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Abstract

The aim of this research was to investigate students' perceptions of function as they
interacted with the different dynamic representations of function made available
through computer environments. Microworlds were designed comprising sequences of
activities around the software, Function Probe, and two adaptations of DynaGraph, DG
Parallel (with parallel axes) and DG Cartesian (using Cartesian axes). A series of
case studies of four pairs of students was undertaken in Brazil in order to trace the
evolution in students' perceptions of a selection of function properties; namely
turning point, variation, range, symmetry and periodicity. This diversity of
properties was chosen to examine different ways students analyse functions:

pointwise, variational, global and pictorial.

Starting with an examination of the curriculum followed by the case study students as
a means to describe the origins of their perceptions, a longitudinal investigation was
undertaken in order to identify the main features of each of the microworlds that
appeared to contribute to students' progress. The students' perceptions were analysed
by drawing attention to their origins, their usefulness and their potential limitations
(from a mathematical point of view). A methodology for this longitudinal study was
devised which incorporated visual presentations to capture the main characteristics

of students' perceptions.

The results showed that DG Parallel, a ‘new’ representation, prompted the
development of perceptions free of previous limitations and sufficiently robust to
allow revision. However, properties previously perceived pictorially were rarely
identified in DG Parallel. Together with DG Cartesian, interactions with this
microworld provoked the students to develop a variational view of some of the
function properties. In addition, DG Cartesian served as a two-way bridge between
variational and pictorial views. By way of contrast, using the tools in FP to
transform graphs seemed not to shape perceptions, but to assist in the exploration of

the function properties.
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Chapters



| — The Study

1 Aims

This research investigates students' perceptions of function as they interact with
different dynamic representations of function available through computer

environments.

A selection of properties of function are distinguished and the study seeks to analyse
how students come to discriminate, generalise, and synthesise these properties while
working with chosen software programs in activities designed to encourage
exploration of the dynamic features of the programs. The software used will be:
DynaGraph (Goldenberg et al, 1992) and Function Probe (FP) (Confrey et al,
1991a). Two adaptations of DynaGraph will be implemented: one parallel version
(DG Parallel) and one Cartesian version (DG Cartesian). The set of activities around

each software will be described as a microworld.

The research focuses on the following set of aims:

* an analysis of students' perceptions of the following properties of mathematical
function: range, periodicity, variation, turning point and symmetry;

« the identification of differences and similarities in students' perceptions of these
properties during interaction in the different microworlds;

» the identification of any sources of difficulty;

* the tracing of trajectories of learning;

* the identification, where possible, of the antecedents of any difficulty
particularly in so far as this might originate in the Brazilian curricula;

« the identification of how links come to be forged between the different perceptions
of a property of function as evidenced in the different microworlds and between

these perceptions and students' previous knowledge.

2 The underlying rationale

| start from the position that different representations have different influences on
students' perceptions of the properties of function. Different representations
emphasise different aspects of the same concept; one representation can facilitate
students' perceptions of one property, while making it harder for them to perceive

other properties. Following a similar argument, the main assumption of this thesis
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is that dynamic visual tools available in FP and in DynaGraph will lead students to
differentially emphasise the properties of function as well as to perceive them in a
different light.

Additionally, this study assumes that by describing and comparing functions as
represented in different microworlds, students will be provoked to revise and

generalise their perceptions of the chosen properties of function.

3  Research questions

The study attempts to address the research question:
How does interaction with the dynamic tools offered by DynaGraph and
Function Probe structure students' perceptions of the following properties of
function: range, turning point, symmetry, variation and periodicity?

The following questions adress the interaction in detail:

Q1: How do students discriminate and generalise these properties in each
microworld?

Q2: How does their knowledge of school mathematics affect their perceptions of
these properties?

Q3: What role do the dynamic software tools play in helping students to overcome
obstacles and any limitations in their perceptions?

Q4: Are these different perceptions synthesised by the students? If so, how? If not,
why not?

QS5: How do explorations of the dynamic tools of Function Probe and DynaGraph

change students' previous knowledge?

4  The concept of function

The history of mathematics shows that the study of functions has been emphasised
differently over time. Early studies on functionality together with the evolution of its
definition reflect these changes in emphasis showing how functions were perceived.
The concept of function has evolved from a geometric approach in the seventeenth
century, through an algebraic approach in the eighteenth century to a set-theoretical

approach in modern times.

Since pre-historic times civilisation has been interested in understanding the

functional behaviour of natural processes (Boyer, 1946) such as the relation
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between the phases of the moon and the days of a month. In medieval mathematics,
without any abstractions or definitions of the concept, functionality was studied as
the science of dynamics. Rates of change such as speed and acceleration were the focus
of these discussions. Even later, when the term was first used, the study of functions
reflected the preoccupation with describing how variation in one quantity can affect
variation in another — a variational view. According to Malik (1980), in the 17th
century “The investigation of a relation between two varying quantities [my

emphasis] had been fundamental in arriving at the concept of function” (p.490).

The first appearance of the term ‘function’ was in 1692 with Leibniz and Bernoulli,
who adopted it “to designate certain variable geometrical quantities — such as
ordinate, tangents, and radii of curvature - connected with given curves” (Boyer,
1946: 12). On being linked with curves, the term received a geometrical approach
which involved also a variational view.

In the 18th century, mathematicians developed another definition which treated the
concept of function essentially as an equation. For them a function was: “an analytic
expression representing the relation between two variables with its graph having no
corners” (Malik, 1980: 490). As pointed out by Boyer (1946), “The word
function, as introduced by Leibnitz and as used during the eighteenth century, was

essentially equivalent to the word formula” (p.12).

Despite this new definition, the geometric approach of function was not lost. “Euler
saw that any curve drawn free hand in a plane determines a functional relationship
which may not be representable, either implicitly or explicitly, in ordinary
analytical form” (Boyer, 1946: 12). This observation was used by Lacroix to give a
broader scope for the term function. For him, “Any quantity the value of which
depends on one or more other quantities is said to be a function of the latter, whether
or not one knows by what operations one can pass from the latter to the first
quantity” (op.cit.: 12-13). Nonetheless, by his illustrations, Lacroix showed that he
was still considering functions given by formulae or equation. In 1837, Dirichlet
revised the definition of function to: “y is a function of x, for a given domain of
values of x, whenever a precise law of correspondence between x and y can be stated
clearly” (op.cit.: 13) where he meant by ‘precise law’ a rule which gives to x one
and only one value of y. He intended to include badly-behaved functions such as the
well-known Dirichlet's totally discontinuous curves, which is given by y=f(x) is 1

if x is rational or O otherwise. The unicity of a function was highlighted.

Malik (1980) points out that with the introduction of topology and metric spaces,

mathematicians realised that the properties of a function depended very much on sets
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(domain and range). “In 1917, Caratheodory defined a function as a rule of
correspondence between a set A to real numbers and in 1939 Bourbaki defined
function as a rule corresponding to two sets and in later chapters observed that it is a
subset of the Cartesian product of sets” (p.491). The Dirichlet-Bourbaki definition
appeared as:
‘A function f from A to B is defined as any subset of the Cartesian product of A
and B, such that, for every ac A there is exactly one be B such that (a,b)e f’.
This definition is a set-theoretical approach to functions which emphasises the

concept as a mathematical entity.

As Burn (1993) explains, in English education, there is a contrast between the way
function is explored at university level and at high school level. He argues that at
university, functions are treated as they were by mathematicians at the beginning of
the 19th century while at school level functions are treated as in the 17th and 18th

centuries, where notions such as limits and real numbers are not explored.

School mathematics following a traditional approach has introduced students to the
concept of function using the Dirichlet-Bourbaki definition. In line with traditional
school mathematics, the majority of Brazilian secondary schools present this
definition in the following way:

‘Given A and B two sets, a relationship f is said to be a function if and only if

for every element ac A exists only one element beB such that f(a)=b’.
Although these schools introduce functions in a set-theoretical approach, the
examples explored in general consist of functions specified by their equations. As
shown by Vinner & Dreyfus (1989) and argued by Malik (1980), students do not
use the definition to build their perceptions. “A student retains a concept only if it is
used in the course; if only its particular form is used, the student unconsciousiy
accepts the particular form ...” (Malik, 1980: 490-491). The majority of students
rarely perceive function as a mathematical entity. Analysing students' and teachers'
perceptions and definition, Vinner & Dreyfus (1989) classified them in the
following ways: as a correspondence, as a rule, as a dependence relation, as an

operation, as a formula, or as appearance of function in a determined representation.

Considering both the evolution of the concept of function and the classification made
by Vinner & Dreyfus (1989), | would like to discuss alternative ways of perceiving
a function and analysing its properties. On perceiving a function as a correspondence
or rule, students can adopt two views: variational and pointwise. In a variational
view, a function is analysed by looking at ‘how the change from x4 to xo is related to
the change from yq to yo’. This view was emphasised in the first studies of

functionality as well as in its geometrical approach. In a pointwise view, a function
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is analysed according to ‘how x is associated to y’. A definition which takes the
function as being almost defined by an equation seems to be closely related to this
view. Also, as Malik (1980) argues, the Dirichlet-Bourbaki definition which is
algebraic in its sense, “appeals to the discrete faculty of thinking and lacks a feel for
the variable” (p.492).

Vinner & Dreyfus (1989) showed that students' perception of a function also depends
on the form in which it is expressed. When presented as a graph, function is usually
perceived as a well-behaved curve. Research on students' understanding of graphs
has pointed out that students usually interpret properties of function in a graph by
its shape as a static picture (Goldenberg, 1988), which has been called a pictorial
view. When presented by an equation, a function is essentially perceived as a process
of taking one input [x] and obtaining one output [y], which has been called a
procedural view. In circumstance when the students do not see x as a variable, this
emphasis can lead them to analyse functions as the correspondence of points — a

pointwise perception.

The present research will not take one of these views as the best way of dealing with
the concept of function but rather the intention is to try to analyse the perceptions of
the students while exploring the properties of function and to examine how students'
ideas of the properties develop while interacting in each microworld. However, |
have to consider that for each microworld, the designers intend to lead students to at
least one of the views as distinguished above. For example, Goldenberg et al (1992)
with DynaGraph intended to give students an opportunity to change their views of
function from pointwise to variational. As regards Function Probe, while using
multiple representations in contextual problems Confrey (1992a) intended to lead
students to a variational view. These intentions will be analysed in section 5 of

chapter lll of after the description of the software in chapter Ii.

S5  Description of the thesis

The thesis has ten chapters and five appendices. Chapters |, I, Il and IV define the
study. The present chapter introduces the aims, questions and arguments of the
research and discusses the mathematical concept of function. Chapter Il will describe
the software programs used in the investigations. Chapter lll will review the
literature on function aiming to develop a theoretical framework from which to
interpret the data and findings of the empirical study, following which the research
questions will be presented in detail. Chapter IV will describe the methodology of the
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empirical study comprising four case studies with pairs of students. Appendix | will
present worksheets used in the empirical study and appendix Il will present the
activities designed for the study around each software environment. Appendix Il will

present the steps used in the analysis of the data.

Chapters V, VI, VIl and VIl will discuss the results of the empirical study. Chapter V
will describe the pilot study and its findings. An analysis of how Brazilian schools
approach the topic of function will be presented in chapter VI. Chapter VIl will
analyse the evolution of each pair of students’ perceptions of the chosen function
properties. Appendix IV will present tables and diagrams of students’ perceptions of
each of the chosen function properties. Chapter VIiI will summarise and synthesise
the work of all the pairs of students by comparing the findings from chapters Vi and
VIl. Appendix V will present tables with evidence of the findings discussed in chapter
VIII.

Chapters 1X and X will conclude the research. Chapter X will discuss the research
findings in relation to other studies on function. Finally, chapter X will discuss
issues arising from this study in relation to the research questions affecting the
teaching and learning of mathematical function and the place of function in the school

cufriculum.

For reasons of simplicity, sections, sub-sections, figures, diagrams and tables will
be denoted section (sub-section, figure, diagram or table) CN-No. (AN-No.) to refer
to section (sub-section, figure, diagram or table) No. in chapter N (or in appendix
N), for example table Alli-2.4 refers to table 2.4 in appendix 1ll. When referring to
a table, diagram or figure in the same section or the same chapter only the number

will be used.
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Il — The Software Programs

Before the review of the literature on functions, brief descriptions of Function
Probe and DynaGraph will be presented. The descriptions will focus on the features
of the software programs which will be explored in the present study. The reader
who already knows both software programs will not find it necessary to read this

chapter.

1 Description of Function Probe

Function Probe (Confrey et al, 1991a) is a multiple representational software tool
to enable students to explore the idea of functions. It combines three representations
(equations, graphs and tables) in three windows (Graph, Table and Calculator). The
integrity of each representation is preserved. Students can explore functions with
actions either within one representation or with links made between different
representations. This study will focus on the Graph window of FP particularly in the
transformations students do in graphs while looking for properties of functions.
Therefore, this section will present a description of the Graph window only. For a
complete description of FP see Confrey et al (1991a). Also, section Al-4 presents a

‘Journey through the software’.

The Graph window presents both Cartesian and algebraic representations. This
software allows dynamic transformations in graphs: stretching, translating and

reflecting. Figure 1.1 presents the Graph window with FP menu.

The Graph window presents two spaces for the representations: the equation and
history view and the graph view. The graph view presents a iconic menu of
commands. Apart from the new equation icon, these commands, which include the
transformations, are the actions allowed within graphs. New equation icon is one
action between algebraic and Cartesian representations. A command can be selected
by clicking the mouse on its icon. Apart from the sketching icon, the commands will

be described below.
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Figure 1.1

Graph window of Function Probe with menu
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- New equation icon can be used to graph a function by its algebraic

representation as input. Clicking the mouse on its icon, y= appears in the equation
space in the equation and history view. Then, the user needs to write down the
equation and press the [Return]-key. Function Probe traces its graph as feedback.

Multiple graphs are allowed in the graph view.

%
L3 Selection jcon is used to select one of the graphs presented on the graph
view. When selected, the graph is highlighted in the graph view and its algebraic

representation appears in the equation space, whenever possible. Selecting a graph is

a necessary procedure to use the transformations: stretch, reflection and translation.
i)
{hy

- Point indicator is used to plot points as well as to find out the coordinates of

a point. As the icon is moved inside the graph view, the coordinates of the current
point appears in the equation space. This command is particularly usefui to localise
points of a graph.




Figure 1.2
Point indicator being used
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While exploring FP, this research will focus on the effects of the transformations of
graphs on students' perceptions of function and of its properties. Therefore, | will
give some examples of the execution of these transformations in graphs as a textual
description of dynamic procedures is difficult. However, | really believe that the
reader must try Function Probe at least once to grasp the real dimension of these
transformations. Each of the transformations has at least two versions: vertical and
horizontal. As the examples below only show the effects of these transformations, to
learn how to operate them see the ‘Journey through Function Probe software’ in

section Al-4.

] e
- Lol

- When clicking the mouse on the translation icon, the user will be asked to

select horizontal or vertical translation.

Horizontal translation is used to translate the graph in the direction of the x-axis,
that is, horizontally. This is a dynamic process, i.e., student executes the translation
seeing the intermediary phases of the transformation of the graph. Meanwhile, FP
presents the number corresponding to the current transformation in the space for
feedback of the commands at the right side of the equation and history view. Figure
1.3 shows a horizontal translation of +5 units in the graph of y=x2. The second
screen shows one intermediary phase of the transformation. Note that the equation

modified appears in the equation space only when the transformation is finished.
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Vertical translation is similar to horizontal translation, but translates the graph in

the direction of the y-axis, that is, vertically.

Figure 1.3
Horizontal translation of the graph of y=x2, in three phases:

before. during and after it

g ‘ E Graph

Graph ﬂg

H=H"2

—= 1 - On clicking the mouse on stretch icon again student is asked to choose

between horizontal and vertical stretches. These transformations allow students to
stretch a graph in the direction of the x-axis or y-axis from a chosen line (anchor
line). By choosing the anchor line in one of the axes, the effect of the transformation
in an equation involving x and y is to have x or y muitiplied by a constant, called

stretching coefficient.



Vertical stretch with anchor line on the x-axis, for exampie, promotes a dynamic
stretch of the value of y through the graph. In equation, the variable y is mulitiplied
by the stretching coefficient which appears in the space of feedback of commands.
Figure 1.4 presents vertical stretch of the graph of y=5sin{x) using the x-axis as

anchor line by 1.515 in three phases.

Figure 1.4
Vertical stretch of the graph of y=5sin(x). in three phases: after marking the

anchor line; during stretch: and the resuit
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Horizontal stretch is similar to vertical stretch. They differ by the variable which
each one of them stretches. Horizontal stretch stretches the value of x. For example,
as shown in Figure 1.5, a horizontal stretch of 2 with anchor line in the y-axis in
the graph of y=5sin(x), can change its period, but it maintains the amplitude of the

graph while vertical stretch has the opposite effect.
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Figure 1.5
Three phases in horizontal stretch in the graph of y=5sin(x): after marking the

anchor line; during a dynamic stretch: and the final screen
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- On clicking the mouse on reflection icon, the student is asked to choose
among: inversion, vertical and horizontal. Inversion (which will be not used in this
research) reflects the graph through the line given by y=x causing an inversion of

the function. For example, f(x) is reflected into 7-1(x).

Vertical reflection is a command to reflect the value of y with respect to a reflection
line positioned horizontally. For example, by choosing the x-axis as reflection line,
the value of y is reflected into -y. Figure 1.6 shows a vertical reflection of y=abs(x)

with reflection line on the x-axis.



Figure 1.6
Vertical reflection of the graph of y=abs(x) in two phases: during the choice of

reflection line; and its results
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Horizontal reflection is similar to the vertical one. They differ by the variable

reflected. For examplie, imagine a horizontal reflection in the graph of y=abs(x)

with reflection line on the y-axis. It will not alter the graph.

2 Description of DynaGraph

DynaGraph (Goldenberg et al, 1992) is an educational software which presents a
visual representation of function exploring the potential of dynamic manipulations of
objects. It represents a function point-by-point by two sprites. One of them
corresponds to the input of the function (in general denoted by x) and the second
sprite represents the image of the function (f(x) or y). Using the mouse, the student
moves (varies) x horizontally. Then, DynaGraph moves y according to the new
position of x and the chosen function. It can explore one variable real function in
three versions according to the position of the y-axis: (a) the axes are posed in
parallel which | term parallel version, (b) the axes are posed in perpendicular
disposition which | term perpendicular version; and (c) the axes are posed in
Cartesian disposition, which includes a third sprite to represent the position of
(x,y), which | term Cartesian version. Figure 2.1 shows the screen of DynaGraph

with the parallel version on:
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Figure 2.1
Screen of DynaGraph showing: R -> R and equation

File Edit Mappings Functions Display Settings Help Behaviors

Functions

The first stage in exploring DynaGraph is the definition of the function. Users are

expected to enter the function by its algebraic representation. This step is done by

selecting functions at the menu and writing down the equation. Then, DynaGraph

enables the students to move the arrow, which represents x, and gives as feedback

the change in the position of the triangle, which represents y. Thus, DynaGraph leads
students to see function as the relation between ‘transformation between x4y and

xo'and ‘transformation between y1 and y2' — a variational view.

Among the features of DynaGraph, | will emphasise here the following:

‘the scales of x and f(x)’ and ‘the step x will vary’ can be defined by the user. In
figure 4.7, ‘the step x will vary’ is set to 0.5 units;

the sprites of x, y and (x,y) have two modes: they can leave dots in the screen or
not. In figure 4.7, DynaGraph is set to leave the dots;

up to two functions can be explored in the same screen. When set to use two
functions, DynaGraph presents another line (in the case of parallel version) to
place the second function which is denoted in the screen by g(x);

the window called Functions can be set to be on or off, making the equation
available to the users or not;

functions can be explored by the user without knowing its equation. The
behaviour menu allows a tutor to hide eight functions. The user can access these
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functions by selecting one of the numbered behaviours. In this case, the
Functions window will not present the equation of the current function. There,
the equation stays as the last defined equation;

¢ all the features are available to users' choice by the menu.

Figure 2.2 shows the Cartesian version of DynaGraph with the features in the
following states: ‘the step x will vary’ is 0.5 units; the Functions window is on; the

sprites are leaving the dots.

Figure 2.2

Screen of DynaGraph with the Cartesian version displayed

% File Edit Mappings Functions Display Settings Behaviors
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Il — Review of the Literature on Function

This chapter starts by introducing in sections 1 and 2 terms and approaches | will
use for representations and concepts. Then, section 3 reviews the literature on
students' perceptions of a concept particularly the perceptions of the function
properties. Sections 4 and 5 discusses the use of software in the topic of function
particularly the use of Function Probe and DynaGraph and the final section presents

the research questions in the context of the software programs.

1 Representations

This section will introduce the approach taken in this research to the meaning of
representation and its relation with concept. The different representations of

function used in school mathematics will also be discussed.
1.1 Representations and Concepts

Representation has been considered in mathematics education as a key to the
construction of mathematical knowledge. | will base the definition of my use of the
term on the survey published by Goldin (1992) in the proceedings of PME, which
summarises the use of the term ‘representation’ in mathematics education research.
Goldin classifies the meanings used for representation in mathematics education into

three different types. The first one is internal, the second and third are external.

Internal representations “include individual representations of mathematical ideas
as well as broader theories of cognitive representation...” (Goldin, 1992: 11).
Goldin (1992) divides the external representations into two types: symbolic systems
and contextual representations. Symbolic systems “can include linguistic systems,
formal mathematical notations and constructs, or symbolic aspects of computer
environment” (p.11). Cartesian Graphs, formulae, tables, and diagram are examples
of formal mathematical notations of function. Regarding contextual representations,
Goldin (1992) expresses them as being “external, structured physical situations or
sets of situations, that can be described mathematically or seen as embodying
mathematical ideas” (p.11). As the present study concentrates on symbolic systems,

that is the meaning which will be used here for the term representation.

28



A first point to consider is the importance in mathematics of representation.
Mathematics has a dual nature: it is a body of knowledge and a language. Therefore, as
a language it has to be represented to communicate both to yourself and to others and
to “provide an organizational framework” (Kaput, 1992: 522). Thus,
representations are tools to facilitate both the understanding and the retrievai of
mathematical knowledge. They are also used as a tool to universalise mathematics.
These two characteristics of mathematics are regarded by many as inseparable.
Dufour-danvier et al (1987) suggest that mathematical concepts and
representations are so closely associated that: “it is hard to see how the concept can
be conceived without” (p.110) the representations. Thus, “the idea of

representation is continuous with mathematics itself’ (Kaput, 1987: 25).

Looking at the dual nature of mathematics, Kaput (1992) defined two worlds: “(i} a
world of mental operations which is always hypothetical, and (ii) a world of physical
operations, which is observable” (p.522). These two worlds can interact in both
directions. Representations are part of the world of physical operations while
concepts belong to that of mental operations. He defines a representation in two ways:
in a functional way and in a technical way. In a functional way, the representations
can be seen as a “system of rules (i) for identifying or creating characters, (ii) for
operating on them, and (iii) for determining relations among them” (p.523). In a
technical sense, a representation is “a set of rules that define the objects of the
notation system and allowable actions on them” (p.523). In order to define the
actions allowed in one representation, the material world where it is defined is
essential. The material world can be paper-and-pencil, computer displays, physical
objects, and so on. The actions are: transformations of objects within one
representation and translations between objects from different representations.
Translation between different representations is directional. For example, one can
translate an equation into a graph by plotting points or translate information from a

graph to find out an equation.

In this approach Kaput (1992) separates concept from representation, an approach
aiso adopted by many mathematics educators (Greeno, 1983, Kaput, 1986, 1991,
1992, Schwarz & Bruckheimer, 1988, Janvier, 1987a, 1987b). Despite having
the same starting position, while working with the concept of function, Schwarz &
Bruckheimer (1988) argue that “Although the concept of function and its
subconcepts are not theoretically linked to a particular representation ... the
properties of a function are often understood in their representational context only
and no abstraction of these properties is made by the beginning students” (p.552).

This argument, in my view, shows the unfeasibility of disconnecting concepts and
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representations. | will therefore adopt an alternative notion of concept offered by
Confrey et al (1991b) who take the position that “representations and ideas are
inseparably intertwined. Ideas are always represented, and it is through the
interweaving of our actions and representations that we construct mathematical
meaning” (p.17). Thus, this research takes as a starting point the assumption that
the connections between perceptions of a concept in different representations are

essential for the construction of this concept.

Even if concepts and representations are inseparable, the successful use of any
representation is not straightforward. Mathematics educators (Dufour-Janvier et al,
1987; Boulton-Lewis & Halford, 1990; Greeno, 1983; and Goldenberg, 1988) have
focused on students' difficulties when using representations, and have argued that
each representation has its own structure and ambiguities (Goldenberg, 1988). This
means that students' perceptions of a concept must be investigated with due
consideration of the nature of the representation. Boulton-Lewis & Halford (1990),
for example, considered that “The choice, and successful or unsuccessful use, of a
representation depended on the child's knowledge of the representation itself, of
content and of appropriate procedures” (p.203). In my view their consideration
draws attention to the fact that while examining the students' perceptions of a
concept, one has to consider any difficulties inherent in the representation.
Goldenberg (1988), for example, focused on students' difficulties while analysing
Cartesian representation. Subsection 1.2 will present a review of students'
difficulties in the use of representations of function particularly the algebraic and

the Cartesian representations.

The use of more than one representation for each concept has been discussed by
mathematics educators (Goldenberg, 1988; Confrey, 1992a). Goldenberg (1988)
presents as view common among mathematics educators that “each well-chosen
representation conveys part of the meaning best; together, they should improve the
fidelity of the whole message” (p.136). For example, to perceive the symmetry of
real functions is easier in the Cartesian representation than in the algebraic one
(Confrey, 1992a). Nevertheless, if the study of symmetry is only derived from
exploration in the Cartesian representation, the students can be led to limit their
perception to a pictorial view without analysing the relation between x and y. To
complement the previous argument defending the use of more than one
representation, two other ones will be summarised here. The first is that same
concepts can be presented in some representations but not in others. For instance,
Euler's function that associates each rational number to 0 and the other numbers to 1

can be represented in the algebraic system, but it cannot be represented in the
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Cartesian system. A second point to be considered is that each concept is perceived in
different ways in each representation. Thus, developing a concept in different
representations means that different aspects of the same concept can be perceived and
leading students to generalise the concept to a wider range of applicability may resuit

in overcoming limitations in each individual perception.

Students have to cope not only with different representations but also with making
connections between different representations. Researchers (Confrey, 1992a;
Borba, 1994; Goldenberg, 1988; Artigue & Dagher, 1993) discuss the use multiple
representations. A common viewpoint is that inside each conventional representation
a concept is seen in a different way. Artigue & Dagher (1993) argue that “A
mathematical concept is not a monolithic object. A single concept may be understood
from several points of view and may have several different representations; in
mathematics one needs to be able to move freely between these points of view and

representations, adapting them to the setting in which a concept is used” (p.1).

Confrey (1992a) summarising research on multiple representations makes several

points in its defence. | intend in this study to investigate some of these points. She

argues that multiple representations have the potential to:

* ‘“highlight different aspects of the concept”,

 “Lead to a convergence across representations that may improve or strengthen
our depth of understanding”;

» “promote examination of the potential conflict among forms of representations”;

« allow assessing how changes in one representation affect another;

* “illustrate how alternate forms of actions in a representation can cause students
to develop diverse schemes”;

* “provide situations for students to conduct their own investigations of ideas”;

» ‘“provide opportunities for feedback, revision, and reflection that are created by
the student” (p.149-150).

in an approach which considers that conceptual understanding arises from making

connections across different representations, the main interest is to investigate

whether the use of muitiple representations leads to some convergence across

representations. Two different possibilities can be seen; either two different forms

of a concept derived from different representations can be connected by the students,

or these forms remain isolated from each other. Then, some questions arise: In which

conditions are connections spontaneousiy built? Which sort of activity must be

undertaken to lead the students towards making connections? Can bridges be built to

promote connections? Should the tutor build bridges to encourage students to make

connections? Kaput (1992) suggests two activities to motivate students to make
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connections: match corresponding objects in different representations, and predict
the effects of a transformation of one object in one representation to its

corresponding object in another representation.

Moschkovich (1993) showed that the development of students' perceptions is a
process which involves limitations which are not confined to students' perceptions.
Teachers also can carry limitations in their perceptions. The case study reported by
Speiser & Walter (1994) is a good example of how a teacher can identify limitations
in the bridges they build for the students by listening to them. Starting with a
contextual representation of a function as the frames of a cat walking, the teacher
tried to make the students reach the concept of derivative as the limit of secants in a
Cartesian representation. In a first step, the students constructed the concept of rate
of change. Then, they pointed out that the bridge proposed by the teacher to connect
rate of change in this example with the limit of secants did not make sense. The
students argued that the initial representation presented only discrete points which
could not be modelled by a function without considering a margin of error. With this
example, | argue that allowing the students to freely navigate on different
representations, can:
* help them to recognise any limitations in their perceptions of a concept in one
representation,
¢ allow them to construct perceptions within a representation,
* encourage them to generalise these perceptions, and
* lead them to overcome any limitations of their previous perceptions.

While analysing how a concept appears in different representations, Moschkovich
(1992) introduced the idea of looking at the status of the properties in each
representation. She examined students' perceptions of the concept in one
representation classified according their special status. To clarify this idea, | will
refer to her example. She argued that in the same way that a root — the point at
which a graph intercepts the x-axis (x-intercept) — has a ‘special status’ (a special
point) in the Cartesian representation, the slope has a similar status in the algebraic
representation for linear functions — linear coefficient. Therefore, the properties
which can be recognised by coefficients assume a special status in the algebraic
representation. Also, one property can have special status in one representation but
not in another. This constitutes the asymmetry between representations. For
example, slope has no special status in the Cartesian representation and demands
from the students a variational interpretation of graphs which is not

straightforward. In the same way, roots do not have a special status in an algebraic
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representation; one must make calculations in order to find out the roots using

equations.

Asymmetry amongst the status of the properties constitutes a qualitative difference
between representations. The use of qualitatively different representations is put
forward by Lesh et al (1987) and Arcavi & Nachmias (1989) as a way to help
students improve their perceptions of mathematical concepts. Arcavi & Nachmias
(1989) analysed pupils and adults who were considered to be mathematically expert
exploring a non-conventional representation. They observed that these individuals
started to re-examine their previous perceptions in graphical and algebraic
representations. The researchers raised the following question: “The role of a
representation of a mathematical idea seems to go beyond the mere goal of having a
tool to handle that idea. Could it not be that by introducing a new representation, we
are not only establishing a way to express an idea or a concept, but also re-
examining and consequently learning “more” about those ideas and concepts”
(p.84)? This research involves the use of qualitatively different representations,
that is different representations which attribute different status to the same concept.
The requirement of incorporating qualitatively different representation can be
justified by the argument that using different representations which give the
concepis the same status will lose the opportunity of provoking students to re-

examine their perceptions.

In order to promote the forging of connections, two points suggested by previous
researchers will be investigated in the present study. Firstly, Moschkovich (1992)
puts forward one important requirement for enabling students to connect information
from different representations - students must recognise that the same property can
have a different status in different representations. She found out that the students
used properties perceived with same status in different representations as being
correspondent. Secondly, by analysing the students' perceptions of concepts (such as
derivative, continuity, limits, integration) in a clinical interview, Ferrini-Mundy
& Graham (1994) suggest that the ability to co-ordinate algebraic and graphical

representations may differ substantially across concepts.

On analysing the ways students made connections between perceptions of a concept in
different representations, Schwarz & Dreyfus (1993) introduced two kinds of
connections: simple connections and integration of information. By simple connection
they meant direct links between two objects in different representations; for
example, a student can link the direction of a straight line to the sign of the
coefficient in linear functions. While integrating information, the knowledge built

inside one representation serves to improve the knowledge of another. Thus, one
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question arises: does the use of qualitatively different representations lead students

towards the integration of information? If so how?
1.2 Representations of functions

When referring to ‘school mathematics’ in this work | mean ‘traditional school
mathematics’ as taught in the majority of Brazilian secondary schools. A similar
approach is taken by most North American high schools and Israeli secondary schools.
In this section, 1 will survey the different potentialities and limitations of each
representation of function used. The analysis of problems and advantages of each
representation will have two foci: the first is the analysis of specific properties; and
the second is the way students analyse the properties in each representation:
pointwise, pictorial, variational or global. A discussion of the first type will be
postponed to section 3 while the second focus will consider the ways students analyse

functions represented by graphs and by equations.

The concept of function has been expressed in several different representations, for
example, as equations and graphs. School mathematics has maintained the same
multiple representational approach to exploring function, using representations
such as: equations, graphs, diagrams and tables. In order to start discussing the
advantages and problems in using these representations, four examples of reai
functions will be shown using these four representations: (f) the function which
associates a number with its opposite; (g) the function which associates a number
with its square; (h) the function which associates a number with the fixed value 2;
and (j) the function which associates the value of an angle with its projection on the

y-axis in the trigonometric circle as shown in figure 1.1.

Figure 1.1

Projection of an angle o on the y-axis by the trigonometric circle

¥
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A diagrammatic representation frequently used is illustrated in figure 1.2.

Figure 1.2
f. g. hand jrepresented by diagrams
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In tables the functions can be represented in the following way:

Figure 1.3

Tabular representation of the functions f, g, hand j.

X f(x) X g(x) X h(x) X i)
-4 4 -4 16 -4 2 -t 0
-3 3 -3 9 -3 2 Bn/4l N22
-2 2 -2 4 -2 2 -t/2 -1
-1 1 -1 1 -1 2 -4 | 22
0 0 0 0 0 2 0 0
1 -1 1 1 1 2 /4 \N2/2
2 -2 2 4 2 2 /2 1
3 -3 3 9 3 2 3n/4 | 212
4 -4 4 16 4 2 14 0
The Cartesian representations of the four functions are shown:
Figure 1.4
Cartesian representation of the functions f., g, hand j
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Finally, in the algebraic representation the functions take the following forms:

¢ f(X)=-x for eachx e R

e g(x)=x2 for eachx € R

* h(x)= 2 foreach x e R

* j(x)=sin(x) for x e [-m,m]; its domain can be extended to R by looking at any

number z as being z=x+2Kn where x e [-n,n], and applying the function to x.

A comparison between the above examples shows that the algebraic representation
brings precision. Students can know exactly the output value corresponding to any
input. This precision is not easily obtained from graphs and diagrams, which only
allow approximations. As for tables, the precision is obtained only for the inputs that
appear in them, otherwise students will have to use interpolation. The Cartesian and
the algebraic representations maintain the continuous character of the domain, while
tables and diagrams can only represent discrete points. Summarising of the
differences, Goldenberg (1987) reports that it is widely accepted that “Algebraic
expressions specify the exact relationship, but give neither single examples nor a
visual gestalt. Graphs provide a gestalt within the limits of the graph but leave
precise details unclear. Tables provide examples of the mapping but do not specify its
nature. ... taken together, multiple representations shouid improve the fidelity of the
whole message” (p.197). The claim is that the more representations a student has,
the better s/he can perceive a concept. | will investigate the truth of this as the key
to the advantages offered by multiple representations lies in connections between

them and also in different perspectives each of them can provide.

In order to examine how useful each representation is, this research investigates
how problems and advantages of one representation might be both dependent on the
particular content analysed and related to the ways students analyse functions. The
first dependence will be addressed in section 3 while reviewing the research on
students' perceptions of the function properties. Nevertheless, an illustration can be
provided by the argument of Goldenberg (1991) about the use of graphs and
equations while analysing linear functions. He shows that it is harder to understand
linear function in the graphic representation than in the algebraic one. Goldenberg
(op.cit.) suggests that “when approaching functions through their graphs, it may
make most sense to begin with graphs that have no convenient algebraic
representation and with notions that we typically ignore until the calculus, including
the nature of the domain, local maximum or minimum, rate of change, and continuous

or abrupt change” (p.81).

The second point investigated will be the core of the remainder of this section, where

| will examine the different ways students analyse functions in different
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representations. The algebraic representation is in general taken in school to be the
essence of a function (Confrey & Smith, 1992). This representation is explored by
its potential to calculate the exact value for any element of the domain. Therefore, the
procedural view of function tends to be the starting point. This approach can lead
students to adopt a pointwise view when analysing a function through its equation and
a variational one can be adopted following an analysis of the role of the coefficients of
each equation (Janvier, 1983). For example, the linear coefficient of the equation
‘y=ax+b' plays the role of the derivative and its sign indicates whether a function is

increasing or decreasing.

If on the one hand, the equations lead students to a pointwise view of function, on the
other, visual representations particularly the Cartesian one are claimed by experts
in mathematics and in science to facilitate the interpretation of information, even of
information related to variation. In contrast to this claim, Clement (1985), Preece
(1983), Monk (1992) and Goldenberg (1988) show that the use of Cartesian
representation has the potential to obscure as well as to clarify the concepts. The
research on graphical understanding has pointed out that students usually interpret
function properties from a graph by reference to its shape as a static picture
(Goldenberg, 1988) - pictorially. Another way students interpret a graph is
pointwisely. They come to see a graph as a tool to localise points (Monk, 1992).
Considering both viewpoints, two aspects will be discussed:

» the ways the students analyse graphs;

¢ the possibility of analysing graphs in a different way.

In both analyses pointwise, variational and pictorial views will all be discussed.

Clement (1985) points out that one of the problems students have in interpreting
graphs is that they see a graph as a picture. In this case, the shape becomes one of the
features with special status in a graph. In a review of the literature on functions and
graphs, Leinhardt et al (1990) report two ways students interpret graphs:
considering the lines as a legitimate part of a graph, or considering only discrete
points in a graph. Nonetheless, they point out that for both ways in general “the
students often maintain a strict focus on individual points whether or not they are
connected with a line. In other words, although lines are accepted as a legitimate part
of graphs, they seem to serve a connecting function rather than possessing a meaning

in their own right” (p.34).

Goldenberg (1991) goes further, pointing out that students usually observe only
special points when interpreting graphs. Following his earlier study (Goldenberg,
1988) where bright students explore a graphic software while comparing two

parabolas, Goldenberg (1991) concluded that the students used ‘special points’ or
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regions to interpret graphs, such as turning point and y-intercept. On looking only
at special points and comparing different linear functions with the same coefficient
‘b’ at the equation ‘y=ax+b’, students can be led to connect the coefficient ‘a’ with
the y-intercept as pointed out by Moschkovich (1992). Goldenberg (1991) points
out that the gestalt way of interpreting graphs is a consequence of the way students

learn about graphs.

Working with students' interpretation of graphs, Preece (1983) analysed students'
perceptions of functions which require more than a simple reading of discrete points
such as extreme values and derivative. She showed that 14-15 years-old students
“have poor graph interpretation skills because they either do not understand the
relevant concepts or have inadequate graph reading skills” (p.44-45). One of the
errors she detected concerned the difficulties which students have in analysing
function properties pointwisely. Preece (1983) detected that some students “were
not able to answer questions about concepts which arose from the variables but
which were not actually mentioned in the display, e.g. speed in distance-time
graphs” (p.45). In my view, this can be interpreted as: the students who only
interpret graphs pointwisely were not able to perceive function properties which do

not have a ‘special status’ in the Cartesian graphs.

Apart from pointwise and pictorial ways of analysing graphs, a variational view can
also be adopted. Tierney et al (1992) argue that to analyse function properties such
as derivative and extreme values, students need to adopt a variational view.
Nonetheless, they appreciate the importance of a pointwise analysis of other
properties such as range and domain. The difficulty of developing a variational view
is also another concern of Goldenberg (1993) who argues that when mathematical
experts analyse a “Cartesian Graph and declare a function to be increasing over some
portion of the domain, ...” they are “... seeing movement in a static picture, and using
considerable interpretive skills that novices do not seem to bring” (p.13). Thus, the
skill of reading a graph in a variational way is used by experts who claim that the use
of Cartesian representation facilitates the interpretation of information. Analysing
graphs in both variational and pointwise ways can facilitate the perceptions of
different properties of function. Therefore, one aim should be to try to lead the
student to a smooth way of developing a variational analysis of graphs (Tierney et al,
1992).
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2 Methodological approach to investigating students' perceptions

This research will use the ways students describe functions as evidence of their
understanding of the functions properties. ‘Understanding’ is at the cognitive level
which is not observable, thus, this evidence cannot establish whether or not a
concept is understood. To make clear that | am dealing with the observable world,

these ways of describing the function properties will be called perceptions.
2.1 Two contrasting methodological approaches

The research on students' perceptions of function (Clement, 1985; Preece, 1983;
Goldenberg, 1988; Mevarech & Kramarsky, 1993) has tended to concentrate on
‘identifying’ students' difficulties in developing the concept. The researchers try to
detect common difficulties calling them misconceptions. Nesher (1987) defined
misconception as “a line of thinking that causes a series of errors all resulting from
an incorrect underlying premise rather than sporadic unconnected and nonsystematic
errors” (p.35). Although in its origins the term has been considered to refer to
“intelligent constructions based on what is more often incomplete than incorrect
knowledge” (Resnick et al, 1989: 26), researchers into misconception have tended
to concentrate on the negative aspects of the conceptions. Moschkovich (1992)
discusses the analyses “of students' conceptions describing errors and
misconceptions have focused largely on the “mis-" aspect of student ideas and have
not considered conceptions that may be useful, applicable in some context, or
productive for advancement” (p.129). Agreeing with her viewpoint, | argue that
conceptions should most probably be analysed from a consideration of their potential

for improvement, their origins, limitations and usefulness.

Moschkovich (1993) used the approach of ‘alternative interpretations’ which
considers the positive and negative aspects of students' perceptions. According to her,
the term “alternative interpretations” shows a certain respect for students' ideas by
considering that there are alternative ways to conceive of a domain, although “there
is a mathematically accepted way to think about the subject matter” (p.1). She
points out that “misconception is no longer an adequate concept for referring to some
of the conceptions that students generate” (p.1). In her research on students' use of
x-intercept!, she shows how the ‘alternative interpretations’ approach highlights

the shortcomings of the ‘misconceptions’ approach.

1 x-intercept means the point where the graph intercepts the axis of x (x-axis).
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As an example of this alternative perspective in her study of students' perceptions
while connecting algebraic and Cartesian representations of slope, Moschkovich
(1992) points out that the introduction of aigebraic and Cartesian representations of
linear functions with slope equal to 1 may obscure the difference between x-
intercept and the independent coefficient?. She also claims that this introduction can
be the origin of this connection. Nonetheless, Moschkovich (1992, 1993) showed
that two of the students used x-intercept for slope, which was considered a
“‘misconception”, as a bridge to improve their perceptions of derivative.
Moschkovich (1993) showed that the students refined the use of x-intercept in the
following ways: (a) “The use of the x-intercept for b when” a=1 “was refined from
using the x-coordinate of the x-intercept ... as the b in the equation, to using the
opposite of the x-coordinate of the x-intercept ... as the b in the equation”; (b) “the
context in which the use of the x-intercept is applicable was specified”; (c) “the x-
intercept was explored as a reflection of the slope” (p.15). This shows that
alternative interpretations can be useful in the process of developing a concept. It is
important to understand this process in the construction of the concept as a
transitional conception which has its usefulness, limitations, origin, and potential to
bridge to more competent concepts. Therefore, in the ‘alternative interpretation’

approach listening to students is fundamental.

Following a similar approach, | will use ‘associations’ to describe what Moschkovich
calls ‘alternative interpretations’. The term association also includes students'
perceptions of properties which merge with a different property. For instance,
students can identify extreme values in parabolas and sines (graphs with turning
points) but not in graphs of exponential functions (graphs without turning points).
Thus, 1 will say that students' perceptions of exireme values are associated with
turning points. Nonetheless, | do not mean that the students perceive extreme values

and turning points as being the same property.
2.2 Obstacles

In developing an association students can follow two paths: either they recognise its
limitations and improve their perceptions by revising it; or these associations
become resistant to change and serve to limit the students' perceptions. Thus,
associations can be transformed into knowledge-obstacles. As Artigue (1992)
argues, “As far as some piece of knowledge has turned out to be successful in a wide
range of situations, it becomes resistant to change, even if it must be at least

strongly modified in order to cope effectively with new problems. This theory

2 The independent coefficient in a linear equation 'y=ax+b' is given by 'b".
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implies that construction of knowledge cannot be totally continuous and error-free
and that, behind resistant errors or difficulties, researchers have to look for the
existence of some knowledge-obstacle” (p.110). Therefore, the present study must
consider not only the path of students' developing perceptions of the properties of
function but also the knowledge-obstacles present in this development.

Researchers (Sierpinska, 1992; Artigue, 1992; Dreyfus & Eisenberg, 1990)
identify different origins for these obstacles. Sierpinska (1992), for example,
searches in the history of the concept for obstacles similar to those she has cbserved
with students. Artigue (1992) and Dreyfus & Eisenberg (1990) both seek the
nature of the difficulties in the school curriculum. The investigation of students’
perceptions of the properties of functions cannot be separated from their previous
knowledge, particularly as it is derived from school mathematics. Therefore, while
analysing the knowledge obstacles, the present research will analyse:

* similarities between associations developed by students in each microworld and

the school approach;
* the obstacles derived from the ambiguities and structure of each microworld.
In section 3, | will discuss the patterns of students' difficulties which have been

referred to in the literature.
2.3 A model for analysing students' perceptions

Researchers (Hoyles & Noss, 1987, 1993; and Sierpinska, 1992) have been
working with a model to analyse students’' understanding which classifies the acts of
understanding into four categories: Using, Discriminating, Generalising and
Synthesising. ‘Using’ is the act of using a concept as a tool for the functional purpose
of achieving particular goals. ‘Discriminating’ is the act of explicating different
parts of the structure of a concept. ‘Generalising’ is the act of extending the range of
applicability of these parts. In the process of generalising, new aspects of the
structure of a concept are discovered. Finally, ‘Synthesising’ is the act of integrating
different representations of the same knowledge in different symbolic forms derived
from different domains into a whole. Thus, conceptual understanding arises from

making connections across different domains.

While Hoyles & Noss (1987) explore the model in which the first phase is ‘using’,
the other authors begin with ‘ldentifying’. ‘ldentifying’ and ‘Discriminating’ are
different mainly because in the first the student differentiates one object among
others while in ‘Discriminating’ the distinction is made between two objects. Thus,
these two phases seem to be very close because their acts in fact distinguish one

‘object’ as being ‘a characteristic’ of the concept. This research will use only three
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of the categories. ‘Using’ will not appear in the analysis because of the nature of the
activities designed for the study. The students will be asked to describe functions in
different microworlds, thus, they will start at the stage of ‘Discriminating’

properties.

| will explain the reasons that led me to adopt the DGS model to analyse the students'
perceptions of the properties of function. First, this research investigates these
perceptions through different representations embodied in different microworids.
Therefore, the analysis needed a model which could categorise acts of perceiving
within and between representations. Second, as the study examines different
properties of functions, | could not take a linear model. DGS is not linear, it is a
spiral model which considers that students can be working simultaneously in
different categories depending on the property as well as the representation
considered. Also, the categories are not necessarily followed in ascending order.
Third, students will examine the properties of function in an exploratory computer
environment. Finally, this research tries to trace the path of students' perceptions of

each property.

Although DGS is a model for analysing students' understanding, | will use it to analyse
students' perceptions in the observable domain considering that perceptions are in
fact evidence of understanding. Thus, it is crucial that | define which kinds of
perceptions | am using as evidence of the acts of understanding. With this purpose, |
will detaii the three categories by adopting the role of a student who is asked to
describe functions while exploring them in diagrams and Cartesian graphs. | will use
figures 1.2 and 1.4 of subsection 1.2. (Discriminating) students start to isolate one
characteristic of a function (or set of functions) as being a differential function
property. For example, suppose that | notice that in the diagram of f (see figure 1.2)
any two consecutive lines® cross each other. Therefore, | discriminate ‘two
consecutive lines crossing each other or not as being a property of this diagram.
This is a perception which is particular to f when built within the diagrammatic
representation. (Generalising) students start to recognise common patterns of a
property they had already identified in some examples using one representation.
Therefore, they adapt the perception to include the new samples. For example, ‘two
consecutive lines cross each other’ can also be observed in diagrams of h and j (see
figure 1.2) restraining the domain. For h, ‘the consecutive lines cross each other’
between -3 and 0, while ‘the consecutive lines do not cross each other’ between 0 and
3. Therefore, | generalise ‘my’ first perception of the property to characterise other

examples of functions in diagrams. During this phase, | am still analysing acts within

3 By consecutive lines | mean lines which start on consecutive numbers.
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one representation. In this aspect the model | am using differs from the one the
authors use. They consider that generalisations can also be made between different
representations. | will analyse these, as well as modifications in previous knowledge,
as being evidence that students are ‘Synthesising’. For example, suppose that | have
already discriminated and generalised the direction of the graphs for all the graphs of
figure 1.4. While trying to compare diagrams and Cartesian graphs, | realise that
‘two consecutive lines crossing each other’ and ‘the direction of the graph is north-

west to south-east’ comprise the only one function property.

While working with the UDGS model, Hoyles & Noss (1987) created a situated
abstraction/scaffolding framework to analyse knowledge construction. They had
observed that “students frequently construct and articulate mathematical
relationships which are general within the microworld yet are interpretable and
meaningful only by reference to the specific (computational) setting” (Hoyles &
Noss, 1993: 84). For these relationships they coined the term ‘situated
abstractions’. Their concern is centred “on the ways in which learners structure
their own learning, as well as on the ways in which the setting structures it” (Noss
& Hoyles, 1996: 108). This led them to work with the scaffolding metaphor.

The scaffolding metaphor used by Wood et al (1979) was extended to computational
settings. The original idea referred to the “graduated assistance provided by an adult
which offers just enough support (and no more) when needed so that a child can
voyage into his/her zone of proximal development’ (reference to Vygotskian theory
as cited in Hoyles & Noss, 1993: 85) . On extending the term, Hoyles & Noss (1993)
focused on the setting, on the symbolic system used to represent the concept, “more
particularly, the extent to which the scaffolding mechanism is domain contingent”
(p.85). The extension also diverges from the original meaning because the assistance
is controlled not by the judgement of the tutor but by students' interaction with
computer environments. Thus, the medium led to students developing their own path

of learning.

Although Hoyles & Noss (1993) built this framework while working with computer
environments (in particular with microworlds), they argued it can be used in other
contexts. Therefore, | discuss here the possibility of using this framework in the
context of representations, in particular of formal mathematical systems. They point
out, for example, that school algebra is not a constructive language, because algebra
has been taught with a view to legitimate mathematics. They call for the construction
of computer environments, which we can recognise as mathematical, “in order that
students can exploit them as scaffolding for the articulation of situated abstractions”

(p.90). | will use the framework while analysing students' perceptions in different
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representations embodied in microworlds. These microworlds were designed with

activities around software programs.

The role of building these situated abstractions has been discussed by researchers
(Hoyles & Noss, 1987, 1993; Gurtner, 1992). A common view is that situated
abstractions lack universality. The students perceive the concepts inside one medium
and in a different medium they will build other perceptions. Hoyles & Noss (1993)
defend these processes with the argument that they can be “constructed by a learner
who may have no access to the semantics and syntax of general mathematical
language” (p.84). | conjecture that even to students who already have the semantics
and syntax of mathematical language, the construction of situated abstractions
isolated from their previous knowledge can lead them to perceive properties in a
wide range of applicability of the concept. Therefore, it can be fundamentai in

overcoming limits of associations when synthesised.

In this process some natural questions still remain: Can these situated abstractions
be synthesised with mathematical knowledge, or among different media? Should the
tutor build the bridges for these syntheses? Under what conditions do spontaneous
syntheses occur for students? Gurtner (1992), in his article using the bridge
metaphor, argues that contextual environments need to be used in order to help
students ‘transfer’ mathematics to these environments. Therefore, he expects the
teacher to build this bridge. On the other hand, Moschkovich (1993) argues if
teachers build the bridges for the students, it is more likely that limitations will be

perpetuated.

3 Students' perceptions of the function properties

The following function properties were chosen as foci for the investigation of
students' perceptions of functions: turning points, variation, range, symmetry and
periodicity. This section will discuss the epistemology of each of these properties and
the criteria of selection adopted and the knowledge-obstacles reported in the

literature.

Three criteria were used to select the properties. First, as | consider that the
understanding of function requires a diversity of forms of analysis, | decided to focus
on the properties that could allow the study to cover this multiplicity: pointwise,
variational, global and pictorial. Second, | investigated properties which the students
had already met in school mathematics. Thus, the selected properties were

emphasised in the families of functions already studied by the pupils: linear,
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constant, quadratic and trigonometric functions. The third criterion concerns the
particularities of each microworld. The properties chosen were either the ones
considered by the researchers to be easily perceived by the students when using FP
and DynaGraph, or the ones | believed to be hard to perceive in these microworlds.

diSessa (1995) argues that epistemology is one of the pillars on which to design
exploratory learning environments. He claims that in designing these environments
one “must take the epistemology of instructed disciplines seriously, but part of our
strength is in the innovative perspectives we can bring to bear on subject matter”
(p.28). Following his argument, the present study takes into consideration the
expectations of the designers of FP and DynaGraph. These expectations are included in
the third criterion of the choice of the properties. At this point, it is not possible to
discuss these expectations because such discussion will lack the review of the
literature using these programs. Therefore, | will postpone it to section 5. On the
other hand, to start the discussion of the epistemology of each of the properties, |
will consider their epistemology in mathematics. The epistemology of these
properties in the school approach must be considered because this work focuses on
investigating the perceptions of these properties by pupils who had already studied
them at school. This epistemology will be discussed in two ways: by reviewing the
literature on students' perceptions of each of the properties and by analysing the
epistemology adopted in the school attended by the pupils from the sample. The first
one will be developed in subsections 3.1 to 3.5 and the second will be the object of

one chapter of the analysis.
3.1 Turning points

Turning point can be defined as “A local minimum or maximum point on a curve, at
which the ordinates cease increasing and begin decreasing or vice versa” (Glenn &
Littler, 1984: 214). In the case of differentiable functions, turning point is the
point where the derivative of the function is zero and the derivative changes sign.
Observe that from a mathematical viewpoint the notion of ‘local’ is fundamental to
the concept of turning point. Local cannot be perceived in a pointwise way. Students
have to see the function in a whole interval or whole domain. This is usually called a
global view. The notion of ‘local’ is not discussed or introduced in secondary
education. Moreover, in the curriculum local is suppressed. Thus, turning points are
seen as global maximum or minimum. With regard to the second part of the

definition, turning point can be analysed in a variational way.
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Among those researchers who discuss students' perceptions and the curricular
approach of turning point, there is a consensus that this property is explored in
school and thus perceived by students as a ‘special point' in Cartesian system,
Confrey (1992a), for example, points out that turning point is a ‘special point’
emphasised in the family of quadratic functions. On discussing the emphasis for the
quadratic functions, she argues that in the curriculum functions are treated in
families with emphasis on special points. For quadratic functions, for example, she
mentions the roots and the turning point. Goldenberg (1988), examining bright
students exploring a graphic software to match a parabola presented to them by a
graph with equation, concluded that students use ‘special points’ or regions to

interpret the graphs such as turning point and y-intercept.
3.2 Variation

Variation was divided into four properties, which | will call: constant function,
monotonicity, derivative, and second derivative. Although variational properties can
be seen as a whole, school mathematics treats them compartmentalised. In this

research, | will analyse these properties separately.

3.2.1 Constant function
Constant function is defined as “a function f for which there is an object such that
f(x)=a for all the domain of f” (James & James, 1968: 73). It can also be seen as a

function in which the output does not change.

Researchers in the topic show that constant functions can be seen in different ways
depending on the representation. Each of these ways involves different problems. In
Cartesian system (see figure 1.4) it can be seen as a horizontal straight line. Thus,
constant functions can be pictorially characterised in graphs. In algebraic
representation, it usually appears as the absence of x in an equation. This form is
reported to be a problem in students' perceptions. For example, by analysing the
results of a questionnaire with A-level students, Bakar & Tall (1991) concluded that
the absence of x in an equation led the students to consider that it was not a function.
Nonetheless, an alternative equation where x is present (y=0x+b) led the students to

consider it as a function.

Connections between verbal description and Cartesian representation of constant
function are usually reported to be a problem. Working with students without
previous knowledge of functions, Mevarech & Kramarsky (1993) detected five lines
of thinking in analysing graphs which have consequences on students' construction of

graphs of constant function from a qualitative verbal description. One of them is
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significant for this study: some students think of graph as ‘a single point’,
representing all situations as a point. Nonetheless, on realising that a change cannot
be represented by a single point, they change their representation of increasing or
decreasing linear graphs for two points, many times in different graphs. Thus,
constant functions continued being represented by a single point in graphs. They give
two different reasons for that: the emphasis on ordered pair in school and the
intuitive sense that the final point is of most interest. The stage of constructing a
constant function graph as a single point is a common behaviour in students'
perceptions in graphs (Goldenberg, 1988). He concluded that students use graphs by
the points and do not interpret the line between two ‘special points’ as being formed
by points. Therefore, the end points are the important ones. Thus, the pointwise view

is usually considered only for special points.

3.2.2 Monotonicity
The monotonicity of a function is usually classified as increasing and decreasing
function. The idea of constant function can also be seen as the stage between
increasing and decreasing. An increasing (decreasing) function is the one “whose
value increases (decreases) as the independent variable increases” (James & James,
1959: 102 and 200). In Cartesian graphs the idea can be seen as “a function whose
graph rises (falls) as the abscissa increases” (p.102 and 200). Therefore, the
property of monotonicity requires a variational view of functions. Nonetheless, this
property can also be pictorially identified by the direction of a graph. In the
algebraic representation the idea of monotonicity can be seen by calculating different
points of the function. In the case of linear equation, the idea also can be detected by

the sign of the linear coefficient.

The idea of monotonicity was investigated by Hillel et al (1992) using the Computer
Algebra Systems (CAS) in collegiate courses, particularly in courses on functions.
They reported two kinds of problems in students' perceptions of monotonicity: the
bi-directional sense of the line, which means that the students see the graph as
starting at the origin and continuing in both orientations; the confusion of the
referent interval, which means that the students were confused about whether they
should use domain or range. Therefore, these findings suggest that the students have
difficulties in comparing the behaviour of x and y and in isolating the variables in a
graph. In other words, the difficulties are concerned with interpreting graphs in a

variational way.

3.2.3 Derivative
One of the most frequently investigated function properties in mathematics education

is derivative. Mathematically it is defined as being “the instantaneous rate of change
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of a function with respect to the variable” (James & James, 1959: 107), while rate
of change is defined in the following way: “Let y=f(x) be a given function of one
variable and let Ax denote a number (positive or negative) to be added to the number
X. Let Ay denote the corresponding increment of y:

Ay = f(x + AX) £ (x).
Form the increment ratio

sy _ e+ axd - f00 < (p07).
Fi% 4 e

Therefore, the derivative is defined by the limit of the increment ratio when Ax — 0.

Secondary mathematics usually does not explore the idea of limit. Derivative is
studied as ‘slope’ (for linear functions), rates of change such as speed, or as linear
coefficient in a linear equation. A common claim is that to understand this property
as slope and rate of change, a variational view of function is required from students.
For example, investigating students' exploration of contextual problems in a
multiple representational software, Confrey et al (1991b) argue that the students
have improved their perceptions of derivative as rate of change by developing a
variational way of analysing graphs and tables. After instructional sections on
sequence of numbers, the majority of students built the notion of rate of change
linked with slope of a graph. Moreover, some of them connected the straight

disposition of the points in a graph with the constant rate of change.

On the other hand, research shows that students usually perceive derivative using
pointwise or pictorial views. In his work on ‘misconceptions in graphs’, Clement
(1985) points out three types of association presented by the students when
interpreting graphs: height for slope; slope for height; and height for difference.
Note that all these associations seem to be a consequence of the pointwise way of
interpreting a graph. A different source of association pointed out in the literature
(Goldenberg, 1988) is ‘angle for slope’. The students interpret the slope of a linear
graph as being the angle formed by a straight line and the x-axis. Thus, the students

interpret the graph as a picture.

Despite working with the negative aspects of students' perceptions, their findings are
important starting points for a qualitative analysis of students' perceptions of
derivative. For example, in linear functions passing through (0,0) the students can
see the slope for height. Nonetheless, this perception cannot be generalised to the

other linear functions.

Note that all the above-mentioned investigations about derivative, apart from

Confrey et al (1991b), deal with derivative for linear functions only. Another
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association pointed out by Clement (1985) is the slope as curvature. On trying to
investigate the slope of curves, students rarely distinguish slope from curvature.
While exploring the path of students' perceptions of non-linear functions, Speiser &
Walter (1994) showed a gap between a pointwise way of perceiving rate of change
and the perception which deals with the limit of secant lines. The limit version
requires a global view of function. The students must analyse a function as defined in
a non-discrete interval. These researchers analysed students' difficulties with
derivative while working with the natural modelling of the motion of a cat given by
discrete frames. They listened to 305 students while introducing the concept of
derivative as tangent line. In the first class, they introduced “the derivative as a rate
of change, beginning with a discussion of how we measure speed” (p.137). Secondly,
they discussed instantaneous speed with the data from the motion of the cat. At the
end, they asked how fast the cat was running in two different frames. The students
showed the researchers that they could not work with a continuous transformation of
secant line to a tangent line without considering a margin of error. Therefore, they

demonstrated a gap between the pointwise and global view of derivative.

3.2.4 Second Derivative
Considering the derivative of f(x) as the function g(x), the second derivative can be
defined as the derivative of g(x). Therefore, it can be seen as the variation of rate of
change. This property is usually studied in its graphical form as the curvature of a
plane curved graph and in its algebraic form as the angular coefficient of quadratic
equations. The curvature of a graph can be defined as “the rate of change of the
inclination of the tangent with respect to change of arc length” (James & James,
1959: 95). Second derivative, like derivative, is a property which requires of the
student a variational way of analysing a graph. This property was selected to be
investigated because it is emphasised when the pupils study the family of quadratic

functions in secondary mathematics.

Students interpret second derivative as the curvature of graphs using a pictorial
view. Goldenberg (1988), for example, points out that the students were not able to
compare curvature of parabolas without the same turning point. He argues that the
graph leads students to the illusion that ‘two parabolas distinguished by a vertical
translation’ have different curvatures. Another finding was reported by Clement
(1985) when positing that students change slope for curvature. In other words,

curvature and slope are usually mismatched by the students.

Nonetheless, a variational way of analysis can lead students to improve their
perceptions of second derivative. Confrey (1992a) verified that the students

developed a view of the dimensionality of a quadratic function where the difference of
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rate of change must be constant. While investigating students' use of tables in
Function Probe exploring the quadratic functions in contextual problems, she pointed

out the benefits of looking at the second derivative in a variational way.
3.3 Range

From a mathematical viewpoint the range of a function is defined as “the set of values
the function ... may take on. The range of the function f(x)=x2 is the set of all
nonnegative real numbers, if the domain of the function is the set of all real
numbers” (James & James, 1959: 323). Therefore, despite being linked with the
image of x by f, range requires a global view of function. The students must see the

function as defined in the whole domain.

Figure 3.1
Graph of f(x)=0.5x

-5

One difficulty reported in the literature about the perception of range is the bounded
representation of a boundless property. Goldenberg (1988) points out that students
usually interpret graph considering only what is in the display. That is, the students
do not extrapolate the screen of a graph. Thus, the range of a linear graph, for

example, can be perceived as being limited (see, for example, figure 3.1).
3.4 Symmetry

The idea of symmetry is intrinsically a geometric idea (Confrey, 1992a). “A
geometric configuration (curve, surface, etc.) is said to be symmetric ... with
respect to .... a line, ...., when for every point on the configuration there is another
point of the configuration such that the pair is symmetric with respect to ....[the]
line “ (James & James, 1959:; 384). A pair of points is symmetric with respect to a

line if, “the line ... is the perpendicular bisector of the line segment joining the two
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points” (p.385). Symmetry with respect to a line, | will express as ‘line symmetry
in...”. The pictorial view is in general used to detect line symmetry on graphs.
Despite being a property usually explored by the shape of graphs, the idea of line

symmetry can also be seen in the relation between x and y - in a pointwise way.

School mathematics usually explores symmetries with respect to a point or a line in
the topic of function. For example, a parabola is line symmetric with respect to a
vertical line called line of symmetry. The idea of line symmetry is usually studied
while exploring the family of quadratic function as a qualitative property to
characterise these functions. Confrey (1992a) called for a stronger emphasis on
line symmetry, dimensionality and rate of change in the family of quadratic
functions, instead of the emphasis on turning point and roots. Another example of
symmetry is symmetric humbers. They are symmetric with respect to the point

zero.
3.5 Periodicity

A periodic function of one real variable is defined as: “a function f(x) such that the
range of the independent variable can be divided into equal subintervals such that the
graph of the function is the same in each subinterval’ (James & James, 1959:
290). They also conclude that “the length of the smallest such equal subintervals is
called the period of the function” (p.290). Note that as in school mathematics, this
definition requires a pictorial perception of graphs. Nonetheless, a functional view
can also be given by ‘f(x) is a periodic function if, and only if, there is a real

number ‘a’ such that f(x+a)=f(x) for all x in the domain’.
3.6 Patterns in students' perceptions and school curriculum

As this study investigates students who have had some acquaintance with functions in
school, school knowledge will clearly affect students' perceptions of the function
properties. Moreover, the selected microworlds embody qualitatively different
representations of functions and thus provide a good opportunity to compare obstacles

students might face which arise from the school approach.

The school emphasis on algebraic representation is one aspect that can present
students with obstacles. Artigue (1992), for example, concluded that “Beliefs and
habits about the status and role of the graphic setting act as didactic obstacles and
they have to be explicitly questioned in order to obtain the necessary epistemological
changes both in teachers and students” (p.132). Although she investigated high

algebra students, her findings can be considered at all levels of school mathematics.
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In my view, the unbalanced emphasis on the use of representations by concentrating

on the algebraic one can lead students to obstacles.

Dreyfus & Eisenberg (1990) called attention to compartmentalisation of knowledge
as causing obstacles for students' perceptions of functions in visual representations.
On analysing students' reluctance to visualise, they searched for both similarities
and differences between school approach and thought process on algebraic and
diagrammatic representations. They argued that this reluctance is independent of how
the students are presented with the concept. In addition, they pointed out that
“students seem to consider the visual aspects of a concept as something peripheral to
the concept itself” (p. 27). They investigated curricular and cognitive viewpoints of
this widespread reluctance. On the basis of the theory of “didactical transposition”
(Chevallard, 1985 quoted in Dreyfus & Eisenberg, op.cit.), when “knowledge
undergoes a fundamental change when it turns from academic knowledge as known by
mathematicians into instructional knowledge as taught in school” (Dreyfus &
Eisenberg, 1990: 29), they argued that in didactical transposition knowledge is
compartmentalised in “bits of knowledge” to be put in a linear sequential way. This
led students to have more facility to process the sequential information. On the other
hand, “An analytical presentation, being sequential, is simpler to absorb — elements
are presented one after the other, none are missed. Relationships between the
elements may be lacking; if they are present they have to be introduced separately
from the elements, tacked on to them. Diagrammatic representation is simultaneous,
the elements and relationships between them are apparent at the same time, at the
same location. They are therefore likely to be difficult to read, absorb, and
interpret” (p.31). Artigue (1992) and Dreyfus & Eisenberg (1990) offer two
different approaches which can be considered as the origin of the students’

difficulties in working with visual representation.

Although the genetic epistemological analysis of obstacles is not a goal of my
research, some obstacles to the understanding of function offered by Sierpinska
(1992) must be taken into consideration.

* Regarding changes as phenomena, students focus on how things change, ignoring
what changes. She exemplifies with the inability of referring to x and y in the
Cartesian representation. The student does not see a graph as formed by points
(x,¥). In other words, the absence of a variational way of interpreting graphs
seems to create barriers.

* Privileging the linear functions. This kind of obstacle is also analysed by

Markovits et al (1983) considering the nature of the curriculum. Studying the
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pupils' perception of function, from ninth grade in an Israeli school, in algebraic
and graphic representation, they claimed that the mathematics curriculum should
de-emphasise the linear functions and introduce a larger variety of function. In
my opinion, the introduction of the properties through a variety of families of

functions can allow students to recognise the invariants which characterise each

property.

Schwarz & Hershkowitz (1996) also explored this emphasis in a comparative study
between two groups of students following different curricular approaches to function.
Despite working with curricula with a rich spectrum of functions, both groups
differed by the activities and tools used: (a) one worked with computer environment
and open-ended problems and (b) the other with ordinary activities and tools. They
showed that the group (a) were able to use functions different from linear when
necessary despite having a tendency to use the linear ones whenever possible. In
contrast, group (b) used in almost all the cases the linear functions. Their results
show the difference made to students' preference for linear functions when following

different curricula, which suggests a curricular origin of the obstacles.

Schwarz & Hershkowitz (op.cit.) argued that “if prototypes are persistently too
dominant, they impede learning, because they are used as frame of reference in the
judgment of other examples” (p.259). Taking this argument into account, | will
investigate its extension in relation to the function properties from linear

preference to preference of the properties in other families of functions.

Finally, | would like to comment the patterns in students' preference for polarised
knowledge reported by Artigue & Dagher (1993). They analysed 14-18 year-old
students working in a multiple representational computer environment, focusing on
their correlation of properties with special status in algebraic and Cartesian
representation. Their findings showed that the students exhibited a persistent
difficulty in ordering coefficients and an easy correlation of the signs of coefficients
in the equations. The students preferred to explore knowledge when polarised such as

positive versus negative and increasing versus decreasing.

In the present research, some questions regarding these obstacles will be addressed:
Will these obstacles be observed in students' explorations of the microworlds? Will
they be overcome, and if so, how? Will different obstacles appear? Can | trace

similarities between the obstacles and the school approach to function?
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4 Software for functions

The use of educational software in mathematics education must be investigated in two
aspects: the technical potential of the software to help the development of concepts
and representations reflecting the expectations of the designer and then the students'
use of this technical potential. Thus, the environment created around this software is

essential.
4.1 Technical potential of software for functions

Since the introduction of the computer in mathematics education, its dynamic

possibilities have been increasingly used to explore the concept of function. Kaput

(1992) points out that “Historically, mathematical notation systems have been

instantiated in static, inert media, but the new electronic media now afford a whole

new class of dynamic, interactive notations of virtually any kind” (p.522). The
dynamic potential of the computer has been explored in many forms such as:

* conventional representations assume dynamic possibilities, as in Function Probe,
in Algebra Toolkit (Schwartz et al, 1991), in Graphic Calculus (Tall et al,
1990) and in RandomGrapher (Goldenberg et al, 1992);

* the multiple representations of a concept gain dynamic interactive links, as in
Grapher {Schoenfeld, 1990), in Triple Representation Model (TRM) (Schwarz &
Dreyfus, 1993) and in Function Probe (Confrey et al, 1991a);

* new representations exploring the dynamic manipulations of objects can be
created as in Function Machines (Feurzeig & Richards, 1991) and in DynaGraph
(Goldenberg et al, 1992).

The dynamic possibilities of direct manipulations inside graphic representation of
functions have been increasingly used in software. In early multiple
representational software, graphs kept the status of display representations. The
actions were in general produced in another representation and the software feedback
was given in a graphic representation. Nowadays, software allows actions and
feedback in different representations. For example, transiations in functions are now
permitted within Cartesian representation in software (in Function Probe and in
Algebra Toolkit). With the dynamic manipulations now possible in earlier display
representations, students can act within a representation by transforming objects
(Kaput, 1992). Thus, the earlier display representations gain the status of action

representation.

One of the actions possible in the new representational software is the dynamic

transformation of graphs. In pioneer software, transforming graphs were made only
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by changing coefficient of equations. Nowadays, it is also possible to transform a
graph directly using the mouse. When transforming graphs by changing the
coefficient in the equations, students only had the starting and ending graphs.
Goldenberg (1988) argued that in this way students had difficulties in perceiving
the real transformation. For example, he pointed out that students usually perceive
two parabolas translated vertically as having different curvatures. Therefore,
students can conclude that the transformation of the equation y=x2 into the one
y=x2-5 will change the curvature of the graph. Goldenberg (1991) claimed that
students need to transform graphs within the graphical representations. He
hypothesised that if the match of two parabolas by a vertical translation could be
made directly from the graphs, students could change their way of measuring the
congruence of a parabola from measuring their distance horizontally to measuring it
vertically. Going a bit further, | argue that other ways of verifying curvature of
parabolas can be created from these dynamic transformations. Thus, the intermediate
phases of transforming a graph can be meaningful for students in perceiving function

properties.

The new multiple representational software allows dynamic interactive links. Kaput
(1992) introduces the notion of ‘strong’ dynamic interactive links, called strong
links. The strong links can be explained by contrasting the old use of links in
software with the new ones. The links between representations were usually made
from one stage directly to the other. Recently, the software has been designed to allow
continuous transformations of objects within one representation with continuous
feedback in the other. Researchers called for investigations into the effect of the
dynamic interactive links between different representations of function. Schwarz &
Dreyfus (1993), for example, investigated students' perceptions of maximum using
multiple representations (TRM). They report that the use of TRM in activities linked
with the idea of maximum led the students to: recognise invariants (function
properties) while creating and comparing representatives to different settings; and
identify invariants while co-ordinating actions among representations pertaining to

different settings.

Researchers also investigated these new dynamic possibilities applied in the
Cartesian representation in order to change the way students analysed graphs.
Dubisnky & Tall (1991), for example, discussed the use of Graphic Calculus (Tall
et al, 1990) “to provide students with a cognitive approach” (p.238) to the concept
of limit by exploring the possibility of magnifying graphs. Kieran et al (1993)
reported that the interactions with the zoom associated with discrete graphs helped

the students' perceptions of infinity in the sense of cardinality. Phil Lewis created
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the RandomGrapher with the objective of helping students to recognise a graph as a
set of points, thus changing their pictorial view (Goldenberg et al, 1992). Lewis
created a computer graphic generator that plots the points randomly, which creates
the shape of the function randomly step-by-step. Thus, mathematics education owes
a debt to technology for making it possible to change students' views when they

analyse graphs.

One of the most often reported problems in research about learning function is the
confusion of what is the variable, and what are the coefficients. Goldenberg (1988)
and Clement (1985) suggest one reason for this is the emphasis on tasks that
require students to vary the coefficients to see the transformation which has
occurred in the graph instead of varying the variable. The coefficient is explored as
variable and the variable as constant. On the basis of previous analysis (Goldenberg,
1988, 1991), Goldenberg at al (1992) created DynaGraph, a new dynamic visual
representation where the users can vary the variable having as feedback the value of
the function. As Kaput (1992) claims, “Dynamic media are the natural “home” for
variables, rather than static media, which require the user to apply much of the
variation cognitively” (p.534). Therefore, the dynamic manipulations in new
representations can be used as tools to lead students towards a variational view of

function.

In order to investigate the effect of the use of these dynamic potentials in students'
perceptions of function particularly in visual representations, two programs were

chosen: DynaGraph and Function Probe.
4.2 Microworlds

The potential of a computer environment can lead us to believe that interacting with
it can enable students to develop their perceptions of functions. Nonetheless,
researchers have shown that these improvements are not straightforward. As diSessa
(1995) and Wenzelburger (1991) argue, software per se does not help students.
Wenzelburger (1991, 1992), for example, showed that the possibility of graphing
quickly does not in itself help students to improve their perceptions of graphic
representations of functions. Students gained speed and lost involvement in the
activities. The design of activities plays an essential role in facilitating students’
exploration of the potential of the software. Together activities and software must
compose an environment which encourages students to learn by exploring functions

— a microworld.
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The term microworld has been used from different viewpoints. In a technical sense, a
microworld is a computer environment which embodies a concept (Papert, 1980).
While analysing common characteristics of the use of a microworld, Edwards
(1995) points out that in it: (a) learning is dynamic, (b) a domain of mathematics
is embodied and (c) access to ideas and phenomena which are not otherwise easily
encountered by the students is provided. The technical part of a microworld is a
computational environment which embodies a concept, so it can be seen as
representations (Edwards, 1995). The present study uses the technical part of
microworlds as the embodiment of representation or multiple representation.

Nonetheless, the technical view of microworlds does not entirely fulfil this meaning.

Hoyles et al (1991) call for a pedagogical approach when dealing with microworlds:
“a microworld consists of software designed to be adaptable to pupils' initial
conceptions together with carefully sequenced sets of activities on and off the
computer...” {p.1). Thus, this approach considers that the activities, which must
take into account students' previous knowledge and researcher (teacher)
expectations, compose one of the main components of a microworld. Edwards (1995)
summarises the functional aspect of microworlds by the actions students are expected
to perform:

* “to manipulate the objects and execute the operations instantiated in the
microworld, with the purpose of inducing or discovering their properties and the
functioning of the system as a whole. Experimentation, hypothesis generation and
testing, and open-ended exploration are encouraged”;

* “to interpret feedback from these manipulations (feedback which may be provided
through multiple, linked representations) in order to self-correct or “debug” his
or her understanding of the domain”;

* “to use the objects and operations in the microworld either to create new entities
or to solve specific problems or challenges (or both)” (p.144).

With these characteristics, she claims that the activity designed for the work can

play an important role in transforming a tool into a microworid. Following Edwards'

(1995) viewpoint, 1 argue that together with activities, a software tool can be

transformed into a microworld. This is the purpose of the activities | designed in

Function Probe as well as in DynaGraph in this research. The set of activities and

software | will call FP microworld and DG microworlds, usually abbreviated to DG or

FP.
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5 Research exploring DynaGraph and Function Probe

In the following section | will discuss researches on the effect of the use of the
dynamic potential of DynaGraph and Function Probe (or similar programs) on

students' perceptions of functions, particularly in the properties of functions.
5.1 DynaGraph

Although at first glance DynaGraph seems to be very similar to Cartesian graphs,
especially in its Cartesian version, | argue that some distinctions make them two
qualitatively different representations. First, in DynaGraph the variable and its
image are represented separately, which does not happen in the traditional Cartesian
Graphs (Goldenberg et al, 1992). Second, DynaGraph presents a function point-by-
point but its motion enables the student to have a variational perception of the
properties. Thus, in my view, the students can analyse the properties in either a
pointwise or a variational way. Third, the “domain variable is vary-able,
dynamicalily, by the student, clarifying its status as the variable” (op.cit.: 243). in
contrast with Cartesian Graph, the shape is not the main aspect used by the students.
Fourth, in DynaGraph students never see all the function at once. On the other hand,
some qualitative features are supposed to be more clear such as slope, minimum and

curvature.

Goldenberg et al (1992) say that they had “barely begun to investigate students'
conceptions and misconceptions of function in the context of such dynamic
represeniations” (p.235), among them DynaGraph. In fact, they investigated six
pairs of mathematically successful students from 9th and 12th grade of American
schooling in 40-minute session exploring functions in the paraliel version of
DynaGraph. From these case studies, they reported some ways in which students
conceive function properties, from which | will consider those related with the

properties chosen in this study.

Examining one pair working with the function f(x)=4-3x, Goldenberg et al (1992)
show that the students can readily realise ‘the direction x and f(x) moves’, ‘the
different speeds of x and f(x)’ and the fixed points. While examining another pair
exploring the function f(x)=x2-1, the properties easily identified are ‘the speed is
not constant’, ‘the function has minimum value’. They point out that the students
“began to refer to functions behaviorally in ways that were far from ... pointwise”
(p.252), that were variational. Goldenberg et al (1995) argue that, in contrast,
DynaGraph shows the variational well but it does not draw attention to the structure

of the algorithm that computes the function. Thus, some question remains: Can the
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students generalise these perceptions among different functions? What are the
advantages and limitations of these new perceptions? How are properties which are
not linked with variation such as symmetry analysed in this dynamic

representation?

In conclusion, they argue that without seeing any other representation students
spontaneously involve themselves in very deep perceptions of functions that many
students never even meet. Thus, the question remains how these deep perceptions can
be synthesised as mathematica! knowledge. That is, can the students connect these
perceptions with their previous knowledge? Can they use the generalisations built in
DynaGraph to generalise the corresponding property in representations previously
known? Goldenberg et al (1992) mention that on using DynaGraph with numbering
scales, the students return to their pointwise views of the properties. These
findings, in my view, anticipate the problems students will have while trying to
connect the perceptions derived from explorations in DynaGraph with mathematical
school knowledge. Thus, the further question remains: Do the students change their
previous way of analysing functions after using DynaGraph? Goldenberg et al
(1992) mention that two of the pairs used the qualitative ideas constructed in
DynaGraph to sketch a graph from a DynaGraph representation which was not yet

familiar to them.

Goldenberg et al (1992) also hypothesise that the exploration of DynaGraph in a

sequence from its parallel version, passing through the perpendicular one to its

Cartesian version, leads students to create a logical transition from a pair of

elements of R to a single point in R2. Goldenberg et al (1992) left the question: How

do interactions with DynaGraph representations affect knowledge about Cartesian

Graphic representation? | believe that the students have two ways of analysing the

properties in the Cartesian version of DynaGraph: by a variational analysis

analogous to the ones referred to by Goldenberg et al (1992) in the parallel version
of DynaGraph and by analysing the behaviour of (x,y). For students who present both
analyses | conjecture that either:

(a) the variational analysis will be combined with the analysis of the behaviour of
(x,y). So it will allow the students to connect knowledge built in the paraliel
version of DynaGraph to that built in Cartesian representation. In this case its
Cartesian version will be used as a bridge between the parallel version and the
Cartesian system. As suggested by Goldenberg (1993), it will facilitate
students' perceptions of conventions used by the Cartesian System; or

(b) the student will keep both analyses separate. As a result, this variational

perception will be kept isolated in the parallel version of DynaGraph.
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5.2 Function Probe

As one focus of the present study is the dynamic transformation of graphs allowed in
FP, which is common to other software, | will also discuss the researches using these

other software such as Algebra ToolKit.

The use of dynamic transformations of graphs has been developed by considering that:

* “proving an environment in which functions can be manipulated as entities or
objects and in which the actions of evaluating and graphing are automated should
help students to...” (Yerushalmy & Schwartz, 1993: 45) change their perception
of functions from a procedural to a mathematical entity perception;

* seeing transformations of functions “can play a fundamental role in unifying
different families of functions and in showing the invariance of transformations
across these different families, since the same action that underlies a given
transformation can be linked with the different visual results in a graph after a
transformation is undertaken” (Borba & Confrey, 1992: 140); seeing
transformations can lead students “o recognize the common impact (with local
variations) of these transformations across all of the functional families studied”
(Confrey, 1992a: 150). For example, Confrey (1992b) mentioned the problem
of how students come to understand why horizontal and vertical stretches can be
used interchangeably (but with different magnitude of stretch) on parabolas but
cannot be interchanged on the step function or trigonometric function;

* providing access to researchers seeking to understand how students reason
visually about shape and location when trying to fit a graph into desired points
from a prototype function (Confrey, 1992a).

Thus, the questions that remain are: how do students use these transformations as a

way to identify properties as variant and invariant under the transformations? For

example, believing that turning point and maximum are the same concept, they can
translate horizontally a parabola to investigate the changes on turning point and
maximum; and how do these features modify the status of each property in the

Cartesian system? From my point of view, Function Probe can be used to “provide

data to suggest possible theorems” and “to seek counter-examples”, as suggested by

Dubinsky & Tall (1991: 231) while examining the use of computers in advanced

mathematical thinking.

Confrey et al (1991b) concentrated their work on the use of contextual problems
with multiple representation software (FP) in the curriculum. They showed that the
students had used the translation, stretch and reflection commands to coordinate the
algebraic and graphical forms of functions. They argued that the students had shifted

from their perceptions of function from equation to graph, moving from a procedural
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view to a view of functions as a mathematical entity. On moving from process to
entity, | am interested in analysing the effects of these changes on the students'

perceptions of the function properties.

Schwartz & Yerushalmy (1992) used these transformations in the introduction of
algebra through the notion of function to younger students. They noticed that the
students used shape, detailed position and comparing graphs as a way to decide the
errors in a simplification of an algebraic manipulation. They pointed out that one of
the students argued that slope is far more problematic in non-linear graphs because
it depends on the x-position. In my view, this result is not only important for what
the student said, but for the fact that this student was able to identify the slope in
non-linear graphs and to understand its dependence on the x-position. This points to

a generalisation of the idea of slope from linear to non-linear graphs.

Borba (1993) concentrated his studies on exploring how students ‘understand’ the
transformations of graphs. His work is important for me as he pointed out some
changes in the students' perceptions of functions by using the transformations of
graphs. He developed two case studies with a student exploring transformations of
functions in different windows of FP. He pointed out that both students used the
transformations as the leading method for their conclusions. Thus, this might account
for the fact that most of the time they saw transformations as a process rather than
as a static two step. This led the students to generalise a particular process such as
y=f(2x) and y=f(3x) to f(bx). Conversely, the start and end point of the
transformations were used by these students when making the transformation in the

coefficient of the equations.

The importance of dynamic transformations of graphs was also claimed by Eisenberg
& Dreyfus (1994) after investigating the effects of an instructional program using
Green Globs (Dugdale, 1982) with Israeli high school students' visualisation of
transformation of functions. In Green Globs, transformations are allowed only as
starting and ending steps. Their resuits showed that only simple transformations
were visualised as transformed functions and only “as a sequence of two static states
rather than as a dynamic process” (Eisenberg & Dreyfus, 1994: 59). The results of
Borba (1993) and Eisenberg & Dreyfus (1994) led me to investigate the
importance of continuous transformations, not on changing students' understanding of
the transformations themselves, but on changing studenis' perceptions of the

function propetties.

Borba (1993) showed that the horizontal transformations were the ones in which
his students obtained more results. He showed that the reflection was not explored
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very far by his subjects. He gives as the reason the fact that the reflection is not
dynamic, the only dynamism on this command is the position of the reflection line.
These resuits, once again, point to the importance of the process. A question arises
from this result; is there any pattern of similarity between the perceptions derived

from the exploration of each transformation?

In the case of one of his students, Borba (1993) shows that he did not experience the
ilusion mentioned in Goldenberg (1988) while comparing curvature on parabolas
translated vertically. Borba (1993) points out that the reason for this difference
could be that “working with transformations, first by visualization, then using
tables and finally using algebra may have been a factor in Doug's [his subject] lack of
confusion” (p.197). In my view, students can go on to create a way of measuring the
curvature and realise the limitations of their previous perceptions of curvature

with two parabolas transiated vertically by only two steps (beginning and end).

Nonetheless, researchers continue to argue that students analyse graphs pointwisely
even after exploring transformations of graphs. Borba (1993) reported that both
students based their process of seeing transformations on special points such as y-
intercept and turning points. Thus, the question that remains is: do students acquire
any other way of analysing the properties in graphs by exploring the

transformations?

6 The research questions in the context of the software programs

After describing DynaGraph and Function Probe and the research with these software

programs, the research questions are re-written to take account of the context of

each of the environments. In DynaGraph, the questions are operationalised as:

Q1a: How does the interaction with the dynamic way of representing function in
DynaGraph lead the students to perceive the different properties?

Q1b: What are the limitations and advantages of the perceptions built in DG
microworlds?

Qic: How do students' perceptions of the properties change from DG Parallel to DG
Cartesian?

Q4a: How does the sequence from DG Paraliel to DG Cartesian contribute to students'
perceptions of the properties in the Cartesian representation?

Q4b: Does DG Cartesian work as a bridge for synthesis?

Q5a: Do students change their previous way of analysing functions after working

with DG microworlds? If so, how? If not, why not?
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The research questions specific to FP microworld are:

Q1d: How do students use the transformations of graphs to discriminate and
generalise the properties?

Qie: Are there patterns of similarities between the commands and the change in
students' perceptions of the properties?

Q1f: How does exploration of dynamic transformations of graphs affect students'
perceptions of the function properties?

Q5b: What are the effects of the interaction with dynamic transformations of graphs

on students' knowledge of graphs?

The research tries to answer questions regarding connections made between the
different microworlds;

Q4c: How does this synthesis take place?

Q4d: Which mechanisms of synthesis are suggesied by the synthesis students will

make?
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IV — Methodology

An empirical study was designed to investigate students' perceptions of the function
properties while interacting with the dynamic microworlds. The outline of the
empirical study will be the first section of this chapter. Then, its design will be
presented and justified in four sections: the choice of the subjects, the investigation
of the students' previous knowledge and school approach to function, the main
activities called research environment, and the investigation of synthesis when it is
motivated. Then, the methodology of data collection during the research environment
will be presented. Finally, the methodology of the analysis will be discussed. The
final design for this empirical study was obtained from two previous ones: a pre-
pilot with one pair of students and a pilot study with three pairs of students. The

findings of the second of these will be summarised in chapter V.

1 Outline of the empirical study

This research comprises case studies undertaken in Brazil with four pairs of
students from the second grade! of secondary school working through a sequence of
tasks using three different microworlds: DG Parallel, DG Cartesian and FP. Each pair
of students participated in thirteen sessions: one session for a questionnaire to
characterise the students and the pre-test, one session for familiarisation in the
research environment, five sessions for activities in FP, five sessions for activities
in DG, and one session for the final interview. The students, from two different
attainment levels, followed the activities in two different sequences: two pairs did
the activities in both DG Parallel and DG Cartesian followed by the activities in FP,
and the other two pairs followed the activities in the opposite order. The two
different sequences were also designed to aliow the analysis of the influences of
students' perceptions derived from one microworld on the perceptions derived from
the other. Diagram 1.1 shows the flow of the activities carried out by each pair of

students in the empirical study.

As this research takes into consideration students' previous knowledge, the following

was undertaken: a test of previous knowledge of functions and an interview with

1 The second grade of Brazilian secondary schooling can be seen as corresponding fo the
twelfth year of English schooling using age equivalence and considering an ideal Brazilian
student who did not fail in any of previous grades.
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their mathematics teacher. Additionally, the curriculum materials used by the

students were collected and analysed.

Diagram 1.1

Flowchart of the activities of the empirical study
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Diagram 1.2 shows that the research environment consisted of three microworlds.

Each microworld was essentially built with activities designed to create an

exploratory learning environment around each software. In each microworld, the

activities had the following structure:

* The first phase was intended to be a session to familiarise the students with the
software commands. This phase was not included in DG Cartesian.

* In the second phase, the students were asked to describe a set of functions
corresponding to the following: y=6, y=-3, y=X, y=-X, y=2X, y=x-6, y=0.25x2,
y=-0.25x2, y=0.5x2, y=0.25x2-8, y=7sin(0.25nx), y=7sin(0.125nx). They
were required to characterise and distinguish these functions.

* In the last phase, the students were required to group the functions according to

the properties they had observed.

Finally, the students were interviewed to verify whether their perceptions derived
from activities in one microworld were connected to their previous knowledge or to

their perceptions derived from activities in the other microworlds.

2 The case study students
2,1 Choice of school

The Brazilian educational system, nowadays, has two kinds of secondary school
according to their purpose: academic schools which attempt to prepare students for
higher education, and technical schools which prepare students for technical jobs. |
addressed my study to the first type of school, which, according to Werebe (1994),
represents the majority of secondary schools in Brazil. At these schools, formal

mathematical knowledge is the main preoccupation of maths teaching.

All students belonged to the same class in the same secondary school in Brazil. Two
criteria influenced my choice of school to work with. The first criterion was access
to information in the school and the teacher's availability and willingness to carry
out required tasks. The second criterion was that the school should not be an
exception to the way mathematics is normally approached in academic secondary
schools in Brazil. Taking both criteria into consideration, | chose a federal2 state
school. The support | received for my research from this school greatly facilitated

the development of this study.

2 The federal schools are state schools which belong to the Brazilian central government.
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l.ooking at Brazilian state schools as they really are, | might say here that this is not
an example of an average state secondary school in Brazil. This school can be
considered as a model of excellence among state schools in Brazilian education as it
actually is. It does, however, take the standard view of mathematics followed by
academic secondary schools. | did not try to find a typical state school because the
focus of my study was not on the social aspects of Brazilian education. To consider
these problems a sociological approach would have been necessary to the research. As
Werebe (1994) points out, there are many reasons for the failure of Brazilian state
education such as: the majority of students spend forty hours a week in outside jobs,
the teachers are very badly paid, there are great incentives for ‘private’3 schools as

opposed to state schools, and state schools consequently have depreciated.
2.2 Students

The eight students were chosen from the second year the federal state school, when
the students have already studied the topic of function. By selecting students from one
grade only, | was unable to select them by age. In Brazil, although the elementary
school is composed of 8 grades (with one year each), according to Wilbie (1992) it
takes on average 11.8 years for students to complete it. In this context, | tried to

limit the range of ages to between 15 and 18.

The students were chosen from a group of volunteers. After explaining to the class
the nature of this study, their teacher asked for volunteers to participate in the
research. The teacher classified the volunteers by attainment levels. Then, he and |
chose and grouped the pairs taking into consideration other criteria, which | discuss

below.

The students were selected all from the same class to take into account their previous
school knowledge of function and its influence on the way they would approach the
activities in this investigation. The students were selected from different attainment
levels in order to provide the analysis of a variety of students. The mathematics
teacher had allotted all the students to three attainment levels: the lower (LA)4, the
middle (MA)S and the higher (HA)® attainment levels.

3 In Brazil, ‘private’ schools are those which beiong to an individual person, institution, or
church. cf. Public schools in England. The term ‘public’ was not used here because in Brazil
the term ‘public’ would correspond to ‘state’ schools in England.

4 The lower attainment level comprised the students who usually needed extra help to
succeed in school mathematics exams.

5 The middle attainment level comprised the students who sometimes need extra help to
succeed in these exams.

6 The higher attainment level comprised the students who have no difficulties in succeeding
in these exams.
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Certain constraints led me to choose the students for the investigation from MA and
LA levels only. First, as | had to observe each pair in turn, the constraint in their
availability” led me choose to work with four pairs of students which was sufficient
for the investigation. Second, the research was designed to investigate two pairs of
students from each attainment level. Therefore, | had to select students from two
attainment levels. Finally, | omitted students from HA because this study is based on
what students say or write about function while carrying out the activities. The
possibility of these students doing all the work without discussing it would invalidate

the investigation.

The four students chosen from each attainment level were grouped in pairs.
Therefore, each pair of students was homogeneous according to the attainment level
in school mathematics, the aim being to reduce the likelihood of the dominance of one
student. The experience of the pilot study led me to introduce two new criteria in the
choice of each pair of students: the students had shown no previous antipathy to their
partner; and if they had worked in groups before, their behaviour in these groups
was taken into account. For example, | avoided assigning to the same pair two

students who had presented dominant/passive behaviour.

tn order to describe the students one questionnaire answered by the students and one
interview undertaken with the mathematics teacher were undertaken. The
questionnaire (see section All-1) aimed to obtain students' personal information and
to characterise their interest in mathematics and computers. One of the purposes of
the interview (see subsection All-2.1) was to investigate the criteria used by the
teacher in assigning each student to each attainment level. Both interview and

guestionnaire let me to give some characteristics the students.

3 The students' previous knowledge
3.1 The school approach to functions

In the search for similarities and differences between students' barriers while
exploring the microworld and the school approach to functions, it was important to
examine two points: the way the students learn about function at school and the role
of the topic of function in the academic secondary schools of Brazil. An interview

with the mathematics teacher was undertaken, from which the

7 The timetable limited the number of pairs of students | was able to work with. Being from
the same class, all the students were available to work at the same times during the weeks
in question.
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curriculum materials used by the teacher to explore functions were collected
particularly the ones used with these students. Among the material collected, the
following were included: a list of topics explored in the mathematics curriculum, the
textbook used by these students, other materials used to cover this subject, and a

sample of written work produced by the students such as their notebooks.

The interview with the teacher was also designed to allow me to understand how he
used the curriculum material with these students and to map:

* The sort of activities developed in their mathematics classes;

* The work done prior to the introduction of functions;

* The introduction of the topic of function;

* The activities carried out when developing the topic of function;

* The exercises given to these students exploring the concept of function.

ft was also organised in order to clarify the following points in the teacher's
exploration of functions with these students:

* The role he attributed to the definitions;

* The representations used to explore function;

¢ The activities he carried out in each of the representations;

* The properties he emphasised while exploring functions.
3.2 Pre-test

A test was designed to access the students' previous knowledge of function (see
section All-3). The analysis of this pre-test will be the starting point of a
longitudinal analysis of students' perceptions of the properties. Considering that this
research focuses attention on ‘how’ the students perceive the selected properties,
open questions were chosen instead of multiple choice ones. Open questions allowed
me to access the arguments used by the students while exploring the properties and

also revealed different perceptions about the same properties of function.

The compiete pre-test included seventeen questions of three types:

¢ those about the meaning of mathematical terms;

* those about interpreting information through graphic and/or algebraic
representations;

* those to test other mathematical skills in these representations.

The first type of question, which includes 2, 4, 5, 9, 11, 12, 13 and 17 had the
following form: what do you understand by ...? They were introduced as a result of

the analysis of the pilot-study data. When the students failed in one question

70



involving one property, | was not able to say whether they did not understand the
property or the term | used to denote it.

The second type of question includes 1, 7, 10, 16. Questions 1 and 16, which were
designed by myself, requested the students to interpret the same information: one
(first) from equations and the other (sixteenth) from graphs. With them, | aimed to
compare the students' interpretation of the properties: derivative, second
derivative, and meeting point in graphs and in equations. Question 7 was to interpret
the properties: extreme values, monotonicity and derivative from a graph mainly
constituted by points. In this case, the interpretation of graphs has been pointed out
to be more easily done by students (Goldenberg, 1988) than in the case of
differentiable graphs. This question was adapted from a question in lezzi et al (1990:
55), the textbook used by the school. It was modified to give ‘sense’ of the lines
which link the points. Question 10 required the students to interpret the properties
of monotonicity and range in a differentiable function from graph and equation. The
question was introduced in the test because the function represents counter-
examples of associations® developed by the students from the pilot study. It also
investigated whether students extrapolate graphs.

The other questions (3, 6, 8, 14 and 15) examined students' skills while
investigating their perceptions of function properties. Question 3 requested the
students to compare the curvature of four parabolas. It was included in the pre-test
because it is one of students' difficulties in graphs that are pointed out as being a
‘misconception’ (Dreyfus & Eisenberg, 1982 & Goldenberg, 1988). This question
was adapted from a question by Dreyfus & Eisenberg (1982: 192). Question 6
requested students to sketch seven graphs from constant, linear, quadratic and
trigonometric equations. It intended to access: how the students trace or sketch
graphs; if they compare equations from the same family; how able they are in
plotting points. This question also required the students to identify: the periodic
functions, the functions with bounded range and the turning points. The construction
of graphs from verbal description was explored in question 8, which was created by
myself. The students were requested to sketch a graph of distance per time which
represents the motion of a car. My intention was to investigate students' perceptions
of different properties related to variation such as: constant and variable speed;
straight lines and curves; motion and motionlessness; and horizontal straight lines.
Questions 14 and 15 were created by myself to verify associations presented during
the pilot study. In question 14, the students were asked to identify range and extreme

8 ‘Associations’ was defined as students' perceptions of a property which is connected to a
different property or at least limited to special cases of functions.
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values in five graphs. In question 15, they were asked to identify periodic and
symmetric graphs. With this question | intended to verify: whether the students
distinguish a periodic graph from any oscillatory one, and how they identify

symmetric functions and line of symmetry.

4 The research environment

The research environment comprised three microworlds, each designed with
activities around one software program: DG Parallel, DG Cartesian and FP. FP
program has already been described in chapter Il. Both DG programs were adapted
from DynaGraph to fit the requirements of this research. In subsection 4.2 both
adaptations of DynaGraph will be described and justified. Subsection 4.3 will justify
the choice of FP and DynaGraph. The designed activities will be described and

justified in the subsequent subsections.
4.1 Familiarisation with the research environment

The students participated in one session designed simply to familiarise them with the
research environment. This session took place before the ones for the research
environment, using an adaptation of a Journey across Function Probe software called
Pizza (see section Al-4) from Confrey et al (1991a). As (a) the instruments used
to collect data (such as video-camera, tape-recorder, and notepads) interfered with
students' behaviour by inhibiting discussion and (b) this interference was marked
in the first session and tended to disappear in the following ones, the familiarisation
session was valuable in avoiding the first research environment session from been
wasted as a source of data. Secondly, in the pilot study, | noticed that to operate
Function Probe the students needed more than one session, thus, FP was also used in

this session.
4.2 DG Parallel and DG Cartesian programs

DynaGraph's way of representing a function was adapted to another environment,
which | will call DynaGraph Game (DG). The term ‘Game’ was originated in the first
version of this environment used in the first activity with DG Parallel (see section
All-1) which is a computer-game with the same structure as DG Parallel. Here, |
will describe two versions of DG (Parallel and Cartesian) without the game features.
DG explores functions as behaviour of strikers using the same representational
system of DynaGraph. Figure 4.1 shows the screen of DG Parallel with the function

of y=-x displayed.
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Figure 4.1
Screen of DG Parallel with the striker of y=-x displayed
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DG Parallel explores the twelve functions listed in section 1 hidden in strikers
which are presented by different icons. By clicking the mouse on the iconic menu,
users can change the active striker (active function). By displaying the icon of the
active striker, DG Parallel enables students to remember which ‘function’ is on. The
representation of x and y is done in the same way as DynaGraph. When pulling x to
the left or right sides with the mouse, students receive as feedback the variation of y
according to the function hidden in the active striker. In DG Parallei, ‘the step x
moves’ was fixed at 0.5. The scales of x and y are the same. In DG Parallel students
can choose to observe up to three strikers at the same time. If more than one striker
is chosen, the strikers are displayed in parallel lines. In this case, if studenis decide
to change one of the active strikers, a message requesting them to identify which one

they want to replace is displayed at the message window.

DG menu has two options: Number of Strikers and Game. The Game option has three
items: Start, Stop, and Quit. These items mean: start the program, stop the current
choice of the strikers and quit DG. The ‘N.Strikers’ option has three items: 1
striker, 2 strikers and 3 strikers. More than one striker is usually chosen to

compare the behaviour of different strikers.
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Figure 4.2
Screen of DG Cartesian with_the striker of y=-x displayed
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DG Cartesian has the same characteristic as DG Parallel. The same functions are
hidden in the same strikers. It differs from DG Parallel in that:

* the axes appear as in the Cartesian system;

* a dot representing (x,y) is added;

» when more than one striker is used, the active ones are discriminated by colours.

In both DG Parallel and DG Cartesian, students explore DynaGraph's dynamic ways of
representing the twelve functions without having access to any other representation
of them, in particular any algebraic representation. This was the main reason to
produce the adaptation, instead of using DynaGraph directly. The ‘behaviour option
from DynaGraph was not used here because it does not make clear which behaviour
(function) is active. The use of icons helps students to match behaviour and strikers.
Another reason is that by using an iconic menu students are allowed to easily change

the active striker easily whenever they want to.

4.3 Rationale for the choice of the programs

In conventional multiple representational software, the Cartesian representation is
used only as a feedback window. In FP, the real possibility of manipulating visual
representation offered by the computer has changed the ‘face’ of the multiple
representational software — transformations of functions are no longer a privilege

of the algebraic or the tabular representations. FP allows dynamic transformations
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of graphs in the Cartesian representation. All the transformations can be operated

inside the Cartesian representation with the change in the equation as feedback.

In the choice of DynaGraph (Goldenberg et al, 1992), | consider that the opportunity
to manipulate x and see how y varies allows the students a completely different
perception of properties related to variation (increasing, constancy, speed, turning
point). In addition, changing x and seeing the changes in y and (x,y) in the Cartesian
version of DynaGraph can enable the students to develop a variational view in the

Cartesian representation of these ideas.

| believe that both programs allow students to explore the properties of function
using visual dynamic representations. Moreover, they represent an opportunity to
shift the emphasis from algebraic to the visual representation of functions. A
parallel between the use of these programs is that: the dynamic transformations of
graphs offered by Function Probe allow students to observe function properties by
the variation of these properties, while the dynamic way of representing a function
in DynaGraph allows students to observe the function properties by varying the

variable.
4.4 The choice of the functions

The choice of the sample of functions to be used played an essential role in the

construction of the microworlds. The following twelve functions were chosen:

Figure 4.3
Graphs and equations of two of the chosen functions
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Figure 4.4
Graphs and equations of six of the chosen functions
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Figure 4.5
Graphs and equations of the other four functions_chosen
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The selection of these functions was a result analysis of data from two pilot studies.
The number of functions was defined after the pre-pilot study which had started with
twenty-one functions. In order to choose the functions two criteria were considered:
the properties had to be emphasised by the sample and the dynamic potential of FP

and DynaGraph could be used when exploring the functions.

Firstly, the chosen functions are linked with the dynamic transformations of graphs
allowed by FP because they all belong to four families of functions: constant, linear,
quadratic, and trigonometric. Each of these graphs can be dynamically transformed
into another from the same family or into the graph of a constant function. Also,
graphs belonging to different families cannot be transformed into each other, apart
from the constant one. Thus, the students can explore the function properties while
trying to transform a graph into another. Within a family, each graph can be
obtained with only one transformation of the prototype function of each family: y=6,
y=x, y=0.25x2 and y=7sin(0.25 x). One transformation alters some of the chosen

properties keeping the others invariable. For example, on changing the graph of



y=0.25x2 into the graph of y=0.5x2, the curvature and slope of the first parabola
will be modified but its line of symmetry, range, turning point and domains of
monotonicity will be maintained. On the other hand, the transformation of the graph
of y=0.25x2 into the graph of y=0.25x2-8 will vary the turning point and range

only.

Secondly, DynaGraph was important in defining the families used as well as the
adjustment of the coefficients in the equations. The families were chosen in order to
exploit the dynamic way DynaGraph represents a function. For example, | tried to
make clear the difference between the behaviour of functions with constant speed
(linear and constant ones) and functions with variable speed (quadratic and
trigonometric ones). After the functions were defined into families, the choice of the
coefficients tried to emphasise differences of the same properties for different
functions in DynaGraph. For example, on trying to make clear the difference between
constant and variable speed, | had to choose the coefficients to highlight these
differences in domain which would be visible on the screen. This is why the quadratic
and trigonometric functions present such unusual coefficient. Also, within each
family, the coefficient choice had to make clear properties which vary within a
family. For example, different speed (derivative) of different linear functions had to

be clear.

Table 4.1 presents the properties emphasised by the similarities and contrasts
within and between families of functions. The cells in diagonal refer to emphasis
within a family. The cells above the diagonal refer to the emphasis due to contrasts
between families of functions while the ones below refer to the emphasis produced by

similarities between families.
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Table 4.1

Similarities and contrasts of the properties within and between the function families

FAMILY OF
FUNCTION

Constant

Linear

Quadratic

Trigonometric

Constant

Different ranges
Constant deriv.
Limited range

Limit. x unlimit.

range
Derivative

Limit. x unlimit.

range

Const. x variab.
derivative

Linear

Constant deriv.

Different deriv.

Constant deriv.
Monotonicity
Unlimited range

Const. x variab.

derivative
Chang. x Maint.

monotonicity
Limit of range

Const. x variab.
derivative
Limit. x unlimit.
range
Monotonicity

Quadratic

Limit of range
Line symmetry

Unlimited range

Derivative
different from
zero

Second derivat.
Turning points
Line symmetry
Variable deriv.
Limit of range

Domain of
monotonicity

Limit. X unlimit.
range

Domain of
monotonicity

Trigonometric

Limited range
Line symmetry

Derivative
different from
zero

Turning points
Limit of range
Variable deriv.
Line symmetry

Period
Periodic
Turning points
Limited range
Same range
Line symmetry

4.5 Activities of the study

The activities played the role of transforming the software into an exploratory

environment for functions, into the microworlds. They were designed to lead students

to:

» explore the properties of the twelve functions chosen into four families (constant,
linear, quadratic and sine functions);

+ discuss these properties between themselves.

The two sets of activities all had the following features:
(a) the students would work in pairs;
(b) the activities would be composed of description and classification of the

functions in each of the computer programs;
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(c) the descriptions would always be made in a describing/guessing activity, in
which one student was expected to guess what was the function described by
his/her partner.

The features (a) and (c) aim to promote students' discussions about the function
properties. As a student-centred reasoning study and considering that through
language the students articulate their thoughts and communicate and negotiate a
common perception (Hoyles & Sutherland, 1989), this research used small group-
work in a case study. To choose the number of students in a group | took into
consideration Hoyles & Sutherland's (1989) case study using Logo, in which two
students and the computer feedback interact well. In each setting of activities, |
expected students to describe and classify the twelve functions.

By considering that on generating mathematics, language is one of the most important
points, the activities must have a balance of interaction with the computer and
descriptions (Noss & Hoyles, 1996). Confrey et al (1991b) argue that in
describing and classifying students try to examine and search for invariants. In
addition, Goldenberg et al (1992) showed that when classifying functions, students
discuss and reflect on the behaviour of function as well as comparing the behaviour
of different functions. Thus, | aimed to lead the students into exploration of the
function properties by ask them to describe and classify them according to their
representations: as graph in FP and as behaviour of strikers in both DG
microworlds.

In using a description/guessing activity, my aim was that each student should:

» try to understand his/her partner's descriptions of a function;

+ look for properties his/her partner used to characterise each function;

« compare the description of a function given by his/her partner to his/her own
perceptions of the function properties;

+ discuss the accuracy of a description when it can be fitted to more than one
function or none of them;

- compare different functions by trying to match a description with the twelve
functions;

» search in different functions for properties previously observed in one of them;

» negotiate and complete each other's descriptions.

These actions would lead the students to:

» discover new properties for characterising each function;

+ revise their perceptions of the function properties;

« generalise their perceptions of one property to a wide range of functions.
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In using classification activities, | intended to lead students to:

e search for variants and invariants of the different functions;

* negotiate a common classification by discussing their perceptions and their
language;

» compare the properties within and between different families of functions;

* develop arguments for grouping the functions.

In my opinion, this classification can help students to generalise their perceptions to
a wide range of functions. Aiso, the arguments used by the students during the
classification would refiect the main features observed by the students and/or

features from their previous knowledge.

The activities were designed to take place over ten sessions: five for FP, three for DG
Parallel and two for DG Cartesian. The first sessions with FP and with DG Parallel
were created to familiarise students with the microworld. In DG Cartesian, no
session for familiarisation was necessary because its use is very similar to DG
Parallel. Tables 4.2 and 4.3 summarise the activities in each microworld. A detailed
description of the activities is presented in appendix |l and the material used such as

worksheets and cards in appendix |.

The sessions occurred twice a week for each pair of students. Almost all the sessions
were designed to take on average two hours, but this duration was flexible.
Considering the natural differences in student's development, fixing the duration of

each session would make sense only in order to compare students' performance.



Table 4.2

Activities of DG microworlds

Micro Sessions Duration Activities Material
world (average)
First - 1 hr. (1) Play with the DG Game
Starting 30 min. strikers in DG Game
activities
(2) Describe the
behaviour of strikers
for the partner to guess
Second - 2 hr. it (in sets of 2 or 3 DG Parallel software
Description strikers); Worksheet 12
DG (3) Guess which
Parallel strikers were
described
DG Parallel software
Descriptions done
Third - (4) Group the behaviour A3-paper
Classification 2 hr. of striker according to 12 cards, each with
their descriptions one of the icons of
the strikers
Worksheet 13
(1) Describe the beha-
viour of strikers for
First - the partner to guess it DG Parallel software
Description 2 hr. (in sets of 2 strikers); Worksheet 12
(2) Guess which
strikers were
DG described
Cartesian DG Parallel software
Descriptions they
(3) Group the behaviour wrote
Second - 2 hr. of striker according to  A3-paper

Classification

their descriptions

12 cards, each with
one of the icons of
strikers

Worksheet 13
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Table 4.3

Activities of FP_microworld

Sessions Duration Activities Material
(average)
(1) Transform the graph of y=abs(x) FP software (Only
First - 1 hr. using one of the commands graph window on)
Starting 30 min. (2) Describe the transformed graph Worksheet 1
Activities for the partner to guess it Worksheet 2

(8) Guess the transformed graph

Describe graphs for the partner to

guess in two different ways:

(1a) Choose two functions using the

equations, and trace the graph of one FP Software (graph

of them, window only)

(2a) Try to obtain the other equation 12 Cards, each with
Second, third transforming the graph of the first one of the equations
and fourth - 2 hr. and describe one of the graphs by Worksheet 3 (a)
Description comparing the two graphs. Worksheet 4 (b)

(1b) Choose one function using the 12 Cards, each with

equations one of the graphs of

(2b) Describe the chosen graph after the functions
exploring all the commands on it

(3) Guess: the obtained function in the

case (a) or the chosen function in the

case (b) using the cards with graphs

only

(1) Classify the graphs into groups; FP Software (graph
Fifth - (2) Choose one function of each group window only)
Classification 2 hr. to explore the commands on it. A3 paper

(3) Describe variants and invariants  Worksheets 5 to 10

of the graphs of each group 12 Cards, each with

one of the graphs

5 The final interview

The main aim of the final interview was to investigate how far the students were able
to connect perceptions built within one microworld with their previous knowledge
and/or with those built within other microworlds. As in the pilot study many of these
perceptions were not spontaneously connected with knowledge from other
microworlds, | was not sure whether the students were not able to connect or
whether they did not clearly express the connections. Thus, the final interview was
introduced to complete the analysis of the synthesis students can achieve while

exploring the dynamic potential of the microworlds in the research environment.



Table 5.1

Detail of activities developed during the final interview

Act. Mater. Activities Justification
No. avail.

0G The students are asked to match the

Parallel behaviour of the strikers with the

12 Cards, 9raphs, using the cards of graphs and Lead the students to

each with  exploring the strikers in DG Parallel. connect properties from

one of the The pairs of strikers and corresponding graphs to properties from
(@)  graphs graphs are placed on the A3-paper. strikers by investigating

12 Cards, The researcher encourages the students criteria to match them.

each with to discuss the criteria they are using to

one of the build each pair. The researcher asks them

strikers why the striker and the graph of each

A3-paper bair match.

DG For each perception built within DG

Parallel microworids:

The The researcher shows the students the Investigate if and how the
(b) strikers behaviour of the strikers, reminding them gtydents can identify the

and the of the perception they built. perceptions built within DG

graphs Then, the researcher asks the students to microworlds in graphs

matched identify the corresponding characteris-  already matched with the

by the pair tics in the cards of the graphs. strikers.

of The researcher asks the students how

students

they know the correspondence.

(c) DynaGraph
FP

For each perception built within FP
microworid:

The researcher asks the students to
identify it in the behaviour of the
strikers, reminding them for which
graphs they built it.

The researcher shows the
transformations which make the property
invariant and those which change it,
asking the students to predict the change
in the behaviour of the striker
corresponding to each graph.

The researcher allows the students to
compare the behaviour of the two
strikers in DynaGraph to verify their
predictions

Lead the students to
identify the properties
from graphs to strikers by
their variance and
invariance under the
transformations of graphs.

Lead the students to
connect the properties they
had observed changing in FP
to the properties which
change in the behaviour of
the strikers.

Investigate how the
students perceive the
properties in the behaviour
of the strikers.

The final interview had three stages in which the students were asked to:
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(a) match the strikers with the graphs;

(b)) identify perceptions built within DG microworlds in the graphs;

(c) predict the behaviour of a new striker which corresponded to a graph
transformed from another using FP, having the behaviour of the striker

corresponding to the graph.



All these phases were designed from the analysis of the pilot study data. They
constituted points at which these students made spontaneous connections. The phases
of the final interview are detailed in table 5.1 which also contains their

justifications.

The final interview investigated only the perceptions actually expressed by each pair
of students. Thus, the questions for the final interview were different for each pair
of students and could not be previously written. Nonetheless, a draft of the final
interview was designed with prototypes of the questions for activities (b) and (c)
and notes of the perceptions built by the students during each session were taken in
two notepads (see subsections Al-8.2 and Al-8.3). The prototypes of the questions

together with the students' perceptions composed the final interview.

6 Data collection

The data of this research were collected by video-tape records of the sessions, notes
taken by the researcher, the questionnaires and worksheets filled in by the students,
transcriptions of the interviews and the coliection of curriculum material. In this
section, | will discuss the role of the researcher while observing and interviewing

and that of the notepads created to facilitate note-taking.
6.1 The role of the researcher

Although this research was composed of participant case studies, the interference of
the researcher during the sessions was restricted according to the goal of the
intervention. Since the general goal of this study was to analyse the students'
arguments while describing and classifying functions, intervention by the
researcher giving mathematical teaching would be inappropriate as it could
interfere the students' arguments and classification. The researcher only intervened
for the following purposes: to explain the activities and the computer commands; to
stimulate the students' discussions, to investigate the students' thoughts, to
understand the students' language, and to understand on which representation the

students were focusing their arguments.

In the final interview, the interventions of the researcher aimed to obtain
information about the connections the students were building between properties in
different microworids. The ‘why’ questions were used to investigate the properties
the students were using when matching strikers with graphs, for example, ‘why did
you match striker A with graph B?' or ‘why do you think they are similar?’. The
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‘how’ questions aimed to allow the researcher to go deeper in understanding the
connections the students built. An illustration of these questions is ‘how do you know

that property A in graphs corresponds to property B in strikers?’.

In the other interviews of this study, the researcher was allowed to vary a question

when noticing that the question was mis-interpreted.
6.2 Observational tools

All the sessions were recorded with a video-camera focusing on the computer screen.
The observations of the pilot study revealed that in the sessions of classification the
A3-paper, where the students grouped the cards of the functions, was another focus
of actions. As only one video-camera was available, the researcher took notes of the

functions grouped at each moment.

Other sources of data were worksheets and notes taken during the sessions. The pre-
pilot study showed that the researcher needed an easy way to take notes while
observing the sessions. Thus, two notepads, one for DG microworlds (see subsection
Al-8.1) and one for FP microworld (see subsection Al-8.2), were designed
according to the characteristics of each microworld. In the one for DG, the menu of
strikers enabled the researcher to identify (by ticking) the striker(s) to which the
notes referred. The one for FP presented the equations of the functions and a menu
with the icons of ‘transformations’ commands to help identify the function(s) and
transformation to which the notes referred. After the pilot study, two other notepads
(see subsections Al-8.3 and Al-8.4) were designed to enable the researcher to build
the final interview before analysing the data. These notepads presented a list of
perceptions built by the students who patticipated in the pilot study and blank spaces
to help the researcher identify the ones built by the pair of students in each
microworld. The researcher had to tick the perceptions built during each session and

write beside them the functions for which they were observed.

7 Overview of strategies of analysis

The analysis of the main study had three phases:
* Analysis of the school curriculum on the topic of function;
¢ A longitudinal analysis of the work of each pair of students;

¢ A cross-sectional analysis of the work of the pairs.
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71 Analysis of the school curriculum

The analysis of the approach used by the teacher to introduce the topic of function to
the students has as source the curriculum material and the interview with the

mathematics teacher.

This analysis aims to give information on similar patterns between the perceptions
the students developed in the empirical study and the way they were introduced to the
topic. Thus, the analysis of the curriculum material and the interview with the
teacher focused on the work these students did before being introduced to functions as
well as during the topic itself. | consider: how the chosen properties were used in the
topic; for which family of functions they were explored; the representations
explored and how they were explored. These points will lead me to predict over-
generalisations and knowledge-obstacles the students might exhibit during the

empirical study.
7.2 Longitudinal analysis of the work of the pairs of students

The longitudinal analysis of the work of each pair of students has as sources: the
individual student's tests of previous knowledge; transcriptions of the discussions
during the sessions; the material written by the students during the activities; the
video-tape records of the sessions; the researcher's notes; and in the case of FP the

computer records,

The longitudinal analysis examines the development of students’ perceptions of the
function properties. First, a summary of students' previous knowledge is made from
the analysis of their pre-test. Second, the students' perceptions of the property
constructed during their interactions in the research environment is examined. In
this part of the analysis, | considered the usefuiness, limitations, origin of these
perceptions as well as how and when the students came to discriminate, generalise,
associate, and spontaneously synthesise these properties. Finally, the analysis of the

connections motivated in the final interview is presented.

The longitudinal analysis is undertaken property by property. For each property of

function, | looked for:

* the influence of the visually dynamic way of representing function in DG
microworlds and the influence of dynamic transformations of graphs aliowed by
FP in the students' perceptions of the property;

* the limitation, origin, usefulness of perceptions built by the students while
discriminating, generalising and synthesising them;

e the associations made during their work and their progress;
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* the influences of students' previous knowledge on these perceptions;

* the language students use while exploring the property in each microworld, in
particular the use of terms learnt in school in trying to make sense of the
property;

* the influence of the previous work in the other microworlds.

During the analysis, | look for the opportunities the students have for overcoming
the limitations of their own built associations and/or knowledge-obstacles, which |
will call critical moments. In my view, understanding what happened during these
moments is crucial in analysing the students' paths of learning. | also believe that it
is by overcoming associations and knowledge-obstacles that the biggest leaps occur in

the progress of their perceptions.

The starting activities with DG Parallel provide an important source in the analysis
of the knowledge-obstacles which derived from previous knowledge of functions. The
differences in the students' perceptions before and after knowing that the strikers
represent functions is a source for the analysis of these obstacles. The same source
cannot be obtained in the starting activities with FP because of their similarities

with school knowledge. The graphs and equations are used in both.

In the longitudinal analysis of the students' perceptions of each property, the blob
diagram is used to present the development of these perceptions across the research
environment and the final interview. This diagram is an adaptation of the one from
Hoyles & Healy (1996), which presents information keeping the longitudinal
approach. It gives to the reader a visualisation of the whole development of students'

perceptions facilitating the analysis of the role of each perception in the whole study.

The blob diagrams will be presented, here, while constructing the diagram of the
perceptions of constant function developed by Bernard & Charles, one of the pairs of
students. This construction will be supported by appendix lll, where all the reports
will be presented in full. The diagram shows each microworld (and pre-test) in one
pentagon. The pentagons were displayed to allow two microworids to be linked
without passing through a third microworld and to keep the sequence of the
microworlds. In the case of Bernard & Charles, who followed the activities from DG

to FP, the disposition as seen in diagram 7.1.
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Diagram 7.1
Disposition of the microworlds in the blob diagrams
Pre-tent FP
™~
-
D& Purallel BG Cartesian
Diagram 7.2

Pentagon of the pre-test

Fre-test

Term Periodie
Constant A function

Graph with C
repetitive ‘n‘

th
e Hovizontal
HMeotionless straight line
behavicur

Ons dot 1n
the Cartesian
graph

Each perception evidenced in the report (see appendix Ill) was represented by one
blob. For example, Bernard & Charles defined the term constant function by a graph
with repetitive path (see section Alll-1), thus, two blobs are put inside the pre-test
pentagon, one for the term ‘constant function’ and one for ‘graph with repetitive
path’. Note that this perception has no correspondence to constant function from a

mathematical viewpoint. Cases like this led me to divide the blobs into two types: the
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full blobs and the blank blobs where the blank blobs indicated the views which had no
apparent correspondence to a mathematical viewpoint of the property. Thus, in the
diagram of constant functions the perception ‘graph with repetitive path’ was
represented with a blank blob. As a topological diagram the position of each blob
inside a pentagon has no meaning. Both blobs were linked by a line iabelled by A
which represented this connection which is also an association between different
ideas (see diagram 7.2). The connections between different perceptions are shown by
lines linking the blobs. Each link is denoted by one letter to enable me to refer to it
in the text. In the construction of the diagrams the evidence of each link was noted
(see section Alll-5). In the same way, the other perceptions evidenced in the report
(see section Alll-2) were represented in diagram 7.2. The diagram shows none of the
perceptions presented by this pair has any correspondence with constant function

from a mathematical viewpoint.

Diagram 7.3
Construction of the pentagon of DG Parallel

Pre-test

Term Periodin
C onstant A function

Graphwith C
mepetitive ‘-‘
path Horizontal

HMationless straight line
behaviour

One dot 1n
the Cartesian
grrh

motionless

|

Ix iz useless
to move x, the
striker does not

do anything

BG Parallel
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Then, the sessions with DG Parallel were analysed to build its representation in the
blob diagram from the report in section Alli-2. As Bernard & Charles described both
strikers corresponding to constant functions as being ‘motionless strikers’ a biob
called ‘y is motionless’ was included in the pentagon of DG Parallel. Another blob
labelled ‘it is useless to move x, the striker does not do anything’ was also
represented, they were linked (see link D in diagram 7.3) because it represents an
argument of the students while discussing their characterisation — ‘motionless
striker’. Note that the diagram clearly shows the separation between knowledge from
the pre-test and those built in DG Parallel.

Diagram 7.4

Construction of the pentagon of DG Cartesian

Pre-test

Pariodie
funstion

Tarm .

Constant A
Graph with C
rapatitive
path ‘f

Motionless

behaviour

Horizontal
straight line

Oxne dot 1n
the Cartesian
graph

motionless

E.

1] \‘ﬁ ¥ is constant

Ir is yzeless
to move x, the
striker does not

4o anything

! "\

(5, ¥) mowes
in 3 horizontal
straight line

DG Parallel

DG Cartesian

Diagram 7.4 shows that Bernard & Charles' perceptions of constant function in DG
Parallel and DG Cartesian were linked but isolated from the ones exhibited in the
pre-test. The idea of 'y is motionless’ was brought to DG Cartesian when the students
noticed that in ‘the striker which (x,y) moves in a horizontal straight line’ y was

motionless, then constant. Two blobs were represented in the pentagon of DG
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Cartesian: 'y is constant’ and ‘(x,y) moves in a horizontal straight line’. The links E

and F (see diagram 7.4) show the origins of both perceptions while link G was

represented by the argument of Bernard & Charles (see section Alll-3).

Diagram 7.5

Construction of the pentagon of FP

Fre-test

Term Periodic
D onstant "“ function

Sraph with C

repetitive

path "r

Horizontal

IMotionless straight line
behaviour ®

One dot1n

the C artesian

N
\gra;ph

motionle:ss

I

I iz useless
to mave ¥, the
striker does not

do anything

E

FP
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1 is constant

G

\

(%,%] moves
in & horizontal
straight Line

G Parallel

DG Cartesian

Horizontal
straighk lines

The pentagon of FP presents only one blob called ‘horizontal straight line’ which was

the way students characterised the graphs of constant functions. As they argued that

the shape is due to the fact that 'y is constant’ (see section Alll-4), link H was added.

Thus, diagram 7.5 shows the continuity of Bernard & Charies' construction of the

perceptions of constant function throughout the research environment, and also that

they were isolated from their previous knowledge.




Diagram 7.6
Addition of the findings of the final interview
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Then, an analysis based on the blob diagrams was written and results of the final
interview were anticipated (see section Alll-5). Afterwards, the video-tapes of the
final interviews were transcribed and analysed (see section Alll-6). In order to
distinguish the perceptions and connections built in the final interview from those of
the research environment, the red colour was introduced. The lines and the blobs
have two colours: black and red. The black ones will be used for perceptions and links
built during the research environment while the red ones are for those built in the
final interview. In the final interview Bernard & Charles linked ‘horizontal straight
lines’ with ‘motionless strikers’. Thus, links J* and I* were represented in red. A
new blob (red) was introduced in FP pentagon because of the students' explanation
that the link is due to the fact that ‘y does not change’ in the graph. The labels of the
links are in alphabetical order but the motivated links are distinguished by an

asterisk as a visual aid in the texi.
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Finally, all the reports of the students for each of the properties (see the example in
appendix Ill) were summarised in the longitudinal analysis which will be presented
in chapter VIl.

7.3 Cross-sectional analysis

The cross-sectional analysis is a comparison of the findings from the longitudinal
analysis of the different pairs of students together with the analysis of the school
approach to functions. ~

This analysis has a dual focus: the responses concerning each property of different
pairs of students are summarised and categorised as synthesis, associations,
knowledge-obstacles, and main features of each microworld that appeared to
contribute to the students' progress. The blob diagrams grouped by properties are
presented in appendix IV to help to compare the responses of the different pairs of
students for each property.

In the first step, patterns of perceptions of the properties across the pairs of
students are analysed. For each property, the analysis is divided according to the
microworld in which the perceptions were developed. Thus, some variables on these
patterns ?re considered such as sequence of microworlds used. In the second step, the
important points observed in the longitudinal analysis were considered as starting
points for building tables of patterns of students' interactions with the microworlds
across the properties and pairs of students (see appendix V). From these tables, the
findings were analysed and will be presented in chapter Vi
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V — The Pilot Study

The main study was designed in three phases. The first version of the empirical study
was tried out with one pair of Brazilian youngsters. On the basis of the analysis of the
data, | redesigned the experiment for the pilot study which was undertaken with
three pairs of students: two pairs from a middle attainment level working in the
different sequences of microworlds and one pair from a lower attainment level, who
worked from FP to DG. The last pair of students were taken to determine the viability
of the microworlds for students considered by their teacher to have great difficulties

in learning mathematics.

Certain issues emerged from a longitudinal analysis of the work of the pairs of
students which will be summarised here. These issues also directed the observation

of the main study.
Classification of functions

The students' classifications of the functions usually matched with the families of
functions. Nonetheless, two aspects influenced the students' recognition of these
families: the sequence of microworlds and the microworld. For instance, in DG
Parallel the students who began by working with DG used the perceptions derived
from explorations of these microworlds such as ‘y and x have proportional speed’ and
“yv doesn't move while x does” as criteria in the classification while the other pair,
who began by working with FP, used the family of functions as a criterion, because
they had connected characteristics between the microworlds to sketch the graph
corresponding to the behaviour of each striker. In the case of the classification
session in FP, the shape of the graph and the equation were the strongest criteria for

all the pairs of students.
Patterns in associations: pointwise perceptions and polarisation of knowledge

Some patterns in associations built by the students were identified. The students
tended to associate the properties of variation with pointwise perceptions or rules
involving polarisation of knowledge. Some examples of these associations are: “period
of a sine function is the distance from zero (x=0) to the first root after two turning
points”; increasing is the rule ‘when x is positive, y is positive, when x is negative,

y is negative’.
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The pointwise perception and polarisation of knowledge seem to originate in the
school approach to functions. | base this statement on the fact that all the pairs of
students associated these properties with pointwise perceptions in more formai
activities or when trying to link their perceptions derived from activities in the
research environment with their previous mathematical knowledge. One student
stated that variational properties belong to the strikers, and the pointwise or
polarised properties belong to functions. Nonetheless, this statement needs further

investigation.
Revisions of associations — counter-examples

The interactions of the dynamic microworlds, together with counter-examples of
associations built by the students, allowed the students to realise these associations
and to overcome the limits they imposed. A great difference between FP and DG
microworlds regarding the revision of the associations was that in DG microworld the
counter-examples of an association must be given while in FP the commands
(translation, stretch, and reflection) allow the students to create their own examples
and counter-examples. The students were able to overcome limitations of associations
derived from pointwise perception by exploiting the dynamic transformations of

graphs in FP while searching for function properties.

On the other hand, | must say that in many cases the associations remained. In some
cases, counter-examples were missing. For example, one pair of students associated
parabolas with ‘a function which changes from increasing to decreasing or vice-
versa once’. As the set of functions had not a counter-example for this association,
for example an absolute value function, | cannot analyse the force of this association
at critical moments. In other cases, | observed that the representation did not
facilitate students' perceptions of some properties as well as revising associations.
For example, while working in DG Parallel, none of the students revised the

association between line symmetry and symmetric numbers.
DG Parallel as a ‘new’ representation

The activities of description and classification while searching for characteristics in
the behaviour of the strikers associated to the fact that DG Parallel is a microworld
where strong features (such as shape) are not present represented an interesting
opportunity for the students to revise their previous perceptions of the function
properties. Moreover, the exploration of this microworld gave them the opportunity

to realise these associations and to overcome their limits.
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DG microworlds served as a lens on students' perceptions

The interaction with DG microworlds facilitated the observations of obstacles
students faced in developing their perceptions of the function properties, in
particular, those resulting from the school approach to functions. As DG microworids
could be introduced without informing the students that they were working with
functions, | observed how the students' perceptions of the properties as represented
by the strikers changed as soon as they were told this. Their previous knowledge

about function led them to consider motion as not belonging to the functions.
Obstacles derived from the school curriculum

Their school emphasis on algebraic representation during the introduction of the
topic of functions seemed to have created an obstacle to the students' observations of
other function properties. Equations seemed to be considered as the essence of
functions. After guessing which equation represents the function of a striker, both
pairs of students who began by working with DG stopped searching for function
properties. This barrier was not observed with the other pair who worked in the
inverse sequence. However, in the starting activity with FP this pair of students
resisted analysing the function properties through graphs. Moreover, in FP |

observed that all the students tried to characterise equations more than graphs.

The polarisation was very strong in the students' perceptions of the function
properties. They often characterised a property of function as positive or negative.
This tendency created obstacles when the students attempted to generalise the
perceptions among different functions. For example, none of the pairs of students
recoghised any similarity between the strikers given by y=0.25x2 and y=0.25x2-8,
even between their ranges, because their perceptions of range were categorised in

positive and negative.

Two different barriers were derived from the approach the school gives to family of
functions. One is close to the emphasis given by the school to equations. After
recognising the family to which a function belongs, the students assumed that ‘the
family’ was a complete characterisation of the function. They created a barrier
against searching for more properties in the function, especially those properties
that they had not studied at school in that family. Another kind of barrier arose from
the students' over-generalisations of perceptions from a particular way of
recognising a property within one family of functions. The students may have
considered this over-generalisation correct because they studied some properties
only in a special family of functions. For example, as the students studied minimum
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only in the family of functions which have turning point, they associated these two

properties as being the same.
DG microworlds led students to develop variational perception

Some function properties are highlighted through the dynamic way DG microworlds
represents functions. In particular, ideas related to variation of a function gain very
different aspects. For example, the derivative gains the aspect of speed. in
conclusion, it is the dynamic possibilities of DG microworlds which make its
representation qualitatively different from the diagrams (see figure CllI-1.2) of R

to R in paper-and-pencil representation.

Nonetheless, the way the students were enabled to perceive properties in exploring
DG microworlds depended on the property. Monotonicity, derivative, constant
function, turning points were easily identified in these microworlds. Symmetry was
only observed by the students as symmetric numbers. Periodicity was only
discriminated as a repetition of dots, such as: roots and turning points. The students

did not recognise periodicity as being the repetition of the whole path of the striker.

The exploration of direct manipulation of x while observing the consequent behaviour
of y in DG microworlds scaffolded a variational way of analysing some characteristics
in graph in the pairs who began by working with DG. This way of analysing a graph
was observed while they were working in FP. They used to analyse the growth of the
functions in graph by moving their finger horizontally and seeing what would happen

toy.
Transformations of graphs led the students to explore perceptions

The exploration of dynamic transformations of graphs in FP microworld allowed the
students to check their own perceptions of the function properties. The activity of
searching for properties to describe the functions together with the possible dynamic
manipulations of graphs allowed all the students to realise by themselves their own
associations, as well as to see different aspects of a property that they usually saw as

being only one.

Different transformations of graphs emphasised different properties of the same
function. This effect was so marked that one of the students thought that two graphs of
the same function, which were obtained through different transformations, were two
different functions despite overlapping. Therefore, | conjecture that each command

structures a student's perception of a property in a different way. This perception
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also depends on the property that is being examined and on the function that the

student is exploring. Nevertheless, this statement needs more investigation.
Interactions with FP modified students' preference for graphs

The interaction with FP scaffolded in the pair of students, who began by working with
FP, a way to generate a function from a given function. | observed that on describing
the strikers in DG Parallel, they were checking the accuracy of their descriptions by

imagining translations, stretching or reflections in the behaviour of the strikers.

The interaction with FP redirected the students' attention from equations to graphs.
The students who began by working with DG tried to connect the perceptions they
themselves built in DG microworlds to equations while the pair who began by
working with FP made the connection with graphs. Moreover, instead of plotting the
graph, the pair who began by working with FP really sketched the graphs indicating
characteristics of functions that they thought should be important, such as:
monotonicity and slope for the linear functions and curvature for parabolas.
Therefore, the findings suggest that the possibility of manipulating the graph in FP
can change students' perceptions of functions, in particular the function properties.
In addition, these connections represented evidence of spontaneous synthesis from the

behaviour of the strikers to graphs and vice-versa.
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VI — An Analysis of the Curriculum

This chapter will outline the structure of the Brazilian mathematics curricula and
then analyse the way the students explored functions. The analysis of their work in
the topic of function will have two focuses: how and for which families each of the
function properties was studied; and which and how representations were used.
Finally, 1 will discuss the expected over-generalisations and knowledge-obstacles in

the students' perceptions of the properties.

1 The Brazilian mathematics curricula

Schooliing in Brazil is divided into 8 grades of primary school, which all children are
supposed to attend, and 3 to 4 grades of secondary schools. Under Brazilian law
schooling is compulsory for children between the ages of 7 and 14, although as
Brandao (1989: 743) argues, legislation for school reform does not solve the
problems of education. Although the government tried to institute reforms to
counteract the dualism of secondary schools, according to Werebe (1994) they are
still divided into technical and academic schools. This study investigates the second
kind of school. The academic school course takes 3 years, during each of which the
students are evaluated to be up-graded or to repeat the same grade.

Education in Brazil does not follow a national curriculum, but the curriculum of each
school is decided in stages. The national government decides the minimum number of
hours for a minimum core of subjects. Each state determines for its own schools the
other subjects as well as the topics that the schools should follow. The private schools
in general follow the topics determined by the state adding some other subjects and
topics depending on their aims. Although Brazilian schooling has not a national
curriculum, the use of the textbooks in some ways gives uniformity to the approach

to some subjects such as mathematics.

in Pernambuco, the Brazilian state where this study was undertaken, the educational
committee determines the general aims of mathematics, the topics as well as the
minimum content for mathematics in each grade (Secretaria de Educacao de
Pernambuco, 1986). Despite the claim that the aim of teaching mathematics is to
enable students to use it in everyday life and that the students' intuitive knowledge

must be taken into consideration, this is not the reality of the mathematics classes.
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The teacher of the selected students, for example, follows a very formal mathematics
course. He admits that despite considering the contextual and intuitive to be the best
approach to teaching mathematics, it requires more time than the formal one,.
Therefore, he has to follow the formal mathematics course in order to cover all the

minimum content.

The teacher says that he uses lezzi et al (1990) with students as a textbook for the
basic curriculum material. He describes his mathematics course as being lectures
with a form of seminar given by himself following the sequence of the textbook which
students then read and resolve the problems from it. He says he rarely prepares any
kind of other activities. Therefore, this analysis is based on this textbook and some
students' notebooks. In the following sections the quotations with no specified source

are from the textbook.

2 Previous work

Comparing the grades in English and Brazilian schooling, the first grade of the
Brazilian primary school corresponds to the third year in English schooling. in fact,
in Brazilian schooling there are two pre-primary grades which are not compulsory.
The school chosen for the investigation only has from fifth grade of primary
schooling to third grade of secondary schooling. For these grades the mathematics
curriculum includes the following topics:

Primary school:

Fifth grade: Natural numbers, positive rational numbers (decimal and fractionate
representation), measures (length, area, volume, height, mass) and geometry
(terminology and classification);

Sixth grade: integers and rational numbers, proportionality and geometry (angles,
construction of triangles);

Seventh grade: real rational numbers, algebra (systematic description of geometry)
and measures (area and volume);

Eighth grade: power and roots, equations (first and second degree polynomials),
linear and quadratic functions, geometry (similarities, Pythagoras' theorem, metric
relations in a circle and regular polygons), measure (cylinder, cone, sphere) and
trigonometry (right-angled triangle).

Secondary school:

First grade: set theory and theory of functions (first and second degree polynomials,
absolute value, exponential and logarithmic, composition of and trigonometric

functions);

101



Second grade: matrix, linear systems, probability, Newton's binomial theorem and
spatial geometry (prisms, pyramid, cylinder, cone, sphere and polyhedrons (Euler's
formula and regular polyhedrons)

Third grade: analytic geometry, complex numbers, polynomials, equations, revision.

According to this curriculum students are introduced to the concept of function in the
eighth grade of primary schooling, and study the notion again in the first grade of
secondary schooling. In eighth grade of primary schooling, students work with first
and second degree polynomials and then they are introduced to the notion of functions
given by first and second degree polynomials. At this stage, according to their
teacher, students have studied how to plot graphs from equations. Therefore, the first

approach is functions given by equations.

In the first grade of secondary schooling, students study functions during the whole
year. First they are introduced to the notion of sets. Before being introduced to the
topic of function, students study binary relations and the Cartesian system with

emphasis on working on algebraic relations.

3 The introduction of the topic of function

The selected students were introduced to function in two ways: as an ‘intuitive notion’
and as a ‘mathematical notion’. As intuitive notion of function, the textbook presents
many examples of contextual relations between two variables which compose a
function, such as: the population of a country is a function of the historical time, the
area of a circle is a function of its radius, the price we pay for the petrol we buy is a
function of the number of gallons we put in the car, ... Then it introduces function as
the relation between two quantities x and y such that

“for each value given to x there is, correspondingly, only one value associated to
y". (p.38)

In this introduction, the textbook uses tables to give examples of relations which are
functions and relations which cannot be functions. The proposed exercises explore
tables to interpret derivative and monotonicity. The only representation used is

tables.

After the intuitive notion of function, the authors introduce ordered pairs (showing
in figure 3.1) which they call mathematical notion of function, followed by the

explanation:
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“The relations Rq1 and Ro present a particularity, for all elements of A, they
associate only one element of B, which does not happen with R3. Relations such as
R+ and Ro are called functions or applications”. (p-42)

Therefore, the students were introduced to function as being a special case of binary

relation.

Their teacher said that he emphasises functions as being “two sets and a rule
associating the two sets”. According to him, he never emphasises the use of
definitions. He then said that after functions are introduced as a particular case of
binary association, the students work with families of functions toward the

construction of the graphs to use in solutions of inequalities.

Figure 3.1
Introduction of the mathematical notion of function in the textbook (p.42)

Ry={xy) € AXB|y=2x}

After the above-mentioned introduction, the textbook introduces algebraic notation of
functions followed by the introduction of graphic notation, which is divided into
‘intuitive graphs’, ‘construction of graph’ and ‘recognition of graphs of functions’. In
‘intuitive graphs’, students are asked to plot graphs from verbal and contextual

description while in ‘construction of graphs’ they are asked to plot graphs from
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equations passing through tables, plotting the points and joining them with the shape

corresponding to the family of the equation.

After this general introduction, functions are studied compartmentalised into
families. The families of functions are determined by the algebraic expression. This
is very clear by the way each family is denominated. For exampie, the family of
linear and quadratic functions are called the first degree polynomials and the second
degree polynomials, respectively. The textbook also denominates by linear only the
functions given by y=ax, emphasising linearity in an algebraic sense: a function is
f(Dx)=Df(x) D
f(xq4+X2)=f(x4)+f (x,) for all x; and x, belonging to the domain of f, instead of

linear if and only if for any real number and

stating that linearity means a straight line.

According to their teacher the selected class studied: first and second degree
polynomials, absolute value functions and trigonometric functions. The family of
exponential and logarithmic functions were studied only in algebraic propetrties. So
the table below shows the kind of exploration the students made in each family of

functions they had studied.

Table 3.1

Properties explored in each family of functions

General Linear Quadratic  Absolute Trigonometric

introduction function function value function
Turning point DHE H H
Constant function D
Monotonicity DGE DGT C
Derivative DGE
Second derivative D E
Range DG D DHE DH DGE
Line symmetry DHE GH DG
Periodicity DHE

(D) Discussed algebraically; (G) Discussed graphically; (T) Highlighted with table;
(H) Highlighted in graphs; (E) Explored in problem-solving and (C) Discussed only in
the classes

As table 3.1 shows different properties were emphasised in different families of
functions. The following section will report in detail the emphasis given to each of the

chosen properties in the different families these students worked with.
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4 The properties and families of functions

As table 3.1 shows, the concept of turning point was introduced to the students in the
family of quadratic functions. The first meaning of turning point presented in the
textbook is linked to extreme values through examples. After presenting the graphs

of parabolas with the turning point highlighted, the textbook continues:

“Among the points of the parabola y=-x2+2x, the one with maximum ordinate is
(1,1), it is denominated by turning point of the parabola”. (p.85)

Table 3.1 also shows that in the other families of functions the turning point is
presented only as a highlighted dot in graphs. This approach can lead the student to

perceive turning point as being a special point in Cartesian graphs.

Still in the chapter on quadratic functions, the idea of turning point and the sign of
the coefficient ‘a’ in the formula f(x)=ax2+bx+c are used to decide whether a
turning point determines a maximum or a minimum. At this point, the textbook

develops an algebraic formula to calculate the coordinates of the turning point.

The turning point is also used as a way to recognise line symmetry in parabolas and
sine graphs. The textbook says:

“a parabola presents a line of symmetry, that is a straight line paraliel to the y-
axis passing through the turning point”. (p.89)

The only time that turning point was presented to the students as being ‘the point
where the graph changes direction’ was while exploring ‘the domains where a
function is positive and negative’ for sine functions in the students' notebooks. They
made a table and a graph highlighting the special points: roots and turning points. In
the table, they indicated with arrows the direction of the graph for each interval

between special points (see figure 4.1).

The difference in terminology in the English and Brazilian curricula should be
clarified: the English term ‘turning point’ suggests ‘the point where something
turns’; in the Brazilian curriculum the word used for turning point is ‘vertex’ and
this word is used in two different topics of mathematics (geometry and function)

with different meanings.
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Figure 4.1
Exploration of monotonicity and points in the classes (student's notebook)
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The concept of constant function was introduced to the students as a particular case of
the first degree polynomial. The textbook writes:

“When a=0, the function f(x)=ax+b is such that f{x)=b for all real x. In this case f
is said to be constant function”. (p-67)

After that, it presents the graph of y=2 with the point (0,2) highlighted as an
example of a constant function. This fact can lead the students to perceive the graph as
the point at (0,2). Constant functions are not explored further in the textbook, even

in the exercises proposed.

Note also that the introduction of constant function has no reference to a function with
derivative zero. This is another example of compartmentalisation of knowledge in

school mathematics.

The students are introduced to the notion of monotonicity from the general
introduction of function (see table 3.1). After presenting all the representations of
functions they will work with, the textbook introduces some function properties such

as even and odd functions, monotonicity and line symmetry. The notion of
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monotonicity is presented after working with functions given by formula. The
textbook first defines the increasing function by:

“If for any elements x{ and xo of a set A, such as x{< x2, we have f(x{)<f(x2)
then f is increasing in A; if for xy< x2, we have f(x1)>f(x2), then f is decreasing
in A”. (p.58)

In the graphic example of monotonicity (see figure 4.2), the textbook does not limit
the notion of increasing to functions which increase in the whole domain, nor to
linear functions. The notion is defined for functions with curvature and in part of the
domain. However, the textbook presents only a pictorial view of how an increasing
graph will look by highlighting the increasing part of the graph. In the general
introduction, the textbook highlights the increasing and decreasing parts of the
functions on different kinds of graphs. In the set questions, it expiores the
interpretation of these properties in graphs and equations. It also tries in the
questions to distinguish the domain where a function is positive from the domain

where it is increasing.

Eigure 4.2
Graphic introduction of the idea of monotonicit .58

(f is increasing; f is decreasing)

After the general introduction, the textbook limits the exploration of monotonicity
only for linear functions, which is increasing or decreasing in the whole domain. in
contrast, the students’ teacher discussed the property for trigonometric functions in
classes. He introduced another notation to indicate increasing or decreasing (see

figure 4.1).

In the family of linear functions, a table followed by a graph is used to introduce
monotonicity (see figure 4.3). At this point, the notion is presented in more

informal language:
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“Given the first degree polynomial y=-x+1, we can observe that as the values of x
increase, the values of y decrease correspondingly; that is why we say that the
function is decreasing”. (p.72)

Figure 4.3
Graphic and tabular introduction of the idea of decreasing {p.73)
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(increasing x; y decreases)

The textbook uses the definition of monotonicity to prove the connection between the
sign of the coefficient ‘a’ in the formula y=ax+b and monotonicity. Then the authors

summarise the connections as

Figure 4.4
A summary of the connections of monotonicity in all representations (p.73)
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(Given a first degree polynomial f(x)=ax+b, we have: a>0 <=> f is increasing; a<0
<=> f is decreasing)

When investigating ‘the domains where a function is positive or negative’, the
textbook presents figure 4.5 which seems to be a source for associations between
increasing function and 'y is positive to the right side and negative to the left' and

vice-versa for decreasing.
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Figure 4.5
Scheme of sign of the values of f for linear functions (p.74)
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(a > 0 <=> f is increasing; a < 0 <=> f is decreasing)

Table 3.1 demonstrates that the notion of derivative was introduced to the students
only in the family of linear functions by introducing the formula of ‘rate of average

change’ which coincides in the case of linear functions with derivative. The textbook

says:
“If f is a numeric function and x1 and x2 are two elements of the domain such that
ﬁg :I:l::":;] - f(x']:l ':Iz - ':’1
X1< X2, we call = = rate of average change
Ax My = ¥y My = ¥y
between x4 and x2 of the function f in relation to x”. (p.69)
Figure 4.6

Graphic presentation of rate of average change in the textbook (p.70

?“?I,-

After introducing the formula to calculate rate of average change, the textbook
presents calculations from linear equation proving that rate of average change is
equal to the linear coefficient. It also introduces graphical examples of the meaning of
rate of change (see figure 4.6). Many of the set questions aim to make the students
link the linear coefficient to rate of change. However, there is no attempt to make the

students connect the inclination of the graph to the linear coefficient. This attempt
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was found in the notebooks copied from lectures. There the students tried to link the
coefficient of y=x to the angle formed by the x-axis and the graph, in particular to
the measurement of the angle. In the textbook, the proposed exercises do not explore
the graphic representation, nor do they explore the tabular representation in the

notion of derivative.

The interesting fact is that the notion of monotonicity is discussed after the notion of
rate of change without linking the two notions. They are completely

compartmentalised.

As soon as the textbook introduces derivative the students are asked to observe that: if
the rate of change of a function is constant, then the graph of this function is a
straight line. This is the beginning of the idea of second derivative. In other words, it
says that ‘if the derivative is constant, the graph is a straight line, otherwise it is a
curve’, but this notion seems to be stated without being related to the students'

previous knowledge.

The textbook does not emphasise curvature for quadratic functions (second
derivative). This concept is only marginally explored when students are asked to
trace graphs of three quadratic functions with different curvatures. Therefore, the
notion of second derivative is explored in two ways only: when it is zero the textbook
finks it to the form of the graph as | explained above and by talking about curve in the
other families of functions. Nonetheless, in the other families there is no discussion
about curve and ‘variable rate of change’. Even ‘rate of change’ is not explored except

in the chapter on linear functions.

As soon as the students have been introduced to ‘the mathematical notion’ of function
(see section 3), the textbook discusses the notion of domain and range of a function. It
defines domain and range in the following way:

“The set A of the values of x is called domain of the function. The value of y
corresponding to a value of x is called image of x by the function, or the value of
the function in x, and it is represented by f(x)". (p.42)

Figure 4.7
Diagrammatic presentation of domain_and_range in the textbook (p.42)
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“The values of the images of f(x) compose a set ‘Im’ called range of A through
the function.
The range is always a subset of B”. (p.43)

Using the graph in figure 4.8, the textbook introduces a method of determining the

range of function in a graph.

Figure 4.8
Graphic definition of range and domain in the general _introduction (p.53)
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After this brief introduction, the textbook explores the range in each family of
functions. For first degree polynomials, it is stated that

“the domain of a first degree polynomial is R and the range is also R". {p-67)
This section also includes a brief classification of three kinds of linear function:
affine, ‘linear’ and constant. In the case of constant functions the range is identified
as being the set {b} when the function is given by f(x)=b and shown in graph. In the
proposed questions the idea of range is not explored further. This seems to be a very
brief reference to the idea for this family of functions. In fact, the only families for

which this notion is further explored are quadratic and trigonometric function.

In the families of quadratic and trigonometric functions, range is explored in the set
guestions when students are asked to calculate the minimum and range of the
functions using equations. For the other families of functions, range is only defined.

In conclusion, the idea is stressed in functions with turning points.

For parabolas, range is introduced linked to turning point and extreme values. With

an example using equation (to calculate the turning point), the textbook says:



“the domain of the function is D=R and the range is Im={yERly>-1} (see the
graph)”. (p.90)

Figure 4.9
Exploration of range in graphical and tabular representations (p.90)
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(Turning point; line of symmetry)

In the case of sine functions, range is discussed after presenting sine function
through table, graph and equation. The range of f(x)=sin(x) is discussed as being the
real numbers between -1 and 1. It is interesting that the sine functions are the only
type of functions for which the textbook details the analyses of range. It presents a
section of sine function with translated and stretched sines by equation, table and
graphs where it discusses range among other properties (see figure 4.10). The idea

of range is also explored in set questions.

Figure 4.10
Graphic and tabular explorations of range in the textbook (p.202)
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The same work is made with the functions of figure 4.11. The table here tries to

relate the infiluences of coefficient on domain, range and period.



Figure 4.11
Table relating coefficients, domain, period and range of sine functions (p.209)
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Figure 4.12
Graphic presentation of a limited range (p.206

Also for sine functions the textbook defines a bounded function graphical (see figure
4.12) and verbally. It argues that ‘a function is bounded if there is a positive
number M such that If(x)Il<M’. Upper or lower bounded functions are not explored.

The authors present a parabola and a linear function as not being bounded.

In the topic of function, the students were introduced to the concept of line symmetry
during the general introduction by using line symmetry in the y-axis on graph to
introduce the idea of even function algebraically. That is, the authors present even
function saying that it is a ‘function that f(x)=f(-x) for all x, so f has a symmetric
graph’, then they show a graph as visual feedback. Afterwards the textbook discusses

line symmetry in the x-axis as well as symmetry in relation to the point (0,0). This



leads to the definition of symmetric properties in algebraic representation with a

feedback on graphic representation.

Note also that all the kinds of symmetry discussed above are in some way linked with
positive and negative numbers. It is interesting that the notion of line symmetry
arises discussed again in the curriculum when it deals with the line of symmetry in
graphs of parabolas. At this point, line of symmetry is drawn when different from
the y-axis, but the pointwise correspondence is not mentioned. Note that in this case,
the symmetric numbers do not work. This is also the first time that line of symmetry
is traced in graphs. On exploring inverse function, line symmetry on y=x is also

discussed by its pictorial perception on graphs.

Another point is that the line of symmetry appears in the section dealing with the
calculation of abscissa of turning point. After concluding the formula for this
calculation, the textbook remarks:

“It is important to know that the parabolas present a line of symmetry, which
is a straight line(s) parallel to the y-axis passing through the turning point of the
parabola.” (p-89)

Figure 4.13
Graphic presentation of line of symmetry different from the y-axis (p.89
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Note that this can originate an association between line of symmetry and turning
point. This also indicates a compartmentalisation in the students' perceptions of line

symmetry in graphs and line symmetry in a pointwise way.

The idea of line symmetry in the y-axis and point symmetry is discussed again in the
family of trigonometric functions while defining even and odd functions. Here, the

textbook gives a formal definition and graphic examples of these notions.

The students were introduced to the idea of periodicity when studying trigonometric

functions. After introducing trigonometry as relations of sides in a right-angied



triangle and studying the representation in the trigonometric cycle, their textbook
presents sine functions with their graphs. Arguing that after 2r the function starts
to repeat its values showing ‘special points’ highlighted in the graph, the textbook
presents the notion of periodic function is presented as being

“the function that behaves in a similar way to the sine, i.e., repeats its variation”.
{p.201)

Figure 4.14
The graph_of sin(x) (p.201)

Soon after this introduction a formal definition is presented and this is done more in
relation to algebraic representation. The textbook states:

“a function f:A->B is periodic if there exists a positive number p such that
f(x+p)=f(x) for all x in A”. (p.201)

Some questions arise: do the students connect this formal definition to the graph of a

periodic function? Or will they maintain a pictorial perception of periodicity?

The above definition is followed by the definition of the period:

“The smallest positive value p is said to be the period of the function f. Intuitively,
period is the length of the smallest interval in which the function completes a
cycle”. (p.201)

Although the corresponding idea is discussed in the text, it is not shown in graph.

Figure 4.10 shows one from the four examples of sine functions in which the
textbook discusses period and range in equation, table and graph. Once more in all
examples the period is calculated from a special point: x-intercept or turning points.
The periodicity of cosine and tangent functions is also explored in the same way as
sine, with little emphasis. The exercises are designed to calculate the period from the

equation after the textbook relates coefficients and period.



5 The role of each representation

It is the algebraic representation which is given most emphasis in the school
mathematics. As the teacher argued in the interview: “we don't emphasise the
construction of the graph. When we are working with the people [students], we want
to use function as a tool for our algebraic work”. This emphasis on the algebraic
representation is also observed by the division into families of functions. Also on
dealing with properties of functions, the algebraic representation is more often used
as an action representation. For example, the textbook does almost all the work on
turning points in algebraic representation in order to build the Cartesian graph. This

last representation is used more as feedback than as an action representation.

The students were introduced to the Cartesian system before functions. The textbook
explores the Cartesian representation dividing it in four quadrants, presented by

figure 5.1. In this introduction, the students studied how to plot points.

Figure 5.1
Graphic division of the Cartesian system in quadrants (p.29)
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In the general introduction to functions, the students studied how to plot graphs of
functions from a verbal description through the use of tables. Note that the students
constructed graphs by plotting them, they were requested to sketch graphs only when
working with inequalities. According to their teacher, the families of functions were
studied based on equations leading to the construction of graphs, in order to use
graphs to work with inequalities. In addition, by analysing the way the textbook
explores each property of function, | observed that graphs always follow the
discussion of a concept as a visual feedback. The textbook does not discuss a concept in

graphic representation.



The work in constructing graphs was reported by the teacher to be very brief. He
argued that the students had already studied this in the tenth grade while working
with linear and quadratic equations. He tries to make the students understand how to
trace a graph from critical points in each family of functions. That is, for linear
functions, the students learnt to find x-intercept and y-intercept, to plot the dots and
to link them with a straight line. In the case of parabolas, the critical points are
roots and turning points. This is also the emphasis of their textbook. It is not ciear
that the students understand why each graph had the shape they have drawn linking

the points.

The work on graphs is more detailed for trigonometric functions, where translations
and stretches relating graphs and equations are explored. Moreover, when
constructing the graph for the first time, the textbook uses many points to show the
students which shape the points will form. After that, special points are again
introduced as a way to sketch graphs. Graphs are also treated as the final

representation.

Despite more stress being on algebraic representation, for some properties, line
symmetry for example, Cartesian representation has a different role. In algebraic
representation, the textbook discusses a pointwise sense for line symmetry in the
axes, while in the Cartesian representation this line symmetry is extended to line of
symmetry different from the y-axis without discussing the pointwise sense of this

generalisation. It is only highlighted in the graph.

According to their teacher, algebraic and graphic representations are the only
representations he explored in classes. Looking at the notebooks, | observed that in
fact tables were used as a passage from equations to graphs. In other words, the
teacher used tables only to take notes of points from calculations with equation in
order to plot later in a Cartesian system. Only once he used a table taking notes from
a graph which was the one referring to the idea of monotonicity in figure 4.1. In the
general introduction to function, while working with what the authors call ‘intuitive
notion of function’, the only representation used is the table. Afterwards the tabie is
used as a bridge between equation and graph. In other words, giving the Dirichilet-
Bourbaki definition of function, table is used to organise and calculate the coordinates
and to trace a graph. After that, the table is used as an action representation only
twice. First, on dealing with the notion of monotonicity, the students use tables to
recognise whether a linear function is increasing or decreasing (see figure 4.3).

Second, turning points are indicated in tables.



What is really interesting is the change in the emphasis on table as a representation
of function from ‘the intuitive’ to the ‘mathematical’ notion of function. In the
intuitive the table is used as a source of the analysis of properties of functions as
well as to understand the function. in the ‘mathematical’ notion the table assumes the

role mentioned in the preceding paragraph.

6 Over-generalisations and obstacles

On introducing the term constant function, there is no discussion of ‘what’ is
constant. The students can interpret that: the point (0,2) is the constant, f(x) is the
constant, and x is the constant because it does not appear in the equation. Moreover,

the term “constant” is also used to characterise the derivative of linear functions.

As linear function was also studied in the primary school, this family of functions is
over-emphasised in the secondary school. Therefore, the students can perceive
monotonicity restricted to linear functions: as being some rules involving positive
and negative suggested by figure 4.5; as being the sign of linear coefficient linked
with the direction of a graph; and compartmentalised from the idea of derivative. The
restriction can generate barriers when the students should generalise monotonicity

to other families of functions.

The fact that turning points are only discussed for quadratic function can induce a
strong link between turning points and parabola in the students' perceptions. On
analysing one students' notebook, | found a passage where he denominates a graph of a

sine function as being quadratic function.



Figure 6.1
Student's notebook treating a sine as a guadratic function
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As rate of change is only explored for linear functions, the students can construct the
link between rate of change and angle between straight line and the x-axis. This link

can limit the idea of rate of change to the linear functions.

The use of the same ‘a’ to denote the angular coefficient as well as the linear
coefficient can lead the students to over-generalise increasing as being positive
curvature for parabolas. The fact that they do not explore monotonicity in the family
of quadratic functions can contribute to this over-generalisation.

Their mathematics curriculum presented a clear preference for exploring polarised
notions while neglecting the order of the notions. This is evident in the emphasis it
put on monotonicity for linear functions, positive or negative curvature for
parabolas together with the limited exploration of derivative and curvature.
Moreover, as their teacher argued, the students were always directed to study
inequalities, in which they usually had to verify whether a function was positive or
negative. This can be another source of this tendency for polarisation of the

properties when dealing with functions.

Emphasising range for functions with extreme values can generate a perception of
range restricted to bounded functions. Moreover, the stronger emphasis given to
range in sine and cosine functions can lead the students to consider onily bounded

range.

By the compartmentalisation in the discussion of line symmetry, | expected a gap in

students' perception of line symmetry in graphic and algebraic representation. As



mentioned above, line symmetry is discussed in graphs for any line of symmetry.
However, in algebraic representation line symmetry is discussed only for even

functions, those which have line of symmetry in the y-axis.

In the whole work on periodicity the authors did not discuss an example of an
oscillatory and non-periodic function. Moreover, the calculation of period only on
special points can lead students to ignore the invariance of period when calculated on
different points. Thus, introduction to periodicity can lead the students to consider
periodicity as: repetition of the special points in the graph, repetition of the trace
from O to 2m, oscillation in graph where the value repeats even without any

regularity, or even a line symmetric graph with vertical line of symmetry.

The pointwise approach taken during all the work with functions can erect a barrier
for students in perceiving properties which involve variation. Therefore, for these
properties the students can opt for the rules of recognition such as direction of the
graphs. The teacher does not emphasise this sort of rule but the textbook is full of

these rules.

7 Summary

The concept of function is first introduced to Brazilian students in the eighth grade of
primary schooling after working with first and second degree polynomials. The
Cartesian representation is used as a visual feedback representation while almost all
the actions are made in the algebraic representation. Tables are used as an auxiliary

representation to plot graphs.

After a general introduction to functions using different types of algebraic functions,
the students started to study families of functions in which different properties are
studied. The main points of the way students studied the function properties are:

* turning points are treated as special points highlighted in graphs and associated
with extreme values and are also used as special points io trace graphs of
quadratic, absolute values and trigonometric functions;

« constant functions are briefly studied as a special case of first degree polynomials;

¢ monotonicity is first mentioned in the general introduction to a wide set of
functions but this property receives emphasis later, only for the linear functions.
For linear functions, it is illustrated by graphs, linear coefficients, and tables;
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derivative is introduced again restricted to linear functions by the formuila to
calculate the rate of average change and is linked to the linear coefficient.
Nonetheless, the teacher himself introduced the connection between the ‘rate...
and inclination of graph;

second derivative is marginally explored by tracing parabolas with different
curvatures;

range is introduced in all the families of functions. Nonetheless, this concept is
really emphasised for functions with turning points. Detailed work is done for
sine and cosine functions, which have bounded range;

line symmetry is presented associated to turning points in a geometrical way. It is
also discussed in a functional way when restricted to line symmetry in the y-axis.
Nonetheless, it is generalised for line of symmetry different from the y-axis in
the Cartesian representation;

periodicity is introduced in a way that the students do not distinguish a periodic
function from other oscillatory function. Also, the period of function is calculated

using special points such as turning points and roots.

The way the students are introduced to functions leads me to anticipate the following

difficulties, over-generalisations and barriers:

L]

associations between: parabola and turning point, symmetry and turning points,
turning points and extreme values, monotonicity and polarised rules (such as:
‘when x is positive, y is negative ...');

difficulties in relating the different representations of constant functions, in
linking the Cartesian and the algebraic representations of line symmetry;
restriction of perceptions: monotonicity and derivative to linear functions, range
to bounded functions;

exhibition only of a pictorial perception of second derivative;

over-generalisation of increasing as being positive curvature;

tendency for adopting polarised rules while perceiving properties and for a

pointwise analysis of the properties.
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VIl — Longitudinal Analysis of the Work of each Pair of Students

This chapter will present the longitudinal analysis of the work of each pair of
students divided according to their development in each of the chosen function

properties.

1 Description of the pairs of students

Table 1.1 introduces the four pairs of students by attainment levels and sequences of

the microworlds.

Table 1.1

Distribution of students in sequence of microworlds per attainment levels

Sequence From FP to DG From DG to FP
Attainment Levels
Lower John & Tanya Bernard & Chatrles
Middle Diana & Gisele Jane & Anne

Their teacher evaluated the students in attainment levels according to three criteria:
scores they obtained in the exams, difficulties they demonstrated in the exercises and
participation in the classroom. He said that John & Tanya were students with lower
scores in the exams and with difficulties in learning maths, but they worked hard in
mathematics classes. Bernard & Charles always had lower scores in the exams, but
they had less difficulty in learning maths than John & Tanya. Their teacher
attributed Bernard & Charles' failure in the exams to their lack of interest in doing
homework and in participating in classroom activities. As regards Jane & Anne and
Diana & Gisele, their teacher judged that they were in the middle attainment level in
relation to that of their colleagues in the class. However, he distinguished these pairs
according to consistency in scores. Diana & Gisele's scores varied from exam to exam
while those of Jane & Anne did not. In addition, the teacher evaluated these four

students' participation in the classroom as being poor.

Two of the teacher's comments are relevant to this study. Firstly, Jane & Anne had
more facility in doing repetitive problems and had difficulties in problems that call

for creativity. He explained “they never come with an unusual solution of a



problem”. Secondly, he affirmed that John & Tanya had considerable difficulty in
formalising as well as in working with mathematics conventions. On the other hand,
these students were able to understand and to solve contextual problems using

common language.

Among all the students, only Bernard, Charles and Tanya had done previous
systematic work using computers for word processing. The other students had worked
with computers once or twice in English and music classes at school. None of the

students had ever worked in mathematics topics with computers.

Regarding their interaction in group work, only Bernard & Charles had never worked

together. The other pairs were used to working together in a collaborative way.

2 Bernard & Charles' perceptions of the function properties
Bernard & Charles followed the activities from DG to FP microworlds.
2.1 Turning point

In the pre-test all Bernard & Charles' perceptions of turning point were associated
with parabolas. Charles, for example, defined turning point as being ‘point where a
parabola changes direction’ (see link B). Bernard presented the idea of turning point

by drawing a parabola with an arrow pointing to the turning point (see link A).

Diagram 2.1 points to a close relation between turning point and parabolas which is
evident by the presence of the perception of turning point as being ‘point where a
parabola changes direction’ in all microworlds containing Cartesian representation.
This relation shows that Bernard & Charles- had a pictorial perception of turning
point in Cartesian representation. They aiso started to call sine graphs ‘many

parabolas’, even through they knew that the graphs were not parabolas.

In DG Parallel, this pair of students characterised the strikers by two kinds of
special points: ‘point where y meets x’, and ‘point where a striker changes
orientation’. The last one, which corresponds to turning point, was prompted by
their observations of the striker given by y=0.25x2-8. Unlike the other chosen
parabolas, the turning point of this one is not ‘the point where y meets x'. Later,
they generalised this idea to the strikers of other parabolas. Therefore, Bernard &
Charles constructed a variational perception of turning point in DG Parallel by

comparing the behaviour of x and y. Nonetheless, as diagram 2.1 shows, this
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variational perception was neutralised by the other microworlds in which Cartesian

system appears, staying isolated in DG Parallel.

Diagram 2.1
Charles & Bernard's perceptions of turning point
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Link D shows that Charles brought the idea of turning point as being ‘place where the
parabola [(x,y)] changes direction’ from their pre-test to DG Cartesian. Despite
discriminating turning point in both DG microworlds, Bernard & Charles did not link
this idea to the perception of turning point as ‘point where the striker changes
orientation’. This separation was evident when Charles examined the striker of
y=-0.25x2. While looking only at y, he kept repeating that it was not a parabola. He

changed his mind only after observing the motion of (x,y).

In FP, as in DG Cartesian, Charles & Bernard identified turning point as ‘point where
the graph changes direction’. This idea was first presented in their pre-test (see
link E). The turning point was also observed by Bernard & Charles as an invariant

point after a horizontal stretch of a parabola.



After a vertical translation between the graphs of y=0.25x2-8 and y=0.25x2,
Bernard & Charles affirmed that the only thing which changed was the turning points.
This remark shows how strong was the use of special points in their perceptions.
Another evidence of that is the use of turning point to recognise the shape of a

parabola, and also their way of calculating period by the frequency of turning points.

Bernard & Charles had the opportunity to explore turning point from another
viewpoint. By searching for characteristics to describe the graph of
y=7sin(0.1257x), after a vertical translation from this graph to the one of
y=7sin(0.125nx)+6.9, Bernard started to distinguish two kinds of turning points:
top and bottom ones (see link F). Therefore, Bernard & Charles developed a
perception of turning point related to extreme values which was not presented in

their pre-test.

In the final interview, while matching the strikers with the graphs, the students
connected turning point in graphs to ‘the point where x meets y’ in strikers (see link
G*). Once more Bernard & Charles linked special points in two different
representations as having the same meaning. This kind of cannection has similarities
with the emphasis of their school knowledge on special points when studying

functions.

On the other hand, after linking the idea of ‘y foliows X' in strikers to the idea of
increasing in graphs, Bernard & Charles noticed that ‘point where a parabola changes
direction’ should correspond to ‘point where the striker arrives and returns’ (see
link H*) which was also expressed as ‘point where the striker changes from ‘y

follows x’ to ‘y does not foliow Xx'.
2.2 Constant function

Diagram 2.2 shows two kinds of problem concerning Bernard & Charles' perceptions
of constant function in the pre-test. Firstly, both students mismatched the terms
constant and periodic (see links A and C). Secondly, Charles, the only student who
tried the exercise of tracing a graph from verbal description, represented a
motionless car by a dot in a graph of distance versus time (see link B). Although
Bernard & Charles' perceptions of constant function in the pre-test were incorrect
from a mathematical viewpoint, they constructed a variational perception of constant
function in the research environment. Moreover, they used the sequence of
microworlds to change their perception of constant function in the Cartesian

representation.
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Diagram 2.2
Charles & Bernard's perceptions of constant function
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In DG Parallel, Bernard & Charles characterised the strikers corresponding to
constant functions as being motionless. Thus, these strikers were considered to be
completely different from the ones corresponding to linear functions. The pairs of
students also perceived constant functions identifying the idea of independence of x.
They affirmed that the striker of y=6 was a nonsense striker: “it is useless to move

it [x], it [the striker] doesn't do anything” (see link D).

In the first analysis of the striker given by y=6 in DG Cartesian, Bernard confused
the idea ‘y is motionless’ from DG Parallel with the idea ‘(x,y) is motionless’. This
confusion was the starting point of links E, F and G between ‘y is motionless’ and the
fact that ‘(x,y) moves in a horizontal straight line’. Diagram 2.2 suggests that the
interaction with DG Cartesian acted as a bridge for the students to connect the

variational perception of constant function they constructed in DG Parallel to the




Cartesian representation in FP. The possibility of analysis of the behaviour of x, y

and (x,y) as different objects is what made the bridge possible.

The graphs of constant functions were described by Bernard & Charles as horizontal
straight lines while working in FP. Moreover, they reported that the lines were
horizontal because 'y is constant’ (see link H). In my view, this rationality
evidences a synthesis between the idea constructed in DG Parallel and their knowledge
about graph. Considering their pre-test, this synthesis indicates a great change in
their perceptions of constant functions in graphs. Diagram 2.2 suggests that the
perceptions constructed by Bernard & Charles in the research environment had

supplanted their previous knowledge presented in the pre-test.

As in the research environment, in the final interviews Bernard & Charles connected
‘the motionless behaviour of the striker with ‘the horizontal straight line graph’.
The important point is the explanation of this connection: "because y does not change”
(links I" and J*). This explanation is evidence that the exploration of DG Cartesian
really worked as a bridge to the variational view of constant function in the Cartesian

representation.
2.3 Monotonicity

Diagram 2.3 shows that Bernard & Charles used the terms ‘increasing’ and
‘decreasing’ only for linear graphs. Moreover, they linked these terms only to the
inclination of a straight line and to rules involving positive and negative numbers.
This fact seems to be an effect of the school emphasis on this property in studying the
family of linear functions. In the pre-test, for example, Charles & Bernard
identified the term f‘increasing’ by ‘direction of graph corresponding to linear
functions’. In addition, they were not able to determine where the graph of y=3/x

was increasing or decreasing (see link A).

Bernard & Charles also discriminated monotonicity in a variational way in their
pre-test and in DG Parallel, but these perceptions remained isolated. These
perceptions seem to have been triggered by understanding of the term ‘increasing’. In
the graph of y=3/x Bernard was able to relate the behaviour of y and x without
linking it to the term ‘increasing’. The students were also able to interpret
monotonicity in the pointwise graph. This provides evidence that their previous
knowledge about monotonicity can be considered an obstacle for their variational

perceptions of this property.

In DG Parallel Bernard & Charles discriminated monotonicity by ‘orientation of the

motion of y’. Even before knowing that each striker hides a function, they used the
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above characteristic to describe strikers of linear functions. These students

considered whether these strikers follow the same orientation of x or not.

Diagram 2.3
Charles & Bernard's perceptions of monotonicity
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Despite being isolated, from a mathematical viewpoint this variational perception
was dgeneralisable among other families of function such as parabolas. This
perception was used by the students to distinguish strikers of linear functions from
those of non-linear functions. For example, the idea of monotonicity was generalised
to the striker of y=0.25x2 as ‘sometimes it follows one orientation, sometimes it
does not’. In this generalisation, Bernard & Charles separated the domain into

positive and negative to verify where each striker follows the orientation of x.

Unfortunately, their tendency to separate everything into positive and negative
induced Bernard & Charles to think that ‘y is independent of x’ for strikers of sines.
This polarisation represented an obstacle to their generalisation of the above

perception of monotonicity to strikers of sines. Moreover, the polarised thinking




induced an idea of independence of x for the striker of y=7sin(0.125nx) (see link
B). As this striker kept changing the orientation in positive as well as in negative
domains, Charles concluded that “it doesn't obey the triangle”. It seemed that the
students expected that the strikers changed orientation only when x passed at zero.

In DG Cartesian Bernard & Charles explored the property of monotonicity by ‘shape
formed by the motion of (x,y) using concepts from their previous knowledge. This
property was associated to rules such as ‘straight line is positive to the left side’
when the students tried to explain why the striker of y=-x was decreasing (see link
C). There was no evidence of link between the perception of monotonicity
discriminated in both DG. Further evidence that the students brought this perception
from their previous knowledge is its limited application for strikers of linear
functions. Moreover, while Charles was examining this perception in the striker
given by y=0.25x2, he abandoned the verification as soon as he realised it was a
parabola. Therefore DG Cartesian did not create a spontaneous bridge between DG
Parallel and the Cartesian system for this pair of students in the property of

monotonicity.

In FP, the idea of monotonicity was discriminated by Bernard & Charles as ‘direction
of the straight line’ and this also was influenced by their previous knowledge.
‘Direction of the graph’ was classified into two types: increasing direction and
decreasing direction (see link D). For example, after a horizontal stretch between
the graphs of y=-x and y=-(1/4)x, Bernard argued that both graphs had the same
direction. This division can be considered as a polarisation in their understanding

when the slope was not considered.

The interaction with dynamic transformations of graphs in FP prompted Bernard &
Charles to see an order in the idea of monotonicity. They realised the connection
between monotenicity and derivative. While investigating the idea of increasing, a
horizontal stretch in the graph of y=x encouraged the students to connect ‘direction of
straight lines’ and ‘slopes’. For instance, Charles argued that the change from
increasing to decreasing depends on where you have the graph. He explained that
anyway the command changes the direction of the graph but it can pass from one type

to the other type.

Bernard & Charles' perceptions of monotonicity seemed to be a great discovery for
them. In the final interview they brought the generalisation from DG Parallel to the
Cartesian system, but it was not straightforward. Firstly, they linked the term
increasing with ‘direction of the graph’ to ‘y follows x' for increasing and ‘y does not

follow x’ for decreasing (see link E*) limited to linear functions. As they had this
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perception of ‘y follows x’ or ‘y does not follow x' for strikers given by parabolas,
they brought back the link. Charles explained “when it [y] does not follow x, the
graph has this direction, in the middle [of the graph], it changes direction”.
Moreover, they used for those directions the terms ‘increasing’ and ‘decreasing’ (see
finks F* and G*). This seems a great strength in their perception of the property
because it allowed them to overcome the obstacles created by using the terms

‘increasing’ and ‘decreasing’.

2.4 Derivative
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Diagram 2.4
Charles & Bernard's perceptions of derivative
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In the pre-test, Charles & Bernard used only pointwise views to discriminate
derivative. For example, they knew the formula for velocity (see link A) but they did
not know how to use it. Moreover, they did not link velocity to the coefficient in an

equation of linear function. As regards the use of graphs to interpret derivative, both
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students only interpreted the idea in discrete graphs. It seems that they
discriminated the derivative by the difference between two points (see link B). The
slope was not linked by them to the idea.

Diagram 2.4 shows that Bernard & Charles developed a variational view of the notion
of derivative in a continuous process throughout the research environment. They
started comparing the speed of different strikers. Later, they constructed a ratio to
measure the speed of a striker. Finally, in FP they brought this ratio to link with
their perception of derivative in other representations (see link H). Therefore, DG
Cartesian was used as a bridge for this variational perception from DG Parallel to the
Cartesian System. Nonetheless, the ratio created by Bernard & Charles was based on
‘linear’ functions?, as they considered the absolute values of x and vy, instead of their
variation. Bernard & Charles seemed to know the definition and how to calculate the
derivative as velocity since the pre-test. Nonetheless, as Diagram 2.4 shows, their
development seems to have blocked these previous ideas. It is interesting to observe
that despite knowing the formula for calculating velocity as Ay/Ax, they did not use
or mention this formula while working with ratio in DG Parallel, nor did they
consider variations of x and y. The students moved from ‘ratio of absolute values of x

and y’ to ‘ratio of variations of x and y’ only in the final interview.

Bernard & Charles constructed the idea of derivative in DG Parallel in two steps. In
the starting activity with DG Parallel they classified the strikers as slow and fast.
Then, to describe the strikers in the following sessions, the perception of slow or
fast was replaced by a comparison between the speeds of y and x (see link C). For
example, to describe the striker of y=x, Bernard said that it had the same speed as x.
The other strikers with different speeds of y and x were characterised as 'y is

quicker than x'.

Bernard & Charles' construction of the perception of derivative as speed was not
straightforward in DG Parallel. They associated ‘same speed’ and ‘same absolute
value’ while describing the strikers given by y=x and y=-x (see link D). They
recoghised this association when analysing the striker of y=x-6. Despite that,
Charles returned to it when analysing the striker of y=2x. This association became
more salient when the students compared the speed of the strikers corresponding to
y=0.25x2, y=0.5x2 and y=0.25x2-8 in the positive domain. They were trying to
verify which striker was quicker by observing which striker was ahead of the
others. This comparison led the students to use the idea of infinity from previous

knowledge in order to overcome the association. Also, by realising that the striker of

1 Here | am using ‘linear meaning that it was not an affine function. In other words, it is
like y=ax.
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y=0.25x2-8 started behind the others — when x was at zero — Bernard argued that
having the same speed, this striker could not disappear at the same time as the

striker of y=0.5x2.

The idea of derivative as speed built in DG Parallel was strengthened by Bernard &
Charles in DG Cartesian. They calculated derivative as ‘ratio between the values of x
and y’ for some strikers of linear functions (see links E and F) using the term
‘proportion’ to denominate this ratio (see link G). The idea of speed was also used to
distinguish the two strikers of sines. Unfortunately, | had no evidence that this
perception was linked to the idea of derivative as slope while exploring DG Cartesian.

In FP by investigating ‘the ratio between the values of x and y’ while exploring the
dynamic transformations of graphs, these students linked this idea to coefficient in
equation as well as to slope in graph. First, Charles used the point indicator icon to
verify if the derivatives of the graphs given by y=abs(x) and y=abs(x)-10 were the
same. Second, he linked ‘ratio between the values of x and y’ to ‘linear coefficient in a
equation’ (see link K). He was investigating the idea by a horizontal stretch between
the graphs of y=2x and y=x. Up to this point, the students did not generalise the
above-mentioned perception of derivative to affine functions. The generalisation
happened in two steps. First, Charles noticed that while translating the graph of
y=2x vertically, ‘the ratio between x-intercept and y-intercept’ stayed the same
(see links | and J). In a second step, by the parallelism between the graphs of y=x
and y=x-6 as well as by comparing them to the behaviour of the strikers
corresponding to these equations, Charles & Bernard concluded that ‘the ratios
between the values of x and y’ should be the same (see link L). This passage can be
considered a beginning of link M between slope and the idea they had of derivative,
which was concluded while Charles was exploring the horizontal stretch in the graph

of y=x. He argued that ‘the proportion is what provokes the inclination’.

Despite generalising their perception of derivative as ‘the ratio between the values of
x and y’ to affine functions in FP, Bernard & Charles did not perceive the
incompatibility in the way they measured this ratio. They reviewed the link between
the ‘ratio between the values of x and y’ and ‘inclination of linear graphs’ in the final
interview. They started to calculate ‘ratio...” by comparing ‘steps that y moves while
X moves one step’ (see link N*). Moreover on matching the strikers of y=x and
y=x-6 to their graphs, they explained that “the difference of the strikers should be

6 steps because of the difference between the y-intercepts”.
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2.5 Second Derivative

Diagram 2.5
Charles & Bernard's perceptions of second derivative
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In the pre-test Bernard & Charles discriminated second derivative as ‘variation of
speed’ (see link A) and as ‘curvature of a graph’ without linking these perceptions.
They traced the graph of distance per time of a car as a straight line for constant as
well as for variable speed. Moreover, they did not use ‘curvature’ of a parabola to
interpret acceleration. On the other hand, they were able to distinguish graphs of
parabolas by their curvatures. Also, measuring curvature was a difficult task., They
affirmed that two graphs of two parabolas translated vertically had different

curvature.

Bernard & Charles presented a continuous and connected process for second
derivative, as they did for derivative. They constructed a variational view of second
derivative while trying to calcuiate ‘ratio between values of x and y’ on strikers of

non-linear functions in DG Parallel. Then, they used DG Cartesian to strengthen this




perception by building the idea of variable ‘ratio between values of x and y’. Finally,
in FP they linked the curvature of a graph with ‘absence of a fixed ratio’, which they
called proportion.

It is interesting that Bernard & Charles used the idea of variable speed in the starting
activity with DG Parallel while referring to the speed of the striker given by
y=0.25x2-8. However, on formalising the idea to strikers of parabolas, they

characterised the speed of this striker as “it is faster than x”.

It was only on comparing the strikers of y=x, y=2x and y=0.25x2 that Charles &
Bernard started building the idea of constant speed. As the striker of y=2x started
ahead of the striker of y=0.25x2 and as the first striker was overtook by the second
one, the students concluded that the last striker accelerated to become quicker than
the striker of y=2x. Nonetheless, they thought that the striker of y=2x slowed down
(see link C). Therefore, they assigned the idea of ‘constant speed’ only to the striker

of y=x, which has the same speed as x (see link B).

The episode discussed above revealed to me the students' association between the idea
of ‘being quicker than...” and the idea of ‘being accelerated’. This association was made
clearer by Charles' observation of the striker given by y=2x. As he noticed that ‘y

overtakes x’, he concluded the “striker [y=2x] is more accelerated than the triangle

[x]".

The idea ‘the striker has the same speed as X', which was called by these students
‘proportional’ (see links D and E), also appeared in DG Cartesian as an important
step in their construction of the idea of constant and variable derivatives. This idea
was constructed by: their observation that ‘y moves with same step as x' for the
striker of y=x; the possibility of calculating ‘ratio between the values of x and y’ as a
way to generalise the idea to the striker of y=2x (see link F); and the impossibility
of calculating this ratio while comparing the strikers of y=0.25x2-8, y=0.25x2 and
y=2x. They conciuded that these strikers had not a constant derivative (see link G).

As Bernard & Charles had constructed the idea of ‘variable derivative’ as “there is no
fixed proportion” in DG Cartesian to strikers of parabolas, in FP they linked this
perception to ‘curvature’ of a parabola (see link H). After trying to distinguish the
graphs of y=0.5x2 and y=0.25x2, Charles made the link. They called that

characteristic ‘irregular proportion’ (see link J).

Regarding their difficulty in measuring of curvature, it also appeared in FP.
Nonetheless, by using the vertical translation while exploring the idea of curvature,

the students realised that the curvature could not be measured only by ‘distance
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between two symmetrical points’ (see link K). Moreover, they realised that they
needed another point to determine a parabola, in particular to distiguish ‘curvature’
of parabolas. In addition, Bernard developed a method of verifying whether two
parabolas had the same curvature by using the vertical translation of FP. Bernard
reported that the graphs of y=0.5x2 and y=0.5x2-10 had the same curvature

because the command used did not alter it.

In the final interview Bernard & Charles only confirmed the link they made in the
research environment. On being asked which was the corresponding idea for
curvature of graph in strikers, they linked it to ‘absence of a regular proportion’
meaning ‘absence of a fixed ratio between the variations of x and y’. Nonetheless, it
was not straightforward. Firstly, they argued that they recognised a graph with
curvature by existence of turning point. By covering the part of the graphs which
contained the turning point, | asked if they could decide which graph was a straight
line and which was a curve. They answered “Of course!”. On being asked if they could
distinguish between two strikers which was a parabola and which was a straight line,
they asked to place both strikers in DynaGraph in order that they could try. | moved
them taking care not to pass through the turning points. By having constructed the
idea that strikers of linear graphs had a ‘fixed ratio between the variations of x and
y’, the students observed that there was one which had not a fixed ratio concluding the
link.

There is an interesting point to consider while analysing the students' perceptions of
second derivative. While matching the strikers and graphs of y=0.25x2 and y=0.5x2,
Bernard & Charles corresponded ‘speed of strikers’ to ‘curvature’. In general, they
expressed it as ‘it is more closed or more opened’. | am not sure that, on interpreting

graphs with curvature, the students distinguished curvature from slope.
2.6 Range

In the pre-test Bernard & Charles demonstrated no familiarity with the term
‘range’. For instance, they did not answer any question about range. They only

identified extreme values for the discrete graph.

From the starting activity with DG Parallel Bernard & Charles explored range as
‘place where the strikers of y=0.25x2-8 and y=7sin(0.25nx) can move’, which

was motivated by their need to move the strikers to score in DG Game.
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Diagram 2.6
Charles & Bernard's perceptions of range
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While describing the strikers in DG Parallel, Bernard & Charles started from a
polarised approach to range and moved into one that involves the idea of bounded and
boundless range. This development was motivated by their need to generalise their
perception of range to all the strikers, joining the strikers by similar range. Thus,
the activities designed for the research where the students need to classify as well as
compare the strikers led Charles & Bernard to abandon the polarised approach.
Starting by describing the striker of y=-0.25x2 as ‘it moves only in the negative
side’, they generalised this perception to compare it with the striker of y=0.5x2 as
“the striker moves only in one of the sides”. Their first attempt to overcome the
limitations of the polarised perception of range was the characterisation ‘bounded
motion of the striker of y=7sin(0.125 x)’, which was described as “it does not go
to the corner of the screen”. Following this characterisation, the students

generalised the idea to the strikers corresponding to y=2x and y=x as ‘they can move




all the screen’. In fact, their polarised perception of range was abandoned by Bernard
when observing similarities between the strikers of y=0.25x2-8, y=-0.25x2 and
y=0.5x2. They generalised the perception to the striker of y=0.25x2-8 as “the
striker does not go to the end of the axis” (see link B) which was used to classify the
strikers, excepting the strikers of constant function that continued to be
characterised by a polarised way. This suggests that these perceptions were very

close to motion.

The perception of range was imported by Bernard & Charles from DG Parallel to DG
Cartesian (see link D). They continued using y to identify range in DG Cartesian.
Bernard described the striker of y=7sin(0.25nx) as ‘moving half of the axis’ for
example. From a mathematical viewpoint, Bernard & Charles' perceptions of range in

these microworlds were important for the identification of the variables,

In DG Cartesian their polarised perception of range appeared again in Bernard &
Charles' work. While describing the strikers of y=-0.25x2, y=0.5x2 and y=0.25x2,
they used ‘the striker is only positive’ or ‘it is only negative’. These students
discriminated the range of the striker of y=0.25x2-8 as “moving all the y-axis
(positive and negative)”. As in DG Parallel, in DG Cartesian the approach of bounded
range developed by Charles & Bernard allowed them to see ranges of different
parabolas as being similar, which did not happen until its generalisation to all the

strikers with motion.

The limitations of the polarised perception were overcome when they tried to classify
the strikers. Bernard & Charles used bounded or boundless range to join the strikers
of linear functions, as well as to join strikers of sines and quadratic functions.
Bernard separated range of the strikers of parabolas from that of sines affirming
that they go up to infinity in one side. The students also added that the strikers of
sines “you can mark [localise extremes], the other strikers are infinity” (see link
C).

Compared to its importance in DG microworlds, the idea of range lost strength in the
students' characterisation of the functions in FP. There, range was discriminated by
Bernard & Charles only in a polarised way. For example, translating the graph of
y=6 to y=-3, Charles classified the graphs of y=6 and y=-3 observing that their
signs of range were positive and negative respectively. Another example of this was
Charles' association between negative angular coefficient of y=-0.5x2 and the

negative range.
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Note that Bernard & Charles' perceptions in both DG microworlds were not linked to
the term ‘range’ presented in their mathematics class. The first time that the
students used the term ‘range’ was in FP while trying to define it in the graph of
y=0.25x2-8. It seemed that they had restricted the term ‘range’ to bounded range
(see link E). The association was evident when Charles tried to discriminate the
range of this graph as ‘the interval between the roots’. He thought strange that
Bernard said that range was related to y, not to x (see link F), then, he exclaimed:

“but the parabola is infinity”.

FP was used by Bernard & Charles as a way to try out their beliefs such as ‘range
must be bounded’, ‘range is related to y'. in other words, the exploration of different
perceptions while transforming graphs enabled Bernard & Charles to generate
examples and counter-examples which motivated discussions. For example, on trying
to characterise the graph of y=7sin(0.125nx), the exploration of horizontal and
vertical stretches on its graph led them to distinguish two ideas related to range:
amplitude as being ‘distance between top and bottom turning points’ and range as

being ‘the interval given by the value of these turning points’ (see link G).

Nonetheless, their tendency to link objects rather than meaning led Bernard &
Charles to associate ‘the sign of angular coefficient of quadratic equations’ with
‘positive or negative range’ of the graphs through ‘y is positive’. Although Bernard
did not associate both perceptions, Charles did (see link H). After a vertical
translation from y=0.25x2-8 to y=0.25x2 to guess Bernard's description, Charles
realised the association concluding that ‘positive or negative range’ was not linked to

‘positive curvature’ of parabola.

The perceptions of range of Bernard & Charles formed two groups: one group
constituted by the pre-test and by FP, and the second group constituted by DG
Parallel and DG Cartesian. These groups of perceptions stayed completely separated

up to the final interview.

In the final interview while matching the strikers with the graphs, the students
connected range to ‘place where y can move’ to identify the family of functions to
which a striker belongs. At this time, they used the polarised approach, but on being
asked about the corresponding idea of ‘bound of the motion of y', the students
identified with their previous idea of extreme vaiues (see link J*), which was
presented when they distinguished turning point in top or bottom (see diagram 2.1)

and presented in their pre-test restricted to discrete graphs.
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What is interesting is that the students started to interpret a graph in a variational
way to verify its range. For example, on being asked what would happen with a
striker of y=7sin(0.25nx) if translating its graph to the one of
y=7sin(0.25nx)+6, Charles explained that “the place where y moves would be
translated” (see link L*). In addition, he argued “but the length that it moves would

be the same” (see link 1*).

2.7 Symmetry

Diagram 2.7
Charles & Bernard's perceptions of symmetry
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Diagram 2.7 shows that Bernard & Charles's previous perception of line symmetry
was pictorial. They used shape of parabolas to discriminate symmetric graphs. In the
pre-test, these students identified as being line symmetric only graphs with line of
symmetry in the y-axis. The graph of y=5sin(x), for example, was not considered to

be symmetric (see link A). Link B shows that Bernard & Charles used this




perception in FP generalising it to graphs with line of symmetry different from the

y-axis.

The only perception of symmetry spontaneously discriminated by Bernard & Charles
in DG Parallel were in terms of symmetric numbers. For instance, Charles
characterised the striker of y=-x as being symmetric because y was always the
symmetric number of X. In some ways, this perception is reflected in their belief
that line symmetry in parabola always means f{(x)=f(-x) which appeared in FP. As
regards DG Cartesian, Bernard & Charles did not refer to any sort of symmetry, even
to symmetric numbers. Moreover, they used the term line of symmetry in the

parabolas associated with turning point.

In FP, Bernard & Charles were also encouraged to seek a pointwise correspondence of
their pictorial perception of line symmetry. When trying to make sense of line
symmetry as a relation between x and y, the only perception mentioned by the
students was ‘abs(y)=abs(x) for each point’ (see link C). This perception
corresponds to the idea of symmetric numbers discriminated by them in DG Parallel,
instead of line symmetry. While searching for a new graph to be described by
translating the graph of y=abs(x) vertically, Charles revised this perception
expressing it as ‘abs(y)=abs(x) in both graphs’. So, up to this point, they were able
to identify the line symmetry in graphs without making sense of it in a pointwise

way.

On trying to compare the graphs of y=x and y=-x while stretching them vertically,
Bernard & Charles were able to build a pointwise correspondence to their perception
of line symmetry in the y-axis between two graphs (see link D). They argued that
these graphs were ‘contrary’ and verified that f{(-x)=f,(x)2 using the point
indicator icon. They also generalised this perception to parabolas. They explained the
line symmetry in the y-axis in a pointwise way: “A dot here [f(x)] must correspond

[be equal] to a dot here [f(-x)]. All parabolas must be [symmetric]...”.

Bernard & Charles' explorations of FP triggered off opportunities to generate
counter-examples of associations they themselves generated from particular
examples — in general emphasised in school mathematics. For instance, the belief
that line symmetry means f(x)=f(-x) and that all parabolas are symmetric enabled
the students to generate a critical moment for overcoming the limitation of this
pointwise perception of line symmetry. By translating the graph of y=0.5x2

horizontally, they started identifying line of symmetry in all parabolas (see link E).

2 Here, | am denoting f1(x)=x and f2(x)=-X.
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Nonetheless, Bernard & Charles were not able to reformulate their pointwise

perception of line symmetry.

Link F* shows that in a motivated synthesis Bernard & Charles were able to
discriminate a variational perception of line symmetry in DG Parallel. Being asked to
correspond line symmetry in DG Parallel, the students sought a perception that
depends only on the relation of x and y. Unfortunately, their explanation was
restricted to parabolas with turning point at (0,0). Charles explained that “the

steps [of y] are the same to one side [of x] and to the other [side of x]".

2.8 Periodicity

Diagram 2.8
Charles & Bernard's perceptions of periodicity
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Diagram 2.8 demonstrates that in the pre-test Bernard & Charles mismatched the
meaning of the terms constant and periodicity. Moreover, Bernard identified periodic

graphs in two different ways: when traced by himself, straight lines were considered



the periodic ones (see link A); and when given in the pre-test — sines, oscillatory
graph and a parabola — repetitive graphs were seen as being periodic (see link B).
Therefore, they mismatched only the term.

Despite comparing the strikers of sines with different period, Bernard & Charles did
not talk about any property related to periodicity in DG Parallel. Instead, they
interpreted the periodic behaviour of these strikers as “y does not obey x" (see link
B in diagram 2.3). Unlike in DG Parallel, in DG Cartesian Bernard & Charles used
periodicity to distinguish the two strikers of sines. This was motivated by their
identification of different frequencies of turning points in the shape traced by (x,y)
(see link C). After noticing the periodicity of the turning points, Bernard & Charles
sought the meaning of the term ‘period’ in DG Cartesian (see link D). Charles
calculated the period counting ‘how many units x must move while y makes a
complete trajectory’ (see link E). The contrast between ‘absence of shape’ and the
motion of x, y and (x,y) led Bernard & Charles to try a variational correspondence

for different ideas they had acquired at school.

As in DG Cartesian, in FP the first idea of periodicity discriminated by Charles &
Bernard was the frequency of roots and turning points (see link H). Note that this
idea was as yet exclusive of special points. That is, they did not perceive that this
frequency is invariant at any point they chose. On exploring FP, Bernard & Charles
created a critical moment to recognise the invariance of period among special points.
They discovered that the period is invariant by the point you could choose to start
counting among ‘special points’ only. For example, the measurement of the frequency
based on the top turning points would be the same as that based on bottom turning
points. This invariance was the object of one question from Charles who answered by

counting it himself (see link G).

The term ‘period’ was brought by Charles from previous knowledge to make sense in
FP (see link F). On exploring periodicity by a vertical translation from the graph of
y=7sin(0.125%x) to the graph of y=7sin(0.125nx)+6.9, Bernard noticed that both
graphs had same frequency of bottom turning points. At this point Bernard linked the

frequency of turning points to the term ‘period’.

It seems to be important that all these perceptions Bernard & Charles constructed
about periodicity were linked to their previous knowledge. Moreover, their previous
knowledge informed their understanding and discussion in the research environment.
In the final interview Bernard & Charles linked period, which they calculated in

graphs in FP, to “how many units x moves while y goes and returns” (see link I*) in
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by themselves in DG Cartesian to DG Parallel.

John & Tanya's perceptions of the function properties

DG microworlds.

3.1 Turning point

Fre-test

Bound "
of 1in
s graph

[

Toplapex of
a eurye Curve witha
Y point inthe
(] middle

e Y B

Term.

o,

Diagram 3.1
John & Tanya's perceptions of turning point

e

—

——

143

DG Parallel. Thus, they brought back the variational perception that was constructed

John & Tanya were one of the pairs of students who followed the activities from FP to

MG Cartesian

/]

7

changes

\// C
/ \. Turning
T°P of Pﬂm with
w ayrve  CUPYBtUKe Py
determines a ‘/ Bound of the
parabola motion of ¥
Poink where a
graph changes
from inomasing ‘I
o deoreasing alue of yin
Value of v of the the turning
turning poink point
Coetficien: C ‘[

Striker changes
orienkation

T
/ Value of yin

the turning
poink
/\ﬁ\ / d
Stn'ker' i
omnkatm:z A

Eound of the
motion of ¥

v

I
N,

FP

DG Parallel



As links A and B show, in the pre-test Tanya & John expressed turning point in
different ways: ‘the top of a curve’ for Tanya and ‘curve with a point in the middle’

for John.

Diagram 3.1 demonstrates a shift in John & Tanya's perceptions of turning point
from a pictorial perception in the pre-test to a variational perception in the

research environment.

In FP John & Tanya's perceptions of turning point depended on the command used as
well as the topic they were investigating. For example, John argued that turning
point was ‘point where the graph changes from increasing to decreasing’ while
translating the graph of y=abs(x) into the one of y=abs(x-10) and looking at the
point where the graph changes slope. Afterwards, John discriminated turning point of
the graph of y=-0.25x2 as the ‘top of this paraboia’ while exploring a vertical

translation in this graph and searching for properties to describe it.

By using their previous experiences with the transformations of graphs, John &
Tanya linked ‘the value of the turning point’ to ‘the coefficient 8 in the equation of
y=0.25x2-8" (see link E). The link happened by their effort to imagine its graph by
looking at its equation. After sketching the graph based on the symmetry between the
graphs of y=-0.25x2 and y=0.25x2, they imagined a horizontal translation of 8
units on the graph of y=0.25x2, instead of a vertical translation. When they saw

their confusion, they turned their attention to ‘value of y in turning point’.

Turning point was also used by John & Tanya as a way of recognising parabolic shape.
Parabola for them was a ‘curve with a turning point’. The evidence of that was the
way they called the graph of y=7sin(0.25nx): ‘many parabolas’. Link D shows that

this idea agrees with John's perception of turning point in the pre-test.

In DG Parallel John & Tanya discriminated turning point in two ways. The first
perception was expressed by John while analysing the striker of y=7sin(0.25nx):
‘change of the orientation of the striker in relation to the orientation of x'. Although
it corresponds to the idea ‘point where the graph changes from increasing to
decreasing or vice-versa’, which they discriminated in FP, these perceptions were
not spontaneously linked. The second perception was indicated by John while
analysing the striker of y=0.25x2: ‘bound of the motion of the striker. This
perception was generalised by John & Tanya to the strikers of y=0.25x2-8,
y=7sin(0.125nx) and y=-0.25x2. Note that, unlike in their pre-test and in FP, the
idea of ‘bound...” was localised in y. Despite identifying turning point as being ‘bound

of the motion of y’, these students did not distinguish whether it was maximum or

144



minimum. Another point considered by John & Tanya was ‘value of y of the turning

point’ which was used to describe all the above-mentioned strikers.

Links G, H and | show that John & Tanya brought to DG Cartesian arguments that they
used in DG Parallel to localise turning point: ‘bound of the motion of y’, ‘change of
orientation’ and ‘value of y’. Link F presents John & Tanya's link between the ideas of

¥

turning point as ‘change of orientation...” and as ‘point where a graph changes from
increasing to decreasing’. The evidence of this link was that they usually waited for

the change of orientation in the striker to identify the shape of its graph.

It is interesting that John & Tanya presented two corresponding ideas which were not
linked: ‘top of a curve’ and ‘bound of the motion of y'. Both of these perceptions
attributed to turning point a perception of boundary. Therefore, the idea of turning
point as ‘bound of the motion of y’ seems to represent an isolated perception
articulated in DG microworlds. It is also interesting that in DG microworlds the

perceptions developed by these students are closely related to motion.

Links J* and D present John & Tanya's link between turning point as being ‘point
where a striker changes orientation’ to their pictorial perception of turning point
from the pre-test. This connection happened while they were matching graphs to
strikers. The students awaited the return of the striker to decide if it represented a

parabola.

As shown by link K* John & Tanya recognised that ‘bound of y’ in the Cartesian
system corresponded to ‘bound of the motion of y’ in the strikers. This link happened
when they were answering direct questions about the perceptions of turning point

that they constructed in DG microworlds.
3.2 Constant function

In the pre-test, John & Tanya identified constant function by its term and graphic
representation and verbal description. Link A represents Tanya's connection between
the term ‘constant function’ and ‘horizontal straight line’. Link B shows that both
students were able to trace the graph of constant function from a verbal description

— a stopped car — as a horizontal straight line.

The students did not match equation to graph of a constant function. Tanya plotted the
graph of y=2 as a dot in (0,2) (see link C) while looking at the equation. By starting
working with FP the students were motivated to continue exploring the connection
between the algebraic and graphic representations of a constant function. The

interaction with FP gave the students the opportunity to revise link C. Tanya was
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trying to check her prediction of the graph of y=6 as a dot at (0,6) (see link D)
when she traced it in FP. On trying to make sense of the graph at the screen, she
linked ‘the absence of X’ in the equation to ‘the independence of x’ in the horizontal
straight line (see link E). She affirmed “it is a straight line because x can be any
value, but y will always be 6”.

Diagram 3.2
John & Tanva's perceptions of constant function
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In FP, John & Tanya also connected ‘y has just one value’ and the fact that ‘the graph
of y=6 does not increase or decrease’ (see links F and G). Firstly, John characterised
the graph of y=6 as a ‘level between increasing and decreasing’ to distinguish it from
the graph of y=2x. Secondly, Tanya previously distinguished these graphs by their
range: ‘y has just one value’ for the graph of y=6 and ‘y has many values’ for the
graph of y=2x. Therefore, her argument was the same as John's perception. She

explained the similarity arguing: if “y=6 has just one value, it has no variation”.




Since the starting activity with DG Parallel John & Tanya characterised the strikers
of y=-3 and y=6 as being motionless. This characteristic was used by John to group
these two strikers together. A second point used by this pair to characterise these
strikers corresponded to the idea of ‘y is independent of x’ which was added in the

description of both strikers: ‘only x can change but y is motionless’.

Link H shows that John & Tanya connected ‘the motionless behaviour of the strikers’
of y=6 and y=-3 to ‘the constancy of y in their graphs’. On describing the striker of
y=6, Tanya identified the fact of 'y is motionless’ as a cause of the horizontal straight
line shape of its graph. As John & Tanya had already constructed the perception ‘y did
not vary’ to ‘horizontal straight line’ in FP, they easily matched the graph of this
striker.

Tanya & John also used ‘only x can move, y is motionless’ to build up a corresponding
equation (see link 1). This was reached by successive connections between equation
and strikers. John was trying to find out the striker of y=x-6 through Tanya's
description. He argued that the striker was -6 when x was zero and then its equation
was y=-6. As soon as he said that, he imagined the equation y=-6 in DG Parallel

noticing that this equation should correspond to a motionless striker.

In DG Cartesian John & Tanya just confirmed link H between ‘y does not depend on x’
and the shape of its graph (see links J and H). Tanya left it very clear when analysing
the striker of y=-3. She said that it was “a straight line with straight angle” and

“the triangle [x] moves, moves, but y does not move”,

Diagram 3.2 shows that by connecting the perceptions of constant function in the
same kind of function through different microworlds, John & Tanya constructed a
variational perception of horizontal straight line which was linked to ‘y is
independent of x’. The diagram also shows that this pair of students connected their

perceptions throughout the research environment.
3.3 Monotonicity

In the pre-test John & Tanya perceived monotonicity as a property restricted to
linear functions which was generalised to other families of functions by polarised
rule. For instance, John defined ‘increasing function’ as being “a function whose
values are moving in diagonal [direction] to positive orientation” (see link A).
According to Tanya, it was “a function in which y is directly proportional to x” (see
link B). Note that these perceptions are valid only for linear function, not for
hyperbolic functions. In the hyperboles John used the rule he created for identifying

the property.
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Diagram 3.3
John & Tanya's perceptions of monotonicity
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In FP John & Tanya developed a variational analysis of this property by analysing
which variable is increasing or decreasing using the terms ‘progressive’ and
‘regressive’. This perception was completely separated from the previous idea of
increasing function. It is interesting that on talking about monotonicity for linear
functions, John used a pictorial perception. He recognised it by ‘direction of the
straight line’ associated to the rule “it [y] is positive after [x is] zero” (see link C).
On the other hand, by comparing the graphs of y=7sin(0.25 x) and y=x, John
constructed a generalisable and variational perception of monotonicity — ‘one [y=x]
is always progressive, the other [y=7sin(0.25 x)] changes’. This perception was
generalised by John to the parabolas while investigating this idea using a horizontal
stretch between the graphs of y=-0.25x2 to y=-0.25(x/6.707)2.




Their next step in the development of the idea of increasing as ‘progressive’ was the
separation of the behaviour of x and y. By trying to generalise ‘progressive’ to the
graph of y=6, they started to analyse what was happening to x and to y. They said that
the constant function is progressive only in the x-axis but it is not progressive or
regressive in the y-axis. Later, they analysed progressive and regressive in both

axes for the other graphs (see link E).

The last step was their synthesis between the idea of monotonicity as ‘progressive’
and ‘angle that a straight line forms with the x-axis’ for linear functions. By
investigating the idea of ‘progressive’ with a horizontal translation in the graph of
y=X, John explained that the characteristic of being ‘progressive’ did not change.
Later, the students explained that up to 90 degrees straight lines stay ‘progressive’
(see link D). Moreover, Tanya explained that in graphs with curvature they cannot

see angle. That is why the above link was restricted to straight lines.

in DG Paraliel ‘orientation of the motion of a striker’ was an important aspect used
by the students to characterise the strikers. As a starting point, the absence of
control in a first exploration of DG Parallel was interpreted by John & Tanya as 'y is
independent of X'. The constant oscillation between ‘y follows x’ and ‘y does not follow
x' of the striker given by y=7sin(0.125nx) encouraged John & Tanya to think that
‘this striker was independent of x’ (see link G). Later, the idea of monotonicity was
discriminated and generalised by John & Tanya in strikers of DG Parallel as ‘y

follows x'.

The idea ‘orientation of the motion of the striker was constructed by John & Tanya
by many analyses and comparisons of the strikers. Firstly, Tanya used this idea to
characterise the striker given by y=x. She associated three different aspects in her
characterisation: ‘x is equal to y’, ‘x and y both move to the same side’ and ‘x has
same speed as y'. Secondly, by arguing if the striker of y=2x could correspond to the
description ‘y follows X' and by analysing the idea in the striker of y=x-6, Tanya
realised the different aspects involved in her idea of ‘y follows x'. Therefore, both
students moved from these associations using ‘y follows x’ only for the idea of ‘x and
y both move to the same side’. It is important to remember that this characteristic
was not linked to the term ‘increasing’ from pre-test. At last, by overcoming the
limits of these associations, the students generalised this perception of monotonicity
to the strikers of y=0.5x2 and y=7sin(0.25rx) which are non-linear functions. In
the first striker, Tanya identified the domain where ‘the striker follows X' from the
domain where ‘the striker does not follow x'. In the second striker, they just

identified that “sometimes y follows x, sometimes it doesn't”.
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Link F shows that John & Tanya only used the term ‘decreasing’ after matching the
graph and the striker of y=-x. It is interesting that they did not link it to ‘y does not
follow x'. Instead, Tanya associated it to ‘it started from positive of y and negative of

x and it finished in negative of y and positive of x.

As diagram 3.3 shows, the terms ‘increasing’ and ‘decreasing’, which they learnt at
school, were linked by John & Tanya to ‘inclination of straigt line and to rules which
were created using positive and negative values. It seems that the use of the term
‘increasing’ represents a didactical obstacie to their link to a variational meaning of

monotonicity.

Owing to the presence of shape in DG Cartesian representation, the above pictorial
way of discriminating monotonicity appeared stronger in John & Tanya's work. While
working with the striker of y=x, Tanya exclaimed ‘it is a diagonal from negative to
positive for both [x and y]’. In the same way, John characterised the striker of y=-x

as being ‘decreasing’ (see link H).

On the other hand, a variational perception of monotonicity was brought from FP to
DG Cartesian by John & Tanya while discussing monotonicity. After John's
characterisation of the striker given by y=-x, Tanya brought the idea of ‘progressive
in x and regressive in y’ to describe it (see link ). Despite using the term
‘increasing in x and decreasing in y’, Tanya considered this use as being different
from the idea expressed in the term ‘increasing’. Later, this idea was generalised to
the strikers of y=2x, y=x-6 and y=0.25x2 when considering domain of the last

striker.

in the final interview John & Tanya linked ‘orientation of the motion of y’ from DG
Parallel to the terms ‘progressive’ and ‘regressive’ through ‘inclination of graphs’
(see link J*). In the case of linear functions, the students also linked these
perceptions to the term ‘increasing’ or ‘decreasing’ (see link K*). In the first
instance, John & Tanya linked ‘inclination’ which they called ‘increasing’ to
‘orientation of the motions of x and y’. Later, on analysing graphs of parabolas, they
started to analyse the monotone behaviour of x and y separately in the graphs to
match with ‘orientation of the motion of x and y’ in the strikers. Finally, on being
asked about the term ‘progressive’ which they created in FP, John & Tanya linked
this to ‘y follows x’ or ‘y does not follow x'. Therefore, this perception, which was
isolated in DG Parallel, was synthesised to the terms ‘progressive’ and ‘regressive’
in the final interview. In conclusion, the terms ‘increasing’ and ‘decreasing’ derived
from school knowledge continued to be used by John & Tanya confined to linear

functions.
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3.4 Derivative

Pre-test

Diagram 3.4
John & Tanva's perceptions of derivative
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In the pre-test John & Tanya knew the definition of speed (see link A) but they had
difficulties in discriminating the idea of derivative as speed through different
representations. For example, they did not use slope to interpret speed in graphs. As
far as equation is concerned, John & Tanya had difficulties in using the formulas and
did not link coefficients to derivative. Nonetheless, they used intuition to find out
which object was quicker. Despite knowing the definition of speed, John & Tanya
interpreted it by the positions of the objects instead of their variations. These
reasons were very close to the idea that ‘the quickest object must be ahead of the

slowest one’ (see link B).

As Diagram 3.4 shows, John & Tanya's perceptions of derivative in the research

environment were different from the pre-test. The students started to consider




‘variations of x and y’, and also linked these perceptions of variations to inclination
of straight line (see links D and E). They started considering ‘absolute values of x and
y' in FP. In a continuous process throughout the microworlds, John & Tanya reached
the perception of derivative as ‘the ratio between the variations of x and y’' in DG

Cartesian.

In FP, on trying to obtain the graph of y=6 from the one of y=2x, Tanya
discriminated slope as being ‘the angle formed by one axis and a straight line’.
Nevertheless, Tanya was not able to interpret it in a functional way. The idea of
derivative was discriminated in a pictorial way. Later, in a special moment in my

observations, she reported this inability.

As for John, he perceived derivative by giving an order for monotonicity. While
exploring monotonicity stretching vertically the graph of y=abs(x) to the one of
y=2abs(x), he argued that “it [the graphs] became more increasing” to distinguish
the two graphs. He also linked this ‘more increasing’ or ‘less increasing’ to the
different angles the graphs form with the x-axis. However, he was not able to

measure this ratio of increase.

Tanya perceived derivative as ‘the ratio between absolute values of x and y’ while
stretching vertically the graph of y=x to the one of y=0.5x. By searching an equation
for the new graph, she constructed this idea as well as linking it to the ‘angle’ (see
links C and D). Unfortunately, she constructed the link based on the value of angles,

instead of only comparing them.

The parallelism between straight lines obtained by vertical translation, while
exploring the above-mentioned link, motivated Tanya to use ‘the ratio between the
absolute values of x and y’ for graphs of affine functions. Despite building this
perception of derivative and giving an example of affine function, in which their idea
does not work, she did not check the value of ‘the ratio’ in the new graph. This was a
critical moment for generalising and realising the incompatibility of these

perceptions which she missed.

Note that by linking ‘angle’ to ‘the ratio between the absolute values of x and y’ as
well as by arguing that they could not see angle in graphs with curvature, John &
Tanya did not even try to calculate this ratio in graphs with curvature. Therefore, |
consider that link D created a barrier to the construction of the idea of constant and

variable derivative.

In the starting activity with DG Parallel, without knowing the strikers represent

functions, John & Tanya discriminated derivative by comparing the speed of the
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strikers. They characterised speed as being slow or quick. After being informed how
the strikers represent functions, John & Tanya evolved this perception by comparing
the speeds of x and y. For instance, on reading the idea ‘y has the same speed as X’ in
Tanya's characterisation of the striker of y=x, John discriminated the speed of the
striker of y=2x as ‘y is quicker than x’ and the one of the striker of y=-x as ‘y has
the same speed as x’. Nonetheless, they were still limited to analysing speed in

strikers of ‘linear’ functions.

On exploring their perception of speed in the striker of y=x-6, John brought the idea
of ‘the ratio between the values of x and y’ from FP to DG Parallel. This connection
was evident because he used the same term created by themselves in FP (see link F).
At this moment, John explained “while the triangle grows one unit, it [y] also grows
one unit”. The perception of derivative changed to ‘variations of y and x’, instead of

‘absolute values of x and y'.

Figure 3.1
Scheme of the imaginary angle in DG Paraliel
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The idea of speed became stronger in John & Tanya's characterisation of the strikers
after they linked ‘angle’ from FP to speed from DG Parallel. Their first attempt at
linking was a direct link to an imaginary angle (see figure 3.1). By linking the
behaviour of the striker given by y=x to its equation, Tanya remembered that it
corresponds to the straight line with 45 degrees. So, she became curious to find in DG
Paraliel an idea corresponding to this angle. She imagined that an angle of 45 degrees
in Cartesian graph should correspond to an angle of 90 degrees in DG Parallel based
on this striker. As a consequence of that, ‘the distance between x and y’ should be
fixed (see link G). Note that she did not try an angle with same measure but an angle
as an object. Link G was revised by her analysis of the striker given by y=6. She

noticed that despite having nuil angle in graphs, the distance between x and y varied.

After classifying the strikers of y=x, y=-x, y=2x and y=x-6 as ‘straight line with

obtuse angle’, the students tried to determine the angle of each striker. Note that, up
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to this point, the students had not made clear the link between angle in FP and speed
in DG Parallel. By comparing the strikers with the same speed to the graph with the
same angle, Tanya realised that ‘angle’ in the graph corresponds to ‘speed’ in DG
Parallel. By isolating the invariants of the functions in each representation, John &
Tanya established link E limited to linear functions. Even to parallel straight lines,
they linked the same inclination of graphs to ‘same speed of x and y’ in DG Parallel,
as well as to the graphs of y=-x and y=x. For these reasons, | ohserved that the
comparison between corresponding examples in different microworlds was decisive

for this link.

It is interesting that John & Tanya used speed linked to inclination while comparing
two sines in order to decide which graph to match to each striker in the final
interview. In fact, it seems that they were not clear about the difference between

slope and curvature for this kind of graph.

Note that both students seemed to have two different ways of discriminating
derivative in DG Cartesian. As in the pre-test, in DG Cartesian Tanya associated the
idea of ‘bigger derivative’ as ‘being quicker’ recognised by ‘arriving first' or ‘being
in front of'. For instance, on comparing the striker of y=2x and y=x-6, Tanya argued
that the first one was quicker than the other because it was the first to arrive. This
process of building the above-mentioned perception of derivative which they called
proportion inhibited their previous idea of speed which only appeared again in their
work with DG Cartesian by the existence of shape. John discriminated derivative by
‘the ratio between variations of x and y’, as he did in DG Parallel. For example, on
comparing the above-mentioned strikers he argued: “they [x and y of y=x-6] are
proportional relating to motion, because it grows half unit and the triangle grows
half unit... the pink striker [y of y=2x] is one in one”. John generalised the idea of
derivative as ‘the ratio between the variations of x and y’ to the strikers of
y=7sin{0.25nx)} and y=7sin(0.125nx). In fact, he over-generalised this idea

without really verifying it.
3.5 Second Derivative

Tanya defined acceleration as ‘variation of speed’ in the pre-test (see link A).
Despite discrimining curvature of graphs, John & Tanya did not connect it to
acceleration. This lack of connection was aiso apparent in their sketch of a graph
from a verbal description. There, they used a straight line to represent constant

speed as well as variable speed. Another point observed in their pre-test regarding
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curvature was that both students said that two parabolas vertically translated had

different curvature.

Diagram 3.5

John & Tanya's perceptions of second derivative
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The interaction with transformations of graphs in FP encouraged the students to
search for a functional correspondence of curvature concluding with a ‘pattern in the
variation of x’ for parabolas with same curvature (see links B and D). Table AlV-5.2
shows the evolution of their perception of curvature while they were exploring
translations and stretches. This perception was first based on absolute value of x and
y, instead of a variation of them (see link C). That is why John became confused when
Tanya tried to localise and to compare the value of x in the graphs of y=0.25x2-8 and
y=-0.25x2 (see link B). Then, they associated curvature with ‘variation of x' for a
fixed y. This comparison gave to the students a critical moment to revise this
association. After the above mentioned passage, John insisted on investigating the idea

of curvature as ‘variation of x’ for parabolas with the same curvature. While



translating the graph of y=0.25x2-8 to the one of y=0.25x2, he noticed a pattern of
variation but without the same value of y (see link D). Then, he affirmed “despite

changing the value of y, they will be proportional”.

In DG Parallel, on trying to match the graphs and the strikers, John & Tanya linked
curvature to speed, instead of acceleration (see link E). In fact, this provided a
parallel with their link of speed and angle for linear functions. This parallel was
motivated by their need to distinguish the strikers of y=0.5x2 and y=0.25x2. They
concluded that a graph with a “more bent curvature will [correspond to a striker
that] moves quicker”. The same idea was generalised to see speed and curvature in

strikers of sines.

Note that the idea of second derivative as ‘variation of speed’ was only mentioned
informally in the starting activity with DG Parallel, before they needed to describe
the strikers. John noticed the variation of speed in the striker of y=0.25x2-8 and
mentioned that “it is becoming quicker time by time”. This idea was not explored
until the final interview. Another indication was that they did not use the acceleration
to decide whether the striker of y=0.25x2-8 was a straight line or curve. So |
concluded that they did not spontaneously link the idea of the striker becoming

quicker and quicker with the curvature of a parabola.

Diagram 3.5 suggests that the idea of second derivative was used by John & Tanya
only in a pictorial way in microworids which contain the Cartesian representation.
On the one hand, the shape of the graph in DG Cartesian motivated them to bring the
idea of curvature from their previous knowledge to characterise the strikers of
parabolas (see link F). On the other hand, absence of a shape traced in the screen of
DG Cartesian promoted in the students a curiosity to try a functional correspondence
to measure these curvatures. At this time, Tanya demonstrated how they measured
the curvature of a parabola. After identifying the strikers of y=0.5x2 and
y=0.25x2-8 as corresponding to parabolas, Tanya argued that “the first striker was
narrower than the second one” meaning that its curvature was more curved than the
other. She observed the ‘distance between two symmetrical points’ (see link G). The
method is compatible to the term she used and it also agrees with the results of their

pre-test.

While classifying the striker in DG Catrtesian, the students failed to take advantage of
a critical moment in revising this method of measuring curvature. After matching
the graphs of parabolas to the strikers, they used different justifications to
distinguish curvatures by the strikers. They used the method mentioned in the last

paragraph to distinguish the curvature of the striker given by y=0.5x2 from the
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others. In contrast, on trying to explain why the strikers of y=0.25x2, y=-0.25x2
and y=0.25x2-8 had same curvature, Tanya did not apply the same rule. Instead, she
created a new rule “for each x, the point [sprite of (x,y)] was over the triangle”.
Note that she was trying to justify something she already knew from the shape of
Cartesian graph. Therefore, Tanya did not notice that the last rule was valid for any

striker, in particular to the striker of y=0.5x2.

In the final interview, by direct questions, John & Tanya reached the link between
being curved and ‘not having a fixed ratio between variations of x and y’ (see link
H*) — an idea presented in diagram 3.4. Nonetheless, this link was not
straightforward. They foliowed the same path as Bernard & Charles (see section
2.5), which depended on the close relation between curvature and existence of

turning point.
3.6 Range

In the pre-test John & Tanya discriminated range in two different ways: as ‘length of
interval that y can reach’ by John (see link A), and as ‘value of y that graph can

reach’ by Tanya (see link B).

The interaction with FP led these students to discuss the meaning of the term range.
They discussed whether range was the amplitude or ‘points where y can reach’. John
observed both perceptions by altering the range and its amplitude in the graph of
y=7sin(0.257x) using vertical translation and vertical stretch, respectively. He
observed “in the other command [vertical translation]... the extension of the range
doesn't... doesn't... it didn't change. What did change was the position of the range. This
one [vertical stretch], it modifies the extension of the range...” (see links F and D).
Despite noticing the difference between the two perceptions, John adopted amplitude

as the meaning of the term.

Three points were crucial for the students to realise the difference between the two
different ideas: generalising their perception of range to the parabolas of y=0.25x2,
y=-0.25x2, and y=0.25x2-8; investigating range while translating the graph of
y=0.25x2-8 vertically when Tanya argued that it was changing while John affirmed
that it continued being infinity; revising the interpretion of a ‘graph as being limited
to the screen’ which they presented in their pre-test (see links C and E). The use of

FP encouraged the students to extrapolate range out of the screen.

From the last discussion a cognitive obstacle rose expressed by John as “anything
that is null doesn't exist, does it? The only null thing that exists is the number

zero”. On exploring range stretching the graph of y=x vertically, John argued that
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the range of any graph of y=ax was infinity and the only way to change the range was
to place the graph as y=0. Nonetheless, for him anything with dimension zero could
not exist. Tanya disagreed with his arguments saying that range was zero because it is
“the part of the y [-axis] that a graph can reach”. At the end of the activities in FP,
both students agreed that the values of y in the graphs of y=-3 and y=6 change, but

they were similar because they had only one value.
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After extrapolating from the graphic screen, John & Tanya used the idea of infinity to
distinguish graphs of parabolas from graphs of linear function. John argued that
straight lines “go to positive and negative infinity” but parabolas “only go to one

side — positive or negative”.

Another interesting association appeared when John & Tanya were describing the
graph of y=0.25x2 (see link 1). They associated ‘y is only positive’ to ‘positive



angular coefficient’. The interesting point of this association is that it was arrived at
because both were positive. Nonetheless, while transiating the graph of y=0.25x2
vertically, they realised that in fact the link should be between ‘sign of angular

coefficient’ and ‘positive or negative curvature’.

As diagram 3.6 shows, John & Tanya presented in their perception of range
considerations which involve limit of range in all the microworids. Nonetheless, in
both DG Parallel and DG Cartesian this perception stayed completely isolated from

their perceptions in the pre-test and FP.

In DG Parallel John & Tanya explored two different perceptions of range, which
depended on existence of motion. That is, the students characterised the strikers
without motion by the position where they stay. For strikers with motion, they used
an approach involving limit. It is important that in DG Parallel this approach
replaced any polarised characterisation — positive and negative — even for the
striker of y=0.5x2 in John & Tanya's work (see table AlIV-6.2). Later, they also
generalised this perception of range to the strikers of y=2x, y=0.25x2-8 and
y=7sin(0.1257nx). Note that John & Tanya's perception of bounded range was related
to the idea of motion. For example, they did not observe the sirikers of constant
functions as being bounded. As in DG Parallel, in DG Cartesian John & Tanya used

motion of strikers to discriminate range (see links G and H).

Owing the shape of the graph — traced by (x,y) in DG Cartesian — John & Tanya
generalised the idea of infinity among strikers in which ‘y does not disappear from
the screen before x does’. Moreover, this idea also referred to range as well as to
domain. For example, while analysing the strikers of y=6 and y=-3, Tanya argued
that “they were infinity in x but do not move in y”. The extrapolation of the idea of
boundless range of a graph was linked by John & Tanya to ‘striker gets out of the

screen’ in the final interview (see link K*).

n the final interview as soon as | asked them to correspond range in graphs to
strikers, John & Tanya pointed out that ‘limit that y can reach’ in graph corresponds
to ‘bound of motion of y’ in strikers (see link L*). Moreover, after a vertical
translation in a graph of sine, these students identified where the new striker can

move.

In the same way, they were able to connect ‘amplitude of a sine’ in a graph to ‘length
of interval that striker can move’ (see link J*). Nonetheless, this link was done

after comparing two graphs of stretched sines to their corresponding strikers.
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3.7 Symmetry
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Diagram 3.7 shows that in the pre-test John & Tanya's perceptions of symmetry
were limited to symmetric graphs with line of symmetry in one of the axes. For
example, they did not consider a graph of sine as being symmetric. In FP, while
trying to make sense of unexpected results obtained from reflection of graphs, the
students realised two different points about symmetry. Firstly, they discriminated
line symmetry about a line different from the axes. On trying to obtain the graph of
y=6 from the graph of y=0 by vertical reflection, Tanya generalised line symmetry
about a horizontal line different from the x-axis relating it to symmetric humbers
(see links C). She also asserted that the only symmetry they had studied was
symmetric numbers. Secondly, the students linked the invariance of the horizontal

reflection in a parabola to the vertical line symmetry of the same parabola. While




reflecting the graph of y=-0.25x2 horizontally, John started investigating the
reason for the invariance concluding with a pictorial perception: “As it [the graph]

has two equal sides, it does not alter”.

The interaction with FP also encouraged John & Tanya to search for a pointwise
correspondence for line symmetry in the y-axis for parabolas. Links D and E show
the pointwise perception that John & Tanya reached in FP. On describing the graph of
y=-0.25x2, Tanya explained the symmetry by: “Oh, the point y, at the beginning it
goes to a number [x], later the same point y [vaiue] with the symmetric number in
X. For example... -15 with -20, later 15 with -20”. Despite developing the sense of
line symmetry relating the values of x and vy, this sense was restricted to line

symmetry in the y-axis, which can be correlated with symmetric numbers.

John & Tanya discriminated line symmetry only in the pre-test and in FP. It seemed
to be a pictorial perception which was not spontaneously perceived in DG
microworlds. Link F shows that in DG Parallel they only discriminated symmetry
related to symmetric numbers (see table AIV-7.2). For example, while exploring
the striker given by y=7sin(0.25nx), Tanya used the same perception to argue that
the striker was alternating from positive to negative. She added “a number and its

symmetric”.

In DG Cartesian, John & Tanya used the same perception of symmetry that they had
built in DG Parallel (see link G). Symmetric values were discriminated in the
striker of y=-x. Note that in DG Cartesian the students only used the relation between

x and y to recognise symmetry.

In the final interview, John discriminated line symmetry in strikers of quadratic
functions variationally observing that ‘the strikers repeat the same motion after
returning’. Nonetheless, John & Tanya did not link this perception either to line
symmetry in graphs or to the term ‘symmetry’. Moreover, when asked how to
identify line symmetry of parabola in strikers, Tanya again connected it to a number
and its symmetric (see link H*). Moreover, she did not accept that a parabola with
line of symmetry different from the y-axis was symmetric. The school emphasis on
polarised knowledge represented a knowledge-obstacle which prevented the students

from making this link while using the term ‘symmetry’.
3.8 Periodicity

Diagram 3.8 demonstrates that John & Tanya had different perceptions of periodicity.
John interpreted it as a ‘graph with repetitive trace’ (see link B), whereas Tanya

interpreted it as any oscillatory graph (see iink A). For example, she considered an
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oscillatory and aperiodic graph as being periodic. Despite the difference, both

students considered periodicity as a graphic characteristic.

Diagram 3.8
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The meaning of period was not clear to either student. In FP since they translated the
graph of y=7sin(0.25 x) vertically when trying to describe it, they brought the
term ‘period’ to make sense of it in the graph. They at first discriminated ‘period’ by
two roots in the graphs of sines, considering period more as the interval between the
roots than as the distance between them (see link C). This perception was evident
because they affirmed that the period was altering while translating the graph of
y=7sin(0.25 x) horizontally. In addition, they agreed that the graph of
y=7sin(0.25 x) and y=-7sin(0.25 x) had the same period because the graphs
intercept the x-axis at the same points. It is important to notice the emphasis on

special points, in this case x-intercept.



The exploration of FP allowed John & Tanya to diséover that period of a function does
not depend on cycle. They discovered it only by investigating the idea of period while
stretching the graph of y=7sin(0.25nx) vertically. They generated a different graph
with a different ‘revolution’ but with the same period. This represented a critical
moment when they recognised that period was ‘distance in x that a graph takes to
repeat’ (see link D). Unfortunately, period was only calculated as ‘distance between

roots’. Thus, they did not see period as invariant to another point.

It is interesting that John & Tanya's perceptions of period assumed different
approaches in different microworlds. In FP it was linked to special points while in
DG Parallel these students discriminated and calculated period in a functional way.
The interaction with DG Parallel while discussing allowed John & Tanya to separate
the ideas of period and of ‘repetitive path of y’. Firstly, exploring the striker of
y=7sin(0.125%x), John argued that it was a ‘Roller-coaster because y repeats.
Secondly, by comparing both strikers of sines, he discriminated their period as
‘length of the domain which y takes to repeat’. For example, he explained the period
of the striker given by y=7sin(0.25nx) as “each 8 units x moves, it [y] makes one
revolution” (see link E). The possibility to observe the representations of x and y
separately in DG Parallel helped the students to explain the difference between
repetitive path and period. The sequence from DG Parallel to DG Cartesian led John &
Tanya's perceptions of period to separate the variables. This situation was not

presented in their pre-test and in FP.

As in DG Parallel, in DG Cartesian John & Tanya discriminated the periodicity of the
strikers of y=7sin(0.25nx) and y=7sin(0.125nx) by the repetitive path of y.
Moreover, the meaning of period was considered by the students as the length of x
necessary for one cycle (see link F). In my view, the work with different
microworlds allowed the students to be clear about the difference between periodic

function and its period.

It is interesting that ‘periodic motion of striker’ was connected to ‘repetitive trace of
graph’ (see link G*) following a sequence of links. Firstly, the students identified
that the graph corresponding to the strikers of sines should have ‘many turning
points’. Secondly, looking at the graphs of sines, Tanya added that the value of the
turning points should be equal. Then, John concluded “they repeat... isn't it many

revolutions”.

Link H* shows that when asked to, John & Tanya connected their perception of period
from graphs to ‘distance x moves from x=0 up to y starts repeating the motion’.

Nonetheless, even in DG Parallel they always fixed x at zero as a starting point.
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Therefore, they did not perceive that period does not depend on the choice of the point.

John also emphasised that “it [x] always starts at zero”.

4 Diana & Gisele's perceptions of the function properties

Diana & Gisele were one of the pairs of students who followed the activities from FP

to DG microworlds.

4.1 Turning point

Diagram 4.1
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In the pre-test Diana & Gisele defined the term turning point as being ‘point where a
function has its maximum or minimum’ (see link A). Link B shows that in FP they

generalised this perception among parabolas and graphs of sines (see table AlV-1.2).



Link C confirms that Diana & Gisele perceived turning point and extreme values as
having the same meaning. If the maximum of a parabola was changed, they argued that
the turning point changed, otherwise, it did not. For instance, exploring the idea of
turning point by a horizontal translation between the graphs of y=0.25x2-8 and
y=0.25(x-17.7)2-8, Diana argued “their turning points are the same, just their x
are different”. Later, after a vertical reflection in the graph of y=0.25x2-8, Diana
& Gisele argued that the turning point changed.

In DG Parallel Diana & Gisele perceived turning point completely different from
their perceptions in FP and in their pre-test. They identified turning point as ‘the
point where the striker changes orientation’ for all the functions with turning
points. A corresponding perception is presented in FP exclusively for graphs of
absolute value function: ‘point where the graph changes from decreasing to
increasing’. Unfortunately, these perceptions were not linked by the students. The
new perception developed by Diana & Gisele in DG Parallel enabled them to generalise
it to graphs with curvature. Links E, F and H show that they used in DG Cartesian the
shape of these graphs to link this perception to their previous idea of turning point
as extreme values. Moreover, the perception was generalised to graphs with
curvature. This process seemed to be a constructive development of ideas without

barriers created by their previous knowledge.

In DG Parallel, the students also perceived turning point as ‘bound of the motion of
y'. Firstly, to distinguish the strikers of y=x and y=0.25x2, Gisele exclaimed “the
other [striker of y=0.25x2] is coming in opposite orientation, now, it arrives to a
point where it follows [the triangle]”. Then, Diana added “it doesn’'t go further”.
Table AIV-1.2 shows that Diana & Gisele generalised this perception to the strikers
of y=0.25x2 and y=-0.25x2. Note that in DG Parallel they localised turning point as
‘bound of the motion of ¥y’ without distinguishing upper from lower bound. Moreover,
they did not link this perception to their previous idea of turning point as being
‘point of maximum or minimum’. The perception ‘bound of the motion of y’ stayed
isolated in DG Parallel.

The use of turning point as being ‘bound of motion of y’ enabled Gisele to classify the
strikers by the value of their bound (see link D). She argued that there were three
kinds of strikers: those which do not overtake zero, those which do not overtake -7
and 7, and those which always follow x. For this reason, | argue that they perceived

the strikers corresponding to linear functions as having no turning point.

DG Cartesian was explored by Diana & Gisele as a bridge for connecting their

perceptions of turning point from DG Parallel to Cartesian representation. Links F
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and H demonstrate that they brought their perceptions of turning point as ‘point
where the striker changes orientation’ to recognise all the strikers of parabolas and
sines as being parabolas. After recognising the shape of the graph for each striker,
these students distinguished by concave or convex if it was maximum or minimum
(see link G).

In the final interview Diana & Gisele linked the idea of ‘bound of the motion of y’
from DG Paralle! to the existence of maximum or minimum in graphs (see link K*).
Nonetheless, this synthesis was not straightforward. After linking ‘y follows x’ from
DG Parallel to ‘positive slope’ of graphs (see links M*, N* and O* in diagram 4.3),
they connected ‘the point where the strikers change from y follows x to y does not
follow X’ to turning point of a graph {(see link J* in diagram 4.1). Then, they used
this connection to link ‘bound of the motion of y' to extreme values in a graph.
Diagram 4.1 suggests that this link was constructed through link I*. An evidence for
this is their statement that a constant striker has no turning point because it has no

motion.

Diana & Gisele also matched ‘coordinates of the turning point’ in a graph to ‘value of

y when it changes orientation and value of x at this time’ (see link M*).

When the question was posed in opposite orientation (from FP to DG Parallel), Diana
& Gisele tried to link turning point to a special point (see link L*). For instance,
when asked what will happen to the striker of y=-0.25x2 after a vertical translation
of 10 units in its graph, they considered turning point as ‘the point where x meets y’
in DG Parallel. This constituted a link with special points. it is interesting that they

did not observe the inconsistency between their links L* and J*.
4.2 Constant function

Links A, B and D are related to Diana's previous perceptions of constant function. As
regards links C and E, they are related to Gisele's perceptions. Therefore, diagram
4.2 shows that Gisele & Diana were a heterogeneous pair of students regarding the

previous perceptions of constant function.

Since the pre-test ‘constant function’ was expressed as ‘y does not vary, only x
varies’ with recognition of its graph by Diana and as ‘it does not vary’ by Gisele. Only
Diana localised the variable which does not vary. In FP, Gisele changed her
behaviour, starting to localise the variable she was talking about. On trying to
distinguish the graphs of y=0.25x2-8 to y=0, which were obtained by a vertical
stretch, Diana & Gisele discussed the meaning of the term ‘constant’ as being ‘only x

varies’ (see link F). Unlike in FP where they had graphs and equations available, in
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DG Cartesian they continued determining which variable is constant. While

characterising the striker of y=6, for example, Gisele used ‘y is constant'.

Diagram 4.2
Diana & Gisele's perceptions of constant function
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Link G shows that in FP Diana & Gisele made sense of the term constant as being
neither increasing nor decreasing. After trying to verify whether the graph of y=-3
was ‘increasing’ or ‘decreasing’, they argued that ‘constant’ means that ‘it does not
increase or decrease’. Note that this was the meaning given to the term, not to the
graph.

After some time analysing equations and graphs of constant functions in FP, Diana
connected ‘absence of x at the equation’ to ‘y is constant’ in the graph. In her pre-test
she traced a graph of y=2 as the point (0,2) (see link D). In FP, she started

perceiving constant in graph as ‘only x varies’. Then, she linked it to ‘there is no y’

\ N . N,/ verisble) /



at the equation. Finally, on analysing the equations to find the one corresponding to
the horizontal straight lines, Diana concluded link I.

[ noticed a very strong tendency to associate null variation with value zero —
sometimes x is zero, sometimes y is zero. Even after linking ‘y does not vary’ in the
graph of y=6 to ‘there is no x’ at its equation, Diana described the graph of y=6 as ‘y
is equal to zero’. Moreover, Diana & Gisele mismatched ‘absence of x' in equation of
constant function with zero — y=0 or x=0 — when classifying the straight lines (see
link J).

By the exploration of all horizontal commands in the graph of y=-3, Gisele concluded
that the invariance of the graph when using these commands is due to the
independence of x. Link H represents Gisele's connection between ‘the straight line
parallel to the x-axis’ and ‘absence of x' at the equation. Link L represenis their
conclusion which was drawn from Gisele's analysis of ‘absence of X’ at the equation

y=-3.

In DG Parallel, the idea of constant function was discriminated by Gisele & Diana as
being ‘y is motionless’. Moreover, link K shows Diana's connection between ‘the
motionless behaviour of the striker’ and the variational perception presented in
their pre-test — ‘Only x varies, but y is constant’. in addition, link B represents the
connection Gisele made between this behaviour and the term constant from school
mathematics. As in their perception of turning point (see diagram AlV-4.1), Diana &
Gisele's perceptions of constant function had no direct connection from FP to DG
Parallel. These students did not try to match strikers with graphs they had worked

out,

The exploration of the microworlds in the sequence DG Parallel to DG Cartesian
allowed Diana & Gisele to build the idea of constant function separating the behaviour
of each ‘object’ (x, y and (x,y))} in a Cartesian representation. Therefore, these
students interpreted the graph of a constant function as ‘y is constant, so (x,y)
moves in a horizontal straight line’ (see link O). On reading 'y is constant’, Diana
searched for a constant striker by ‘the point [(x,y)] does not move’ for instance. By
Gisele's remark ‘it was y that was constant’, Diana guessed the striker. It is
interesting that Diana's expectation was also presented in their pre-test. So links O
and N indicate a strength in Diana's perception of Cartesian representation of
constant function. Later, by comparing the strikers of y=6 and y=-0.25x2, Gisele
noticed that the point follows in a horizontal straight line because y is constant (see
link Q). Moreover, at the end of the classification session, Diana verified that a

parabola could not have constant y.

168



The separation of the objects — X, y, (X,y) — encouraged these students to consider a
constant function of ‘y is independent of x’. Link M happened while Diana was
analysing the striker of y=-3. She discriminated the idea of constant by the argument

‘x can go anywhere but y stays at -3’.

In the final interview the students presented links Q* and R* and a different
perception in DG Parallel: ‘only x varies’. This new perception was connected to ‘y is
motionless’. In addition, they concluded that ‘only x varies’ in DG Parallel

representation would imply that the graph is a horizontal straight line (see link Q*).

4.3 Monotonicity
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In the pre-test, Diana & Gisele defined an increasing function by linking it to the
coefficient ‘a’® in a general equation (see link A), which caused some associations
between different ideas. For example, these students classified a parabola with
‘positive curvature’ as being an increasing function (see links B and C), which is an
association predicted in the analysis of the school curriculum (see chapter VI). As in
the pre-test, in FP the students continued associating the term ‘increasing’ with
‘positive curvature’ while analysing graphs with curvature (see link H). Therefore,
the term ‘increasing’ no longer had a sense of ‘increase’. Even in the case of constant
function, Diana & Gisele tried to decide whether it was increasing or decreasing

function using the association.

In the pre-test, these students also developed a variational view of monotonicity in
the graph of y=3/x, but without using the term ‘increasing’. They analysed ‘where y

increases or decreases’ in the graph.

In FP Diana & Gisele discriminated monotonicity in the graph of y=-x by its
direction, which was generalised to all the linear graphs excepting the one given by
y=x-6 (see link D). Moreover, as in the pre-test, these students linked ‘direction of

straight line’ to ‘sign of the linear coefficient’ (see link F).

The only attempt Diana & Gisele made to connect their previous perception of the
term ‘increasing’ to a functional perception followed a pointwise interpretation of
graphs. For instance, Gisele discriminated decreasing function in the graph of y=-x
by the linear coefficient at the equation explaining that ‘after it [the graph] crosses x
[-axis], it [y] is negative’ (see links E and G). Looking back to the pre-test, this
seems to be the rule used by them to decide the domain where the graph of y=3/x was
increasing or decreasing. Both students argued that for x>0 the function was

increasing, when in fact, for x>0, y was positive.

From the starting activity with DG Parallel, monotonicity was discriminated by
Diana & Gisele as ‘y follows X' in the strikers of y=-0.25x2 and y=0.25x2-8. The
students compared these strikers arguing that “up to x equal to zero, the striker [of
y=0.25x2-8] followed the orientation of the triangle. After that, it does not, the
other striker is the opposite”. The students also generalised the arguments to the
striker of y=7sin(0.125nx), observing its oscillatory behaviour between ‘y follows

x' and ‘y does not follow x’. Note that, unlike in FP and in the pre-test, in DG

3 Remember that in their mathematics textobooks the general equation presented for linear
functions is y=ax+b and for quadratic functions is y=ax2+bx+c. There they learnt at
different times that a>0 corresponds to an increasing linear function and that a>0
corresponds to a parabola with positive curvature.
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Parallel monotonicity was discriminated among non-linear functions. Moreover, the
change on ‘orientation in motion of the striker’ was what motivated the students to
use this characterisation. At last, this perception of increasing was generalised
among strikers of linear functions. On comparing the strikers corresponding to y=x
and y=0.25x2, Diana & Gisele distinguished the strikers by “any time, the striker
[of y=x] follows the triangle [x]” and “up to zero, the striker [of y=0.25x2] moves
in opposite orientation of the triangle and after zero it follows the triangle”. 1t is
important to observe that this perception of monotonicity was not linked to the

students’ previous perceptions.

The students' tendency to polarise any idea into positive and negative provoked a
perception of the striker of y=7sin(0.25nx) as ‘y is independent of x’ (see link I).
As Diana & Gisele could not divide domains where ‘this striker follows X’ or where ‘it
does not’ into positive and negative, Diana characterised this siriker as ‘y is
independent of x' distinguishing it from the other striker of sine. Nonetheless, on
describing the striker of y=7sin(0.25nx) without comparing it to the other striker,
Diana made the same analysis as she did to y=7sin(0.125nx). She argued that “up to

7 the striker follows the triangle and later it starts going backwards and forwards”.

In DG Cartesian Diana & Gisele discriminated monotonicity with two different
perceptions without linking them: a variational perception and an association that
they brought from previous knowledge. It is interesting that they almost linked the
variational perception to the term ‘increasing’, but their previous knowledge created
an obstacle to this connection. By examining the sprites of y, x and (x,y) in the
striker of y=-0.25x2, they started to compare the variations of x and y as “when the
triangle moves from negative to positive [side], y decreases” or ‘when x increases, y
decreases’. While looking for the striker of y=-x described by Gisele as “when x
increases, y decreases and vice-versa”, Diana tried to link it to their perception of
increasing presented in the pre-test. By remembering the association between graph
with ‘positive curvature’ and the term ‘increasing’, she gave up trying the link. It is
interesting that Diana & Gisele's variational perception of monotonicity was not

limited to linear functions.

Diagram 4.3 shows that Diana & Gisele presented variational perceptions of
monotonicity in all the microworlds except FP. Nonetheless, these perceptions were
isolated in each microworld. In my opinion the barrier was constructed by their

previous knowledge while using the term ‘increasing’.

In DG Cartesian the students maintained the associations presented in FP and their

pre-tests while using the term f‘increasing’. While describing the striker of y=x,
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Diana used the term ‘increasing’ discriminating it by ‘direction that (x,y) moves'.
As they started to recognise the shapes, Diana & Gisele used the term ‘increasing’ to
characterise the strikers of y=0.25x2-8, y=x-6, y=0.5x2. They used ‘positive
curvature’ to mean increasing in parabolas (see link J) and ‘direction of the straight
line’ to mean increasing in the striker of y=x-6 (see link K). In addition, during the
task of classification of the strikers, they applied the term ‘increasing’ to constant
functions meaning that it was positive (see link L). The meaning of this term depends

on the family of the function.

In the final interview, Diana & Gisele linked 'y does not follow x’ from DG Parallel to
‘direction of a graph’ (see link O*). Nonetheless, this synthesis was not
straightforward. Firstly, Diana & Gisele discovered the equation of the striker given
by y=x. Secondly, they matched the striker and the graphs of y=2x, y=x-6. Thirdly,
on trying to match the striker of y=-x, they became curious as to whether the graph
would be increasing or decreasing. By comparing the graphs and the strikers, they
concluded that ‘y does not follow x’ should correspond to ‘negative slope’ of graph.

In a different direction of questions, Diana & Gisele were able to verify that when a
graph had ‘negative slope’, ‘y does not follow x’, which enabled them to generalise
this link to graphs of sines and parabolas (see links N* and M*). However, they did

not link these ideas to the term ‘increasing’ or ‘decreasing’ from school knowledge.
4.4 Derivative

Diana & Gisele's perceptions of derivative as slope in a graph first appeared in FP. In
the pre-test they interpreted derivative only in a discrete graph by subtracting the
values of y. In FP Diana & Gisele discriminated slope of graph by the angle that a
straight line forms with one of the axes (see table AlV-4.2). Moreover, they tried to
link ‘the coefficient 2 of the equation y=2x" to ‘the ratio between the angles with the
x-axis and with the y-axis' (see link C). For instance, on describing this graph,
Diana wrote “the angle between its graph and the x-axis is twice the angle between
this graph and the y-axis”. The perception of derivative as slope was also generalised
by Diana to affine functions while translating the graph of y=x-6 vertically (see
link D).

The use of vertical translation modifying the graph of y=2x encouraged Diana &
Gisele to seek a functional meaning for direction of a graph. Diana verified that ‘the

ratio between y-intercept and x-intercept’ stays invariant (see link B).

On perceiving derivative as the angle a straight line forms with the axes, Diana &

Gisele limited their perceptions of derivative to linear functions. They developed a
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pointwise corresponding perception by considering the absolute value of y, instead of
its variation. Unfortunately, in this effort they did not analyse x and y in relation to
each other. They did not fix one variable to analyse the other one. For example, their
analysis of the angle was ‘as smaller is the angle [between the graph and the x-axis],
X is bigger and y is smaller’. Another evidence of that was Gisele's arguments while
stretching the graph of y=2x vertically. She observed ‘x is increasing, it is becoming
bigger. It is staying closer to x [-axis] (see link E). Meanwhile, the perceptions
developed by Diana & Gisele in DG Parallel considered the variations of y and x. They

also fitted with the concept they learned at school: the speed (see link K).
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Because of the absence of Cartesian representation in DG Parallel, Diana & Gisele
discriminated derivative by comparing the speeds of x and y. During the development
of their perception of speed, these students passed through associations. Firstly, they

discriminated the speed of the striker given by y=-x as “being almost the same as




the triangle [x]”. Later, Diana also discriminated the speed of the striker given by
y=x as having the same speed as x. Nonetheless, this perception was not a
generalisation of the same speed of the striker of y=-x, described by Gisele. Diana
associated the ideas ‘y has the same speed as x’ to ‘y is over X' (see link H). By
arguing that the striker of y=x-6 had the same speed as x, Gisele generated a critical
moment that allowed Diana to realise and revise her association between ‘y has same
speed as x’ and 'y is over Xx. Secondly they strengthened this perception to ‘y is
quicker, slower and the same speed as X’ to characterise the speed of y=x-6 and y=2x
(see link G). Finally, they generalised to strikers of parabolas. In DG Parallel,
unlike Cartesian systems, this perception of derivative was not limited to linear
functions. Diana & Gisele argued that the strikers of y=0.5x2 and y=2x were similar

because they were quicker than x.

Another association made by Diana & Gisele during the development of the perception
of derivative as speed was between the ideas ‘A moves quicker than B’ to ‘A is in front
of B’. On comparing the strikers of y=0.25x2 and y=0.5x2, they observed that the
second striker was quicker to disappear from the screen when going from zero to the
positive. However, when returning to the screen, the siriker was considered to be
slower than the other because it came behind the striker of y=0.25x2 (see link J).
When Diana & Gisele compared the speed of the strikers of y=x-6 and y=2x, they
noticed that there was a difference between the ideas of ‘A is in front of B’ and ‘A is

quicker than B’ (see link ).

Speed was also used by Diana & Gisele to compare strikers of parabolas. For instance,
Diana & Gisele compared the strikers of y=0.25x2-8 to y=0.25x2 and y=x arguing
that in respect of speed, the strikers given by y=0.25x2-8 and y=0.25x2 were

equal.

On trying to analyse which striker was the quickest among the strikers of
y=0.25x2-8, y=7sin(0.25nx) and y=7sin(0.125nx), Diana & Gisele brought the
definition of speed to make sense in DG Parallel (see link K). By analysing the
strikers near to zero, Gisele showed to Diana that the striker of y=7sin{0.25nx)
was quicker than the others. Diana was still associating ‘A is in front of B’ with ‘A is
quicker than B’. At this point, Diana really revised the association. Gisele brought the

idea of speed constructed in DG Parallel to DG Cartesian.

At the beginning, she tried to identify speed from DG Parallel in the motion of (x,y)
while analysing the striker of y=6 (see links N and O). Later, on analysing the
striker of y=-0.25x2, Gisele argued that y was quicker than x. Diana added that y

runs more spaces than x does (see link P).
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According to diagram 4.4 the perceptions that Diana & Gisele developed in FP and in
DG Parallel stayed completely separated, and in DG Cartesian formed separated

groups of perceptions until the final interview.

By the presence of shape in DG Cartesian, pictorial views were used by Diana &
Gisele to characterise the derivative of the strikers of y=x and y=2x. Diana argued
that in the striker of y=2x the angle with the y-axis was smaller than the one with
the x-axis. Unfortunately, she did not link angle to speed. On the other hand, by
having difficulty in seeing angle without lines, Gisele did not consider this
characteristic in Diana's description of y=x while guessing the striker. This
difficulty motivated them to seek a functional correspondence for angle to distinguish
the strikers of y=x and y=2x. They argued that the angle in the striker of y=2x is
bigger because y of y=2x was bigger than y of y=x (see link M). This idea was
generalised to the striker of y=-x. Note that the angle was associated with absolute
value, which was valid only for the strikers given by ‘linear’ functions. They did not
talk about the angle of the striker given by y=x-6, which could lead to a critical

moment for this association.

As a result of the above-mentioned perceptions from different microworlds, |
observed a gap in the link between the two perceptions in DG Cartesian which was
filled in the final interview. One perception concerned variation, while the other

concerned absolute value.

In the final interview, they linked ‘the comparison of the speeds of y and X’ in DG
Parallel to the inclination of the graph (see link Q*). At this point, they did not
distinguish inclination from curvature. In addition, they observed that two strikers
with the same speed (y=x and y=x-6) should correspond to two graphs with same

inclination (see link R*).
4.5 Second derivative

In the pre-test, Diana & Gisele defined acceleration as ‘variation of speed’ (see link
A). They were not able to identify it by the equation. They also discriminated
curvature of parabolas while comparing graphs without linking it to acceleration. It
is interesting that they were able to compare curvature of parabolas only for
parabolas with the same turning point. For instance, they argued that two translated

as well as two reflected parabolas had different curvatures.

In FP Diana & Gisele discriminated curvature of graphs, while they were comparing
different parabolas (see link B). On stretching the graph of y=0.25x2-8 vertically,
Diana & Gisele argued that this graph and the one of y=(0.119)(0.25x2-8) had
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different curvature. They said ‘the concavity is closer than before’. Note that they

always used the term ‘concavity’ for curvature.

Diagram 4.5
Diana & Gisele's perceptions of second derivative
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On trying to distinguish parabolas by their curvature, Diana & Gisele searched for a
functional perception which depended on the case. In the case of parabolas with roots
at the same point, they compared the image of x for the different parabolas (see link
C). For example, they argued ‘for a fixed x, y [of y=0.25x2-8] is around three times
bigger [than y of y=(0.119)(0.25x2-8)].

roots, Diana & Gisele measured the distance between two symmetrical points’ (see

In the case of parabolas with different

link D). Despite being different ways of measuring curvature, both perceptions are

attempts to see an idea that is linked to variation in a pointwise way.

By exploring the idea of curvature while stretching vertically the graph of

y=7sin(0.125 x) to the one of y=(-0.667)(7sin(0.125 x)), Diana generated a



critical moment for the above-mentioned perception of curvature. She noticed that
the curvature could change keeping one distance ‘between two symmetrical points’
fixed. Then, they revised the association between curvature and ‘distance between two

symmetrical points’.

While analysing curvature, Diana & Gisele also tried to compare ‘values of y and x’ to
see which one was the biggest. This idea paralleled their perception of slope in linear
graphs. Unfortunately, in doing it to two parabolas obtained by a vertical stretch,
they did not realise that this characteristic changes even for the same parabola. This
should have been a starting point for linking it to non-null curvature. By arguing
that there is no angle in parabolas, Diana stopped a process that could have reached a

link between curvature and variation of slope.

The perception of second derivative, like that of derivative, developed by Diana &
Gisele in FP and DG Parallel stayed completely isolated. In the case of FP, the
students' perceptions of second derivative were pictorial. In addition, on trying to
relate it to a functional one, Diana & Gisele treated the idea in a pointwise way. in
contrast, the perception constructed in DG Parallel by these students was based on
the variation of the variables. Moreover, Diana & Gisele followed a continuous
development of the idea from DG Parallel to DG Cartesian. Therefore, they reached the

separation between constant and variable derivative.

In DG Parallel the idea of second derivative was observed by Diana & Gisele for the
strikers which ‘y overtakes x’. They observed this idea in the positive domain of the
striker given by y=0.25x2, arguing: “when it is coming [from zero to positive], it
[yl goes slowly, slowly, so it arrives here [around x=3] it overtakes x and is
quicker [than x]". Although Diana had discriminated variation of speed in the striker
of y=0.25x2, Gisele discriminated the speed of y=0.25x2-8 as “y is always quicker

than x”. This perception was not deeply explored in DG Parallel.

The idea of variable speed was mentioned by Diana & Gisele again only while
classifying the strikers of y=0.25x2-8, y=7sin(0.125nx); y=7sin(0.257x). At
this time, the variation of y was calculated by the students to decide which striker
was the fastest. When characterising the group composed by y=7sin(0.25nx),
y=7sin(0.125nx) and y=0.25x2-8, Diana & Gisele realised that “the strikers

change speed and the fastest one would depend on the point” (see links E and F).

In DG Cartesian the students introduced the idea of variation of speed that was
constructed in DG Paraliel (see links G, H and I). By exploring this idea in the
strikers of y=0.25x2 and y=2x, Diana & Gisele realised that the first striker
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changes speed while the other one moves always one step. Then, discussing the speed
of both strikers, they first compared the variation of y and x for each striker (see
link 1). So, they concluded that the first striker is slower near x=0 and it is quicker

after x=0.

It is interesting that the pictorial perception of curvature was not observed in DG
Cartesian. It seems to be hard to distinguish curvatures without trace of the graph.
From a mathematical viewpoint the absence of shape allowed the students to analyse a
functional idea of second derivative variationally in different functions. This analysis
promoted in the students an idea of separating strikers with constant speed from
strikers with variable speed. It seems to be a very constructive process of building

an idea which did not suffer from barriers imposed by their previous knowledge.

Diana & Gisele's perception of curvature was very close to the one of turning point.
Nonetheless, when asked in the final interview if they could distinguish a straight
line from a curve without turning point they affirmed that they could. Moreover, the
students linked it to constant or variable variation of the strikers when they
compared strikers to define which corresponds to the parabola, without seeing the
turning point. Gisele concluded that the striker of a straight line runs in regular
steps while the striker corresponding to a graph with curvature runs in irregular
steps (see link J*). A feature from DynaGraph used only in the final interview

helped this synthesis: the dots that the strikers left.
4.6 Range

In the pre-test, Diana & Gisele considered only discrete points as range. Diana argued
that range is ‘the point of graph where x and y meet each othet’ and on locating range
in graphs she gave special points, such as turning point, y-intercept and x-
intercept. She also gave the point (3,1) as range of y=3/x. While interpreting range
in graphs, Gisele gave a collection of points (see link A). Moreover, she was not sure

if range relates to y or x.

According to diagram 4.6, Diana & Gisele developed their perceptions of range in
three parallel approaches in the research environment: the first approach considered
‘bound of range’ recognised by ‘presence of turning point’ in graph; the second
approach considered a tendency to polarise perceptions by dividing range into
positive and negative; the third approach was a perception articulated in isolation
within both DG microworlds, which involves ‘bound of the motion of y’. The first and
third approaches are corresponding ones in different representations, which were

not linked until the final interview.
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Diagram 4.6
Diana & Gisele's perceptions of range
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The perceptions developed by Diana & Gisele in the research environment were not
linked to the term ‘range’. This term used by their school stayed isolated in their
pre-test. Moreover, the perceptions from the pre-test had a pointwise approach

while the other perceptions related to the whole domain and range of a function.

In FP range was discriminated by Diana & Gisele by dividing it into positive and
negative functions. They determined the quadrant where a graph is, then whether the

function was positive or negative (see link G).

This polarisation was the basis of the association between ‘positive range’ and
‘coefficient ‘a’ is positive’ presented by Diana & Gisele while examining graphs of FP
(see link D). While comparing the graphs of y=6 and y=0.5x2, Diana argued that
“they are similar because they were all positive”. Later, she explained that she

knew that because of the coefficient ‘@’, in both equations ‘a’ was positive.




From the pre-test the terms ‘maximum’ and ‘minimum’ were used by Diana & Gisele
associated to turning points (see link C). They did not link them to ‘minimum value
that y can reach’. On exploring the transformations of graphs in FP and comparing
different graphs they concluded that maximum or minimum does not depend on x,
they depend only on y (see link E). For instance, exploring the graph of
y=7sin(0.25nx), Diana & Gisele realised that all turning points of maximum have

the same height.

FP was important when they generalised bounded range to graphs without turning
point such as graphs of constant functions. By investigating the above-mentioned
perception and by wishing to transform the graph of y=0.5x2 into the one of y=6,
Diana generalised the idea of maximum and minimum to this last graph — a graph

without turning point (see link F).

In the starting activity with DG Parallel, Diana & Gisele discriminated the idea of
range by ‘the bound of the motion of y'. They characterised the strikers of sines by
‘place where the strikers can move’. This idea was also used by Diana to ‘reject
strikers that do not correspond to Gisele's description of y=7sin(0.125xnx).
Therefore, Diana generalised this perception of range to the striker of y=x. She
considered ‘absence of bound in the motion of y’ arguing that ‘the striker moves in all

the axis’.

The tendency to divide the ideas into positive and negative also appeared in Diana &
Gisele's perceptions of range in DG Parallel (see link I). They argued that the striker
of y=0.25x2 was only positive. At this point, Diana explained that there are three
kinds of strikers: those which stay only in one side, those which stay in the middle
and those which move in all the axis. By this characterisation, the range of the
strikers of constant functions were considered to be different. Diana argued that the
striker of y=-3 was similar to the striker of y=6, while Gisele said that “they were
not because one was positive and the other was negative”. Another barrier caused by
this approach was in generalising this perception of range to the striker of
y=0.25x2-8 which was considered to be similar to those that move all over the axis.
Later, they joined it to the strikers of sines but changing the characterisation of

range to “in the negative side, the strikers go only up to a point — -8 or -7”.

Unfortunately, in DG Paralle! the approach to range that considers ‘bound of the
motion of y’ lost importance in Diana & Gisele's work after they discriminated the
striker of y=0.5x2 and y=0.25x2 as being only positive. This other approach was
motivated by their attempt to make sense of quadrants in DG Parallel. On the other

hand, the first approach was used to characterise the strikers with limit out of zero.
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Gisele generalised bounded range as ‘the striker can move up to some point’ from the
striker of y=7sin(0.125nx) to the one of y=0.25x2-8.

The idea of range was not emphasised in DG Cartesian by Diana & Gisele. They looked
at range mainly using the positive and negative approach (see link J). They
characterised the striker of y=-0.25x2 as “y does not pass to the positive side”.
Gisele felt very clearly that it was y that was not going to the positive side. This
perception of range was also attributed by Diana to the range of the striker of
y=0.25x2,

On the other hand, to distinguish the striker of y=-x from the striker of parabolas,
Gisele used the idea of ‘bound of the motion of y’ (see link L) which the students
brought from DG Parallel. After realising that they had mismatched the strikers of
y=-x and y=-0.25x2, Gisele generalised the idea from the strikers of parabolas to ‘y

is not bounded’ to the striker of y=-x.

Another perception which re-appeared in DG Cartesian was extreme values. They
started using the term minimum again associated with turning point. Diana & Gisele

considered minimum to describe the strikers of y=0.25x2-8 and y=0.5x2.

Despite using the term quadrants in FP to determine ‘place through which a graph
passes’, Diana & Gisele saw these quadrants in a very special way. Diana stated that
“l thought it [quadrants] was a mathematical rule, | didn't think that when a point
was at the first quadrant was when x and y is positive, this one [fourth quadrant] that
when x is positive and y is negative...”. These actions demonstrated an interpretation

of graph in a pictorial not in a functional way.

In the final interview the link between the two other approaches to range was not
straightforward. Diana & Gisele reached the link between ‘bound of the motion of y’ of
DG Parallel and ‘space of the y-axis that a graph occupies by existence of turning
point’ (see link M*). Firstly, on being asked to distinguish the strikers
corresponding to the graphs of y=-0.25x2 and y=-0.25x2+10, they matched the
turning point to the ‘point where x meets y’. Secondly, they argued that “y would go
up to 10 and return while x will be at 0”. Later, on comparing two sines vertically
stretched, they recognised that the new striker would move a bigger interval based on
the turning points. On the other hand, using a vertical translation in a graph of sine,
they could not predict what would happen to the new striker. On looking at the
strikers in DynaGraph, they realised that ‘the places where the strikers move’ were
different but they had the same amplitude. To conciude, these students were able to

link ‘bound of the motion of y’ to their perception of extreme values by turning
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point. Nonetheless, Diana & Gisele were not able to localise ranges in graphs of

translated sines.

Moreover, the students linked the idea that the constant graph occupies only one point
to the idea that the striker stays only in a point (see link N*) — two new

perceptions.

4.7 Symmetry

Diagram 4.7
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As shown in diagram 4.7, since the pre-test Diana & Gisele were familiar with line
symmetry. They did not limit their perception to symmetric numbers or to line
symmetry in the axes. They identified line symmetry in the graphs by tracing the
lines of symmetry (see link A). However, this perception was expressed only

pictorially in the graph. Therefore, as diagram 4.7 demonstrates, Diana & Gisele



identified line symmetry in all microworlds that present the Cartesian

representation.

In FP they identified firstly that the graph of y=0.25x2-8 was line symmetric to the
graph of y=-0.25x2+11.6 after a vertical reflection. Moreover, they argued that
their turning points have different absolute value because the line of symmetry was
at y=1.8 (see link D). Note that at this stage they noticed that the association between
line symmetry and symmetric numbers was not useful for these parabolas (see link
G). Secondly, after reflecting the graph of y=-0.25x2 into the one of
y=-0.25(x+14)2, Diana localised the line of symmetry in both graphs (see link E).
Thirdly, Gisele localised the symmetry of the graph given by y=7sin(0.25nx) as
being any vertical line passing through a turning point. Despite being able to
determine all sorts of line symmetry, in FP Diana & Gisele did not try to investigate

a pointwise or a variational corresponding idea.

The interaction with FP was important to the students' exploration of a canonical
symmetry, for instance, the symmetry of a constant function. Links B and F show
that on obtaining the graph of y=0 while exploring line symmetry on the graph of
y=abs(x) using the vertical stretch, these students generalised line symmetry to the
constant function. The line of symmetry was placed on the y-axis by Diana. This point
was the turning point of y=abs(x). They did not observe that this line of symmetry
could pass through any point. This evidences some association between line symmetry

and turning point.

As a result of the absence of shape in DG Parallel, Diana & Gisele did not explore any
symmetry in the strikers. In FP, they discriminated only line symmetries, not

symmetric numbers.

The work with DG Cartesian encouraged the students to seek a pointwise equivalent to
the idea of line symmetry. Unlike in DG Parallel, the idea of symmetry was explored
in DG Cartesian by Gisele while working with the striker of y=7sin(0.25nx). This
exploration is due to the presence of shape drawn by (x,y) (see link I). Gisele
recognised the striker as being symmetric by a vertical line passing through one of
its turning points. Then, the absence of lines in the graph encouraged Gisele 1o try a
pointwise correspondence for line symmetry. Unfortunately, it was related more to
periodicity than to symmetry. In addition, she explored this idea only once which did
not lead to progress. She explained the line symmetry in the striker of
y=7sin(0.25nx) by: “Because it has the same points... minimum and after it

repeats” (see link H).
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Motivated by direct questioning in the final interview, Diana & Gisele connected the
vertical line symmetry in graphs to ‘the strikers make the same motion’ in DG
Parallel (see link J*) — a variational view. Nonetheless, on trying to explain the
effects of this symmetry on a horizontal translation of the graph of y=0.25x2, they

were not able to identify line symmetry in the new striker.

4.8 Periodicity

Diagram 4.8
Diana & Gisele's perceptions of periodicity
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In the pre-test, Diana & Gisele perceived the idea of periodic function as ‘function
with oscillatory path’ as well as by ‘the repetitive behaviour of y’. For instance,
they defined periodic function as being ‘function where its value always repeats’ (see
link A). Moreover, in the Cartesian representation Diana pointed to parabola and

oscillatory graphs as being periodic. In the first graph, she mismatched periodicity



with line symmetry. By a similar perception, Gisele pointed to an oscillatory and
aperiodic graph as being periodic.

In FP, Diana & Gisele improved their perception of periodicity arguing that there
was a constant repetition of roots and trace. They identified periodicity in the graph
of y=7sin(0.25nx) by ‘the repetition of the trace’ (see link C). In addition, Diana &
Gisele pointed to ‘repetition of roots’ to explain this characteristic (see link D). It is
interesting that Gisele called this behaviour constant. As Diana understood constant as
the same value of y, Gisele explained that “the trace repeats, it is always the same, it

never changes” (see link E).

Considering that their perception of periodicity was based on graphs up to FP, in DG
Parallel the closest idea to periodicity observed by Diana & Gisele was the oscillatory
behaviour between ‘y follows x’ and ‘y does not follow X' in the striker of
y=7sin(0.125nx). They attributed to this oscillatory behaviour the idea that ‘y is
independent of X’ (see link G), because, unsuccessfully, they tried to separate the

domain where ‘y follows X’ into positive and negative.

On the one hand, Diana & Gisele's perceptions of periodicity in DG Parallel were
linked to the oscillation between increasing and decreasing. Diagram 4.8 shows that
this perception stayed completely isolated from the ideas they had in the other
microworlds, which contain the Cartesian representation. On the other hand, the
same diagram shows that the sequence pre-test, FP and DG Cartesian helped the
students to reach a perception of periodic behaviour in a variational way. In DG

Cartesian they also separated the behaviour of x, y and (x,y).

In DG Cartesian, Diana & Gisele perceived periodic aspects of the striker of
y=7sin(0.251x). They observed ‘the repetition of the interval that y moves’. As in
FP, in DG Cartesian they also observed in this striker ‘the repetition of the path that
(x,y) does’ (see link H) arguing that “in four units that x moves, (x,y) was doing
one ‘parabola’ and returning to zero” (see link F). Despite arguing that repetition
was not only in roots, they always used roots to count period. They also generalised
this perception to the striker of y=7sin(0.125%x) (see table AIV-8.2) considering

that ‘(x,y) was doing each ‘parabola’ in 8 units that x was moving'.

After constructing the variational perception of periodicity in DG Cartesian, in the
final interview Diana & Gisele were able to bring it to DG Parallel. They connected
‘oscillation of graph’ to ‘repetitive path of the motion of the striker’ (see links J*
and K*). Moreover, the idea that ‘(x,y) repeats the same motion for each N that x

moves’ was identified in DG Parallel as ‘y repeats the same path for N units that x
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moves’ (see link L*). After observing a hotizontal stretch in the graph of
y=7sin(0.25nx), they guessed what would happen to the striker corresponding to

the stretched graph.

Diana also linked the ‘repetitive interval that the striker of y=7sin(0.257x) moves’
to the ‘repetitive height the graph reached in y’ which was the perception presented

in their pre-test (see link I*).

5 Anne & Jane's perceptions of the function properties

Anne & Jane were the other pairs of students who followed the activities from DG to

FP microworlds.
5.1 Turning point

In the pre-test Anne & Jane's perceptions of turning point were very close to the idea
of extreme values. For instance, Jane defined turning point as being ‘point where
they can find maximum or minimum’ (see link A). Although they perceived a clear
separation between turning point and extreme values, a good question is: are they

able to find maximum without turning point?

In DG Paraliel turning point was discussed by Jane & Anne as being ‘the point where
the striker changes orientation in relation to the orientation of x’. They started
taking note of ‘value of y' at this point for the striker of y=7sin(0.25nx), then,
generalised to almost all the strikers of functions with and without turning points
(see table AlIV-1.1). In other words, they described the strikers corresponding to

linear functions as the strikers which did not change orientation.

In DG Cartesian Jane & Anne used ‘the motion of the sprite of (x,y)’ to recognise a
turning point. Link C represents their connection between ‘motion of (x,y) and the
idea of extreme values through the shape that (x,y) traces: “it [(x,y)] is coming
down to zero [(0,0)], it stops decreasing and it starts to increase”. This perception
of turning point was used by Jane & Anne to recognise and classify the strikers as
being parabolas. Note that they did not observe ‘the behaviour of x and y’' at the

turning points.

In FP Jane & Anne presented two different perceptions of turning point: ‘starting
point’ was mentioned by the students only for graphs of absolute value functions;
‘point where a graph stops growing and starts decreasing or otherwise’ was

mentioned while they were discussing extreme values for parabolas. Jane explained
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that a graph had maximum because “the turning point was the point where it stops
growing and starts decreasing or otherwise for minimum” (see links A, D and E). In

section 5.6, | discussed how Jane & Anne associated turning point and extreme values.

Diagram 5.1
Anne & Jane's perceptions of turning point
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It is interesting that in all the microworlds, excepting in DG Parallel, Jane & Anne's
perceptions of turning point were related to extreme values. Nonetheless, they
presented perceptions of turning point similar to the one they expressed in DG
Parallel which stayed isolated. On the other hand, DG Parallel was the only
microworld in which Jane & Anne separated variables when talking about turning
point. As for the other microworlds, they treated turning point as a special point on

graphs without referring to the behaviour of y or x.



In the final interview Jane & Anne used turning point as ‘the point where the graph

stops growing and starts decreasing’ to recognise turning point in DG Parallel as

being ‘point where the striker returns’ (see link F*).

In the final interview the students started separating x and y in the Cartesian

representation. It was a consequence of their connection between coordinates in the

graph and the values of y and x in DG Parallel (see links G* and H*). They were asked

to predict the behaviour of the new strikers corresponding to graphs obtained by

vertical and horizontal translations in graphs of parabolas.

5.2 Constant function

Diagram 5.2
Anne & Jane's perceptions of constant function
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In the pre-test Jane & Anne's perceptions of constant function varied according to the

representation and the activity that they were involved in. Both students represented

a motionless car as a dot in a graph of distance per time (see link E). Anne also traced




the graph of y=2 as a dot (see link C). Nonetheless, Jane's definition of constant
function seems to be mathematically correct (see link D). Her definitions are
expressed by links A and B: y=a and ‘y is independent of any alteration of x'.
Meanwhile Anne perceived constant function in the algebraic representation as

‘independent coefficient was equal to zero’.

Diagram 5.2 shows that in DG Parallel Jane & Anne characterised strikers of
constant functions in two similar ways: ‘striker does not move from the same place’
and ‘striker is motionless’. Despite being very similar both characterisations
allowed different paths in Jane & Anne's perceptions of constant function. The first
perception allowed Jane to identify the striker of a constant function by ‘y is
independent of X’ (see link F). She argued; “There are two constant functions; x can
vary how much it wants but y will be always in the same place”. The second
perception seems o have a special status in DG Parallel. For example, it was only for
these strikers that Anne & Jane broke their criterion 'y was over x at zero’ to group
the strikers creating a separated group for the motionless ones. The second

perception stayed isolated in DG Parallel up to the final interview.

In DG Cartesian Jane & Anne discriminated the strikers of constant functions in two
ways, as in their perception from DG Parallel. The first one considered ‘motions of x
and y’, while the second perception dealt with ‘motion of (x,y)'. As regards the first
perception, Anne & Jane constructed links H and F with previous knowledge and DG
Parallel using ‘y is independent of X' while describing the striker of y=6. Using this
perception, they also constructed the equation for this striker (see link 1). Talking of
the second perception, they started to describe the constant function by the shape
(x,y) traces. Link G shows that Jane & Anne matched this shape with the term
constant function. Despite discriminating both perceptions, Jane & Anne did not link
‘behaviour of x and y’ and ‘motion of (x,y) in DG Cartesian. The only relation
between these sprites observed by Jane & Anne was ‘point where y meets (x,y) — a
special point. Therefore, DG Cartesian was not used as a bridge between DG Parallel
and Cartesian representation of constant function by Jane & Anne. However, the

variational perception was linked in the final interview.

Despite being articulated in terms of the microworlds, ‘y is motionless’ was linked to
the term ‘constant function’ in the final interview by matching strikers with graphs
(see link O*). A similar connection was made by Jane & Anne when asked about the
corresponding idea of horizontal straight line in DG Parallel. Nonetheless, this link
passed through the idea of independence (see links P* and Q). First, Jane & Anne
linked ‘horizontal straight lines’ to ‘y does not vary, only x varies’. Then, they

connected the last-mentioned perception to ‘y is motionless, while x can vary’.
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Regarding the interpretation of constant function through its equation, it seems that
‘absence of x’ at the equation represents a difficulty in their interpretation. For
instance, when dealing with equations in FP, Jane & Anne returned to the same
perception of its graph as a dot. Moreover, there is a gap between their perception of
‘what does not vary’ — x or y — through the graphic and algebraic representations.
Despite thinking of ‘variation of x’ while looking at the equation (see link M), the
students pointed to y as being ‘the variable that does not vary’ while looking at the
graph (see link N). It is interesting that, as in the pre-test, in FP Jane & Anne were
not able to recognise a constant function by its equation. Nonetheless, they quickly
linked the term ‘constant function’ to the shape of its graph. For instance, as soon as
they took the equations on board, Jane & Anne imagined its graph as being a dot by
‘the absence of X’ (see links L and J). By tracing it in FP, they argued that it was a
constant function (see link K). It is interesting that ‘the perception in which y does
not vary’ started to be discussed after they stretched the graph of y=2x into the one
of y=0. This indicates an influence of the interaction with dynamic transformations

of graphs in Jane & Anne's perceptions of constant function.
5.3 Monotonicity

It is interesting how Jane & Anne associated the terms ‘increasing’ and ‘decreasing’
with some polarised rules arising from the pre-test which are, in general, valid
only for linear functions. For instance, Anne's definition of the term ‘increasing’ was
linked to linear coefficient: “when a>0" (see link A). Jane's definition emphasised
polarisation when analysing graphs: “increasing is a function that reaches positive
value at the system (y>0)" (see link B). In spite of all these associations, the
students were able to interpret a graph variationally when they were asked about the
behaviour of y when x increases or decreases. Therefore, this is evidence of an

obstacle linked with the use of mathematical terminology at school.

Diagram 5.3 shows two kinds of perceptions the students had of monotonicity. The
first is connected with the term ‘increasing’ which reflects their previous knowledge
about monotonicity. The second group of perceptions are variational. In DG Parallel,
this second perception enabled Jane & Anne to generalise the idea for other kinds of

functions such as parabolas.

In DG Parallel, the students discriminated monotonicity by looking at the positive and
negative parts of the domain separately. For example, as they chose to analyse x in
the positive side first, the striker of y=-x was considered to be different from the

striker of y=0.5x2.
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Diagram 5.3
Anne & Jane's perceptions of monotonicity
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By analysing the striker of y=x-6, Jane replaced ‘when x is positive, y follows x’
for the polarised rule ‘when x is positive, y is positive’ (see link D). By discussing
with Anne the same example, Jane revised her own association. She showed that
despite being on different sides, the striker moves to the same side. The same
argument was used by Anne to generalise the perception to y=0.25x2-8. The analysis
of the strikers given by sines also offered to the students a critical moment to
overcome this polarisation. Nonetheless, they only classified the striker of

y=7sin(0.25 x) as “the striker changes many times” (see link C).

The polarised approach was more important to them than the analysis of other
functional characteristics. Jane & Anne adopted two criteria for classifying the
strikers: the striker is zero when x is zero and in the positive domain ‘y follows X’

or ‘y does not follow Xx'. It was only when analysing the group of the strikers of y=x,



y=2x, y=0.25x2 and y=0.5x2 that they separated the strikers which change

orientation from those which do not.

As in DG Parallel, in DG Cartesian Jane & Anne presented two distinct perceptions.
The first perception being ‘y follows X’ or ‘y does not follow X' with the polarisation
of domain, which was articulated within DG Parallel, was brought to DG Cartesian. On
analysing the behaviour of x and y only, they changed ‘y follows X’ into “when x is
going to positive, y is going to the positive” (see link E). The second perception is
linked with their previous perception of monotonicity by direction of the straight
line traced by (x,y) {see link F). Note that this perception reduced the sample in
which the students generalised monotonicity to linear functions. This suggests that
this link created a barrier for generalising the idea among other kinds of functions.
Note that despite being similar perceptions in the same microworld, they were not
linked.

Although the perception of the term ‘increasing’ was confined to linear functions, the
students gave a variational interpretation for the property in DG Cartesian. The
absence of a trace of a graph encouraged them to seek a functional correspondence to
‘direction of straight line’ (see link G). This perception was also presented in the

pre-test, but was not linked to the term ‘increasing’, staying completely isolated.

It is interesting that at the end, while subdividing the group composed by the strikers
of y=x, y=2x, y=-x, Jane & Anne used the variational correspondence of ‘direction of
straight line’ to subdivide the group. While explaining why the strikers of y=x and
y=2x were together, Jane said: “both [strikers] are increasing, x is increasing, y is

increasing”.

In FP the students used ‘direction of straight lines’ fo recognise whether a function
was increasing or decreasing. For instance, after stretching horizontally the graph of
y=X into the one of y=-x, Jane argued that these functions had different directions,

which were connected by Anne to the terms ‘increasing’and ‘decreasing’ (see link H).

It is interesting that while exploring extreme values, Jane & Anne interpreted the
graph of y=-0.25x2 as increasing or decreasing. Nonetheless, they did not link it to
the terms ‘increasing’ and ‘decreasing’ from school knowledge. Moreover, they did

not separate the behaviour of x and y while analysing growth.

in the final interview Jane & Anne connected ‘direction of a straight line’ to ‘y
follows x’ or ‘y does not follow x' (see links 1*, J* and L*). They also connected this
perception to the term ‘increasing’ or ‘decreasing’ restricted to straight lines (see
link M*). These two connections passed through an association that appeared in DG
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Parallel as well as in DG Cartesian. In order to achieve the above-mentioned
syntheses, the students identified ‘strikers that move in only one orientation’ as

being ‘straight lines’.

On trying to generalise the connection to the striker of y=-0.25x2, they used the
rule ‘when x is positive, y is positive’ to mean ‘y follows x' (see link K*). Once

more the polarised rules were strong in these students' perceptions of monotonicity.

5.4 Derivative

Diagram 5.4
Anne & Jane's perceptions of derivative
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In the pre-test Jane & Anne did not use slope to interpret derivative in a graph. For
instance, in the question about the cyclists, Anne tried to build an equation from the
graph to calculate the speed. Unfortunately, she only knew the formula to calculate
average of speed (see link A). Both students' perceptions of speed while defining are

related to distance per time (see link B).



Derivative was discriminated by Jane & Anne from the starting activity with DG
Parallel. During a long period of their work Anne & Jane characterised the striker as
quick or slow, writing: “the striker [of y=0.25x2-8] is quick”.

Only when comparing the strikers of y=2x and y=x, Jane realised that she could
compare their speeds with the one of x. Firstly, their perception was ‘y has the same
speed as x', which was generalised for the siriker of y=-x (see link C). Secondly, by
analysing the striker of y=x-6, Anne associated this perception with ‘y and x have
same absolute value’ (see link D). Nonetheless, by discussing Jane's argument “the
distance that y moves is the variation”, Anne revised this association. This phase was

the beginning of their findings of constant and variable derivative.

Anne & Jane constructed in a continuous way their perception of derivative as being
‘comparison of the variations of x and y’ from DG Parallel to DG Cartesian (see link
E). They were not observing the motion of (x,y). On neticing it, Jane & Anne achieved
their major findings on DG Cartesian. While classifying the strikers, they asked if
the strikers of first degree polynomial function had a fixed variation (see links F and

G). This finding will be discussed in the next section.

The horizontal stretch in the graph of y=abs(x) encouraged Jane & Anne to establish
a way to measure slope of the graphs. First, Jane constructed the idea of derivative
by the internal angle. On stretching the graph of y=abs(x) horizontally, Anne
explored the idea by measuring the abs(x)/abs(y). By stretching vertically the
graph of y=x into the graph of y=-x, both students sparked off their curiosity about

‘inclination of straight lines’.

The perception of derivative continued to be explored when they tried to explore the
idea of parallelism. By translating the graph of y=x vertically, Jane noticed that this
command was keeping invariant ‘the inclination’ as well as ‘the ratio between y-
intercept and x-intercept’ (see link H). At first, Anne had considered two parallel
straight lines should have the same equation (see link 1). These ideas were originated
in the students' curiosity as to whether the inclinations of two straight lines were the
same. Thus, the interaction with FP was responsible for the students matching
‘parallelism between two straight lines’ with ‘the same ratio between y-intercept

and x-intercept’.

In addition, Jane & Anne perceived derivative by the angle formed by a straight line
and the x-axis. Despite being similar to the perception presented in DG Cartesian,

there was no evidence of spontaneous connections between these perceptions.
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Anne & Jane linked f‘inclination of straight line’ to ‘speed of strikers’ while
comparing different linear functions in both microworlds (see link J*).
Nonetheless, this link was not straightforward. Firstly, while analysing the strikers
of y=x and y=-x, they argued that inclination was given by ‘distances between x and
zero and between y and zero’, that is, these distances should be the same. They were
analysing the strikers of y=x and y=-x. The analysis of the striker of y=x-6 made
them switch to another rule — the distance between x and y stays the same. When
analysing the striker of y=-x again, they observed that the rule was not valid.
Suddenly, they stopped and Anne argued ‘it is the speed! the speeds of y are the

same”.
5.5 Second derivative

Diagram 5.5
Anne & Jane's perceptions of second derivative
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As to the idea of derivative, in the pre-test the students did not use graph

(curvature) to interpret second derivative — acceleration. For instance, Anne




transformed graphs into equations to calculate acceleration, while Jane argued that
the acceleration of a parabola is zero because its speed is zero. They had defined

acceleration as speed per time (see link A).

On the other hand, the students discriminated curvature in a graph. They presented
difficulties in measuring curvature in graphs. By comparing curvature, for
example, Anne pointed out that two vertically translated parabolas had different
curvature. Meanwhile, she pointed out that two parabolas differing by a vertical

reflection and a horizontal translation had the same curvature.

Diagram 5.5 shows that Jane & Anne's perceptions of second derivative were all
linked from their previous knowledge to FP. These links were in general made using

the graphic representation of second derivative.

In DG Parallel, Anne & Jane constructed the idea of variable derivative which was
generalised later to constant derivative. On comparing the measure of the variations
of the strikers of y=0.5x2 and y=2x, Anne concluded that y=0.5x2 “gets speed, it
varies the variation” (see link B). While classifying the strikers, Jane & Anne
subdivided the group composed by y=0.5x2; y=0.25x2; y=2x; y=x into those
strikers which ‘y increases the variation’ and those strikers ‘y did not get speed’.
Unfortunately, they were not able to generalise this idea to strikers of of sines. This
suggests that the students used “to get speed” meaning that 'y leaves the screen

speeding up’ like the striker of quadratic functions.

Jane & Anne brought from DG Parallel to DG Cartesian the idea of variable and
constant derivative. For instance, while comparing the strikers of y=0.25x2 and
y=0.5x2, they argued that the striker of y=0.5x2 varies the variation a lot (see
links C and D). Nonetheless, as in other properties, the students did not pay attention

to the behaviour of (x,y).

Only after noticing that (x,y) made a turning point (see links F and G), they started
to classify the striker in the families of functions from their school knowledge. At
this point, a critical moment happened for them to link ‘y gets speed’ and ‘(x,y)
moves with curvature’. Anne argued that the striker of y=0.25x2 could be an
absolute value. This doubt led the students to link E which was not straightforward.
First, they compared the last-mentioned striker to the striker of y=2x. Then, they
noticed that (x,y) of the first striker moves in a curve. Second, to decide whether
(x,y) of the striker of y=0.5x2 has a bending or straight movement, they
remembered that they had distinguished the strikers as: ‘y gets speed’ and ‘y does not

get speed’. Finally, Jane & Anne observed from the strikers that ‘when y gets speed,
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(x,y) moves bending’. Moreover, while observing the striker of y=7sin(0.257x),
Jane generalised variable speed to this striker. That is, she argued that ‘y gets speed’
because there was curvature in the motion of (x,y). Jane doubted this, saying that it

could be oscillatory by straight lines.

As diagram 5.5 shows, the distinction between ‘straight line or curve’ and ‘constant
or variable speed’ was not directly linked to their perception in FP. The links were
made through the pre-test (see link H). In FP the idea of curvature was used in a
pictorial distinction of the graphs of y=0.25x2 and y=0.5x2. The students used to say
that ‘one graph was more closed or more open’ than the other graph. This perception
was generalised by them to the graphs of y=7sin(0.25nx) and y=7sin(0.125nx).
This passage marked a special moment that revealed a way they used to measure

curvature: Jane explained: “by the distance between the roots”.

A continuous transformation between the graph of y=0.25x2-8 and y=0.25x2
promoted a critical moment for Jane & Anne to revise the above-mentioned
perception of curvature. While translating the graph of y=0.25x2-8 towards the one
of y=0.25x2, Jane argued that “the curvature was becoming smalier”. Then, she
added: the command would change the curvature of the parabolas. In doubt, she noticed
that the command was not modifying the curvature. It was modifying only ‘the

distance between the roots’ (see link I).

This interaction with dynamic transformations of graphs in FP created in the
students the need for measuring the curvature of a graph. It is interesting that in DG
Parallel they did not feel the necessity to measure the variation of the rate of change.
By discussing the curvature of the graph given by y=0.25x2 using the vertical
translation, Jane & Anne constructed a perception of curvature of a parabola which
they called ‘proportionality of a parabola’ (see link J). They argued that while
moving up or down a parabola you never change the ‘proportionality’ of a parabola. it
seems more interesting that the use of the last mentioned command scaffolds a method
of comparing the curvature of two parabolas. They started to put one turning point on
the other in order to compare the trace of the graph. In other words, they promoted a

vertical translation from one parabola into the other one.

As in Jane & Anne's development through the research environment, in the final
interview they linked ‘change of variation of y' to ‘curvature of graph’. Nonetheless,
while comparing the curvatures of the strikers given by y=0.25x? and y=0.5x2,
they compared the ‘speeds of y' (see link K*), instead of ‘accelerations of y’. This
difference in variable speed of strikers seems very hard to measure as is curvature

of graph.
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5.6 Range

Diagram 5.6

Anne & Jane's perceptions of range
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In the pre-test Anne perceived range differently from Jane. Anne considered it as

being ‘value which y can reach’ (see link A). In contrast, Jane assumed a polarised

approach to the term range. Her definition of range divided the domain for which y is

positive and for which y is negative — what she herself called “the study of the sign”

(see link C) referring to the topic from which she took her approach. Despite having

a definition of range incorrect from a mathematical viewpoint, Jane followed her

definition while identifying range in graphs. In contrast, Anne knew the definition of

range but she was not able to discriminate it in a graph.

In the pre-test, Anne interpreted extreme values only for a graph with turning point

(see link B). For instance, she could not find minimum or maximum of a graph of a

constant function and a hyperbole.



In DG Parallel, Jane & Anne discriminated hardly any property related to range. Only
in the starting activity with DG Parallel Jane discriminated “the point where the

striker [of y=-0.25x?] returns”.

As in DG Parallel, in DG Cartesian Jane & Anne did not work much with the idea of
range. While analysing the striker of y=-0.25x2, they distinguished it from the one
of y=0.25x2 by: ‘the first has maximum, the other has minimum’. They also used
extreme values to classify the turning points of the strikers given by sines (see link
D).

In FP Jane distinguished the range of the graphs given by y=-3 and y=-x as 'y
reaches only one value’ and ‘y reaches many values’ (see link E), respectively. This
is also a reason why the students argued later that y=6 had no maximum or minimum

(see link 1.

When using the graphs of y=7sin(0.25nx) and y=7sin{0.125nx), Jane argued that
by turning points ‘these functions had same maximum and same minimum’ (see link
H and F). From this statement together with their perception that a constant function
had no maximum or minimum, | observed that their perception of maximum or
minimum was associated with the existence of a turning point. Moreover, they

treated maximum and minimum and turning point as having the same meaning.

An evidence of their above-mentioned association as well as a critical moment in
revising it was the use of horizontal translation in the graph of y=0.25x2. Jane
argued that the graph was changing its minimum. Meanwhile Anne, who had already
linked maximum to ‘y of the turning point’ by using the vertical translation (see
link G), interposed saying that “the maximum was y of the turning point, it was
changing the turning point” not the minimum. Therefore they separated the idea of
turning point from the idea of maximum while exploring the dynamic commands of
FP. On the other hand, it was not separated completely from the existence of a turning

point.

This perception of extreme values made the students distinguish the graphs with
maximum and minimum from the graphs with maximum or minimum. in other
words, the parabolas were separated from the sine graphs by the limits of their

ranges.

The polarised perception of range appeared only when Jane & Anne were working
with a vertical translation in the graph of y=7sin(0.125nx). They translated it to

get a graph with positive range.
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In the final interview these students linked ‘value of y in a graph’ to ‘place where a

striker was’. In other words, they identified the output of each point in each

representation (see link K*). Moreover, ‘bound of place where a striker can move’

was connected to ‘bounded range of graph’. They did this in order to decide whether

the striker of y=7sin(0.25nx) corresponds to a graph of sine (link L*).

Regarding the idea of extreme values, Jane & Anne connected it as being ‘point where

striker returns’ (see link J*). That is the same synthesis as their perception of

turning point. Moreover, they were not able to distinguish in this synthesis when it

is maximum or when it is minimum. They tried rules like ‘if the striker stays in the

positive side the point is minimum’; polarised rules which are valid for very few

samples of functions.

5.7 Symmetry

Pre-test

Diagram 5.7
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Despite recognising in the pre-test any line symmetry in graphs, Jane & Anne
hardly explored this idea throughout the research environment. Even in FP, they
only discussed line symmetry between the graphs of y=x and y=-x. Nonetheless, on
trying a pointwise correspondence for their idea, they limited it to line symmetry in
one of the axes, which has correspondence to symmetric numbers. Symmetric
numbers were aiso discriminated by Jane & Anne in FP. Link A shows that Jane
discriminated symmetric numbers at the equation of y=-x in a first contact with the
equations. Later, in order to explain the symmetry between y=x and y=-x, Anne tried
a similar perception in the graphs associated with symmetric numbers. Jane
explained: “when y=5, x is also [5]". When trying to guess the function, Anne

completed “in the other graph when x=-5, y was also [5]" (see link B).

In the final interview, on being asked about the symmetry between y=-x and y=x in
their strikers, Jane & Anne corresponded it to ‘strikers having the same speed’.
After seeing a counter-example of their link obtained by a vertical translation in the
graph of y=x, the students reviewed their link. Moreover, they linked it to “one
striker will be at one value while the other will be in the symmetric value” (see
link C*). Note that unlike link B, link C* corresponds to line symmetry in the x-

axis. Nonetheless, it does not seem that the students perceived the difference.
5.8 Periodicity

In the pre-test, only Jane tried to define periodicity. She considered to be periodic
“those functions that don't have considerable modifications in their path” (see link
A). She also added a sentence to exclude the constant functions. In addition, with this
definition Jane mismatched periodic graphs with symmetric graphs. She considered a

parabola as being periodic (see link B).

In DG Parallel Anne & Jane presented a barrier to the construction of the idea of
periodicity. It was due to the oscillation between ‘y follows x’ and ‘y does not follow
X' within the polarised approach with which they analysed the idea of monotonicity.

They confused it at first with the idea that ‘y is independent of X’ (see link C).

Afterwards Jane & Anne overcame the barrier perceiving the motion of the striker of
y=7sin{0.125nx) as oscillatory. This conclusion was motivated by observing the
repetitive behaviour between ‘y follows x* and ‘y does not follow x’ (see link E). This

observation led Anne to take note of the value where y returns (see link D).

As diagram 5.8 shows Jane & Anne established a continuity in building the idea of
periodicity from DG Parallel to DG Cartesian. The students started taking note of the

values of the roots and the signs of y after each root. Then, Jane & Anne sketched the
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graph of the striker. From this sketch they observed that the strikers with
repetitive roots corresponded to the oscillatory strikers (see link F). Note that they
never reached the approach of periodic oscillation.

Diagram 5.8
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In FP ‘the distances between the roots from the graphs of y=7sin(0.25 x) to
y=7sin(0.125 x)’ was the unique aspect of periodicity explored by Jane & Anne.

Note that this is an aspect based on special points.

Jane & Anne used many polarised characteristics such as positive or negative. In the
final interview they also used oscillation between positive and negative to maitch the
strikers of sines with the graphs. Then, ‘periodicity of roots’ was linked to ‘striker
passes at zero each four units that x moves’ (see link G*) by the use of special
points. This was the first time they went further than oscillation.
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VIIl — Cross-sectional Analysis

In this chapter, | will compare the findings from different pairs of students and make
a comparison with the school approach to functions. First, the cross-sectional
analysis of the evolution of perceptions of each function property will be presented,
then, the results under the headings: synthesis, associations, obstacles, and the

influence of each microworld on the students' perceptions of function.

1  The evolution of students' perceptions of each function property

This section will present the similarities and differences in the findings concerning
students' perceptions of each of the properties investigated in the different

microworlds.
1.1 Turning point

Initially both Diana & Gisele and Jane & Anne viewed turning points as extreme
values, which coincides with the way this idea is introduced in the school
mathematics. The other two pairs perceived turning points as special points in the
Cartesian system linked to parabolas. They all used turning point and curvature to
recognise a parabola. Only Charles among all the students perceived a turning point

as ‘point where the graph changes direction’.

In DG Parallel by analysing the motion of y while moving x, all the pairs of students
perceived a turning point in a variational way — as being ‘the point where the
striker changes orientation’. Both pairs of students who began by working with FP
used DG Cartesian as a bridge between this variational perception and their idea of
turning point in the Cartesian representation. For the other pairs of students this
perception remained isolated in DG Parallel until the final interview when it was
linked to the turning points in graphs. This suggests that the previous work in FP
encouraged these students to try to match strikers with graphs. In doing so, they
linked up the idea of turning point after recognising the shape of the graph in DG

Cartesian.

The pairs of students who began by working with DG concentrated their observations
on the motion of (x,y) in DG Cartesian without considering the motions of x and y.
The shape formed by (x,y) suppressed their observations of x and y from DG
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Parallel. Nonetheless, when these students were asked to correspond the ideas, they
were able to connect the variational perceptions of turning point derived from

activities in DG Parallel to their previous perceptions of turning points in graphs.

Diana & Gisele and Jane & Anne did not use dynamic transformations of graphs to
revise their perceptions of turning point. It seems that their previous knowledge of
turning point suppressed subsequent perceptions (see table AIV-1.3). In contrast,
the other pairs used the transformations in different ways to revise their previous
knowledge as well as to develop new perceptions of turning point. This revision
varied according to the idea they were investigating as well as the examples they
were working with. For instance, turning point as ‘point where the graph changes
from increasing to decreasing’ was perceived in graphs with curvature only when
Bernard & Charles were stretching the graph of y=-0.25x2 horizontally, or when
John & Tanya were exploring the graph of an absolute value. This suggests that the
exploration of these transformations affords critical moments for the students to
revise their previous knowledge and to create different perceptions of the property.
These critical moments were explored in some cases by the students but not all — the
counter-example of the association between maximum and turning point generated by

Diana & Gisele did not provoke them to revise their previous ‘school’ perception.

Two pairs of students identified ‘the point where y meets x' as special points in DG
Parallel. These points were connected with turning point in graphs when they tried to
correspond the properties from graphs to DG Parallel. Turning point as well as
‘points where graphs cross the axes’ are special points observed by these students

while analysing the graphs of parabolas.
1.2 Constant function

The motionless behaviour of y is a property with ‘special status’ in DG Parallel
characterising constant functions. All the pairs of students used the motionless
behaviour to describe and classify the strikers of constant functions. The emphasis on
the motion (or variation) of x seemed io be the main reason for this kind of
perception. The fact that all the students classified the constant functions as a group
isolated from the linear functions in DG Parallel showed that, unlike in the Cartesian
representation, in DG Parallel the strikers of constant functions were considered as

completely different from those of linear functions.

Another important aspect developed by the students in DG Parallel deals with the
notion that ‘y is independent of x'. The possibility of ‘varying x and observing the

behaviour of y’ led them to observe constant function by seeing that ‘y is independent
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of x’. By noticing that they could not alter y by moving x while exploring the strikers

given by y=-3 and y=6, they perceived an independence of x.

It is interesting that this perception completely articulated within the microworld
was connected to other perceptions of constant functions throughout the research
environment by all the pairs. Only Anne & Jane kept it isolated until the final
interview. Nonetheless, links P*, Q* and O* of diagram CVII-5.2 show that these

students were able to connect this perception throughout the microworlds.

Three of the pairs of students used DG Cartesian as a bridge between a variational
perception of constant function from DG Parallel and its Cartesian representation. in
DG Cartesian, all the pairs explored ‘the behaviour of (x,y)’ and ‘the relation
between the behaviour of x and y’. All the pairs of students, apart from Jane & Anne,
connected those two perceptions in a spontaneous way. Jane & Anne worked in DG
Cartesian building perceptions connected to their previous ‘school’ knowledge. They
also connected these perceptions to their previous knowledge of constant function as a

horizontal straight line.

At least one student from all the pairs, except Bernard & Charles, sketched the graph
of y=2 as a dot — (0,2) in the pre-test. Bernard & Charles did not explore the
algebraic representation of constant function. The pairs of students who began by
working with FP gradually came to perceive ‘the absence of X’ in the equation as
corresponding to ‘y is independent of X’ in the graph by exploiting the continuous
feedback between graph and equation while transforming graphs in FP. Jane & Anne,
one of the pairs of students who began by working with DG, returned to the same
perception in FP despite building the equation of the striker of a constant function in
DG Cartesian. Nonetheless, Anne & Jane connected all their perceptions of constant
function which were related to graphs, but those related to equations were isolated
(see diagram CVII-5.2). In the final interview, their perceptions were connected
through 'y does not vary’. In conclusion, FP was used to develop the perception of
constant function as ‘y does not vary’, and connected with the ‘absence of X’ in the

equation by three of the pairs of students.

A different perception of constant function was expressed by the pairs of students
who began by working with FP. They discriminated the constant functions as a step
between increasing and decreasing functions. This suggests that the students used FP
to perceive increasing, constant, and decreasing as steps of a continuous variation of
derivative. Note that this is a break in the compartmentalisation of the perception of
constant, monotonicity and derivative, which seems to be more difficult to perceive
in DG Paraliel.
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1.3 Monotonicity

The students' previous knowiedge of monotonicity exhibited limitations derived from
the fact that the school only emphasised this property for linear functions. All the
pairs of students recognised this property as a characteristic of straight lines by ‘the
direction of straight line’. Diana & Gisele and Jane & Anne presented the link between
‘'sign of linear coefficient’ denoted by ‘a’ and the terms ‘increasing’ and ‘decreasing’.
Diana & Gisele over-generalised the meaning of ‘increasing’ for parabolas by linking
‘sign of angular coefficient’ also denoted by ‘a’, ‘positive or negative curvature’ and
these terms. In contrast, all the students were able to analyse monotonicity in a
graph without using the terms ‘increasing’ and ‘decreasing’. All the pairs of
students, apart from John & Tanya, analysed the graph of y=3/x in a variational way
in the pre-test. John & Tanya did this only in FP. These contrasts suggest that their
previous knowledge linked to the term increasing caused an obstacle when the

students tried to generalise the property for non-linear functions.

In addition, the attempts that the students made to give a functional meaning to the
term ‘increasing’ followed rules which involved polarisation and only worked for
linear functions. For example, Diana & Gisele linked the term increasing to the rule

‘after x-intercept, y is positive’ in FP.

In contrast to these barriers, in DG Parallel all the pairs of students discriminated
monotonicity by comparing the orientation of the motions of x and y. Although these
perceptions remained confined to the microworld interaction until the final
interview for all the pairs, they were able to generalise the perceptions to strikers
given by parabolas in which the rules did not work. It is interesting that in the final
interview, all the pairs linked the terms ‘increasing’ and ‘decreasing’ to ‘orientation
of the motions of x and y’ for linear functions. Bernard & Charles and Diana & Gisele
used ‘orientations of the motions of x and y’ to generalise the meaning of the terms
‘increasing’ and ‘decreasing’ for quadratic functions, considering that these functions
change between ‘increasing’ and ‘decreasing’. Meanwhile the attempt of the other two
pairs to achieve this synthesis was blocked by their previous and persisting

perception of the term ‘increasing’ as ‘the direction of the graph’.

Although the students were able to build the above-mentioned perception of
monotonicity in DG Parallel, they all tended to associate the idea with polarised rules.
For example, as a result of this tendency, apart from Jane & Anne, all the students

interpreted the strikers of sines as being ‘y is independent of X'
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In DG Cartesian the students interpreted monotonicity as: (a) ‘the orientations of the
motions of x and y’ disconnected from the terms ‘increasing’ and ‘decreasing’ and
generalised to all the functions and (b) ‘the directions of the graph traced by (x,y)’
linked to these terms and restricted to linear functions. All the pairs of students,
apart from Bernard & Charles, presented both interpretations. Nonetheless, only
Jane & Anne linked both. Note that they were also the only pair who used (a) only for
linear functions. Bernard & Charles presented only interpretation (b). Therefore,
DG Cartesian worked as a bridge between DG Parallel and Cartesian system only for

Jane & Anne.

When using microworlds with Cartesian representation, all the pairs perceived
monotonicity as ‘the direction of straight line’. Table AIV-3.3 shows that while
exploring stretches, three of the pairs revised their perceptions of monotonicity.
Bernard & Charles, for example, used the horizontal stretch to connect the ideas of
slope and monotonicity. Another interesting point was John & Anne's generalisation of
a variational perception of monotonicity that they built in FP to non-linear graphs.
Note that the only students who did not use transformations of graphs to explore
monotonicity were Diana & Gisele who presented a persistent over-generalisation of

the term increasing as being ‘a>0'1 for any kind of function.
1.4 Derivative

All the pairs of students used the speeds of x and y to characterise the strikers of
linear functions. Moreover, all pairs except John & Tanya generalised this property
to the strikers of non-linear functions which indicates a positive aspect of the
interaction with DG Parallel. Even John & Tanya tried to investigate it, but on
matching the strikers with graphs and on linking angle and ‘ratio’, these students
gave up. Thus, the link created a barrier to this generalisation. These results suggest

that derivative as speed has a special status in DG Parallel.

Diagram AlV-4.1 shows that all the pairs of students, apart from John & Tanya, used
DG Cartesian as a bridge between perceptions built in DG Parallel and those buiit in
FP. For John & Tanya these connections were made when they tried to match the
strikers and the graphs interacting with DG Parallel. All the pairs of students
identified the perceptions of derivative derived from interactions with DG Parallel in
DG Cartesian by (a) ‘comparing the motions of x and y’. They all except John & Tanya

1 ‘a’ was always used by the students to denote: ‘the linear coefficient’ of linear functions
given by y=ax+b, ‘the angular coefficient’ of quadratic functions given by y=ax2+bx+c and
the coefficient of sine functions given by y=asin(bx)+c. These notations were also
presented in the textbook.
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also discriminated (b) ‘the inclination of the graph traced by (x,y)’ in DG Cartesian.
Bernard & Charles used DG Cartesian as a bridge to connect the perception (b) to FP.
The other pairs used these two perceptions of derivative differently. Diana & Gisele,
who began by working with FP, perceived (b) isolated from (a) linking both sets of
perception in the final interview. Meanwhile, Anne & Jane, who began by working
with DG, spontaneously linked the perceptions in DG Cartesian. Therefore, all the
pairs of students connected their perceptions of derivative as speed and as angle

formed by the straight line and the x-axis.

Although all the students knew the definition of speed in the pre-test and used speed
in both DG Parallel and DG Cartesian, only Diana & Gisele used the definition in DG
Parallel. Moreover, for the other three pairs of students, the perception built in a
continuous and connected process seemed to have replaced the perceptions presented

in the pre-test.

Although in DG Parallel all the students achieved the variational perception of
derivative, they started by associating speed with pointwise perceptions. Initially,
they compared speeds as quicker or slower. After that, they compared the speeds of x
and y. Nonetheless, these speeds were measured by a ‘ratio between absolute value’,
instead of by variation. Finally, on generalising the perception to the striker of
y=x-6, all the students revised the perception to consider ‘variations of x and y’.

Bernard & Charles were the only pair who did not do this until their final interview.

Looking at the students' perceptions in FP allowed me to see how many ways the
derivative of linear functions can be seen: inclination of the graph (angle formed by a
straight line and the x-axis); linear coefficient; ratio between values of x and vy;
ratio between y-intercept and x-intercept. It is interesting that the last perception
was built while exploring vertical translations in linear graphs. According to table
AlV-4.3 after exploring this command, three of the pairs of students observed that
this ratio was invariant and linked it to the inclination of the graph as well as to its
linear coefficient. For the other students, the use of this command was linked with
parallelism. They over-generalised a ‘ratio between absolute values of y and X’ to
affine graphs. On the other hand, the use of the stretch commands encouraged all the
students to analyse the derivative as ‘ratio between values of x and y’. Therefore,
with regard to derivative there was an established pattern between perceptions
generated in the exploration of stretch and of translation. It is interesting that only
Jane & Anne presented isolated perceptions of derivative in FP. The other students

linked all their perceptions within FP.
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1.5 Second Derivative

In the pre-test the students treated second derivative as acceleration and curvature.
All the pairs knew the definition of acceleration as a variation of speed. Nonetheless,
none of them were able to interpret acceleration as the curvature of a graph. They
traced graphs without distinguishing straight lines from curves. Therefore, there
was no previous link between curvature and acceleration. None of the pairs linked

angular coefficient of quadratic equations to curvatures of graphs.

The idea of variation of speed was used by all the pairs of students to characterise the
functions (strikers) in DG Parallel. John & Tanya used it only in the starting
activity in DG Parallel. The other pairs of students compared speeds or ‘ratio
between the values or the variations of y and x’, concluding with the separation of the
strikers which vary this ratio from those which do not. Two of these pairs reached

this separation in DG Cartesian while only one was able to do it in DG Parallel.

Diagram AIV-5.1 shows that, apart from John & Tanya, all pairs of students brought
the perceptions from DG Parallel to DG Cartesian and linked them to their previous
perceptions of curvature. One of the big issues of this research was that the
interaction in the sequence DG Parallel to DG Cartesian enabled all the pairs, apart
from John & Tanya, to classify ‘the ratio between the variations of y and x' as
constant and variable. Apart from Diana & Gisele, the other two pairs also linked this
classification to the separation between straight lines and curves. Diana & Gisele
made this connection in the final interview. Therefore, they buiit a variational
perception of the second derivative distinguishing a constant from a variable
derivative. John & Tanya also constructed this classification and this link but only in
the final interview. They had to overcome a barrier to this link created by their

associations of a ‘ratio between x and y’ and the angle in the graph.

The pairs who started by working with DG used DG Cartesian as a bridge between the
perceptions built in DG Paraliel and their previous knowledge. Jane & Anne
perceived second derivative in DG Cartesian as ‘the variation of the speeds of y and x’
and ‘the shape traced by (x,y)’' and they linked these perceptions in FP. For Charles
& Bernard, the perceptions as ‘the variations of the speeds of x and y’ built in DG
Parallel were brought through DG Cartesian to FP. In FP, this perception was linked

to ‘the curvature of the graphs’.

In the construction of the idea of acceleration, two of the pairs of students associated
‘the variations of the speeds of x and y’ and ‘the fact that the sprite of y overtakes the

one of x’. They identified sprites as having variable derivative when ‘y overtakes x’
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while they were moving x in DG microworlds. Another pair of students only identified
variable speed in the strikers when y disappeared quickly in the screen of DG

microworlds.

Diana & Gisele and Jane & Anne developed perceptions in FP isolated from those built
in both DG microworlds. Both sets of microworlds were linked through their
previous knowledge of curvature. Diana & Gisele reached the link only in the final
interview. The other two pairs worked linking all their perceptions which were

derived from interactions with the microworlds.

Despite not being able to link acceleration to curvature in the pre-test, all the pairs
of students used curvature as a property to compare parabolas from the pre-test.
Nonetheless, they all exhibited difficulties in comparing curvature of parabolas with
different turning points. The exploration of dynamic transformations of graphs in FP
encouraged the students to measure curvature. Table AlV-5.3 and diagram AlV-5.1
show that the students revised the measure of curvature. The students tried to
calculate the distance between two symmetrical points in a parabola, following a
pointwise view. By exploring vertical translations, all the pairs of students, apart
from Diana & Gisele, realised this was not a valid way to measure curvature.
Moreover, they tried a method of measuring it using the idea of the vertical
transiation after realising that the curvature was invariant through this
transformation (see table AlV-5.3). This method was scaffolded for two pairs of
students, who began working with DG, as a way to compare curvatures of two graphs.
They used the translation later as a way to compare the curvatures. In the case of
Diana & Gisele, they went beyond a critical moment, when they could have seen that
the previous idea did not work, but they only created a new rule for the case. This
pair of students realised this incompatibility by stretching the graph of a sine
vertically. In general, the stretch was used by the students to realise different
curvatures of the graphs. Therefore, the use of dynamic transformations of graphs

was important to the students’ revision of their previous perceptions of curvature.
1.6 Range

The pre-test demonstrated a variety of previous perceptions of range. Apart from
Bernard & Charles, all the pairs of students only thought of range as bounded and so
associated with extreme values and turning points. Bernard & Charles only identified
extreme values in pointwise graphs. In addition, two of the pairs only considered

range as a discrete collection of outputs,
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In DG Parallel all the students discriminated range as ‘the place where y can move
through’ without naming it explicitly. Apart from Jane & Anne, all of them developed
two approaches to analysing this idea: (a) dividing it into positive and negative — a
polarised approach; and (b) considering the bounds of the motion of y. They also

brought these two approaches to DG Cartesian.

As motion is a strong feature in DG microworlds, all the pairs of students
discriminated the range of the strikers as ‘the bound of the motion of y’. Only Jane &
Anne did not explore this perception very far. The others generalised this perception
to all bounded and boundless functions. Even the students who considered only bounded
range in the pre-test generalised the perception to boundless functions in DG
Parallel or in DG Cartesian. This sort of analysis was not generalised to constant
functions which is further evidence of the importance of motion in this classification.
Also, from a mathematical viewpoint the approach (b) considered range as a global

set, not just discrete outputs. Unfortunately, it was isolated until the final interview.

The polarised approach to range was also exhibited by these three pairs of students.
They divided the strikers into positive, negative, and positive and negative. Note that
John & Tanya used this approach only for constant functions. Nonetheless, this
approach persisted in the other pairs even in FP. Note that with this approach the
other two pairs had difficulties in seeing the range of the striker of y=0.25x2-8 as

being similar to the range of the other strikers of parabolas.

Bernard & Charles and John & Tanya started using the polarised approach and with
the development of the work in both DG microworlds abandoned it and moved into the
approach (b). The other two pairs of students showed the same development but in
parallel. Moreover, for these pairs the approach (b) was the one which lost

importance.

Apart from Bernard & Charles, all the pairs of students exploited the motion of (x,y)
to explore range in DG Cartesian. John & Tanya used the graph traced by (x,y) to
generalise the idea of infinity to strikers where y did not disappear from the screen.
For Diana & Gisele and Jane & Anne, the trace of (x,y) was linked to their previous
knowledge of extreme values. Nonetheless, none of them used DG Cartesian as a bridge

between DG Parallel and the Cartesian system.

All the pairs of students connected the perceptions of extireme values and ‘the bound
of the motion of y’ only in the final interview. In the research environment these

perceptions stayed completely isolated.



All the pairs, apart from Jane & Anne, linked their perceptions of range derived
from interaction with FP to their previous knowledge of range or extreme values.
Jane & Anne did not link them to any other perceptions developed in other

microworlds or previous knowledge.

On exploring alterations of range in graphs provoked by stretches and translations in
FP (see table AIV-6.3), all the pairs of students, apart from Anne & Jane, recognised
and revised two aspects of range: the amplitude of the range and range as a set. Diana
& Gisele recognised them but only in the final interview where they also identified
the corresponding ideas in graphs. For the other two pairs, the transformations
generated discussion about the real meaning of the term range. For Diana & Gisele and
Jane & Anne, exploration of FP commands was responsible for overcoming the
restriction of considering range only for functions with bounded range. In fact, on
using the commands to try out their belief that range should be bound, they revised
their perception of range generalising it to all the functions — bound or boundless.
The interaction with dynamic transformations of graphs in FP enabled the students to

overcome the limitations of perceiving range only for bounded functions.
1.7 Symmetry

In DG Parallel, all the students only perceived symmetry in terms of symmetric
numbers. In the same way, in DG Cartesian the most common perception of symmetry
also deals with symmetric numbers. Nonetheless, line symmetry was perceived only
by Diana & Gisele using the shape traced by (x,y). In conclusion, line symmetry was
perceived by the students only in microworlds which contain the graph (explicitly
drawn) and one exception in DG Cartesian, which shows that line symmetry is

usually perceived in a pictorial way having no special status in DG microworlds.

The students' perceptions of symmetry strongly emphasised symmetric numbers.
Diagram AlV-7.1 shows that the majority of attempts to express line symmetry in
pointwise or variational ways resulted in perceptions associated with symmetric
numbers. This emphasis operated as an obstacle to the students' generalisation of
these perceptions to line symmetry about a line different from the axes, which does
not correspond to symmetric numbers. In their school mathematics, a pointwise
correspondence for line symmetry is presented only for the graphs with line of

symmetry in one of the axes which can be given in terms of symmetric numbers.

Although it was not easy to identify in DG Parallel, in the final interview all the
pairs of students, excepting Jane & Anne, discriminated line symmetry within this

microworld relating it to the motions of x and y — in a variational way. The
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association between line symmetry and symmetric humbers prevented one of these
pairs from linking this variational perception to the pictorial one of line of
symmetry, creating an obstacle for the students' connection of their perceptions
while using the term symmetry. As for Anne & Jane, they had only discussed line
symmetry involving symmetric numbers in the research environment, thus, in the
final interview they connected line of symmetry in graphs to symmetric numbers in
DG Parallel.

On exploring horizontal transformations of graphs, all the students, excepting Anne
& Jane, generalised line symmetry for graph with line of symmetry different from
the y-axis (see table AIV-7.3). John & Tanya and Bernard & Charles had a previous
pictorial knowledge of symmetry constrained to line of symmetry in the axes. By
generating examples with transformations of graphs in FP, these students realised
that the line symmetry need not be about the axes. Charles & Bernard did this for line
of symmetry different from the y-axis, and John & Tanya different from the x-axis.
The other students were able to identify line symmetry on graphs with line of
symmetry different from the axes by using the turning point as a way of recognising

it.

All the students perceived line symmetry pictorially, while only some of them
connected this perception to a pointwise perception through a correspondence with
symmetric numbers. It is interesting that all the students were encouraged in FP to
try to adapt a functional meaning for line symmetry. Diana & Gisele and John & Tanya
used the generalisation of pictorial perception of line symmetry about a line
different from the axes to generalise the pointwise meaning for line symmetry. Thus,
they overcame the constraint of seeing line symmetry only as symmetric numbers.
Note that among the students who generalised line symmetry about a line different
from the axes in FP, only Bernard & Charles were unable to integrate the
information to perceive the pointwise correspondence for this generalisation. Their
attitude changed, however, when dealing with symmetric graphs, and they began to

locate the lines of symmetry.
1.8 Periodicity

All the students presented pictorial perceptions of periodicity in the pre-test
although none distinguished periodic from oscillatory graphs. In DG Parallel, John &
Tanya were the only pair of students who developed a variational perception to
periodicity by relating the behaviour of x and y and who were also trying to connect
perceptions among different microworlds all the time. For Diana & Gisele and Jane &

Anne, who explored the notion of periodicity in this microworld, the osciilation
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between ‘y follows x’ and ‘y does not follow x’ was the strongest perception of
periodicity which stayed isolated. In the case of Anne & Jane, they only connected this
perception by matching the strikers from both DG microworlds.

In DG Cartesian, unlike in DG Parallel, the students strengthened their perceptions of
periodicity. All the pairs of students, apart from Jane & Anne, used DG Cartesian to
connect their previous perception of period as ‘the shape traced by (x,y) to ‘the one
which relates x to (x,y) or x to y'. Moreover, after identifying periodic functions in
DG Cartesian, Bernard & Charles, the pair who had not explored periodicity in DG
Parallel, connected this idea back to DG Parallel in the final interview. Jane & Anne
also connected their perceptions of periodicity from FP back to DG Parallel without
using DG Cartesian. Nonetheless, they limited this connection to the periodicity of the
roots. In conclusion, by exploring the contrast between ‘absence of the shape’ and
‘motion of x, y and (x,y) in DG Cartesian, three of the pairs of students developed a
variational perception of periodicity. Thus, DG Cartesian composed a bridge from
their previous knowledge of periodicity to its perception in DG Parallel. Note that in
this process the students distinguished a periodic function from any oscillatory

graph.

Table AlIV-8.3 shows that all the pairs, apart from Diana & Gisele, exploited the
dynamic transformations of graphs in FP to revise their previous perceptions of
period. Jane & Anne did it in the final interview. Bernard & Charles and John &
Tanya explored the transformations by generating counter-examples of previous
perception which motivated them to revise these perceptions. For example, by
perceiving the period as the interval between two roots and generating two graphs of
sines with same period translated horizontally, John & Tanya concluded that the

period was not ‘the interval’ but ‘the distance’ between the roots.

For all the students, periodicity remained a property discriminated using special
points of graphs. Even Bernard & Charles who reached the invariance of the period

when calculated on different points did this on special points.

2 Synthesis

The following analysis will discuss how students made connections between different
perceptions of function properties, divided into two subsections: spontaneous
synthesis where the students made connections while interacting in a microworld and
motivated synthesis where connections were motivated by the researcher in the final

interview.
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2.1 Spontaneous synthesis

The connections spontaneously made will be analysed according to the microworld in

which they were made.
Connections in DG Parallel

Table AV-2.1 shows that the pairs of students who began working with DG Parallel
made very few spontaneous links between perceptions built in DG Parallel and
previous knowledge. For instance, the only idea from previous knowledge used by
Bernard & Charles was infinity which they used to explain what happened when a
‘striker gets out of the visual screen’. The majority of the perceptions constructed in
DG Parallel by these students were discriminated and generalised within this
microworld (see table AV-2.2). The other two pairs of students more often built
connections using their knowledge of the graphs explored in FP as well as bringing
terms from previous knowledge to make sense in DG Parallel (see table AV-2.1).
These results show that matching the graphs and strikers was important in

encouraging the students to make connections while working with DG Parallel.
Synthesis in DG Cartesian

While exploring DG Cartesian, the students characterised the strikers in two ways:
(a) by the shape formed by the motion of (x,y) which was usually linked to
perceptions derived from both explorations in FP and previous knowledge and (b) by
comparing the motions or the values of x and y, usually linked with perceptions
derived from interaction with DG Parallel. Table AV-2.2 shows that the pairs of
students varied in presenting one way or both ways for different properties.
Moreover, in most of the cases when the students characterised the strikers in both
ways, they developed these independently of each other in DG Cartesian. Many of them
were linked in FP or in the final interview. Bernard & Charles illustrated this when
they connected the idea of speed from DG Parallel to DG Cartesian without linking it to
‘slope of graphs’. As table AV-2.2 shows, these links mainly occurred in DG
Cartesian for turning points and constant functions. The pairs of students who
finished by working with FP also linked the two perceptions of derivative and second
derivative while exploring FP. Thus, DG Cartesian worked as a bridge from
perceptions articulated in DG Parallel to DG Cartesian mainly for all properties
linked with variation and for turning point. It is interesting to notice that
monotonicity was the only perception of variation in which DG Cartesian was not
explored as bridge. For this property as well as for symmetry and periodicity, the

majority of students concentrated on analysing the shape and were blocked from
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building connections with previous knowledge. Note that the majority of these
perceptions were previously articulated pictorially.

Table AV-2.2 also shows that the connections were more often articulated with
previous knowledge or the graphs in FP than with DG Parallel. The motivations
labelled ‘A’ and ‘D’ in this table show that the students were often prompted to
connect perceptions derived from different microworlds in DG Cartesian by
recognising the family of functions to which the strikers belong and by using terms
already studied for this family. For example, Bernard & Charles brought the term
periodicity to make sense in DG Cartesian after remembering the trigonometric

functions, which they called “up and down”.

The possibility of looking at the behaviour of x and y and at the trace of the graph
simultaneously and separately was the main reason why the students used DG
Cartesian to bridge variational perceptions from DG Parallel to the Cartesian system
(see motivations C and F in table AV-2.2). This possibility allowed two kinds of
connection: (a) the use of perceptions constructed in DG Parallel to understand
properties in Cartesian system and (b) the use of shape to make sense of previous
perceptions by comparing the behaviour of x and y. In each case, DG Cartesian was
used by the students as a bridge between variational and pointwise perceptions (built
in DG Parallel or in DG Cartesian) and pictorial perceptions in the Cartesian system.
The case (a) can be illustrated by John & Tanya's connection between constant
function and ‘y is independent of x’; this pair of students had recognised the family of
the strikers from DG Parallel. The possibility of manipulating x and seeing y in DG
Parallel enabled them to perceive the constant functions as ‘y is independent of x’
linked to ‘horizontal straight line’. Tanya argued that ‘x moves, moves, but y does not
move’. The case (b) can be illustrated by the fact that after recognising the shape of
the striker given by y=7sin(0.25nx), Diana & Gisele started investigating line
symmetry. At this point, they tried to say what line symmetry means for the sprites
representing x, y and (x,y). The kind of bridge (b) shows that the use of DG
Cartesian encouraged all the pairs of students to search for a variational or pointwise
correspondence for properties of which they had a pictorial perception, although
sometimes they did not reach a mathematically correct connection. For instance, in
the example above, Diana & Gisele did not reach the corresponding idea of symmetry,

they reached a periodic aspect instead.
Synthesis in FP with previous knowledge

According to table AV-2.3, while exploring FP, all the pairs of students worked by

connecting perceptions of all the properties with their previous knowledge. This
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table summarises the moments at which the pairs of students were motivated to
connect their perceptions. One of the most frequent moments was when the students
brought terms from their previous knowledge to make sense in FP, which motivated
discussion about their meaning. The term ‘period’ for example was one that all the
pairs of students knew. John & Tanya talked about period in two senses: ‘repetition of
a trajectory’ in graph, and ‘interval of x after which its trajectory repeated’. While
stretching vertically the graph of y=7sin(0.25nx), they realised that ‘trajectories’
could be completely different without alitering their interval. Later, translating
horizontally the graph of y=7sin(0.25nx), they realised that what was important
was the length of the interval. At this point, they calculated the period. This example
also illustrates another moment which appeared many times as motivating
connections (see table AV-2.3). The students analysed the properties as variants and

invariants of the transformations of graphs.

The students were motivated to build connections in three other situations. One of
them was when they attempted to distinguish their descriptions of two or more
functions. This situation shows the importance of the nature of the designed activities
in leading students into connections. The other two are linked to the nature of the
activities while interacting with dynamic transformations of graphs. The use of both
algebraic and Cartesian representations while transforming graphs helped all the
pairs of students to link different characteristics in different representations. After
tracing the graph of y=6 and trying to transform the graph of y=2x into it, for
example, Tanya made sense of the equation y=6 as “y has only one value while x can
have many values”. The last motivation was a consequence of the students' attempts to
make sense of results obtained from transformations which are counter-examples of
their own beliefs (see table AV-2.3). This motivation is interesting because it
emphasises a difference between FP and DG microworlds. In FP one can generate
examples and counter-examples while in DG microworlds the examples are given.
Note that in table AV-2.2 counter-examples were used twice o make connections, in

one case in FP by generating counter-examples.
General points

Label ‘NL’ in tables AV-2.1, AV-2.2, AV-2.3 and AV-2.4 points to connections that
the students made linking perceptions with ‘special status’. For example Bernard &
Charles and Diana & Gisele connected ‘turning point’ to ‘point where y meets X',
which is a connection between properties perceived as ‘special points’. John & Tanya
presented a connection between ‘angle formed between straight line and the x-axis’
and ‘an imaginary angle in DG Parallel’ which is also a connection between same

object ‘angle’. Connections of this kind also appeared by linking the ‘adjectives’. For
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example, Bernard & Charles connected ‘positive angular coefficient’ in quadratic
equations to ‘positive’ range in parabolas. Nonetheless, no synthesis of this kind was
significant among the connections made by the pairs of students. Moreover, the
majority of them were revised by the students. However, these kinds of connections

appeared more as associations which wili be discussed in section 3.
2.2 Motivated synthesis

The two activities of the final interview were crucial for the students to synthesise
their perceptions between different microworlds: (A1) matching the strikers and the
graphs and (A2) guessing the change in a striker after transforming its
corresponding graph in FP (see table AV-2.4). Many of the connections were also

provoked only with direct questions.

According to table AV-2.4, activity A1 led all the pairs of students to connect
perceptions from different microworlds as well as to revise and generalise some
perceptions using the connections (see ‘GP’ in the table). Bernard & Charles, for
example, revised their link between ‘inclination of graph’ and ‘ratio between x and
y' to ‘ratio between the variations of x and y’ after matching the graphs and strikers

of y=x and y=x-6.

Activity A2 led all the students to make connections by searching for a new
perception in DG Parallel (see table AV-2.4). The generation of examples and
counter-examples encouraged the students to search for a meaning in DG Parallel for
their perceptions in graphs. Observe that this activity provoked the students to
connect perceptions mainly for the properties of range, symmetry and periodicity.

Remember that these properties were not thoroughly explored in DG Parallel.

As shown in table AV-2.4, the final interview was useful for the students:

* to generalise perceptions of properties which were previously restricted to one
family of functions (see ‘GP’ in the table);

* to search for the perceptions in DG Parallel brought from previous knowledge of
graphs or from interactions with FP. Columns ‘DG Parallel’ and ‘Graphs and
definitions’ in the table show that the majority of connections were built in the
final interview by searching for a new perception in DG Parallel which would
correspond to the one spontaneously expressed in Cartesian system. All the
students started explaining ‘the shape of graphs’ by ‘the behaviour of x and y'.
This finding demonstrated that the work with DG Parallel and DG Cartesian was
useful in giving the students a variational analysis of graphs. This helped in

promoting bridges from Cartesian System to DG Parallel;
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* to connect corresponding perceptions which remained isolated in different
microworlds. For example, the pairs of students connected the perceptions of all
the properties, apart from those of symmetry, which stayed isolated (see table
AV-2.4). In the case of symmetry, it should be noted that almost no perception

was built in DG Parallel.

3 Associations

In the development of the students' perceptions of the properties, the analysis shows
that the students spontaneously constructed and revised associations between
different properties. Table AV-3.1 shows the leaps taken by the students when
revising the associations and the cases when associations were not revised. Column
‘Origins’ in the table investigates causes of the associations as weil as patterns
presented in the associations. It can be divided into four categories: those constructed
in the research environment (A to C); those which reflect a tendency in students'
perceptions (E to G); those which have similarities with school curriculum (H to K).

Origins D will be discussed in section 5 while discussing the role of the microworlds.

As table AV-3.1 shows, this categorisation is not exclusive, for example, there are
associations with origins in the research environment and also with similarities
with school curriculum such as the association between ‘periodic function’ and

‘oscillatory graphs’ presented by all the pairs.
3.1 Origins in the research environment
A legitimate way of recognising a property

Table AV-3.1 shows that mainly for the properties of monotonicity, derivative,
second derivative and periodicity, associations were developed as a legitimate way of
recognising a property among a limited group of functions. Nonetheless, only for the
properties of variation were these associations clearly separated from similarities
with school curriculum. The fact that all the pairs of students started to construct the
idea of derivative by associating it to ‘ratio between absolute values of x and y’,
instead of considering the variations of x and y illustrates this sort of association. It
was recognised and revised by all the pairs of students while they were analysing the

striker of y=x-6.

The building of the associations seems once more to indicate a natural process in the

construction of knowledge. Yet, what is really interesting is that almost all these
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above-mentioned associations (see ‘A’ in table AV-3.1) which had no clear
similarity with the school curriculum, were later revised by the students while

analysing counter-examples.
Other reasons

Less frequently, two other causes of associations were detected as originating in the
research environment. Associations with origin ‘C’ in table AV-3.1 were built while
linking perceptions from different microworids such as ‘y is motionless’ and ‘(x,y)
is motionless’ for two of the pairs of students. Origin ‘B’ in table AV-3.1 shows that
comparison between invariant properties while transforming graphs was the reason
for the building of associations. For example, two of the pairs associated and did not
revise ‘inclination of straight line’ and ‘ratio between x-intercept and y-intercept’.
Nonetheless, table AV-3.1 shows that these associations were not so frequent as the

use of these transformations to revise associations (see Revision [GC}).
3.2 Similarities with the school curriculum
Properties studied only for a particular set of functions

Table AV-3.1 shows many associations with origins as a legitimate way of
recognising a property among one family of functions or a set of functions within a
family (see origin 1) — the emphasis of the school curriculum. These associations
were frequent with turning points, monotonicity, extreme values, line symmetry and
periodicity. Note that in the case of periodicity, these associations also provide a
legitimate way of recognising the property among the twelve functions selected (see
origin A). An illustration of these associations is that the school emphasis on dealing
with increasing for linear functions led all the pairs of students to associate
‘increasing’ to rules involving positive and negative — ‘the side where the straight

line is positive’ (see table AV-3.1).
Associations linked with use of terms

This association was interesting because it only appeared when the students were
using the term ‘increasing’ for monotonicity. For example, when John & Tanya
created another term for the same characteristic identified by the behaviour of x and
y, this association no longer appeared. This is also used as evidence as to the origins
in previous knowledge. By using mathematical terms, the students restricted
perceptions to some cases of the properties. This use is also observed in the

association between ‘line symmetry’ and symmetric numbers which three of the
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pairs presented and that also appear in the school curriculum analysis (see chapter
Vi).

Special points

Another sort of association derived from school emphasised special points (see origin
J in table AV-3.1). The perceptions most affected in this way were those of turning
point, periodicity and extreme values. Those are also the properties which the school
emphasises by special points in graphs. For example, all the pairs of students limited
their perceptions of periodicity to that of special points in special ‘periodic roots’.

This tendency is also observed in the analysis of the curriculum.
Over-generalisation of the role of coefficient

Finally, table AV-3.1 shows one more association with origins in the school
curriculum which appeared only twice in DG Cartesian but has interesting origins
(see origins H). This association originated from an over-generalisation of the role
of the coefficient ‘a’, in a general formula from y=ax+b to y=axZ+bx+c. This
association was more clear while Diana & Gisele were working with the graph of
y=0.25x2-8. They linked increasing function to positive curvature using the fact
that ‘a’ is positive. Note that as in school mathematics it is usual to use the general
formula for linear function as y=ax+b and the general formula for quadratic
functions as y=ax2+bx+c, their association seemed to be natural. Natural because the
students learnt that a linear function given by ‘y=ax’ is increasing if ‘a’ is positive,
but they also studied quadratic functions denoting the angular coefficient by ‘a’. It is
reasonable that they think ‘a’ plays the same role in the quadratic equation. The
association was also caused by the fact that the idea of monotonicity was not much

emphasised in the family of parabolic functions at school.
3.3 Patterns in associations

Many associations were made on the following basis: (a) a tendency to interpret
properties (especially those linked with variation) in a pointwise way, (b) a

tendency to transform a property into a rule involving polarisation and (c) a
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tendency to use the same object or same adjective as a reason to associate properties.

Pointwise view of functions

The tendency (a) was exhibited by all the pairs of students while exploring
derivative, second derivative and periodicity. The association between ‘being quicker’

and ‘being ahead of the others’ which was expressed by all the pairs of students is an



illustration of this tendency. Note that all these associations, apart from those linked
with periodicity, were revised by the students. Also all the pairs of students
exhibited associations which reflected the pointwise view of functions when trying a
functional meaning of their pictorial perceptions of periodicity and second
derivative. For example, on trying to find out the functional meaning for curvature,
all the pairs of students associated it to ‘the distance between two symmetrical

points’.
Polarisation of Knowledge

Tendency (b) was exhibited while the students where analysing the properties of
monotonicity, range and periodicity (see origin F in table AV-3.1). For example, all
the pairs of students associated the term ‘increasing’ to ‘straight line which is
positive in the positive side’, which is also a rule predicted in the analysis of the
school curriculum (see chapter VI). This tendency was also reflected in the fact that
the students divided the domain into positive and negative to analyse any property,
causing associations such as the one between ‘y is oscillatory’ and ‘y is independent of
x’. Note that for only two of the cases the associations were not revised, but half of

the revisions were done in the final interview.
Association using the same object

Tendency C was mainly exhibited by all the pairs of students while analysing turning
points, constant functions and range (see origin E in table AV-3.1). An illustration of
association by same object can be seen by ‘inclination of straight line’ associated
with ‘imaginary angle’ by John & Tanya in DG Parallel. Properties were also
associated because they are characterised with the same adjective, for example,
positive range and positive angular coefficient. Nonetheless, apart from two cases, all
these associations were initial and temporary, almost all easily revised by the pairs

of students.
3.4 Revision of associations
Counter-examples generating critical moments

Although the process of revising associations was very particular to each individual
and could not be characterised by properties, table AV-3.1 shows that generally
revisions happened in critical moments and most notably often interaction with
counter-examples (see revision [T] and [GC] in column revision). Together both
cases composed the majority of revisions of associations made by the students. [T]

represents the moments when the students tried to generalise an association to a
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different function which represents a counter-example of the association. For
example, as mentioned before, the analysis of the association between ‘speed of
striker’ and ‘ratio between absolute values of x and y’ in the striker of y=x-6 was
for all the pairs responsibie for revision of the association. [GC] shows a special kind
of [T] when the counter-examples were generated by transformations of graphs.
Diana & Gisele, for example, revised the association between ‘curvature’ and
‘distance between two symmetrical points’ while stretching vertically the graph of
y=7sin(0.125mx).

Nonetheless, as table AV-3.1 shows, the associations were not revised every time the
students passed through critical moments such as examining counter-examples (see
[WCM] in table AV-3.1).

Absence of critical moments

Table AV-3.1 shows some cases in which the associations were not revised but nor
did the students pass through any critical moments such as examining a counter-
example (see Revision [NCM]), showing once more the importance of interactions
with counter-examples in revising associations. Some of the associations did not have
counter-examples in the research environment, in other cases the students did not
examine the counter-examples. The association between ‘periodic function’ and
‘oscillatory graph’ is an illustration of the case in which the research environment
does not present counter-examples. For these cases, | am not sure if the presence of
counter-examples would help the students to revise the association or whether the

association would hinder the distinction between periodicity and oscillation.

4 Obstacles

The students were prevented from generalising, linking perceptions and perceiving
similarities of functions or even investigating new ideas by their previous
perceptions. Patterns of similarities were identified in these perceptions (see table
AV-3.2). Below, | discuss some of these patterns and the obstacles they caused in the

students' development of perceptions.
Pointwise perceptions

The interactions with the microworlds led the students to change their initial
tendency to analyse the function properties in a pointwise way, mainly for turning

points and variation. As soon as he was informed that the strikers in DG Paraliel
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represented functions, John stated: “it seems to be more difficult ... because [in] this
[activity], we have to think of it [striker] as function, think of it not only as a game,
it is not only [to think] in their [strikers’] motions, but there are other items that |
think will also appear”. This statement reflects the separation presented by all the
pairs between motion as a property of strikers and pointwise perceptions as a
property of functions (see the associations in table AV-3.1). This separation had
been preventing the students from building generalisations and connections.
Nonetheless, for all the properties linked with variation, these barriers were
transposed, which indicates that the interaction with the dynamic microworlds
helped the students to overcome barriers derived from a pointwise view of functions
while investigating properties of variation. On the other hand, for other properties
such as linearity and periodicity, the barriers were not easily overcome. In the case
of linearity, for example, concepts were transformed removing their original sense
to a rule of recognition almost completely based on discrete points. Diana & Gisele
used ‘graph passes through (0,0)’ replacing the meaning of linear function (see
table AV-3.1). In the case of periodicity the emphasis on special points prevented the
students from having a global perception of periodicity among all the points of the

domain.

Note that for these two above-mentioned cases the school emphasis on special points
coincides with these tendencies, thus increasing the difficuity in overcoming them.
Breaking a tendency seems to be easier than revising a knowledge ‘well established’

by the students in the school curriculum.
Tendency to polarise knowledge

The tendency to polarise mathematical knowledge appeared also as an obstacle to
generalising properties as well as to linking properties between microworlds. Table
AV-3.2 together with the associations generated by the tendency towards polarisation
show that this kind of obstacle was stronger than the pointwise one. For example, the
tendency to divide a set into positive and negative prevented all the pairs from
recognising similarities in range or in monotonicity among functions of the same
family. Note that in the case of range, the approach which involved limits of motions
led three of the pairs to move from the polarised approach into a topological one in DG
microworlds. This enabled them to transpose the obstacles. Thus, the interaction with
the dynamic aspect of DG microworlds was responsible for changes in these polarised

approaches.

Also, tables AV-3.1 and AV-3.2 show that on dealing with mathematical terminoiogy,

the associations and obstacles became more difficult to overcome. For example, the
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obstacle concerning the use of the term ‘increasing’ was overcome for the majority
in the final interview, after marked generalisation of other perceptions of

monotonicity.
Emphasis on some properties for some families

The emphasis which school mathematics placed on some properties in a particular
family of functions seemed to create obstacles to the students' development of
perceptions of the properties as shown by table AV-3.2. After recognising the family
of functions that each striker belonged to, the students completely changed their
approach to analysing the strikers, reacting in a way which blocked progress to the
next step. First, the students were led into associations which distorted the original
meaning of some concepts (see table AV-3.2). Second, they sought only for
properties emphasised at school or they stopped searching for new characteristics
(see table AV-3.2). John & Tanya and Diana & Gisele did both. Since they did not
analyse a property which they had not been taught in the family, they were prevented

from generalising or revising their perceptions.
Equation as essence of function

In contrast with the results obtained in the pilot study, in the main study the
interference caused by the consideration of equation as being the ‘essence of a
function’ appeared only twice (see table AV-3.2). It seems that the change promoted
in the methodology of the study led the students to focus more attention on graphs than

oh equations.
Specifying the variables

| had many opportunities to observe that all the pairs of students characterised the
functions without specifying the subject that they were talking about (see table AV-
3.2). For example, “it is positive” without mentioning what ‘it means. This
imprecise language caused associations of properties and a failure to separate the
variables. In the activities, which involved describing/guessing, one of the partners
always asked the other to be specific in what s/he said. Also, more precise language
was needed in using DG microworlds, since it was not a familiar representation to the
students. | argue also that in DG microworlds, the clear separation of the objects x
and y also made them more precise in their language. For example, despite not
recognising maximum and minimum in the bound of the motion of the striker, Diana

& Gisele clearly localised the limit in y, not in x.
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5 The role of the microworlds

This section will discuss some common points in students’ perceptions while

interacting with the microworlds.
Lens for amplifying associations

The observation of the students' interactions with the microworlds served as a ‘lens’
(Hillel et al, 1992) on the associations students made as well as the reasons which
provoked them (see table AV-3.1). For a better understanding of the metaphor, | will
illustrate with the case of the association between ‘Parabola’ and ‘curve with turning
point’ presented by all the pairs in at least one of the microworlds presenting the
Cartesian representation. For two pairs this was also presented in DG Parallel, a
microworld where shapes of graph were not available, and in which this association
was more evident. Before identifying the idea of curvature in DG Parallel, John &
Tanya used turning point to recognise parabolas, even for the striker of
y=7sin{0.25nx). John also described how to distinguish the curves from the
straight lines “what makes it become a curve is it [y] arrives to a point and
returns”. Another illustration concerns the interaction with FP, when all the pairs

of students associated ‘curvature’ to ‘distance between two symmetrica!l points’.

5.1 DG microworlds

John: It is interesting... When we stop to think, we see only functions, only looking
at the game [DG Parallel].

Researcher: Really?

John: That's incredible!

Researcher: Is it? You see the functions in the strikers?

John: Yes... its motion. It is interesting the motion of the functions, just in a game
like this, we had never imagined, it is as if the game masks...

Researcher: Is it hiding...?

John: | remembered ... | was comparing to something... to the money-lender.
Today, money-lending is illegal, isn't it?

Researcher: Yes.

John: Once my father went to a money-lender, the money-lender was in a clothes
and shoes shop, when we arrived at that shop there were the sellers.

Researcher: Hum...Hum.

John: But, when we went into [the shop], he [his father] said: | came to give you
money. So, you could take the lift to go to the money-lender. This game is
similar, this is, it seems to be so simple but the truth is that it shows you
more about complex functions, and shows you the motion of these functions,
their relations...

Researcher; Yes, it is like the behaviour of the functions.

John: Exactly.

John: It should be very useful in a school. For example, | started to understand
how valuable functions are with this work.
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The above transcription was a special moment when one of the students clearly stated
the usefulness of the interaction with DG Parallel. He argued that this microworld
stressed motion in the function. From my viewpoint, he was able to perceive that the
same idea can be seen in different representations, as well as to observe that each

representation emphasises different characteristics.
Concentrating on variational views

The interactions with DG microworlds led the students to concentrate on variational
perceptions mainly for the properties of turning points and variation (see tables AV-
4.1 and AV-4.2). They also approached the property of range only by considering the
motion of y while locking at its limit. Nonetheless, the interaction scaffolded a
variational view of graphs mainly for turning points, constant function and
derivative (see codes C in the tables). Thus, the use of DG microworlds scaffolded a
new way of analysing the graphs. This was demonstrated in the use by Charles &
Bernard, who began by working with DG, of the same method of exploration of DG

Paralle! to verify the variation of graphs in FP.
Search for functional meaning of pictorial perceptions

DG Cartesian microworld encouraged the students to search for a functional
correspondence to pictorial perceptions (see code B in tables AV-4.1 and AV-4.2). |
argued that the contrast between the possibility of seeing the shape of the graph by
the motion of (x,y) and the absence of its trace was crucial for the change in these
students. This remark is based on the fact that these searches always happened after a
student brought a view from their previous knowledge to characterise a striker in
this microworld. Nonetheless, without the drawing of the shape when the other
students came to guess the striker, the first student tried an explanation using the

behaviour of x and y.
Separation of variables

It is also important to emphasise that the interaction with DG microworlds
encouraged all the students to define which object they were talking about while
describing the functions {see code A in tables AV-4.1 and AV-4.2). This was reflected
in the fact that the students started identifying the variable they were talking about.
This was more apparent in relation to the properties related to variation. For
example, comparing Diana & Gisele's arguments about periodicity, we can notice a
difference. In FP, they argued that it repeated in the graph. As for DG Cartesian, “the

point repeats its path,... each 4 units x moves, y makes one turn”.
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5.2 The interaction with dynamic transformations of graphs (FP)

The interaction with dynamic transformations of graphs led the students to revise and
generalise their perceptions of the properties. John's observations after exploring
the commands in the graphs of y=abs(x) provided a special moment showing that in
fact these transformations really interfered with students' perceptions. John
complained about the possibility of Tanya using the commands when trying to guess
the function described by him saying: “It will be very easy because the commands
give you some hints