed two main problems. The first was to devise a method for

estimating random-coefficient multilevel models with error in a variable with a random

coefficient. The second was to provide a means to specift error structures sufficiently

general for use, for example, with multivariate responses and with cross-classified data.

The first task proved the more troublesome. Clearly, some form of adjustment was

necessary (our analysis in Section 4.3 demonstrates this) but the existing method,

devised for variance components models, not only gave the wrong estimates: in most

cases the procedure failed to converge at all. In early simulations not documented

here, when known values of the random parameters were fed to the fixed-parameter

estimation routine, the resulting estimates of the fixed parameters were found to be

biased by amounts in some cases several times the magnitude of the parameter itself

when there was error in the weight matrix i'.

Section 3.7.1 above gives an idea of the work needed in order to correct this problem.

It is not sufficient simply to find an unbiased estimator and unbiased estimators N,,,,

N,, for the cross-product matrices appearing in the IGLS estimator for f3. 1f say, X,.

is subject to error and x,. has a fixed and a random coefficient, the errors that remain in

in any particular instance correlate with the errors remaining in N,,.. and continue

to produce seriously biased fixed-parameter estimates.

In an earlier version of the macros the method outlined in Section 3.7.1 was

implemented so as to remove from the IGLS expressions all moments of the
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measurement errors up to the 4th (the sampling errors in the random parameter

estimates were neglected). The resulting routine produced unbiased estimates of the

fixed parameters when true values of the random parameters were fed into it. We have

not recorded details of this work, since the corresponding work for the random

parameter estimation, which is much more complicated, was unsuccessful. We

developed instead procedures using an error-free weight matrix, as described in

Sections 3.7.2 and 3.8.2. These procedures should give the same parameter estimates

for variance components models as the existing method, since in these models the

weight matrix ' does not contain measurement error.

Our analyses in Section 4.2 confirmed this. Furthermore, the analysis of the two-level

random-coefficient model without measurement error showed that, for this simple

model, the estimates produced by OLS and by use of a purged weight matrix (in this

case a weight matrix with 2-level variance-components structure) were equivalent to

those produced by IGLS with the full random-coefficients weight matrix, in terms of

both bias and precision (see Tables 4.22, 4.24, and 4.25). We went on to use both

OLS and 'purged-V' estimation with increasing amounts of measurement error, and

they continued to give similar results (Tables 4.26,4.27).

There are grounds for cautious optimism here. The bias in the unadjusted estimate of

seen in Table 4.23 was reduced by adjustment to less than 2%. Biases in the other

fixed parameter estimates also were reduced, to trivial amounts. Level-2 variances

were always underestimated, in this model and in the others of Chapter 4, even with no

error in the data. With the adjustment for measurement error that we have

implemented these biases generally became only slightly larger as measurement error
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increased. They seem more likely to be due to failure to adjust for sampling error in

, as in RIGLS estimation, than to correlations between errors of measurement

remaining in 4)' and 'I'. Implementation of adjusted RIGLS as in equation (3.118)

should, therefore, be the next step.

It may be that OLS or purged-V estimation will incur serious loss of efficiency in more

complicated models with random coefficients. In that case a possible way forward is

to allow the user to specify the weight matrix. Such a weight matrix might be derived

from a simpler model of the data, excluding from the random part all variables with

error, but still be closer to the true weight matrix than the one we are able to produce

by the relatively crude procedure of 'purging'. Alternatively, the weight matrix might

use predictions of explanatory variables with error using other 'instrumental' variables

if these are available. The implementation of the fill adjustment procedure (up to 4th

moments) for errors in '', with which we were unsuccessfiul earlier, remains a

possibility, though a considerable improvement in computing efficiency would be

needed to make it practicable.

A by-product of the work on the fill adjustment procedure was the development of the

notation introduced in equation (3.113). This notation, with its implied summation

convention, can be extended to give economical and intelligible expansions of the

expressions in (3.130) and (3.133), for example. Similar notational conventions might

find application in descriptions of other estimation algorithms.

Standard errors of the parameter estimators have been estimated for the variance

components models we have studied. Correction in respect of sampling errors, as
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described in equation (3.88), was implemented for the fixed parameters. The

corresponding correction for the random parameter standard errors, described in

equation (3.132), was not implemented in time for these studies. The estimates of

relative bias in Tables 4.7, 4.10, 4.18, and 4.20, and of coverage in Tables 4.11 and

4.21, should be treated with some caution as they are based on only 200 replications.

For example, Table 4.7 suggests a downward bias of 3% in the estimate of

but of less than 1% in that of s.e.(fi2 ), yet the model with no measurement error is

symmetrical with respect to the two parameters.

The corrected estimates of standard errors for the fixed parameters are an

improvement on the uncorrected ones, which in the absence of measurement error

match those obtained using MLn directly with IGLS estimation of parameters and

sandwich estimation of standard errors. In the simple model (4.1) the biases stay

roughly constant as measurement error increases. Interestingly, in model (4.2) the

introduction of sampling error into X 3 occasions an immediate increase in the relative

bias of the standard error of the associated parameter, and this bias then increases no

further as measurement error increases. Further work is needed to establish whether

the initial increase is due to the estimation of the standard error or to a fault in the

(admittedly complicated) sampling scheme. At all events, the biases in the fixed-

parameter standard errors are small. The biases in the standard errors for the level-2

random parameters are not negligible, and we propose to implement RIGLS

estimators, further corrected for sampling error in O, based on equations (3.132) and

(3.133).
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Even within this limited range of models we can discern a variety of interactive effects

on the parameter estimates of failing to adjust for the presence of measurement error.

In the variance-components model (4.1) with error in a level-i variable only, the effect

was confined mainly to the estimate of the fixed parameter associated with this

variable. See Table 4.2. The bias in the estimate of level-i variance increased to about

5% over the range. Thus, a decrease in the estimate of a fixed parameter associated

with a level-i variable with error was accompanied by a slight increase in the level-i

variance estimate.

The second variance-components model (4.2) contained a level-i variable with error

together with its mean at level 2, estimated with sampling error in addition to the

measurement error in the first variable. The estimate of 11, the coefficient of X 3 , was

attenuated towards zero by failure to adjust for these errors and this was accompanied

by a marked increase in the level-i variance estimate. See Table 4.13. The estimate of

fi3 increased, and the level-2 variance estimate decreased substantially. If model (4.2)

were a model of reading progress, like model (5. l)-(5.2), these biases would mask the

effect of the mean score and lead to underestimation of the residual between-school

variance also. We present in Table 6.1 the corresponding results for the model

= fix +fix +/32x2 +fi3x +	 + exoJ,	 (6.1)

var(c3) = o, var(e) =

which is formally the same as model (4.2), but this time with a designed value +0.3 in

place of-O.3 for fi3.
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Table 6.1	 Unadjusted parameter estimates for model (6.1).
R1 =1.0,0.9,0.8,0.7. Sampling error as for 50% SRSWOR

from each level-2 unit. 200 replications.

is. 2
	designed	 mean	 relative	 relative	 ulaS

	

value	 estimate	 bias RMS error	 MSE

	

1.00	 1.0	 1.00	 +0.00	 0.05	 0.00

	

0.9	 1.00	 +0.00	 0.05	 0.00

	

0.8	 1.00	 +0.00	 0.06	 0.00

	

_________ ________	 0.7	 1.00	 +0.00	 0.06	 0.00

fi	 1.00	 1.0	 1.00	 +0.00	 0.02	 0.00

	

0.9	 0.89	 -0.11	 0.11	 0.95

	

0.8	 0.79	 -0.21	 0.21	 0.99

	

_________ ________	 0.7	 0.69	 -0.31	 0.31	 0.99

132	 1.00	 1.0	 1.00	 +0.00	 0.02	 0.00
	0.9	 1.00	 +0.00	 0.02	 0.03

	

0.8	 1.01	 +0.01	 0.03	 0.07

	

_________ ________	 0.7	 1.01	 +0.01	 0.03	 0.11

fi	 0.30	 1.0	 0.28	 -0.05	 0.36	 0.02

	

0.9	 0.35	 +0.18	 0.42	 0.17

	

0.8	 0.41	 -'-0.37	 0.55	 0.46

	

_________ ________	 0.7	 0.46	 -1-0.54	 0.69	 0.62

	

0.063	 1.0	 0.059	 -0.07	 0.30	 0.05

	

0.9	 0.063	 -0.00	 0.34	 0.00

	

0.8	 0.069	 +0.10	 0.41	 0.06

	

_________ ________	 0.7	 0.078	 +0.24	 0.52	 0.21

	

0.30	 1.0	 0.30	 -0.00	 0.06	 0.00

	

0.9	 0.40	 +0.33	 0.34	 0.94

	

0.8	 0.50	 +0.66	 0.67	 0.98

	

_________ ________	 0.7	 0.59	 +0.98	 0.99	 0.99

as a proportion of the designed value

Here the effects on fi and & are similar to those observed for model (4.2), and

again the effect on fi is to increase it. But the interpretation in a model of progress

would be different. This time the true context effect of 1 3 is positive, and the positive

bias in fi would exaggerate this effect. The residual between-school variance also

would be exaggerated.
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In the random-coefficient model (4.3), with error in the variable with the random

coefficient, failure to adjust for this error caused the associated fixed-parameter

estimate to be attenuated as in the other two models. See Table 4.23. The level-2

variance of this coefficient was attenuated more substantially, and this was

accompanied by attenuation of the level-2 covariance of this coefficient with the

intercept.

Thus the analyses in Chapter 4 confirmed that failure to adjust for random

measurement error in explanatory variables at either level of a 2-level model results in

biased estimators of their fixed coefficients, and associated biases in the random

parameter estimators also. The effects on interpretation depend on the true values of

the parameters. In these models the effects on the other fixed parameters were slight:

the data in our examples were balanced, and the explanatory variables (apart from the

aggregate variable in model 4.2) were uncorrelated.

We turn now to the substantive example in Chapter 5. For this data set, unlike those

of Chapter 4, we did not have prior values of the measurement error variances and

covariances. Thus, we reversed the process of Chapter 4 and used a series of assumed

values of reliability of the reading score at age 8, together with known characteristics

of the data, to derive a series of prior values for the error variances and covariances.

In this way we explored the sensitivity of model inferences to different assumptions

about the underlying measurement error. We also showed the effects of incomplete

adjustment of two kinds. Analysis A ignored all measurement error at level 2; analysis

B ignored the covariance between the errors in the observed individual age-S scores

and those in the school mean scores.
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We found that adjustment for measurement error at level 2 was important chiefly in the

estimation of parameters associated with level 2 (Tables 5.2 and 5.3), in particular the

context effect fi3 . We proposed two possible interpretations of the negative sign of

this parameter, but interpretation is worthless if the estimation is faulty. Failure to

adjust for the errors at level 2, as in Analysis A, caused the precision of fi3 to be over-

estimated. Incomplete adjustment at level 2, as in analysis B, led to over-estimating

the magnitude of /33 . We stated in Chapter 5 that if the true aggregate score effect

were positive (of like sign with the individual score effect), full adjustment would

produce the larger estimate: this was confirmed in further simulations using model

(6.1). The estimation and interpretation of such effects depend crucially on good

estimates of the measurement error variances and covariances and on appropriate

adjustment in analysis.

Some 25% of the pupils in the sample came from non-manual backgrounds. The mean

observed reading score of these pupils at age 8 on the Normalised scale was +0.37.

The mean observed score for pupils from other backgrounds was -0.13. Thus, there

was a significant association between the variables X 1 and X2 . We found that as the

assumed reliability of the prior attainment score X 1 decreased, so the model estimate

of the SES effect on progress also decreased, to vanish at R1 0.7. Like that of the

context effect, the estimate of the SES effect in this model was sensitive to

assumptions about the measurement errors.

The models we have studied have all been simple ones. In more complex models we

may expect more complex distortions to arise from failure to adjust appropriately for

measurement error. It is important in any study to obtain suitable estimates of
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measurement error variances and covariances, and to investigate as we have done the

effect of varying the estimates. It will also be important to establish that the estimation

procedure is effective in reducing these distortions when the measurement error

variances and covariances have been adequately specified.

The method of specification we defined in Section 3.6 is suitable for a wide variety of

models, including models with multivariate response and cross-classified data.

Moreover, in our development of the estimation algorithm, we have taken care to

allow for the non-symmetric expected error product matrices that typically occur in

these more complicated models. The vehicle that we have used for the

implementation, namely the macro facility of MLn, is computationally inefficient and it

has not so far been practicable to explore the functioning of these more complex parts

of the estimation procedure in the analysis of data sets of suitable size. The results we

have obtained with the simpler models are, however, encouraging, and fuller

exploration is now proceeding.
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7 Concluding remarks

Multilevel models are now used routinely in the analysis of educational and other social

data, but adjustment for measurement error in such analysis continues to be the

exception. We have demonstrated the sensitivity of conclusions to such adjustment

and there is a clear need for suitable tools for this purpose.

Tools are needed both for measurement en-or estimation and for adjustment in

subsequent analysis. As Muthén and Satorra (1989) showed, multilevel variation can

affect model parameters in at least four ways (listed on pp26-7 of this thesis).

Multilevel developments in structural modelling to date, however, appear to have been

focused on the random group variation in the latent variable structure and in the

measurement model. I have found no reference in the literature to the estimation of

random regression parameters linking outcomes to latent predictors.

It is clearly important to continue to develop measurement error models. Different

measurement processes call for different models, and the nature of the models available

limits the choice of possible designs to take account of those processes. In this

connection the developments in the framework of Bayesian analysis, using graphical

models for formulation and stochastic simulation techniques (Gibbs sampling) for

estimation, reported by Richardson (1996), are worthy of mention. Richardson

demonstrated the flexibility of this approach in the context of epidemiology, at the

same time pointing to the need for further research into the effects on regression

results of misspeciflcation. She did not address the multilevel problem specifically.
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In any study, the estimation of a measurement error model requires either repeated

measurements on a subgroup of subjects, or a 'gold standard', that is, a group of

subjects in the study on whom accurate measurements have been made. Yet it is often

the case that we wish to make inferences without either of these, and with only vague

prior knowledge of the reliability of the measurements available. A case in point is the

use of public examination results in models of the effectiveness of schools. Clearly, for

some purposes, it is the results themselves that count and errors in their measurement

are by definition zero. Where, however, interest lies in underlying capacities and

patterns of development and the effects on these of different practices, or in comparing

different modes of assessment leading to the same nominal qualifications, then the

measures used will not be fully reliable indicators of the characteristics of interest. In

the case of public examinations it is unlikely that suitable estimates of reliability will

ever be available, partly because such estimates require special procedures at the time

of examination that are costly and inconvenient, and partly because the high stakes

attached to the results make it desirable to foster a general belief in their complete

reliability. For studies using these results as measures of underlying characteristics it

will be necessary to fall back on the kind of sensitivity analysis that we described in

Chapter 5.

Such studies require efficient estimation procedures. Both the measurement models

and the regressions of responses on covariates will typically be the subject of extensive

exploration. Estimation methods relying on simulation, such as SIMEX, Markov

Chain Monte Carlo (MCMC), and parametric bootstrap, are likely to be impracticable

for this purpose for the foreseeable fixture. A fast procedure giving approximate
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results is what is needed for this phase, with validation of the final model(s) by another

method, for example, parametric bootstrap.

The procedure described in this thesis, though computationally inefficient in its current

implementation, is not inherently so, and the preliminary results that we have

documented in Chapter 4 suggest that further development along the lines we have

begun will yield an estimation method that is practically useful for multilevel model

exploration in the presence of measurement error.

Much work remains to be done. It is necessary to verifj that the proposed RIGLS

estimators of the random parameters and the corrected standard error estimators for

these parameters achieve satisfactory reductions in bias (see equations 3.118, 3.132,

and 3.133). Once a more efficient routine is in place further development and more

comprehensive testing will become practicable. For example, the procedure makes

strong distributional assumptions (see p75) and it is necessary to test robustness in the

fce of violations of those assumptions. Also of high priority is to provide facilities for

model diagnosis and comparison of units: as a minimum, estimates of true values and

of residuals, and of the log-likelihood, will be developed.

if this work is successful it is hoped to incorporate it into the program MLw1N

(Goldstein et aL, 1998). Thereafter it will be necessary to develop procedures for

errors of misclassification, errors correlated with true values, constraints, and non-

linear models of fixed and random parameters. There is a natural extension to the

estimation of models with imputed values for randomly missing data and a prototype

procedure exists for variance-components models (Goldstein and Woodhouse, 1998).
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Appendix Derivation of the covariance matrix cov(eJ

Consider the linear model

= zO + e,	 (kl)

where z(u2 x,r) is the design matrix, based upon the true values z, for the random

parameters, and e is an N2 x 1 vector of residuals. Equation (A. 1) is equation (3.96)

repeated.

We now derive an expression for cov(e) in terms of v. It is desirable to place the

development of the measurement error adjustment for the random parameters on a firm

foundation, and in particular to cIarif, the role of the Normality assumptions. This

derivation is believed to be new.

We have:

cov(e) = E[( 0 )(r ®	 [E( 0	 0
	 (A.2)

= E(T ®yjT) —vecv(vecv)T.

Each N2 x N2 matrix in (A.2) has a natural partitioning into N2 submatrices, each

submatrix being N x N
	

For £=1,2,...,L, S,S'E{p,p+l,...,p+q—l},

i1 ,i2 e{I,2,...,N}, define

cr?(i1 ,i2) ai if]), 1 ^ j ^ J, such that i1 ,12 e
	 (k3)

0 otherwise.
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Then, for i ,4 ,i ,i e {i, 2,..., N), the (13 ,14) th element of the (i ,2) th submatrix of

v(vec v)T, which we shall call the (i '2 ,13 ,) th element, is

L p+q-1	 L p+-q-1

z,1z,,a(i1 i3):	 a;(12 ,14)
1=1 z,i=p	 1=1 j',t'=p

(A.4)

and the corresponding element of E(j7j ® yT) is

I L p+q-1	 L p+q-1	 1	 (A.5)iI 'c 'c	 c&1)	 (12) 'c•' ''	 (13)	 (14)£1 L_	 aJi 
£,si 

Jji 
' . 2 L.	 tj3	 tJ4 6t'.4

Lti .lz=1 s,d=p	 13,14=1 t.t•=p

Consider the case where II , 12 , I3 ,14 are all different. Then for given s,s',I,I' the

coefficient of	 in the (i1 ' 2,4. 14) th element of vec v(vec v)T is

± o(1, ,l3)o?(i2 ,14)
1,1=1

and the corresponding coefficient in E(5T ® ygT) is

L

E(e(1j 
)c(12)e(h3)e(14))

Z.i	 s•J2 1 3 tJ4
1,13.4.14=1

(k6)

(Al)

From the assumption that the random variables c have zero expectation and do not

correlate across different levels, the expectations in (A.7) are non-zero only if the levels

are either all equal or equal in pairs. Consider the terms in which they are

equalinpairstoeither £ or £',where £,t' aregivenand £^t'. Theseterrnshavethe

following sum:
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(	 + eee" +	 \	 (A.8)
t •13 1,14 	 It34

El
L+c e	 +	

+ .(r)(e) E' E't•13 t141"I'

= o)(i, ,i2)o(13 ,i4 ) + a(i1 ,i3)a;lQ2 ' 14) + cr (12 "3)°st' (i,i4)

+ a)(i1 ,i4)oQ2 , 13) + oj (12 ,i4)a' ) (i1 ,i3 ) + a(13,i4)o(i1,i2).

The terms in the corresponding coefficient in vec v(vec v)T which arise from the same pair

of levels t,e' have the sum

o(i "3)°d;? ('2"4) + a (12 ,i4)O•f (11,13).
	 (k9)

Now consider the term in (A.7) for which £ = £2 = £3 = £4 =

E(s') 6 3 Ct,,, Cf,J)	 (A. 10)

= E(c'] 6d.,) E(c"e") 
) 

+ E(c") s' '1 E(e 61j4 ) + E(e CfJ4 ) E(c e)133 1I4 	 S,3	 J3/

= a(1, ,i2 )aff i3 , i4) + a(i, ,i3 )O- f . (12 , 14) + a?(i1 ,i4)aQ2 ,i3),

by the Normality assumption 3.4. The corresponding term in (A.6) is

a(i3 ,i3)o, (12 ,i4 ).	 (All)

It follows from (kl) that if '1'2'3"4 are all different the (i3 ,14 )th element of the (i1,12)th

submatrix of cov(e*) is

L p--q-1 
I
	

(A 12)

i,=i :i .1,.=[^z3 z1 ,,,a ('2

are not all different suppose, for example, that 13 = 14 . Then for given

s,s',t,t' the coefficient of 	 will combine with that for z,z	 but
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we can if we wish identi!r them separately. Such separate identification is possible for all

cases of equality between two or more of i1 ,i2 ,i3 ,i4 and therefore the expression (A.12)

holds for the (i1 ,i2 ,i3 ,i4 ) th element of cov(e) for all i1 ,i2 ,i3 ,i4 € (1,2,. ..,N}. This

element is equal to the sum of the (i I ,13 ,14) th and (i "4"2 ,13) th elements ofv ® v and

thus

cov(e) = (i + 5N X ® v),	 (k13)

where SN is the vec permutation matrix of order N2
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