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ABSTRACT 

Previous research has tended to focus on the development of separate number 

components (e.g. counting, addition, written numbers) and so, cannot comment on 

how development in one component affect development in others. The purpose of this 

thesis was to provide preliminary evidence towards a unifying view about the 

development of children's number competence, from early counting skills, at age four, 

to knowledge of place value, at age seven. To accomplish that aim 152 children from 

three different cohorts (Reception, Year 1 and Year 2) were given thirteen maths tasks, 

three times along one school year, assessing their understanding of four separate 

number components: counting and knowledge of the number-word sequence; 

generation of verbal number-words and the understanding of the structure of the 

numeration system; understanding of the arithmetical operations; and the ability to read 

and write numbers and understanding of the principles underlying place value. Beyond 

the assessment of these various number components, special emphasis was given to 

the separate role of each component and the developmental inter-relations amongst 

components in the child's development of progressively more complex ideas about 

number. 

Based on the children's performance on these tasks and the exploration of their 

relationships along time, it was possible to outline a preliminary proposal about 

children's number development. The evidence suggests that each number component 

plays a significant role at key times. For example, no children could develop the 

counting-on strategy or succeed in the arithmetical operation tasks without prior 

knowledge of continuation of counting. The data also showed that no development is 

possible without the inter-related development of several components, at other times. 

For example, no child could understand the structure of the decade numeration system 

without previous combined understanding of continuation of counting, addition and 

multiplication. Between 93% and 97% of the children fitted the model proposed in the 

various assessments. 

Although limited by the constraints of a correlational design, these findings 

suggest that the present inter-relational approach is relevant and worth further 

investigation through the introduction of intervention studies and the rigorous 

examination of causality. 

iii 



ACKNOWLEDGEMENTS 

A PhD is a difficult endeavour in terms of individual courage, persistence and 

focus. It confronted me with things I was not aware about myself, making me a better 

person and, hopefully, a better observer of the world. I owe this to the many people 

who participated in this process, in different ways, either knowingly or not. 

Firstly, to Professor Carlos de Jesus who was the first to encourage me to do a 

PhD. Also, to J.J. Figueiras dos Santos, who made it possible by lending me the 

money to live in London in the first year, and to the Junta Nacional de Investigacao 

Cientifica e Tecnologica, in Portugal, who funded my research at this Institute in the 

following four years. 

To Dr Richard Cowan, my supervisor, I thank his assistance in transforming 

scattered ideas into a coherent and unified view. Also for accepting me to work with 

him when times were difficult, and for continuously challenging my ideas and bringing 

new ones on board. To Professor Kathy Sylva, my co-supervisor in the beginning, 

who always gave me precious advise about research and life in Academia. I thank 

Professor Terezinha Nunes, my first supervisor, for showing me the way to develop 

my skills and insights beyond a point none of us could have foreseen in those days. 

To my dear colleague Dr Charles Mifsud, the first face who welcomed and told 

me all the important things about the Institute of Education, and explained that Malta 

was much more than a meeting place for Churchill, Roosevelt and Stalin (I know, I 

know, it's Yalta, but that joke started a friendship). To Dr Katerina Kornilaki who 

became a friend throughout the years by introducing me to the Greek Orthodox faith, 

by explaining what it is like to live on the edge of Europe (culturally and politically 

speaking), and by helping me to collect data in the London schools. 

To Dr Laurens Kaluge, the quiet Indonesian wizard of Statistics who sent me in 

the right path many times, whilst telling me the secrets of the Suharto regime and the 

difficulties of a country unfortunately divided by two different religions and several 

iv 



ethnical points-of-view. This was very important for me, as a journalist, at a time 

when I was beginning to write about the saga of the East-Timorese people, who have 

only recently found their way to freedom. 

To Dr Seonju Ko, with whom I spent so many hours in the same office that we 

could make jokes about whatever, back-to-back, and laugh loudly without ever 

exchanging a glance or loosing concentration. She, on the other hand, told me about 

the unseen constraints of women in Korea, and the power of students in the streets —

something we haven't seen in Europe since May 1968, with Cohn-Bendit et al. 

To Rachel George, who helped me clarify crucial research ideas while telling 

me about the ways of the English land: those were fruitful conversations. To Dr 

Margarida Cesar for helping me importing all I learned back into the Portuguese 

teaching system. To my brother Julio Martins-Mourao and sister-in-law Piedade 

Martins-Mourao for the outstanding support, lodging and love while I was teaching in 

Lisbon and battling to finish this thesis, at the same time. To Anna Brett, for her 

friendship throughout and a careful final revision of the text of this thesis. 

And to you, Ana Lucena, the source of the deepest feelings and the reason why 

I believe in God. I may get this PhD, but it's you I care about; "the drop that wrestles 

in the sea/ forgets her own locality/ as I, towards thee", as brilliantly put in writing by 

Emily D. Finally, to the children and staff of New End, Rotherfield and Primose Hill 

Primary schools, in North London, with whom I lived for 12 months and who taught 

me a lot about relating number components. 

We only give to others what someone gave us, one day. I am so fortunate to 

have been given so much by so many people. So much to give, now. 

v 



TABLE OF CONTENTS 

Abstract 	 iii  
Acknowledgements 	 iv 
Table of Contents 	  vi 
List of Tables 	 xii 

1 INTRODUCTION 	 1 

2 NUMBER COMPONENTS AND THEIR DESCRIPTION 	 12 

2.1 Introduction 	  12 

2.2 Counting and knowledge of the number-word list 	  14 

2.2.1 What is counting 9 	  14 
2.2.1.1 What children must know to count 	  14 
2.2.1.2 Why is counting important 9 	   16 

2.2.2 Understanding of the number-word list 	  18 
2.2.2.1 The importance of knowledge of the number-word list and children's 
understanding of continuation of counting. 	  21 

2.3 Generating verbal number-words & using numeration systems 	 23 

2.3.1 What are numeration systems 9 	 23 
2.3.2 What children must know to use numeration systems ? 	 23 
2.3.3 The conceptual importance of using numeration systems 	 24 

2.4 Arithmetical operations 	 28 

2.4.1 Addition and subtraction 	 28 
2.4.1.1 What are addition and subtraction 9 	 28 
2.4.1.2 What children must know to add and subtract 	 28 
2.4.1.3 The importance of addition and subtraction 	 29 

2.4.2 Multiplication 	  31 
2.4.2.1 What is multiplication ? 	 31 
2.4.2.2 What children must know to multiply 	  32 
2.4.2.3 The importance of multiplication 	 33 

2.5 Written number and the understanding of place value 	 34 

2.5.1 Writing single-digit numbers 	 34 
2.5.2 What is place value 9 	  35 
2.5.3 What do children have to know to write multi-digit numbers ? 	 36 
2.5.4 Why is place value important 9 	 37 

vi 



3 REVIEW OF RESEARCH ASSESSING INDIVIDUAL NUMBER COMPONENTS 	 39 

3.1. Introduction 	 39 

3.2. Counting and knowledge of the number-word list 	 39 

3.2.1 Counting principles 	 39 
3.2.1.1 Assessment, methodology and children's performance 	 40 

3.2.2 Knowledge of the number-word list 	 42 
3.2.2.1 Assessment and methodology 	 42 
3.2.2.2 Children's performance 	 46 

3.2.3 Continuation of counting 	 47 
3.2.3.1 Assessment and methodology 	 47 
3.2.3.2 Children's performance 	 48 

3.3 Generating verbal number-words and understanding of the structure of the decade 
numeration system 	 51 

3.3.1 Counting with units of the same denomination 	 51 

3.3.2 Counting with units of different denomination 	 51 
3.3.2.1 Assessment and methodology 	 52 

3.3.2.1.1 Shopping tasks 	 58 
Relative values 	 59 
Counting with different denominations 	 59 

3.3.2.2 Children's performance in shopping tasks 	 61 

3.4 Arithmetical operations 	 62 

3.4.1 Addition and subtraction 	 62 
3.4.1.1 Assessment and methodology 	 62 

3.4.1.1.1 The relevance of problem structure 	 63 
3.4.1.1.2 Description of strategies for solving addition & subtraction 
problems 	 66 
3.4.1.1.3 Explaining strategy development 	 68 

3.4.1.2 Children's performance 	 72 
3.4.1.2.1 Differences in problem structure 	 72 

3.4.2 Multiplication 	 76 
3.4.2.1 Assessment, methodology and children's performance 	 77 

3.4.2.1.1 Addition and multiplication as sequential operations 	 78 
3.4.2.1.1.1 Classification of multiplication word-problems 	 79 
3.4.2.1.1.2 Isomorphism of measures word-problems 	 81 

3.4.2.1.2 Addition and multiplication as simultaneous operations 	 83 
3.4.2.1.2.1 One-to-many correspondence and transitivity tasks 	 84 
3.4.2.1.2.2 Children's performance in the piagetian task 	 86 
3.4.2.1.2.3 Recent versions of the piagetian task 	 88 
3.4.2.1.2.4 Children's performance on the fish task 	 89 

3.4.2.1.3 Isomorphism of measures problems and counting strategies 	 91 
3.4.2.1.3.1 Studies with isomorphism of measures problems 	 91 
3.4.2.1.3.2 Studies with relative values problems 	 94 

vii 



3.5. Written multi-digit numbers and knowledge of place value 	 96 

3.5.1 The numbers-first hypothesis 	 96 
3.5.1.1 Studies with brain-lesioned patients 	 97 
3.5.1.2 Studies with school children 	 98 

3.5.2 The numbers-after hypothesis 	 100 
3.5.3 Assessment and methodology 	 102 
3.5.4 Children's performance 	 104 

3.6 Summary of methods to be used in the study 	 105 

4 RELATING NUMBER COMPONENTS: QUESTIONS UNDER INVESTIGATION 	 109 

4.1 Re-examining children's understanding of the decade system 	 110 
4.1.1 The 'addition hypothesis' 	 112 
4.1.2 Development in addition strategies and children's understanding of the decade 
numeration system 	 116 
4.1.3 Further inferences from the hidden addend studies 	 118 
4.1.4 The relevance of continuation of counting 	 121 
4.1.5 Part-whole and children's understanding of the decade system 	 122 
4.1.6 Arithmetical operations and children's understanding of the decade system 	 123 

4.2 Exploring the further relevance of continuation of counting 	 124 
4.3 Children's understanding of written numbers and place value 	 126 

5 METHODOLOGY AND RESULTS 	 127 

5.1 Rationale of the present study 	 127 
5.2 Research questions 	 128 
5.3 Participants 	 128 
5.4 Overall procedure 	 130 
5.5 Tasks used in the study 	 131 

5.5.1 Counting & knowledge of the number-word sequence (component 1) 	 132 

5.5.1.1 One-to-one correspondence and fixed order of number labelling 	 132 
Materials 	 132 
Rationale 	 132 
Procedure 	 132 

5.5.1.2 Continuation of counting 	 133 
Rationale 	 133 
Procedure 	 133 

5.5.1.3 Counting range 	 134 
Rationale 	 134 
Procedure 	 134 

5.5.2 Generating verbal number words and understanding the decade numeration 
system (component 2) 	 135 

viii 



5.5.2.1 Counting units with single denomination (shopping task) 	 135 
Materials 	 135 
Rationale 	 135 
Procedure 	 135 

5.5.2.2 Counting units with different denomination (shopping task) 	 136 
Materials 	 136 
Rationale 	 136 
Procedure 	 136 

5.5.3 Arithmetical operations (component 3) 	 137 

5.5.3.1 Increase and decrease change result-set unknown word-problems (addition 
and subtraction) 	 137 

Materials 	 137 
Rationale 	 137 
Procedure 	 137 

5.5.3.2 Change start-set unknown word-problems (inversion) 	 138 
Materials 	 138 
Rationale 	 139 
Procedure 	 139 

5.5.3.3 Addition with a hidden addend (addition with a box) 	 140 
Materials 	 140 
Rationale 	 140 
Procedure 	 140 

5.5.3.4 Isomorphism of measures word-problems (multiplication) 	 141 
Materials 	 141 
Rationale 	 141 
Procedure 	 141 

5.5.3.5 Relative values 	 142 
Materials 	 142 
Rationale 	 142 
Procedure 	 142 

5.5.4 Written numbers and knowledge of place value (component 4) 	 143 

5.5.4.1 Production and recognition of written numbers 	 143 
Materials 	 143 
Rationale 	 144 
Procedure 	 144 

5.6 Results by number component 	 145 

5.6.1 Counting and knowledge of the number-word sequence 	 145 
5.6.1.1 One-to-one correspondence and fixed order of number labelling 	 145 
5.6.1.2 Continuation of counting 	 146 
5.6.1.3 Counting range 	 147 

5.6.2 Verbal number-words and understanding the structure of the numeration 
system 	 147 

5.6.2.1 Counting units with single denomination 	 148 
5.6.2.2 Counting units with different denomination 	 148 

ix 



5.6.3 Arithmetical operations 	 150 
5.6.3.1 Addition and subtraction 	 150 
5.6.3.2 Inversion 	 151 
5.6.3.3 Addition with one hidden addend 	 153 
5.6.3.4 Multiplication 	 154 
5.6.3.5 Use of the counting-on strategy 	 156 

5.6.4 Written numbers and knowledge of place value 	 157 
5.6.4.1 Production and recognition of single-digit numbers 	 157 
5.6.4.2 Production and recognition of multi-digit numbers 	 158 

5.7 The emergence of additive composition of number and children's understanding of 
the decade numeration system - the effect of continuation of counting 	 161 

5.7.1 - Introduction 	 161 
5.7.2 - Display of counting-on in different word-problem situations 	 166 
5.7.3 - Performance in the additive composition tasks 	 169 
5.7.4 - The relationship between counting-on, continuation of counting and additive 
composition 	 171 
5.7.5 - Predictive effects of continuation of counting 	 174 

5.8 The effects of children's use of continuation of counting on their understanding of 
the arithmetical operations 	 176 

5.8.1 Introduction 	 176 
5.8.2 The relation between continuation of counting and counting strategies in used 
in the word-problems 	 177 
5.8.3 The effect of continuation of counting on children's knowledge of addition and 
subtraction 	 179 
5.8.4 The effect of continuation of counting in children's knowledge of 
multiplication 	 182 
5.8.5 Summary 	 183 

5.9 The effects of knowledge of the arithmetical operations on children's understanding 
of the decade numeration system 	 184 

5.9.1 - Introduction 	 184 
5.9.2 - Are addition and multiplication consecutive operations 9 	 185 
5.9.3- The relation between addition, multiplication and additive composition of 
number 	 188 
5.9.4 Summary 	 190 

5.10 The effects of children's understanding the structure of the numeration system' and 
their 'knowledge of written numbers' on use of place-value 	 191 

5.10.1 Introduction 	 191 
5.10.2 Types of responses 	 193 
5.10.3 Understanding the numeration system and using place value (written 
numbers) 	 196 
5.10.4 Understanding the numeration system and using place value (recognition) 	199 
5.10.5 Predictive effects of additive composition 	 201 
5.10.6 Summary 	 203 



6 DISCUSSION 	 205 

6.1 Introduction 	 205 
6.2 Relations between number components 	 208 

6.2.1 The importance of continuation of counting: summary of findings 	 209 
6.2.1.1 The relation between continuation of counting and counting-on 	 209 
6.2.1.2 Performance in the additive composition tasks 	 210 
6.2.1.3 The relation between continuation of counting, counting-on and additive 
composition 	 211 
6.2.1.4 The relation between continuation of counting and children's 
understanding of the arithmetical operations 	 213 

6.2.2 The importance of knowledge of the arithmetical operations on children's 
understanding of the decade numeration system: summary of findings 	 215 

6.2.2.1 The developmental relation between addition and multiplication 	 215 
6.2.2.2 The relation between the arithmetical operations and additive 
composition 	 217 

6.2.3 The relation between understanding the structure of the numeration system and 
children's correct use of place value: summary of findings 	 218 

6.3 Preliminary model of children's understanding of number, from early counting to the 
understanding of place value 	 221 

6.3.1 Level 1 	 222 
6.3.2 Level 2 	 222 
6.3.3 Level 3 	 223 
6.3.4 Level 4 	 224 
6.3.5 Level 5 	 224 
6.3.6 Some Statistical Evidence 	 225 

6.4 Limitations 	 227 
6.5 Educational Implications 	 229 

References 	 235 

xi 



LIST OF TABLES 

TABLE 1 - Percentage of age groups producing accurate sequences of various lengths 	46 

TABLE 2 - Percentage of correct responses in Fuson et al.'s (1982) study 	  49 

TABLE 3 - Number tags used in Bednarz and Janvier's (1982) groupings task 	  53 

TABLE 4 - Frequencies of children who counted by tens (Kamii, 1986) 	  55 

TABLE 5 - Some types of addition and subtraction word-problems (from Riley et al., 1983) 	 65 

TABLE 6 - Counting strategies used in Addition problems 	  67 

TABLE 7 - Children's rate of success in different types of addition and subtraction word-problems 	 73 

TABLE 8 - Development of strategies in change result unknown word-problems 	 74 

TABLE 9 - Percentage of children using each type of solution strategy on multiplication problems 	 83 

TABLE 10 - Percentage of Children at Each Developmental Level by Grade 	 90 

TABLE 11 - Number of children correctly solving each problem and the number and kind of valid 
strategies used 	  93 

TABLE 12 - Percentage of five and six year-old children writing and recognising numbers 	 105 

TABLE 13 - Cross-tabulation of Kornilaki's (1994) results 	  119 

TABLE 14 - Strategies and success in the additive composition task 	  120 

TABLE 15 - Comparison of levels of counting used 	  122 

TABLE 16 - Age ranges and medians by assessment (in years-months) 	  129 

TABLE 17 - Tasks used in the study 	  131 

TABLE 18 - Items used in the relative values task 	  143 

TABLE 20 - Frequencies (and percentages) of success in the continuation of counting 
and counting range tasks - component 1 	  146 

TABLE 21 - Frequencies (and percentages) of success in the generating verbal number-words and 
understanding of the structure of the numeration system tasks 	  149 

TABLE 22 - Frequencies (%) of success in the arithmetical operations tasks - component 3 	 151 

TABLE 23 - Frequencies (%) of success in the arithmetical operations tasks - component 3 	 155 

TABLE 24 - Frequencies (and percentages) of use of the counting-on strategy - component 3 	 156 

TABLE 25 - Means (sd) of success in the written number and number recognition task (singles) 	 158 

xii 



TABLE 26 - Frequencies (%) of success in the written numbers task (multi-digits) 	  159 

TABLE 26A - Frequencies (%) of success in the number recognition task (multi-digits) 	 160 

TABLE 27 - Frequencies of counting-on use in each task by assessment (N=152) 	  169 

TABLE 28 - Frequencies of success in the additive composition tasks and its precursors (N=152) 	 170 

TABLE 29 - Relation between counting-on and continuation of counting and additive 
composition tasks. Results are in frequencies (N= 152) 	  172 

TABLE 30 - Significant relationships between counting-on and continuation of 
counting and additive composition tasks 	  173 

TABLE 31 - Relation between counting-on, continuation of counting and additive 
composition tasks across different assessments. Results are in frequencies (N=152) 	 175 

TABLE 32 - Relation between counting pattern and the accuracy and strategies used in addition, 
subtraction, addition with hidden addend, Inversion and Multiplication problems 	  178 

TABLE 33 - Crosstabulation of Continuation of counting and the addition, subtraction and 
multiplication tasks by assessment. Results are presented in frequencies 	  181 

TABLE 34 - Frequencies (and percentages) of success in the addition and multiplication 
tasks by assessment of each year group 	  186 

TABLE 35 - Crosstabulation of results of all year groups in the addition and multiplication 
tasks by assessment. Results are presented in percentages (N=152) 	  187 

TABLE 36 - Frequencies (and percentages) of success in the Addition, Multiplication 
and additive composition tasks 	  188 

TABLE 38 - Crosstabulation of results between addition and multiplication tasks and the Additive 
composition task by assessment. Results are presented in frequencies 	  189 

TABLE 39 - Percentages of types of responses in the written numbers task by 
category, year group and assessment 	  195 

TABLE 40 - Crosstabulation of additive composition with written numbers results. 
Results are presented in percentages 	  198 

TABLE 41 - Crosstabulation of additive composition with number recognition results. 
Results are presented in percentages 	  200 

TABLE 42 - Correlations between additive composition and written numbers and number 
recognition tasks across different assessments 	  201 

TABLE 43 - Crosstabulation and significant relationships between additive composition 
and written numbers tasks across different assessments. Results are in percentages 	 202 

TABLE 44 - Crosstabulation and significant relationships between additive composition 
and number recognition tasks across different assessments. Results are in percentages 	203 

TABLE 44a - Relationships proposed in the model 	 221 

TABLE 45 - Frequencies of children by level of attainment. Results are in percentages 	 225 



TABLE 46 - Crosstabulation of stages between different assessments 	  226 

xiv 



1 
INTRODUCTION 

Abundant research in mathematical cognition has consistently shown that (1) 

children's knowledge about numbers involve several components, (2) that each of 

these components emerge and develop at different times, from age two well into 

adolescence, and (3) that the grasp of some complex components require knowledge 

of the simpler ones. Yet, most of this research has tended to focus on the development 

of a few aspects of number development and so cannot comment on how 

developments in one component affect development in others. 

There is, however, evidence suggesting that the developmental study of children's 

number competence would benefit from the use of a unifying conceptual framework, 

where relations between different number components might be observed. Examples 

of this approach, considerably less in number, are a few studies that have looked at 

'multi-component arithmetics' in adults from the perspective of cognitive psychology 

and psychometrics (Geary and Widaman, 1992), or at the relation between calculation 

reasoning in addition and subtraction, background and psychometric measures in five 

to nine year-olds (Dowker, 1998), or at the relation between enumeration and 
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knowledge of addition, at different stages of development, in low attaining seven to 

nine year-olds (Denvir and Brown, 1986a; 1986b). 

Quite encouragingly, the evidence has supported two main ideas justifying the 

expansion of this line of inquiry. Firstly, that normal arithmetical development and 

functioning implies the functional autonomy of different components, which seem to 

go beyond the traditional two modules of procedural and conceptual knowledge ' 

(Dowker, 1998). Also, that low attaining children follow individual routes in their 

number acquisitions, which can only be clarified by a multi-component analysis. 

These data, in turn, can be used beneficially to help children expand and consolidate 

their numerical knowledge (Denvir and Brown, 1986a; 1986b). More, however, 

remains to be understood about the developmental relations between a larger set of 

number components. 

The issue of multi-component number processing has received considerably more 

attention in the neuropsychological literature, where most results are based on the 

performance of adult brain-lesioned patients with acalculia. Interest in this area 

resurged in the early 1980's, beginning with the studies by Warrington (1982) and 

Deloche and Seron (1982). Based on these and other studies, McCloskey et al. (1985) 

proposed an influential general architecture for number processing, postulating the 

existence of three independent number modules (i.e. number comprehension, number 

production, and a calculatory system), and an abstract internal representation of 

numbers that supports both calculation and the communication between the modules. 

However, whilst authors agree about the existence of a multi-component number 

architecture, they disagree in terms of the nature and the structure of these mental 

I - For a review about the relationship between conceptual and procedural knowledge in learning 
mathematics see Rittle-Johnson and Siegler (1986). 
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representations (Deloche and Seron, 1987; Campbell and Clark, 1988; McCloskey, 

1992; Dehaene, 1992; Noel and Seron, 1993; Butterworth, 1999), and the network of 

brain areas implied in this processing (Dehaene and Cohen, 1995; Dehaene et al., 

1999). 

There is, for instance, evidence that the modules inter-depend in their functioning 

(Clark and Campbell, 1991), rather than function with complete independence 

(McCloskey, 1992). Also, there is evidence that no abstract internal representation of 

number is required for processing (Deloche and Seron, 1987), an argument that has 

also been consistently supported with data from developmental studies (Deloche and 

Seron, 1987; Seron and Noel, 1995; Power and Dal Martello, 1997). 

However, beyond the confirmation that arithmetical development involves the 

development of different components, the neuropsychological data seems to have 

limited importance to developmental studies (e.g. Ashcraft, 1992) including the 

present study. Several reasons support this argument: one, is that single-case data 

usually does not include information about the patient's pre-morbid state, which makes 

it difficult to assess whether impairments are due to the lesion only, to mere individual 

differences (Deloche et. al, 1994) or to the combination of the two. Deloche et al. 

(1994) showed that many "normal" adults performed below the expected levels in 

many number component tasks of a standardised testing battery for the evaluation of 

brain-damaged adults. 

Another reason, is the growing evidence that the mathematical recovery of brain-

lesioned adults may differ qualitatively from the expected normal development of 

numerical knowledge in children (Power and Dal Martello, 1990; Hittmair-Delazer et 

al., 1994). Finally, a fundamental limitation of the proposed neuropsychological 

3 



models for number processing relates to the purely functional framing they present, 

which is seen to lack a conceptual component in their architectures (Ashcraft, 1992; 

Hittmair-Delazer et al., 1994; Dehaene and Cohen, 1995). Such lack of specificity 

about the mathematical concepts that are being processed in these models limit 

inferences about mathematical functioning (Hittmair-Delazer et al., 1994; 1995) and its 

development. 

In view of this, little is still known about the developing relationships between the 

various number components in the same children, during the primary school years. 

Such a unifying conceptual framework would be helpful to teachers in their everyday 

classroom activities (e.g. Denvir and Brown, 1986a; 1986b). 

Possibly, one of the difficulties in proposing a unified view for the child's number 

development, relates to the lack of agreement on learning targets in early mathematics. 

The school curriculum is constructed by key attainment stages which are not 

necessarily related, from the child's point of view. Agreement upon one such target in 

the case of number development, could hopefully unify the efforts of both school 

teachers and cognitive researchers, as it would help the exchange of information 

between these two perspectives. 

At another level, it would be quite helpful for teachers if this target - to be attained after 

two or three years of schooling - could take into account at least some of the 

mathematical knowledge children develop before entering school. This would provide 

teachers with important materia prima from which to begin teaching children about 

numeracy. 
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The choice of an important learning target in early mathematics is not a problem of 

availability but, rather, one of convincing argumentation. This is not an easy task 

considering that educational policy and objectives change in time and place. Amongst 

several and equally important learning targets, this thesis focuses on one that has been 

widely recognised as the most important instructional task in mathematics in the 

primary school years (e.g. Resnick, 1986). Such a target has the advantage of being 

curriculum-related, as it considers the needs of educationalists. It has, however, the 

limitation implicit in the impossibility of covering all aspects of the number curriculum 

for the primary school in one study alone. Furthermore, mathematics is more than only 

number knowledge. 

With these limitations in mind, the target this thesis will focus on is children's 

understanding of the decade numeration system and the positional system based on it, 

also known as place value — a convention defining that each digit signifies a unit of 

different size according to the position occupied in the number. In the number 222, for 

example, the first digit means two-hundred, the second means twenty and the last 

means two. 

Place value is a fundamental milestone in children's number development (Resnick, 

1986). It is, on the one hand, the basis for the understanding of written multi-digit 

numbers and, on the other, the fundamental developmental step in their ability to 

compute written algorithmical calculations (e.g. addition and subtraction by columns) 

correctly. Place value represents an abstract convention without which children cannot 

develop their mathematical knowledge further without serious problems. 

Without this understanding most children resort to idiosyncratic rote-procedures while 

attempting to write multi-digit numbers (Ginsburg, 1977; Fuson, 1990; Nunes and 
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Bryant, 1996) or performing multi-column operations (VanLehn, 1990), leading to 

errors and frustration. A final crucial criterion for this choice of educational target 

relates to the fact that such a relevant instructional task has, simultaneously, not been 

understood by nearly half of all nine year-olds, according to the available studies (e.g. 

Kamii, 1980; Brown, 1981; Bednarz and Janvier, 1982; Kamii, 1986). This, in itself, 

makes it an urgent matter for further investigation. 

Research on the development of separate number components has identified the most 

important ones as: (1) counting and knowledge of the number-word sequence; (2) the 

ability to generate verbal number-words and the understanding of the structure of the 

numeration system; (3) arithmetical operations, and (4) the ability to read and write 

numbers and the understanding of the principles underlying place value. 

The research into individual number components as separate entities has had important 

advantages, which will be used by this thesis to further explore their relationships. 

Firstly, it has enabled the refinement of specific assessment procedures, and the 

development of these into widely used tasks such as Gelman and Gallistel's (1978) 

counting tasks or Carpenter and Moser's (1983) classification of addition and 

subtraction word-problems. Secondly, the application of these tasks has led to a 

detailed description of children's typical achievements in practically all the mentioned 

number-components, in function of their ages. Finally, and due to these previous 

investigations, it is now possible to trace the development of children's abilities in each 

separate number component at different ages throughout their primary school years. 

Although a lot is known about the development of each separate component, little is 

still understood about the developmental interactions amongst components. The main 

limitation has been that the data made available in the literature relates to the 
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performance of different groups of children in different tasks. This indicates that 

further research is needed to clarify ways in which the same children relate different 

areas of number knowledge; and how these interrelations may help them in the 

understanding of more complex ideas about number, such as place value. 

To illustrate this point, Gelman and Gallistel (1978), for instance, have provided 

insightful hypotheses to account for the development of children's counting skills, the 

first component, but have not explained the influence of this knowledge in later 

number acquisitions - any of the remaining components. This relationship is not 

investigated either in their book "The child's understanding of number" (1978) or in 

later studies (e.g. Gelman and Meck, 1983; 1986). Likewise, although Fuson (1988) 

has provided an explanation for the development of children's number-word sequence 

from age two to seven, the relationship between this progress and the child's 

understanding of the decade numeration system and the combination of ones and tens -

another crucial component - has not yet been clarified. 

The studies to be reported here were designed to investigate the simultaneous 

development of the children's understanding of the various number components, in the 

same subjects, along the first primary years of primary schooling. A special emphasis 

is given to the inter-relation between these number components and their separate roles 

in the construction of more complex number concepts, such as the understanding of 

the principles underlying the decade numeration system, and the correct use of place 

value. 

Place value is recognised to involve a fundamental pre-requisite, the previous 

understanding of the structure of the numeration system or, in Ginsburg's (1977) 

words, a "theory" formed by the child before they can understand the more complex 
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conventions about number (see also, Fuson, 1990; Nunes and Bryant, 1996). This 

thesis will examine the development of this "theory", or understanding, in the same 

children throughout the first three years of primary school. 

At another level, however, there is evidence that children's understanding of the 

structure of the numeration system involves previous understanding of counting ones 

(Gelman and Gallistel, 1978; Kamii, 1986), as well as addition and multiplication 

(Ross, 1989; Seron and Fayol, 1994; Power and Dal Martello, 1990; Nunes and 

Bryant, 1996). However, little is still known about the relation between all these 

number components in the same children, and about the relevance of their separate 

roles in the understanding of an important target, in this case, place value. 

Counting is seen as both crucial (Gelman and Gallistel, 1978; Fuson, 1988) and as 

secondary (Piaget, 1952; Resnick, 1986; Miller and Stigler, 1987; Nunes and Bryant, 

1996) to children's understanding of the principles underlying the decade numeration 

system. However, further data is required to clarify children's development from the 

early counting skills to their understanding of the numeration system. 

The main limitation of this situation is that lack of data on the interrelated development 

of number components does not help to clarify children's acquisition of more complex 

number concepts, such as the emergence of additive composition of number, and the 

contribution that each separate number component may have in this acquisition. For 

example, little is know about which counting skills predict better understanding of any 

of the remaining number components. At the moment, it can only be speculated that 

children's ability to count-up to higher numbers in the number word-sequence 

correlates with an increased chance of teasing out the principles underlying the 
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structure of the numeration system and its units of different denominations; i.e. ones, 

tens, hundreds, and so on. 

Also, further data is required to clarify children's development from early counting —

and their handling of the number-line — to their grasp of addition and multiplication. 

Most of the data available relates to the development of children's counting strategies 

whilst solving addition word-problems (e.g. Carpenter and Moser, 1982). This thesis 

investigates the relevance of the first important development in children's handling of 

the number-line at age three and four, i.e. continuation of counting (Fuson, 1988), in 

their understanding of addition and multiplication, as well as the principles underlying 

the decade system. 

Finally, attention will be given to the child's development from knowledge of early 

addition and multiplication to their understanding of additive composition of number, a 

measure of their understanding of the structure of the decade system (Fuson, 1990; 

Nunes and Bryant, 1996). Considering that the numeration system involves additive 

and multiplicative properties (Power and DalMartello, 1990; Seron and Fayol, 1994), 

is counting ones sufficient to teach children about tens and hundreds, or must they also 

master addition and multiplication, as suggested by Piaget (1952) ? No research has 

yet related the development of these number components in the same children. 

Assuming that development brings children progressively new ways of looking at 

numbers, it seems worthwhile to attempt to map these changes longitudinally. It may 

be possible to clarify which types of achievements can contribute to the child's 

acquisition of further sophisticated skills. The wealth of data produced by previous 

studies has laid the foundations for the more global approach to number development 

proposed in this thesis. By giving the same group of tasks to the same children, it will 
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be possible to explore the relationships amongst the different components involved in 

the development of numeracy. On the other hand, the longitudinal analysis of the 

results will enable the investigation of the various sequences of development within 

each task. 

The need to limit the scope of this investigation, dictates that the studies here included 

will concentrate on what happens in the classroom in terms of children's mathematical 

achievements in school tasks throughout their first three years of primary school. 

Rather than focusing on children's logical development (Piaget, 1952), or on the 

cultural transmission of mathematical knowledge (Vygotsky, 1978; Luria, 1976), this 

thesis will explore the relevance of tasks that can be used by teachers in the context of 

the classroom. 

The literature to be reviewed is discussed in the three chapters that follow. Chapter two 

briefly describes the various number components that will be investigated. It also 

makes distinctions between components and describes particular aspects that the 

components may have, as in the case of addition problems where different types of 

problems can be found. It finally briefly outlines the importance of each component in 

terms of a global picture of early number competence. 

In Chapter three, studies that have been carried out investigating the development of 

each component are reviewed and the choices of methods in the specific assessments 

are briefly discussed. The chapter briefly reviews suggestions by previous studies 

about children's development of competence in individual components. I also argue 

about the preference of some methods over others, as these will be used in the studies. 
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In Chapter four, a review of the theoretical debate and previous empirical studies 

concerning the role competence in some components may play in the development of 

other components, is made. Chapter five presents the methodology used in this study 

with greater detail, and the results obtained. Chapter six summarises the findings, 

interprets and discusses the evidence and presents some conclusions and educational 

implications. An outline of a model towards a unified view about number development 

is suggested, intended as a starting point for further investigations. 
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2 
NUMBER COMPONENTS AND THEIR DESCRIPTION 

2.1 INTRODUCTION 

This chapter describes each of the number components that are included in this study. 

Each of them is outlined in terms of what defines them, what children must know to 

use them, and the conceptual importance of each number component for the whole 

study. It highlights the importance of the development of counting, both as a tool that 

enables children to be accurate in their determination of numerosity and also, as a way 

to grasp the realm of addition and subtraction. But the importance of counting 

continues as new and more complex units are counted, such as the ones, tens and 

hundreds, leading to the child's understanding of the decade numeration system. 

However, the specific development in early counting that enable new understandings 

about number are not yet clear. 

Beyond the acquisition of the counting principles, other developments such as the 

ability to continue counting from an arbitrary number in the counting-list has been 
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proposed as relevant for the understanding of other number components. Some 

authors see it as an indicator that children have acquired more flexible and abstract 

strategies to deal with number (Davydov, 1969; Fuson, 1988; Cobb and Wheatley, 

1988; Aubrey, 1993). However, no studies have yet tested this hypothesis. 

Beyond the child's understanding that units can have different denominations (i.e. 

ones, tens and so on), they will soon realise that these units of different sizes can be 

combined to form any number. Any number, such as 45, involves sum and product 

relations: 40=4x10; 5=1+1+1+1+1. What then is the importance of children's 

previous understanding about addition and multiplication in their construction of the 

decade system ? 

The emergence of multiplication implies a shift from operating with single units to 

operating with composite units. What development in counting helps them to count 

with composite units ? And what is the role of these two abilities combined in 

children's understanding of the decade system ? 

Finally, how do children learn about written multi-digit numbers and place value ? Do 

they need previous understanding about the structure of the numeration system, 

independently of knowing how to write number, or do they need them in order to 

grasp the rules of place value ? 
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2.2 COUNTING AND KNOWLEDGE OF THE NUMBER-WORD LIST 

2.2.1 What is Counting ? 

Children use counting and the number-word sequence to determine the cardinal 

number of a set of objects; i.e., to determine how many objects are in small sets. 

Counting implies the use of units of the same size (one) and is defined by the 

mathematical expression of n+1, where the child progressively adds one more unit to 

the ones already counted, bearing in mind that all units must have different tags. 

Counting requires a set of specific skills that take children some time to master. To 

count correctly children must grasp the logico-mathematical properties that define the 

concept, also known as the invariants of counting. 

2.2.1.1 What children must know to Count 

Children's counting is seen to be dependent on the correct use of several principles 

(Gelman and Gallistel, 1978). The first three principles are known as the 'how-to-

count' principles and represent the rules of counting: Stable-order, one-to-one 

correspondence and cardinality. The stable-order principle implies that each number-

tag stands one after the other sequentially, and that each number has a unique label. 

Failing to observe the stable order principle, leads children to end up with different 

quantities everytime they count. For example, counting 1, 3, 2, 5 or 1, 2, 4, 3 makes a 

definite difference. 
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The one-to-one correspondence principle implies that every item in a display of objects 

must be named with only one tag and none of the items counted should be skipped or 

counted twice. Gelman and Gallistel (1978) argue that this ability implies the 

recognition of the unit and helps children to determine numerosity and to establish 

equalities between sets of objects. If children miss one object or count it twice, they 

end up with different quantities every time they count. By using this principle, children 

soon start associating numbers (which they are used to utter) with objects. 

The third principle, cardinality, enables children's use of verbal counting to determine 

quantity. This is done by associating the last number-tag counted in a sequence 

(termed cardinal number) to the number of objects included in that set. This principle 

allows children the comparison of sets and to establish relations of order — it is 

therefore a significant step in mathematical thought. Cardinality allows children to 

make up their minds about whether there are more oranges on the left than lemons on 

the right, for example. It also enables the measurement of quantities, and broadly, the 

quantification of the child's surroundings. 

The other two principles involved are the order irrelevance principle and the abstraction 

principle. Order irrelevance involves knowledge that the direction in which the units 

are counted (e.g. from left to right or vice-versa) will not change the final number of 

units counted (cardinality), as long as the one-to-one correspondence and the stable 

order principles are observed. The abstraction principle implies that various kinds of 

objects can be put together for the purpose of counting. In other words, the abstraction 

principle tells children that counting is valid to determine any numerosity; i.e. can be 

used to count any set of discrete entities. 
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Greeno, Riley and Gelman's (1984) distinction between conceptual, procedural and 

utilisational competence is useful for understanding why children make mistakes in 

counting. According to these authors conceptual competence implies that children 

understand the principles and are able to use them in planning their counting activity. 

Procedural competence refers to knowledge of the steps involved in determining an 

action; in this case, determining numerosity. Utilisational competence implies 

understanding the relations between the features of a task setting and requirements of 

performance; it refers to the ability to apply the knowledge of the principles and 

procedures to particular tasks. 

Gelman (1982) argued that children's difficulties in counting do not relate to a possible 

lack of conceptual competence, but are caused by difficulties in their procedural or 

utilisational competence. Gelman and Gallistel's central thesis then, is that although 

children understand the basic principles of counting, they still have difficulties because 

they lack the skills to perform the appropriate actions involved in counting. In other 

words, children try progressively to improve their counting but, in the process, they 

make mistakes. 

2.2.1.2 Why is Counting important ? 

From the teacher's point of view, the importance of counting is threefold. Firstly, it is 

the earliest specific activity that enables children to be accurate in their determination of 

numerosity. What may seem like a simple improvement from the adult eye, represents 

for children a major development in the cues they use to enumerate. The difference is 

that a child who is able to count correctly has gained a more precise strategy for 
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comparing numerosities then perceptual cues such as length and density (e.g. Michie, 

1984; Cowan et al., 1993). This, most authors agree, represents a revolutionary 

development in children's ideas about number. And these are the characteristics that 

make counting a commonly used starting point for the exploration of children's 

mathematical development, which is reflected by its inclusion as the first item in the 

national curriculum for mathematics. 

Secondly, children's understanding of counting puts them in the powerful position of 

being able to enter the realms of addition and subtraction (as well as multiplication), 

which in themselves constitute faster ways of counting. Children who have difficulties 

in remembering addition facts, or cannot derive new facts from an existing repertoire, 

can only find sums of numbers (or differences between them), by counting. This 

ability, which will be known to some children before the beginning of school, will 

soon be mastered by many others and quickly become a reliable way to obtaining 

answers to addition and subtraction operations throughout the whole of primary 

school. 

Thirdly, there is an important conceptual difference between counting units of the same 

denomination — i.e. ones — and counting units of different denominations, such as 

ones, tens, hundreds and so on. Whilst counting units of the same size is limited to the 

handling of small numbers, the combined utilisation of ones, tens and hundreds allows 

the use of larger numbers, through the abstraction of generative rules which underlie 

the ordering of the number-word list and the structure of the decade numeration 

system. Further studies are needed to clarify children's development from counting 

ones to using the decade system. 
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2.2.2 Understanding of the number-word list 

Beyond the counting principles that are used to count sets of objects, children must 

also learn to count higher quantities. To do this they must learn the number-word list. 

Children's learning of the number-word list develops in two distinct phases: a first 

acquisition phase, in which children learn to say the conventional sequence correctly, 

and a later elaboration phase, in which equivalence and order relations and operations 

on sequence words are constructed and the sequence can be produced in more complex 

ways (Fuson et al., 1982; Fuson, 1988). These phases are overlapping as the early 

part of the sequence may be undergoing elaboration while later parts are still being 

acquired and cannot yet be said correctly. 

According to Fuson (Fuson et al., 1982; Fuson, 1988), children's sequences during 

the acquisition level (i.e. before they have learned the standard sequence) have a 

characteristic structure. For sequences up to thirty, children tend to produce a first 

portion consisting of an accurate number-word sequence, followed by a stable 

incorrect portion of from 2 to 6 words that are produced with some consistency over 

repeated trials, followed by a final nonstable incorrect portion that may vary in length. 

The first portion consists of the first x words said in the conventional order and varies 

with age. 

Most of the stable incorrect portions include words in the conventional order, but 

words are omitted (e.g. 12, 14, 18, 19). Nonstable incorrect portions are composed of 

three types of elements (1) forward runs, from two to five contiguous words said in 

the conventional sequence (e.g. sixteen, seventeen, eighteen); (2) forward runs with 
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omissions (e.g. twelve, fourteen, seventeen); (3) single, unrelated words (e.g. twelve, 

thirty, nine, sixty). According to Fuson, these incorrect sequences seem to result from 

the irregularities found in the English system of number-words for the words between 

ten and twenty and for the decade words. These irregularities suggest also that 

"one of the first experiences of English-speaking children with a 

mathematical structure (the English sequence of number-words) is that it is 

complex, irregular, and must be memorised laboriously rather than that it 

has a clear and obvious pattern that is easy to learn" (Fuson, 1988; p. 58). 

Children's learning of the number-word sequence continues beyond the acquisition 

phase, i.e. the point when they can produce the list correctly. The representation of the 

number-word sequence at the "elaboration of the sequence level" differs qualitatively 

from the previous level, where several new abilities can now be displayed. Different 

parts of the sequence can be at different elaborative levels at the same time, and the 

elaboration level is a lengthy process that develops between age 4 and 8 (Fuson, 

1988). 

Regarding the elaboration level, Fuson (1988) defined five sequential levels of 

competence in children's counting according to the way they deal with the number-

word sequence and display more elaborate counting skills. These are the string level; 

the unbreakable chain level; the breakable chain level; the numerable chain level and 

the bidirectional chain level. 
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Initially, children are at a string level, where the words are not yet objects of thought. 

Instead, they are produced but not reflected upon as separate words. Then, the 

sequence moves into an unbreakable chain level, where separate words become 

differentiated and intentional one-to-one correspondence can be established, although 

children must count all the objects without stopping; any interruption in the counting 

sequence implies starting from one again. 

According to Fuson (1988), children at this level may already answer the question 

"how many blocks are there ?" with the last count word, showing, therefore, 

numerical competence. Also, they may use counting for cardinal addition and 

subtraction operations through a strategy known as 'counting-all' (e.g. Carpenter and 

Moser, 1982), which will be discussed in later sections. 

The next conceptual level within the sequence is the breakable chain level, where 

children can start counting from any given point in the number-list, rather than from 

the beginning. At the next level the sequence becomes a numerable chain level, where 

the level of number abstraction enables children to regard number-words as units and 

to establish relations between them. The number words can be used as sequence unit 

items in counting and can simultaneously represent the sum and the addends embedded 

within the sum. Children at this level are capable of using the 'counting-on' strategy in 

addition problems. 

Finally, the sequence becomes a bidirectional chain level, where words can be 

produced easily and flexibly in either direction, forward or backward. At this level, no 

entities are required to define cardinality, and the child can now conceptually operate 

on and relate specific cardinal numbers. Children at this level are capable of using the 

'recalled-facts' strategy in Addition and Subtraction problems. 
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The first important conceptual development of children's counting, therefore seems to 

be the passage from the unbreakable chain level to the breakable chain level, when 

children become able to continue counting from an arbitrary number in the list. This 

happens before they start to enumerate sets of objects (numerable chain level), where 

counting-on is possible. 

2.2.2.1 The importance of knowledge of the number-word list 

and children's understanding of continuation of counting. 

The importance of children's understanding of the number-word list relates to the finer 

developments involved in children's passage from the unbreakable to the breakable 

chain level - i.e. when they become able to continue counting from any number, as 

suggested by Fuson (1988). 

The idea that children's mastery of continuation of counting is not a trivial 

development was suggested by several authors (Davydov, 1969; Siegler and 

Robinson, 1982; Secada et al., 1982; Cobb and Wheatley, 1988; Steffe, 1992, Fuson, 

1988). Children who cannot continue counting need to count from one every time 

because they cannot create numbers such as six in a purely conceptual manner. For 

these children, once the counting episode is completed, that number ceases to exist. 

Hence, continuation of counting is seen as an indicator that children have acquired 

more flexible and abstract strategies to deal with number (Cobb and Wheatley, 1988; 

Steffe, 1992; Aubrey, 1993). 
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Also, Fuson (1988) and Davydov (1969) have highlighted the conceptual relevance of 

continuation of counting in a different way. According to these authors, once children 

become able to understand counting and cardinal situations simultaneously, the 

perceptual unit items become capable of simultaneously representing a sum and an 

addend embedded within that sum: 

"this sequence ability combined with the simultaneous perceptual unit 

items allows children to carry out new, more efficient solution procedures 

in addition and subtraction situations: counting on, counting up, and 

counting down with entities" (Fuson, 1988; p. 407). 

Secada et al. (1982), in particular, has shown that continuation of counting is a 

relevant precursor of more efficient counting strategies such as counting-on. Despite 

several views suggesting the relevance of continuation of counting, there remains the 

need to clarify its importance in furthering children's ideas about the arithmetical 

operations and knowledge of the decade numeration system. 
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2.3 GENERATING VERBAL NUMBER-WORDS & USING NUMERATION SYSTEMS 

2.3.1 What are numeration systems ? 

Numeration systems are cultural inventions devised to enable a powerful and more 

accurate utilisation of number (e.g. Luria, 1969; Saxe, 1991; Nunes and Bryant, 

1996). This is made possible through the use of conventional rules that are 

comparatively more abstract than knowledge of the counting principles. These rules 

allow the production of any number in the numeration system. In order to understand 

the generative rules of a numeration system, children must first learn a base sequence 

of numberlogs, and the length of this base may vary across linguistic environments. 

According to Zaslaysky (1973), the base may be as small as 2 in some cultures and as 

large as 20, in others, although the most common bases are in between 5 and 15 items 

long. Most Western countries have conventionalised the use of 10 as a base. 

2.3.2 What children must know to use numeration systems ? 

Whilst children's counting entails the use of units of the same denomination (i.e. 

ones), their grasp of the conventional invariants of the decade numeration system 

further entails the understanding of more complex knowledge. Firstly, that units may 

have different denominations - ones, tens and so on -, and secondly, that these units 

can be counted and combined in order to form larger numbers. In other words, that all 

numbers are compositions of other smaller numbers that came before them in the 
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number-line; i.e. additive composition of number (Resnick, 1983; Fuson, 1990; 

Nunes and Bryant, 1996). 

At a very simple level, the idea underlying the verbal number-word system is that 

whenever a group of 10 units are added together, or regrouped, they become one of 

the next unit; i.e. 1 ten. Subsequently, a group of 10 tens, become one-hundred; 10 

hundreds become a thousand and so on. In short, through the use of addition and 

multiplication the system reproduces the same base (10) over and over, allowing faster 

movements forwards and backwards in the system. This idea is quite different from 

the requirements of dealing with units of the same size (i.e. ones), where numbers can 

be thought of as part of a number-line - the higher the numbers are, the further down 

the line they will be placed. As units of the same size, numbers can only be seen in 

terms of relative size - i.e. bigger or smaller than others - but not in terms of 

compositions of other numbers (Resnick, 1983). 

2.3.3 The conceptual importance of using numeration systems 

The use and understanding of the decade numeration system has a fundamental 

conceptual importance in children's arithmetical cognition. As a complex thinking tool, 

it avoids the need to memorise an endless number-word list and provides the child with 

a much faster and more complex counting system. The need to reproduce unrelated 

tags for each number implied in counting, entails a memory-load problem, which is 

solved by the generativity rules implied in the use of numeration systems. This aim has 

been sought by primitive and modern numeration systems (e.g. Menninger, 1969; 

Skemp, 1971; Hughes, 1986). 
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The Oksapmin tribe, for example, reduced the number of memorable tags to a 'round' 

of twenty-seven. Each tag is represented by a body-part from, say, the left thumb, 

each of the fingers, knuckles, up the elbow, some parts of the face, down to the right 

arm, and back to the right-hand thumb (Saxe, 1981; 1982). This solution, however, is 

only partial and still does not enable the generation of larger numbers, in the hundreds 

and the thousands. The Hindu-Arabic system, on the other hand, solved the problem 

through the use of a generative rule with base-10. 

The understanding of the complexity of the numeration system, through the use of the 

generativity rule and the ability to count and combine units of different denominations, 

means that there is no need to know all the numbers involved in the counting up to 

5275, for instance. Hence, the child may be able to count up to that number, without 

previous knowledge, if asked to do so. In other words, the number of number-words 

to be memorised is almost insignificant when compared to those implied in the whole 

number-line. All the numeration system requires for its use is the understanding of the 

logic of regrouping of ten units into the next unit and the memorisation of some thirty 

number-tags. 

Some languages require the memorisation of some number-tags beyond the 1-9 digits, 

due to the irregularities of the system, mostly in the teens, but this does not change the 

fundamental importance of generativity rule. In the case of the English language, up to 

number twenty the number-tags used are short of cues for the young learner who has 

no choice but to memorise them. Numbers such as eleven or twelve give nothing away 

about the structure of the system, when compared with the clarity of ten-one or ten-

two used in Japanese. Here, the young learner finds that the decade structure is 

faithfully reproduced throughout the system, and the system relies only on 10 basic 

number-tags. After ten, comes ten-one, ten-two, ten-three, and so on. This way, the 

user knows which decade s/he is dealing with. 
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In French, the difficulties are similar, but extended to the complication of dealing with 

numbers such as soixante-dix (sixty-ten meaning seventy), soixante-douze (sixty-

twelve; meaning seventy-two), or even quatre-vingt-douze (four-twenty-twelve; 

meaning four times 20 (80) plus twelve, meaning 92 !). These constructions follow no 

specific pattern other than a linguistic style — which, incidentally, are not shared by all 

French speaking countries. So, while the Japanese rely on the recombination of tens 

and ones, English and French also rely on that structure, but have some exceptions 

that have to be known by the child beforehand. Although these exceptions can be an 

obstacle, the use of the system clearly makes number generation much easier. 

At another level, the use of the numeration system, such as the base-10, entails the 

compatibility between notation, measurement and the currency systems. In other 

words, counted, written and measured numbers share the same conventional structure. 

When written, numbers acquire a place-value according to their position and any 

computation on base 10 becomes more efficient and economic when compared to 

systems without a base (e.g. Saxe and Posner, 1983). 

The use of the decade numeration system implies, from the child's point of view, 

"a break with simpler concepts of the past, and a reconceptualization of 

number itself' (Hiebert and Behr, 1988; p. 9). 
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Children can only use this tool after having understood a particular aspect of the 

principle underlying the numeration system, i.e. additive composition of number. The 

idea that any number is equal to the sum of any other two numbers that precede it in the 

counting-list is common to numeration systems of any base. However, the specific 

aspect of additive composition that helps children to understand the decade numeration 

system in particular is the idea that any number can be seen as a sum of tens and ones, 

or as a sum of hundreds, tens and ones and so on. 

However, little is known about the conceptual requisites of this development. What 

specific number knowledge must the child know before this reconceptualisation takes 

place ? In other words, what are the number components involved in the development 

from counting one to counting units of different denomination (i.e. ones and tens) and 

the emergence of additive composition of number ? Furthermore, considering that 

knowledge of the decade system entails the previous understanding of sum and 

product relations, what is the role of early addition and multiplication in the 

development of the decade system ? 
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2.4 ARITHMETICAL OPERATIONS 

2.4.1 Addition and Subtraction 

2.4.1.1 What are Addition and Subtraction ? 

Addition and subtraction represent a relation between two sets of numbers, and a third 

set, the sum. The consequence of this relation is the change in numbers either by an 

increase or a decrease of the quantities. In other words, two distinct sets of objects, 

with no members in common, are put together and the child is required to compute the 

cardinal number of the new set. In the case of subtraction, a set of objects is 

partitioned (e.g. some of the elements of the set are taken away) and the child is 

required to find out how many are left. The relation established between the sets in 

addition is more complex than the relation of larger and smaller or increase/decrease 

(e.g. English and Halford, 1995; Haylock and Cockburn, 1997). 

2.4.1.2 What children must know to Add and Subtract 

The same basic model of adding two distinct sets, say 4+3, may be applied to a range 

of different situations. Several stories can be created such as "Mary has 4 sweets and 

Peter gave her another 3 sweets. How many does Mary have altogether ?", or "there 

are 4 girls and 3 boys. How many children altogether T', or "a plant was 4 inches tall 

on Monday. A week later it had grown another 3 inches. How tall is the plant now ?" 

However, to succeed in each case, children are required to interpret the numbers in 

each set in the cardinal sense, before proceeding to their union. In time, they will also 
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see that these situations share a common structure, one that implies the aggregation (or 

partitioning, in the case of subtraction) of sets: 

"Aggregation is an important structure that has to be linked with addition. 

It forms part of the network of connections that constitutes the concept of 

addition" (Haylock and Cockburn, 1997; p.34). 

According to the same authors, children can also grasp addition through the structure 

of aggregation, as situations that incorporate the ideas of counting-on. For example, 

start at 6 and count-on 4. 

"This idea often relates most strongly to the ordinal aspects of the 

numbers and is experienced most clearly in making moves on a number 

line " (Haylock and Cockburn, 1997; p.35). 

2.4.1.3 The importance of addition and subtraction 

Practice with addition and subtraction shows children the new possibilities in the realm 

of number, in two ways. Whereas in the earlier stages counting led to enumeration and 

cardinality, to the ability to relate quantities and to an entry into the realms of addition 

and subtraction, addition and subtraction will now show children that numbers can be 

transformed and operated at will. 
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Secondly, practice with addition will show children much faster ways of counting and 

the possibility of handling the decade numeration system. Addition, therefore, 

becomes a central number component to assess whether children can handle the more 

complex transformations of number. 

At another level, the emergence of addition remains unclear. It has been widely 

assumed that children use counting strategies to progress to more sophisticated ways 

of doing certain types of sums. This excludes the more difficult addition problems 

such as start-unknown word problems (inversion; ?+5=8), which cannot be solved by 

counting, considering that it is difficult to represent the first addend with fingers. 
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2.4.2 Multiplication 

2.4.2.1 What is Multiplication ? 

The introduction of the multiplication operation represents a significant change in 

children's dealings with number. They must now contend with two forms of change in 

the nature of the unit, namely, changes in what the numbers are and changes in what 

they are about (Hiebert and Behr, 1988). The emergence of multiplication implies a 

shift from operating with single units to operating with composite units (Steffe, 1988). 

The same can be seen when children count in 2's, 5's or 10's. 

Multiplication is generally introduced in second year of school and treated as a faster 

way of doing repeated addition (Fennell et al., 1991; Hoffer et al., 1991; Newmark, 

1991; Nichols and Behr, 1982). Although multiplication is easily understood by some 

children, others struggle with it throughout primary school. Some of the reported 

problems in the learning of multiplication have been that children tend to add instead of 

multiplying. For instance, in the problem "if a carton has four yoghurts, how many 

yoghurts are there in five cartons ?", children write 4+5=9 (Hart, 1981; Kamii and 

Livingston, 1994). 

Also, children find it much easier to derive answers to addition problems from other 

addition facts than to derive answers to multiplication problems from other 

multiplication facts (Kamii and Livingston, 1994). Knowledge that 4x4=16 is less 

helpful for children to figure out how much 4x5 is. However, 5+4 can be easily 

derived from 4+4=8 ... +1=9. Other children have problems with the meaning of 
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multiplication, and mistake the "x" sign, for a "+" sign. O'Brien and Casey (1983) 

asked children to interpret 6x3. Forty-four percent of fifth graders said 

"there are 6 ducks swimming in the pond...Then a while later 3 more ducks 

come, so how many are there ?" (O'Brien and Casey, 1983; p. 248). 

2.4.2.2 What children must know to multiply 

Although authors generally agree, regarding the classification of multiplication word-

problems in terms of isomorphism of measures, product of measures and multiple 

proportions (Vergnaud, 1983), they have disagreed in relation to the development of 

children's grasp of multiplication. One view, is that multiplication develops from 

addition (i.e. sequentially) and these operations are seen as conceptually similar. 

Another perspective takes the opposite view, that is, addition and multiplication are 

discontinuous operations (i.e. develop at the same time). Although some 

multiplications can be solved using repetitive addition, that does not mean that the 

whole of multiplication procedures can be explained by addition. 

Alternatively, Steffe (1988; 1994) has extended Piaget's work by further detailing the 

development of children's multiplicative thinking. Steffe based his research on the 

development of the counting scheme, which as mentioned in earlier sections, is not 

limited to counting by ones, but can include composite units (units of more than one). 

According to Steffe's (1994) view, 
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"for a situation to be established as multiplicative, it is necessary to at 

least coordinate two composite units in such a way that one of the 

composite units is distributed over the elements of the other composite 

unit" (Steffe, 1994; p.19). 

In other words, evidence that children are able to think multiplicatively should come 

from their ability to think simultaneously about units of one and about units of more 

than one, as was suggested by Piaget (1952) with the vase (and flowers) experiments. 

2.4.2.3 The importance of Multiplication 

Children's understanding of multiplication may help them see the number word system 

in terms of composition of units that bear product relations (e.g. 600 and 6 hundred; 

50 and 5 x 10). It is important to assess the significance of early multiplication in 

counting, and whether this understanding expands children's understanding of the 

decade numeration system. 
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2.5 WRITTEN NUMBER AND THE UNDERSTANDING OF PLACE VALUE 

2.5.1 Writing single-digit numbers 

The reading of single-digit numbers is, for the child, a basic associative learning task, 

where s/he sees the numeral and recalls its correspondent number word (Fuson, 

1988). According to Bialystok (1992), symbol recognition represents the second step 

in a three-step development of a symbolic number representation. In the first step, the 

child recites the correct name for each element in the number sequence. In the second 

step —symbol recognition - children are able to recognise, produce and name the 

written notations. Here, they represent the written numbers as objects with particular 

visual characteristics but not as meaningful symbols. The understanding of the 

individual symbolic forms will only emerge on the third stage, where the child is 

finally able to associate the written form of a number with the quantity it represents. 

The mapping of this process starts with a number 5, for example, to its verbal 

representation ("five"), and then to a model of this number, either a mental, physical or 

pictorial representation. Once children have grasped the meaning of symbol 

recognition, they need practice to transfer its meaning through the different 

representations (Post et al., 1993). 

Children's progression to written multi-digit numbers involves a totally new 

dimension, that has been described by several authors (e.g. Menninger, 1969; 

Ginsburg, 1977; Brown, 1981; Sinclair et al., 1983; Ross, 1989; Miura and Okamoto, 

1989; Bergeron and Herscovics, 1990; Sinclair et al., 1992; Seron and Fayol, 1994; 
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Yang and Cobb, 1995; Nunes and Bryant, 1996; Sinclair and Scheuer 1993; Miura et 

al., 1993; Power and Dal Martello, 1990). The Arabic written system constitutes a 

strict positional system and its lexicon is reduced to a small set of ten symbols - the 

digits from 1 to 9 and 0. The position of a digit in the numeral determines the power of 

the ten-base by which it must be multiplied (Fuson, 1990; Nunes and Bryant, 1996). 

2.5.2 What is place value ? 

The way numbers are written involves the concept of units of different sizes. In the 

number 136, for example, the 1 indicates the number of hundreds, the 3 the number of 

tens and 6 the number of ones. This system represents a major evolution, compared 

with other historically previous systems - such as the Roman - by having introduced 

the concept of place value. 

Place value, is a convention defining that each digit signifies a unit of a different size, 

according to the position occupied in the number. In the number 222, for example, the 

first digit means 200, the second digit means 20 and the last digit means 2. Finally, 

whenever any of the units, either the ones, tens or the hundreds, has no value, a zero 

is used as a place holder. For example, the number 305; there are no units in the tens. 

"Thus, some aspects of the written numeration system require the 

understanding of the same principles as the oral system but other aspects - 

namely, place value and the use of zero as a place holder - are specific to 

the written system" (Nunes and Bryant, 1996; p. 67). 
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2.5.3 What do children have to know to write multi-digit numbers ? 

The verbal number-word system (based on the decade numeration system in the case 

of the English language) is different from the Arabic system, which is a written 

representation of numbers (Fuson, 1990; Seron and Fayol, 1994; Nunes and Bryant, 

1996). The literature has shown some confusion between the development of these 

two conceptual structures which tend to be assessed as one [see, for example, the 

works of Luria (1969), Sinclair et al. (1992) and Sinclair and Scheuer (1993)]. 

However, several authors support the view that these are two separate number 

components in the form of 'generating verbal number-words and using numeration 

systems' (presented earlier) and 'written numbers and the understanding of the 

principles underlying place value' (Resnick, 1983; Fuson, 1990; Nunes and Bryant, 

1996). 

The verbal number-word and the Arabic systems differ in their lexicon and in their 

syntactic structures (Fuson, 1990; Seron and Fayol, 1994; Nunes and Bryant, 1996). 

The verbal English system, for example, is composed of several classes of numerical 

quantities; the unit words, the teens words and the tens words. There are also 

multiplier words like 'hundred', 'thousand' and 'million' which according to their 

position in a word sequence enter in sum or product relations with the basic numbers. 

For example, 'four-hundred' corresponds to a product relation, whereas 'hundred and 

four' corresponds to a sum relation (Fuson, 1990; Seron and Fayol, 1994). 

The Arabic written system, on the other hand, is comparatively simpler, since it 

constitutes a strict positional system. Its lexicon is reduced to a small set of ten 
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symbols - the digits from 1 to 9 and 0. The position of a digit in the numeral 

determines the power of the ten-base by which it must be multiplied and the '0' serves 

to indicate the absence of a given power of the base in the number (Fuson, 1990; 

Nunes and Bryant, 1999). 

There are two views on how children develop their understanding of place value. One 

group of authors argue that children learn about place value from experience with 

written numbers, i.e. by observing the relations between different digits. Another 

group suggests that knowledge of place value can only be developed after children 

have understood the structure of the numeration system (e.g. Ginsburg, 1977; Nunes 

and Bryant, 1996). 

2.5.4 Why is place value important ? 

Teaching children about the decimal system and the positional system based on it, is 

the most difficult and important instructional task in mathematics in the early school 

years (e.g. Resnick, 1983; 1986). Considering that understanding of place value is 

necessary for both the writing of multi-digit numbers and subsequent success in the 

computation of algorithms (e.g. addition and subtraction by columns), its 

understanding represents a basic milestone, in children's mathematical learning 

(Resnick, 1983). 

Without this understanding, most children resort to idiosyncratic rote-procedures while 

attempting to write multi-digit numbers (Ginsburg, 1977; VanLehn, 1990) and 

performing multi-column operations, leading to errors and frustration. This situation 

clearly needs further investigation, considering that about half of nine year-old 
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children, still have not understood place value (e.g. Kamii, 1980; Brown, 1981; 

Bednarz and Janvier, 1982; Kamii, 1986). It remains of importance to clarify whether 

children's understanding of the structure of the decade numeration system is a requisite 

for their grasp of place value. 
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3 
REVIEW OF RESEARCH ASSESSING INDIVIDUAL NUMBER COMPONENTS 

3.1. INTRODUCTION 

This chapter briefly reviews previous research assessing the individual number 

components included in this thesis. It briefly discusses the methodologies used in 

these studies and argues for the choice of methods to be used in the present study. It 

also briefly reviews what previous studies suggest about the development of 

competence in the individual components. 

3.2. COUNTING AND KNOWLEDGE OF THE NUMBER-WORD LIST 

3.2.1 Counting principles 

Children's knowledge of counting has been assessed by several authors (e.g. Gelman 

and Gallistel, 1978; Gelman and Meck, 1983; Meck and Church, 1983; Gelman and 

Meck, 1986; Briars and Siegler, 1984; Fuson, 1988; Wynn, 1990; Frye et al., 1989; 
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Greeno, 1991; Wynn, 1992), the majority immersed in the debate of whether 

understanding precedes counting skill (innate principles) or whether it follows skill 

acquisition (acquired principles). As this debate is beyond the scope of this thesis, I 

will concentrate on the data provided by two influential papers by Briars and Siegler 

(1984) and Fuson (1988), which clarify the ages at which children can be expected to 

count by making correct use of the counting principles. 

3.2.1.1 Assessment, methodology and children's performance 

Research has shown that there is a developmental gap between counting and 

displaying actual knowledge of the counting principles (e.g. Piaget, 1952; Bialystok, 

1992; Briars and Siegler, 1984; Fuson, 1988). The reason is that children could 

simply be repeating a list of number-words, unaware of its meaning. This has made 

the assessment of the counting principles a complex issue, since it cannot be assessed 

directly. 

Briars and Siegler (1984), for instance, assumed that children's judgements about a 

puppet's counts reflected their knowledge of the principles. Still, they found that 

although even the 3 year-olds could count correctly in 75% of the trials, no children 

had consistently rejected the puppet's counting errors. Briars and Siegler also found 

that although their 3, 4 and 5 year-olds could accept correct counts from a puppet, they 

could not discriminate the puppet's unusual counts nor judge the puppet's incorrect 

counts. 

Fuson (1988) also showed that children could count without awareness of its meaning 

by using a different methodology. She reasoned that if the counts were guided by 
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principles, children could still apply them in slightly more difficult situations. Initially, 

children were asked to count objects displayed in straight lines and with regular 

intervals between the objects to be counted. She then asked children to count the same 

objects in scattered-irregular rows. 

By comparing 3 to 6 year-olds' results in two conditions where 'straight-regular' and 

'scattered-irregular' rows of objects were counted, Fuson (1988) found that children 

invariably made more errors in the scattered trials which confused their strategies. This 

showed that the modification of the array shape represents a serious obstacle in 

children's counting, especially considering that a significant part of the 5 and-a-half to 

6 year-olds still made counting errors in the scattered condition (i.e. 38 errors over 100 

counts). Fuson concluded that although it is possible that children lose their counts 

because they find it hard to keep track of the scattered blocks, or they simply forget, it 

seems more plausible to consider that the counting principles are not innate. 

Alternatively, Nunes and Bryant (1996) have also assessed children's ability to count 

units of the same denomination in shopping tasks, where children were required to 

buy toys from a shop and pay with play-money worth one penny each. This task 

implies the understanding of cardinality, as the amount to be paid, but avoids the 

question of "how many objects are in there ?". Children are simply requested to match 

the price with an equal numbers of tokens. Nunes and Bryant reported that both 

Brazilian and British 5- and 6- year-old children obtained ceiling-level results in 

amounts up to twenty. 

The present study used a counting task similar to the one used by Fuson (1988). 

Children were required to count scattered rows of tokens and in order to do this they 

were required to make correct use of the one-to-one correspondence and stable-order 
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principles. As ceiling-level results were expected with five year-olds, a counting units 

of the same denomination task was also used. 

3.2.2 Knowledge of the number-word list 

Children's knowledge of the number-word list has been assessed by several authors 

with different purposes (Fuson et al., 1982; Siegler and Robinson, 1982; Fuson, 

1988; Miller and Stigler, 1987). Siegler and Robinson's (1982) assessment was 

primarily concerned with making explicit children's underlying representation of the 

number string. Fuson et al's. (1982) assessment focused on a clearer understanding of 

how children develop length and accuracy. Miller and Stigler (1987) clarified the 

relevance of linguistic cues in children's learning of the number-word list. All these 

studies make important methodological contributions to the present research. 

3.2.2.1 Assessment and methodology 

Siegler and Robinson (1982) proposed three models to account for the development of 

the underlying representation of the number string. Their assessment focused on the 

analysis of children's behaviours in terms of stopping points, omissions and 

repetitions. One of the key assumptions in their investigation was that children's 

stopping points were a good indicator of their level of competence. 

They argued that children who cannot count beyond 20 generate numbers according to 

a "next" rule. Those who count between 20 and 99 recall the next number from 
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memory until reaching 20. Beyond this number, counting within a decade involves 

concatenating a decade name with the next digit. Transitions between decade, involve 

the mastery of specific connections between each number ending in nine (e.g. 29) and 

the first number of the next decade (30). Finally, children who count beyond 100 do 

so by prefixing number names above 100 with the appropriate hundred's name. 

Siegler and Robinson (1982) reported that children who counted beyond 29 were 

likely to stop their counts with a number ending in "nine", whereas there was no such 

regularity in the stopping points for children who stopped before 29. This data, 

suggested these authors, supported the view that in learning the number-word list, 

children detected and used the relatively transparent structure that features the number 

string beyond number 20, but not the less obvious structure that features the teens 

numbers. 

The problem, however, is that inferences about stopping points are limited. Asking 

children to recite numbers maybe an important indicator of knowledge of the count 

word list but it is not a sufficient assessment of children's knowledge of the counting 

word system. 

Evidence to substantiate the idea that children's stopping points are a poor, rather than 

a good indicator of their competence was provided by three independent studies 

(Fuson et al., 1982; Siegler and Robinson, 1982; Miller and Stigler, 1987) which have 

showed divergent results on children's stopping points in abstract counting. 

Whereas Siegler and Robinson found that 69% of children who could count as high as 

20 stopped with a number ending in 9, Fuson et al. reported that only 31% of the 

children they observed did this. Miller and Stigler, on the other hand, reported that 
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44% of American children who counted up to a number between 20 and 99 stopped 

with a number ending in 9, and 32% of Chinese children showed the same pattern. 

Such divergence indicate that where a child chooses to stop counting may be a poor 

indicator of her level of counting competence and that other important indicators are 

also involved. 

Alternatively, Fuson (Fuson et al., 1982; Fuson, 1988) assessed the length of 

children's correct sequences (and the structure of their incorrect sequences), and its 

development from age three to age five. According to Fuson (1988), children within a 

given age group show considerable variability in the length of the correct sequence that 

they can produce. Their ability to say the correct sequence of number words is 

strongly affected by any opportunity they may have to learn and practise this sequence, 

from exposure to relevant television programs, to older siblings or the aid of parents. 

Meanwhile, it has been widely accepted that children's learning of number-words is 

dependent on the features of the number-word list (Ginsburg, 1977; Fuson et al., 

1982; Miller and Stigler, 1987; Song and Ginsburg, 1988; Fuson and Kwon, 1992; 

Nunes and Bryant, 1996). This has raised the possibility that children's experience of 

counting with a regular system may help them to understand the properties of a base-

ten system, in comparison with the more irregular systems. 

This hypothesis was investigated by Miller and Stigler (1987) who compared 4-to 6-

year-old Taiwanese and American children by asking both groups to count objects 

(either in rows or arranged randomly) and to count abstractly as far as they could. The 

Taiwanese children had learned the Chinese system, which is regular and transparent, 

whereas the American children used the English system, which is irregular in the 

numbers between 10 and 20. They reported that the Chinese children were 
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significantly better at both kinds of counting, either in rows or randomly. The 

Taiwanese children also differed in their ability to produce the conventional count 

words as they pointed to objects, producing significantly higher results. 

Regarding the abstract counting task, Miller and Stigler also reported that the American 

children made significantly more mistakes in their sequences between 10 and 20. 

Hardly any of the Taiwanese children went wrong at this stage whereas a large number 

of the American children did. 

This evidence clearly suggests that there is a relation between the characteristics of a 

language's number-word system and children's acquisition of that system. A helpful 

set of words in the form of a regular number-word system such as the Chinese one 

plays an important role in children's learning of the number-word sequence. Children 

learning this system will benefit from grasping early on that the numeration system 

repeats the same structure, whereas children learning the English system will have to 

recall the meaning of irregular number-words such as "twelve" or "thirteen". This, 

suggested Miller and Stigler (1987), limits the induction of the underlying rules for 

number formation. Miura and Okamoto (1989) and Miura et al. (1993) bring further 

confirmation to this argument in studies that compare the populations of six different 

countries (People's Republic of China, France, Japan, Korea, Sweden and the United 

States). 

The present study assessed children's knowledge of the number-word list similarly to 

what has been done in previous studies. Children were invited to count until they made 

two successive mistakes. The older children were asked how far they thought they 

could count (n), and were invited to count from n-12, to avoid fatigue. The next 
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section briefly outlines the results obtained by Fuson (1988) in the assessment of 

children's production of the number-word list. 

3.2.2.2 Children's performance 

Fuson's (1988) data on children's production of the English sequence of the number-

word list indicate that most children below age 3 and a half attempt to learn the 

sequence to ten, most children between 3 and a half and 4 and a half are working on 

the sequence of number-words between ten and twenty, and a significant proportion of 

children between 4 and a half and 6 have difficulty with the sequence between fourteen 

and twenty, although many are already working on the decades between twenty and 

seventy (Table 1). 

TABLE 1 

Percentage of age groups producing accurate sequences of various lengths (from Fuson, 1988) 

Age n<10 10-14 14-20 20-30 30-72 72-101 
3,6 	to 	3,11' 17 44 22 17 
4 to 4,5 41 35 1 2 12 
4,6 to 4,11 12 47 18 12 12 
5 to 5,5 6 25 1 3 44 13 
5,6 to 5,11 6 22 17 44 11 

* years, months 

The table also shows that over 50% of children in kindergarten, which is equivalent in 

age to the English Year 1 class, count over 30. Furthermore, over a half of the First 

grade (equivalent to Year 2 class) children count over 100. There remains a need to 

clarify the influence of these developments on other number components. 
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3.2.3 Continuation of Counting 

Gelman and Gallistel's (1978) principles-first counting model does not discriminate 

the subsequent stages of counting beyond the acquisition of the counting principles 

themselves (Gelman and Meck, 1992). The conceptual importance of the different 

stages of development of counting was highlighted by Fuson's (Fuson et al., 1982 

and Fuson, 1988) characterisation of the various stages of development in the 

acquisition of the number-word sequence, and the development from the unbreakable 

to the breakable chain level at age 3 and 4. This framework is central for a finer 

investigation of the relationship between counting and other number components, as it 

highlights continuation of counting as the first significant development after the 

acquisition of the counting principles. 

3.2.3.1 Assessment and methodology 

Children as young as 2 or 3 display continuation of counting. Fuson et al's. (1982) 

evidence that children go through a stage where they must always count from one (i.e. 

unbreakable chain level), to another stage where they are able to continue counting 

from an arbitrary point (breakable chain level), comes from a study assessing the 

ability of 24 three and four year-olds to continue counting. In their task children were 

asked to continue counting after being prompted with either: (1) a single word; (2) two 

and (3) three successive words from the counting-list. 
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By giving the child three successive words of the counting-list, the authors intended to 

provide evidence that the recitation could only continue if induced by the 

experimenters' sequence and not by children on their own. They reasoned that 

superiority of the results in the recitation context (i.e. 3) would indicate that children's 

word sequence does go through an unbreakable chain level, as they cannot continue to 

count unless they are aided. Children were given number-words of two sizes: single-

digits and teens. 

In this study children were asked to continue counting from numbers 10 and 20. Both 

numbers have the advantage of relating to the decade numeration system but do not 

involve numbers in the teens, which are problematic for children (Siegler and 

Robinson, 1982; Fuson, 1988). 

3.2.3.2 Children's performance 

The results (reproduced in Table 2) indicate that generally, the three year-olds had 

more difficulty in producing sequences in the teens, which did not happen in the 4 

year-old group, in the three conditions. Considering the single-digit sequences in the 3 

year-old group, 63% of the children gave correct responses to the three-word 

stimulus, whereas already 39% succeeded in the one-word stimulus - i.e. showed 

ability to continue counting. There was no difference between the 2-word and 3-word 

conditions. 
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TABLE 2 

	 Percentage of correct responses in Fuson et al.'s (1982) study 

	

One-word . 	 Two-words . 	Three-words  
Age 	 Digit Teens 	Digit Teens 	Digit Teens 

3 year-olds 39 15 62 48 63 33 

4 year-olds 64 63 82 83 83 81 

The 4 year-old group also showed differences between the three-word stimulus (83% 

correct) and the one-word stimulus (64% correct), but not between the 2 and 3-word 

conditions. Again, results revealed that the majority of four year-olds could continue 

counting from an arbitrary list. The higher number of correct responses in both the two 

and three-word stimulus, confirmed these author's hypothesis that there is a 

difference between asking children to continue to count and having to provide help for 

them to do so. Fuson et al., (1982) concluded that those who needed to be induced 

were at the unbreakable chain level. 

Siegler and Robinson's (1982) data supports the unbreakable chain level in children's 

production of number word sequences. It also suggests that the development from one 

level to the next is not trivial. Siegler and Robinson (1982) reported that pre-school 

children made significantly more errors when they were asked to start producing 

number-words from an arbitrary point within their accurate counting range than when 

they were allowed to start counting from one. When asked to start from a number 

other than one, children tended to stop at the end of the decade or make decade 

transition errors (e.g. going from twenty-nine to forty). Those who started from one 

made significantly fewer errors of this type. Finally, Secada et al. (1983) reported that 

49 



only 6 out of 63 six and a half year-old children could not start from an arbitrary point 

in the teens. 

Aubrey (1993) used a similar task in a study with fourteen children aged four and five 

(4:4 to 5:0; mean age 4:6), who were assessed within their first weeks in a Reception 

class. The purpose of this task was to see whether these children were able to count-up 

or down from any number in the number-line. The children were asked what number 

came after/before randomly presented numbers 1 to 12, 14, 16 and 20, in a total of 15 

items. Aubrey's (1993) results, reporting that half of the children were able to say 

what number came after randomly presented digits up to 10, support the idea that as 

early as four some children develop more flexible and abstract counting strategies. 

However, no data has been produced on the development of continuation of counting 

or the effect of this development on other number components, after the beginning of 

schooling. 
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3.3 GENERATING VERBAL NUMBER-WORDS AND UNDERSTANDING OF THE 

STRUCTURE OF THE DECADE NUMERATION SYSTEM 

3.3.1 Counting with units of the same denomination 

The reader is referred to section 3.2.1.1 

3.3.2 Counting with units of different denomination 

Children's ability to count units of different denominations (i.e. ones, tens, hundreds 

and so on) has been assessed by different authors, using different contexts (Russell 

and Ginsburg, 1984; Kamii, 1986; Nunes and Bryant, 1996). Russell and Ginsburg 

(1984) investigated whether difficulties with base ten concepts may be responsible for 

the poor performance of children with Maths difficulties in school arithmetic. The 

same relation was investigated in main-stream children, aged 6 to 10 (Bednarz and 

Janvier, 1982). 

Kamii (1986), on the other hand, tried to clarify ways in which children developed an 

understanding of the decade system by constructing the structure of tens on the 

structure of ones. Finally, Nunes and Bryant (1996) researched the influence of 

cultural tools such as coins on children's understanding of the decade numeration 

system. 
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3.3.2.1 Assessment and methodology 

To investigate the relevance of knowledge of base ten concepts in children's maths 

difficulties in school arithmetic, Russell and Ginsburg (1984) asked (1) "normal" 

fourth grade children, (2) fourth graders with maths difficulties and (3) "normal" third 

graders to count groups of dots arranged in horizontal rows of ten, presented in cards. 

The four set sizes presented were 100, 50, 120 and 80 and children were scored for 

accuracy (i.e. whether children enumerated the sets correctly; total score was four) and 

strategy used (enumeration by ones, enumeration in groups except tens, enumeration 

by tens and other). 

In another task to verify children's understanding of base ten concepts, Russell and 

Ginsburg gave each child four piles of play money (coins). They argued that 

children's grasp of tens and hundreds could be tapped by asking them to count the 

amounts of $430 (4-100's, 3-10's), $660 (6-100's, 1-50, 1-10), $1530 (3-500's, 3-

10's), and $3020 (5-500's, 5-100's, 2-10's). 

Russell and Ginsburg (1984) reported that all three groups of children responded 

correctly to 3 out of 4 trials, and no significant differences were found between the 

three groups, in the first task (counting dots). Also, no significant differences in the 

use of a counting by tens strategy was found. However, the results of the counting 

money task were much more discriminating with the same groups of children, as they 

showed that there were significant differences between both groups of fourth graders 

(i.e. "normal" and with math difficulties). 
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This data suggests that counting money may represent a slightly more difficult, but 

also a more accurate assessment of children's concepts of units of different 

denominations (i.e. ones, tens and hundreds). Furthermore, some children may see no 

need at all to count the dots on the cards by tens, although they may be able to do so. 

In other words, counting by tens becomes a choice strategy, which might bias the 

results. 

Bednarz and Janvier (1982) assessed whether 8 to 10 year-old children understood the 

idea of ones, tens and hundreds in terms of groupings. In their task they showed 

children written numbers such as 402 and 513 (they also read the numbers) and asked 

them to write down a number somewhere in between the two previous ones. The child 

was also asked to use number tags (placed in front of the child; see Table 3) to make 

the number. 

TABLE 3 

Number tags used in Bednarz and Janvier's (1982) groupings task  

0 ones; I one; 2 ones; 3 ones; 4 ones; 5 ones 

10 ones; 11 ones; 12 ones 

3 tens; 4 tens; 5 tens; 40 tens; 41 tens; 42 tens 

43 tens; 45 tens; 51 tens 

3 hundreds; 5 hundreds 

Bednarz and Janvier (1982) reported that only 27% of eight year-olds and 44% of ten 

year-olds showed an understanding of ones, tens and hundred in terms of groupings. 

These are very low results compared with other assessments of children's 

understanding of ones and tens. Kamii (1986) reported that 83% of the second graders 
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included in her study showed some understanding of tens, by grouping heaps of 

tokens in tens. Also, that 64% of her fourth graders could count in ones and tens 

(making heaps). 

One possibility is that Bednarz and Janvier's (1982) task was too demanding by 

asking children to make sense of a complex situation where they were required to mix 

digits with number-words in a quite unconventional way, such as is the case of "12 

ones" or "42 tens". This situation does not resemble coins or notes, nor does it 

describe conventional ways in which numbers are written, constituting a limitation of 

the study. 

Kamii (1986), on the other hand, used coins (play-money) of "one" to investigate 

ways in which children construct the structure of tens on the structure of ones, and 

therefore construct an understanding of the structure of the decade numeration system. 

Considering that adults usually make groups of tens when they quantify large 

collections of ones, Kamii explored whether this strategy was employed by younger 

children as well. 

In order to do so, she asked 100 Genevan children from the first to the fifth grades to 

count groups of coins, while she recorded their spontaneous counting strategies; that 

is, whether they counted by 'ones', 'twos' or 'tens'. In a further stage of her 

experiment, she 'imposed' the counting by tens in order to see children's process of 

construction of 'tens' on the system of 'ones'. This time, children were given heaps of 

'tens' and asked whether they wanted to count the heaps (following the advice of a 

child from "another school"), or mix the tokens up and count them by ones. 
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Kamii's (1986) results on the spontaneous counting task showed that there is a 

considerable lag between counting ones and being able to regroup those ones into tens. 

The majority of the children counted by ones and only 3 (out of 22) 4th graders and 1 

(out of 18) 5th graders (i.e. 9 and 10 year-olds) were able to count by tens, 

spontaneously. Also, only a minority of the 2nd and 3rd graders counted by twos, 

which Kamii interpreted as a faster way of counting by ones. 

The results of the counting by tens task (in heaps), however, were quite different. For 

a richer description, Kamii (1986) divided children who were able to count by tens 

into two categories: those who counted by tens only, and those who needed to count 

several ones up to a ten, and then repeated the procedure for the remaining tens. 

Table 4 shows that from the second grade onwards, practically all children assessed 

had some idea that 10 ones are equal to ten, and that another 10 ones will give a 

twenty, and so on. In other words, and according to Kamii (1986), the process of 

constructing larger units seems to start from the first grade but, nevertheless is a very 

slow one. 

TABLE 4 

Frequencies of children who counted by tens (Kamii, 1986) 

Grade level 

1st 2nd 3n1 4th 5th 
[2I] 	* [18] [19] [22] [18] 

counted by tens only 0 7 15 8 14 

counted each ten by ones 8 10 4 14 4 

failed 13 1 0 0 0 

* Numbers in parentheses represent N in each grade 
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Although Kamii's (1986) results show that there is a relation between counting ones 

and counting tens, the evidence is not very clear in explaining the nature of this 

relation. In other words, the data allows inferences about when this relation happens, 

but not how it happens. Also, the data presented suggests inconsistency in the use of 

either "tens only" and "counted tens by ones", where no age trend is shown: nearly 

40% of the second graders and almost 80% of the third graders were able to count in 

tens. However, only 36% of the fourth graders counted in tens. 

On the other hand, the number of children needing to count ones to reach a ten 

diminishes until the third grade, grows on the fourth grade and diminishes again later. 

This data suggests that the choice of strategy cannot be accounted for in Kamii's task 

which represents considerable limitation in the assessment of children's understanding 

of ones and tens. 

According to Kamii (1986), initially children can only count ones; then they start 

counting up to a ten, but lose track of the remaining counts. At a further stage they 

integrate the counts: 1, 2, 3....8, 9, 10 .... 1, 2, 3 .... 8, 9, 10...20! 	1, 2, 3 	 

8, 9, 10...30! and so on. At a more proficient level, children count straight by tens in a 

10, 20, 30 fashion. Unfortunately, however, no clear explanation for differences in 

development is offered, other than Piagetian reversibility: 

"Children have to create a system of tens, by reflective abstraction, on 

the system of ones they have already constructed in their heads" Kamii, 

1986; p. 84). 
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Kamii's (1986) study, probably reflecting the Piagetian view that counting has a 

secondary role in children's number understanding, may have led to the 

underestimation of children's abilities in counting by describing their development as 

an all-or-nothing event. Her classification of children's developmental differences in 

their understanding of the system of tens could have taken into account children's 

development from the unbreakable chain level to the breakable chain level, where they 

become able to count ones from an arbitrary number (Fuson et al., 1982). Indeed, 

some of the children in her study could count by two's but the implications of this 

ability were overlooked. Russell and Ginsburg (1984) have also overlooked this 

development in counting. 

The second limitation, refers to what may arguably constitute a problem of many 

studies following the tradition of research in 'one-component', as is the case in 

Kamii's study. Its focus on counting alone does not clarify which other maths 

achievements may be involved in children's grasping of the structure of the decade 

system. This criticism seems pertinent considering the results of other studies 

suggesting that children's progression from counting ones to using the numeration 

system may involve other number components, such as addition (Carraher, 1985; 

Nunes and Bryant, 1996). 

More importantly, from the methodological point of view, Kamii's (1986) use of 

tokens with face-value one may have not facilitated children's answers; rather it may 

have lead to confusion resulting in erroneous responses. Desforges and Desforges 

(1980) reported that a seven year-old girl failed to answer correctly to a task similar to 

Kamii's. After reviewing his procedure, Desforges concluded that the girl's failure 

was related to the use of an excessive number of one-tokens, which, in the main, 

confused her. 
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3.3.2 1.1 Shopping tasks 

To study children's ability to count with different units, some authors have used an 

alternative known as the shopping task claiming that the context of coins provide a 

good estimate of children's grasp of informal aspects of additive composition of 

number, a property of the decade system (e.g. Carraher, 1985; Resnick, 1986; 

Carraher and Schliemann, 1990; Saxe, 1991; Nunes and Bryant, 1996). Although 

additive composition is applicable to all general number systems, it is the knowledge 

that any number is composed of ones, ten, hundreds and so on, that is useful in the 

assessment of ways in which children construct the system of tens on the system of 

ones. 

The understanding of additive composition in seven year-olds is expected to be rather 

intuitive, but nevertheless of importance as a 

"basis for highly flexible application of well-known concepts, notations, 

and transformational rules" (Resnick, 1986; pp. 166). 

Resnick, who based her argument on a well researched case-study of a seven year-old, 

defined intuitive knowledge as self-evident to its user, but as not requiring justification 

in terms of prior premises (see also Vergnaud, 1983; Karmiloff-Smith, 1995). 
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Relative Values 

The ability to count units of different denominations develops during the early years of 

school. It has as a prerequisite the understanding of the relative size of the different 

units. Carraher (1985) and Nunes and Bryant (1996) assessed this with the relative 

values task. In this task, two rows of play-money with the same amount of coins, are 

put on the table, one said to be the child's and the other one, the experimenter's. For 

example, the child is given three 1p coins and the experimenter has three 5p coins. The 

experimenter then asks: "Who do you think will buy more sweets, you or me ?". The 

child is also invited to justify the answer. 

A response like "we both buy the same.... because we have the same amount of 

coins", has been interpreted as not recognising the meaning of the different 

denomination in the coins. On the other hand, a response like "you buy more .... 

because you have more coins; you have 15p and I only have 3p", has been interpreted 

as having recognised the meaning of the different denomination in the coins. The 

experiment has been also done with coins of 1p and 10p. 

Counting with different denominations 

The counting of units of different denominations task (also known as the shopping 

task), verifies whether the child is able to understand that any number is composed of 

units, tens, hundreds that add exactly to it. For example, it assesses whether children 

know that number 24 = 10 + 10 + 1 + 1 + 1 + 1). According to these authors, the 
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shopping task is suggested to assess aspects of additive composition of number, an 

essential property of the decade numeration system. 

In this shopping task, the child plays the role of the customer and the experimenter is 

the shopkeeper. The shop-situation is considered to make the counting of different 

denominations more meaningful to children. Play-money is also made available to the 

child in each item. In a typical item, the child is asked to buy from the shop a toy 

costing 15p, and is given three 10p and eight 1p coins to pay for the toy. Responses 

such as giving all the coins to the experimenter have been interpreted as inability to 

count and combine units of different denominations. 

In all items the number of coins given is never enough to respond correctly to the item 

without taking into account denomination - in this example, the child was given eleven 

coins in total. Responses where the child separates one coin of 10p and counts other 

five 1 p coins have been interpreted as being able to combine units of different 

denominations. The experiment includes several other items up to 3 and 4-digit prices. 

The use of coins has further advantages compared to the other forms of assessment 

described above. One of them is the possibility of observing children's handling of 

units of different denominations. Another, is the possibility of witnessing children's 

production of quantities that they could not write in the form of numerals. This 

possibility enables the assessment of children's number understanding before they are 

able to write multi-digit numbers. These are all important features in a study that 

observes the simultaneous development of several number components, as in the 

present case. 
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3.3.2.2 Children's performance in shopping tasks 

Carraher (1985) investigated the understanding of the decade system in a study with 

72 Brazilian children, aged 5 to 8 with a relative values task and a shopping task. She 

reported that sixty percent of the children succeeded in the relative values task, where 

some of these children could not even count the total amount of money in the arrays 

(e.g. 4 coins of 10 cruzeiros), but were nevertheless able to recognise that four 10 

cruzeiro2  tokens buys more sweets than four 1 cruzeiro tokens. Also, a significant 

proportion of the same children, (i.e. 39%), gave correct answers in the shopping 

task. Similar results in the same age category were obtained in a study using the same 

tasks with 5 and 6 year-old British children (Nunes and Bryant, 1996). 

The data obtained with the relative values and the shopping tasks shows that the use of 

coins with different denominations enables a more accurate assessment of young 

children's ability to count units of different denominations, which justifies its inclusion 

in the present study. 

2 - Brazilian currency of the time. 
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3.4 ARITHMETICAL OPERATIONS 

3.4.1 Addition and Subtraction 

Arithmetic word problems constitute an important part of the mathematics programme 

of primary schools. Initially, they were used to help children to apply the formal 

mathematical knowledge and skills learned at school to everyday life situations. Later, 

word-problems were seen as a vehicle for developing students' general problem-

solving capacity or for making mathematics lessons more motivating. Presently, word-

problems have also been used to help children's early learning of a particular concept 

or skill, in order to promote a clear understanding of the basic arithmetic operations 

(Carpenter and Moser, 1984; De Corte and Verschaffel, 1989; Bergeron and 

Herscovics, 1990; Fuson, 1992; Verschaffel and De Corte, 1998). 

Based on this, word problems have been a widely accepted method of assessment of 

children's understanding of addition and subtraction word-problems (e.g. Carpenter 

and Moser, 1982; Riley et al., 1983; Nesher, 1982; Fuson, 1992; Verschaffel and De 

Corte, 1998). 

3.4.1.1 Assessment and methodology 

Research in addition and subtraction word-problems has taken two main perspectives: 

one, has been explaining children's understanding of the different levels of difficulty 

in addition and subtraction problems, according to problem structure. Another, has 
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been clarifying the development of children's counting strategies. Why some children 

develop from the more basic counting strategies to the more complex derivation and 

recall strategies, while others lag behind ? 

In their assessments authors have used a common framework which classifies 

problems according to their structure. Further to this classification, authors have also 

assessed children's performance in function of the unknown quantity: either the result 

set (a+b=x), the change set (a+x=c), or the start set (x+b=c). These problems pose 

particular difficulties as children must rearrange the quantities in order to find the 

solution. 

3.4.1.1.1 The relevance of problem structure 

Addition and subtraction problems vary in difficulty according to two main 

dimensions: syntactic variables and semantic structure. Syntactic variables refer to the 

number of words used in the problem and the sequence of information. Semantic 

structure, on the other hand, relates to the type of action involved in the problems. 

Although this differentiation has been made, the evidence suggests that the semantic 

structure of a problem is much more important than syntax in determining the 

processes that children use in their solutions (e.g. Carpenter, Hiebert and Moser, 

1981; Carpenter and Moser, 1982; Verschaffel and De Corte, 1998). 

Several authors have agreed to adopt a common framework to characterise different 

problem structure (Carpenter and Moser, 1982; Riley et al., 1983). This analysis 

proposes four broad classes of addition and subtraction problems: Change, Combine, 
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Compare and Equalise where the different kinds of word problems are seen to 

represent the sum in different ways and in different contexts and, 

"Therefore, if one type of problem turns out to be much more 

difficult than another, the difference between the two should 

tell us something about the way in which children represent 

the sum in different ways and in different contexts" (Bryant, 

1994; p. 20). 

Table 5 displays some examples of word-problems according to their structure. Both 

types of Change problems involve action: joining or separating. In both sets the action 

occurs over time, with an initial condition (Ti), which is followed by a change 

occurring at T2, resulting in a final state (T3). In both sets, too, there are three 

different types of problems depending on which quantity is unknown. In the first type, 

both the start set (first) and the change set (second) are given and the result set (final) 

needs to be found. In the second type, the start and result sets are given. In the third 

type, the start set is missing. 

Both Combine and Compare problems involve static relationships, where there is no 

action. Combine problems involve the relationship among a particular set and its two, 

disjointed subsets. In one problem type, two subsets are given and the child is asked 

to find the result of their union. In the other, one of the subsets and the union are 

given, and the solver must find the remaining subset. 
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Join 	 Separate 

Change 
Joe had 3 marbles. Then Tom gave him 
5 more marbles. How many marbles 
does Joe have altogether ? 

Joe had 8 marbles. Then he gave 5 
marbles to Tom. How many marbles 
does Joe have now ? 

Combine 
Joe has 3 marbles. Tom has 5 marbles. 	Joe and Tom have 8 marbles altogether. 
How many marbles do they have 	Joe has 3 marbles. How many marbles 
altogether ? 	 does Tom have ? 

Compare 
Joe has 8 marbles. Tom has 5 marbles. 	Joe has 8 marbles. Tom has 5 marbles. 
How many marbles does Joe have more 	How many marbles does Tom have 
than Tom ? 	 less than Joe ? 

Equalize 
Joe has 8 marbles. Tom has 5 marbles. 	Joe has 8 marbles. Tom has 5 marbles. 
How many marbles does Tom have to 	How many marbles does Joe have to 
win to have as many marbles as Joe ? 	lose to have as many marbles as Tom ? 

TABLE 5 

Some types of addition and subtraction word-problems (from Riley et al., 1983; Carpenter and Moser, 

1983; Verschaffel and De Corte, 1998) 

Compare problems involve the comparison of two distinct sets, a referent set and a 

compared set. The third entity in these problems is the difference, i.e. the amount by 

which the larger exceeds the other. Here, any of the three entities could be the 

unknown - the difference, the referent set, or the compared set. The larger set can be 

either the referent set or the compared set, originating six different types of Compare 

problems. Equalise problems are a combination of Compare and Combine problems. 

There is similar action to the one found in the Change problems, but it is based on the 

comparison of two disjointed sets. 
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3.4.1.1.2 Description of strategies for solving addition and 

subtraction problems 

Brownwell's (1935) and Ilg and Ames' (1951) suggestion that children used different 

strategies to solve addition problems - most of them involving the use of fingers to 

count - led to a whole new area of research in addition and subtraction. Their findings 

supported the idea that children would understand the principles involved in addition 

not by systematic repetition, but through activities based on concrete materials. This 

represented a change of focus from the importance attributed to the memorisation of 

results (Thorndike, 1922). 

Lately, several authors have confirmed Brownwell's (1935) initial findings and have 

clarified the various strategies used by children in addition and subtraction problems. 

Pioneering work in this area was carried out by Carpenter and Moser (1982) in a three-

year longitudinal study that followed more than 100 children from grade 1 through 3. 

Their results demonstrated convincingly that from an early age have a wide variety of 

material counting strategies (based on the use of concrete objects) and verbal counting 

strategies (based on forward and backward counting) for solving addition and 

subtraction problems. Many of these strategies are never taught explicitly in school. 

The data from Carpenter and Moser's (1982) as well as numerous other studies has 

shown that the younger children begin by using count-all from the first addend (CAF), 

then progress to count-on from the first addend (COF), eventually begin using count-

on from the larger addend (COL; Groen and Resnick, 1977; Carpenter and Moser, 

1982; Riley et al., 1983), and finally start using number facts and, sometimes derived 

facts (Table 6). 
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A child who uses the counting-on strategy will solve the 3+5 problem by counting-on 

from 3... 4, 5, 6, 7, 8, instead of using the earlier counting-all strategy (i.e. 1, 2, 3, 

... 1, 2, 3, 4, 5 ... 1, 2, 3, 4, 5, 6, 7, 8). Counting-on is, for this reason, considered 

to be a more sophisticated strategy than counting-all, because children start counting 

from the given total of one of the addends (Carpenter and Moser, 1982; 1983; Riley et 

al., 1983). Later, children who count-on from the first addend, will begin to count-on 

from the larger addend: 5 ... 6, 7, 8. This procedure is also know as the Min strategy. 

TABLE 6 

	 Counting strategies used in Addition problems 

Count all from the 1st addend (CAF); e.g. 3+5= 1, 2, 3 ...I, 2, 3, 4, 5 ... 1, 2 (...) 7, 8. 

Count on from the first addend (COF); e.g. 3+5= 3 ... 4, 5, 6, 7, 8 (5). 

Count on from the larger addend (COL); e.g. 3+5= 5 ... 6, 7, 8 (3). 

Number facts (NF); result is retrieved from memory. 

Derived facts (DF); e.g. 5+7= 5+5=10 +2=11 

Finally, children will answer addition word-problems from memory, having practised 

enough number ties, which they can now recall. One step towards this will be the 

memorisation of doubles (i.e. 2+2=4), and later the derivation of responses from these 

doubles - derived facts strategy. In the case of 5+7, children may derive that 5+5=10 

(+2) =12. The use of the derived facts strategy illustrates children's understanding of 

the part-whole schema (Resnick, 1983). 

In the case of subtraction problems, children begin by counting the starting set using 

objects, and then remove the amount in the smaller addend. The remaining number of 

objects is the result. Using a more sophisticated strategy, without objects, children 
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attempt to count down from the total, until the amount in the smaller set is all counted. 

This procedure is fairly complicated, considering that children need to count 

backwards and also keep track of their counts. Another, more sophisticated, alternative 

involves using an "addition strategy"; i.e. counting up from the addend, to the total. 

Carpenter and Moser (1983), described a complex procedure called 'choice', which 

requires deciding between the above described counting-up or counting down, 

according to which may seem more efficient. In the 9-3 case, for example, it seems 

more effective to count-down (9 	 8, 7, 6) than to count up (3 	 4, 5, 6, 7, 8, 

9.... 6). 

3.4.1.1.3 Explaining strategy development 

The reason for children's change of strategies has been attributed to conceptual 

development (e.g. Resnick, 1983), search for efficiency (Baroody and Ginsburg, 

1986), and to individual differences (e.g. Gray, 1991; Gray et al., 1997). 

Children's progression to the COL strategy is quite interesting as it involves changing 

the order of the two addends according to which is larger. The use of this 

revolutionary procedure could mean that children have grasped commutativity - i.e. the 

order in which two numbers are added makes no difference to the result. However, 

has the use of a particular procedure led to the discovery of a particular concept, or is 

the development of these two independent ? 
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In order to explain children's discovery of the COL procedure, Resnick (1983) 

suggested that children may remember particular pairs' solutions - probably prompted 

by someone else more experienced - which they assume to be commutative from the 

start. Another possibility is that their application of the part-whole schema to addition 

is at the basis of their development of the counting-on strategy. Resnick's (1983) 

suggestion has been that children initially apply a part-whole schema by assigning 

addends to slots in the whole, whose parts can be added in either order to discover the 

value of the whole. The discovery that addend order is irrelevant to the final result, is 

what allows children to initiate the use of a more competent counting strategy, such as 

COL. 

Baroody (1987), on the other hand, believes that the invention of the COL strategy is 

not so much conceptually based, but rather the result of the child's attempt to save 

cognitive effort. This was based on evidence that not all the children who used COL 

understood commutativity of addition (Baroody and Gannon, 1984). 

It is possible that particular mathematical situations may elicit the use of certain 

procedures over others, because of the part-whole relations that are made evident. 

There is evidence that the use of COL, as well as the understanding of commutativity, 

might be facilitated in the context of combine problems (e.g. John has 3 marbles. Tom 

has 5. How many altogether ?), rather than change problems (Rose has 3 marbles. 

Tom gave her 5 more. How many does Rose have now ?; Fuson, 1979). In combine 

problems the order in which the sets are counted is irrelevant, although this is not true 

in the case of the change problems, which include a temporal dimension. 

Finally, Gray et al. (1997) suggest that strategy development is linked to individual 

differences. Gray et al. gave several addition word problems to first, second and third 
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graders. He then divided his sample of children into two main groups, high and low 

achievers, according to mathematical ability. Gray and colleagues found that across all 

age groups the high-achievers used more sophisticated strategies such as derived facts 

or recalled facts, whilst the low-achievers used the more primitive strategies, such as 

counting-all. 

Based on this evidence, Gray (1997) concluded that his data did not support the idea 

that most children develop better strategies on their own. On the contrary, his evidence 

supports the argument that children see mathematics in idiosyncratic ways, where the 

choice of the 'wrong' way, may imply a slower development. 

So far, no agreement has been reached about the reasons that motivate children to use 

particular strategies, instead of others. The lack of conclusive evidence is further 

justified by the fact that children do not always use their most proficient strategy. 

Whilst some children may be perfectionists (Siegler and Jenkins, 1989) - i.e. they only 

rely on retrieval when they are sure of the answer - others may simply use earlier 

strategies to please the experimenter or to give a correct answer. Probably, the reasons 

that justify strategy development may be a combination of the three main factors 

outlined above. 

Alternatively, Siegler (Siegler and Robinson, 1982; Siegler and Shrager, 1984; Siegler 

and Jenkins, 1989; Siegler and Shipley, 1995; Siegler and Stern, 1998; Shrager and 

Siegler, 1998) presented several explanations for the development of children's choice 

of strategies, through the use of computer models such as ASCM (Siegler and 

Shipley, 1995) and the SCADS (Shrager and Siegler, 1998). 
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These models provide alternative explanations for results from both traditions, the 

chronometric and the observational studies - pioneered by Groen and Parkman (1972) 

and Ilg and Ames (1951), respectively - by separating the trials according to reported 

and observed strategies. This data is not, however, conclusive (e.g. Baroody, 1994). 

It represents a rich account of children's development of strategies and encourages 

further theorisation, but it also sends research into a completely new avenue of 

inquiry. According to Cowan, the models 

"show how adaptive strategy choice and evolution can result from 

associative strength rather than conscious decisions" (Cowan, in-press; 

p.21). 

and 

"This may seem strange to educators who assume that strategies develop 

from the deliberate application of principles or that children must know 

what strategy they are using" (Cowan, in press; p.16). 

This, unfortunately, suggests that we are some way from being able to explain the 

development of strategies in children whilst studying isolated number components. 

However, further insights may come from observing the relation between several 

number components, where further research is still needed. 
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3.4.1.2 Children's performance 

Riley, Greeno and Heller (1983) assessed children's ability to respond to addition and 

subtraction word-problems. The number of the sets used in the problems were under 

10, and materials were made available to the children. Some of the results of their 

study, which included children from kindergarten to third grade, are shown in Table 7. 

3.4.1.2.1 Differences in problem structure 

The data show that children's performance varies according to problem type and 

structure (i.e. which set is missing). Combine problems (which include two static 

measures) are slightly less difficult than Change problems, which involve action and 

time). However, according to Carpenter and Moser (1982), children seem to treat 

Change and Combine addition problems as though they were equivalent. 

Compare problems, on the other hand, are significantly more difficult for children than 

Change problems. Compare problems require knowledge of the matching strategy, a 

strategy unknown to children at this stage of schooling (Carpenter and Moser, 1982; 

Riley et al., 1983). There are no clear differences between addition and subtraction 

word-problems within the result unknown problems or within the inverse (i.e. start-set 

unknown) problems. 
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TABLE 7 

Children's rate of success in different types of addition and subtraction word-problems (Adapted from 

Riley et al., 1983) 

Problem type 

Percentage of correct responses 

Kindergarten 
Grade 

one 	two three 

SIMPLE ADDITION 
Combine problem with result unknown 100 100 100 100 
Change problem with result unknown (a+b=?) 87 100 100 100 
Change problem with middle unknown (a+?=c) 61 56 100 100 
Compare problems with difference unknown (see Table 5) 17 28 85 100 

SIMPLE SUBTRACTION 
Change problem with result unknown (a-b=?) 100 100 100 100 

INVERSE ADDITION 
Change problem with start unknown (?+b=c) 9 28 80 95 

INVERSE SUBTRACTION 
Change problem with start unknown (?-b=c) 22 39 70 80 

The position of the missing set at the start of the problem also represents a significant 

problem for children. This relates to the fact that start missing problems (i.e. ?+b=c) 

are virtually impossible to represent with fingers, as the start quantity does not exist. 

This type of problems demand knowledge of part-whole schema as there is a need in 

representing the situation mentally (Resnick, 1983). The data in Table 7, further shows 

that problems where the middle set is missing (i.e. a+?=c) are much closer to the 

change result unknown problems, in level of difficulty. 

Regarding the use of strategies to solve addition problems, shown in Table 8, the data 

show that children's strategies change with time. Younger children start by relying 

more on the strategies shown on the left of the Table and, with development, older 
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children use more the strategies on the right. The main developmental jump seems to 

happen somewhere in between the second and the third grade. 

Interestingly, more children seem to use the counting-on from the larger strategy, than 

the counting-on from the first strategy. Also, more children seem to rely on the 

recalled facts strategy than on the derived fact strategy. 

TABLE 8 
Development of strategies in change result unknown word-problems (adapted from Carpenter and 

Moser, 1983). Results are in percentages. 

Grade 

Strategy used 

Count 
all 

Count-on 
from first 

Count-on 
from larger 

Derived 
fact 

Recalled 
fact 

first 
second 
third 

46 
41 
11 

3 
14 
15 

8 
26 
32 

2 
6 
9 

1 
6 
32 

The choice of tasks to be included in the present study included two levels of difficulty 

in addition and subtraction word-problems, in order to cover a developmental span 

typical of the three primary years of schooling. To reduce bias in the interpretation of 

results, the types of problems were reduced to one. Combine problems are too easy 

for children and Compare and Equalise problems are, on the other hand, too difficult 

(Carpenter and Moser, 1982). Furthermore, this study takes the view that the 

conceptual structures attributed to children at various levels can be illustrated by 

restricting the discussion to change problems (Cobb, 1987). Change problems seem to 

be the more suitable as they resemble more the typical addition and subtraction 

situation. 
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"Change problems describe situations involving action such as giving or 

taking, whereas combine and compare problems describe static situations" 

(Cobb, 1987; p. 163). 

Having controlled the "type of problem" factor, the level of problem difficulty will be a 

function of the structure of the problem. As outlined earlier, there are three 

possibilities: result-set, change-set, or start-set unknown. Based on Riley et al's., 

(1983) data, change-set problems are of almost similar difficulty to result-set 

problems. For this reason, change-set problems were discarded. The remaining two 

possibilities, results-set and start-set unknown problems were used. Finally, a 

counting-on task was included, where one of the addends was hidden in a box 

(Hughes, 1986). 
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3.4.2 Multiplication 

The assessment of children's understanding of early multiplication is embedded in a 

difficult conceptual definition problem (e.g. Piaget, 1952; Vergnaud, 1983; Kouba, 

1989; Davydov, 1991; Carpenter et al., 1993; Steffe, 1994; Kieren, 1994; Clark and 

Kamii, 1996). Do addition and multiplication develop concurrently (Piaget, 1952), or 

is the development of multiplication inevitably tied to the use of addition strategies 

(Fischbein et al., 1985; Kouba, 1989), at least in the early stages ? 

This debate leaves those interested in the development of children's understanding of 

multiplication with the difficult task of defining a good criteria for the assessment of 

multiplication (and not addition). The first implication in seeing multiplication as a 

result of addition is that its emergence can only be expected later than addition. 

However, in a recent volume dedicated to this issue, Kieren (1994) concludes that no 

evidence has yet settled this theoretical divergence. 

Meanwhile, an alternative way of looking at the development of multiplication has been 

suggested by Steffe (1994) who proposed that multiplication is entered, from the 

child's point of view, from the practice and development of more elaborate counting 

schemes, such as double-counting, and not from a clear grasp of what the operation of 

multiplication should be. For similar results in the United Kingdom, see Anghileri 

(1997). 

A child using a double-counting strategy will count the contents of each set, without 

losing track of the counted sets. For example, a child who is trying to find out how 
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many wheel three cars may have will count: "1, 2, 3, 4 (4, first car); 1, 2, 3, 4 (8, 

second car); 1, 2, 3, 4 (12, last car)". 

Also, authors have agreed upon a common classification for multiplication problems 

(Vergnaud, 1983; Schwartz, 1988) where, simultaneously, the development of the 

child's counting schemes can be assessed. Using this framework, recent reports have 

confirmed that children's acquisition of mental multiplication possibly begins with the 

use of counting strategies (Steffe, 1988; Cooney, Swanson and Ladd, 1988; Carpenter 

et al., 1993). 

3.4.2.1 Assessment, methodology and children's performance 

Fischbein, Deri, Nelo and Marino (1985) suggested that the concept of multiplication 

is intuitively attached to a repeated addition model - i.e. 4x5 can be seen and solved as 

5+5+5+5. According to these authors, 

"Each fundamental operation of arithmetic generally remains linked to an 

implicit, unconscious, and primitive intuitive model. Identification of the 

operation needed to solve a problem with two items of numerical data takes 

place not directly but as mediated by the model (Fischbein et al., 1985; p. 

4) 
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3.4.2.1.1 Addition and Multiplication as sequential operations 

This argument was based on evidence that children had difficulties in solving 

multiplications that could not be interpreted as "multiplication makes bigger" or 

"multiplication makes lots of". An example of a multiplication that contradicts this 

perception is one that uses a multiplier that is a decimal number or a fraction - i.e. 4 x 

0.5 = 2. Whenever difficulties like these arose, children resorted to a more familiar 

model to check their responses - i.e. repeated addition. 

Fischbein et al. (1985) gave 42 problems (12 multiplication, 14 division and the 

remaining were additions and subtractions) to 628 Italian children aged 10 to 13. 

Children were not required to calculate the answer, but simply to indicate which 

operation would most suitably solve each of the problems. Whilst any of the 12 

multiplications could be solved by repeated addition, what varied amongst them was 

the types of numbers used. In two of the multiplication problems, both the multiplier 

and the multiplicand were whole numbers. In the remaining problems either the 

multiplier or the multiplicand were decimals. Fischbein et al's. (1985) prediction was 

that those problems were the multiplier was not a whole number would be more 

difficult for children. 

Almost all the children succeeded in problems that used integers. Although the 

presence of decimal numbers in either position affected children's performance, 

children tended to perform better when the decimal number was the multiplicand. As 

predicted, those children who could not solve the problems by means of multiplication 

had to resort to the use of a repeated addition model. Based on this Fischbein et al. 
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(1985) argued that whenever the numerical data of the problem does not fit the 

constraints of the model the children may not choose the correct operation and the 

solution effort may be diverted or blocked. 

Several other authors have presented data supporting Fischbein et al's. (1985) 

hypothesis. Greer (1987) obtained empirical data from children and adults similar to 

Fischbein's. Data about younger children was also provided by Kouba (1989). 

However, the main limitation of Fischbein et al's. (1985) study is that it does not 

provide data about younger children, aged five, six or seven. For studies with younger 

children authors have used multiplication word-problems (e.g. Vergnaud, 1983; 

Schwartz, 1988; Greer, 1992; Verschaffel and De Corte, 1998). Before we turn to 

those studies we first need to briefly outline a widely accepted classification 

(Vergnaud, 1983), which is used in this thesis. 

3.4.2.1.1.1 Classification of multiplication word-problems 

Vergnaud's (1983) classification of multiplication word-problems regards simpler 

multiplication problems as part of a broader multiplicative conceptual field including 

more complex notions such as ratio, rational numbers, vector space and so on. His 

emphasis is on the dimensions (hence dimensional analysis) and unit structures of 

these problem types. Vergnaud claims that the multiplicative conceptual field takes 

considerable time to be fully grasped, probably until adulthood. 
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Vergnaud (1983) defined three main classes of problems: isomorphism of measures, 

product of measures, and multiple proportions. An isomorphism of measures problem 

such as "each car has four wheels; how many wheels would 3 cars have altogether ?" 

implies a four-place relation since there are two basic dimensions, M l (cars) and M2 

(wheels), with each dimension comprising two numbers, as shown: 

Cars (M l) 	Wheels (M2) 

1 	 4 

3 	 ? 

These dimensions do not exist in addition problems. Every time the child adds one car, 

to keep this relation constant, s/he has to add four new wheels to the ones s/he already 

has. Therefore, the number of wheels in the basic set represents the ratio. The ratio, 

which expresses the relation between the two sets (and not the number of objects in 

neither set) must be maintained constant in multiplication problems. Also, the number 

of times that a replication is carried out has a particular meaning and corresponds to a 

scalar increase or decrease. This factor does not bear a relation with the number of 

objects in the sets, but it indicates the number of times that two sets must be replicated. 

Product of measures problems consists of the Cartesian composition of two measure 

spaces, Ml and M2, are mapped onto a third, M3. For example: "What is the area 

(M3) of a room whose length (M1) is 4 meters and its width (M2) is 3 meters ?". 

These problems involve 3 measures and the child must deal with double proportions, 

rather than with a single proportion as in isomorphism of measure problems. Finally, 

in a multiple proportion problem, M3, is proportional to two different independent 
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measures M1 and M2. For example, "if one cat eats 100 grams of food per day, how 

many grams will 4 cats eat in 3 days ?" Multiple proportion problems involve 

magnitudes that have intrinsic meaning; none of them can be reduced to the product of 

the others. The next section briefly reviews some studies that have used isomorphism 

of measures word-problems. 

3.4.2.1.1.2 Isomorphism of measures word-problems 

Kouba (1989) observed the development of children's understanding of multiplication, 

in 43 first, 35 second and 50 third graders. She used a widely accepted classification 

of multiplication word-problems proposed by Vergnaud (1983), i.e. the dimensional 

analysis. 

In her study, Kouba (1989) used 'grouping' (e.g. You are having soup for lunch. 

there are 	bowls. If you put 	crackers in each bowl, how many crackers do you 

need altogether ?), and 'matching' problems (e.g. Pretend you are a squirrel. There are 

_ trees. If you find nuts under each tree, how many nuts do you find altogether ?) 

Kouba (1989) classified children's strategies into (1) direct representation; (2) double 

counting; (3) transitional counting; (4) additive or subtractive and (5) recalled number 

fact. Children who used "direct representation" processed the information in a 

sequential way that reflected or paralleled the structure of the problem. In a typical 

problem like "there were 6 cups. You put 5 marshmallows in each cup. How many 

marshmallows did you use altogether ?", these children used 6 containers, placed 5 
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objects in each container and found the answer by counting the total objects, one by 

one. 

Children who used "double counting" integrated two counting strategies, requiring 

more abstract processing. Children who used "transitional counting" calculated the 

answer to the problem by using a counting sequence based on multiple of a factor in 

the problem (e.g. 4, 8, 12...). According to Kouba, 

"Counting by multiples, or skip counting, was labelled transitional 

counting because it relies on the knowledge of a counting sequence, it is 

related to multiplication in a more fundamental way than the direct 

representation strategies are" (Kouba, 1989; p. 153). 

Children who used an additive or subtractive strategy clearly identified the use of 

repeated addition or subtraction to calculate an answer. For example, in calculating 

four groups of five, the child might have said, 5 plus 5 is 10, 10 and 5 is 15, and 15 

plus 5 is 20". Finally, children who used "recalled facts" strategy obtained the answer 

by remembering the appropriate multiplication combination. 

According to her results (shown in Table 9), children are able to solve multiplication 

problems only in the second grade, the majority of these using and 'additive or 

subtractive' strategy. From this evidence Kouba (1989) concluded that children's 

strategies for solving equivalent set multiplication word problems generally fit 

Fischbein et al's. (1985) intuitive model, in that 
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the solution strategies children used in this study reveals that children 

appear to view multiplication as a different two-step process: make several 

equivalent sets and put them together" (Kouba, 1989; p. 156). 

TABLE 9 

Percent of children using each type of solution strategy on multiplication problems (Kouba, 1989) 

Type 
direct 	double 	transitional 	additive or 	recalled 

Grade 	n 	representation 	count 	count 	subtractive 	fact  

Grouping 

1 43 25 0 2 2 0 
2 35 9 0 6 24 3 
3 50 8 0 10 8 40 

Matching 

1 43 23 0 4 0 0 
2 35 18 0 12 18 0 
3 50 8 0 4 10 34 

There are, however, other studies that support the view that children's understanding 

of multiplication develops earlier than the second grade. These studies have used both 

clinical interviews and isomorphism of measures word problems. 

3.4.2.1.2 Addition and Multiplication as simultaneous operations 

Piaget (1952) has suggested that multiplication is not just a faster way of doing 

repeated addition but is an operation that requires higher-order multiplicative thinking 

which children construct out of their ability to think additively. According to Piaget 
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(1952), young children build their knowledge of one-to-many correspondence (a 

logical invariant of multiplication) on knowledge of the one-to-one correspondence 

schema and its use in transitive inferences. Knowledge of both should enable children 

to realise that if A=B and C=B, then A=C (transitivity), and also that if A=2B and 

A=C, then C=2B. Later, Piaget (1987) described the differences between addition and 

multiplication as depending on the number of levels of abstraction and the number of 

inclusion relationships the child has to make simultaneously. 

Piaget (1952) tested his argument that multiplication develops simultaneously with 

addition by asking children to establish one-to-one correspondence between two sets 

of objects, and also one-to-many correspondence between another two sets of objects. 

It must be stressed that these children were not asked to quantify or calculate; they 

were only required to apply transitive reasoning to the different one-to-many 

correspondence situations. 

3.4.2.1.2.1 One-to-many correspondence and transitivity tasks 

In one of the tasks the children were requested to put a blue flower in each of ten 

vases; then the blue flowers (large) were removed and put in a single bunch. Next, 

they were asked to put a pink flower (small) in each vase; again, the pink flowers were 

also joined in a bunch. This way, the children knew that the number of flowers (A) 

was equal to the number of vases (B) and they also knew that the number of pink 

flowers (C) was equal to the number of vases. 
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However, the blue and pink flowers were of different sizes so that the children could 

not easily compare the number of flowers in the two sets visually. The bunch with the 

large blue flowers looked different from the bunch with the small pink flowers. 

Therefore, children would have to understand one-to-one correspondence to conclude 

that the two sets of flowers were equal in number. 

Piaget classified children's responses to this first task in two categories: they either 

were able to recognise that the number of flowers in the pink and blue bunches was the 

same and justified this deduction based on the correspondence established between the 

sets of flowers and the sets of vases, or they did not establish correspondence and 

answered wrongly, even if given the hint by the experimenter that each flower had it's 

own vase. 

In a second task, Piaget verified whether children could reason that if A=2B and C=A, 

then C=2B. He inquired what would happen if the pink and blue flowers were put 

back in the same vases. How many flowers would each vase have now ? In case of 

doubt, children were allowed to go to the flowers in the vases, and verify for 

themselves that each vase would have now two flowers; A=2B. 

Next, the flowers were put away, but the vases remained within the child's sight. The 

children were then asked to pick the right number (C) of tubes (from a box of thin 

plastic tubes) so that they got one flower per tube. The children knew that there had 

been two flowers in each vase and only one flower was to be placed in each tube 

(C=A). Piaget was trying to verify whether children would understand that it was 

necessary to pick twice as many tubes as vases (C=2B). Piaget reported three different 

types of responses. 
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3.4.2.1.2.2 Children's performance in the Piagetian task 

Piaget (1952) reported that a group of children did not anticipate that there would be 

two flowers in each vase, so they also did not realise that they would have to take two 

tubes for each vase (on the table) in order to end up with one tube for each flower. 

This happened even after they had placed the flowers into the vases and had found for 

themselves that there were two flowers per vase. This group did not use the vases to 

estimate how many tubes they needed to take out of the box. These children were 

those who had not realised in the first task that there were as many pink and blue 

flowers. They failed to make the transitive inference in the one-to-one correspondence 

in the first place, so they could not understand the one-to-two correspondence between 

vases and flowers. 

A second group of children, was able to establish one-to-one correspondence but 

could not maintain the lasting equivalence of the corresponding sets. Finally, in the 

third group all children were able to establish one-to-one correspondence, were able to 

compose equivalencies and also were capable of understanding the relations of 

multiple correspondence that were put to them. Based on the evidence provided by the 

three groups of children, Piaget was able to define three stages of development for 

multiplication. At the third stage, children are able to grasp the two-to-one relation, 

which they can then generalise to three, four and five. Gros (5 years; 10 months) 

provides an example of what has been said: 
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Gros (5;10) had succeeded in making the inference that the number of blue (X) and 

pink (Z) flowers was the same. He was then asked how many flowers would be in 

each vase if they were now all (X+Z) put back into the vases (Y). 

G: 1 blue, 1 pink. 

Exp: How many is that ? 

G: Two. 

Exp: And if I added these (a new set of 10), how many would there be in each vase ? 

G: Three. 

Exp: Why ? 

G: I'd put one, one, one. 

Exp: And now suppose we wanted to put them in these tubes that will only hold one 

flower ? 

G: (he took 10 + 10 + 10 tubes) 

Based on the evidence exemplified here by Gros, Piaget suggested that children as 

young as 5 or 6 years of age are already capable of understanding some aspects of 

multiplicative relations. He concluded that: 

"the operation of correspondence is revealed in its true light, as being a 

multiplicative composition. In the various correspondences, one-to-one, 

two-to-one, three-to-one, etc., the value of each new set is no longer 

regarded only as an addition, but as multiplication, '1 x n', '2 x n', '3 x n', 

etc." (1952; p. 219). 
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The next section briefly outlines a study that has used a Piagetian-inspired task in a 

more controlled, experimental context. 

3.4.2.1.2.3 Recent versions of the Piagetian task 

In a recent study, Clark and Kamii (1996) reassessed young children with a simpler 

version of the Piagetian task. The children were shown three fish of identical width, 

with lengths of 5, 10 and 15 cm - made of plywood (Figure 2, below). They were also 

supplied with 100 small chips, to feed the fish. The examiner told the children that fish 

B ate twice as many as fish A, and that fish C ate three times more than fish A, 

because of their relative sizes (i.e. B is twice as big as A, and so on). This was 

demonstrated by placing the smaller fish on top of the others. 

Figure 1. The fish used in the task 
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The child was then asked "if this fish (A) gets 1 chip of food, how many chips of food 

would you feed the other two fish ?" The child was also asked about the following 

variations: (a) when B received 4 chips; (b) when C received 9 chips; (c) when A 

received 4 chips; (d) when A received 7 chips. 

3.4.2.1.2.4 Children's performance on the fish task 

Clark and Kamii (1996) tested 336 American students in grades 1-5. In their results, 

they identified four developmental levels in children's progression from additive to 

multiplicative structures. Children in level I were only able to think qualitatively in 

terms of "more" and "less". These children were considered to be not yet numerical or 

additive. Children in level II displayed additive thinking with numerical sequences of 

+1 or +2 only. For example, such a child would give 3 to A and 5 to C, after the 

experimenter gave 4 to B. 

Children at level III took into consideration the number of times stipulated by the 

experimenter (i.e. B is 2 times A and C is 3 times A), but add these numbers. For 

example, if the experimenter gave 4 to A, they would give 6 (+2) to B and 7 to C (+3). 

Children at this level use the term "times" but use additive thinking. Children at level 

IVa display multiplicative thinking but not with immediate success. They succeed only 

after the experimenters counter suggestion: 

Abby (grade 3). For 9 to C she gives 6 to B "...because C eats 3 times, so 

I take away 3, and 4 to A ... because B eats 2 times, so I take away 2 [4, 
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6, 9]. After the counter suggestion, Abby thinks [3, 6, 9] is better and 

explains her reasoning multiplicatively; but got 4 to A, she gives 6 to B 

and 7 to C [4, 6, 7]. "I just added 2 more and 3 more." Again, she prefers 

the multiplicative counter suggestion [4, 8, 12]. For 5 to A she gives 2 

groups of five to B and 3 groups of five to C [5, 10, 15]. For 7 to A she 

gives 14 in two groups to B and 21 in three groups to C [7, 14, 21]. 

(Clark and Kamii, 1996; p. 47) 

Finally, children at level IVb display multiplicative thinking with immediate success. 

As Table 10 shows, their evidence suggests that multiplicative thinking is already 

possible by 19% of the first graders (result obtained by the sum of the percentages in 

levels IV a and b). 

TABLE 10 

Percentage of Children at Each Developmental Level by Grade (Clark and Kamii, 1996) 

Grade 
[N] 

first second third fourth fifth 
Level [58] [65] [59] [78] [76] 

Below additive (I) 14 2 - 
Additive level (II) 53 43 14 15 7 
Additive level (III) 14 11 22 3 3 
Multiplicative level (IVa) 17 35 42 54 42 
Multiplicative level (IVb) 2 9 22 28 49 

Solid multiplicative thinking, on the other hand, seems to be displayed by only 9% of 

the second graders. Based on this, it would be interesting to compare these results 

with studies using isomorphism of measures word-problems where children's 
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counting strategies could be analysed more in depth. Such as study is briefly reviewed 

in the next section. 

3.4.2.1.3 Isomorphism of measures problems and counting strategies 

Research looking at children's development of the counting scheme in the context of 

isomorphism of measures word-problems, complements that provoked by the debate 

outlined in previous sections. This approach is particularly useful to this thesis as it 

enables an exploration of two different components: knowledge of the number-word 

list and knowledge of multiplication. 

Two independent studies using the same type of problems, Kouba (1989), outlined 

earlier, and Carpenter et al., (1993) - described in this section - have produced 

different results on the development of children's understanding of multiplication, and 

the ages when it emerges. Whereas the results of Kouba's (1989) study suggests that 

children understand multiplication only on the second grade, Carpenter et al's. (1993) 

data shows that kindergarten children can solve the same multiplication word-

problems. The difference in the results could be justified by the attention paid to 

children's counting schemes in Carpenter et al's. (1993) study. 

3.4.2.1.3.1 Studies with isomorphism of measures problems 

Carpenter et al. (1993) compared the results of 70 kindergartener's performances in 

addition and multiplication problems (e.g. Robin has 3 packages of gum. There are 6 

pieces of gum in each package. How many pieces of gum does Robin have 
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altogether ?). They were interested in clarifying whether the differences in children's 

performance between addition and multiplication operations can be accounted by the 

fact that multiplication problems are inherently more difficult to solve than addition 

problems (e.g. Schwartz, 1988; Kouba, 1989; Greer, 1992; Clark and Kamii, 1996), 

or whether differences are due, in the most part, to differences in exposure (e.g. 

Nunes and Bryant, 1996; Carpenter et al., 1993). Whereas children are exposed to 

addition and subtraction problems from the first year of schooling, the systematic 

introduction of multiplication problems only happens from their second grade, which 

could account for differences in performance. 

Although Carpenter et al. (1993) used the same type of multiplication word-problems 

as Kouba (1989), their data does not support Kouba's (1989) or Clark and Kamii's 

(1996) conclusions that multiplication develops after addition. In Carpenter et al's. 

(1993) study special attention was paid to children's counting schemes. 

Their strategies were classified into: (1) direct modelling; (2) counting; (3) derived fact; 

(4) other and (5) uncodable. Children who used direct modelling used counters to 

model directly the action or relationships described in the problem. Those classified as 

'counting' did not use counters or fingers to model directly the problem but counted up 

or back from a given number or skip counted to give an answer. Children classified as 

'derived fact' used recalled number facts to provide an answer. Children who got the 

correct answers but the interviewer could not reliably code the response on the basis of 

the child's actions and explanations, were classified as 'uncodable'. 

In their study, Carpenter et al. (1993) showed that at least 14 kindergarteners were 

able to use some form of counting without counters which resembles Kouba's (1989) 

'transitional counting' (i.e. 1, 2, 3, 4 (pause) 4, 5, 6, 8 (pause) 9, 10, 11, 12). 
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Carpenter et al. (1993) also showed that the kindergarten children in their study were 

more successful in solving multiplication word problems than the first grade students 

in Kouba's (1989) study, and as successful as the third-grade students - although 

Kouba's students used more mental strategies in their solutions. 

TABLE 11 

Number of children correctly solving each problem and the number and kind of valid strategies used 

(N=70; partially reproduced from Carpenter et al., 1993) 

Problem 

Strategy 

number 
correct 

valid 	direct 
strategies 	modelling counting 

derived 
fact other uncodable 

Additive structure* 
Multiplication 

51 
50 

62 	54 
60 	46 

5 
14 

2 
0 

0 	1 
0 	0 

* Separate result unknown problems 

Carpenter et al's. (1993) data, support the view that children's differences in 

performances are due to the differences in exposure that they have had to multiplication 

and that 

"children can solve a wide range of problems, including problems involving 

multiplication and division situations, much earlier than generally has been 

presumed" (Carpenter et al., 1993; p. 439). 

Their data also supports Steffe's (1988) alternative view that children's early grasp of 

multiplication can be successfully assessed through their use of more sophisticated 
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counting schemes (such as double-counting) in isomorphism of measures word-

problems. Finally, Carpenter et al's. (1993) results suggest that children's 

understanding of multiplication in the early years of school can be accurately assessed 

through the use of isomorphism of measures word-problems, where particular 

attention should be paid to children's counting schemes. 

3.4.2.1.3.2 Studies with relative values problems 

Alternatively, Nunes and Bryant's (1996) relative values task is also considered to 

assess children's early understanding of multiplication. In this task, two rows of play-

money with the same amount of coins, are put on the table, one said to be the child's 

and the other one, the experimenter's. For example, the child is given three 1p coins 

and the experimenter has three 5p coins. The experimenter then asks: "Who do you 

think will buy more sweets, you or me ?". The child is also invited to justify the 

answer. 

A response like "we both buy the same.... because we have the same amount of 

coins", has been interpreted as not recognising the meaning of the different 

denomination in the coins. On the other hand, a response like "you buy more .... 

because you have more coins; you have 15p and I only have 3p", has been interpreted 

as having recognised the meaning of the different denomination in the coins and as 

having the ability to count them up to find the total. In the 15p example, the child will 

(double) count 1,2,3,4,5...6,7,8,9,10...11,12,13,14,15, displaying the application of 

the one-to-many correspondence principle (Piaget, 1952). This approach is also 

particularly useful to this thesis as it enables an exploration of two different 

components, i.e. knowledge of the number-word list and multiplication. 
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Carraher and Schliemann (1990) applied this task to seventy-two 5- to 7-year-old 

Brazilian pre-school children. Results were classified in three categories: 40% of the 

children did not take into account the relative value when answering; 15% took into 

account the relative value but could not justify the answer by counting the totals, and 

45% could used the relative values and justified the answers by counting the totals in 

each array. Nunes and Bryant (1996) also applied the same tasks to 5- and 6-year-old 

British children and found that the results did not differ significantly from those 

obtained by the Brazilian study. 

The present study used isomorphism of measures word-problems and the relative 

values task, as these are more suitable for the assessment of multiplication in 5- and 6-

year-old children. 
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3.5. WRITTEN MULTI-DIGIT NUMBERS AND KNOWLEDGE OF PLACE VALUE 

Children's understanding of the written Arabic system (i.e. place value) has been 

assessed by several authors (Luria, 1969; Ginsburg, 1977; Brown, 1981; Miura and 

Okamoto, 1989; Ross, 1989; Bergeron and Herscovics, 1990; Power and Dal 

Martello, 1990; Miura et al., 1993; Sinclair et al., 1992; Sinclair and Scheuer, 1993; 

Seron, Deloche and Noel, 1991; Seron and Fayol, 1994; Nunes and Bryant, 1996). 

Within these, one group argues that children learn about place value from experience 

with written numbers, i.e. by observing the relations between different digits 

('numbers-first hypothesis', e.g. Luria, 1969; Bergeron and Herscovics, 1990; 

Sinclair et al., 1992; Sinclair and Scheuer, 1993). Another group suggests that 

knowledge of place value can only be developed after children have understood the 

structure of the numeration system ('numbers-after hypothesis', e.g. Ginsburg, 1977; 

Nunes and Bryant, 1996). 

3.5.1 The numbers-first hypothesis 

Reflecting the view of the first group of authors, Sinclair and Scheuer (1993) have 

hypothesised a developmental order for children's learning of place value, according to 

which the 
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"understanding of written numerical notations is a construction process 

that is necessary to the understanding of our numeration system, and it 

participates in and directly influences mathematical cognition. The grasp 

of numerical notation is thus deserving study on its own right, and is not 

to be approached exclusively as means of representing knowledge acquired 

in other domains." (Sinclair and Scheuer, 1993; p. 203). 

According to this view, the realisation that a 3 with a 2 on its right is read as thirty-

two, could give children valuable hints about the notion that different positions mean 

units of different sizes. Some evidence for this hypothesis comes from studies with 

brain-lesioned patients (Luria, 1969) and from research with school-children (e.g. 

Bergeron and Herscovics, 1990; Sinclair, et al., 1992; Sinclair and Scheuer, 1993). 

3.5.1.1 Studies with brain-lesioned patients 

Luria's (1969) observation of his patients' difficulties in writing multi-digit numbers 

while doing additions and subtractions, led him to the conclusion that the inability to 

write numbers would have a devastating effect on their understanding of the 

numeration system. In Luria's (1969) opinion, evidence of misunderstanding of the 

numeration system came from the inability to make distinctions between digits in the 

tens and hundreds, in written form. 

However, a limitation of Luria's (1969) study is that it may not be appropriate to 

generalise findings based on brain-damaged patients to the case of children who are 

developing their numeracy skills. Although Luria assumes that his subjects had good 
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calculative capacities before the lesion, nothing is known about their understanding of 

the structure of the numeration system during the same period. This makes it 

impossible to establish a causal relation between losing the 'ability to write numbers' 

and having a poorer 'understanding of the numeration system'. 

Possibly, the lesion may have affected both skills negatively, which could also explain 

Luria's (1969) results. In order to establish what the relation between these skills is, a 

study is needed where both are measured over a period of time. A further limitation of 

Luria's (1969) research is that it was specific to clinical case-studies only. 

3.5.1.2 Studies with school children 

There is, however, further evidence to support the 'numbers-first' hypothesis. Sinclair 

and Scheuer (1993), argue that children start by attempting to match particular 

quantities to multi-digit numbers, which they then try to read. At the same time, they 

also attempt to acquire the conventional knowledge that allows them to do so - that is, 

place value. While they acquire this conventional knowledge and try to make it their 

own, 

"they are puzzling out what the underlying characteristics of the system are" 

(Sinclair and Scheuer, 1993; p. 219). 

These authors' position can be interpreted as slightly different from Luria's (1969), as 

their data suggest an interrelated process, according to which written numbers are seen 
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as the starting point for children's understanding of both place value and the structure 

of the numeration system. 

Also, Bergeron and Herscovics (1990) have provided evidence that children initially 

develop an understanding of a positional notation in the decades (i.e. knowing that 

twelve is always written as 12 and not as 21) which is seen as a pre-requisite for 

grasping place value. They have shown that children's understanding of positional 

notation goes through several levels of understanding. Initially, 

"concatenated digits acquire a global meaning: '12' is no longer one and 

two, but twelve. However, children do not as yet perceive the importance 

of relative position and my very well consider '21' as another way of 

writing twelve. We call this level of understanding that of juxtaposition" 

(Bergeron and Herscovics, 1990; p. 194). 

Next, children become aware of the importance of relative position, but associate the 

position with order of writing and not with the left-right direction of reading (e.g. 

"twelve" may be written 21, the child writing from right to left). Bergeron and 

Herscovics termed this the chronological level. Finally, when children reach the 

conventional stage, they can produce bi-digit with digits in their conventional position 

whatever the direction of writing ("twelve" is always written 12). These levels are not 

mutually exclusive and 
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the same child may be at the chronological level in the teens but still 

produce juxtaposition errors in the twenties" (Bergeron and Herscovics, 

1990; p. 198). 

The limitation of studies supporting this view are conceptual, rather than 

methodological. Here, the written Arabic (e.g. 122) and the written verbal (e.g. one 

hundred and twenty-two) number systems are seen to develop as a whole, when they 

can also be seen as separate number components (Ginsburg, 1977; Fuson, 1990; 

Nunes and Bryant, 1996). Due to this confusion, very little research has been devoted 

to the simultaneous acquisition of the two main systems used to code quantities (Seron 

and Fayol, 1994; Nunes and Bryant, 1996). 

3.5.2 The numbers-after hypothesis 

From an opposite perspective, another group of authors contend that children's 

understanding of place value is a more complex process than the previous researchers 

have suggested. Their view is that this development involves two separate conceptual 

structures, which in the previous approach are seen as inseparable (Ginsburg, 1977; 

Resnick, 1983; Fuson, 1990; Nunes and Bryant, 1996). One refers to the 

understanding of the conventions involved in place value, which require the ability to 

write multi-digit numbers. Another, relates to the conventions involved in the 

understanding of the structure of the decade numeration system itself. Whilst the first 

one relates to how digits should be 'put right', the second deals with the understanding 

that the numeration system implies the combination of units of different sizes: ones, 

tens, hundreds and so on - where written numbers are not involved. 
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In fact, this conceptual confusion between structures has been highlighted by Sinclair 

et al. (1992) - subscribers of the numbers-first view -, who have recently admitted that 

children's understanding of place value entails more than just cracking an arbitrary 

written code. Although they see this code as 

"indissolubly linked to understanding the number system itself' (Sinclair et 

al., 1992; p. 193) 

they have not forwarded 

"any hypotheses (or clear ideas) about how a grasp of the structure of our 

written numerals comes about" (Sinclair et al., 1992; p. 193). 

Nunes and Bryant, (1996) provided important evidence to support the idea that 

understanding the decade system and knowing about place value are two separate 

conceptual structures. They interviewed 72 pre-school Brazilian children (aged 6) and 

20 number-illiterate adults, and assessed them on their grasp of place value and their 

understanding of the structure of the numeration system (or number-word sequence). 

Nunes and Bryant (1996) reported that some pre-schoolers, as well some number-

illiterate adults, showed an understanding of the structure of the numeration system 

before knowing about written numbers or place value. However, the fact that the 
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adults had no formal instruction about written numbers does not rule out the possibility 

that they may have learned place value somewhere else. 

The evidence presented supports both the view that children may learn about place 

value from experience with numbers, and the view that their understanding of place 

value is significantly bolstered by a previous grasp of the structure of the decade 

numeration system. A review of the studies supports the view that the assessment of 

children's understanding of the numeration system and their grasp of place value 

should be carried out as separate number components, which will contribute to the 

clarification of the development of their understanding of written multi-digits. 

3.5.3 Assessment and methodology 

Typically, studies about children's understanding of place value have involved tasks 

where the child is asked to give evidence of their understanding of the meaning of 

different roles of digits in the units, tens and sometimes hundreds position, in terms of 

some numerical correspondence. In one type of tasks, children are presented with a 

two-digit notation (e.g. 14 or 26) and a corresponding collection of small (usually 

identical) objects, and are asked to set up a correspondence between the different digits 

and the objects in the collection (see, for e.g., Kamii, 1986; Ross, 1989). 

In another type of tasks, children are asked to construct alternative representations of a 

given multi-digit number, by using Dienes blocks (see, for e.g., Resnick, 1983; 

Ross, 1989), or cards on which different numbers of units, tens and hundreds are 

written, as in 4 ones or 5 tens (see Bednarz and Janvier, 1982). The converse, asking 
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children to what number a display made up of some other numerical representations 

(blocks, bundles or sticks) corresponds is also used (see Resnick, 1983; Ross, 1989). 

These choices of tasks seem to be a result of assessing children's understanding of 

place value and their grasp of the numeration system as one number component, 

instead of two. Here, authors assess the ability to write multi-digit numbers whilst 

seeking clear evidence that children have understood the system of units of different 

sizes (ones, tens, etc.). This represents a tacit recognition that two components are 

being assessed although, in reality, more attention seems to be paid to the child's 

explanation of the system rather than the ability to write the numbers, which is self 

explanatory (i.e. the probability of writing a multi-digit number correctly by chance, 

without knowledge of place value, seems small. In this study, tasks assessing 

children's understanding of the decade system were used in a separate number 

component, as explained earlier. 

Regarding children's production of Arabic multi-digit numbers per se, Nunes and 

Bryant (1996), assessed five and six year-olds' (Brazilian and English) ability to write 

and recognise numbers from single-digits, up to 4-digit numbers (the results are 

shown in table 6, by categories). Power and Dal Martello (1990) also looked at the 

production of Arabic numbers in 7 year-olds, and Seron, Deloche and Noel (1991) 

investigated this same ability in 7 to 9 year-olds. In all three studies, children were 

asked to write down digit numbers that were dictated to them, in Portuguese, English, 

Italian and French, respectively. As this thesis centres on 4 to 7 year-old children, I 

focus on the first two studies. 
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3.5.4 Children's performance 

In all these studies, results showed that children produce a significant amount of 

errors, both lexical and syntactical (Power and Dal Martello, 1990). The lexical errors 

were not numerous and consisted of making digit or word substitution errors (e.g. 

writing the number 35 as 53). On the other hand, the syntactical errors found (which 

were more numerous), consisted of the production of sequences of digits within which 

individual digits were correct but their combination was wrong. These errors usually 

provoked a lengthening of the digit sequence such as the number 124 being written as 

100204. They were found to be an important indicator of the emergence of children's 

understanding of place value (Nunes and Bryant, 1996). 

Power and Dal Martello (1990) found that in the errors made by their seven year-old 

Italian children, 87% were purely syntactic, 3% were purely lexical and 11% were 

mixed. Nunes and Bryant (1996) used a similar error classification, but are less clear 

in their report: 15% of their sample refused to write numbers over 10, about 21% 

made lexical errors and the rest made syntactical errors. 

Nunes and Bryant (1996) also reported that children find it easier to recognise 

numbers than to write them down (Table 12). Furthermore, there seems to exist a clear 

difference in writing two-digit numbers and in writing three and four-digit numbers. 

Different types of knowledge seems to be involved: whereas nearly half the children 

could write numbers in the teens and the 2-digits (above 20) categories, numbers 

dropped dramatically in the three- and four-digit categories. 
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TABLE 12 
Percentage of five and six year-old children writing and recognising numbers (adapted from Nunes and 

Bryant, 1996) 

Categories 

under 10 teens 2-digits 3-digits* 100 200 4-digits 

written numbers 

number recognition 

93 

97 

48 

60 

47 

66 

7 

24 

68 

79 

35 

37 

2 

2 

* under 200 

However, as predicted by Nunes and Bryant (1996), the difficulties in writing three-

digit numbers is not related to the size of the number being written, but to the 

underlying difficulties generated by the combination of units of different sizes. As 

Table 12 shows, a significant proportion of the same children are able to write 

correctly numbers 100 and 200. 

3.6 SUMMARY OF METHODS TO BE USED IN THE STUDY 

This chapter has briefly reviewed the methods used for the assessment of each separate 

number component. The case was made for the choice of certain methods, instead of 

others. These will now be summarised in order to provide a global picture of the 

methods used in the present study. 

As noted in the introduction, the assessment will be divided into four number 

components: (1) counting and knowledge of the number-word sequence; (2) the ability 

to generate verbal number-words and the understanding of the structure of the 
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numeration system; (3) arithmetical operations, and (4) the ability to read and write 

numbers and the understanding of the principles underlying place value. 

The first number component, i.e. counting and knowledge of the number-word 

sequence, was assessed through three tasks: (a) one-to-one correspondence and stable 

order of number labelling; (b) knowledge of the number-word list (i.e. counting 

range), and (c) continuation of counting. For the first task, a counting task similar to 

the one suggested by Fuson (1988) was used, where children were required to count 

both straight and scattered rows of tokens. Children's countings were required to 

make correct use of the one-to-one correspondence and stable-order principles in both 

situations. Another task, i.e. counting units of the same denomination (see below), 

assessed children's ability to count in a different context. 

In the counting range task, children were invited to count as far as they can, or until 

they make two successive mistakes in their counts. This task is also based on Fuson's 

(1988) work. The older children were asked how far they think they can count (n), 

and were invited to count from n-12, to avoid fatigue. 

Finally, in the continuation of counting task, children were asked to continue counting 

from numbers 20 and 10. Both numbers have the advantage of relating to the decade 

numeration system but do not involve numbers in the teens, which are problematic for 

children (Siegler and Robinson, 1982; Fuson, 1988). 

The second component, the ability to generate verbal number-words and the 

understanding of the structure of the numeration system, was assessed with two tasks: 

(a) counting with units of the same denomination and (b) counting with units of 

different denominations, also known as the shopping task. Both tasks are based on the 
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tasks used by Nunes and Bryant (1996). In the former, children were asked to buy 

items from a shop and to pay for them with units of the same denomination, i.e. ones. 

In the latter, the child was also invited to pay for items in a shop situation where coins 

of different denomination (i.e. ones, fives, tens, hundreds, etc.) were made available 

to make the payments. Children were required to pay for items according to the 

categories of prices in the teens, two-digit quantities between 20 and 100, three-digit 

and four-digit amounts. The present study assessed children's understanding of the 

structure of the decade numeration system separately from their ability to write multi-

digit numbers. 

The third component, arithmetical operations, was assessed with four addition tasks 

and two multiplication tasks. The four addition tasks included change increase result 

unknown word problems (i.e. a+b=?), as well as change decrease result unknown 

word problems (i.e. a-b=?). Secondly, it also included several change start unknown 

word problems (increase and decrease; i.e. ?+b=c and ?-b=c). These tasks are based 

on the work of Carpenter and Moser (1982) and Riley et al., 1983). 

Finally, for a clearer assessment of the counting-on strategy of addition, this study 

included addition with one hidden addend problems (Hughes, 1986). In these 

problems children are invited to abstract the quantity that is hidden in a box and to 

count-on from it. Counting-on was also assessed in other four different situations. 

The multiplication tasks included in the study were isomorphism of measures 

problems (Vergnaud, 1983) and relative values problems (Nunes and Bryant, 1996). 

In both instances, children are invited to count each group of objects (e.g. the wheels 

in a car) and also to keep track of the total number of objects (three cars). In the 
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relative values task children are asked to judge and justify comparisons between rows 

of coins with different denominations, which requires double-counting (Steffe, 1994). 

The fourth number component, the ability to read and write numbers and the 

understanding of the principles underlying place value, was assessed separately from 

the ability to understand the structure of the numeration system which can be done 

without knowledge of written numbers (Ginsburg, 1977). In this task, children were 

asked to write and recognise (in different sessions) single-digits, as well as numbers in 

the teens, two-digits (between 20 and 100), three and four digit numbers. 
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4 
RELATING NUMBER COMPONENTS: QUESTIONS UNDER INVESTIGATION 

A fundamental issue that has interested a growing number of researchers is whether 

the school makes use of the wide range of skills brought by the children into the 

classroom (e.g. Ginsburg, 1977; Resnick, 1987; Aubrey, 1993; Nunes and Bryant, 

1996; Suggate, Aubrey and Pettitt, 1997). However, the majority of studies have 

investigated separate skills, reflecting the one-component tradition, as discussed in 

earlier sections. As such, little data relating the performance of the same sample of 

children in different number components has been made available. 

There remains an urgent need to assess the development of several number 

components in the same children, throughout the first years of primary school. Such 

study would provide a global picture about children's abilities, and the way each 

specific type of knowledge may relate to the development of other number 

understandings. In this particular case, a longitudinal approach seems crucial in order 

to map the development of these interrelationships in the same children, along time. 
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4.1 Re-examining children's understanding of the decade system 

The development of children's understanding of the decade numeration system. 

requires further clarification. Arguably, whilst the investigation of number components 

such as counting and knowledge of the numeration system continue to be carried out 

separately, their relation shall remain unclear. 

Meanwhile, the lack of data on the performance of the same children in these two 

components has led to conflicting views, where counting is seen both as crucial (e.g. 

Gelman and Gallistel, 1978; Kamii, 1986), or as secondary (Piaget, 1952; Resnick, 

1986; Nunes and Bryant, 1996), and even as an obstacle (Fuson, 1990; Miller and 

Stigler, 1987; Miura and Okamoto, 1989; Miura et al., 1993) to children's 

understanding of the decade numeration system. 

Without precise data relating the performance of the same children, it can only be 

speculated that the higher children count up their number word-list, the more probable 

it is they may be able to tease out the principles underlying the structure of the decade 

numeration system - the fact that the numeration system is made of units of different 

denominations; i.e. ones, tens, hundreds, and so on. However, much clarification is 

needed regarding the mechanisms of this development. It is possible that extending the 

number-list may not be what teaches children about the structure of ones, tens and 

hundreds. 

It is worth recalling the two dominant views about children's understanding of the 

decade numeration system. The first, argues that children's numerical reasoning 

originates in counting and, 
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"the child's arithmetic system is strongly shaped by the mental entities 

with which it deals, namely, the representation of numerosity that may be 

obtained by counting" (Gelman and Gallistel, 1978; p. 185). 

According to this perspective, without counting knowledge children would be unable 

to manipulate mental entities when they reason numerically. From this point of view, 

children construct the structure of tens on the structure of ones, where counting is 

granted a fundamental role (Gelman and Gallistel, 1978; Kamii, 1986). The previous 

chapter briefly reviewed work from Kamii (1986), presenting evidence to support this 

view. However, it is also recognised that early principles aid initial but not later 

conceptions of number (Gelman and Meck, 1992). 

An alternative view, however, suggests that counting units of the same denomination 

(ones) plays a minor role in children's grasp of units of different denominations. 

Children's counting is seen as a necessary condition for further mathematical 

developments, but it is not, in itself, a sufficient condition for the development of the 

numeration system. Authors sharing this perspective - of which Piaget (1952) is a 

famous example - tend to seek evidence that the understanding of the decade 

numeration system requires, from the child's point of view, something beyond the 

development of counting, 

"a break with simpler concepts of the past, and a reconceptualization of 

number itself' (Hiebert and Behr, 1988; p. 9). 
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This argument has been based mostly on evidence showing lack of significant 

correlations between children's results in counting tasks and results in tasks assessing 

their understanding of the structure of the decade numeration system (Carraher, 1985; 

Miller and Stigler, 1987; Fuson, 1990; Nunes and Bryant, 1996). These authors 

further argue that although Gelman and Gallistel's (1978) work on counting has 

provided insightful hypotheses to account for the development of children's counting 

skills, they have not explained the influence of this knowledge on later number 

acquisitions. In fact, this relationship is not investigated either in their book "The 

child's understanding of number" (1978) or in later studies (e.g. Gelman and Meck, 

1983; 1992). 

Likewise, although Fuson (1988) has provided an explanation for the development of 

children's number-word list from age two to seven, the relationship between this 

progress and the child's ability to use the decade numeration system, has not been 

clarified - although it has been generally assumed that the latter is an extension of the 

former. The next section presents recent work by Nunes and Bryant (1996) supporting 

the alternative view that counting plays a secondary role in children's understanding of 

the decade numeration system. 

4.1.1 The 'addition hypothesis' 

Nunes and Bryant (1996) recently provided evidence that counting, on its own, is not 

a sufficient condition to enable children to understand the decade system. According to 
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their argument, evidence that counting relates to knowledge of the decade system, 

should be provided by data showing that the child can generalise his/her knowledge of 

counting (i.e. adding one more to the set already counted) to more complex additive 

compositions involved in the decade system, simply by frequent practising. Positive 

evidence, they argue, should show a significant correlation between children's ability 

to count ones and their ability to count ones, tens and hundreds (i.e. units of different 

denominations). 

Carraher (1985) investigated this question in a study with 72 Brazilian children, aged 5 

to 8. Children's knowledge of counting was assessed with a task where they had to 

buy items from a shop and pay with units of single denomination; i.e. ones. 

Children's understanding of the numeration system was assessed with a relative values 

task, where children were required to decide which of two arrays of tokens had more 

money, and a shopping task, where children had to buy items from a shop and pay 

with coins of different denominations (i.e. ones, tens, hundreds, and so on). The 

shopping task was thought to make the counting of single and different denominations 

more meaningful to children. 

In her results Carraher (1985) reported that counting units of the same size was not 

problematic even for the 5 year-olds. Most children obtained a ceiling-effect on these 

items. More importantly, she also reported that the results in the counting ones task did 

not correlate significantly with the results of the relative values nor the counting units 

of different denominations tasks. Based on this data, Carraher (1985) suggested that 

practice in counting units of single denomination alone, does not teach children to 

count units of different denominations, because 
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"Children who know how to count may still not be able to understand the 

relative values of units and compose totals with different-value units in the 

context of dealing with money" (Nunes and Bryant, 1996; p. 52). 

Nunes and Bryant (1996) also report on a study which replicated Carraher's (1985) 

results in a similar study with 5 and 6 year-old British children. This argument has 

been further supported by data from Miller and Stigler (1987), who assessed the 

relation between counting and children's understanding of the base-10 structure 

underlying the numeration system, in 96 American and Taiwanese children aged 4 to 

6. The systems used in both cultures differ in the sense that Chinese counting 

continually repeats the order of the first nine numbers, throughout the system - one, 

two, 	eight, nine, ten ... ten-one, ten-two, ten-three .... ten-nine, two-tens, two- 

tens-one, and so on. This gives the child important clue about the organisation of the 

system, and 

"it should be much easier for Chinese children to induce the difference 

between primitive and compound numbers, and such is the case (Miller 

and Stigler, 1987; p. 301). 

The western system is less helpful in that sense, and instruction does not help children 

to grasp the structure of the system from their initial countings to ten (Miller and 

Stigler, 1987; see also Miura and Okamoto, 1989; Miura et al., 1993). Their results 

showed that the Chinese children were more proficient in the use of the decade system, 
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in comparison with the American children. This suggests that a distinction between 

object-tagging and number-naming systems in counting should be made. 

"These systems appear to be largely independent or modular, being 

affected differently by separate sources of added difficulty" (Miller and 

Stigler, 1987; p. 301). 

This leads to an important point. The argument that some number components (in this 

case counting) may interfere in the child's acquisition of other, more complex 

components, has been put forward by other authors. According to Fuson (1990), 

"The use of unitary conceptual structures becomes highly automatized in 

the U.S. first and second graders and interferes with their construction 

and use of multiunits of ten" (Fuson, 1990; p.360). 

According to Nunes and Bryant (1996) children build their understanding of the 

decade system on previous knowledge of addition, hence the reconceptualisation 

referred to by Hiebert and Behr (1988; see above). In their words, 

"Children's encounters with addition might be the necessary experience for 

understanding the additive composition that underlies the decade system. 

There is a well-established change in young children's approach to adding 
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which, on the face of it, could be the spur for understanding the base-ten 

system. This is the transition from counting-all to counting-on" (Nunes 

and Bryant, 1996; p. 52). 

4.1.2 Development in addition strategies and children's understanding of 

the decade numeration system 

The argument that counting-on may be related to children's understanding of the 

numeration system, is based on the idea that the use of this counting strategy may 

expose children to an early grasp of units of different denominations (Carraher, 1985; 

Resnick, 1983; 1986; Fuson, 1990; Nunes and Bryant, 1996). 

In order to perform counting-on the child must join separate units and collect them into 

a single multiunit, which gain a different value. In the "4+5" example, the child who 

uses Counting-on simply unites "1, 2, 3, 4" into a collected multiunit of a higher 

value, i.e. "4" (Fuson, 1990). By Counting-on from 4, the child is judging that 

number as a unit of a different size. According to Nunes and Bryant (1996), 

"This developmental change could well be relevant to the understanding of 

the decade structure. The child who sees that she does not laboriously have 

to re-count the larger set may have realised that this set can be treated as a 

larger unit which can be combined with a smaller one. This child might 

therefore be in a better position to understand that one can form the number 
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23 by combining two units of one denomination (two tens) with three of 

another (three ones)" (Nunes and Bryant, 1996; p. 53). 

Nunes and Bryant (1996) investigated the relation between addition and knowledge of 

the decade system in five and six year-old British children. The addition problems 

used were simple (i.e. Mary had 8 sweets and her Granny gave her 5 sweets. How 

many does she have now ?) and enough tokens to represent both addends were 

provided. Besides a pass/fail score in the addition problems, Nunes and Bryant (1996) 

also recorded the type of strategy used to solve the problem: either count-all, count-on 

or recalled-facts. 

Nunes and Bryant (1996) reported that only 10% of the five year-olds used count-on 

(or recalled-facts), whereas a significantly higher number (57%) of the six year-olds 

used the same strategies. Interestingly, although the pass/fail score of the addition task 

did not correlate significantly with knowledge of additive composition, the second 

score (counting strategy used) showed a significant correlation between the use of the 

count-on strategy and the results of the addition composition tasks. 

These results support the argument that children who understand addition but still have 

not developed more sophisticated counting strategies such as counting-on, are not able 

to grasp additive composition. Based on the correlations found, they further suggested 

that children's understanding of additive composition of number may develop from 

counting-on. 
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4.1.3 Further inferences from the hidden addend studies 

In a study reported by Nunes and Bryant (1996), Kornilaki (1994) attempted to further 

clarify the relation between the use of the counting-on strategy and knowledge of 

additive composition, in 5 to 6 year-old Greek children. The question being asked to 

further explore the addition hypothesis, was: What is it that the 'count-on children' are 

capable of doing that the 'count-all children' cannot do ? 

To increase the probability of children's use of the counting-on strategy, she hid the 

first addend in a wallet, so that the children could not count it. For example, the 

children were told that a girl had 8 drachmas (Greek currency) in her wallet, and that 

she had been given another 7 drachmas, which were placed in front of the child. She 

also assessed children's ability to count units of the same (i.e. ones) and different 

denominations (additive composition task). 

Her results were consistent with Nunes and Bryant's (1996) suggestion that counting 

and knowledge of the numeration system are different issues: Children who only 

counted-all could not pass the additive composition task (shopping task). She also 

reported that the use of Counting-on (in an addition with hidden addend task) was a 

necessary but not sufficient condition to pass the shopping task: all the children who 

passed the Additive Composition task also passed the Count-on task (Table 13, 

below). 
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TABLE 13 

Cross-tabulation of Kornilaki's (1994) results 

additive composition 

Addition with invisible addend fail pass Total 

fail 17 0 17 
pass 21 12 33 

Total 38 12 5 0 

Based on this, Kornilaki (1994) concluded that her data was consistent with the 

argument that counting-on may be an embryonic form of children's grasp of additive 

composition of number and, therefore, a basis for their understanding of the structure 

of the numeration system. 

This conceptual link looked so promising that Kornilaki went on to observe the 

counting strategies used in the invisible addend addition task in greater detail, 

expecting to detect further connections between the use of the counting-on strategy and 

children's understanding of additive composition. 

She formed two groups: Children who had failed the count-on task (count-all) and 

children who passed it (count-on). Those classified as 'count-all' children did not 

conceive the hidden value represented by the first addend of the problem. They either 

counted the coins that represented the second addend, or counted the wallet as one 

object. No significant correlation was found between the count-all children and 

additive composition, which suggested that knowledge of one-to-one correspondence 

is insufficient for the child to understand the cardinal as a sufficient representation of 

the set and to be able to add on to it, in order to grasp additive composition. 

119 



On the other hand, the 33 children classified as 'count-on', used several strategies to 

pass the task (Table 14), which Kornilaki (1994) categorised according to Steffe et 

al's. (1982) counting types. Twelve of these children used their fingers to count-all the 

first addend and then continued by counting the available coins (figural). A further 8 

children used either head movements or finger tappings to count-all from one up to 

eight (first addend) and then continued counting the available coins (motor). These two 

strategies involved an attempt to represent the invisible drachmas in some way, and 

then the counting of the second addend, to find the final result. 

TABLE 14 

Strategies and success in the additive composition task (N=33; Kornilaki, 1994) 

Successful counting strategies 

counted made head counted used cardinal 
with fingers movements quickly from number for first 
(Figural) (Motor) one (verbal) addend (abstract) 

Pass additive composition 12 7 2 0 
Fail additive composition 0 1 5 6 

Kornilaki also found that another group of 7 children counted quickly from one, up to 

the value of the first addend, and then continued counting the visible coins, and 6 

children (out of 33) said the cardinal for the first addend and continued counting-on the 

visible coins. Only children in this last group relied on the cardinal number as a 

sufficient representation of the hidden set of drachmas. 

Kornilaki (1994) reported that with one exception, no children classified as figural or 

motor counters were able to pass the additive composition task. Furthermore, those 5 

out of 7 verbal counters who passed the additive composition task, had counted the 

first addend quickly from one. Kornilaki (1994) and Nunes and Bryant (1996) argued 
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that these quick counters could be considered abstract counters, only that they used an 

'overt' strategy. 

Based on this data, Kornilaki (1994) and Nunes and Bryant (1996) suggested that the 

use of the count-on strategy may represent children's first experience of mixing and 

counting units of different sizes. Also, they proposed that count-on could be an 

embryonic form of additive composition of number. This link, they claim, may be an 

opportunity for children to start learning about the numeration system, although they 

admit that further research is needed to settle the question. 

4.1.4 The relevance of continuation of counting 

The limitation of these studies representing both views is that they have not considered 

developmental differences between counting level (Fuson et al., 1982; Fuson, 1988) 

and have overlooked the relevance of children's continuation of counting. This 

development, as briefly discussed earlier, reflects the child's new understanding about 

number and is, simultaneously, a precursor of counting-on (Secada et al., 1983). 

Table 15 compares the levels used by both types of studies, highlighting the levels of 

counting not contemplated in Kamii's (1986) and Nunes and Bryant's (1996) studies. 

Those children classified as 'counting ones' by Kamii (1986) and Nunes and Bryant 

(1996) on the right column, can be classified in three different groups, according to 

Fuson (1988). 
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TABLE 15 

Comparison of levels of counting used 

Kamii (1986) 
Nunes and Bryant (1996) 

Fuson's (1988) model 
	

and other studies 

string level (1) 
	

counting ones (1) 

unbreakable chain level (2) 
	

counting ones (1) 

breakable chain level (3) 
	

counting ones (1) 

numerable chain level (4) 
	

counting-on (2) 

bidirectional chain level (5) 
	

counting-on (2) 

Based on Fuson et al's. (1982) data, it seems appropriate to hypothesise that children 

who have developed different levels of counting ability may perform differently in 

tasks assessing their understanding of units of different denominations. No 

longitudinal data has yet been produced about the effects of specific counting skills on 

children's grasp of additive composition of number, a property of the numeration 

system. 

4.1.5 Part-whole and children's understanding of the decade system 

Resnick (1983) suggested an alternative to the shopping task to estimate children's 

knowledge of additive composition of number. Her assumption is that children's 

ability to interpret word-problems in terms of part-whole is good evidence that they 

have informally understood additive composition. 
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When children are given a typical start-set-unknown problem like 'Paul has some; 

Charles gave him 5; now he has 8. How many did he have to start with ?', they have 

difficulties in representing an undefined start-set with their fingers or the number-line. 

Alternatively to the use of the number-line, which only allows children to relate 

numbers as larger or smaller, they may revert to a part-whole schema to map the 

problem (Riley and Greeno, 1988). By mapping the problem, they may interchange 

the different sets in order to find a solution. To rearrange the quantities is considered to 

depend on an understanding of additive composition (Resnick, 1983). 

No data has yet been presented about estimates of additive composition of number, or 

about the relationship between the counting-on strategy of addition and knowledge of 

part-whole problems. 

4.1.6 Arithmetical operations and children's understanding of the decade 

system 

Evidence supporting the argument that children learn about the numeration system 

from knowledge of addition, rather than from practice with counting (Piaget, 1952; 

Nunes and Bryant, 1996), also raises a new possibility. As was briefly explained 

earlier, the numeration system has multiplier words like 'hundred', 'thousand' and 

'million' which, according to their position in a word sequence, enter in sum or 

product relations with the basic numbers (Ross, 1989; Fuson, 1990). For example, 

'four-hundred' corresponds to a product relation, whereas 'hundred and four' 

corresponds to a sum relation. 
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Based on this, it seems worth exploring the effects of children's knowledge of 

addition and multiplication on their understanding of the decade numeration system's 

sum and product relations. 

This relationship, which has not yet been explored longitudinally, could develop 

much sooner than previously thought, having important consequences for children's 

grasp of the decade system. 

4.2 Exploring the further relevance of continuation of counting 

Apart from the works of Fuson et al. (1982) and Siegler and Robinson (1982) which 

have described the development of children's counting strategies, only two studies 

have investigated the importance of continuation of counting in children's number 

development. 

The first one, argues that continuation of counting is one of three subskills involved in 

counting-on (Secada et al., 1983). The second one, hypothesises that continuation of 

counting represents a fundamental development in children's formation of the concept 

of number, a process that is seen as occurring when addition is learned as a mental 

operation (Davydov, 1969). Basically, Davydov (1969) argues that when children 

count-on in addition problems, they begin to understand that a numeral implies 

quantities, although they still need to count the second addend to obtain the result of 

the sum. 
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"Could it be that the curtailment of counting begins when the children learn to 

count farther from any number ?" (Davydov, 1969; p. 43). 

From the outset - wrote Davydov (1969) -, the curtailment of the counting procedure 

looks like adding-on. However, he argued, this development is far more important 

than learning a counting strategy, as it characterises the use of number in concept form. 

If this is the case, Davydov (1969) proposed, 

" When a quite definite quantity is implied in the numeral itself, which is known in 

advance, there is the possibility of skipping the middle elements of the series being 

counted. This circumstance eliminates the necessity of counting the first addend and 

thereby teaches the child how to use a number as a whole. It is the latter that 

characterises use of number in concept form (Davydov, 1969; p. 43)." 

Unfortunately, Davydov (1969) did not provide data to support his hypothesis, at least 

in western scientific journals. The present study assesses these two arguments and 

proposes a third one, based on Davydov (1969), postulating that continuation of 

counting may be also related to children's understanding of subtraction and 

multiplication. Evidence of the latter will support the idea that children's knowledge of 

number may be interrelated to their understanding of the operations; in other words, 

that children need to understand them in order to grasp number as a whole (Piaget, 

1952). This evidence suggests that the relevance of continuation of counting should be 

further investigated, especially from a longitudinal perspective. 
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4.3 Children's understanding of written numbers and place value 

There is evidence to support both views that (1) children's understanding of the 

convention of place value is based on their prior knowledge of the structure of the 

numeration system (Ginsburg, 1977; Fuson, 1990; Nunes and Bryant, 1996), and (2) 

children base their understanding of place value on practice with written numbers 

(Sinclair, 1991; Sinclair et al., 1992; Sinclair and Scheuer, 1993) 

Also, evidence shows that there is a developmental lag between being able to 

understand the structure of the numeration system and grasping place value. Whereas 

the former is understood by five year-olds (Carraher, 1985; Nunes and Bryant, 1996) 

the latter is grasped by seven year olds (Sinclair, 1991; Sinclair et al., 1992; Sinclair 

and Scheuer, 1993). No longitudinal data has been produced about the effects of 

'understanding the structure of the numeration system' and their 'knowledge of written 

numbers' on use of place-value, as separate number components. 
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5 
METHODOLOGY AND RESULTS 

5.1 RATIONALE OF THE PRESENT STUDY 

The proposal of this study is to explore longitudinally the development of several 

number components in the same children, throughout their first three years of learning 

in school mathematics. The components to be explored are: 

(1) counting and knowledge of the number-word 

sequence; 

(2) generating verbal number-words and the 

understanding of the structure of the numeration 

system; 

(3) arithmetical operations; 
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(4) the ability to read and write numbers and the 

understanding of the principles underlying place 

value. 

5.2 RESEARCH QUESTIONS 

This study will also explore some relationships between the various number 

components through a series of examinations of relevant data. The following will be 

examined: (1) the emergence of additive composition of number and children's 

understanding of the decade numeration system - the effects of continuation of 

counting; (2) the effects of children's use of continuation of counting on their 

understanding of the arithmetical operations; (3) the effects of knowledge of addition 

and multiplication on children's understanding of the decade numeration system; (4) 

the effects of children's 'understanding the structure of the numeration system' and 

their 'knowledge of written numbers' on use of place-value. 

5.3 PARTICIPANTS 

The participants in this study were 152 primary school children recruited equally from 

three schools in North London. The Reception, Year 1 and Year 2 groups included 

fifty-three children, forty-one and fifty-eight children, respectively. The children's age 

ranges are shown in Table 16. The participants in each class were selected by their 

teacher who was asked to provide children from three different levels of mathematical 

achievement: top, average and bottom. 
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TABLE 16 

Age ranges and medians by assessment (in years-months) 

Assessments 

second 

Reception group 	4-8 to 5-2 	5-0 to 5-7 	5-4 to 5-10 
(4- 1 I )a 	 (5-3) 	 (5-7) 

Year 1 group 	 5-2 to 6-4 	5-6 to 6-8 	5-10 to 7-0 
(5-11) 	 (6-2) 	 (6-7) 

Year 2 group 	 6-2 to 7-4 	6-6 to 7-6 	6-10 to 7-10 
(6-1 I ) 	 (7-1) 	 (7-5) 

first third 

(a) Numbers in parentheses are Medians 

The experimenter was blind to the teacher's evaluation of the participants, which was 

based on either number class work (Reception group), Nuffield maths worksheets or 

similar (Year 1), and level of achievement in the numerical components of the Standard 

Assessment Tasks (SEAC, 1992) in the Year 2 group. These tasks are given to all 

children within the UK at the end of Key Stage 1 (7+). These tests identify levels of 

competence normally expected of the 'average' seven year-old and may also be used to 

identify children at both extremes of the spectrum of achievement (e.g. Gray et al., 

1997). The participants were all fluent English speakers. 
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5.4 OVERALL PROCEDURE 

Each cohort of participants was assessed three times during the school year — in the 

autumn, the winter and spring terms — following a mixed cross-sectional and 

longitudinal design. Before the series of interviews in each school, the experimenter 

was introduced to the class by the teacher, who explained that the experimenter had 

come to play some games with everyone. 

The games were then described to the children in a general form. All children were 

interviewed by the same experimenter in a quiet room away from their classroom, for 

two or three sessions according to their speed. Each child spent 20-30 minutes with 

the experimenter, in each session. 

The children responded to several maths tasks grouped according to the four number 

components described in the introduction (Table 17). All tasks were based on previous 

research (authors are shown in parentheses) but were nevertheless applied in a 

previous pilot-test and adjusted for the main study. The experimenter used a semi-

structured interview and tried to ascertain the meaning of each answer by asking the 

child: "why ?" or "can you show me how you did it ?". 

The child was permitted to manipulate objects and there were no time pressures. All of 

the children's responses were recorded in a scoring sheet. All children started their 

"games" with a counting task, which was used as a "warm-up" task. The order of 

presentation of the remaining tasks was randomised across groups. 
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TABLE 17 
Tasks used in the study 

(I) Counting And Knowledge Of The Number-Word List 

One-to-one correspondence and fixed order of number labelling (Gelman and Gallistel, 1978) 
Counting range (Fuson, 1988; Miller and Stigler, 1989) 
Continuation of counting (Fuson, 1988) 

(2) Generation of Verbal Number Words And Decade Numeration System 

Counting units with single denomination (shopping task; Nunes and Bryant, 1996) 
Counting units with different denominations (shopping task; Nunes and Bryant, 1996) 

(3) Arithmetical Operations 

3.1 Addition and Subtraction 
Change increase result-unknown word-problems (addition; Carpenter & Moser, 1982) 
Change decrease result-unknown word-problems (subtraction; idem) 
Change start-set unknown word-problems (inversion; idem) 
Addition with one hidden addend (addition with a box; Hughes, 1986) 

3.2 Multiplication 
Isomorphism of measures word-problems (Vergnaud, 1983) 
Relative Values (Nunes and Bryant, 1996) 

(4) Written Numbers And Knowledge Of Place Value 

Production of written numbers (Power and Dal Martello, 1990; Nunes and Bryant, 1996) 
Recognition of written numbers (Nunes and Bryant, 1996) 

5.5 TASKS USED IN THE STUDY 

The range of tasks assessed reflected a combination of two criteria, whenever 

possible. On the one hand, the present study assessed children's knowledge of several 

number components, reflecting the range of numerical competencies referred to in the 

literature. On the other hand, and in order to give ecological validity to the situation in 

which children would find themselves (Aubrey, 1993), this study used assessment 
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tasks, the majority of which were compatible with key areas of the National 

Curriculum for mathematics. 

5.5.1 COUNTING & KNOWLEDGE OF THE NUMBER-WORD SEQUENCE 

(component 1) 

5.5.1.1 One-to-one correspondence  & fixed order of number labelling 

Materials 

For the one-to-one correspondence and fixed order of number labelling task, ten red 

and yellow plastic coins were used (diameter of 2.5 cm). 

Rationale 

This task was set as a 'warming-up' activity. This task verified whether children were 

able to establish a one-to-one correspondence between objects and counting sequence 

and whether they were able to label the numbers correctly (Gelman and Gallistel, 

1978). 

Procedure 

Twenty coloured plastic coins were displayed on the table, scattered. The child was 

asked: "can you count these coins ? Try to count them". The child's procedure was 

recorded. Children who respected the one-to-one counting and the stable order 

principles within the first ten objects were classified as pass. The remaining children 

were given a second trial, where they were required to count the coins in a straight 

line. Children who made one error at least were classified as 'fail'. 
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5.5.1.2 Continuation of counting 

Rationale 

This task verified whether children were able to continue counting from an arbitrary 

number in the counting-list (Fuson, 1988). 

Procedure 

After having counted 20 coins (previous warm-up task), children in the first 

assessment of the Reception group were asked to continue counting from number 

twenty (i.e. "do you know what numbers come after twenty ?"). Those children who 

failed to continue counting were asked to continue counting from number ten (i.e. "do 

you know what numbers come after ten ?"). Children were invited to continue 

counting until they reached their own limit. (Counting range task, see below). 

Children's answers were recorded. 

During the second and third assessments of the Reception group, and the three 

assessments of the Year 1 group, the children were simply asked: "What is the highest 

number you can count to ?" The child was then invited to continue counting from the 

number s/he said, minus 15. This was done to verify whether the child could pass 

from the previous decade to the next. For example, a child who said 100 would be 

asked to continue counting from 85; a child who said '80', would be asked to 

continue counting from 65 until a second error was made. 

If decade errors were made the child was then asked: "do you know what number 

comes after 20 ?". Those who failed to answer to the 'after 20' question were asked: 
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"do you know what number comes after 10 ?" Children were invited to continue 

counting until they reached their own limit (Counting range task, see below). 

Children's answers were recorded. To pass this task children had to continue counting 

from at least one of the numbers they were asked about. 

5.5.1.3 Counting Range 

Rationale 

This task was based on the work of Fuson (1988) and Stigler and Miller (1989) and 

assessed children's counting limit, i.e. how far they were able to say the counting 

words in the conventional order, before making serious mistakes. 

Procedure 

The younger children were invited to count until they reached their own limit. The 

older children were asked how far they thought they could count. They were then 

invited to count from that number minus 12. Similarly to Miller and Stigler (1987), the 

counting was stopped after two consecutive omissions. For example: 23, 24, ( ), ( ) 

27 (where two consecutive numbers were omitted). In counts like 23, ( ), 25, ( ), 27, 

the errors are not immediately consecutive. Children's answers were recorded. 
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5.5.2 GENERATING VERBAL NUMBER WORDS AND UNDERSTANDING THE 

DECADE NUMERATION SYSTEM (component 2) 

5.5.2.1 Counting units with single denomination (shopping task) 

Materials 

This task used five toys (to be sold in the shop) and 18 yellow plastic coins worth 1 

pence each, (2.5 cm in diameter), to be used as money. 

Rationale 

This task was adapted from Carraher (1985) and Nunes and Bryant (1996) and 

verified whether children were able to count units of the same denomination, i.e. ones. 

Each child was asked to buy and pay for 5 objects in a make-believe shop, while the 

experimenter played the role of the shopkeeper. The items to be purchased in the shop 

included two toys priced under 10p (7p and 8p), and three toys priced between 10 and 

20p (12, 15 and 16p). 

Procedure 

The experimenter gave the child 18 yellow one-pence coins and explained how much 

each coin was worth (i.e. one pence). The children were told: "this is a shopping 

game. I would like you to buy some toys from my shop. I will be the shopkeeper and 

you the customer. Use this money (point) to buy the toys. Ready ?I would like you to 

buy this toy (point) first. It costs 7p (trial 1)... How much money do you have to pay 

me ?" The five trials were applied in a fixed order. Children's answers were recorded 
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and the money reshuffled after each trial. Each correct answer scored one point. 

Maximum score: five points. 

5.5.2.2 Counting units with different denomination (shopping task) 

Materials 

The counting units with different denominations task used several toys to be bought 

from the shop (e.g. little teddy-bears, colouring pencils etc.). Also, play-money was 

used: nine 1p coins (yellow), four 5p coins (red), six 10p coins (green), five 100p 

coins (blue) and three 1000p coins (black). The coins had different colours for better 

identification and were tagged with the amount they represented. 

Rationale 

This task verified whether children were able to count and combine units of different 

denominations (adapted from Carraher, 1985 and Nunes and Bryant, 1996). Each 

child was asked to buy and pay for 12 objects in a make-believe shop, while the 

experimenter played the role of the shopkeeper. 

Procedure 

The items to be purchased in the shop included sets priced under 10p (6p, 7p and 8p), 

under 20p (12p, 15p and 16p), under 100p (26p, 53p), under 1000p (124p and 347p) 

and above 1000 (1052p and 2340p). The children were told: "this is the same 

shopping game but I would like you to buy some more toys from my shop. Now, you 

can use this other money (point) to buy the toys. Ready ?" Children were always given 

money in combinations that did not allow them to buy an item with only one 

denomination. For example, in the '7p item, children were given two 5p coins and four 

136 



1p coins (total: 6 coins). The objects were sold in the above fixed order up to the 16p 

item. After that, the game was interrupted at the second failure. 

Before moving on to a new set of items, the child was shown the coins used in that set 

and asked to recognise their value. In those cases where the child did not recognise the 

value of some of the coins, the experimenter explained it to the child. Children's 

responses were classified as to whether they continued counting from the number in 

the higher denomination - or not. Each correct answer scored one point. Maximum 

score: twelve points. 

5.5.3 ARITHMETICAL OPERATIONS (component 3) 

5.5.3.1 Increase and decrease change result-set unknown word-problems 

(addition and subtraction) 

Materials 

Fourteen small wooden bricks were used as materials. 

Rationale 

This task verified whether children could add and subtract (adapted from Carpenter 

and Moser, 1982; Riley et al., 1983). 

Procedure 

Each child had to find the sum (total) of six (3 increase and 3 decrease) problems. The 

child was allowed to manipulate objects. "For our next game I'm going to let you use 
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these bricks, in case you need them to play the game. (...) I'm going to read you 

some easy problems, and I would like you to find the result. Ready ?" 

The problems read were of the type "George had 3 marbles and John gave him 

another 5 marbles. How many marbles does George have now ?" Whenever 

necessary, the problem was re-read to the child up to two times, after saying: "I'm 

going to repeat the problem so that you can find out what happened, pay attention". 

The bricks were always mixed after being used. The three increase trials were 3+5, 

2+6 and 4+7. The three decrease trials were 6-4, 7-3 and 9-5. The numbers were kept 

under 5 to facilitate calculation. Addition trials had their second addends slightly 

bigger, so that if addend order disregard was to occur, it could be more easily noted. 

Both sets of problems were presented in a fixed order. 

Children who correctly answered one trial at least were classified as 'pass'. Responses 

resulting from miscounts by one were not treated as errors. Children's strategies were 

classified into "no counting strategy", used "counting-all" and used "counting-on". 

5.5.3.2 Change start-set unknown word-problems (inversion) 

Materials 

Fourteen small wooden bricks were used as materials. 
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Rationale 

Each child was given four (two increase and two decrease) inversion problems to 

verify whether they could apply the part-whole schema (adapted from Carpenter and 

Moser, 1983; Riley et al., 1983). 

Procedure 

The child was allowed to use objects. "For our next game I'm going to let you use 

these bricks, in case you need them to play the game. (...) I'm going to read you 

some easy problems, and I would like you to find the result. Ready ?" The problems 

read were of the type "Libby bought some oranges in the morning. Her Mum gave her 

another 5 in the afternoon. Now she has 8 oranges. How many oranges did Libby 

buy in the morning ?" 

Whenever necessary, the problem was re-read to the child up to two times, after 

saying: "I'm going to repeat the problem so that you can find out what happened, pay 

attention". The bricks were always mixed after being used. The 2 increase trials were 

?+5=8, ?+6=10. The two decrease trials were ?-4=6, ?-7=3. Both sets of problems 

were presented in a fixed order. The child's answers and procedures were recorded; a 

justification, either procedural or verbal was asked for. 

Children who correctly answered one trial at least were classified as 'pass'. Responses 

resulting from miscounts by one were not treated as errors. Children's strategies were 

classified into "no counting strategy", used "counting-all" and used "counting-on". 
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5.5.3.3 Addition with a hidden addend (addition with a box) 

Materials 

Fifteen small coloured round chips (sweets) and a small plastic box were used. 

Rationale 

This task represented a specific assessment of the counting-on strategy. Each child 

had to find the sum (total) of bricks inside and outside a box (adapted from Hughes, 

1986 and Nunes and Bryant, 1996). 

Procedure 

The experimenter hid 3 bricks inside the box and put 4 bricks outside and said: "Inside 

the box there are 3 bricks and these (point) are outside. How many bricks are there 

altogether ?". Whenever necessary, the number of bricks inside the box was repeated. 

Children in the Reception group were given the trials 3in+4out, 4in+6out and 

5in+3out. Children in the Year 1 and Year 2 groups were given the trials: 3in+4out, 

9in+3out and 1 lin+4out. Both sets of problems were presented in a fixed order. 

The child's answers and procedures were recorded. Responses resulting from 

miscounts by one were not treated as errors. Children who correctly answered one 

trial at least were classified as 'pass'. Particular attention was paid to the ways 

children counted the items inside the box. Children's strategies were classified into 

"no counting strategy", used "counting-all" and used "counting-on". 
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5.5.3.4 Isomorphism of measures word-problems (multiplication) 

Materials 

A cardboard-made puppet, a small toy-car, several paper-made gloves, bracelets and 

plastic wheels were used as materials. 

Rationale 

This task verified whether children could operate with composite units (adapted from 

Piaget, 1952 and Steffe, 1988). Each child had to find the result of three multiplication 

items similar to those used by Aubrey (1993), corresponding to Vergnaud's (1983) 

multiplication word-problems' classification. 

Procedure 

The child was shown a model (puppet) with a pair of gloves put on and asked (demo): 

"This is a thinking game. I'll need your help to buy some clothes for Mary (showed 

puppet) and her friends. Ok ? I bought two gloves for Mary (show puppet with a pair 

of gloves on). How many gloves do I have to buy for 3 puppets like Mary ?" If the 

child failed to give a correct answer the experimenter corrected it, explaining why. 

The procedure was repeated with the remaining trials in a fixed order: How many 

wheels does a car have ? (show a car). How many wheels do you think 3 cars have ?"; 

"I bought 3 bracelets for Judy (show puppet with 3 bracelets on). How many bracelets 

will I have to buy for 3 puppets like Judy ?". 

Those children who correctly answered one trial at least were classified as 'pass'. 

Responses resulting from miscounts by one were not treated as errors. Children's 
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strategies were classified into "no counting strategy", used "counting-all" and used 

"counting-on". 

5.5.3.5 Relative Values 

Materials 

Eighteen yellow plastic coins of 1p, three red plastic coins of 5p, two blue plastic 

coins of 10p. All plastic coins were 2.5 cm in diameter and had the amounts they 

represented marked on them. 

Rationale 

This task verified whether children could respect and operate with units of different 

denominations (Carraher, 1985; Nunes and Bryant, 1996). 

Procedure 

In each trial, the experimenter and the child were given different amounts of money to 

buy sweets (Table 18). Two arrays of coins were put in front of each participant in the 

'game' and the child was told: "Let's pretend we go to a store to buy some sweets. 

Who buys more sweets; you or me ? ". After each trial the child is asked: "Why ?" 
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TABLE 18 

	 Items used in the relative values task 

Trial 1 	one coin of 1 (Exp) — one coin of 5 (Child) 

Trial 2 	three coins of 1 (Exp) — one coin of 5 (Child) 

Trial 3 	three coins of 5 (Exp) — three coins of 1 (Child) 

Trial 4 	nine coins of 1 (Exp) — one coin of 10 (Child) 

Trial 5 	eighteen coins of 1 (Exp) — two coins of 10 (Child) 

The answers were classified into judgements (who buys more ?) and justifications 

(why ?). Each correct judgement scored one point; maximum score for the first 

assessment of the Reception and Year 1 groups: 3 points. The maximum score of the 

remaining assessments was 5 points. All justifications were recorded for later 

categorisation. 

5.5.4 WRITTEN NUMBERS AND KNOWLEDGE OF PLACE VALUE (component 4) 

5.5.4.1 Production and recognition of written numbers 

Materials 

Paper and pencil were used for the production of written numbers task. The 

recognition of written numbers task used paper and pencil and fifteen 5x12cm cards 

with numbers printed on them. 
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Rationale 

This tasks assessed whether children were able to write and recognise multi-digit 

numbers, up to four digits (e.g. Power and Dal Martello, 1990; Nunes and Bryant, 

1996). The written numbers and the number recognition tasks were presented in 

different sessions, days apart. 

Procedure 

The children were asked to write down and recognise single-digits (2, 3, 4 , 7, 9; 

warm-up' items), numbers in the teens (12, 15), two-digit numbers (37, 40, 79), 

three-digit numbers (124, 200, 347), and four-digit numbers (1052 and 2340). The 

trials were presented in a fixed order and the children were read (or were asked to 

recognise) all numbers in the list. Each correct answer scored one point. 
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5.6 RESULTS BY NUMBER COMPONENT 

This section reports on the results obtained by the same children in three different 

cohorts on the following number components: (1) counting and knowledge of the 

number-word sequence; (2) generating verbal number-words and the understanding of 

the structure of the numeration system; (3) arithmetical operations; and (4) the ability 

to read and write numbers and the understanding of the principles underlying place 

value. 

No gender differences were found in the vast majority of the results obtained so this 

type of analysis was discontinued. 

5.6.1 COUNTING AND KNOWLEDGE OF THE NUMBER-WORD SEQUENCE 

5.6.1.1 One-to-one correspondence and fixed order of number labelling 

The vast majority of the Reception children in the first assessment were able to respond 

correctly to the one-to-one correspondence and fixed order of number labelling tasks. 

The results were seventy-four (i.e. 39 out of 53) and seventy-nine percent (i.e. 42 out 

of 53), respectively. 

Given the high results obtained, the assessment of these tasks was not repeated. 

Children's ability to count units was hence forth assessed by the counting units with 

single denomination tasks (small). According to McNemar tests, there were no 
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significant differences between these two tasks in the first assessment (see Table 20 in 

the pass single denomination results, Reception group, assessment one). 

5.6.1.2 Continuation of counting 

Children's results in the continuation of counting task were classified into pass/fail 

(Table 20). Twenty children (38%) in the first assessment of the reception group (i.e. 

at the start of school), were able to continue counting from an arbitrary number in the 

count-list. These numbers increased in the second (32 out of 53) and third assessments 

(43 out of 53), where close to ceiling-level results were reached. In the first 

assessment of the Year 1 group, 32 (out of 41) could continue counting, and by the 

second assessment of this year group, over 90% of the children were able to pass this 

task. 

TABLE 20 
Frequencies (and percentages) of success in the continuation of counting and counting range tasks - 

component 1 

Reception (N=53) 	Year 1 (N=41) 	 Year 2 (N=58) 

assessments one 	two three one 	two three one two three 

CC* 20/38 	32 /60 43 / 81 32 / 78 	38 / 93 39 / 95 56/ 97 57 / 98 56 / 97 

Counting 24a 	50 65 78 	89 107 
range (3-100)b (10-150) (13-200) (12-197) (15-199) (18-200) 

* Continuation of counting 
a mean 
b minimum-maximum 
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Evidence that 38% of the reception children can already continue counting, at the start 

of schooling, suggests that a significant proportion of the children entering school 

already display flexible and abstract strategies to deal with the number-line. 

Furthermore, continuation of counting and the ability to count ones seem to represent 

different abilities where not all the children who count ones will necessarily know how 

to continue counting. 

5.6.1.3 Counting range 

Table 20 also shows the results of the counting range task. Some children in the first 

assessment of the Reception group were able to count up to 100. The averages for the 

three assessments of this groups were 24, 50 and 65. Some children in the second 

assessment reached 150 and others reached 200 in the third assessment. The averages 

for the three assessments of the Year 1 group were 79, 89 and 107. Throughout the 

various assessments, however, some children still could not count further than the 

teens. 

5.6.2 VERBAL NUMBER-WORDS AND UNDERSTANDING THE STRUCTURE OF THE 

NUMERATION SYSTEM 

The results of the "counting units of single denomination" and "counting units of 

different denominations" were categorised as "pass small" (items 6, 7 and 8p) and 

"pass large" (items 12, 15 and 18p). In order to pass, children were required to 

respond correctly to all the items in each category. Results are shown in Table 21. 
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5.6.2.1 Counting units with single denomination 

The data show that children had no difficulties in passing the single denominations 

task, especially the items under 10 (i.e. small). Over ninety percent of newcomers to 

school were able to pass this task. The results on this task were at ceiling level 

throughout the nine assessments. 

Children found it slightly more difficult to pass the large items (i.e. between 10 and 

20), although over 50% of the children in the first assessment of the Reception group 

were able to succeed in these items as well. Results reached ceiling-level by the first 

assessment of the Year 1 group. 

No children passed the larger items without having passed the smaller items. 

According to McNemar tests, the differences between passing the small and the large 

items were significant in the three assessments of the Reception group only (binomial 

tests; p> 0.001, in the three assessments). On the whole, these data support the 

argument that counting ones is not a difficult task for a great majority of children in 

primary school. 

5.6.2.2 Counting units with different denomination 

Children's achievement on the counting money with different denominations task is 

also shown on Table 21. The data show that the size of the denominations used has a 
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significant influence on children's counting. Results in the different denominations 

task (large) were significantly lower, in comparison with the single denominations task 

(large). McNemar tests showed significant differences in all assessments: binomial 

test, p<0.001, for the first two assessments and binomial test, p<0.05 for the third 

assessment of Reception. Binomial test, p<0.001 for the first two assessments and 

binomial test, p<0.01 for the third assessment of the Year 1 group. Binomial test, 

p<0.01 for the first assessment of the Year 2 group. 

There were no significant differences between the large and the small categories of the 

different denominations task in all the assessments, according to McNemar tests, so 

only the results for the pass large category are presented. Only six children passed this 

task in the first assessment of the Reception group. However, by the third assessment 

of the Reception group over a third of the children in the same group had passed the 

task. 

TABLE 21 
Frequencies (and percentages) of success in the generating verbal number-words and understanding of 

the structure of the numeration system tasks 

assess. 

Reception (N=53) 	Year I (N=41) Year 2 (N=58) 

one two three 	one 	two 	three one two three 

pass single denomination 

small 47 /92 44 186 50 / 94 	41 /100 	41 //00 	40 / 100 58 //00 58 / 100 58 /100 
large 27 153 30 159 29 / 55 	38 / 93 	40 / 98 	38 / 

pass different denomination ** 

93 55 / 95 56 / 97 55 / 95 

large 6 /// 13 / 25 20 / 38 	18 / 44 	23 / 56 	28 / 68 45 / 78 51 / 88 51 / 88 

** No differences were Pond between the pass small and the pass large categories in all the assessments 

Although there is a difference between counting ones and counting units of any other 

size (fives or tens), the data further suggest that the ability to count units of different 
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denominations does not depend on the size of the units being counted; i.e. there is no 

significant difference between counting with fives and ones or tens and ones, 

according to McNemar tests. This data supports the idea that the ability to combine 

units of different denominations is not a function of the size of the units counted. 

Overall, results increased steadily throughout the remaining assessments and 

approached ceiling level by the first assessment of the Year 2 group. Further McNemar 

tests showed that there were significant differences between the results in the different 

denomination (large) task and the addition (binomial tests, p<0.01 for the first eight 

assessments) and multiplication tasks (binomial tests, p<0.01 for the first seven 

assessments). 

5.6.3 ARITHMETICAL OPERATIONS 

5.6.3.1 Addition and Subtraction 

The results of the arithmetical operations tasks are shown in Tables 22 and 23. To pass 

any of these tasks, children were required to pass one item, at least. McNemar tests 

showed that there were no significant differences between addition and subtraction 

results in all assessments, so the subtraction results are not shown. 

The data shows that a significant proportion of the Reception children (25%) were able 

to solve addition and subtraction word-problems at school entry. These word-

problems were of the result-unknown type (either increase or decrease). Later, in the 

150 



second assessment, nearly half the children passed the addition and subtraction tasks 

respectively (i.e. 44 and 56%), and 64% of children passed both tasks in the final 

assessment of this age group. 

TABLE 22 

Frequencies (and percentages) of success in the arithmetical operations tasks - component 3 

assessments 

Reception (N=53) Year 1 (N=41) Year 2 (N=58) 
one two three one two three one two three 

Addition* 
inversion** 

13 / 
3 / 

25 
6 

23 / 
3 / 

44 
6 

34 / 
13 / 

64 
25 

29 / 
10 / 

7/ 
24 

34 / 
9 / 

83 
22 

35 / 
19 / 

85 
46 

51 / 
32 / 

88 
55 

56 / 
42 / 

97 
72 

54 / 
42 / 

93 
72 

* change increase result unknown word-problems 
** change start-set result unknown word-problems 

Over two-thirds of the children in the first assessment of the Year 1 group passed the 

addition (71%) and subtraction (78%) problems. After that, results in these two tasks 

approached ceiling-level: 83% passed addition and 78% passed subtraction. In the final 

assessment, 85% and 93% of the children passed these tasks. In the Year 2 group, 

88% and 90% of the children passed the tasks, showing that the results had clearly 

reached ceiling-level at this point. 

5.6.3.2 Inversion 

The results of the inversion task (change start-unknown word-problems) are also 

shown on Table 22. To pass this task, children had to respond correctly to one item, at 

least. No significant differences were found between the increase and decrease items of 
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this task, according to McNemar tasks. For the subsequent analyses data from these 

two subtypes of problems were combined. 

Only 3 out of 53 Reception group children passed this task in the first and second 

assessments. However, one fourth of the children succeeded in this task by the last 

assessment of the group. In the Year 1 group (N=41), 10, 9 and 19 passed this task in 

the first, second and third assessments respectively. By the first assessment of the 

Year 2 group (N=58) more than half the children passed this task (32 children). Later, 

in the second and third assessments, over two thirds of the children passed this task. 

Children had obtained the equivalent results in the addition items by the first 

assessment of the Year one group, almost two years earlier, in developmental terms. 

McNemar tests confirmed that children found these problems significantly more 

difficult than the addition problems (binomial test, p<0.01 for the first assessment of 

the Reception group; binomial test, p<0.001 for all remaining assessments) as the 

former imply recurring to a part-whole schema for its mapping (Resnick, 1983; Riley 

and Greeno, 1988), whereas addition problems can be solved by relying on the 

number-line alone. 

McNemar tests also confirmed that there were significant differences between the 

inversion problems and the isomorphism of measures problems of multiplication in all 

the assessments (binomial test, p<0.001 for the first assessments; binomial test, 

p<0.01; p<0.05 and p<0.01 for the first, second and third assessments of the Year 2 

group, respectively). The results of the relative values problems of multiplication and 

inversion differed significantly only in the second assessment of the Year 1 group 

(binomial test, p<0.01). 

152 



5.6.3.3 Addition with one hidden addend 

The results of the addition with a hidden addend task are shown in Table 23. To pass, 

children had to respond correctly to one item at least. The scores were significantly 

higher than those obtained by the same children in the addition word-problems, as 

reported by Hughes (1986). Differences were significant in the first four assessments, 

according to McNemar tests (i.e. from the first assessment of Reception until the first 

assessment of the Year 1 group: binomial test, p<0.001; binomial test, p<0.001; 

binomial test, p<0.05; binomial test, p<0.05, respectively). 

Nearly two-thirds of the children passed the hidden addend task at school entry. 

Thirty-six and 42 children passed the same task on the second and third assessments, 

respectively. The results approached ceiling-level in the first assessment of the Year 1 

group, where 36 children passed the task. Later, in the second and third assessments 

of the same year group, almost all the children passed the hidden addend task. 

The data show that the hidden addend does not represent a major obstacle for 

children's adding, as they easily revert to a counting-all strategy to count the items in 

the box. The great majority of children simply asked the experimenter "how many 

inside T' and tapped that number on top of the box. More importantly, the results 

support the argument that the situation plays an important role in the teaching of 

children's understanding of specific mathematical concepts, such as addition 

(Vergnaud, 1982; Hughes, 1986; Nunes and Bryant, 1996). 
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5.6.3.4 Multiplication 

The results of the multiplication tasks (isomorphism of measures and relative values) 

are shown in Table 23. In order to pass these tasks, children had to respond correctly 

to one item at least. McNemar tests showed significant differences between the results 

of these two tasks in eight out of nine assessments; i.e. the second and third 

assessment of the Reception group (binomial test; p<0.01; binomial test; p<0.001), in 

all the assessments of the Year 1 group (binomial test; p<0.01), and the three 

assessment of the Year 2 group (binomial test; p<0.001; binomial test; p<0.01; 

binomial test; p<0.05). This suggests that these tasks assess different aspects of 

multiplication. 

Isomorphism of measures problems 

Results in this task were similar to those obtained by the same children in the addition 

and subtraction tasks. McNemar tests showed no significant differences between the 

results on addition and multiplication tasks in eight out of nine assessments. The 

exception was the third assessment of the Year 1 group (binomial test; p<0.05). 

About one third of the children passed this task at school entry, and 20 and 28 children 

also passed it in the second and third assessments of the Reception group. Over one-

half the children sampled passed the multiplication problems by the end of the 

Reception Year. 

154 



TABLE 23 
Frequencies (and percentages) of success in the arithmetical operations tasks - component 3 

 

Reception (N=53) Year 1 (N=41) 	Year 2 (N=58) 

   

assessments one 	two 	three 	one 	two 	three 	one 	two 	three 

Addition (box) * 	30 / 58 a 36 / 69 a 42 / 81 a 36 / 88 	35 / 90 b 38 / 95 a 55 / 95 	53 / 96 c 56 / 98 a 

Multiplicationt 	18 / 34 	20 / 39 b 28 / 55 b 29 / 7/ 	32 / 82 b 30 / 86 e 43 / 75 fri 47 / 89 d 50 / 89 b 

Relative values 	10 / 20 c 9 / 17 	14 / 27 a 17 / 41 	22 / 54 	25 / 63 a 33 / 58 a 46 / 79 	46 / 81 a 

a one subject missing 
b two subjects missing 
c three subjects missing 
d five subjects missing 
e six subjects missing 

* addition in box with one hidden addend 
-t isomorphism of measures 

About two thirds of the children passed this task by the first assessment of the Year 1 

group and nearly 90% of these children also passed the task by the third assessment of 

the Year 1 group. Results reached ceiling level by the second assessment of the Year 2 

group. The data support the view that addition and multiplication are synchronous 

operations, as suggested by several authors (Piaget, 1952; Carpenter et al., 1993; 

Nunes and Bryant, 1996). 

Relative values problems 

Twenty percent of the children at school entry pass this task. These numbers increase 

slightly to nearly thirty percent, by the third assessment of this group. About forty 

percent of the children in the first assessment of the Year 1 group pass this task, and 

these numbers increased to about two-thirds, by the final assessment of this year 

group. 



5.6.3.5 Use of the counting-on strategy 

The use of the counting-on strategy was assessed in five different word-problem 

situations, including addition, subtraction, hidden addend, inversion and multiplication 

problems. The results (seen in Table 24) show that the development of counting-on is 

slower, compared with the same children's attainment in the other tasks. 

TABLE 24 

Frequencies (and percentages) of use of the counting-on strategy - component 3 

assessments 

Reception (N=53) Year 1 (N=41) Year 2 (N=58) 

one two three one two three one two three 

Any ()Hive* 6/11 15/28 16/30 14134 12/29 21/5/ 30/52 44/76 46/79 
Addition boxt 3/ 6 7 114 b 13 125 a 9 122 10/24 18 I 44 28 148 41/7/ 43/74 
Addition** I 	/ 	2 5 I 9 7 113 7 //7 3 / 	7 7 /17 12 121 28 148 32 155 
Subtraction¥ 3/ 6 7 113 5/ 	9 0/ 0 I/ 	2 6/ 15 I/ 	2 23/40 26/45 
Multiplicationtt 2/ 4 4/ 8 5/ 	9 2/ 5 3/ 	7 3/ 7 11/19 20/34 24/41 
Inversion*** 0/ 0 0/ 0 3/ 6 I/ 	2 1/ 	2 3/ 7 8//4 16/28 12/2/ 

a one subject missing 
12 two subjects missing 

* In any of the five word problems assessed 
t addition in a box with one hidden addend 
** change increase result-unknown word problems (e.g. 5+3=?) 

change decrease result-unknown word problems (e.g. 5-3=?) 
t tlsomorphism of measures 
***increase and decrease start-set unknown word problems (?+3=8) 

Only 6 children used counting-on at school entry. Display of this specific strategy rose 

to 15 and 16 children in the second and third assessments of the Reception group 

(N=61). Fourteen children in the Year 1 group (N=41) used this strategy in the first 

assessment, 12 did the same in the second assessment, and 21 did so in the third 

assessment. 
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Thirty children (about one-half) in the Year 2 group (N=58) counted-on in the first 

assessment. By the second assessment of this year group, the majority of these 

children used counting-on in word-problems (i.e. 44 and 46 in the second and third 

assessments, respectively. 

The data show that children use less counting-on in any of the word-problem tasks 

than in the addition with one hidden addend task. 

5.6.4 WRITTEN NUMBERS AND KNOWLEDGE OF PLACE VALUE 

5.6.4.1 Production and recognition of single-digit numbers 

The results of children's single numbers (production and recognition) are shown in 

Table 25. By the third assessment of the Year 2 group, still some children could not 

write all the digits 2, 3, 4, 7 and 9. Whereas in the Reception group children fail for 

not knowing how to write some of the digits assessed, by the Year 2 children err by 

inverting the numbers (i.e. writing "S" for a "2"). On the other hand, 86% of the 

children by the third assessment of Reception group seemed to recognise all single-

digits assessed. 

About half the children could write all the single digits by the beginning of Year 1. 

Results show an effect of number size. Single digits are comparatively easier than 2-

digit numbers across all assessments in the three year groups. McNemar tests show 

that differences are significant in seven out of nine assessments (binomial p<0.01 for 

the first seven assessments). 
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TABLE 25 
Means (and standard deviations) of success in the written number and number recognition task (single- 

digits) 

Reception (N=53) 

  

Year 1 (N=41) 	Year 2 (N=58) 

 

   

     

assessments one two three one two three one two three 

written numb. 1.9 / 1.7 	2.6 / /.5 	2.9 /1.6 	3.8 / 1.4 	3.9 / 1.4 	3.9 / 1.3 b 4.3 I 1.2 	4.4 / 1.3 	4.4 / 1.1 
recognition 	- 	4.7 /0.8 a 4.8 /0.4 c 	- 	5.0 /0.0 a 5.0 /0.0 f 	- 	4.9 /0.1 	4.8 /0.9 e 

a one subject raising 	 e seven subjects missing 
b three subjects missing 
	 f fifteen subjects missing 

c four subjects missing 

Children performed better at recognising numbers, than in writing them. Results 

between the written numbers and the number recognition tasks differed significantly in 

all the assessments, according to Wilcoxon matched-pairs signed-ranks tests (Z=-5.8, 

p<0.001 and Z=-5.2, p<0.001 in the second and third assessment of the Reception 

group; Z=-4.0, p<0.001 and Z=-3.4, p<0.001 in the second and third assessments of 

the Year 1 group; Z=-3.5, p<0.001; Z=-2.3, p<0.05 for the second and third 

assessments of the Year 2 group. 

5.6.4.2 Production and recognition of multi-digit numbers 

The results of the production of written multi-digit numbers task are shown on Table 

26. In order to pass children had to respond correctly to one out of two items in each 

category. The data shows that there is a size effect between numbers in the teens and 2-

digit categories. McNemar tests showed significant differences between these 
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categories in all assessments of the Reception and Year 1 groups (binomial; p<0.01 for 

all). The same significant differences were found between the 2 and 3-digits categories 

(binomial; p<0.01 in seven out of nine assessments), and between the 3 and 4-digit 

categories in the last four assessments (binomial; p<0.01); the differences among the 

first five assessments were not significant). 

Twelve children were able to write numbers in the teens by school entry (first 

assessment of Reception group). Numbers increased slightly by the final assessment 

of this group, where nearly half of the children passed this task. More children passed 

the teens task compared with the 2-digit task in the majority of the assessments. 

TABLE 26 

Frequencies (and percentages) of success in the written numbers task (multi-digits) 

assessments 

Reception (N=53) Year 1 (N=41) Year 2 (N=58) 

one two three one two three one two three 

Teens 12 / 23 14 / 26 25 /47 25 /61 30 / 73 30 / 79 a 46 / 79 50 / 86 51 / 88 

2-digits 0 / 0 3 / 6 7 / 13 18 /44 22 /54 24 / 63 a 44 / 76 45 / 78 45 / 78 

3-digits 0 / 0 0 / 0 I / 	2 0 / 0 2 / 5 4 / 11 a 12 / 2/ 18 / 31 22 / 38 

number 200 0 / 0 0 / 0 4 / 8 1 / 2 19 /46 21 / 55 a 42 / 72 39 / 67 42 / 72 

4-digits 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0 a 8 //4 10//7 15 /26 

a one subject missing 

Children were able to write 3-digit numbers only from the second assessment of the 

Year 1 group onwards. Only 5% of the children succeeded at this stage. Only children 

from the Year 2 group could write 4-digit numbers. Children found it much easier to 

write the control number (200): results were similar to those obtained in the 2-digit 

task. These data support the view that children's difficulties in writing larger numbers 

are not only a function of size, but mostly a function of the complexity of the units 

involved in that number. 
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TABLE 26A 

Frequencies (and percentages) of success in the number recognition task (multi-digits) 

Reception (N=53) 	Year 1 (N=41) 	Year 2 (N=58)  

assessments one two three 	one two three 	one two three 

Teens 	 31 I 60 a 33 / 67 c 	 35 1 88 a 23 / 88 e 	 54 / 95 a 46 / 90 d 

2-digits 	 15 129 a 16 132 b 	 29 I 73 a 19 / 73 e 	 49 186 a 44 / 86 d 

3-digits 	 0/ 0 a 5 I 10 b 	 9 /23 a 7 1 27 e 	 32 /56 a 35 / 70 d 

number 200 	6 / /2 a 12 / 24 b 	 25 / 63 a 19 / 73 e 	 47 / 82 a 45 / 88 d 

4-digits 	 0/ 0 	1 1 2 	 I/ 3 a 0/ 0 e 	 13 123 	16 / 32 

CI one subject missing 
b three subjects missing 
c four subjects missing 
d seven subjects missing 
e fifteen subjects missing 

Regarding the recognition of numbers, shown on Table 26A, children found it much 

easier to recognise multi-digits. Results were consistently higher in the recognition 

tasks in all assessments of all categories. McNemar tests showed that differences were 

significant in the vast majority of cases (binomial; p<0.01). 
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5.7 THE EMERGENCE OF ADDITIVE COMPOSITION OF NUMBER AND CHILDREN'S 

UNDERSTANDING OF THE DECADE NUMERATION SYSTEM - THE EFFECT OF 

CONTINUATION OF COUNTING 

5.7.1 - Introduction 

Children's understanding of additive composition of number implies knowledge that 

numbers are compositions of other smaller numbers and that any number can be 

composed by ones, tens, hundreds and so on. This notion, which is thought to form a 

conceptual base for the development of children's elementary arithmetic and their 

understanding of the decade numeration system (Resnick, 1983; 1986; Carraher, 1985; 

Nunes and Bryant, 1996), is nevertheless difficult to assess. The main obstacle has 

been inferring how widespread and consistent this knowledge might be. In the case of 

younger children, researchers have opted for the assessment of informal versions of 

additive composition before formal schooling - i.e. those that can be used but not 

explained. 

In this context, two different types of tasks have been proposed to estimate children's 

knowledge of additive composition: their ability to solve start-set-unknown word-

problems (Resnick, 1983) and their ability to combine coins of different denominations 

(Carraher, 1985; Carraher and Schliemann, 1990; Nunes and Bryant, 1996). There is, 

however, little data relating estimates of when children show some understanding of 

additive composition (Resnick, 1983; 1986; Carraher, 1985; Nunes and Bryant, 

1996). 

3  - The study reported in this section has been published in Educational Psychology (The Emergence 
of Additive Composition of Number, Martins-Mourao and Cowan, 1998). 
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Resnick's (1983) assessment assumes that children's ability to interpret word-

problems in terms of part-whole is good evidence that they have informally understood 

additive composition. When children are given a typical start-set-unknown problem 

like 'Paul has some; Charles gave him 5; now he has 8. How many did he have to start 

with ?', they have difficulties in representing an undefined start-set with their fingers 

or the number-line. 

Alternatively to the use of the number-line, which only allows children to relate 

numbers as larger or smaller, they may revert to a part-whole schema to map the 

problem (Riley and Greeno, 1988). By mapping the problem, they may interchange 

the different sets in order to find a solution. To rearrange the quantities is considered to 

depend on an understanding of additive composition (Resnick, 1983). 

From a different perspective, Carraher (1985) and Nunes and Bryant (1996) proposed 

to estimate children's understanding of additive composition through their ability to 

combine coins of different denominations, i.e. ones and tens. In a typical item of this 

task - presented as a shopping situation -, the child is given three 10p coins and eight 

1 p coins to pay for an item costing 16p. To pass this task requires decomposing the 

total amount to be paid into one unit of 10 and several ones, and composing the 

quantity from units of different denominations. Carraher (1985) and Nunes and Bryant 

(1996) reported that some five and six year-olds succeed in this task. 

Finally, Nunes and Bryant (1996) also suggested that 
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"children's encounters with addition might be the necessary experience for 

understanding the additive composition that underlies the decade system" 

(Nunes and Bryant, 1996; p. 52). 

According to them, children's use of the counting-on strategy - a particular procedure 

used in addition word-problems - could be the crucial step for their success in 

combining coins of different denominations and, therefore, an earlier measure of their 

informal understanding of additive composition. 

Children who can count-on will solve the problem "5+3" by using the total number of 

the first set as a starting point; i.e. 5... 6, 7, 8. This is an advance over counting-all, 

i.e. 1, 2, 3, 4, 5 (1st) ...1, 2, 3 (2nd).... 1, 2, 3, 4, 5, 6, 7, 8 (both). This 

developmental change could be relevant to the understanding of units of different 

denominations: the child who sees no need to re-count the first addend 

"may have realised that this set can be treated as a larger unit which can 

be combined with a smaller one" (Nunes and Bryant, 1996; p. 53). 

This child, they argue, by transposing knowledge from one situation to another, may 

be in a better position to understand that the number 16 is composed by the 

combination of a unit of a larger denomination (i.e. one ten) with six units of a single 

denomination (i.e. six ones). 
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No data have been produced about the relation between performances in start-set-

unknown problems and the shopping task, in the same children - nor about the ability 

to count-on and solving start-set-unknown problems. In fact, the only exception to the 

sparse data made available on the relation between these three tasks is Nunes and 

Bryant's (1996) suggestion that children need to have discovered counting-on in 

addition problems before they are able to combine units of different denominations. 

These authors reported data from an unpublished study by Kornilaki (1994; cited in 

Nunes and Bryant, 1996), showing that all the 5 and 6 year-olds who passed the 

shopping task also passed a hidden addend task. This task used a wallet, where the 

first addend of the problem was hidden. While some may pass this task by counting-

on others succeeded by counting-all. Thus passing the hidden addend task is not by 

itself clear evidence that counting-on is a necessary condition to pass the shopping 

task. 

Evidence that children may be able to use counting-on but may fail to display it (e.g. 

Carpenter and Moser, 1983; Siegler and Jenkins, 1989) requires modifications in the 

way this strategy has been assessed. The problem is that counting-on in the context of 

word problems can only be evaluated indirectly: what is being assessed is the child's 

ability to solve a problem and not the choice of strategy, which is free. 

Nevertheless, more confident results about the relation between counting-on and the 

ability to combine units of different denominations should be obtained by expanding 

the assessment of counting-on in the same children to several situations 

simultaneously, i.e. addition, subtraction, inversion and multiplication word-problems 

besides the hidden addend task. Failing to use counting-on in any of these tasks will be 

a stringent criteria to define display of this strategy. 
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Another possibility, however, is that children may not depend on counting-on to 

combine coins of different denominations, depending instead on an earlier skill known 

as continuation of counting (Martins-Mourao and Cowan, 1997). Continuation of 

counting is a counting skill that enables children to count up from an arbitrary number 

in the count list, and is displayed by 3 and 4 year-olds who are not yet proficient in 

addition. 

According to Secada et al. (1983), continuation of counting is a subskill of counting-

on. When children are asked to buy an item costing 16p in the shopping task and pass 

by counting: 10 ... 11, 12, 13, 14, 15, 16, it is not clear whether they are counting-on 

or simply continuing counting. However, evidence that children fail to display 

counting-on but pass the shopping task would support the view that children rely on 

continuation of counting to pass this task. 

There are other reasons to believe that counting-on may not play a relevant role in 

children's ability to combine units of different denominations: one, is the view that the 

use of counting-on may be restricted to solving word-problems (Davydov, 1969). The 

other, is that it foremost serves to save the child cognitive effort but does not reflect, in 

itself, a conceptual development (Baroody and Gannon, 1984). 

In view of the evidence that some children may be able to use the counting-on strategy 

but may not always display it (e.g. Carpenter and Moser, 1983) the present study 

investigated whether different situations have an impact on the child's use of this 

strategy and whether this influence remains constant over time. Can some situations 

elicit more use of counting-on than others ? 
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Also, by assessing the performances of the same children in start-unknown problems 

and the shopping task, along one school year, this study attempted to compare the 

results of these two different estimates of additive composition. Are they equally 

difficult ? 

It finally explored Nunes and Bryant's (1996) suggestion that knowledge of addition, 

and specifically the use of counting-on is a necessary condition for the understanding 

of additive composition of number. Can children who count-on benefit from this 

knowledge to grasp additive composition in a different context ? Or, can the 

understanding of additive composition be developed from the use of continuation of 

counting, an earlier skill developed before knowledge of addition ? 

5.7.2 - Display of counting-on in different word-problem situations 

No significant gender differences were found in any of the tasks assessed. So for the 

subsequent analyses data from boys and girls were combined. Children's strategies 

used in the addition with one hidden addend and the word-problem tasks [i.e. increase 

change result-unknown problems (addition) and decrease change result-unknown 

problems (subtraction), change start-set unknown problems (inversion) and 

multiplication] were classified into 'does not use count-on', or 'uses count-on'. 

No differences were found between the increase and decrease items on the change 

result-unknown problems or the change start-set unknown problems, so these results 

were combined. The frequencies of use of counting-on in word-problem situations are 

shown in Table 27. Numerous children passed the hidden addend task in particular, 
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by using counting-all only, which shows that use of counting-on cannot be assumed 

from success in this task alone. Patrick's protocol shows an example of counting-all 

use in the hidden addend task. 

Exp: Inside the box there are 5 bricks and these [3] are outside. How 

many bricks are there altogether ? 

Patrick (4, 10): How many here ? (pointing at box). 

Exp: Five. 

Patrick: 1, 2, 3, 4, 5 (tapping each finger on top of the box). I'm 

going to leave my hand here (on top of the box) ... 1, 2, 3 (counting 

the bricks outside) ... looks at hand on the box and counts) 1, 2, 3, 4, 

5 ... 6, 7, 8. Eight! 

Katie's protocol shows an example of counting-on use. 

Exp: Inside the box there are 9 bricks and these [3] are outside. How 

many bricks are there altogether ? 

Katie (6, I 1 ): nine (taps on the box quickly), 10, 11, 12. Twelve! 
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In the first assessment, forty children used counting-on, but a further ninety-two 

children passed the counting-on task by using counting-all only (these numbers are 

not shown in Table 1). In the second assessment, fifty-eight children used counting-

on and another seventy-six used counting-all. In the final assessment, seventy-four 

children used counting-on and sixty-one used counting-all. 

To compare the frequency of counting-on use in the four tasks (i.e. hidden addend, 

change result unknown, multiplication and change start unknown), a Cochran Q test 

was conducted for each assessment. There were overall significant differences in the 

first (Q= 61.9 df=4, p<.001); second (Q= 60.6, df=4, p<.001); and third assessments 

(Q= 96.6, df=4, p<.001). 

As Table 27 shows, children were most likely to use counting-on in the hidden addend 

task, although some of them used counting-on at least once in any of the other tasks, 

except hidden addend. McNemar tests confirmed that children were reliably more 

prone to use counting-on in the hidden addend task than in the change result-unknown 

problems: X2 = 9.6, df=1, p<.01; X2 = 5.6, df=1, p=.02; X2 = 10.6, df=1, p<.01; in 

the first, second and third assessments respectively. 

Children were less likely to use counting-on in start-unknown problems. McNemar 

tests show significant differences in start-unknown and multiplication problems in the 

second (binomial test, p<.05) and third assessment (binomial test, p<.01). 
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TABLE 27 

Frequencies of counting-on use in each task by assessment (N=152) 

Word problems 

At least Hidden Change result Multipli- 	Change start 
Assessment addend unknown cation 	unknown* once 

First 40 22 15 	9 50 
Second 58 43 27 	17 71 
Third 74 54 32 	18 83 

Part-whole word problems 

While there was a general increase in the use of counting-on in all the word-problem 

tasks, it was more marked in some situations. McNemar tests show that the number of 

children using the counting-on strategy in the hidden addend task grew significantly 

from the first to the second (X2 = 10.5, df=1, p<.01), and from the second to the third 

assessments (X2 = 7.5, df=1, p<.01). 

The same pattern was found in the change result-unknown problems from the first to 

the second assessment (X2 = 5.9, df=1, p<.05) and from the second to the third 

assessment (binomial test, p<.05). In the multiplication task, there was a significant 

increase from the first to the second assessment only (X2 = 4.7, df=1, p<.05). No 

significant increase was found in the development of children's counting-on use in 

start-unknown problems. 

5.7.3 - Performance in the additive composition tasks 

The frequencies of success in the start-set unknown problems and the shopping task 

are shown in Table 28. Within the start-set unknown problems, McNemar tests 
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showed no significant differences between the increase and decrease versions, so these 

were combined. In the shopping task, no differences were also found between success 

on the 5&1 and the 10&1 items; only the latter are displayed in Table 28. Children 

were more likely to pass the shopping task in each assessment; first (X2 = 16.5, df=1, 

p<.001), second (X2 = 23.8, df=1, p<.001) and third (X2 = 17.5, df=1, p<.001). 

TABLE 28 

Frequencies of success in the additive composition tasks and its precursors (N=152) 

Assessment 

Additive Composition tasks Precursors 
Shopping 

task 
Start-unknown 

problems 
Continuation 
of counting 

Counting 
On 

First 69 45 108 50 

Second 87 54 127 71 

Third 99 74 139 83 

There was a general increase in the success on both tasks, although it was more 

marked in the shopping task. Results in the shopping task differed significantly from 

the first to the second (X2 = 11.1, df=1, p<.001), and from the second to the third 

assessment (binomial, p=.02). However, changes in success in the start-unknown 

problems were only marked later, from the second to the third assessment (X2 = 10.2, 

df=1, p<.01). 
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5.7.4 - The relationship between counting-on. continuation of counting and 

additive composition 

To assess the status of counting-on and continuation of counting as precursors to 

additive composition I examined the relation between use of the counting-on strategy 

on any of the word-problem tasks, and success in continuation of counting and 

success on the two measures of additive composition. The frequencies of success in 

these tasks are shown in Table 28. Results show that more children were able to 

succeed in the shopping task than to display counting-on. According to McNemar 

tests, the differences were significant in the first (X2 = 9.3, df=1, p<.01)., second (X2 

= 5.9, df=1, p=.02). and third assessments (X2 = 6.6, df=1, p=.01). 

The data show that children used two different strategies to pass the shopping task. 

One group counted all the units in the coin of higher denomination and then continued 

counting the remaining units - i.e. in the 10p + 6p item, children would count: 1, 2, 3 

... 	8, 	9, 10 (10) 	... 11, 12, 13, 14, 15, 16 (16). Another group of children counted 

10, 	11, 12, 13, 14, 15, 16, for instance. However, evidence that eleven out of sixty- 

nine children (in the first assessment), fourteen out of eighty-seven (in the second 

assessment) and three out of ninety-nine (in the third assessment) passed the shopping 

task by counting-all, supports the argument (1) that counting-on is not a necessary 

condition for success in the shopping task and that, for this reason, (2) the other 

successful strategy used by children must be continuation of counting - rather than 

counting-on. 

Other results further support the view that it is possible to pass additive composition 

tasks, without knowledge of counting-on. Children were divided into two groups: 

those who displayed counting-on, and those who never displayed it. The same 
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children were further divided into those who used continuation of counting, and those 

who did not. The crosstabulations of these four groups with the results in the additive 

composition tasks are shown in Table 29. 

The data show that a considerable number of children were able to pass either the start-

unknown problems or shopping task, having failed to display counting-on in any of 

the five situations assessed in the previous section. According to Table 29, fourteen, 

ten and fifteen children passed the start-unknown problems having failed to count-on 

(in the first, second and third assessments respectively). Also, twenty-seven (in the 

first and second assessments) and twenty-five children (in the third assessment), 

passed the shopping task having failed to count-on. Furthermore, seven, nine and one 

child who failed to count-on in any of the word-problem situations, passed the 

shopping task by using the counting-all strategy. 

TABLE 29 
Relation between counting-on and continuation of counting and additive composition tasks. Results 
are in frequencies (N= 152) (from left to right, numbers correspond to assessment one through three) 

Additive composition tasks 

Start-unknown problems shopping task 
fail pass fail pass 

counting no 88 71 54 14 10 15 75 54 44 27 27 25 

ON yes 19 27 24 31 44 59 8 11 9 42 60 74 

continuation no  44 25 14 0 0 0 44 25 14 0 0 0 

of counting yes 63 73 64 45 54 74 70 57 61 38 70 77 
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On the other hand, the data presented in Table 29 show that no children were able to 

pass any of the additive composition tasks without also passing the continuation of 

counting task. This evidence supports the idea that children's grasp of additive 

composition of number - in any of the two forms assessed - presupposes their ability 

to continue counting from an arbitrary number in the list, but not their ability to count-

on. 

Regarding the relation between continuation of counting and counting-on, no children 

who failed to continue counting were able to use counting-on (with one exception in 

the first and second assessments). This data supports Secada et al's. (1983) model 

suggesting that the former is a subskill of the latter. 

TABLE 30 
Significant relationships between counting-on and continuation of counting and additive composition 

tasks 

Additive composition tasks 

Start-unknown problems Shopping task 

Counting-on 
Assessment 1 n.s. X2=9.3; df=1; p>.01 
Assessment 2 X2=6.9; df=1; p>.01 X2=5.9; df=1; p>.05 
Assessment 3 n.s. X2=6.6; df=1; p=.01 

Continuation of counting 
Assessment X2=61.01; df=1; p>.001 X2=33.6; df=1; p>.001 

Assessment 2 X2=71.01; df=1; p>.001 X2=36.2; df=1; p>.001 

Assessment 3 X2=62.01; df=1; p>.001 X2=35.2; df=1; p>.001 

Table 30 compares the significance of the relationship between both counting-on and 

continuation of counting, and the additive composition tasks. According to McNemar 

tests, the relationship between continuation of counting and start unknown problems is 
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significant in three out of three assessments, whereas the relation between counting-on 

and start-unknown problems is significant in only the second assessment. 

The relations between counting-on and continuation of counting and the shopping task 

are both significant, although they are more significant between continuation of 

counting and the shopping task, according to the values of X2 as well as the p values 

-shown on the right-hand column of Table 30. 

5.7.5 - Predictive effects of continuation of counting 

To explore the effect of continuation of counting (CC) on the additive composition 

tasks, high crosslag correlations (Spearman) were performed. Results show significant 

correlations between continuation of counting in the first assessment and the shopping 

task (r=0.6, p<0.001) and start-unknown problems (r=0.5, p<0.001) in the third 

assessment. This suggests that those children who understand continuation of counting 

earlier are in a better position to grasp additive composition of number, later. 

Table 31 crosstabulates the results of continuation of counting in previous 

assessments, with the results of the additive composition tasks, in later assessments, 

i.e. from the first to the second assessment, from the first to the third, and from the 

second to the third assessments. 

Table 31 shows that, with rare exceptions, children who failed continuation of 

counting in the first assessment could not pass the additive composition tasks in the 
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second and third assessments. The few children that failed to continue counting in the 

first assessment but passed the start-unknown problems or the shopping task on the 

third assessment, all learned to continue counting sometime in between these 

assessments. The same pattern occurs between the second and the third assessment. 

These data support the argument that continuation of counting is a necessary condition 

for children's understanding of additive composition of number. 

TABLE 31 
Relation between counting-on, continuation of counting and additive composition tasks across 

different assessments. Results are in frequencies (N= 152) 

Additive composition tasks 

Start-unknown problems shopping task 
ass 2 ass 3 ass 2 ass 3 

fail pass fail pass fail pass fail pass 

counting-on no 82 20 68 34 60 42 51 51 
(ass 1) yes 16 34 10 40 5 45 2 48 

counting-on no 58 23 49 32 
(ass 2) yes 20 51 4 67 

continuation no 42 2* 41 3** 40 4t 36 8tt 
of counting (ass 1) yes 56 52 37 71 25 83 17 91 

continuation no 24 1 23 1 
of counting (ass 2) yes 54 73 30 98 

* these children displayed continuation of counting (CC) in the second assessment 
** two of these children displayed CC in ass 2; the remaining child displayed CC in ass 3 

three displayed CC in ass 2 
ft seven displayed CC in ass 2. One displayed CC in ass 3 

On the other hand, numerous children who failed to count-on in previous assessments, 

pass the additive composition tasks in later assessments. One such example is the 

relation between counting-on in the first assessment and success in the shopping task 
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in the third assessment: of the one hundred and two children who failed to count-on 

(first assessment), half (fifty-one) failed the shopping task and the other half passed. 

5.8 THE EFFECTS OF CHILDREN'S USE OF CONTINUATION OF COUNTING ON 

THEIR UNDERSTANDING OF THE ARITHMETICAL OPERATIONS 

5.8.1 Introduction 

There is evidence that the early counting strategy that enables children to count from an 

arbitrary number (i.e. continuation of counting) is more important than it has been 

formerly realised in previous research. It seems, therefore, worthwhile to investigate 

the relation between continuation of counting and counting strategies used in the word-

problems. 

If, as suggested by Secada et al's (1983) model, continuation of counting is a subskill 

of counting-on, then, all children who display counting-on must also display 

continuation of counting. On the other hand, data showing that children who fail to 

continue counting are nevertheless able to use counting-on will be inconsistent with 

Secada et al.'s model, and will suggest that continuation of counting is not a necessary 

condition for the use of counting-on. Data showing that children either fail both tasks, 

or pass continuation but fail to count-on, or pass both tasks, will be consistent with 

Secada et al's. prediction. 
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Data showing that children who fail to continue counting can nevertheless pass the 

operations tasks, will be consistent with the argument that continuation of counting is 

not a necessary condition for the understanding of the operations. However, data 

showing that children who fail continuation of counting do not pass any of the 3 tasks, 

and all children who pass the 3 tasks also pass the continuation task, support the idea 

that children's use of continuation of counting is presupposed in their understanding of 

addition, subtraction and multiplication. 

5.8.2 The Relation Between Continuation of Counting and Counting Strategies in 

used in the word-problems 

Children's results on the continuation of counting, addition, subtraction and 

multiplication tasks were classified as 'fail' or 'pass'. To pass, children had to respond 

correctly to one item, at least. Children's counting strategies in the addition, 

subtraction problems were categorised as in the previous section: 'No counting 

strategies', 'count-all only' and 'count-on'. Children were allowed miscounts of -1 or 

+1. 

The crosstabulation of the continuation of counting task and both the accuracy and 

counting strategies used in Addition, Subtraction, Addition with one hidden addend, 

Inversion and Multiplication problems is shown in Table 32. 

Regarding the use of strategies, the data shows that across assessments, children of all 

groups who fail to continue counting do not display counting-on in any of the five 

tasks, with one exception. This can be seen by crossing the "fail CC" lines with the 
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"pass C-on" column where only zeros can be found; with the above mentioned 

exception in the second assessment (subtraction and addition with one hidden addend 

problems). 

TABLE 32 
Relation between counting pattern and the accuracy and strategies used in addition, subtraction, 
addition with hidden addend, Inversion and Multiplication problems (Results are in frequencies) 

CC* 

assessment one 	 assessment two 	 assessment three 

NCSt ct-all 	ct-ON 	NCSt 	ct-all 	ct-ON 	NCSt ct-all ct-ON 

f** p f 	p 	f 	p 	fp 	f 	p 	fp 	f 	p fp f 	p 

Addition 
Change result unknown word-problems (N=152, 152, 152) 

fail 33 0 5 6a 	0 	0 	21 	0 	2 1 b 	0 	0 	9 	0 3 2c 0 	0 
pass 15 0 6 67 	0 20 	10 	4 	5 72 	0 36 	12 	4 4 72 1 45 

Subtraction 
Change result unknown word-problems (N=150, 150, 151) 

fail 32 3 4 4d 	0 	0 	18 	3 	0 2c 	0 1 b 	10 	0 2 2c 0 	0 
pass 14 4 481 	0 	4 	13 	9 	668 	030 	10 	9 478 036 

Addition with one hidden addend 
box problems (N=145, 151, 148) 

fail 16 0 9 	18e 	0 	0 	9 	0 	6 8f 	0 	1 	3 	0 2 	8 0 	0 
pass 2 1 3 62 	0 40 	5 	2 	2 57 	0 55 	5 	6 2 48 1 73 

Inversion 
Change start unknown word-problems (N=152, 152, 152) 

fail 44 0 0 	0 	0 	0 	25 	0 	0 	0 	0 	0 	14 	0 0 	0 0 	0 
pass 53 0 10 36 	0 	9 	72 	2 	1 35 	0 17 	35 	0 29 56 0 18 

Multiplication 

fail 33 3 
isomorphism of measures word-problems (N=151, 143, 142) 
1 	6a 	1 	0 	9 	0 	13 2c 	0 	0 	6 	1 5 	1 b 0 	0 

pass 14 5 12 62 	0 14 	5 	1 	17 70 	0 26 	12 	5 11 69 0 32 

* CC- continuation of counting a four percent of all subjects 	 e twelve percent of all subjects 
t NCS- No counting strategy 	b under one percent of all subjects 

	
I./ire percent of all subjects 

f, p - fail, pass 	 c one percent of all subjects 	 g two percent of all subjects 

d three percent of all subjects 

On the other hand, of those children who pass the continuation of counting task, all 

succeed in the use of the counting-on strategy, with one exception in the addition and 
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addition with one hidden addend problems (one participant out of 152 represents less 

than one percent of the sample observed). 

The use of continuation of counting also seems to have a significant effect on 

children's correct use of counting-all to succeed in any of the five tasks, i.e. in the 

increase of their accuracy in the word-problems. A significantly greater proportion of 

children who continue counting use counting-all to succeed (these results can be found 

in the crossing of the "pass CC" lines with the "pass counting-all" column). Only a 

minority of children who fail to continue counting are able to pass addition by using 

counting-all. Only 4, 0.6 and 1.3 percent of all the children succeed in doing this in the 

first, second and third assessments, respectively. 

5.8.3 The effect of Continuation of Counting on Children's Knowledge of Addition 

and Subtraction 

The children who passed the word problems without using counting strategies are 

displayed in the 'No counting strategies' (NCS, p) column. These children used 

number-facts, either knowingly (see the crossing with the CCpass line) or randomly 

(see the crossing with the CCfail line). The number of children in the latter situation is 

quite small and represents under 2% of all children and occur only in the first and 

second assessment of the subtraction word problems (see Table 32). The number of 

children passing the word-problems can be found by adding the number of children 

who pass by counting-all (ct-all) and counting-on (ct-on). 
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Table 32, which crosstabulates the results of the continuation of counting and addition, 

subtraction and inversion word-problems (i.e. additive structures), shows that the use 

of continuation of counting has a significant effect on children's accuracy in any of the 

above mentioned tasks. In all assessments, the vast majority of children who fail to 

continue counting are not able to pass any of the addition, subtraction and inversion 

word-problems. Exceptions can be found but these are never higher than 4% of all 

children (i.e. six out of 152 children), as it is the case of the six children that pass 

addition having failed to continue counting. 

The data show that there is a significant difference in performance in addition and 

subtraction in function of the counting pattern displayed (i.e. pass/fail continuation of 

counting) in all assessments. In the first assessment, only 6 children (under 4%) pass 

addition having failed to continue counting. In the second and third assessments these 

percentages drop to one percent on the observed sample of 152 children. 

Of the 108 children passing the continuation of counting task in the first assessment, 

87 (i.e. 81%) also pass addition. Of the 127 who pass continuation of counting in the 

second assessment, 112 (i.e. 88%) succeed in addition. Finally, in the third 

assessment, 121 out of the 138 (i.e. 80%) who succeed in continuation of counting 

also pass addition. Differences are significant in all assessments (Table 33). 

The effect of continuation of counting over performance in subtraction word-problems 

is also significant in all assessments, according to chi-square tests. Only 4 (3%), 3 

(2%) and 2 (1%) children pass subtraction having failed to continue counting in the 

first, second and third assessments, respectively. 
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first second third 

38 113 151 

X2=75.7; df= 1;p<0.001 

59 93 152 

X2=58.9;df= I ;p<0.001 

29 123 152 

X2=44.3; df= 1 ; p<0.001 
Fisher's exact test, p<0.001 

fail sass fail ass 

assessments 

Addition 
Change result unknown word-problems 

fail sass 

fail 

pass 

fail sass 

CC* 	fail 

pass 

24 

127 

44 

108 

Subtraction 
Change result unknown word-problems 

fail sass 

CC* 	fail 

pass 
88 60 148 

X2=12.9;df=1;p<0.001 

41 

107 

Mul iplication 
Relative values 

X2=21.8;df=1;p<0.001 

fail 	sass 

fail 12 	1 13 

pass 52 	84 136 
64 	85 149 

X2= 14.2;df= 1 ; p<0.001 

X2=59.6;df= I ;p<0.001 X2=38.9; df= 1 ; p<0.001 

Multiplication 
Isomorphism of measures word-problems 

fail sass 

fail 12 2 14 

pass 14 123 137 
26 125 151 

X2=50.8;df= 1 ;p<0.001 

	

fail 	 44 

	

pass 	 07 

	

fail 	 24 

	

pass 	 19 
61 	90 151 44 	99 143 

X2=39.5;df= 1 ; p<0.001 X2=50.2; df= 1 ; p<0.001 

fail 	sass 

fail 1 1 	2 13 

pass 23 	106 129 
34 	108 142 

X2=28.9; df= 1 ;p<0.001 
Fisher's exact test, p<0.001 

CC* 

CC* 	fail 

pass 

TABLE 33 
Crosstabulation of Continuation of counting and the addition, subtraction and multiplication tasks by 

assessment. Results are presented in frequencies 

1' Continuation of counting 

Furthermore, of the total of children who pass the continuation of counting task (108, 

126 and 137), 90 (i.e. 83%), 106 (i.e. 84%) and 123 (i.e. 90%) also succeed in the 

subtraction tasks. These results suggest that there is a relation between continuation of 

counting and children's performance in addition and subtraction tasks. 
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A similar pattern can be seen in the relation between continuation of counting and the 

inversion tasks (change start-unknown word-problems). Children who fail to continue 

counting do not succeed in the inversion tasks in all assessments. Accuracy also 

increases for those who pass continuation of counting: all of these children use 

counting-on. Also, at least three-fourths of those children passing the continuation of 

counting task will succeed by using a counting-all task. 

5.8.4 The effect of Continuation of Counting in Children's Knowledge of 

Multiplication 

The results of the crosstabulation of continuation and multiplication (Table 33) show 

that across assessments, and with few exceptions, children who fail to continue 

counting also fail both multiplication tasks. In the first assessment of the isomorphism 

of measures task (all year groups) only nine children (i.e. 6%) who failed to continue 

counting, passed the multiplication task. In the second assessment, only two children 

(1%) passed multiplication and in the third assessment only one child did the same. 

Also, of those children passing the continuation of counting task (see row pass CC), 

81 (out of 107; i.e. 76%), 97 (out of 119; i.e. 82%) and 106 (out of 129; i.e. 82%) 

also pass the multiplication task in assessments one, two and three respectively. The 

data suggest that children's use of continuation of counting is related to their 

knowledge of multiplication. 

The crosstabulation of the results in continuation of counting and the relative values 

tasks, also shows a similar pattern to the one discussed above. Only a maximum of 7 
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children (i.e. 5%) fail continuation of counting and pass the relative values task, in the 

first assessment. These numbers decrease to two and one children, in the remaining 

assessments. 

5.8.5 Summary 

This study was set up to explore whether children's use of continuation of counting 

was related to (1) their use of the counting-on; and (2) their understanding of addition, 

subtraction and multiplication problems. It was found that continuation of counting is 

related to all the above mentioned: with rare exceptions, children who fail to continue 

counting do not use the counting-on strategy nor pass any of the addition, subtraction 

and multiplication problems. 

This data, which is consistent with both Secada et al's. (1983) model and Davydov's 

(1969) hypothesis, supports the argument that children's specific early number 

competencies (i.e. their ability to continue counting from an arbitrary number) are 

related to their knowledge of the operations, as assessed in this study. 

As mentioned earlier, correlational studies are limited as they cannot establish causality 

between variables. However, and considering other data suggesting that there is a 

developmental gap between continuation of counting and the use of counting-on and 

knowledge of addition, subtraction and multiplication (Fuson et al., 1982; Siegler and 

Robinson, 1982; Secada et al., 1983), the evidence presented supports the argument 

that continuation of counting is a necessary but not sufficient condition for the 

understanding of the operations. 
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5.9 THE EFFECTS OF KNOWLEDGE OF THE ARITHMETICAL OPERATIONS ON 

CHILDREN'S UNDERSTANDING OF THE DECADE NUMERATION SYSTEM 

5.9.1 - Introduction 

Several authors have suggested that both addition and multiplication are involved in 

children's understanding of the numeration system which, in turn, involve addition 

and product relations (e.g. Piaget, 1952; Skemp, 1971; Ross, 1989; Fuson, 1990). 

Together, they enable faster ways of counting making it quicker and more precise to 

count by tens or hundreds, than by ones. A child who grasps the meaning of the 

number 345 will have to understand product relations such as 3 x 100 (and 4 x 10), and 

additive relations such as 40 + 5. However, the relation between addition, 

multiplication and children's understanding of the decade numeration system require 

further clarification. 

Are Addition and Multiplication consecutive operations ? It is argued that children's 

understanding of the numeration system may develop from previous understanding of 

operations such as addition and multiplication, which are inevitably linked to the 

structure of the numeration system as the only means to transform number (e.g. 

Piaget, 1952; Skemp, 1971). 

Evidence of a relation between children's knowledge of addition (and multiplication) 

and their understanding of additive composition should be provided by data showing 

that children who understand addition and multiplication have a significantly improved 
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performance in units of different denominations task (shopping task), in comparison 

with those who do not understand these operations. 

The relation between these two tasks (i.e. addition and shopping task; multiplication 

and shopping task) entails four possibilities: (1) children may fail both tasks; (2) they 

may pass the addition (or multiplication) task, but fail the additive composition task; 

(3) they may pass both tasks; and (4) they may fail the addition task and pass the 

additive composition task. Only two of these possibilities clarifies whether there is a 

relation between these two variables. 

Evidence that children fail the addition task (or multiplication) and pass the additive 

composition task will show that addition is not related to additive composition. 

Evidence that only children who pass addition (or multiplication) also pass additive 

composition will show that there is a relation between these two variables. 

Evidence that children pass the addition (or multiplication) task but fail the additive 

composition task is expected, since it has been argued that knowledge of the former 

helps children's understanding of the latter but does not determine it. The same 

rationale applies to the exploration of the relation between multiplication and additive 

composition task. 

5.9.2 - Are Addition and Multiplication consecutive operations ? 

The results of the addition and multiplication tasks were classified as pass/fail. To 

pass, children had to respond correctly to one of the items in the tasks. Children's 
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responses to the shopping task were also classified into pass/fail. To pass, children 

had to respond correctly to one of the items in any of the categories of this tasks. 

Table 34 presents the frequencies and percentages of correct responses in the addition 

and multiplication tasks. The data shows that a similar number of children pass the 

addition and multiplication tasks. McNemar tests confirmed that there were no 

significant differences between the results in both tasks in eight out of nine 

assessments. Significant differences were found in the first assessment of the Year 2 

group only (binomial test; p<0.05). 

TABLE 34 
Frequencies (and percentages) of success in the addition and multiplication tasks by assessment of each 

year group 

Reception (N=53) 	Year 1 (N=41) 	 Year 2 (N=58) 
ass] ass2 ass3 	ass] ass2 ass3 	ass] ass2 ass3 

Pass addition 13(25) 23(44)a 34(64) 29(71) 34(83) 34(85)a 51(88) 56(97) 54(93) 

significant differences n.s. n.s. n.s. n.s. n.s. n.s. p<0.05* n.s. n.s. 

Pass multiplication 18(34) 20(39) 28(55)a 29(71) 32(82)b 30(86)d 43(75)a 47(89)c 50(89)b 

a one subject missing 
b two subjects missing 
c five subjects missing 
d six subjects missing 
* binomial test 

For a clearer understanding about the developmental relation between addition and 

multiplication, Table 35 presents a crosstabulation of the results obtained in both tasks. 

The results show that it is possible to pass multiplication problems having failed the 

addition items, and vice versa. Up to nearly one fifth of children passed addition and 

failed multiplication in the first assessment. Eleven and seven percent of the children 

did the same in the second and third assessment, respectively. Likewise, about one 

fifth of the children were able to pass addition having failed the multiplication tasks, in 
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the first assessment. Seventeen and thirteen percent of the children were in the same 

situation in the second and third assessments, respectively. 

TABLE 35 
Crosstabulation of results of all year groups in the addition and multiplication tasks by assessment. 

Results are presented in percentages (N=152) 

assessment 1 	 assessment 2 	 assessment 3 

(N=151) 	 (N=143) 	 (N=142)  

Multiplication 

fail sass fail 	sass fail 	sass 

Addition fail 40 19 fail 27 	11 fail 21 	7 

pass 21 71 pass 17 	88 pass 13 	101 

r (Spearman) 0.45; p<0.001 0.53; p<0.001 0.59; p<0.001 
chi-square 30.2;df= 1;p<0.001 39.4;df= 1 ;p<0.001 49.9; df= 1 ; p<0.001 

Chi-square tests confirm that children's understanding of addition has a significant 

influence in their understanding of multiplication (Table 35). Furthermore, the data 

shows that the results between the two tasks are highly correlated (and significant) in 

all three assessments. 

On the whole, the data does not support Fischbein et al.'s (1985) argument that 

addition and multiplication are consecutive operations. The data suggests, on the 

contrary, that children's knowledge of addition and multiplication develop 

simultaneously, i.e. as synchronous operations as suggested by Piaget (1952) and 

lately confirmed by Carpenter et. al. (1993). 
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5.9.3- The Relation between Addition, Multiplication & Additive Composition 

of Number 

Table 36 presents a comparison of frequencies between the addition, multiplication and 

additive composition of number tasks. The data shows that the additive composition 

task was more difficult for children. McNemar tests confirmed that differences were 

significant between addition and additive composition (in five out of nine assessments) 

and between multiplication and additive composition (in six out of nine assessments). 

TABLE 36 
Frequencies (and percentages) of success in the Addition, Multiplication and additive composition 

tasks. Asterisks show significant differences between results, according to McNemar tests 

Assessments 

Reception (N=53) 
	

Year 1 (N=41) 	 Year 2 (N=58) 
one two three one two three one two three 

Addition 13(25) 23(44) 34(64) 29(71) 34(83) 34(85)a 51(88) 56(97) 54(93) 

n.s. *** ** ** *** n.s. n.s. n.s. 

Additive comp. 6(11) 13(25) 20(38) 18(44) 23(56) 28(68) 45(78) 51(88) 51(88) 
** *** *•* ** ** *** n.s. n.s. n.s. 

Multiplication 18(34) 20(39)b 28(55)b 29(71) 32(82)b 30(86)d 43(75)a 47(89)c 50(89)b 

a one subject missing 
	

* p<0.001 (binomial test) 
b two subjects missing 

	
** p<0.01 (binomial test) 

c five subjects missing 
	 *** p<0.05 (binomial test) 

d six subjects missing 

To further explore the combined relationship of knowledge of addition and 

multiplication and children's understanding of additive composition of number, the 

results of these two tasks were combined and classified as "failed all" (i.e. failed both 

addition and multiplication), "pass addition only", "pass multiplication only" and "pass 
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both". The results of the additive composition task were categorised as "fail", "pass 

items in the teens, or under 20", "pass items under 100" and "pass items over 100" 

(Table 38). 

TABLE 38 
Crosstabulation of results between addition and multiplication tasks and the Additive composition task 

by assessment. Results are presented in frequencies. 

Additive compo.sition of number (N=151, 143, 142) 

assessment one assessment two assessment three 

pass pass pass 

fail <20 <100 >100 fail <20 <100 >100 fail <20 <100 >100 

37 	2 	I 26 	1 21 
13 	7 1 13 	3 1 8 	3 	2 
13 	5 	I 6 	4 I 6 1 
19 	17 	8 27 17 	25 18 28 17 	20 	13 51 

fail all 
pass addition only 

pass multiplication only 
pass both 

The results shows that, with some exceptions, children need to have grasped both 

addition and multiplication in order to succeed in the additive composition. Only 3 

children (out of 151; 2%) pass items of the additive composition task in the first 

assessment. One child also succeeds in the second assessment. Also, partial 

understanding of addition without multiplication (or vice versa) means limited success 

in the additive composition task: remarkably, children who succeed in addition or 

multiplication (but not in both) can only pass items in the "under 20" category. On the 

other hand, the majority of the children who pass both tasks succeed in the additive 

composition task: seventy-three, eighty-one and eighty-six percent of these children 

also succeed in the additive composition task. 
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5.9,4 Summary 

This study was set up to investigate whether children's knowledge of addition and 

multiplication were related to their understanding of the structure of the decade 

numeration system, assessed through an additive composition task. It was found that 

in both cases, the vast majority of children who displayed knowledge of additive 

composition of number had also passed the addition and multiplication tasks (and, with 

few exceptions, children who failed any of the two operations could not pass the 

additive composition task). This evidence supports the argument that children's 

knowledge of both operations is related to their grasp of the structure of the 

numeration system. The suggestion that addition and multiplication develop 

simultaneously, is supported by Piaget's (1952) hypothesis of these as discontinuous 

operations. 

The results suggesting that children's knowledge of addition is related to their 

understanding of additive composition are not consistent with Kornilaki's (1994) and 

Nunes and Bryant's (1996) predictions. According to these authors' data, children's 

knowledge of addition did not relate to additive composition, although their use of 

counting-on (in particular) did. Their prediction then was that only children who were 

proficient addition solvers (i.e. used the counting-on strategy) would be in a better 

position to grasp additive composition. 

The present data, which assessed children younger than those observed by Kornilaki 

(1994), suggests a different picture: count-all children can pass the additive 

composition task, and therefore, children who pass the addition task pass the additive 

composition task. Furthermore, and as the data shown in Study 5.7 supports, 

children's earliest experience with multiunits may be continuation of counting. Finally, 
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the results of both study 5.8 and study 5.9 suggest that children's understanding of the 

numeration system relies, at least partially, on the interrelation between specific 

number competencies and knowledge of the operations. 

5.10 THE EFFECTS OF CHILDREN'S UNDERSTANDING THE STRUCTURE OF THE 

NUMERATION SYSTEM' AND THEIR 'KNOWLEDGE OF WRITTEN NUMBERS' ON USE 

OF PLACE-VALUE 

5.10.1 Introduction 

There are two views about children's understanding of place value: one, contends that 

written numbers and place value are a prerequisite for children's understanding of the 

structure of the numeration system (Luria, 1969; Kamii, 1986; Bergeron and 

Herscovics, 1990; Sinclair, et al., 1992; Sinclair and Scheuer, 1993). According to 

this view, knowledge of place value is a question of conventional representation. 

Another view, conversely, suggests that children's understanding of place value does 

not depend on knowledge of written numbers, but is related to their prior grasp of the 

structure of the decade numeration system. In order to understand the decade system, 

children do not need to know about written numbers (e.g. Ginsburg, 1977; Resnick, 

1983; Carraher, 1985; Carraher and Schliemann, 1990; Fuson, 1990; Nunes and 

Bryant, 1996). According to this view, knowledge of place value is a question of 

conventional abstraction. 
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The argument that children may base their knowledge of place value (PV) in prior 

understanding of the structure of numeration system (USNM) implies that only those 

children who display knowledge of the latter will be able to write larger numbers 

(where knowledge of place value is required). However, it must be noted that not all 

children who have grasped the structure of the system will necessarily know the 

convention of place value. Furthermore, those children without insights about the 

structure of numeration system are expected to make errors while writing numbers, 

such as assembling numbers into a large string of digits, as they hear them. For 

instance, number 'one hundred and twenty five' should be written as 100205. 

On the other hand, if children learn about the structure of the numeration system at the 

same time as they learn to write larger numbers and begin understanding place value, 

then those children who display knowledge of the structure of the numeration system 

should have no advantage in their ability to write larger numbers, compared to other 

children who have not yet grasped this structure. Meanwhile, it is important to clarify 

whether children are nevertheless able to write large multiunits per se, independently of 

their understanding of both place value and the structure of the Numeration System. 

Examples of numbers that can assess this type of knowledge are 40 (in the decades) 

and 200 (in the hundreds). If children are able to write 200 correctly but still make 

errors such as 100204 this suggests that they have learnt how to write some numbers 

without understanding the system. 

In summary, the relation between the understanding of the structure of the numeration 

system (USNS) and use of place value (PV) implies two possibilities. On the one 

hand, if children acquire USNS from experience with PV, then children who know 

about PV should present significantly better results in the USNS task. 
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If children learn PV from USNS, then children who have understood USNS should 

present significantly better results in the PV task, compared with those who have failed 

the USNS task. It should be noted, however, that not all children who pass the USNS 

task will necessarily pass the PV task (Carraher, 1985; Nunes and Bryant, 1996). 

5.10.2 Types of Responses 

The written numbers and number recognition tasks included one control item for the 3 

and 4-digit items (i.e. 200). It is worth recalling that although 200 is a "big number" 

(from the child's point of view), it does not require a grasp of units of different size in 

written form. Children's success in writing this number correctly will support the 

argument that children's difficulties are not related to the number of digits, but to the 

complexity of the units involved in its writing (Nunes and Bryant, 1996). 

The numbers used in both number tasks were in most cases equal to those used in the 

additive composition task. The only exceptions were the numbers used in the 2-digits 

category. The additive composition task used numbers 26 and 53 and the written 

numbers and number recognition tasks used numbers 37 and 79. 

Children' results were categorised into "teens" (12 and 15), "2-digits" (37 and 79), 

"3-digits" (124 and 347) and "4-digits" (1052 and 2340). To pass the categories 

children had to write correctly one of the items, at least. Furthermore, children's 

answers to the written numbers task were classified into: (1) no answer (does not 

know; scribbles; tallies); (2) incorrect (used correct single-digits placed incorrectly, 

e.g. wrote 73 for 37); (3) assembles (units are assembled side-by-side disregarding 

place-value; e.g. wrote 124 as 100204), and (4) correct response (wrote the correct 
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number taking place-value into account). The responses to the number recognition 

task were classified into 'pass' or 'fail'. 

Table 38 shows that there is an effect of number size on children's refusals (no 

answer) across assessments; i.e. children tend to refuse more often the larger numbers 

than the smaller ones. The exception to this pattern are the responses given to the 

control items, which are easier for children to respond to. 

The gap between the control item '200' and the rest of the categories widens along the 

several assessments. This data supports Nunes and Bryant (1996) prediction that 

numbers which do not combine units of different sizes are easier for children to write. 

The percentage of incorrect answers was generally low with the exception of the 

'teens' category, which suggests that children tend not to take risks in writing 

numbers, unless they have some idea of what the correct result might be. 

On the other hand, the data show that in all assessments children never (or practically 

never) attempt to assemble (e.g. write 204 for number 24) two-digit numbers. Finally, 

children seem to respect place-value in 2-digit numbers well before they master it in 3 

and 4-digit numbers. This supports the idea that children may use different strategies to 

write two-digit numbers and numbers with three or more digits, as predicted by 

Bergeron and Herscovics (1990). 

Regarding the use of place-value, the data suggest that children seem to have a 'head 

start' on the 'teens' and '2-digits' categories, but significantly more difficulties with 

the 3 and 4-digits. However, across assessments, the pattern of development seem to 

be similar amongst all categories. The data shown also suggest that the majority of the 

children of all age groups assessed go through a stage of "assembling" before being 
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able to use place value. The data show that children make this mistake more than any 

other one. 

TABLE 39 
Percentages of types of responses in the written numbers task by category, year group and assessment 

Assessments 

second 	 third 

     

two three four 

 

two three four 	 two three four 
teens digits digits digits 200 	teens digits digits digits 200 	teens digits digits digits 200 

Reception (N=53) 

No answer 	43 100 100 100 /00 	26 59 100 100 100 	13 43 74 100 61 
Incorrect 	32 	0 	0 	0 0 	38 19 	0 	0 0 	34 19 	8 	0 11 
Assembles 	0 	0 	0 	0 0 	0 	0 	0 	0 0 	0 	0 17 	0 /7 
Correct 	25 	0 0 	0 0 	36 23 	0 	0 0 	53 38 	2 	0 /1 

Correct answers (number recognition)* 	60 29 	0 	0 12 	67 32 10 	2 24 

Year 1 (N=41) 

No answer 	12 37 59 100 68 	2 20 39 93 29 	2 	15 22 68 16 

	

Incorrect 	22 	5 	0 	0 29 	22 10 	0 	5 7 	10 	7 	2 	0 11 
Assembles 	0 0 42 	0 0 	0 0 54 2 /5 	0 	0 66 32 13 

	

Correct 	66 59 	0 	0 2 	76 71 	7 	0 49 	88 78 10 	0 61 

Correct answers (number recognition)* 	88 73 23 	3 63 	89 73 27 	0 73 

Year 2 (N=58) 

No answer 	2 	10 22 72 22 	0 	3 	14 64 10 	2 	7 	9 41 12 

	

Incorrect 16 3 2 2 0 	9 5 0 2 3 	9 5 2 2 3 
Assembles 	0 0 55 12 5 	0 	0 52 17 10 	0 	0 48 29 5 

	

Correct 	83 86 21 14 72 	91 91 35 17 76 	90 88 41 28 79 

Correct answers (number recognition)* 
	

95 86 56 23 83 	90 86 70 32 88 

first 

* second and third assessments only 

The results in the control item (200) suggest that the fundamental difficulty in writing 

numbers is knowledge of place-value. In those numbers where this knowledge is not 

necessary, children perform at a much better level. It must be noted, however, that a 

significant number of children did write 200 in an assembled form (i.e. 2100), 

although it might seem easier to write 2 and '2 zeros'. 
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The data also show a fixed pattern according to which children show better results in 

the number recognition task, in comparison to the written number task. The only 

exception to this pattern is the 2-digits category. 

5.10.3 Understanding the numeration system and using place value (written 

numbers) 

For this analysis, the results of the shopping task were initially categorised into 'fail', 

"passes the teens category" (i.e. 12 and 15p), "passes the 2-digit category" (i.e. 26 and 

53p), "passes the 3-digit category" (i.e. 124, 347) and "passes the 4-digit category 

(i.e. 1052 and 2340p)". In order to pass, children were required to respond correctly 

to one item of the relevant category. 

However, and to clarify the relationship between the additive composition task and the 

written numbers task, the results of the former were re-categorised into three 

categories: "fail", "passes items under 10, teens and 2-digits" (i.e. under 100) and 

"passes 3 and 4-digits" (i.e. over 100). McNemar tests had shown no significant 

differences between passing the small and large categories in the shopping tasks. 

Children's responses to the written numbers tasks were collapsed into 'no 

answer/incorrect' (NA/Inc), 'assembles' (assemb) and 'correct' (correct). 

In order to ascertain whether children might gain some insights about place value from 

experience with written multi-digit numbers, children's responses to the written 

numbers task were categorised into "writes single-digits only" and "writes numbers 

above 10". The crosstabulation of these results with the results obtained in the additive 

composition task (pass/fail) revealed that 8, 11 and 9% of all the children (in the first, 
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second and third assessment) passed additive composition and failed to write numbers 

equal to ten, or above (multi-digit task). This data supports the view that it is possible 

to show understanding about the structure of the decade numeration system without 

being able to write down multi-digit numbers (e.g. Ginsburg, 1977; Nunes and 

Bryant, 1996). 

Data showing that children who fail the additive composition task also fail the written 

numbers task will support the argument that children base their knowledge of place-

value on knowledge of the structure of the decade numeration system. Conversely, 

evidence that children pass the writing number task and fail the additive composition 

task will support the idea that children do not learn about place value from prior 

understanding of the structure of the numeration system. The results of the 

crosstabulation of additive composition and written numbers is shown on Table 40. 

The results show that knowledge of additive composition is related to children's 

success in the writing multi-digit numbers in all categories. Results referring to the 

teens and 2-digit categories (i.e. under 100) were analysed separately. 

In all assessments, a greater proportion of children who pass the additive composition 

task, also pass the written number task, compared with those who fail the additive 

composition task. Differences are significant in all assessments of each category: 

X2=27.8; df=2; p<0.001, X2=29.6; df=2; p<0.001 and X2=29.5 df=2; p<0.001 in 

the first, second and third assessments of the teens category. X2=58.5; df=2; 

p<0.001, X2=56.4; df=2; p<0.001 and X2=37.1 df=2; p<0.001 in the first, second 

and third assessments of the two-digits category. X2=132.7; df=4; p<0.001, 

X2=83.0; df=4; p<0.001 and X2=114.4 df=4; p<0.001 in the first, second and third 

assessments of the three-digits category. X2=94.7; df=4; p<0.001, X2=69.2; df=4; 
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p<0.001 and X2=87.2 df=4; p<0.001, in the first, second and third assessments of the 

four-digits category. 

TABLE 40 
Crosstabulation of additive composition with written numbers results. Results are presented in 

percentages 

Additive 

composition 

Written Numbers (N=152) 

Assessments 

first second third 

NA/inc* Assem Corr 	NA/inc Assem Corr NA/inc Assem Con' 

Teens category 

fail 39 0 31 26 0 25 18 0 26 
pass <100 3 0 15 6 0 24 5 0 24 
pass >100 0 0 12 0 0 18 0 0 26 

2-digits category 

fail 50 0 20 34 0 17 26 0 19 
pass <100 I 0 17 4 0 26 5 0 24 
pass >100 0 0 12 0 0 18 I 0 24 

3-digits category 

fail 55 15 0 40 II I 32 13 0 
pass <100 5 14 0 11 16 3 6 22 2 
pass >100 0 4 8 I 7 11 I 8 17 

Control 200 

fail 62 1 7 40 3 9 31 5 9 
pass <100 7 1 11 11 4 16 6 5 17 
pass >100 1 0 11 0 I 18 I 1 24 

4-digits category 

fail 70 0 0 51 I 0 42 3 0 
pass <100 17 I 0 28 2 0 24 6 0 
pass >100 3 3 5 7 5 7 4 11 11 

* NA/inc (No answer/incorrect); Assem (Assembles the number); Corr (correct) 

Another feature of the data is that no children attempted to 'assemble' 2-digit numbers. 

The data suggest that children may rely on other sources to succeed in the 2-digits 

tasks (teens and 2-digits). Between one fifth and one fourth of the children do so (see 
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crossing between "fail" and "corr" lines on Table 40). One possibility is that children 

may write 2-digit numbers from memory or aided by language cues. 

Turning now to the 3 and 4-digit categories, the data in Table 40 show that children 

found it less difficult to write number 200 compared with other 3-digit numbers. This 

suggests that writing numbers per se is not difficult for many children, although some 

children write 200 an 2100. The difficulty seems to be related to making sense of the 

units of different size in written form. Furthermore, children who failed the additive 

composition task were not able to use place value correctly in digits over 100, in all the 

assessments (with one exception in the second assessment of the Year 1 group). 

As predicted, not all children who pass additive composition, pass the written numbers 

items. However, it is clearly shown by the data that only those children who pass the 

additive composition task also display place value. 

5.10.4 Understanding the Numeration System and using of Place Value 

(number recognition) 

Table 41 crosstabulates the results of the additive composition task and the responses 

in the number recognition task. The data show a similar pattern between this 

crosstabulation and the one between additive composition and written numbers. 

Children who pass the additive composition task are more successful in the number 

recognition task. Differences were significant in all items crosstabulated: X2=24.9; 

df=2; p<0.001 and X2=19.8; df=2; p<0.001 in the second and third assessments of 

the teens category. X2=52.2; df=2; p<0.001 and X2=45.6; df=2; p<0.001 in the 

second and third assessments of the 2-digits category. 
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TABLE 41 
Crosstabulation of additive composition with number recognition results. Results are presented in 

percentages 

Number recognition 

Assessments 
second 	 third 

first 	 (N=I49) 	(N=127) 

Additive composition 

fail 
pass teens & 2-digit categories 
pass 3 & 4-digit categories 

fail 
pass teens & 2-digit categories 
pass 3 & 4-digit categories 

fail 
pass teens & 2-digit categories 
pass 3 & 4-digit categories 

fail 
pass teens & 2-digit categories 
pass 3 & 4-digit categories 

fail 
pass teens & 2-digit categories 
pass 3 & 4-digit categories 

fail 	pass 	fail pass fail pass 

Teens category 

18 34 18 33 
I 28 I 23 
0 19 1 25 

2-digits category 

34 18 34 17 
4 26 2 21 
0 19 2 24 

3-digits category 

49 3 48 4 
22 8 13 11 

2 17 2 22 

Control 200 

46 24 39 32 
I 16 I 15 

— 	0 12 0 13 

4-digits category 

52 0 51 0 
29 I 24 I 
10 9 12 12 

NA/inc (No answer/incorrect); Assem (Assembles the number); Corr (correct) 

This pattern is clearer in the case of the 3 and 4-digit numbers: with few exceptions, 

children who fail the additive composition task are not able to interpret written numbers 

correctly. Differences were also significant: X2=72.8; df=2; p<0.001 and X2=62.8; 

df=2; p<0.001 in the second and third assessments of the 3-digits category. X2=56.2; 

df=2; p<0.001 and X2=52.9; df=2; p<0.001 in the second and third assessments of 

the 4-digits category. 
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teens 2 digits 	3 digits 4 digits teens 2 digits 3 digitss 4 digits 

Written numbers 

0.38* 0.44* 0.67* 	0.68* 0.29* 0.36* 0.67* 0.75* 

0.43* 0.49* 0.71* 0.71* 

Number recognition 

0.32* 0.47* 0.69* 	0.50* 0.27** 0.46* 0.60* 0.52* 

0.38* 0.54* 0.67* 0.45* 

additive composition (A 1 ) 

additive composition (A2) 

additive composition (A 1 ) 

additive composition (A2) 

5.10.5 Predictive effects of additive composition 

To explore the effect of additive composition on the written numbers tasks, high cross-

lag correlations (Spearman) were performed. Results (Table 42) show significant 

correlations between additive composition in the first assessment and written numbers 

in the second and third assessments. Correlations are higher for the 3 and 4 digit 

categories. This supports the argument that those children who understand the 

structure of the decade numeration system are in a better position to grasp place value. 

TABLE 42 
Correlations between additive composition and written numbers and number recognition tasks across 

different assessments. 

Assessments 

first 	 second 

* p<0.001 
**p<0.01 

Table 43 crosstabulates the results in the additive composition task (pass/fail only) and 

success in the written and number recognition tasks. In all assessments the influence of 

knowledge of additive composition is significant in children's written number ability. 

It is worth noting that children who failed additive composition in the first assessment 
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but pass in the three-digit category in the third assessment (for example) will have 

passed the additive composition task sometime between the first and third assessment. 

TABLE 43 
Crosstabulation and significant relationships between additive composition and written numbers tasks 

across different assessments. Results are in percentages 

Additive Composition 

teens twocts three digits four digits 

fail pass fail pass fail pass fail pass 

Assessment three 

additive (Al) (fail 6 64 21 49 35 35 62 8 
composition 	pass 0 30 I 30 0 30 7 23 

[1] [2] [3] [4] 

additive (A2) fail 5 46 20 32 32 19 49 3 
composition pass I 48 2 47 3 46 20 28 

[5] [6] [7] [8] 

Assessment two 
additive (Al) 10 60 27 43 47 22 67 3 (fail 
composition 	pass 0 30 0 30 3 27 17 13 

[9] [10] [11] [12] 

[I] X2=4.2; df=1; p<0.05 [5] X2=5.4; df=1; p=0.02 [9] X2=7.2; df=1; p<0.01 
[2] X2=14.8; df=1; p<0.001 [6] X2=26.4; df=l; p<0.001 [10] X2=24.4; df=1; p<0.001 
[3] X2=35.3; df=1; p<0.001 [7] X2=55.I; df=1; p<0.001 [II] X2=41.8; df=1; p<0.001 
[4] X2=62.9; df=1; p<0.001 [8] X2=49.9; df=1; p<0.001 [12] X2=38.0; df=1; p<0.001 

Across the different assessments, of those children who pass the additive composition 

task, the vast majority pass the written numbers task. Differences are significant in all 

cases, according to chi-square tests. 

Table 44 crosstabulates the results in the additive composition task (pass/fail only) and 

success in the number recognition tasks. Similar to the pattern shown on Table 43, the 

influence of knowledge of additive composition is significant in children's number 

recognition ability. In all the assessments, of those children who pass the additive 
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composition task, the vast majority passes the number recognition task. Differences are 

significant in all cases, according to chi-square tests. 

TABLE 44 
Crosstabulation and significant relationships between additive composition and number recognition 

tasks across different assessments. Results are in percentages 

Additive Composition 

teens two digits three digits four digits 

fail pass fail pass fail pass fail pass 

Assessment three 

additive (A l) fail 18 52 37 34 58 13 71 1 

composition pass 1 29 1 28 5 24 16 12 

[1] [2] [3] [4] 

additive (A2) 18 39 35 23 52 5 74 0 
'fail 

composition 	pass 1 42 3 39 10 32 30 13 

[5] [6] [7] [8] 

Assessment two 

additive (A l ) fail 19 51 37 33 65 5 71 0 

composition pass 0 30 1 29 7 22 20 9 

[9] [10] [11] [12] 

[I] X2=9.1; df=1; p<0.01 

[2] X2=27.3; df=1; p<0.001 

[3] X2=45.7; df=1; p<0.001 

[4] X2=35.4; df=1; p<0.001 

[5] X2=18.1; df=1; p=0.001 

[6] X2=36.9; df=1; p<0.001 

[7] X2=55.9; df=l; p<0.001 

[8] X2=26.3; df=1; p<0.001 

[9] X2=15.1; df=1; p<0.001 

[10] X2=33.2; df=1; p<0.001 

[11] X2=70.6; df=1; p<0.001 

[12] X2=37.2; df=1; p<0.001 

5.10.6 Summary 

This study was set up to explore whether (1) children's understanding of the 

conventional knowledge of place value is based on previous understanding of the 

structure of the numeration system; or (2) whether children's understanding of the 

structure of the numeration system is based on previous understanding of place value 
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The results showed that it was possible to display knowledge about the structure of the 

numeration system without being able to write numbers above 10. The data presented 

support the argument that a greater proportion of children who understand the structure 

of the numeration system will succeed in reading and writing 2-digit numbers. 

Furthermore, these children are more likely to use knowledge of place value in 3 and 

4-digit numbers. 

However, children's success with 2-digit numbers cannot be solely explained by their 

previous grasp of the structure of the numeration system alone. It seems to be the case 

that it is easier for children to write 2-digits correctly, compared with writing 3- and 4-

digits; it is possible that they learn to write 2-digits without interpreting them and also 

by relying on verbal cues. The effectiveness of this process seems to be quite high if 

the fact that children do not attempt to assemble the 2-digit numbers is taken into 

account. Instead, they either fail to write them or they succeed. 

With one exception, no child showed knowledge of place value in 3 and 4-digits 

numbers without also displaying understanding of the structure of the numeration 

system. Taken together, the evidence is consistent with the argument that those 

children who have already understood the structure of the numeration system will be in 

a significantly better position to grasp place value. 
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6 
DISCUSSION 

6.1 INTRODUCTION 

The purpose of the present study was to explore the developmental relations amongst 

four basic number components, in the same children, throughout their initial primary 

school years. The main aim was to attempt to provide some preliminary evidence 

towards a unifying view clarifying the development of children's number competence, 

where number events are investigated as an interactive and meaningful whole. 

For that purpose, each number component has been examined separately, in the same 

children, and their developmental relations observed over time. As a result, a 

preliminary proposal about children's number development, from early counting, at 

age four, to knowledge of place value, at age seven, is put forward. 

In order to explore the relations between number components, the present study found 

its base on fundamental previous research which has produced crucial evidence about 

the separate development of children's understanding of the most important number 
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components examined here, such as counting and knowledge of the number-word 

sequence (e.g. Gelman and Gallistel, Fuson, 1988); the ability to generate verbal 

number-words and the understanding of the structure of the numeration system 

(Bednarz and Janvier, 1982; Kamii, 1986; Nunes and Bryant, 1996); the 

understanding of arithmetical operations (e.g. Carpenter and Moser, 1982; Vergnaud, 

1983; Siegler and Shrager, 1984; Riley et al., 1983; Nesher, 1982; Baroody, 1987, 

1989; Kouba, 1989; Gray, 1991; Fuson, 1992; Carpenter et al., 1993; Steffe, 1994; 

Siegler and Shipley, 1995; Verschaffel and De Corte, 1998); and the ability to read and 

write numbers and the understanding of the principles underlying place value (e.g. 

Luria, 1969; Ginsburg, 1977; Brown, 1981; Sinclair and Scheuer, 1993; Power and 

Dal Martello, 1990; Nunes and Bryant, 1996). 

Although these previous studies had consistently suggested that each of these number 

components emerge and develop at different times, and that the grasp of some complex 

components require knowledge of the simpler ones, no unifying view describing the 

development of children's number competence had yet been proposed. Such a unifying 

conceptual framework seemed interesting to pursue, as it will be helpful to teachers in 

their everyday classroom activities and to children in their learning endeavour. 

The above mentioned research was crucial to the present exploration, by enabling the 

refinement of specific assessment procedures in each individual component. This, in 

turn, has led to a detailed description of children's typical achievements in nearly all the 

mentioned number-components, in function of their ages. Mostly, these are the same 

tasks that were used in the present exploration of the developing relationships between 

the main number components used by the same children. The present thesis also 

benefited from previous studies relating some number components, usually two, and 

where some relevant hypotheses acted as a starting point for this investigation. 
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The choice of place value as a learning target relates to its recognition as the most 

important instructional task in mathematics in the primary school years (e.g. Resnick, 

1986), as referred to in the introduction chapter. Place value is a fundamental milestone 

in children's number development as it forms the basis for the understanding of written 

multi-digit numbers and represents a fundamental developmental step in the child's 

ability to compute written algorithmical calculations correctly. Also, the choice of place 

value as a learning target, considers the needs of educationalists by being curriculum-

related. It has, however, the recognised limitation of not covering all aspects of the 

number curriculum for the primary school years. 

The choice of methodology used was the investigation of three different cohorts, 

which allowed both the observation of the same children over a period of time and, 

were necessary, cross-sectional comparisons. It was assumed that a cohort study 

would be uniquely able to identify typical patterns of development and to reveal factors 

operating on those samples which elude other research designs. These types of studies 

allow for the examination of individual variations in characteristics and the production 

of individual growth curves. They are particularly appropriate for the examination of 

causal relationships, as this task involves identifying changes in certain characteristics 

that result in changes in others (Baltes and Nesselroade, 1979; Plewis, 1985; Cohen 

and Manion, 1998). 

The current chapter is the final part of this research. First, it briefly describes the 

results of the assessment of the different number components examined. Secondly, it 

reviews the findings, emphasising the relevant relations between number components 

that help children reconceptualise number in progressively more sophisticated ways, 

from early counting to the understanding of place value. Based on these measures, five 
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levels of development of children's number understanding were distinguished, from 

the use of early counting skills, at age four, until their understanding and correct use of 

place value, as early as age seven. Interpretations, limitations, and suggestions for 

further research and educational implications are considered. 

6.2 RELATIONS BETWEEN NUMBER COMPONENTS 

The results of the separate assessment of all number components support the data 

presented in the literature, by confirming previous ideas about children's attainment in 

these tasks, so the next sections will be dedicated entirely to the relations between 

number components. In order to explore the relationships between the several number 

components above mentioned, several perspectives were investigated. The first one 

was the relation between continuation of counting (component one) and: 

(1) children's understanding of additive composition (component two); 

(2) their use of counting-on in several different situations (component three); and 

(3) their knowledge of the arithmetical operations (component three). 

The second perspective was the relation between children's understanding of the 

arithmetical operations (component three) and their knowledge of the decade 

numeration system (component two). The final perspective was the relation between 

children's understanding of the decade numeration system (component two) and their 

correct use of place value (component four). The next sections summarise the findings 

obtained in the present study. 
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6.2.1 The importance of continuation of counting: summary of findings 

This section reports on the relation between continuation of counting, counting-on (and 

it's use in different situations) and additive composition of number. Some preliminary 

data about the use of the counting-on strategy in several different situations will be 

discussed. 

The results of this study show that children's use of the counting-on strategy is 

situation-dependent: children were more likely to use counting-on in the hidden addend 

task than anywhere else. However, the fact that a substantial number of children could 

pass the hidden addend task simply by counting-all, confirms that a pass alone is not 

proof that these children are capable of counting-on, as assumed in previous studies 

(e.g. Nunes and Bryant, 1996). A careful analysis of the strategies used in the hidden 

addend task still needs to be done, before any classification is applied. 

6.2.1.1 The relation between continuation of counting and counting-on 

To examine the relevance of continuation of counting to other number components, a 

study was set up to further investigate its relation to the development of the counting-

on strategy, to which the former had been suggested to be developmentally related 

(Davydov, 1969; Secada et al., 1983). 

Of all the children examined, in all assessments of all age groups, none who failed to 

continue counting was able to use the counting-on strategy in either addition, 
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subtraction, addition with one hidden addend (box), inversion or multiplication. The 

evidence presented therefore shows that continuation of counting is presupposed in 

counting-on. This is consistent with Secada et al's (1983) previous findings. 

According to Secada et al's. (1983) subskill model, based on the cross-sectional 

evidence obtained with 73 first-graders (aged 6.3 to 7.6), Counting-on involves 3 

subskills: (1) the ability to continue counting from an arbitrary point; (2) the ability to 

make a transition from the cardinal number of the first addend to the counting meaning; 

and (3) the ability to shift from regarding the objects in each addend set separately to 

regarding them as objects within the count of the combined set of objects (sum set). It 

was also found that except for some rare cases, children who did not continue 

counting, could not display counting-on. 

The data also show that the use of continuation of counting has a significant effect on 

children's accuracy in any of the above mentioned tasks. In all assessments, the vast 

majority of children who failed to continue counting could not pass any of the addition, 

subtraction, inversion and multiplication word-problems. 

6.2.1.2 Performance in the additive composition tasks 

Regarding the relation between start-unknown problems and the shopping task, the 

data show that these tasks are two different estimates of children's understanding of 

additive composition, and that start-unknown problems are more difficult than the 

shopping task. It seems possible to succeed in any of the two, having failed the other, 

although only a few children passed the start-unknown problems having failed the 

shopping task. 
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One possible explanation for this is that the start-unknown problems assess a more 

conceptual understanding involved in additive composition - where the use of materials 

is less helpful - whereas the shopping task is directed to a more intuitive understanding 

of this mathematical principle. 

6.2.1.3 The relation between continuation of counting. counting-on and 

additive composition 

Regarding the relation between counting-on and estimates of additive composition, the 

results show that despite being more likely to pass the additive composition tasks if 

they used counting-on, there was a substantial number of children who passed them 

but did not show any evidence of counting-on. This does not support the argument that 

counting-on is a necessary but insufficient condition for the grasp of additive 

composition (Nunes and Bryant, 1996). 

The data rather supports the view that counting-on is a consequence of having already 

understood additive composition (Resnick, 1983), and most probably a consequence 

of being a proficient addition solver (Carpenter and Moser, 1982; Riley et al., 1983). It 

is still possible that children may know how to use counting-on without displaying it 

(e.g. Siegler and Jenkins, 1989), which could have biased the results. However, that 

possibility seems unlikely considering that this strategy was assessed in five different 

situations simultaneously, and still no evidence of children's use of counting-on was 

found. 
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On the contrary, the evidence presented further strengthens the argument that the skills 

involved in continuation of counting are more important than has been formerly 

realised. No child at any point passed the additive composition tasks without also 

being able to continue counting. This supports the view that continuation of counting is 

implied in informal understandings of additive composition. While both counting-on 

and the ability to combine coins of different denominations develop from continuation 

of counting, the data suggest that there is no necessary link between them. Davydov 

(1969) had already underlined the importance of continuation of counting, suggesting 

its relation to children's understanding of addition. Unfortunately, he did not provide 

data to illustrate his argument, which has now been done. 

Based on this, it seems possible to suggest that the argument that counting-on may 

represent children's first experience with units of different denominations, and 

therefore "the spur for understanding the base-ten system" (Nunes and Bryant, 1996; 

p. 52), rather applies to continuation of counting. In a similar way to the child who 

counts-on, the child who continues counting from, say 10, must also judge this 

number as a unit of different size, composed of ten ones. 

There is evidence to support the argument that continuation of counting allows the 

child to establish this relationship much earlier, at age 3 or 4 (Fuson, et al., 1982). 

Ginsburg (1977) suggested that children need to form their own theories about 

number, before they can understand more complex number conventions. Karmiloff-

Smith (1995) argued that children redescribe their knowledge at increasingly more 

sophisticated levels. This provides grounds to believe that children's first insights 

about the decade system, a complex number convention, may come from their ability 

to break and manipulate the number-line. This, however, is not sufficient for their 

grasp of additive composition. 
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The present evidence that continuation of counting is a necessary but insufficient 

condition for children's understanding of additive composition of number, needs to be 

confirmed with data from intervention studies. Also, further research is needed to 

clarify which other conceptual structures help children in their grasp of additive 

composition. 

Previous research provides important clues for this clarification. Nunes and Bryant's 

(1996) argument that addition plays an important role in this development deserves 

further investigation, although in a different direction. This direction is provided by 

Resnick's (1983) suggestion that children's initial understanding of part-whole 

problems can be assessed with Change Result Unknown problems - the start-unknown 

problems used in this study were difficult part-whole problems. Considering that 

Change Result Unknown problems are addition problems, and that addition is an 

ability presupposed in children's ability to combine units of different denominations, it 

seems therefore possible that additive composition of number may emerge from the 

interrelated development of continuation of counting and addition. This relation will be 

discussed in the next section. 

6.2.1.4 The relation between continuation of counting and children's 

understanding of the arithmetical operations 

To further explore the relation of continuation of counting to other number 

components, a study was set up to examine its developmental relation with children's 

understanding of the arithmetical operations. The results showed that there was a 
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significant difference in performance in the arithmetical operations, in function of the 

counting pattern displayed (i.e. either uses or does not use continuation of counting) in 

all the assessments of all age groups . Only a small minority of children (i.e. always 

under 5%) who failed to continue counting also passed any of the arithmetical 

operations word-problems. 

The data therefore show that continuation of counting is also relevant to the 

development of addition, as suggested by Davydov (1969), as well as subtraction, 

inversion and multiplication word-problems, as hypothesised in the present study. 

Differences were significant in all assessments. These data provide further evidence to 

support Davydov's (1969) proposal that continuation of counting is an important 

development in children's understanding of number, by teaching the child how to use 

number as a whole and to see (and use) number in concept form. 

This, again, supports the view that the use of continuation of counting helps the child 

to see, at a very early age, that units of different sizes can be related in a meaningful 

whole and can be part of the same system. This important development was also 

highlighted by Fuson (1988) and Steffe (1992), from which it was possible to 

hypothesise and suggest, based on the present evidence that children's level of 

counting ability (string level, unbreakable chain level, breakable chain level and so on) 

would relate to their understanding of other number components. 

At another level, the importance of continuation of counting in children's 

understanding of the arithmetical operations also supports the Piagetian (1952) view 

that children's knowledge of number is interrelated with their understanding of the 

operations, as grasp of the latter seem to be necessary for the child's understanding of 
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the former. Evidence to support this view was provided by three cohorts assessed 

longitudinally. 

6.2.2 The importance of knowledge of the arithmetical operations on 

children's understanding of the decade numeration system: summary of 

findings 

To examine the relationship between children's knowledge of the arithmetical 

operations and their understanding of the decade numeration system, a study was set 

up to investigate the relation between several tasks with arithmetical operations' word-

problems and a shopping task. This study intended to further clarify previous 

suggestions that children's grasp of the decade system, which entails sum and product 

relations, was related to their previous understanding of addition (Resnick, 1983) their 

use of the counting-on strategy of addition (Nunes and Bryant, 1996), and their 

knowledge of multiplication. 

6.2.2.1 The developmental relation between addition and multiplication 

The exploration of the effects of knowledge of the arithmetical operations on children's 

understanding of the decade numeration system required preliminary clarification about 

the developmental relation between addition and multiplication. The data obtained in 

this study showed no significant differences between the results of tasks assessing 

addition and multiplication. 
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No evidence was found to support Fischbein et al's. (1985) argument that the concept 

of multiplication is intuitively attached to the model of repeated addition. Furthermore, 

the data obtained supports the argument that addition and multiplication develop 

simultaneously, as empirically verified by Piaget (1952) and more recently by 

Carpenter et al. (1993). 

Alternatively to Fischbein et al's (1985) proposal, Piaget (1952) had suggested that 

multiplication is an operation that requires higher-order multiplicative thinking which 

children construct out of their ability to think additively, rather than just a faster way of 

doing repeated addition. According to this author, young children build their 

knowledge of one-to-many correspondence (a logical invariant of multiplication) on 

knowledge of the one-to-one correspondence schema and its use in transitive 

inferences. Knowledge of both should enable children to realise that if A=B and C=B, 

then A=C (transitivity), and also that if A=2B and A=C, then C=2B. 

Similarly, the evidence presented also supports Steffe's (1994) view suggesting that 

the realm of multiplication might be entered, from the child's point of view, through 

the practice and development of more elaborate counting schemes, such as double-

counting, and not from a clear grasp of what the operation of multiplication should be. 

The counting strategies have been granted a similar role in children's understanding of 

addition and subtraction (e.g. Carpenter and Moser, 1982; 1983; 1984). 

Although the secondary role Piaget (1952) attributed to counting is well known, it is 

also clear that Steffe (1994) is referring to "more elaborate counting schemes", as is 

also Fuson (1988), when they highlight the relevance of children's counting in their 

development of number. It seems, therefore, that Piaget (1952) and Steffe (1994) 
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might be referring to the same thing when they mention one-to-many correspondence 

and double-counting. 

The relevance attributed to double-counting, which is related to the ability to count-on, 

reinforces the relevance of continuation of counting in children's development of 

multiplication, which is now supported by the exploratory data presented in this study. 

6.2.2.2 The relation between the arithmetical operations and additive 

composition 

Regarding the relation between arithmetical operations and additive composition of 

number, the data show that children's understanding of the sum and product relations 

involved in the numeration system presupposes their previous understanding of 

addition and multiplication in its earlier forms. This relation seems to be phased in 

such a way that knowledge of addition helps children grasp the decade structure in 

numbers under 20 (where sum relations are prevalent). Moreover, knowledge of 

multiplication helps children to understand the decade structure in numbers above 20, 

where product relations are prevalent [i.e. 53= (5x10)+3]. Only children who pass 

both addition and multiplication can pass additive composition items above 100. 

This data is not consistent with Nunes and Bryant's (1996) prediction that children's 

understanding of additive composition develops from the use of counting-on, rather 

from addition. Several children who never use counting-on were able to pass the 

additive composition task (shopping task). 
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The results presented rather support the view suggested by Resnick (1983) - in an 

earlier section - that additive composition develops from earlier understandings of 

addition, assessed by change result-unknown word-problems. According to this 

author, change result-unknown word-problems are simpler part-whole problems. But 

does use of continuation of counting expose children to even simpler part-whole 

situations ? 

It follows that the evidence presented here supports the argument that additive 

composition develops from the interrelation between continuation of counting (as 

shown earlier), addition and multiplication. 

6.2.3 The relation between understanding the structure of the numeration 

system and children's correct use of place value: summary of findings 

To examine the relationship between children's understanding of the structure of the 

decade system and their use of place value, a study was set up to investigate the 

relation between a shopping task and a written multi-digit task. This study intended to 

clarify whether children learned about place value from experience with written multi-

digit numbers (e.g. Luria, 1969; Bergeron and Herscovics, 1990; Sinclair and 

Scheuer, 1993), or from a previous understanding about the structure of the 

numeration system (e.g. Ginsburg, 1977; Fuson, 1990; Nunes and Bryant, 1996). 

Results showed that it is possible for some children, throughout all assessments, to 

display understanding about the structure of the decade numeration system without 

being able to write numbers equal or higher than 10. This evidence does not support 

the view that children learn about place value from experience with written multi-digit 
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numbers, as suggested by some authors (e.g. Luria, 1969; Sinclair and Scheuer, 

1993). It does support, however, the opposite view that mathematical notation is an 

integral part of number development (Bialystok, 1992; Hughes, 1986; Sinclair and 

Scheuer, 1993), although not essential to the emergence of certain ideas about number 

(e.g. Ginsburg, 1977; Fuson, 1990; Nunes and Bryant, 1996). 

This data also support evidence from other sources, such as cross-cultural studies, that 

have demonstrated that number notation is not a necessary condition for the 

development of arithmetic principles. Cultures without systems of number notation 

nonetheless use number computations that obey formal arithmetic principles. Such 

cases are the Dioulan cloth merchants and tailors of the Ivory Coast (Petitto, 1978; 

cited by Karmiloff-Smith, 1995) and other African cultures that use practical base-6 

mathematics with groupings of cowry shells despite an apparent absence of written 

symbols (Zaslaysky, 1973) or the Brazilian street vendors who perform partition and 

iterative addition without making use of externalised notations (Carraher et al., 1985). 

The present study's evidence lends support to the idea that 

.. an external number notation system is not universal, but counting, 

additive arithmetic operations, and conservation seem to be" (Karmiloff-

Smith, 1995; p. 107). 

The discrepancy in the results between writing the number 200 (which does not 

require the combination of units of different sizes) and writing numbers such as 124 

and 347 (which require the afore mentioned combination), also suggests that 

children's difficulties are not related to the size of the number being written, but to the 
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combination of units it entails. It could be argued that children could never write "200" 

wrongly anyway. However, a qualitative analysis has shown that up to nearly a fifth 

of the children "assembled" this number (i.e. wrote it as 2\100). 

Regarding the relation between children's understanding of the structure of the 

numeration system and their use of place value, the results show that knowledge of 

additive composition has an effect on children's success in the writing multi-digit 

numbers in all categories. However, this effect seems to be different in the case of 

numbers under and over 100. 

In the case of the 2-digit numbers, although it was possible for some children who 

failed the additive composition task to use place value correctly, a significantly greater 

proportion of children who pass the additive composition task also pass use place 

value correctly (compared with those who fail the additive composition task). 

Regarding to numbers above 100, no child who failed to display knowledge of the 

structure of the numeration system was able to use place value correctly, in all the 

assessments. These data support the view that the understanding of the structure of the 

numeration system and the ability to write multi-digit numbers are two separate 

conceptual structures, as suggested by several authors (Ginsburg, 1977; Fuson, 1990; 

Nunes and Bryant, 1996). 

Furthermore, the data suggest that children base their knowledge of place value on 

previous understanding about the structure of the decade numeration system 

(Ginsburg, 1977; Fuson, 1990; Nunes and Bryant, 1996), and not the other way 

around (e.g. Luria, 1969; Bergeron and Herscovics, 1990; Sinclair and Scheuer, 

1993). 
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6.3 PRELIMINARY MODEL OF CHILDREN'S UNDERSTANDING OF NUMBER, FROM 

EARLY COUNTING TO THE UNDERSTANDING OF PLACE VALUE 

After the examination of the most relevant relationships between number components it 

is now possible to propose an outline of a model of children's number understanding 

from early counting to knowledge of place value (Table 44a). 

TABLE 44a 

Relationships proposed in the model 

place value 

structure of the decade numeration system 

(additive composition) 

counting-on — addition  multiplication 

continuation of counting 

counting ones 
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According to this model, children develop through a sequence of qualitatively distinct 

stages, or levels, as they reconceptualise their understanding of the structure of the 

numeration system until they finally begin using place value correctly. The proposal is 

hypothetical, although the suggestions are based on the results of the present study. 

6.3.1 Level 1 

Although counting ones is, undoubtedly, a necessary condition for further 

understandings about number, being able to count ones and make correct use of the 

counting principles (Gelman and Gallistel, 1978) alone, does not necessarily mark the 

beginning of an understanding about number, as defended by Piaget (1952). Level 1 is 

characterised by an ability to count ones and an inability to pass any of the remaining 

tasks assessed in this study. Children in this level, when requested to count from an 

arbitrary number, will try to count from one up to the number questioned, and then 

continue their counts. 

6.3.2 Level 2 

The evidence presented has shown that the display of continuation of counting 

represents a major developmental step that can be displayed by infants as young as 3 or 

4 years of age, before being able to solve addition word-problems (Fuson, 1988). 

There is also evidence to suggest that the development of continuation of counting may 

occur almost concurrently with the correct use of the counting principles, and may 

222 



develop either from children's counting by groups or from subitising (Gelman and 

Gallistel, 1978). 

Clearly, however, the present data have also shown that children who count by ones 

and use continuation of counting may develop faster that those children who count 

ones but do not display continuation of counting. Only on rare occasions, children 

who counted ones but failed to continue counting were able to pass the addition or 

multiplication word-problems. 

According to the evidence presented, this developmental period along which children 

do not display continuation of counting may stretch up to the beginning of Year 1, 

when a significant number of children still do not display continuation of counting in a 

very easy task, such as the one used in this study. By the middle of this school year, 

however, almost all children will have displayed continuation of counting. 

Level 2 is, therefore, characterised by an ability to count units of the same size (i.e. 

ones) and the display of continuation of counting from an arbitrary number. However, 

these children will fail all the remaining tasks assessed in this study. 

6.3.3 Level 3 

Level 3 is marked by the ability to display continuation of counting and knowledge of 

both the arithmetical operations, addition and multiplication. The majority of the 

children passed both arithmetical operations tasks anyway, so the very few that passed 

only one of them were categorised as "unclassifiable". Some of these children may 
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also be able to use the counting-on strategy, although its use is not a necessary 

condition for their future understanding of additive composition, in the next level. 

6.3.4 Level 4 

Level 4 is marked by the ability to pass the continuation of counting task, and both 

arithmetical operations and the additive composition tasks. Children in this level 

understand the structure of the decade numeration system, both in their sum and 

product relations. They expand their understanding of addition and multiplication to 

other domains such as the numeration system. However, they are not yet able of 

making correct use of place value, although some of them already possess an idea of 

how the system works, conceptually. 

A small proportion of the children in this level displayed knowledge of continuation of 

counting and an understanding of additive composition, but passed only one of the 

arithmetical operations - addition. Nine, six and four percent of the children were in 

this situation in the first, second and third assessments, respectively. These children 

were able to pass the initial trials (i.e. under 20 category) of the additive composition 

task, which did not involve product relations (e.g. 12 and 16). 

6.3.5 Level 5 

Level 5 is characterised by the mastery of all the tasks involved in the model: 

continuation of counting, the arithmetical operations, additive composition of number 
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and place value. At this level, children will need to have a grasp about addition and 

multiplication in the context of the decade numeration system which will, in turn, place 

them in a better position to understand the theory behind (Ginsburg, 1977; Fuson, 

1990) the system of written multi-digit numbers. 

6.3.6 Some statistical evidence 

Table 45 shows the frequencies of children in each level, by assessment. If the model 

is correct, then it should be possible to categorise the great majority of the children 

observed (N=152) in one of the five levels according to their performance in the tasks 

assessed in the study. Also, and assuming that children progress from one stage to the 

next over time, they should be expected to move upward in the level scale (or stay in 

the same one) but not to move downward. The longitudinal data allows us to test this 

prediction by plotting each individual child's position in the level sequence, from one 

session to the next. 

TABLE 45 

Frequencies of children by level of attainment. Results are in percentages. 

Assessments 
one two three 

level I - fail all (except counting ones) 

level 2- pass continuation of counting only 

level 3- pass continuation of counting and operations 

level 4 - pass continuation of counting, operations and additive composition 

level 5 - pass all of the former and place value 

Missing 
Unclassifiable 

(N=I52) (N=152) (N=152) 

26 1 5 8 

1 5 1 5 1 5 

1 	1 1 	1 1 	1 

3 6 40 41 
7 1 3 1 8 

1 5 6 
4 1 1 
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The data presented on Table 45 confirm the first premise. Ninety-seven, ninety-nine 

and ninety-nine percent of the children were classified successfully in one of the levels 

defined in the model, in the first, second and third assessments of the study. 

Regarding the small minority categorised as "unclassifiable" in the first assessment, 

Julia (4,8) passed the multiplication and additive composition tasks only. Innes (6,0) 

and Charlie (6,1) passed both operations but failed to continue counting. Kitty (5,2) 

passed addition and multiplication only and Thomas (6,5) passed all tasks except 

multiplication. 

In the second assessment, Crystle (5,2) passed the additive composition only and 

Hayley (6,3) passed all tasks except additive composition. In the third assessment, 

Sarah (5,6) passed the addition and multiplication tasks only. These situations may be 

possibly due to the children being distracted while being assessed. None of these 

children were categorised as "unclassifiable" again. 

Table 46 shows the crosstabulation of levels (L1, L2, etc.) from one assessment to the 

next. The data support the second premise, as the vast majority of the children were 

found to either stay in the same level or move upwards, from a given assessment to the 

next. 

Ninety-five percent of the children did so from the first to the second assessment, 97% 

followed the same direction from the first to the third assessment, and 92% of the 

children did the same from the second to the third assessment. Regarding the small 

percentage of children that are seen to be moving downward in the level scale, it 

should be noted that these cases appear to be spread along the various levels. 
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LI L2 L3 

LI 15 10 2 
L2 1 4 4 

Ass I L3 1 3 
L4 2 
L5 [5%] 

1 	 LI 

6 	 L2 

7 	1 	Ass I 	L3 

	

129  6 	 L4 

1 1 7 	 L5 

	 I3 3 	3 

1_14  8  
2  8 

1 1 123  13 
[3%] 1 17  

L4 L5 	 LI L2 L3 L4 L5 

19 

TABLE 46 

Crosstabulation of stages between different assessments (N=152). Results are in percentages 

Assessment two 
	

Assessment three 

LI L2 L3 L4 L5 

	

LI 	17 	8 	1 	1 

	

L2 	1 18  3 5 

	

Ass 2 L3 	1 	5 	5 	1 

	

L4 	1 4 130  6 

	

L5 	[8%o] 1 112 

6.4. LIMITATIONS 

Difficult decisions had to be made concerning the design of the study. These imply the 

acceptance of limitations. The broader the scope of a study, as it is the present case, the 

more difficult it becomes to control for extraneous variables. An equilibrium had to be 

found between the resolve to understand an emerging reality in its wide complexity, 

and the temptation to control the outcome for a more precise explanation, all in one 

study. As it was thought that a first approach to the issue would benefit from a wider 

understanding, a choice was made in favour of a more exploratory design. A 
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correlational design was, therefore, deemed to cover in a more suitable way, the aims 

set. 

This study has had three main limitations. On the one hand, and considering that the 

conclusions that can be drawn from the present correlational data are limited, further 

investigation will be required to test the hypotheses raised here. The fact that all 

children who pass task B also pass task A does not signify that knowledge of B 

depends solely on knowledge of A. However, it still seems possible to conclude that 

those children who pass A seem to be in a better position to understand B. It was not 

intended, with this work, to claim that this is the only way children learn about place 

value. Far from that, the idea is mainly to promote debate and encourage research in a 

new direction where several number components are investigated collectively. 

It would have been interesting to have introduced some intervention studies, as 

relations do not suggest causality. The examination of causality would have implied the 

introduction and application of an intervention. Rigorous manipulation of the 

significant interrelations found would be expected to better clarify the degree of change 

in children's achievement. 

A second limitation relates to the type of data used, mainly categorical, that did not 

allow the utilisation of more sophisticated statistics. The use of parametric statistic 

would have contributed to the more accurate measurement of knowledge and, 

therefore, change in time. 

Finally, there are issues about scoring that were a constant cause of worry throughout. 

It was assumed that passing one item of each task was good evidence of some 

understanding of the task. The choice was based on previous methodology practices, 
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such as the case of Gelman and Gallistel (1978). Moreover, it was thought to be 

important that this criteria should be applied evenly across all tasks used in the study. 

The application of different criteria to different tasks (less stringent in some tasks, 

more stringent in others) would introduce uncontrollable bias in the results. On the 

other hand, the choice of using a stringent criteria overall (i.e. children should pass all 

the items presented in the task (usually three), would make the tasks extremely difficult 

to pass. As a consequence, patterns in the data would be hidden, especially in the case 

of the smaller children who were just starting school. 

6.5 EDUCATIONAL IMPLICATIONS 

The data presented in this study will hopefully represent a step towards a theoretical 

framework that will enable the understanding of children's number development, as a 

meaningful whole. Although this "whole" is obviously limited to the four number 

components assessed in this study, some educational implications can nevertheless be 

discussed in the way of adjustments to the strategies used by teachers. 

Meanwhile, it is clear that the order and speed of development of the number 

components included in the study may be influenced by the content and methods of 

school instruction. However, the impact of these methodologies on specific research 

projects is extremely difficult to measure and was considered to be beyond the present 

scope. Studies to evaluate teaching methodologies will be necessary, for instance, to 

account for the advantages of the recent National Numeracy Strategy (1999), which 

suggests the introduction of written methods later, at age 8. This will most probably 

influence children's ideas about number in ways that would be interesting to clarify. 
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In this study, the focus was not on whether children learn at school, but rather what 

could be done to improve that learning even further. For this reason, the study takes a 

Piagetian (1952) perspective in suggesting what relations between number components 

may be implied in children's development of new ideas about number, and whether 

children have displayed an understanding about these relations. This, independently of 

what helped them (i.e. what specific methodology) in their development. 

The data presented confirm the idea that (1) children bring into the school considerable 

amounts of mathematical knowledge; and (2) children develop informal mathematical 

knowledge on their own, before it is taught at school. Of the fifty-two children 

assessed at school entry, nearly 20% (i.e. 10) were already at Level 2, according to the 

model suggested in this study. More surprisingly, five of these children (i.e. 10%) 

were placed in Level 3, and another five children were classified in Level 4. 

From another perspective, 32% (i.e. 17 out of 56) of the children in the second 

assessment of the Year 2 group — i.e. 6- and 7-year-olds — were already able to use 

place value correctly. These numbers increased to 43% by the third assessment of the 

same year group. How can this be possible if place value is usually taught later in 

schools ? 

The response seems to be in the evidence that children draw new knowledge from 

previous mathematical experiences, wherever these may have taken place. However, 

an interesting way to clarify these developmental relations (between experiences), is 

through the assessment of several number components, which will offer new insights 

on how children relate them. This will clarify the specific role of each number 

component in the whole of number development. Some of the most important 

implications of this interrelated approach are as follows. 
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The first implication relates to the renewed importance of counting in children's 

number development. Based on the data here presented, it seems worth suggesting that 

children would benefit if counting was treated as a way to progressively 

reconceptualise the units - from counting units of the same size to the ability to 

combine units of different sizes - rather than just a means to count objects (e.g. Steffe, 

1992). From this perspective, counting could be seen as the main trunk, and a 

purposeful activity, to which other number components will become linked, enabling 

progressively faster and more complex ways of counting. 

Although counting objects will not, on its own, help the child to the grasp more 

complex understanding about number, it is a necessary step to enable the child to 

continue counting. As it was shown, it seems worth developing children's ability to 

continue counting as a way to enable the manipulation of the number-line in 

progressively more abstract ways. The evidence showed that the ability to continue 

counting effectively predicts further mathematical abilities, in some cases, years later. 

The second implication is that it seems more beneficial for children if they were taught 

to use counting as a ladder into the realms of addition and multiplication, 

simultaneously. The data suggests that it is easier to help a child to use double-counts -

and have him realise later that that is known as multiplication - than starting from 

teaching the child the concept of multiplication, as repeated-addition. Children as 

young as five are able to pass simple multiplication tasks, as they also pass addition 

tasks. 

Further, the data supports the view that it helps the child to see the more complex 

forms of counting (i.e. counting and combining ones, tens, hundreds and so on) as a 
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natural continuation of the earlier forms of counting, rather than as a separate 

conceptual entity - known as the "numeration system". Such a link exists in languages 

like Japanese and Chinese, with significantly improved results in these children's 

performance in maths (e.g. Miller and Stigler, 1987). In Chinese, "twelve" is 

reproduced as "ten-two", which helps these children to see counting and the 

numeration system as a continuum. A way to reinforce this connection in the English 

Language could be through the use of coins which help making the decade numeration 

system "visible" to the child. 

A third implication that stems from the data presented is that it is also useful to base 

children's understanding of place value in their knowledge about the structure of the 

numeration system (Fuson, 1990; Nunes and Bryant, 1996). Again, the handling of 

coins in the form of shopping tasks provides an important step towards the possibility 

of representing multi-digit numbers mentally, and a way towards writing them 

correctly. As shown in this study, no matter how much insistence is placed upon 

exposing children to different combinations and orders of assembled numbers (in 

written form) this, on its own, will not necessarily help their mastery of place value. It 

is true that some children may be able to write two-digit numbers without previous 

understanding of the decade system. However, the data has also shown that this will 

not help them to learn to write three and four digit numbers correctly. 

From this, stems that success in a learning target such as place value seems to be 

dependent on many previous acquisitions, on which is worth investing since the 

beginning of school. A possible beginning is teaching children about continuation of 

counting. 
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A fourth implication comes in the form of a warning. As suggested by the data, not all 

counting strategies have significant conceptual relevance. Whereas continuation of 

counting exposes the child to the mental manipulation of the number-line at a very early 

age, counting-on seems to be less relevant in children's number development as it 

emerges as a consequence of being proficient with addition problems. Counting-on, 

therefore, seems to be a more economical way of solving word-problems, rather than a 

different way of conceptualising number. 

Finally, helping children to relate number components will help them see the new 

number component acquisitions as enhancements of the previous ones, and as new 

possibilities of handling number. These connections are more difficult to make if the 

child has to follow the strict requirements of the maths curriculum which is organised 

according to attributed order of difficulty (e.g. multiplication is harder than addition 

and should, therefore, be taught later). Investment in the teaching of the interrelations 

proposed in this study may help children see mathematics as a conceptual tool that may 

be used both inside and outside the school. 

It is also hoped that a clearer idea about children's level of number understanding, as 

proposed in this study, will enable teachers to offer a more appropriate intervention, at 

crucial moments, adapted to the specificity of each child. The use of different 

pedagogical techniques may, in this way, be guided by the relevant assessment of what 

the child can do, as well as by good knowledge of the developmental process that 

controls number acquisition. 

Although researchers are tempted to isolate each number component for a better 

understanding of its acquisition, it seems important to remember that for the child it 

may be harder, not easier, to understand something broken down into all the precise 
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little rules than to grasp it as a meaningful whole. Perhaps it would be more useful if 

children were offered a view of the forest, as so many children still get lost. Teaching 

children about the relations between number components will hopefully given them the 

autonomy and self-confidence they need to find their way forward. 

234 



REFERENCES 

Anghileri, J. (1997). Uses of counting in multiplication and division. In: I. Thompson 

(Ed.), Teaching and learning early number. Open University Press. 

Aubrey, C. (1993). An investigation of the mathematical knowledge and competencies 

which young children bring into school. British Educational Research Journal, 

19(1), 27-41. 

Ashcraft, M. H. (1992). Cognitive arithmetic: A review of data and theory. 

Cognition, 44, 75-106. 

Baltes, P. B. and Nesselroade, J. R. (1979). History and Rationale of Longitudinal 

Research. In Longitudinal Research in the Study of Behaviour and 

Development. New York: Academic Press. 

Baroody, A. J. (1985). Mastery of basic number combinations: internalization or 

relationships or facts ? Journal for Research in Mathematics Education, 16, 83-

98. 

Baroody, A. J. (1989). Kindergarteners' mental addition with single-digit 

combinations. Journal for Research in Mathematics Education, 20, 159-172. 

Baroody, A. J. (1987). The development of counting strategies for single-digit 

addition. Journal for Research in Mathematics Education, 18, 141-157. 

Baroody, A. J. (1994). An evaluation of evidence supporting fact-retrieval models. 

Learning and Individual Differences, 6, 1-36. 

Baroody, A. J. and Gannon, K. E. (1984). The development of the commutativity 

principle and economical addition strategies. Cognition and Instruction, 1(3), 

321-339. 

235 



Baroody, A. J. ; Ginsburg, H. P. and Waxman, B. (1983). Children's use of 

mathematical structure. Journal for Research in Mathematics Education, 14, 

156-168. 

Baroody, A. J. and Ginsburg, H. P. (1986). The relationship between initial 

meaningful and mechanical knowledge of arithmetic. In J. Hiebert (Ed.), 

Conceptual and Procedural Knowledge: the Case of Mathematics, NJ: Erlbaum. 

Bednarz, N. and Janvier, B. (1982). The understanding of numeration in primary 

school. Educational Studies in Mathematics, 13, 33-57. 

Bergeron, J. C. and Herscovics, N. (1990). The kindergarteners' knowledge of 

numerals. In G. Booker, P. Cobb, and T. N. de Mendicuti (Eds), Proceedings of 

the 14th PME Conference, Mexico. 

Bergeron, J. C. ; Herscovics, N. et. al. (1990). Psychological aspects of learning 

early arithmetic. In P. Nesher and J. Kilpatrick (Eds.), Mathematics and 

cognition: A research synthesis by the international group for the psychology 

of mathematics education, pp. 31-52 Cambridge University Press: 

Cambridge. 

Bialystok, E. (1992). Symbolic representation of letters and numbers. Cognitive 

Development, 7(3), 301-316. 

Brainerd, C. J. (1979). The origins of number concept. New York: Praeger. 

Briars, D. and Siegler, R. (1984). A featural analysis of preschoolers' counting 

knowledge. Developmental Psychology, 20. 607-618. 

Briars, D. J. and Larkin, J. H. (1984). An integrated model of skill in solving 

elementary word problems. Cognition and Instruction, 1, 245-296. 

Brown, M. (1981). Number operations. In K. Hart (ed.): Children's Understanding 

of Mathematics: 11-16. Windsor: NFER-Nelson. 

236 



Brownwell, W. A. (1935). Psychological considerations in the learning and teaching 

of arithmetic. In W. D. Reeve (Ed.), The teaching of arithmetic: Tenth 

Yearbook of the National Council of Teachers of Mathematics (pp. 1-31). New 

York: Teachers College, Columbia University. 

Bryant, P. (1994). Children and Arithmetic. Journal of Child Psychology and 

Psychiatry, Vol. 36(1), pp. 3-32. 

Butterworth, B. (1999). The Mathematical Brain. London: Macmillan. 

Carpenter, T. M. Hiebert, J. and Moser, J. M. (1981). Problem structure and first-

grade children's initial solution processes for simple addition and subtraction 

problems. Journal for Research in Mathematics Education, 12, 27-39. 

Carpenter, T. P. and Moser J. M. (1982). The development of addition and 

subtraction problem-solving skills. In T. Carpenter; J. Moser and T. 

Romberg (Eds.), Addition and Subtraction: a Cognitive Perspective (pp. 9 -

24). Lawrence Erlbaum Associate Publishers. 

Carpenter, T. P. and Moser, J. M. (1983). The acquisition of addition and subtraction 

concepts. In R. Lesh and M. Landau (Eds.), Acquisition of mathematics 

concepts and processes (pp. 7- 44). New York: Academic Press. 

Carpenter, T. P. and Moser J. M. (1984). The acquisition of addition and 

subtraction concepts in grades one through three. Journal for Research in 

Mathematics Education, 15(3), 179-202. 

Carpenter, T. P., Ansell, E., Franke, M. L., Fennema, E., and Weisbeck, L. (1993). 

Models of problem solving: A study of kindergarten children's problem-

solving processes. Journal for Research in Mathematics Education, 24(5), 

428-441. 

Carraher, T. N. (1985). The decimal system. Understanding and notation. In L. 

Streefland (Ed.), Proceedings of the Ninth International Conference for the 

Psychology of Mathematical Education (Vol. 1, pp. 288-303). Utrecht, 

237 



Holland: University of Utrecht, Research Group on Mathematics Education 

and Computer Center. 

Carraher, T. N. and Schliemann, A. D. (1990). Knowledge of the numeration system 

among pre-schoolers. In L. Steffe and T. Wood (Eds.), Transforming 

Children's Mathematics Education - international perspectives (pp. 135 - 141). 

Lawrence Erlbaum Associates, Hillsdale, NJ. 

Carraher, T. N.; Carraher, D. W. and Schliemann, A. D. (1985). Mathematics in the 

streets and in schools. British Journal of Developmental Psychology, 3, 21-

29. 

Campbell, J. I. D. and Clark, J. M. (1988). An encoding-complex view of cognitive 

number processing: Comment on McCloskey, Sokol and Goodman (1986). 

Journal of Experimental Psychology: General, 117, 204-214. 

Clark, J. M. and Campbell, J. I. D. (1991). Integrated versus modular theories of 

number skills and acalculia. Brain and Cognition, 17, 204-239. 

Clark, F. B. and Kamii, C. (1996). Identification of multiplicative thinking in children 

in grades 1-5. Journal for Research in Mathematics Education, 24(1), 41-51. 

Cobb, P. (1987). An analysis of three models of early number development. Journal 

for Research in Mathematics Education, 18(3), 163-179. 

Cobb, P. and Wheatley, G. (1988). Children's initial understanding of ten. Focus on 

Learning Problems in Mathematics, 10(3), 1-28. 

Cohen, L. and Manion, L. (1998). Research Methods in Education. Routledge: 

London and New York. 

Cowan, R. (1987). When do Children trust counting as a basis for relative number 

judgements ? Journal of Experimental Child Psychology, 43, 328-345. 

Cowan, R.; Foster, C. and Al-Zubaidi, A. (1993). Encouraging children to count. 

British Journal of Developmental Psychology, 11, 411-420. 

238 



Cowan, R. (in-press). Does it all add up ? Changes in children's knowledge of 

addition facts, strategies, and principles. Chapter in preparation. 

Cooney, J. B., Swanson, H. L. and Ladd, S. F. (1988). Acquisition of mental 

multiplication skill: Evidence for the transition counting and retrieval strategies. 

Cognition and Instruction, 5(4), 323-345. 

Davydov, V. V. (1969). On the formation of an elementary concept of number by the 

child. In J. Kilpatrick and I. Wirszup (Eds.), Soviet studies in the psychology 

of learning and teaching mathematics. Vol. XIII: The learning of mathematical 

concepts (pp. 39-44). Chicago: University of Chicago Press. 

Davydov, V. V. (1991). A psychological analysis of the operation of multiplication. In 

Leslie Steffe (Ed.), Psychological Abilities of Primary School Children in 

Learning mathematics (Volume 6, pp. 9-85). Reston, VA: National Council of 

Teachers of Mathematics. 

De Corte, E. and Verschaffel, L. (1989). Teaching word problems in the primary 

school. What research has to say to the teacher. In B. Greer And G. Mulhern 

(Eds.), New Developments in Teaching Mathematics (pp. 85-106) London: 

Routledge. 

Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1-42. 

Dehaene, S. and Cohen, L. (1995). Towards an anatomical and functional model of 

number processing. Mathematical Cognition, 1(1), 83-120. 

Dehaene, S., Spelke, E., Pinel, P., Stanescu, R. and Tsivkin, S. (1999). Sources of 

mathematical thinking: Behavioural and brain imaging evidence. Science, 284, 

970-984. 

Deloche, G. and Seron, X. (1982). From one to 1: An analysis of a transcoding 

process by means of neuropsychological data. Cognition, 12, 119-149. 

239 



Deloche, G. and Seron, X. (1987). Numerical transcoding: A general production 

model. In G. Deloche and X. Seron (Eds.), Mathematical disabilities: A cognitive 

neuropsychological perspective. Hillsdale, N. J.: Lawrence Erlbaum Associates, 

Inc. 

Deloche, G., Seron, X., Larroque, C., Magnien, C. Metz-Lotz, M. N. et al. (1994). 

Calculation and number processing assessment battery: The role of demographic 

factors. Journal of Clinical and Experimental Neuropsychology, 16, 915-208. 

Denvir, B. and Brown, M. (1986a). Understanding of number concepts in low-

attaining 7-9 year olds: Part I: Development of descriptive framework and 

diagnostic instrument. Educational Studies in Mathematics, 17, 15-36. 

Denvir, B. and Brown, M. (1986b). Understanding of number concepts in low-

attaining 7-9 year olds: Part II: The teaching studies. Educational Studies in 

Mathematics, 17, 143-164. 

Desforges, A. and Desforges, G. (1980). Number-based strategies of sharing in 

young children, Educational Studies, 6, 97-109. 

Dowker, A. (1998). Individual differences in normal arithmetical development. In C. 

Donlan (Ed.): The development of Mathematical Skills. Hove: Psychology Press. 

English, L. D. and Halford, G. S. (1995). Mathematics Education: Models and 

processes. Hove: Lawrence Erlbaum Associates. 

Fennell, F., Reyes, B., Reyes, R. and Webb, A. (1991). Mathematics unlimited. 

Orlando, FL: Harcourt, Brace Jovanovich. 

Fischbein, E., Deri, M., Nello, M. S., and Marino, M. S. (1985). The role of implicit 

models in solving verbal problems in multiplication and division. Journal for 

Research in Mathematics Education, 16(1), 3-17. 

Fuson, K. (1979). Counting solution procedures in addition and subtraction. Paper 

presented at the Wingspread Conference on Addition and Subtraction, Racine, 

Wisconsin, 1979. 

240 



Fuson, K. C. (1982). An analysis of the counting-on solution procedure in addition. 

In T. P. Carpenter; J. M. Moser and T. Romberg (Eds.), Addition and 

Subtraction: a cognitive perspective. Hillsdale, NJ: Erlbaum. 

Fuson, K. C. and Hall, J. W. (1983). The acquisition of early number word 

meanings: a conceptual analysis and review. In H. P. Ginsburg (Ed.), The 

development of mathematical thinking; pp. 49- 107. New York: Academic 

Press. 

Fuson, K. C. ; Pergament, G. G.; Lyons, B. G. and Hall, J. W. (1985). Children's 

conformity to the cardinality rule as a function of set size and counting 

accuracy. Child Development, 56, 1429-1436. 

Fuson, K. C.; Richards, J. and Briars, D. J. (1982). The acquisition and elaboration 

of the number word sequence. In C. J. Brainerd (Ed.), Children's logical and 

mathematical cognition (pp. 33-92). New York: Springer-Verlag. 

Fuson, K. C. (1990). Conceptual structures for multiunit numbers: Implications for 

learning and teaching multidigit addition, subtraction and place value. Cognition 

and Instruction, 7(4), 343-403. 

Fuson, K. C. and Kwon, Y. (1992). Effects on children's addition and subtraction of 

the system of number words and other cultural tools. In J. Bideaud, C. Meljac, 

& J.-P. Fischer (Eds.), Pathways to number (pp. 283-306). Hillsdale, NJ: 

Lawrence Erlbaum Associates Inc. 

Fuson, K. C. (1988). Children's counting and concepts of number. New York: 

Springer-Verlag. 

Fuson, K. C. (1992). Research on whole number addition and subtraction. In D. A. 

Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 

243-275). New York: Macmillan; Reston, VA: National Council of Teachers of 

Mathematics. 

241 



Frye, D.; Braisby, N.; Lowe, J.; Maroudas, C.; Nicholls, J. (1989). Young children's 

understanding of counting and cardinality. Child Development, 60, 1158-1171. 

Gal'perin, P. Ya. and Georgiev. L. S. (1969). The formation of elementary 

mathematical notions. In J. Kilpatrick and I. Wirszup (Eds.), Soviet studies in 

the psychology of learning and teaching mathematics. Vol. I: The learning of 

mathematical concepts (pp. 189-216). Chicago: University of Chicago Press. 

Geary, D. C. and Widaman, K. F. (1992). Numerical cognition: On the convergence 

of componential and psychometric models. Intelligence, 16, 47-80. 

Gelman, R. (1982). Basic numerical abilities. In R. Sternberg (Ed.), Advances in the 

psychology of human intelligence, 181-205. Hillsdale, NJ: Lawrence Erlbaum 

Associates. 

Gelman, R. and Gallistel, C. R. (1978). The child's understanding of number. 

Cambridge, Mass.: Harvard University Press. 

Gelman, R. and Meck, E. (1983). Preschoolers' counting: principles before skill. 

Cognition, 13, 343-359. 

Gelman, R. and Meck, E. (1986). The notion of principle: The case of counting. In J. 

Hiebert (Ed.), Conceptual and procedural knowledge: The case of 

mathematics. Hillsdale, NJ: Lawrence Erlbaum Associates. 

Gelman, R. and Meck, B. (1992). Earlier principles aid initial but not later 

conceptions of number. In J. Bideaud, C. Meljac, & J.-P. Fischer (Eds.), 

Pathways to number (pp. 171-189). Hillsdale, NJ: Lawrence Erlbaum 

Associates Inc. 

Ginsburg, H. (1977). Children's arithmetic: the learning process. New York: D. Van 

Nostrand Co. 

Ginsburg, H. P.; Posner, J. K. and Russell, R. L. (1981). The development of 

mental addition as a function of schooling and culture. Journal of Cross-

Cultural Psychology, 12(2) June, 163-178. 

242 



Gray, E. M. (1991). An analysis of diverging approaches to simple arithmetic: 

Preferences and its consequences. Educational Studies in Mathematics, 22, 

551-574. 

Gray, E., Pitta, D. and Tall, D. (1997). The Nature of the Object as an Integral 

Component of Numerical Processes. In Erkki Pehkonen (Ed.), Proceedings of 

the 21st conference of the International Group for the Psychology of 

Mathematics Education (Vol 1., pp. 115-130). Lahti, Finland: University of 

Helsinki, Lahti Research and Training Centre. 

Greeno, J. G., Riley, M. S. and Gelman, R. (1984). Conceptual competence and 

children's counting. Cognitive Psychology, 16, 94-143. 

Greeno, J. G. (1991). Number sense as situated knowing in a conceptual domain. 

Journal for Research in Mathematics Education, 22(3), 170-218. 

Greer, B. (1987). Nonconservation of multiplication and division involving decimals. 

Journal for Research in Mathematics Education, 18, 37-45. 

Groen, G. and Resnick, L. B. (1977). Can Preschool Children Invent Addition 

Algorithms ? Journal of Educational Psychology, 69(6), 645-652. 

Groen, G. J. and Parkman, J. M. (1972). A chronometric analysis of simple addition. 

Psychological Review, 79, 239-343. 

Hart, K. (Ed.).(1981). Children's understanding of mathematics: 11-16. London: 

John Murray. 

Haylock, D. and Cockburn, A. (1997). Understanding mathematics in the lower 

primary grades. London: Paul Chapman Publishing Ltd. 

Hedderson, J. and Fisher, M. (1993). SPSS made simple. Belmont, California 

Wadsworth Publishing Company. 

243 



Hiebert, J. and Wearne, D. (1986).Procedures over concepts: the acquisition of 

decimal number knowledge In J. Hiebert (Ed.) Conceptual and Procedural 

Knowledge: the case of mathematics. LEA, London. 

Hiebert, J. and Behr, M. (1988). Research agenda for mathematics education. In J. 

Hiebert and M. Behr (Eds.), Number concepts and operations in the middle 

grades, Vol. 2, 1-32. Hillsdale, NJ: Lawrence Erlbaum Associates; Reston, 

VA: National Council of Teachers of Mathematics. 

Hittmair-Delazer, M., Semenza, L. and Denes, G. (1994). Concepts and facts in 

calculation. Brain, 117, 715-728. 

Hittmair-Delazer, M., Sailer, V. and Berke, T. (1995). Impaired arithmetical facts but 

intact conceptual knowledge: a single case study of dyscalculia. Cortex, 31, 

139-147. 

Hoffer, A. R., Johnson, M. L., Leinwand, S. J., Lodholz, R. D., Musser, G. L., 

and Thoburn, T. (1991). Mathematics in action. New York: 

Macmillan/McGraw-Hill School Division. 

Houlihan, D. M. and Ginsburg, H. P. (1981). The addition methods of first and 

second grade children. Journal for Research in Mathematics Education, 12, 95-

106. 

Hughes, M. (1986). Children and Number. Oxford: Blackwell. 

Ilg, F. and Ames, L. B. (1951). Developmental trends in arithmetic. Journal of 

Genetic Psychology, 79, 3-28. 

Kamii, M. (1980). Place value: Children's efforts to find a correspondence between 

digit and number of objects. Paper presented at the tenth annual symposium of 

the Jean Piaget society, Philadelphia, PA, May. 

Kamii, C. K. (1986). Place value: An explanation of its difficulties and educational 

implications for the primary grades. Journal of Research in Childhood Education, 

1(2), 75-85. 

244 



Kamii, C., with Livingston, S. (1994). Young children continue to reinvent 

arithmetic, 3rd grade. New York: Teachers College Press. 

Karmiloff-Smith, A. (1995). Beyond Modularity. Cambridge, MA: MIT Press. 

Kieren, T. E. (1994). Multiple views of multiplicative structures. In G. Harel and J. 

Confrey (Eds.), The Development of Multiplicative Reasoning in the Learning 

of Mathematics, pp. 389-400. Albany, NY: State University of New York 

Press. 

Kornilaki, E. (1994). Children's understanding of the numeration system. 

Unpublished Masters Dissertation. Institute of Education, University of London. 

Kouba, V. L. (1989). Children's solution strategies for equivalent set multiplication 

and division word problems. Journal for research in mathematics education, 

20(2), 147-158. 

Lave, J. (1988). Cognition in practice. Mind, mathematics and culture in everyday 

life. New York: Cambridge University Press. 

Luria, A. R. (1969). On the pathology of computational operations. In J. Kilpatrick 

and I. Wirszup (Eds.), Soviet studies in the psychology of learning and 

teaching mathematics. Vol. I: The learning of mathematical concepts (pp. 37-

74). Chicago: University of Chicago Press. 

Luria, A. R. (1976). Cognitive Development: Its Cultural and Social Foundations. 

Harvard University Press. 

Martins-Mourao, A. and Cowan, R. (1997). Precursors of additive composition of 

number. In Erkki Pehkonen (Ed.), Proceedings of the 21st conference of the 

International Group for the Psychology of Mathematics Education (Vol. 1., p. 

246). Lahti, Finland: University of Helsinki, Lahti Research and Training 

Centre. 

245 



McCloskey, M., Caramazza, A., And Basili, A. (1985). Cognitive mechanisms in 

number processing and calculation: Evidence from dyscalculia. Brain and 

Cognition, 4, 171-196. 

McCloskey, M. (1992). Cognitive mechanisms in numerical processing: Evidence 

from acquired acalculia. Cognition, 44, 107-157. 

Meck, W. H., and Church, R. M., (1983). A mode control model of counting and 

timing processes. Journal of Experimental Psychology: Animal Behaviour 

Processes, 9, 320-334. 

Menninger, K. (1969). Number words and number symbols: A cultural history of 

numbers. Cambridge, MA: The MIT Press. 

Michie, S. (1984). Why preschoolers are reluctant to count spontaneously. British 

Journal of Developmental Psychology, 2, 347-358. 

Miller, K. F. and Stigler, J. W. (1987). Counting in Chinese. Cultural variation in a 

basic cognitive skill. Cognitive Development, 2, 279-305. 

Miller, K.; Perlmutter, M. and Keating, D. (1984). Cognitive arithmetic: comparison 

of operations. Journal of Experimental Psychology: Learning, Memory and 

Cognition; 10 (1); 46-60. 

Miura, I. T. and Okamoto, Y. (1989). Comparison of American and Japanese first 

graders' cognitive representation of number and understanding of place value. 

Journal of Educational Psychology, 81, 109-113. 

Miura, I. T., Okamoto, Y., Kim, C. C., Steere, M., and Fayol, M. (1993). First 

graders' cognitive representation of number and understanding of place value: 

Cross-national comparisons: France, Japan, Korea, Sweden and the United 

States. Journal of Educational Psychology, 85(1), 24-30. 

Nesher, P. (1982). Levels of description in the analysis of addition and subtraction. 

In T. P. Carpenter, J. M. Moser and T. Romberg (Eds.), Addition and 

246 



Subtraction: A cognitive perspective. (pp. 25-38). Hillsdale NJ: Lawrence 

Erlbaum Associates. Inc. 

Newmark, J. (1991). Math for elementary school teachers. New York: Addison-

Wesley. 

Nichols, E. and Behr, M. (1982). Elementary school math and how to teach it. New 

York: Holt, Rinehart & Winston. 

Noel, M. P. and Seron, X. (1993). Arabic number reading deficit: A single case 

study. Cognitive Neuropsychology, 10, 317-339. 

Nunes, T. and Bryant, P. (1996). Children Doing Mathematics. Oxford: Blackwell. 

O'Brien, T. and Casey, S. (1983). Children learning multiplication. School Science 

and Mathematics, 83, 246-251. 

Piaget, J. (1952). The child's conception of number. New York: Humanities Press. 

Post, T. R., Cramer, K. A., Behr, M., Lesh, R. and Harel, G. (1993). Curriculum 

implications of research on the learning, teaching, and assessing of rational 

number concepts. In T. Carpenter, E. Fennema & T. A. Romberg (Eds.), 

Rational numbers: An integration of research (pp. 327-362). Hillsdale, NJ: 

Lawrence Erlbaum Associates. 

Power, R. D. and Dal Martello, M. F. (1990). The dictation of Italian numerals. 

Language and Cognitive Processes, 5, 237-254. 

Power, R. D. and Dal Martello, M. F. (1997). From 834 to eighty thirty four: The 

reading of arabic numerals by seven-year-old children. Mathematical 

Cognition, 3(1), 63-85. 

Plewis, I. (1985). Analysing change: measurement and explanation using longitudinal 

data. Wiley. 

247 



Resnick, L. B. (1989). Developing mathematical knowledge. American Psychologist, 

44(2), 162-169. 

Resnick, L. B. (1987). Learning in School and Out. Educational Researcher, 16(9), 

pp. 13-20. 

Resnick, L. B. (1986). The development of mathematical intuition. In M. Perlumutter 

(Ed), Perspectives on intellectual development: Minnesota Symposia on Child 

Psychology, vol. 19, 159-194. Hillsdale, NJ: Lawrence Erlbaum Associates. 

Resnick, L. B. (1983). A developmental theory of number understanding. In H. P. 

Ginsburg (Ed.), The development of mathematical thinking; pp. 109-151. 

Academic Press: New York. 

Resnick, L. B. (1980). The role of invention in the development of mathematical 

competence. In R. H. Kluwe and H. Spada (Eds.), Developmental models of 

thinking. New York: Academic Press. 

Resnick, L. B. and Ford, W. (1981). The psychology of mathematics instruction. 

Hillsdale, N. J.: Erlbaum. 

Riley, M. S.; Greeno, J. G. and Heller, J. I. (1983). Development of children's 

problem-solving ability in arithmetic. In H. P. Ginsburg (Ed.), The 

development of mathematical thinking; pp. 153-196. Academic Press: New 

York. 

Riley, M. S. and Greeno, J. G. (1988). Developmental analysis of understanding 

language about quantities and of solving problems. Cognition and Instruction, 

5, 49-101. 

Rittle-Johnson, B. and Siegler, R. S. (1998). The relation between conceptual and 

procedural knowledge in learning mathematics: A review. In C. Donlan (Ed.): 

The development of Mathematical Skills. Hove: Psychology Press. 

248 



Ross, S. H. (1989). Parts, wholes and place value: a developmental view. Arithmetic 

Teacher, 36(6). 

Russell, R. L. and Ginsburg, H. P. (1984). Cognitive analysis of children's 

mathematics difficulties. Cognition and Instruction, 1(2), 217-244. 

Saxe, G. B. (1988). Candy selling and mathematics learning. Educational Researcher, 

17(6), 14-21. 

Saxe, G. B. (1982). Developing forms of arithmetical thought among the Oksapmin 

of Papua New Guinea. Developmental Psychology, 18(4), 583-594. 

Saxe, G. B. (1981). Body Parts as Numerals: a developmental analysis of numeration 

among the Oksapmin of Papua New Guinea. Child Development, 52, 306-

316. 

Saxe, G. B. and Posner, J. (1983). The development of numerical cognition: cross-

cultural perspectives. In H. P. Ginsburg (Ed.), The development of 

mathematical thinking (pp. 291-317). New York: Academic Press. 

Saxe, G. B. (1991). Culture and Cognitive Development: Studies in Mathematical 

Understanding. Hillsdale, New Jersey: Lawrence Erlbaum Associates. 

Schools Examination and Assessment Council, (1992). Standard Assessment Tasks, 

Pupil Sheet Booklet, Key Stage 1. Lincoln: NFER-Nelson. 

Schwartz, J. L. (1988). Intensive quantity and referent transforming arithmetic 

operations. In J. Hiebert and M. Behr (Eds.), Number concepts and operations 

in the middle grades (pp. 41-52). Hillsdale, NJ: Lawrence Erlbaum Associates; 

Reston, VA: National Council of Teachers of Mathematics. 

Secada, W. G.; Fuson, K. C. and Hall. (1983). The transition from counting-all to 

counting-on in addition. Journal for Research in Mathematics Education, 14, 

47-57. 

249 



Seron, X. and Fayol, M. (1994). Number transcoding in children: a functional 

analysis. British Journal of Developmental Psychology, 12, pp. 281-300. 

Seron, X., Deloche, G. and Noel, M. P. (1991). In transcodage des nombres chez 

l'enfant: la production des chiffres sus dictee. In J. Bideaud, Cl. Meljac and J. 

P. Fischer (Eds.), Les Chemins du Nombre, pp. 245-264. Lille: Presses 

Universitaires de Lille. 

Seron, X. and Noel, M. (1995). Transcoding numbers from the arabic code to the 

verbal one or vice versa: How many routes ? Mathematical Cognition, 1, 215- 

243. 

Shrager, J. and Siegler, R. S. (1998). SCADS: A model of children's strategy 

choices and strategy discoveries. Psychological Science, 9, 405-410. 

Siegel, S. (1956). Nonparametric Statistics for the Behavioural Sciences. New York: 

McGraw-Hill Book Company, Inc. 

Siegler, R. S. and Robinson, M. (1982). The development of numerical 

understandings. In H. Reese and L. P. Lipsitt (Eds.) Advances in Child 

Development and Behaviour (16), pp. 241-312. New York: Academic Press. 

Siegler, R. S. and Shrager, J. (1984). Strategy choices in addition and subtraction: 

how do children know what to do ? In C. Sophian (Ed.), The Origins of 

Cognitive Skills. Hillsdale NJ: Erlbaum. 

Siegler, R. S. and Jenkins, E. (1989). How children discover new strategies. 

Hillsdale, NJ: Erlbaum. 

Siegler, R. S. and Shipley, C. (1995). Variation, selection, and cognitive change. In 

T. Simon and G. Halford (Eds.), Developing cognitive competence: New 

approaches to process modelling (pp. 31-76). Hillsdale, NJ: Lawrence 

Erlbaum Associates 

250 



Siegler, R. S. and Stern, E. (1998). Conscious and unconscious strategy discoveries: 

A microgenetic analysis. Journal of Experimental Psychology: General, 127, 

377-397. 

Sinclair, A. (1991). Children's production and comprehension of written numerical 

representations. In K. Durkin and B. Shire (Eds), Language in Mathematical 

Education. Open University Press. Milton Keynes. 

Sinclair, A., Siegrist, F., and Sinclair, H. (1983). Young children's idea about the 

written system. In D. Rogers & J. Sloboda (Eds.), The acquisition of symbolic 

skills. New York: Plenum. 

Sinclair, A. and Scheuer, N. (1993). Understanding the written number system: 6 

year-olds in Argentina and Switzerland. Educational Studies in Mathematics, 24, 

199-221. 

Sinclair, A.; Garin, A.; Tieche-Christinat, C. (1992). Constructing and understanding 

of place value in numerical notation. European Journal of Psychology of 

Education, Vol. VII (3), 191-207. 

Skemp, R. R. (1971). The Psychology of Learning Mathematics. Harmondsworth: 

Peguin. 

Song, M. J. and Ginsburg, H. P. (1988). The effect of the Korean number system on 

young children's counting: A natural experiment in numerical binligualism. 

International Journal of Psychology, 23, 319-332. 

Sophian, C. (1987). Early developments in children's use of counting to solve 

quantitative problems. Cognition and Instruction, 4, 61-90. 

Starkey, P. and Gelman, R. (1982). The development of addition and subtraction 

abilities prior to formal schooling in arithmetic. In T. Carpenter; J. Moser and 

T. Romberg (Eds.), Addition and Subtraction: a Cognitive Perspective (99 -

116). Hillsdale, NJ: Lawrence Erlbaum Associates. 

251 



Steffe, L. P.; von Glasersfeld, E.; Richards, J. and Cobb, P. (1983). Children's 

counting types — philosophy, theory and application. Praeger special studies -

Praeger scientific. N. Y. 

Steffe, P. S.; Thompson, P. W. and Richards, J. (1982). Children's counting in 

arithmetical problem solving. In T. Carpenter; J. Moser and T. Romberg 

(Eds.), Addition and Subtraction: a Cognitive Perspective (pp. 83-97). 

Hillsdale, NJ: Lawrence Erlbaum Associates. 

Steffe, L. P. (1988). Children's construction of number sequences and multiplying 

schemes. In J. Hiebert and M. Behr (Eds.), Number concepts and operations 

in the middle grades (Vol. 2, 119-140. Hillsdale, NJ: Lawrence Erlbaum 

Associates; Reston, VA: National Council of Teachers of Mathematics. 

Steffe, L. P. (1992). Learning Stages in the Construction of the number Sequence. In 

J. Bideaud, C. Meljac and J. P. Fischer (Eds.), Pathways to Number, pp. 83-

98. Hillsdale, NJ: Lawrence Erlbaum Associates. 

Steffe, L. (1994). Children's multiplying schemes. In G. Harel and J. Confrey 

(Eds.), The development of multiplicative reasoning in the learning of 

mathematics (pp. 3-40). Albany, New York: State University of New York 

Press. 

Steinberg, R. M. (1985). Instruction on derived fact strategies in addition and 

subtraction. Journal for Research in Mathematics Education, 16, 337-355. 

Suggate, J.; Aubrey, C. and Pettitt, D. (1997). The Number Knowledge of Four to 

Five Year Olds at School Entry and at the Entry of their First Year. European 

Early Childhood Education Research Journal, Vol. 5, No. 2, 85-101. 

The National Numeracy Strategy. Framework for teaching mathematics from 

Reception to Year 6. Department for Education and Employment. March 1999. 

Thorndike, E. L. (1922). The Psychology of Arithmetic. New York: Macmillan. 

252 



VanLehn, K. (1990). Mind bugs: The origins of procedural misconceptions. 

Cambridge, MA: MIT Press. 

Vergnaud, G. (1982). A classification of cognitive tasks and operations of thought 

involved in addition and subtraction problems. In T. Carpenter; J. Moser and 

T. Romberg (Eds.), Addition and Subtraction: a Cognitive Perspective (39 -

59). Hillsdale, NJ: Lawrence Erlbaum Associates. 

Vergnaud, G. (1983). Multiplicative Structures. In R. Lesh and M. Landau (Eds.), 

Acquisition of mathematics concepts and processes (pp. 127- 174). New York: 

Academic Press. 

Verschaffel, L. and De Corte, E. (1998). Word problems: A vehicle for promoting 

authentic mathematical understanding and problem solving in the primary 

school ?, In T. Nunes and P. Bryant (Eds.) Learning and teaching 

mathematics : an international perspective. Hove: Psychology Press. 

Vygotsky, L. S. (1978). Mind in Society. The development of higher psychological 

processes. Cambridge, MA: Harvard University Press. 

Warrington, E. K. (1982). The fractionation of arithmetical skills: A single-case 

study. Quarterly Journal of Experimental Psychology, 34A, 31-51. 

Wynn, K. (1990). Children's understanding of counting. Cognition, 36, 155-193. 

Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358, 749-750. 

Yang, M. T. and Cobb, P. (1995). A cross-cultural investigation into the development 

of place value concepts of children in Taiwan and the United States. 

Educational Studies in Mathematics, 28, 1-33. 

Zaslaysky, C. (1973). Africa Counts. Boston, Mass: Prindle, Weber and Schmidt. 

253 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269

