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Abstract 

The aim of this study is to investigate children's developing sense of number in the 

computational medium of Boxer. Boxer's combination of graphical and symbolic 

elements afforded the opportunity for children to visualise numbers in an operational 

way while simultaneously offering insights into how this operational approach mediated 

their thinking. There were three inter-related aspects to the study, with visualisation 

being the common feature of all three. 

• (i) How does the visual structure of Boxer influence students' (aged 9 - 11) ability 
to program? 

• (ii) What interpretations do students place on a number system extended beyond the 
natural numbers and how did they choose to represent these? 

• (iii) How can the learning environment of Boxer be exploited as a context for 
developing students' sense of number? 

Following an exploratory study, pedagogical models for investigating issues (i) and (iii) 

were developed. For issue (i), Boxer was exploited as a means of introducing itself. 

This, in turn, meant documenting the issues involved in a process of iterative design. 

For issue (iii), a model of learning was developed which proposed that the children 

should construct their own microworlds. Following an off-computer investigation of 

issue (ii), the model was refined to that of children constructing operational 

computational objects, and the research aim broadened to include an investigation of 

how these objects mediated their expression of number. This part of the research 

consisted of a longitudinal study lasting two years. It entailed case studies with four 

pairs of children, while the rest of the class learned Boxer independently. None of the 

children had previous Boxer or Logo experience. The research setting was a normal 

classroom in an inner-London primary school. Data for issues (i) and (iii) was obtained 

by means of video recordings and annotated print-outs, while data for issue (ii) was 

obtained by written records and audio recordings. 

Evidence from the research suggests that students' programming is significantly more 

structured in Boxer relative to Logo, and this structure is directly related to the visual 

nature of Boxer. Moreover, data from the number studies suggests that this visual 

structure was also instrumental in providing students with the means to connect number 

processes with number concepts, thus enabling them to engage with number ideas 

which might otherwise have been beyond their reach. 
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Chapter 1: Introduction 

Arithmetic, even its elementary aspects, deals with very important mathematical concepts. 
To establish the link between ordinary mathematical situations and the relevant 
mathematical concepts is probably the most challenging question in mathematical 
education. (Vergnaud, 1978, p. 344) 

1.1: Background to the Research 

This thesis has been undertaken to investigate children's developing sense of number 

in the computational medium of Boxer. It asserts that the critical factor in developing 

students' understandings is their construction of meaning for number, and it presents 

evidence to show how programming in Boxer offers a powerful way for constructing 

such meaning. 

It draws together three distinct knowledge domains: theory and research relating the 

learning of programming with the learning of mathematics in general; theory and 

research concerned with the learning of number; and theory and research linking each 

of these to visualisation (Figure 1.1). These domains do not stand alone but are 

located in more general theories of learning. 

/ 
Visualisation 

Mathematics 4-01. Microworlds 4-00- Programming 

Number 4111------III■ Boxer 

Figure 1.1: Theoretical areas for this research 

The study reported here took place within a broadly constructivist paradigm taking as 

one of its main strands the theoretical framework established by Logo researchers in 

mathematics over the past decade or more (Papert, 1980; Noss, 1985; Sutherland, 

1988; Hoyles and Sutherland, 1989; Hoyles and Noss, 1992a), particularly in relation 

to the construction of mathematical environments. It then supplements this strand by 

drawing on the emerging literature relating to constructionism (Harel, 1991; Papert, 

1993b). The other source of theoretical insights stems from the increasingly 

sophisticated literature (Hiebert and Wearne, 1986; Wearne, 1990; Dubinsky, 1991; 
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Sfard, 1991; Gray and Tall, 1994) pertaining to conceptual and procedural knowledge 

in mathematics. These two strands are bound together by the twin threads of 

visualisation and 'connectedness', particularly in relation to number. 

In the first case, advances in technology have led to a renaissance in visualisation in 

mathematics (Zimmermann and Cunningham, 1993), in mathematics education 

(Bishop, 1989), and in the design of computer interfaces themselves (Shneidnerman, 

1983). In the second case, the notion of 'connectedness' arises both with regards to 

revaluating the concrete/abstract dichotomy (Wilensky, 1993; Ackermann, 1993), but 

also in the number sense literature where meaning is seen to be attained through the 

establishment of multiple links between different nodes of knowledge (Sowder, 

1989). Hoyles and Noss (in press) put forward a case for learning as the construction 

of a web of connections and have located as a central question for learning and 

teaching: "... how to assist students in building on their own meanings in ways which 

are concurrent with mathematical ways of knowing by interactions within 

computational microworlds." (p. 5.1) an expression which articulates my Boxer 

endeavours with respect to number. 

The findings of major research studies in this country such as the C.S.M.S. (Hart et 

al., 1981), the A.P.U. (Foxman et al, 1985), and the N.C.T.M. (Carpenter et al., 1981) 

in the United States leave little doubt as to the difficulties which many students 

experience in dealing with number, difficulties which persist well into the secondary 

school. Moreover, these difficulties cannot be simply reduced to the mathematical 

properties of the task. 

Problems that have the same logical structure and that call for the same mathematical 

operations can be handled quite differently by young children. Changes in the content 

or context of a task can have a marked effect on task difficulty. (Bergerons and 

Herscovics, 1990; Kiichemann, 1981). Both the CSMS research (Hart, op cit.) and 

the APU research (Foxman, op cit.) found that changes in the numerical elements, for 

example, from positive to negative numbers or from whole numbers to fractions or 

decimals, had a pronounced affect on facility levels. These changes, Kiichemann (op 

cit.) notes, can in each case be described as a shift towards elements that are less 

`intuitable' or 'concrete'. 

On the other hand, Johnson (1989) observes that for at least 20 years, the training of 

primary school teachers has been dominated by the belief that, if children are within 
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the Piagetian concrete level stage, then: "... their learning should be through 

`concrete' experiences." (p. 3), the implicit assumption being that these concrete 

experiences will form the basis for more formal learning of the same ideas. However, 

he reports the results of a research project (Children's Mathematical Frameworks) 

which appears to show that, even when teaching is designed to foster the transition 

between learning mathematics from practical or concrete work to using formalised 

versions of the same mathematical ideas, children do not connect the two sets of 

experiences. This is expressed in stark terms by one of the participants, Hart (1987), 

who writes: "The results showed overwhelmingly that the recipients of a series of 

practical experiences, leading up to a formalisation did not appreciate that the latter 

was a synthesis of the former." (p. 410). 

Such insights serve to alert us to the dangers of an over-simplification of the link 

between practical activities and formal understanding, and points to the need to create 

contexts which help students develop meanings for mathematical entities. As 

Vergnaud (1988a) argues: 

It is our job to organise didactic situations and to experiment with them, both with the short-
term objective of enabling students to develop new competencies and conceptions for 
immediate use and with the long-term perspective of offering a basis for concepts that will 
be essential a few years later. For instance, it may be interesting to introduce negative and 
positive numbers in elementary school not only to help students to deal immediately with 
the combination of directed transformations but also to prevent them from sticking to a 
narrow conception of numbers as positive quantities, a conception that later will be an 
obstacle to the learning of algebra. (Vergnaud, 1988a, p. 143) 

In this research, pedagogical situations were organised in which primary school 

students (aged 9 — 11) encountered directed numbers and decimals in the course of 

interacting with computational objects in Boxer. The concern was not to measure or 

improve facility levels, but to investigate how this interaction might affect students' 

construction of meaning. 

diSessa (1987c) emphasises that: "... computers have a character that better adapts 

them to some areas than others — in particular, to areas where the essential structure is 

visual, geometric and dynamic." (p. 74). The challenge for this study was to see if the 

traditionally non-graphical area of number might also be approached in a visual way. 

These twin programming and number aims can be summarised as follows: 

to investigate how students' programmed in Boxer; 

to investigate how Boxer mediated students' sense of number. 
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However, as the research progressed, other subsidiary questions arose. Following an 

exploratory study in which students with a Logo background were observed, a key 

question which emerged for the longitudinal study was how students with no 

programming experience might be introduced to Boxer? This in turn evolved into a 

question of whether the medium could be exploited to introduce itself, i.e., of whether 

the visual facilities of Boxer could be utilised to construct an introductory course in 

programming, and if so, what issues might this involve? These then became 

subsidiary aims for the programming phase of the study. 

As a result of a series of off-computer interviews with Boxer and non-Boxer students, 

the notion of using Boxer to construct meaning for number was refined to one of 

using Boxer to construct operational meanings for number, i.e., it was hypothesised 

that students would acquire meaning for directed numbers and decimals if they saw 

these numbers as a consequence of operations. This posed several intermediate 

problems. Firstly, there was the problem of identifying which Boxer objects might 

best lend themselves to an operational approach and secondly, there was the question 

of the programming demands that the construction of such objects set for the students. 

The number research question now became refined to one of investigating how 

different Boxer objects mediated students' expression of number. 

At this point, it is perhaps worth clarifying my use of the term 'mediate'. Following 

Vygotsky (1978), the view taken here is that the tools at our disposal mediate the 

ideas we can express. Thus expressing a number sequence with a spreadsheet, for 

example, will summon up different kinds of knowledge than that for pen-and-paper. 

The task for this research was to investigate on the one hand how Boxer's visual 

constructs mediated students' learning of programming, and on the other how the 

objects of their programming mediated their sense of number. 

1.2: An Overview of the Research 

This section presents an overview of the chapters which form this thesis, the intention 

being to orientate the reader, and to relate the separate components of the thesis to the 

main aims of the study as outlined above. 
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1.2.1: Theoretical Perspective 

In chapter 2, 'Learning Mathematics and Learning Number', theoretical issues that 

relate to learning mathematics are discussed in general. Issues of particular relevance 

to this research were those relating to: the origins and growth of students' knowledge; 

the need for the child to be an active participant in her or his learning; how such 

learning might be affected by contexts; and how situations might be created to build 

bridges from intuitive to formal knowledge. Thus, this section ranges over issues of 

epistemology, constructivism, the nature of mathematical concepts and the effects of 
mathematical intuition. 

It then considers how the insights derived from these theoretical perspectives might 

affect practice, and it finds exemplification in the accumulated body of Logo research 

in ways that are especially apt for this study. This section addresses how Piagetian 

learning might be mediated by programming, and it draws on Papert's notion of 

`constructionism' as a means of analysis. It re-examines the relationship between the 

concrete and the abstract and sees considerable merit in the idea of 'connectedness'. 

In the second half of chapter 2, the discussion focuses on number. It considers the 

meaning of the expression 'number sense', how this relates to 'connectedness', and 

what these might mean for students' developing sense of number. This is then 

followed by a review of the research literature relating to those aspects of Decimals 

and Directed Numbers which the students met in this study. This review reveals two 

facts: students encounter considerable difficulties with number concepts, and there is 

an accumulating literature suggesting why this occurs and giving a broad framework 

for its resolution. The chapter ends by examining what seems to be the writings of 

most relevance to this research, namely that pertaining to the distinction between 

procedural and conceptual knowledge. 

Chapter 3 'Visualisation, Mathematics and Boxer' continues the theoretical 

discussion, with the emphasis on visualisation, its relationship to the learning of 

mathematics and how the computer affects this relationship. In particular, the 

literature concerning the changing visual nature of the human-computer interface is 

discussed in terms of what it means to program. In the second part of the chapter, the 

discussion of programming issues narrows the focus in on Boxer. The point is made 

that Boxer is more than a programming language: it is an 'integrated computational 

medium' designed with explicit pedagogical intentions. What this means and what 
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these intentions are then considered in terms of Boxer's design and implementation. 
Moving from a general discussion of structural and functional modelling, the chapter 
outlines the underlying models of Boxer's design and the two central principles 
(`naive reality' and 'the 'spatial metaphor') which guided that design. Finally, the 

chapter reviews currently available Boxer research. 

1.2.2: Methodology 

Chapter 4 'Methodology' details the research methodology employed: the nature of 
the data collected, the methodology for collection, and describes the classroom setting 
and the role of the researcher. It also records how these changed during the course of 
the research both as a consequence of the findings of the exploratory study and in 
order to adapt to the modified classroom conditions from the exploratory to the 
longitudinal stage. The empirical stages of the research form the subjects of chapters 

5 to 9, as depicted in Figure 1.2. 

Figure 1.2: A diagrammatic representation of the research 
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Writing on the role of intervention in learning, Hoyles and Noss (1992b, p. 32) 

describe "a critical tension between the need to allow students room for manoeuvre 

and exploration on the one hand, and our own intentions and structuring on the other". 

The methodology of this thesis can be seen as attempting to resolve this tension over 

the course of longitudinal study. From an initial structured setting which aimed to 

establish a baseline of programming knowledge, it devolved increasing degrees of 

freedom to the learner as the research progressed to and through the number phase. 

Each of these phases were characterised by their own distinctive methodology: the 

programming phase by the exploitation of the medium to introduce itself; the 

interview phase by its aim of integrating students' knowledge into the research 

design, and the number phase by its constructionist nature. 

1.23: The Exploratory study 

Chapter 5 'Exploring the medium' describes the exploratory stage of the research 

whose major aim was to identify and refine issues for the longitudinal study. It gives 

an account of how students who had previous Logo experience adapted their 

knowledge in learning to program in Boxer, and it relates how a vector representation 

was used to explore students' understanding of number. In terms of the thesis as a 

whole, it shows how ethical considerations combined with the aim of establishing a 

foundation of programming knowledge over the long term led to the iterative design 

of the programming phase of longitudinal study (chapter 6). 

1.2.4: The Longitudinal study 

1.2.4.1: the programming phase 

Chapter 6 'Exploiting the medium' describes the programming phase of the 

longitudinal study. It gives an account of how the aims outlined above were put into 

practice by using the medium to introduce itself. Data was obtained by closely 

observing four representative pairs of case study students using three micro-worlds: 

`First-Boxer', Second-Boxer' and 'Third-Boxer'. This data was combined with that 

obtained from the teacher's observations of the rest of the class, who were 

independently using these same micro-worlds, to effect the process called 'iterative 

design'. The chapter documents this 'iterative design' process with the dual aim of 

showing how the students learnt to program in Boxer and to highlight the issues 

involved in using the medium to introduce itself. 
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1.2.4.2: the semi-structured interviews 

Chapter 7 'Students' Interpretations and Representations of Number' gives an account 
of the semi-structured interviews carried out with students from the Boxer group and 
those from a parallel year six class. Just as the exploratory study had refined issues 
for the programming phase, this study helped to refine issues for the number phase. It 
clarified the ways in which these students thought of number in general, and of 
directed numbers and decimals in particular. In particular, it highlighted their action-
based meaning for fractions and led directly to the 'operational' approach adopted in 
the two number studies. Moreover, it began to establish some baseline knowledge of 
the kinds of representations that they used and found useful for depicting these 
numbers. By comparing the Boxer students with those from a parallel class, it 
accentuated differences which pointed to medium and thus helped to shape the next 
phase of the research. 

1.2.4.3: The Number Line Study  

Chapter 8 'The Number Line Study' recounts the first of two number studies whose 
design was influenced by the earlier exploratory stage (chapter 5), the number 
investigations of the programming phase (chapter 6), and the results of the semi-
structured interviews (chapter 7). It describes how the case-study students utilised 
their programming knowledge to construct an 'operational' number line 
representation in Boxer, and relates how the insight gained through this construction 
influenced their subsequent interactions with it. 

The study shows that, within the medium of the Boxer students displayed a facility for 
manipulating directed numbers and decimals which was at odds with research with 
older students in conventional media — differences all the more remarkable since no 
direct teaching was involved. Chapter 8 acknowledges the situated nature of such 
learning, but it gives specific instances of the ways that the number line device 
mediated students' expression of number, and asserts that the evidence points to the 
students' own constructs of the Boxer number line as being a powerful mathematical 
object through which they constructed meaning for number. 

1.2.4.3: The Function Machine Study  

Chapter 9 'The Function Machine Study' describes the second of the two number 
studies. It gives an account of how in replicating a classroom project (making 
cardboard models of function machines) in Boxer, the students utilised and extended 
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their programming knowledge. It shows how the insight gained through this 

construction influenced their subsequent interactions with it. It then analyses the 

ways this 'operational' Boxer object mediated their expression of number. 

In doing so, it both reinforces and differs from the findings reported in chapter 8. In 

reinforces them to the extend that it demonstrates again how students developed an 

extraordinary fluency in dealing with directed numbers and decimals within the 

medium. It differs in the manner that the function machine mediated their expression 

of number. Whereas the Boxer number line seemed to dispose students to attend to 

what might be categorised as geometrical aspects of number, such as those relating to 

the number continuum, the function machine seemed to push them towards algebraic 

aspects. The function machine context entailed approaching number through algebra 

(in opposition to the usual school approach) and student activities and descriptions 

reflect that approach. They sought and adapted functions to map one set of numbers 

to another, and they constructed meaning in terms of operations or inverse operations. 

1.2.5: Summary and Implications 

Finally, Chapter 10 summarises the research. The results are discussed from the 

perspective of the theoretical models developed in earlier chapters. The conclusions, 

including implications for future research, are considered both in relation to the 

design of the longitudinal study and in terms of the interactional nature of the 

computational objects through which the students developed their sense of number. 
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Chapter 2: Learning Mathematics and Learning about 
Number 

2.0: Overview 

This chapter is about learning mathematics generally, about learning number in 

particular, and about how learning environments can be created through 

programming. It draws on theory and research relating to each of these. From a 

theoretical perspective, it discusses issues relating epistemology, constructivism, 

social constructivism, concept analysis and intuition. From a research perspective, it 

considers the body of knowledge that has been built up by Logo researchers over the 

years, and explicates Papert's notion of constructionism and concreteness. It then 

narrows the focus to number, discusses the literature relating to 'number sense' and 

recounts the research findings relating to the learning of decimals and directed 

numbers. Finally, it considers the relationship between conceptual and procedural 

knowledge. 

2.1: Learning Mathematics — A Theoretical Perspective 

Theory is essential to organise our knowledge on mathematics education in coherent 
systems of description and in powerful concepts. In order to understand how individuals 
develop or fail to develop knowledge, it is essential to discuss alternative interpretations of 
constructivism and other theoretical frameworks. 	(Vergnaud, 1987a p. 43) 

2.1.1: Epistemology 

Like many theses in mathematics, this one begins with Piaget. The Piaget of stage 

theory is, of course, well known. But this Piaget is, in Papert's words: "essentially 

conservative, almost reactionary, in emphasising what children cannot do." He, by 

contrast, identifies: "more revolutionary Piaget, one whose epistemological ideas 

might expand the known bounds of the human mind." (1980, p. 157). Other writers 

have uncovered similar ideas in Piaget, but use different phrases to express what they 

have found, e.g., 'revolutionary constructivist epistemology' (Cobb, 1986) 'dialectical 

constructivist' (Higginson, 1980; Sinclair, 1987) 

Higginson (op cit.) identifies two fundamental characteristics of the theory. Firstly, 

the child actively constructs her/his own reality. Secondly, this construction process 

is dialectical. The critical analysis of existing structures yields new structures which 

incorporate the old ones. The image of the child as a dialectical constructivist, he 
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suggests, is compatible with views of 'the child as scientist', and he draws on the 

work of Ginsburg (1977) as evidence of the ingenuity of children's attempts to make 

sense of certain concepts and processes. 

Traditionally, epistemology has been used to describe the study of the conditions of 

validity of knowledge. Papert (1980) writes that Piaget's epistemology is concerned 

not with validity of knowledge but with its origin and growth. When Piaget writes 

about the developing child, he is in fact writing about the development of knowledge. 

This statement allows a contrast to be drawn between epistemological and 

psychological ways of understanding learning. In a purely psychological perspective, 

the focus is on the laws that govern the learner rather than on what is being learned. 

"For Piaget, the separation between the learning process and what is being learned is a 

mistake: the way to understand how children learn number is through a deeper 

understanding of what number is" (Papert, op cit. p. 158). 

Vergnaud (1990) distinguishes three interweaving strands of knowledge: 

epistemology of mathematics, epistemology of psychology, and epistemology of 

mathematics education. There are, he suggests, several approaches to the 

epistemology of mathematics. Firstly, there is the spontaneous reflection by 

mathematicians themselves on the nature of their knowledge and on the nature of the 

invention and discovery process. (cf. Poincare, 1913, 1920; Hadamard, 1949). 

Secondly, there is the historical approach. Its aim is to understand the scientific and 

social environment in which new mathematical concepts and techniques have 

emerged and developed (cf. Davies and Hersh, 1981). Thirdly, there is the 

mathematical-philosophical debate on the foundations of mathematics, e.g., logicism, 

intuitionism, formalism, constructivism etc. 

The epistemology of psychology, he writes, has different roots. The first of these 

relates to the nature of objects that psychology is concerned with as a science: 

behaviour, consciousness, unconsciousness, elementary modules of action, 

perception, and memory, complex organisations of behaviour, complex 

representations? Secondly, the kinds of models that can be used to give an account of 

psychological phenomena: associations, inborn mechanisms, general biological 

processes like adaption, neuro-physiological models, linguistics, computer science 

models. Finally, he says, the epistemology of mathematics education inherits 

questions from both fields and new ones because: "Mathematics education takes place 

in a certain society, a certain institution, a certain classroom, with such different aims 
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as the education of future mathematicians and the education of rank-and-file citizens." 

(Vergnaud et al., 1990, p. 15). 

2.1.2: Constructivism 

Piaget, according to Vergnaud (1987a) was, in his day, the most systematic theorist of 

constructivism. But, what exactly is constructivism, and what are its implications for 

the teaching and learning of mathematics? One answer to the first of these two 

questions is given by Novak (1986) who sets constructivism in opposition to 

behaviourism and positivism: 

As long as we were saddled with behaviourism and positivism, ... there was no need to 
discuss the concept of number, line, point, slope, and so on. And few worried where the 
concepts came from, who created them, and how concept meanings evolve over time, or 
change with context. But cognitive psychologies and constructive epistemologies tell us 
that we must concern ourselves with the latter issues. 	(Novak, 1986, p. 181) 

A more definitive approach is taken by Kilpatrick (1987) who writes that the 

constructivist view involves two principles: (1) Knowledge is actively constructed by 

the cognizing subject, not passively received from the environment. (2) Coming to 

know is an adaptive process that organises one's experiential world; it does not 

discover an independent pre-existing world outside of the knower. He observes that 

the first principle is much more acceptable than the second by many who call 

themselves constructivists. He writes (cf. Davis and Mason, 1986) that this second 

principle separates 'simple' constructivism from 'radical' constructivism. 

Von Glasersfeld (1987) refers to this latter principle as 'viability', i.e., a concept 

works or is viable to the extent that it does what we need it to do. Confrey (1995) 

points out that radical constructivism is itself subject to this principle, which she 

refers to as 'recursive fidelity'. Cobb (1986) uses the expressions 'empiricist-oriented 

constructivists' and 'radical constructivists' to express the same divide. Vergnaud 

(1987a) sees two independent ideas in the second principle: the adaptive process, and 

the radical constructivist's denial of an independent pre-existing world for the other. 

He does not see the necessity to accept the latter of these in order to be a radical 

constructivist. 

One dilemma that would appear to arise from the adoption of a radical constructivist 

position is how does one person know if their construction of reality is the same as 

another's? Confrey (1985) stresses that, for the constructivist, there can be no certain 

knowledge that another person's construct is identical to one's own, but she also 
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points to the role of others in the construction process. This corresponds with Piaget's 

view, according to Sinclair (1987) who says that the quality of knowledge gathered 

through our actions on the real world is determined by the ways in which reality 

reacts to our interventions and by its correspondence to the knowledge that other 

people have constructed. She quotes (op cit., p. 32) Piaget as saying "Objective 

knowledge is only attained when it has been discussed and checked by others". This 

seems to accord well with Vergnaud's position who writes: 

I see constructivism as the best way to consider the process of appropriation by which a 
student makes mathematics his own knowledge. Rather than a pure and lonely construction, 
the learning of mathematics is for me the difficult appropriation of a social knowledge. 

(Vergnaud, 1987a, p. 53) 

Kilpatrick (op cit.) cites Von Glasersfeld (1983) as setting out the pedagogical 

implications of constructivism as follows: 

(i) teaching is sharply distinguished from training (the former is aimed 
at understanding, the latter at repetition); 

(ii) processes inferred as inside the student's head become more 
interesting than overt behaviour; 

(iii) linguistic communication becomes a process for guiding a 
student's learning, not a process for transferring knowledge; 

(iv) students' deviations from the teacher's expectations become means 
for understanding their efforts to understand; 

(v) teaching interviews become attempts not only to infer cognitive 
structures but also to modify them. 

But, he points out that such consequences fit other philosophical positions as well. 

Creating a dichotomy between teaching and learning ignores contexts in which the 

two terms are used interchangeably. The contrast between internal and overt 

processes may simply be one of focus. The behaviourist teacher attempts to see in 

the overt action; the constructivist teacher attempts to see through it. The ensuing 

teaching actions, however, may not be any different. The metaphor of knowledge 

being constructed as opposed to knowledge being transferred is, he argues, only a 

metaphor. For Kilpatrick, the attention paid by constructivists to student errors is one 

of its most attractive aspects, but again he observes that "One need not be a 

constructivist to be interested in, or to study, the errors that students make that are 

contrary to the teacher's expectations" (op cit., p. 16). Finally, he notes that history, 

not logical necessity, links the teaching interview to constructivism. 
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Constructivists, according to Kilpatrick, need to clarify and develop their ontological 

commitments. They need to think through and spell out more clearly than they have 

done thus far the relationships between constructivism and mathematics as a 

discipline and mathematics as a school subject. Finally, he says that constructivism 

needs to become connected to reality: the reality of everyday scientific activity, 

mathematical investigation, and classroom practice. 

Confrey (1994) acknowledges limitations in constructivism, amongst which she lists 

its assumption that: "a theory of learning provides an adequate theory of instruction." 

(p. 7) and its heavy dependence on the autonomy of the individual. Simon (1995) 

contends that constructivism: "does not tell us how to teach; that is it does not 

stipulate a particular model" (p. 114), an interpretation accepted by Steffe and 

D'Ambrosia (1995) who reply: "We expect different mathematics educators working 

in a constructivist epistemology to generate different specimens of teaching" (p. 147). 

Dubinsky (1991), while not using the term `constructivism,' nevertheless emphasises 

the importance of the constructive process. Moreover, he goes some way in setting 

out an instructional approach and indicates the importance of computers in fostering 

`reflective abstraction', a concept which he writes was: "... introduced by Piaget to 

describe the construction of logico-mathematical structures by an individual during 

the course of cognitive development." (p. 95). 

2.13: Contextualising Constructivism 

One theorist who attempts to connect constructivism with pedagogy is Bruner. 

Bruner's theory of cognitive development is marked by his attention to representation, 

language and the influence of the social setting. He writes that the child first knows 

her world principally through the action she directs towards it. Later, she is able to 

form images of objects in their absence and this helps to free her from purely action-

guided representation. Finally, she can convert both action and image into symbols 

such as words. Bruner (1968) calls these three modes of representation: enactive 

representation, iconic representation and symbolic representation. They appear in that 

order and all three remain with us throughout our lives. 

In his view, cognition is influenced as much from the outside in (culture) as from the 

inside out (mental structures). Bruner (1980) believes that cognitive growth is 

dependent on our abilities to link ourselves to what he calls: "culturally transmitted 

amplifiers of motor, sensory and ratiocinative capacities" (p. 326). These 'amplifiers' 

can range from a primitive cutting-tool to a modern microscope, and include theory, 
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myths and language. In contrast to Piaget, he stresses the importance of language. He 

argues (1980) that: "language provides a means not only for representing experience 

but also for transforming it." (p. 330). 

Bruner, again departs from Piaget, in that he is concerned with pedagogical issues. 

The teacher, he argues, should not slavishly follow the course of cognitive growth. 

Rather, he says that the aim should be that of tempting the child into the next stage of 

development. We can see in Bruner's theories the unmistakable influence of 

Vygotsky with respect to culture, with respect to language and with respect to the 

`zone of proximal development'. 

According to Confrey (1995), the attention to the role of tools in mediating 

knowledge is a clear focus of Vygotsky theory. This focus, she writes: "led him to 

propose that language is itself a form of psychological tool" (p. 41). Forman and 

Cazden (1985) stress that Vygotsky is not simply claiming that social interaction leads 

to the development of the child's abilities. "Rather, he is saying that the very means 

(especially speech) used in social interaction are taken over by the individual child 
and internalised." (p. 323). 

They write that, whereas for Piaget social experiences derive their importance from 

their potential for cognitive conflict, Vygotsky's ideas offer insights in situations 

where mutual guidance and support are evident. They say that he acknowledged the 

discrepancy between solitary and social problem solving when he developed his 

notion of the zone of proximal development. He defined this zone as "the distance 

between the actual developmental level as determined by independent problem 

solving and the level of potential development as determined through problem solving 

under adult guidance or in collaboration with more capable peers" (1978, p. 86). 

According to Vygotsky, development proceeds when inter-psychological regulation is 

transformed into intra-psychological regulation. 

The notion of a zone of proximal development, he writes, "enables us to propound a 

new formula, namely that the only 'good learning' is that which is advance of 

development" (op cit., p. 89). Bruner (1985) writes of an apparent contradiction 

between these two proposals for on the one hand the zone of proximal development 

has to do with "consciousness and control", but to imply that "good learning" is in 

advance of development seems to negate this. He resolves it with the following 

formulation: 
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If the child is enabled to advance by being under the tutelage of an adult or a more 
competent peer, then the tutor or aiding peer serves the learner as a vicarious form of 
consciousness until such time as the learner is able to master his own action through his own 
consciousness and control. When the child achieves that conscious control over a new 
function or conceptual system, it is then able to use it as a tool. Up to that point, the tutor in 
effect performs the critical function of "scaffolding" the learning task to make it possible for 
the child, in Vygotsky's word, to internalise external knowledge and convert it into a tool 
for conscious control. (Bruner, 1985, p. 24) 

Vygotskian perspectives have served as a starting point for many studies. Some have 

focused on the teacher-pupil relationship whilst others have chosen the pupil-pupil as 

their focus. Jaworski (1990) has studied the "acts a teacher undertakes to facilitate a 

pupil's mathematical progress" (p. 94) while Forman and Cazden (1985) have 

explored instead the value of peer-interaction. The notion of 'scaffolding' has also 

been extended from that of adults and capable peers to include the computer (Hoyles 

and Noss 1993c; Noss and Hoyles, 1987). 

However, Hoyles and Noss (1993c) explicate differences between their formulation of 

scaffolding and that of Bruner and his colleagues. Firstly, they place the computer in 

the role of the human tutor, yet seek to do so in such a way that the learner retains 

control. Secondly, they observe that the traditional view of scaffolding is 'universal' 

in that it is independent of context. Their notion, by contrast, is domain contingent. 

Finally, they write that their notion is concerned with scaffolding of concepts rather 

than skills. 

2.1.4: Concepts 

Another theorist who attempts to connect the constructivism of Piaget with the 

realities of pedagogy is Vergnaud. He (1987a) equates Piaget's 'normative facts' 

(Sinclair, 1987) with his own 'invariants', or 'theorems-in-action'. But, whereas 

Piaget analysed tasks in terms of their logical structure, Vergnaud begins with an 

analysis of concepts. He writes (1984, p. 19) that a concept can be considered as a 
triplet of three sets: C = {S, I, where: 

S: 	the set of situations that make the concept meaningful; 

the set of invariants (or 'theorems-in-action') that constitute the concept and 
insure its stability under certain classes of transformations and variations; 

t: 	the set of symbolic representations that may represent the concept and the 
situations in which it is involved. 

In other words, he calls S the referent, I the signified and the signifier. 
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He argues that the core of cognition lies in the operational invariants that students 

gradually discover or appropriate. He proposes that a large part of our knowledge is 

only implicit: we take up information with the help of invariants without expressing 

or even being able to express these invariants. This is especially visible in students' 

mathematical behaviour. Very often, they choose the right thing to do without being 

able to articulate the reasons for it. The cognitive analysis of such behaviours very 

often reveals the existence of powerful implicit mathematical concepts and theorems, 

which Vergnaud calls concepts-in-action or theorems-in-action. 

The situation, he says, is made more complex by the fact that not only does a concept 

refer to a variety of situations, but each single situation cannot usually be analysed 

with only one concept. He uses the expression 'conceptual-field' to describe such 

entities, and adds (1983a) that conceptual fields develop over a long period of time. 

Elsewhere, Vergnaud (1988a) writes that the main reason that mathematics 

researchers should study such comprehensive systems as conceptual fields is to 

understand the filiations and jumps in students' acquisition of knowledge; while 

theorems-in-action are a way for us to analyse students' intuitive strategies and to 

help them in transforming intuitive knowledge into explicit knowledge. 

2.1.5: Intuitions 

This latter appeal begs the question: "What exactly do we mean by intuitive 

knowledge?" Like visualisation (chapter 3), it is very often taken as a primitive 

concept, i.e., one which requires no further explanation. But, as Fischbein (1978) 

writes, it is not enough that we use the term 'intuition' to describes certain forms of 

thinking. Rather we must characterise and analyse the nature of intuitions: 

Intuition has an important impact on mathematical thinking, whether positive or negative. 
So it cannot be neglected by mathematical education. Both in trying to use its beneficial 
qualities and in striving to eliminate intuition from pupils' mathematical reasoning, we have 
to take into account its possible effects. 	(Fischbein, 1978, p. 151) 

He writes that great mathematicians such as Felix Klein and Henry Poincare accepted 

that intuitions played an active role in mathematical invention and mathematical 

education. But he contends that it is philosophers rather than psychologists who have 

seen in intuition a fundamental source of knowledge (op cit.). He aims to remedy this 

deficit and to reveal the implications of his analysis for mathematical education. He 

describes different characteristics of intuitions: 
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(1) 	They seem to be self-evident. No arguments appear to be necessary to convince 
us of their truth, and this explains their great impact on the course of thinking. In 
educational terms, students may not see the necessity to prove what is obvious. 

(ii) As a consequence of their self-evidence, intuitions exert a coercive effect on the 
processes of conjecturing, explaining, and interpreting various facts. Several 
educational results of this can be seen. Firstly, the intuition may be so strong 
that it dominates any alternative explanation. Secondly, two opposite 
interpretations may co-exist for a long time without the subject being aware of 
the contradiction. 

(iii) Intuitions are marked by their capacity to extrapolate. Whereas logical thinking 
makes predictions on the basis of rigorously and explicitly established 
arguments, intuition represents a leap which cannot be completely justified. 

(iv) Intuitive judgements are inclined to be global. They are also frequently 
expressed by a visual symbolisation. 

He proposes a classification of intuitions and analyses certain mechanisms like over-
confidence, premature closure (a halt to the search for new information), and the 
primacy effect (giving privilege to first interpretations). Fischbein gives examples of 
correct mathematical intuitions (transitivity of equivalence) and over-generalised 
intuitions (multiplication makes larger, division makes smaller). He also gives 
examples of primary intuitions (the more space, the more things), and secondary or 
constructed intuitions (conservation of quantity). He observes that intuitions change 
in the course of cognitive development: the intuition of subtraction is different for a 5-
year-old and a 16-year-old, as is the intuition of similarity. The feeling of immediacy 
that we have with our intuitions is therefore misleading and needs to be analysed as 
the result of accommodation to experience and as a change in implicit knowledge. 

Fischbein's analysis of intuitions, Vergnaud's analysis of concepts, and Bruner's 
theory of cognitive development with its constituent themes of representation, 
language and social interaction together form a backdrop to the work of mathematics 
educators who have explored the creation of learning environments through Logo. 

2.1.6: Constructing Learning Environments 

There is now a considerable literature on the use of Logo and the learning of 
mathematics (Hoyles and Noss, 1987a, Hoyles and Sutherland, 1989; Hoyles and 
Noss, 1992a). Likewise, a sophisticated pedagogy has been built up concerning the 
nature of mathematical microworlds (Hoyles, 1987; Hoyles and Noss, 1987a, 1992b, 
1993a). Summarising the literature, Hoyles and Noss (1987a) distinguish two distinct 
strands in the Logo research: those that have taken a content-related approach and 
those that have adopted a heuristic approach, neither of which have been particularly 
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successful. Elsewhere (1993b), they conclude that Logo is best viewed as a 

`conceptual framework' with which children learn mathematics. The critical 

question, they write, is: "whether and how the computer might offer support structures 

which fulfil a scaffolding role" (p. 418). Their tentative conclusion is that the 

computer can indeed fulfil this function by providing an environment through which 

intuitions can be made explicit, tested, and changed if necessary, thus making robust 

mathematical ideas built on intuitions. 

They consider such environments in relation to the role of concrete materials in the 

learning of mathematics, and observe (cf. Resnick, 1981; Hart, 1981) that the 

connection in the child's mind between the concrete and the abstract may not be at all 

clear. The problem, they say, is to lay connections between the concrete and the 

abstract in such a way that the child creates meaningful links between the two. The 

way to do this, they argue, "lies not in the use of concrete activity and then its 

formalisation, but in the continued use of concrete embodiments — moving backwards 

and forwards between the concrete and the abstract, between the general and the 

particular, and between pupil's conceptions and their formalisations" (1987, p. 586). 

Papert gives theoretical underpinnings to this conclusion through his notion of 

constructionism: 

Constructionism ... shares constructivism's connotation of learning as "building knowledge 
structures" irrespective of the circumstances of the learning. It then adds the idea that this 
happens especially felicitously in a context where the learner is consciously engaged in 
constructing a public entity ... (Papert, 1993b, p. 1) 

Papert puts constructionism in opposition to intructionism, but then writes that this 

simply looks like a split about strategies for knowing: two ways of thinking about the 

transmission of knowledge. The differences, he argues, are more profound. They are 

not merely about the acquisition of knowledge: they are about the nature of 

knowledge and the nature of knowing, and these are epistemological issues. 

Traditional epistemology, he writes, gives a privileged position to knowledge that is 

abstract, impersonal, and detached from the knower and treats other forms of 

knowledge as inferior. "But, feminist scholars have argued that many women prefer 

working with more personal, less detached knowledge and do so very successfully." 

(op cit., p. 10). Elsewhere, Turkle and Papert (1993a) analyse the abstract-concrete 

dichotomy in epistemology and argue the case for a 'revaluation of the concrete'. 
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Wilensky (1993) takes this as his starting point. He writes that concreteness is not a 
property of an object but rather a property of a person's relationship to an object. The 
more connections we make between an object and other objects, the more concrete it 
becomes for us. Once we see this, he continues, it is not difficult to go further and see 
that any object/concept can become concrete for someone. 

The pivotal point on which the determination of concreteness turns is not some intensive 
examination of the object, but rather an examination of the modes of interaction and the 
models which the person uses to understand the object. This view will lead us to allow 
objects not mediated by the senses, objects which are usually considered abstract — such as 
mathematical objects — to be concrete; provided that we have multiple modes of 
engagement with them and a sufficiently rich collection of models to represent them. 

(Wilensky, 1993, p. 199) 

This notion of concreteness as a relational property, he writes, turns the standard 
Piagetian view on its head. "The lesson we take from Piaget is not that the child 
develops by leaving behind the primitive world of concrete operations and leaping 
into the enlightened world of adult formal operations. Rather ... the child concretises 
his or her world by engaging in multiple and complex relationships with it" (p. 199). 

How this might occur in practice is the theme of Harel's (1991) research. She 
describes how fourth grade children designed a piece of software with the aim of 
teaching fractions. In doing so, they were learning about Logo and learning about 
fractions. She writes that whereas conventional approaches to teaching fractions have 
focused on manipulative aids, i.e., helping the child to move from the concrete to the 
abstract, her research design provided students with an environment in which to 
explore relationships between different representational modes. 

2.2: Learning Number — A Research Perspective 

To understand how a child learns number, we have to study number. And we have to study 
number in a particular way: We have to study the structure of number, a mathematically 
serious undertaking. (Papert, 1980, p. 158) 

2.2.1: Introduction 

The term 'number' has a simplicity about it which can be misleading. On the one 
hand, it would seem that everyone knows about number. On the other hand, 'number' 
encompasses such a wide field that researchers have generally felt obliged to restrict 
their inquiries to one aspect of it. Hence, they have tended to examine children's 
understanding of Decimals as distinct from children's understanding of Fractions, as 
distinct from their understanding of Directed Numbers and so on. This choice of 
categories reflects, to a large extent, the manner in which schools deal with these 
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areas, with the hierarchy: Whole Numbers --> Fractions --> Decimals --> Directed 

Numbers reflecting the order in which children are taught these topics. 

Moreover, there is a depth to the acquisition of number concepts that further defines 

research in this field. Researchers such as Piaget (1965) have alerted us to the 

complexity involved in the acquisition of number concepts by very young children; 

for example, in discriminating between ordinal and cardinal aspects. Post-Piagetian 

researchers (Gelman and Gallistel, 1978; Donaldson, 1987, Ackermann, 1993) have 

shown us that the situation is even more complex than Piaget thought, by 

demonstrating the powerful influences of language and context. In research with 

primary school children aged 9 - 11, a review of the number literature pertaining to 

early childhood was deemed inappropriate. On the other hand, my desire to explore 

children's 'developing sense of number' in a Boxer environment clearly pointed to the 

need to consider context. As Vergnaud (1978) points out: 

It is hopeless to try to understand the acquisition of arithmetical concepts and to propose 
better conditions for the child to understand them if one does not make the effort to analyse 
the tasks through which these concepts are made meaningful and useful to the child. 

(Vergnaud, 1978, p. 347) 

A third approach to number is that usually adopted by researchers interested in topics 

such as estimation and is labelled 'number sense'. Thus, Sowder (1989) writes that 

"... number sense refers to a well-organised conceptual network that enables one to 

relate number and number operations, and to solve number problems in flexible and 

creative ways." (p. 381). These three categories are not intended to be exhaustive of 

all number research. Rather, they identify three trends which intersect in the present 

research. The review of the literature will reflect that intersection. 

2.2.2: Number Sense 

Sowder (op cit.) draws attention to Marshall (1989), who suggests that we think of 

number sense in terms of the 'connectedness' of a vast network of nodes of 

mathematical knowledge. For example, students may have knowledge about whole 

number properties and about addition of whole numbers, but these topics may be 

encoded in memory without being connected. Thinking of number sense as the 

connectedness of number knowledge implies that number sense is not a body of 

knowledge to be taught, but rather that teaching should focus on the development of 

links between nodes of number knowledge. 
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McIntosh, Reys and Reys (1992) trace the origins of the phrase 'number sense' to a 

desire to replace the word 'numeracy' by one which does not have its abstract ring or 

its association with a conservative and sterile view of mathematical needs. But, they 

remark that the phrase itself is open to different interpretations. For them: 

Number sense refers to a person's general understanding of number and operations along 
with the ability and inclination to use this understanding in flexible ways to make 
mathematical judgements and to develop useful strategies for handling numbers and 
operations. 	 (McIntosh, Reys and Reys, 1992, p. 3) 

Other characteristics which they say typify 'number sense' include: 

• the theme of learning mathematics as a sense-making activity; 

• its acquisition as a gradual, evolutionary process, beginning long before the start 
of formal schooling; 

• growing older does not necessarily ensure either its development or utilisation; 

• it is triggered by the context in which the mathematics evolves; 

• it is highly personalised and is related to what ideas about numbers have been 
established and also how these ideas were established 

However, they acknowledge that merely listing the components of number sense or 

the attributes of the students who possess it is insufficient in itself. They agree with 

Greeno (1991) who suggests that 'number sense' is a term that requires theoretical 

analysis, rather than a definition. Often it seems that 'number sense' is apparent by its 

absence, and, as the following section indicates, its absence is frequently marked by 

the lack of connectedness between number concepts and number algorithms. 

2.23: Directed Numbers 

In this country, children are not usually taught directed numbers until the secondary 

school. One reason for this seems to be the general recognition of the difficulties 

which children have in this area (Bell, Costello and Kiichemann, 1983). In this, they 

are in good company, for, as the history of mathematics shows (Vergnaud, 1990; 

Hefendehl-Hebeker, 1991), negative numbers provided intellectual obstacles which 

many great mathematicians failed to overcome. However, acknowledging difficulty 

need not imply avoidance or even postponement: 

Studies on the acquisition of negative numbers reveal long-lasting obstacles in 15- to 16-
year old students, especially when they have to multiply a negative by a negative or when 
they come to a negative solution. Paradoxically, there are some aspects of negative 
numbers that can easily be understood by primary school students: a negative 
transformation (decrease, loss, consumption, backward displacement), a negative 
relationship (less than, debt), or even a negative abscissa (below the ground floor). 

(Vergnaud, 1990, p. 25) 
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With respect to operations on directed numbers, both the CSMS and APU studies 

found that addition was considerably easier than subtraction. The approach used in 

each was different with only the former employing explicit models, and so a direct 

comparison is not possible. In the CSMS research (Hart et al., op cit.), the facilities 

for these operations were typically of the order 80 - 90% and 36 - 77% respectively, 

whilst in the APU research (Foxman et al., op cit.), they were of the order 65% and 

50% respectively. Kfichemann (1981) reports on the misapplication of the rule 'two 

minuses make a plus in the case of subtraction but not multiplication. Arcavi and 

Bruckheimer (1981), in a comparison of different strategies for introducing the latter, 

found surprisingly little differences between them and the rote method which they 

characterised by reproducing the old adage: "Minus time minus equals plus - the 

reason for this we need not discuss" (p. 31). 

Kiichemann (op cit.) suggests that there are two main approaches to the teaching of 

directed numbers; an abstract axiomatic approach and one in which various models 

are used to elucidate the operation being used. The first of these, he argues, has 

advantages in terms of mathematical consistency but he doubts whether such an 

approach would be accessible to all but a minority of secondary school children. This 

conclusion, he claims, is supported by the work of Collis (1975, 1978) who argues 

that the ability to work consistently within an abstract mathematical system requires 

formal operational thought. 

On the other hand, he says that the concrete approach suffers the disadvantage that the 

models are not consistent across operations. Thus shifts along the number line 

appears to succeed for addition but not for subtraction. He suggests abandoning the 

number line model completely in favour of one in which the positive numbers are 

seen in terms of cancelling out the negative numbers. Rowland (1982) reports some 

success using such a model. 

Kiichemann's argument raises an interesting question: namely, whether a model needs 

be consistent over operations, or indeed different numbers? In a different context, 

diSessa (1986b) addresses this question. He uses the term 'patchwork' to describe the 

manner in which we employ different models as explanatory devices to account for 

different aspects of complex phenomena. The trade-off, he suggests, is between 

doing this or using ever more complicated — if consistent — models. 
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2.2.4: Place Value and Decimals 
It is above all clear that the learning of whole numbers and decimals is not just a matter of 
recalling some place-names and a few rules of computation, as it often appears from the 
textbooks. Indeed the children who did rely blindly on rules more often misapplied them 
than not. Instead, it involves internalising a whole chain of relationships and connections, 
some within place-structure itself (e.g., 0.9 is equivalent to 0.90), some linking to other 
concepts like those of fractions (e.g., the notion of one hundredth and its relationship to one 
tenth), some visual correspondences and some connecting to applications in the 'real' world. 

(Brown, 1981, p. 64) 

In the APU surveys (Foxman et al., 1985), the most difficult whole number items for 
11 year-olds were those concerned with the relationship between the column values of 
a number. For example, children presented with the numbers 107, 71, 7, 710 and 
asked to 'Put a ring round the number in which the 7 stands for 7 tens', only 69% 
chose the correct answer (ibid., p. 42). The facility level for the item 'The number 
which is one less than 2010 is' was similar: 71% (ibid., p. 42). Another item which 
asked 'Which number is ten times 1000?' received a correct response of only 62% 
(ibid., P. 44). The attainment band analyses suggested that the bottom band, in 
particular, at age 11 had considerable difficulty with items which relate to place value. 

This finding is corroborated by Brown (1981) who reports that, the weakest children 
when interviewed showed only a superficial knowledge of place value. For example, 
8030 was read as 'eight hundred and thirty'. Conversely, the correct oral answer was 
given in response to 'add ten to 3597' but recorded as 367. She noted that items 
containing numbers over a thousand exposed uncertainties even among children of 

average attainment. 

Carpenter et al. (1981) note that in order to construct an understanding of decimals, 
students needed to have an appreciation of place value and a firm grasp of the 
relationship between decimals and common fractions. Their results suggest an 
absence of each. They say that, since the 9-year-olds in their research had not yet 
studied decimals, it was not surprising that they ignored the decimal and interpreted 
the number as a whole number. They also noted that fewer than 1 percent of the 9-
year-olds gave the correct decimal equivalent for a fraction expressed in tenths. 55 
percent of 13-year-olds could undertake this latter task, but "as many chose 0.5 for the 

decimal equivalent of 1/5 as chose the correct response 0.2." (p. 35). 

In the APU surveys, items were used which involved the direct examination of the 
value of particular columns, decimal equivalents of fractions which were tenths or 
hundredths, or ordering of decimals. Facilities were less than half those for 
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of places to the right of the decimal point." (p. 33). Certainly, in the present research, 

children did consider 0.25 to be bigger than 0.3, but since they also thought 0.5 and 

0.50 to be different numbers, Grossman's explanation may be inadequate in itself. 

Nesher (op cit.) observes that when asked to write the rational number 3/4 in decimal 

form, some of the students wrote 3.4, 0.3 or 0.34. She goes on to claim that children 

are consistent in the rules that they apply, each of which emerges from previous 

knowledge: the DPI error from the domain of whole numbers and the LS error from 

the domain of rational numbers. This theory of a 'retrieval of incorrect frames' 

(Davies, 1984) is supported by Zazkis and Khoury's (1993) study of pre-service 

teachers' understanding of rational numbers in bases other than ten. They record 

similar examples of students over-generalising and ignoring the 'separating point'. 

How schooling influences such errors is considered by Resnick et al. (1989) who 

conclude that: "different curriculum sequences produce different patterns of rule 

invention." (p. 25). 

On the other hand, Fischbein et al. (1985) in their research with Italian children 

(grades 5, 7 and 9) appear to confirm the universality of certain strategies. They 

hypothesise that: "Each fundamental operation of arithmetic generally remains linked 

to an implicit, unconscious, and primitive model." (p. 4), and write that: "A next step 

in this line of research would be to attempt to provide learners with efficient mental 

strategies that would enable them to control the impact of these primitive models." (p. 

16). The widely reported 'multiplication makes it bigger' and 'division makes it 

smaller' syndrome is a case in point (Brown, 1981; Foxman et al., 1985). They argue 

that the misconceptions follow from the model of multiplication as repeated addition. 

Greer and Mangan (1985) report changing the multiplier from an integer to a decimal 

less than one lowered performance by about 46% while Graeber and Tirosh (1990) 

report that such beliefs are held by students as early as the fourth and fifth grade. 

Vance (1986) identifies two characteristics of the rational numbers which makes them 

more difficult to learn than whole numbers: "(1) each rational number has many 

different names, and (2) the rational numbers are dense — between any two numbers is 

another number." (p. 56). In his research with grade 6 and 7 classes, many students 

expressed frustration in trying to find a number between 0.23 and 0.24 or between 3/5 

and 4/5, and he writes that the answers 0.231/2 and 31/2/5 were often tentatively 

proposed. He concludes: "If students are to use decimals and fractions in problem 

solving and estimation situations, they must be able to visualize the numbers 
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comparable whole number tasks. Typical results, at age eleven, for giving decimal 
equivalents of 3/100 or 4/100 were 40 to 45%. Tasks which involved ordering or 
selecting the largest or smallest of decimals less than one saw an even more dramatic 
fall in facility to 20% (ibid., p. 48). 

When asked to "Put these decimals: 0.07, 0.23, 0.1 in order of size, smallest first.", 
the correct response was given by 23% of the children. On the other hand, if each 
item contained the same number of decimal places, the facility level increased 
substantially. Asked to "Put these decimals: 0.3, 0.1, 0.7, 0.6 in order of size, smallest 
first.", the responses increased to 75%. The large discrepancy in the success rates of 
these two items was attributed in Primary Report No 2 to the greater complexity of 
the first item in that only one decimal place was involved in the latter. The 1985 
Report recognised two distinctive errors which occurred: 'Decimal Point Ignored 
(DPW and 'After the decimal point, largest is smallest (LS).' The APU authors 
made the observation with respect to these errors: "The DPI and LS rules are 
empirical descriptions which fit the results so far obtained; they do not indicate how 
individual pupils who make these errors think about decimals." (Foxman et al., p. 59). 
Brown (op cit.) gave one pupil's explanation of the first of these errors (in comparing 
0.75 and 0.8): "This is nothing before and seventy-five; this is nothing before and just 
eight" (p. 52). 

Brown writes that the major difficulty which the weaker children seemed to have was 
in understanding that the figures after the point indicated that part of the number 
which was less than one unit. "Instead, children seemed to think that the figures after 
the point represented a 'different' number which also had tens, units etc." (op cit., p. 
51), a finding corroborated by Carpenter et al (1981). In the present study, this way 
of thinking was often revealed by the way the students articulated decimals, e.g., 
`Two point forty three.' instead of say: 'Two point four three.' However, (Klein, 
1990) suggests that the latter way of verbalising decimals may not be much better. He 
argues that a number such as 2.43 should be expressed instead by: "the more 
meaningful two and forty-three hundredths" (p. 31). 

With respect to the LS error, Nesher (1985) reports: "In this case children claim that 
3.2 is bigger than 3.47, because the shorter number has tenths and the longer number 
has hundredths and tenths are bigger than hundredths." (p. 335). This hypothesis is 
supported by Grossman (1983) who attributes its cause to students "not having 
learned to annexe enough zeros to each decimal to give the decimals the same number 
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represented by the symbols and understand the elements of the representational 

systems." (op cit., p. 58) 

Students' difficulties with the number continuum have been reported elsewhere. On 

being asked: "How many different numbers can you get which lie between 0.41 and 

0.42?", (Hart, 1981) reports that the most popular answer was 8, 9 or 10. Similarly, 

when children (aged 14 — 15) were asked how many fractions came between 1/4 and 

1/2, over 50% gave a number less than 20, whilst 30% gave the answer 'one'. This 

latter answer, she attributes to their thinking in terms of unit fractions so that the only 

possible answer then is 1/3. (Hart, 1981). A follow-up study on fractions with 13 to 

14 year olds (Kerslake, 1986) found a related result. When asked to plot three 

numbers between 1 and 2 on a number line, ten children (out of a total of 59) said that 

there were none, and a further nine children made no response. She records two 

limitations in students' conceptions of fractions: "... that children find it difficult to 
think of a fraction as a number, and that they do not make a connection between alb 

and a ÷ b." (p. 98). 

Markovits and Sowder (1991), in their research with grade 6 students, record similar 

misconceptions. They conclude: "It would seem that instruction that focuses on the 

meaning of fractions and of decimals form a basis on which to build understanding of 

the relationship." (p. 11). Goldenberg's (1991) experiment would seem to support 

this conclusion. He relates how students' initial uncertainty about the existence of 

decimal quantities could be transformed by a carefully thought-out problem. 

2.2.5: Conceptual and Procedural knowledge 

Some writers attribute a lack of understanding to the nature of the relationship 

between conceptual and algorithmic approaches to number. Zawojewski (1983) 

makes a plea for helping children understand the concept of decimals prior to their use 

in computation. Owen (1987) notes how, pupils who could successfully compute 

with decimals, were unable to rationalise the processes. Wearne (1990) observes that 

students compensate for their lack of conceptual knowledge by resorting to 

memorising rules and procedures. Thipkong and Davis (1991) found that such 

conceptual difficulties were not confined to children. Many of the pre-service 

teachers in their study exhibited similar problems. They note that such teachers: 

"should first understand the concepts of decimal numbers. If they do not, decimals 

are likely to be taught as algorithms to be memorised rather than concepts to be 

understood" (p. 98). 
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Hiebert and Wearne (1986) observe that extending concepts of whole numbers into 
referents that are appropriate for decimal fraction symbols is a delicate process. 
Students must recognise the features of whole numbers that are similar to decimal 
fractions and those that are unique to whole numbers. As they say: "With some 
important exceptions, it is the conceptual features that generalise to decimals and the 
syntactic features that do not . The trick for students is to sort out which are which." 
(p. 204). Wearne and Hiebert (1988) conclude that: "it is difficult for semantic 
processes to penetrate routinised procedures." (p. 380). Thompson (1992), who used 
a computer-based microworld in his approach to decimals, relates how difficult it was 
to graft conceptual onto procedural thinking. He writes: "If students memorise a 
procedure meaninglessly, it is extremely difficult to get them to change it, even with 
extended, meaningful remediation." (p. 144) 

The distinction between different forms of knowledge in mathematics is an old one, as 
Hiebert and Lefevre (1986) make clear, frequently being expressed in the dichotomy 
of skills versus understanding. However, they say, there are differences between 
current discussions and those of the past. Present writers are more concerned with 
description as opposed to prescription. Secondly, the focus is no longer solely on 
school-based knowledge. Lastly, more attention is now being paid to relationships 
between concepts and procedures. This is a theme picked up by Silver (1986) who 
contends that when knowledge is used dynamically, it is the relationships among, and 
not the distinctions between, concepts and procedures that become of primary 
importance. 

Steinbring (1988) addresses this relationship in the context of arithmetic. He states 
that the four fundamental operations of arithmetic with decimals are presented in 
textbooks as direct 'generalisations' of the operations with natural numbers. "The 
only thing to do — this is often stated in textbooks — is to define exactly the correct use 
of the decimal point in the representation of the new numbers; apart from that, the 

pupil may calculate in the same way as with natural numbers" (p. 25). Furthermore, 
he asserts, that in the opinion of many mathematics teachers, the process of 

developing mathematical knowledge rests upon well-defined operations and 
algorithmic procedures and upon clear-cut formal definitions of concepts. He 
contrasts this to the research findings which indicate the important conceptual 
difficulties and misconceptions that pupils have regarding decimals. He raises the 
question (p. 30): "Does conceptual knowledge take priority over procedural 



knowledge in the frame of learning and understanding, or is procedural knowledge a 
`precursor' of conceptual knowledge?" 

Carpenter et al (1981) argue that conceptual understanding should precede 
computational proficiency: "We should be spending more time having children 
become familiar with decimals, their meanings and uses, before rushing directly to 
decimal computation." (p. 37). This issue is also addressed by Nesher (1986a) who 
questions whether teaching for understanding necessarily improves algorithmic 
performance. It is possible, she argues, that the opposite is true, i.e., "knowing the 
algorithms and procedures contributes to the student's understanding" (p. 8). Sfard 
(1991, p. 10) postulates: "... maybe even a certain degree in mastery in performing 
these processes, should be viewed as a basis for understanding such concepts rather 
than as its outcome, and she reproduces the following quote from Kilpatrick (1988): 

Why is it that so many intelligent, well-trained, well-intentioned teachers put such a 
premium on developing students' skill in the routines of arithmetic and algebra despite 
decades of advice to the contrary from so-called experts? What is it that teachers know that 
others do not? (Sfard, 1991, p. 10 cf. Kilpatrick, 1988) 

Noting the traditional dichotomy between conceptual and procedural knowledge, 
Sfard (op cit.) stresses instead the dual nature of mathematical conceptions. Treating 
mathematical notions as if they refer to some abstract objects, and characterising these 
notions as processes, she argues, are two sides of the one coin. She refers to these as 
structural and operational conceptions respectively. 

Seeing a mathematical entity as an object means being capable of referring to it as if it was a 
real thing — a static structure, existing somewhere in space and time. It also means to 
recognise the idea 'at a glance' and to manipulate it as a whole, without going into details. 

In contrast, interpreting a notion as a process implies regarding it as a potential rather than 
actual entity, which comes into existence upon request in a sequence of actions. 

(Sfard, 1991, p. 4) 

She argues that ability of seeing function or a number both as a process and as an 
object is indispensable for a deep understanding of mathematics, and she draws on 
both historical and psychological evidence to support her thesis. 

The history of numbers, she writes, can be seen as a long chain of transitions from 

operational to structural conceptions: "... again and again, processes performed on 
already accepted abstract objects have been converted into compact wholes, or reified 
(p. 14). Psychologically, her contention is that the acquisition of mathematical ideas 
follow a similar path: from an initial operational view of the notion, which in turn go 
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through the stages of Interiorisation, condensation, and reification', to a structural 

view. However, she notes a 'vicious circle of reification' in that a person must be 

quite skilful at performing algorithms in order to attain a good idea of the 'objects' 

involved, yet one must also have a conception of these objects since without them the 

processes are meaningless. She asks: "How can anything be a process and an object 

at the same time?" (1991, p. 151). 

The answer, according to Gray and Tall (1994), lies in the inherent ambiguity of 

mathematical symbolism. Mathematics is pervaded, they write, by the use of the 

same notation to represent both a process and the product of that process. They put 

forward the notion of procept to refer to the amalgam of concept and process 

represented by the same symbol, and they write of proceptual thinking as being 

characterised by: "... the ability to compress stages of symbol manipulation to the 

point where the symbols are viewed as objects that can be decomposed and 

recomposed in flexible ways." (p. 132) 

This proceptual encapsulation occurs at various stages throughout mathematics: 

repeated counting becomes addition, repeated addition becomes multiplication, and so 

on. Similar problems, they write, characterise other parts of the curriculum. For 

example, pupils perceiving the symbolism 2 + 3x as representing only a procedure 

that cannot be carried out because the value of x is not known. However, they also 

argue that the use of the computer to carry out the process enables the learner to 

concentrate on the product and significantly improves the learning experience. My 

contention in this thesis is that this depends very much on the nature of the interaction 

between the computer and the user, i. e., on the means by which the medium enables 

learners to express mathematical ideas. 

2.3: Summary 

This chapter began by stating the case for theory. It will end by putting the case for 

theory in context. Theories are no use, according to Balacheff (1990), unless they are 

related to precise problems. "Theories are tools to solve problems or to clarify them 

and to improve their formulation. Inversely, to solve research problems very often 

leads to the improvement of theories" (p. 258). My research problem was to 

investigate children's developing sense of number in the computational environment 

of Boxer. Section 2.1 discussed the theoretical and research foundations for 
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constructing such learning environments, while section 2.2 considered the problems 

surrounding the learning of number. 

In section 2.1, different notions of constructivism were elucidated, and their 

implications for teaching and learning considered. The notion of the child as a 

constructor of her or his own reality encapsulates an appealing rhetoric, but 

interpreting this doctrine in terms of classroom practice poses problems. Indeed, 

Papert (1980) doubts whether the kind of Piagetian learning that the constructivists 

have in mind could have taken place in the past. In his view, it is only now with the 

advent of the computer that it is possible to do so. 

Moving beyond the cognitive, this section also attempted to take account of the 

setting in which learning takes place. The Vygotskian idea of a zone of proximal 

development, Bruner's idea of a tool-rich culture, together with the notion of 

scaffolding were discussed, along with Vergnaud's appeal to examine concepts in 

context and Fischbein's analysis of intuitions. I have then drawn on the accumulated 

body of Logo research to elucidate how learning environments which embrace these 

notions can be constructed. 

My research aim involved students constructing their own number microworlds. 

However, they first needed to learn to program, and this became a subsidiary but 

significant part of the research. It involved the notion of designing microworlds in 

which the medium would introduce itself. These microworlds were subject to a 

process of 'iterative design' in which changes to the microworlds were being made as 

they were being used by myself and the class teacher independently. It therefore 

embraced a constructionist approach from the perspective of the teacher, from my 

position as a researcher and from the students' role as builders of their own learning 

environments. 

In section 2.2, I examined the research findings pertaining to certain aspects of 

number as they affected this study. The literature leaves little doubt that students here 

and elsewhere have persistent difficulties with concepts of number. There was less 

agreement about why such misunderstandings might arise or what might be done to 

overcome them. Some identified causes in early intuitions, others in over-

generalising from previous learning, while still others located the source of problems 

in the relationship between conceptual and procedural learning. 
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The 'number sense' literature threw up the idea of 'connected knowing' which tied in 

well with Papert and Wilensky's revaluation of the concrete. Sfard's account of how 

the processes of mathematics at one level become reified into objects on which 

processes act at another level offered another insight. Her argument for the need of 

seeing a number both as a process and as an object was fleshed out by Gray and Tall's 

notion of a procept, in which the ambiguity of symbolism played a prominent part. 

Their suggestion that the computer offers a means for promoting proceptual thinking 

gives broad support to the research design employed in this study. 

Further support can be found in Harel's (1991) research, which in many respects sets 

a precedent for this thesis. Its theoretical foundations in constructivism and Logo 

research are similar to that outlined above. It was also concerned with number and, in 

it, students designed their own software. But, there were important differences too. 

Her students designed instructional programs with Logo ostensibly to be used by 

other students. The students in my study designed Boxer mathematical objects (a 

number line and a function machine) for their own use. Whereas, she focused on 

fractions, these formed only a peripheral part of this thesis. My research was 

concerned with the rational numbers in its broader sense, i.e., decimals and directed 

numbers. In this respect, the two studies complement each other and can be 
connected through the two notions expressed in the symbol a/b. On the one hand, it 

denotes the result of an operation (a lots of b), but on the other, it expresses an 

operation to be performed a ÷ b. Harel's study was concerned with the former, my 

research with the latter. Finally, visualisation was central to each of our studies. 

In chapter 3, the role of visualisation in mathematics is analysed from historical as 

well as a psychological perspective. Some of the issues raised in the present chapter 

will be revisited, but this time in relation to visual representations and their role in 

promoting or indeed interfering with understanding. Changes to computer hardware 

and software have led to very significant changes to the part that visual thinking can 

be called upon in mathematical thinking. The relationship between mathematics and 

programming has always been a close one, but the cognitive obstacles needed to 

become accomplished at the latter meant that few but the experts could make the link. 

The visual nature of a programming language like Boxer now opens up the possibility 

that we are reaching the stage where such power can be put in the hands of children. 

Chapter 3 discusses those visual qualities, relates them to existing research and the 

aims of the present study. 

44 



Chapter 3: Visualisation 
If present trends are any indication, it seems that mathematics will evolve in a direction 
which will make visualisation even more important in the future than it is now. At the 
same time, the evolution of technology will make even more powerful visualisation tools 
available. (Zimmermann and Cunningham, 1991, p. 7). 

3.0: Overview 

This chapter reviews the literature on visualisation in relation to mathematics, and in 

relation to computers and programming. It identifies two common themes in the 

mathematical literature: visual thinking and visual representations, and it considers the 

impact of computers on each of these. It then focuses in on the influence of 

visualisation on programming before introducing the computational medium of Boxer. 

This chapter complements chapter 2 in that issues of epistemology, constructivism, the 

contexualisation of concepts and the role of intuition are re-visited, but the extra 

dimension of visualisation gives a new perspective to that discussion. In introducing 

Boxer, my intention is to go beyond simply describing the software to consider how the 

beliefs of its designers concerning these issues influenced its design, and to show how 

these design features of Boxer make it a suitable computational medium for the kind of 

visually-mediated learning proposed in this research. 

3.1: Visual Thinking 

3.1.1: Visual Thinking in Mathematics 

The literature on visualisation is replete with terms such as 'spatial ability', 'visual 

thinking', 'spatial intuition', 'visual understanding' and so on. 	Often, these 

descriptions are contrasted to analytical or symbolic modes of thought as though the 

two forms of representation were discrete entities. The dangers inherent in such an 

approach have been clearly set out by Zimmerman and Cunningham (1991) who write: 

Mathematical visualisation is not 'math appreciation through pictures'. The intuition 
which mathematical visualisation seeks is not a vague kind of intuition, a superficial 
substitute for understanding, but the kind of intuition which penetrates to the heart of an 
idea. It gives depth and meaning to understanding, serves as a reliable guide to problem 
solving, and inspires creative discoveries. To achieve this kind of understanding, 
visualisation cannot be isolated from the rest of mathematics. Visual thinking and graphical 
representation must be linked to other modes of mathematical thinking and other forms of 
representation. One must learn how ideas can be represented symbolically, numerically, and 
graphically, and to move back and forth among these modes. (1991, p. 3). 
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The assertion that visualisation will necessarily aid understanding is not universally 

agreed. Eisenberg and Dreyfus (1986), for example, write: 

It is certainly true that spatial visualization plays a role in mathematical thinking in general, 
and in concept acquisition and problem-solving in particular. But the influence of spatial 
visualization abilities may well be highly overrated. (1986, p. 153) 

They observe that for many students visual thinking and analytical thinking seem to be 

dichotomous modes, and advance the hypothesis that analytical thinking overrides 

visual thinking even in experts. More recently, Campbell, Collis and Watson (1995) 

write that iconic support may be particularly helpful when conceptual knowledge is 

weak, but "... tends to disappear once the problem is well understood and the 

mathematical procedures for its solution well practised." (p. 192). 

Some writers have examined the practice of mathematics to account for the role of 

visual thinking. Hadamard (1954), for example, studied the working practices of 

eminent mathematicians to determine the part played by visual thinking in their work. 

He reported that mathematicians frequently used images and these images were often of 

a geometrical nature. Eisenberg and Dreyfus (op cit.), however, observe that there 

appears to be a difference between methods of processing information used by 

mathematicians in their own work, which are very often visual, and those they teach, in 

which the visual element is relegated to an illustrative role if it is used at all. Dreyfus 

(1991) asks why, if diagrams are essential for mathematical thinking, do 

mathematicians hide their visualisations and the arguments based on them? A possible 

answer is advanced by Barwise and Etchemendy (1991): 

The main reason for the low repute of diagrams and other forms of visual representation in 
logic is the awareness of a variety of ill-understood mistakes one can make using them: 
witness the fallacies that have arisen from the misuse of diagrams in geometry. By contrast, 
it is felt that we have a fairly sophisticated semantic analysis of linguistic based reasoning. 

Our counter to this is two-fold. First, we note the obvious fact that a wide variety of 
mistaken proofs and fallacious inferences do not use visual information. Our second reply is 
to point out that although one can make mistakes using various forms of visual 
representation, it is also possible to give perfectly valid proofs using them. (1991, p. 16) 

Eisenberg and Dreyfus (1991) observe similar behaviour with many students. 

Whenever possible, they say, students seem to choose a symbolic framework to 

process mathematical information rather than a visual one. While this is also true for 

many teachers, it does not seem to hold for professional mathematicians. "For them, 

the choice of representation in which to solve a problem seems to depend as much on 

the problem itself as on personal preferences (p. 26)." But, as Tall (1991) relates: "The 

visual ideas often considered intuitive by an experienced mathematician are not 

46 



necessarily intuitive to an inexperienced student." (p. 105). Elsewhere (1985), he notes 

that the major difference between the mature mathematician and the learner is that the 

former already has a global picture of the concept. 

Eisenberg and Dreyfus (op cit.) propose three explanations for the pre-disposition of 

students for non-visual arguments: a cognitive one (visual reasoning is more difficult); a 

sociological one (visual reasoning is harder to teach); and one related to beliefs about 

the nature of mathematics (visual reasoning is not mathematical). They quote 

Chevallard (1985) who uses the term 'didactical transposition' to define the change that 

scientific, academic knowledge undergoes as it changes to instructional knowledge as 

taught in school. Analytic processing uses sentenial representations, in which the 

information forms a sequence of expressions; visual processing uses diagrammatic 

representations. Chevallard claims that school knowledge is necessarily sequential; it is 

thus represented sequentially, not diagrammatically. As a consequence, teachers prefer 

to use sentenial rather than diagrammatical representations. 

Kruteskii (1976), in his study of gifted children, found that although there was a small 

`geometric' group who appeared to use spatial representations in solving problems, and 

a small 'analytic' group who rarely used spatial reasoning, the majority varied their 

approach depending on the context of the problem. Dickson et al (1988), in their 

review of the literature on spatial thinking, recount how some writers (cf. Pask 1976, 

Sharma, 1979) have identified language functions and spatial processing with the left 

right and halves of the brain. Pask (1976) also categorises learners as 'serialists' or 

`holists' and associates these with left and right hemisphere preference respectively. 

However, they conclude that: "The two aspects of mathematics represented, on the one 

hand by language and symbols, and on the other hand, by spatial representations, are 

entirely complementary in nature, and each should receive a reasonable share of 

attention in any mathematics curriculum." (p. 9). 

Larkin and Simon (1987) further claim that the processing of these two types of 

representations is necessarily different. The fundamental difference between the two is 

that diagrammatic representations preserve explicitly the information about the 

topological and geometric relations among the components of the problem whilst 

sentenial representations do not. Tall and Thomas (1989) observe that the activities that 

are prized in mathematics are usually symbolic and logical. "Far less often do we 

emphasise the visual and holistic" (p. 117). 
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Presmeg (1986) studied the effects of different teaching styles on the learning of 

mathematics by visualisers. She identified a visual, a middle and a non-visual group 

amongst the teachers. She found that non-visual teaching had the effect of leading 

visualisers to believe that success in mathematics depended on rote memorisation of 

rules and formulae. Teachers in the middle group often used visual methods but 

stressed abstraction and generalisation, and this aspect aided visualisers in overcoming 

some of the difficulties associated with the one-case concreteness of an image or a 

diagram. The visual teachers were unanimously positive in their attitudes towards 

visual methods, but they were not always able to lead visualisers to overcome the 

limitations, and to make optimal use of the strengths, of visual processing. 

Earlier work on gender seemed to suggest that the under-achievement of girls in 

mathematics might partially be explained by differences in 'spatial ability'. But, as 

Shuard (1982) writes: 

The question of biological differences in either spatial visualisation or mathematical ability 
is not fully understood, but in view of the fact that the differences between the sexes in 
mathematical attainment are more marked in some countries than in others, there would 
seem to be factors other than differences in spatial visualisation which influence differences 
in mathematical attainment. (Shuard, 1982, pp. 279 - 280) 

It is clear from this discussion so far that there are strong social factors which mitigate 

against the use of visual methods in mathematics. However, it should be remembered 

that these findings relate to doing mathematics in a pen-and-paper environment. 

Working in a computer environment may well alter the methods favoured by students as 

well as the valuation of those methods by their teachers. 

3.1.2: Visual Thinking in Computer Environments 

The idea that the computer can enable humans to exploit a visual capacity which they 

already possess is a central theme for several writers (diSessa, 1988a, 1989; Tall and 

West, 1986). Tall and West, for example write: 

The human brain is powerfully equipped to process visual information. By using computer 
graphics, it is possible to tap this power to help students gain a greater understanding of 
many mathematical concepts. Furthermore, dynamic representations of mathematical 
processes furnish a degree of psychological reality that enables the mind to manipulate them 
in a far more fruitful way than could ever be achieved starting from static texts and pictures 
in a book. (Tall and West, 1986, p. 107). 

This is also a core idea in Turkle and Papert's (1990) thesis which links visualisation 

and gender with different styles of interacting with computers. There is, they argue, a 

tradition of scientific epistemology which sees the essence of science in objectivity and 
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the objectivity in a distanced relationship with the object of study. But girls may have 
access to a different form of reasoning which allows them to imagine themselves 'inside 
the system'. In their thesis, the computer is seen as bridging the gap between the world 
of formal systems and physical things. They describe these two ways of working as 
`hard' and 'soft' mastery, which they characterise as follows: 

I ait mastery 

• a distanced stance 'I. 	closeness to objects. 
• abstract thinking 	• 	concrete reasoning 
• systematic planning S • 	negotiational approach 
• scientific method 	17 	scientific practice 

Traditional computer courses, they say, emphasise only the 'hard' way to interact with 
a computer; that is control through structure and planning, whereas 'soft' is often 
associated with feminine and unscientific approaches. But they argue: "Soft is a good 
word for a flexible and non-hierarchical style, open to experience of a close connection 
with the object of study. Using it goes along with insisting on negotiation, relationship 
and attachment as cognitive virtues" (p. 349). Central to fostering this way of working 

is what they term 'transitional objects': 

An object moving on a computer screen might be defined by the most formal of rules and so 
be like a construct in pure mathematics; but at the same time it is visible, almost tangible, 
and allows a sense of direct manipulation that only the encultured mathematician can feel in 
traditional formal systems. (ibid., p. 346) 

Goldenberg (1989) also sees the potential of computer animated graphics as that of 

enabling students to do what mathematicians do. The means of doing so, he argues, 
lies in the use of properly designed computer-supported environments. These can 
provide, through their concreteness, a scaffold for reasoning and can foster the 
development and use of qualitative, visually based, reasoning styles to augment the 
traditionally taught symbolic-deductive methods. Such environments, he argues, can 
also open up previously inaccessible mathematical domains, allowing students to 

investigate topics that are often thought too advanced for them. 

Some evidence for this assertion can be found in Tall and Thomas (1989) who assert 
that advances in mathematical thinking require the learner to gain an overall view of a 
topic or task. It is precisely this form of thinking, they suggest, that the computer can 
support. They report that the students in their experiment: "were found to be 
performing in global/holistic terms at a level comparable with more highly qualified 
university students with two years additional experience ... " (p. 120). 



Support for taking a holistic perspective can also be found in Mason (1993) who writes 

that the experience of screen images guarantees neither construal of nor abstraction from 

these images, and may even require more work than text to see through the particulars 

to the general. On the other hand, he says: 

Experience in other media suggests that a more fruitful approach may be to learn from a 
Gestalt perspective, providing a minimum of screen detail which will sufficiently intrigue 
the viewer to try to make sense of what is seen, through filling in of details, and so initiate 
a sense-making action which will develop into accounting-for that succession of images. 

(Mason, 1993, p. 371) 

The question of how different representations mediate learning applies to traditional 

forms of media as well as to computers, and it is to these that the discussion now turns. 

3.2: Visual Representations 

3.2.1: Visual Representations in Mathematics 

Skemp (1971, p. 111) links visual thinking with visual symbols by contrasting and 

comparing the properties of visual and non-visual symbol as follows: 

Visual 	 f 	Verbal-algebraic 

Abstracts spatial properties, such as Abstracts 	properties 	which 	are 
independent of spatial configuration, such 
as number. 	 
Easier to communicate. 

shape, position. 

Harder to communicate. 
May represent more individual thinking.  —May represent more socialized thinking. 
Integrative, showing structure. 	Analytic, showing detail. 
simultaneous. 	 Sequential. 
Intuitive. 

Dreyfus Dreyfus (1991) draws attention to the wide variety of visual representations which are 

used in mathematics: geometrical figures, tree diagrams, Venn diagrams, number lines 

and Cartesian planes, often with graphs of functions or scatter diagrams, sketches, 

diagrams and figures created locally for dealing with a specific problem may be even 

more important. But, he continues, there are major differences between these visual 

representations. Some are pictorial: they directly represent objects, e.g., geometrical 

ones. Others represent mathematical objects in a symbolic stylised way. Some are 

static, others are dynamic or at least imply the idea of a dynamic transformation. The 

same mathematical object may take different shapes in different visualisations. Hence, 

he argues, the patterns of reasoning (and possible problems) may differ for these 

different representations. 
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Plunkett (1979) adopts a similar theme. He points out that spatial matters involved in 

the teaching of mathematics are of two basic types: those to do with the real world and 

those concerning representations of the real world. Spatial representations involve 

pictures and diagrams. Plunkett uses the term 'diagram' for a spatial means of 

representing non-spatial ideas, for example, the number-line to represent the sequence 

of numbers, Venn diagrams to represent sets, etc. In contrast, he uses the term 

`picture' for a spatial means of representing spatial ideas such as geometrical drawings, 

3-d models, maps etc. Inevitably, he writes, these kinds of representations involve 

varying degrees of distortion of the real world. 

Bishop (1979), in his research into the learning of mathematics by students in Papua 

New Guinea, observed that the picture conventions that are so prevalent in Western 

textbooks are by no means immediately recognisable by those from non-Western 

cultures. For example, he reports that the representation of a three-dimensional object 

by means of a two dimensional diagram demands considerable conventionalising. 

This, he argues needs to be considered in making judgements about spatial skills: 

It has often been reported that students from non-Western cultures are poor at spatial skills, 
but it is often forgotten that 'pictorial' spatial tests invariably involve conventions. We are 
so familiar with these that we take their knowledge for granted and assume a universality of 
understanding which is quite erroneous. (Bishop, 1979, p. 138) 

The observation that unfamiliarity with visual conventions may be the cause of a failure 

to understand some part of mathematics is, of course, not restricted to non-Western 

societies. There is a considerable body of research in this country (e.g., Hart et al, 

1981 and Foxman et al, 1985) which highlight students' failure to appreciate certain 

visual conventions in mathematics. Kerslake (1981), in her investigation of students' 

understanding of graphs, found that many of the students had incorrect perceptual 

interpretations. Some thought of the lines on a distance-time graph as representing a 

journey up or down a hill. Elsewhere (1986), she makes the point that some 

representations can have a detrimental effect: "... if a fraction is seen in geometric, 'part 

of a whole' terms, then a major readjustment is required if a fraction is also to be 

thought of a number." (p. 95). On the other hand, changing the representation may 

cause other problems. 

The number line representation, a Boxer version of which formed the basis of the 

number line study in this research (chapter 8), may not be as understandable for 

students as its familiarity might suggest. Hasemann (1981) notes that it is not easy to 

put fractions in order of size on a number line, while Driscoll (1984, cf. Larson, 1980) 

51 



reports that in one study, less than 20 percent of seventh graders were able to locate the 

fraction 1 /5 on the following number line: 

1 
	

2 

Figure 3.1: Placing rational numbers on a number line 

Carr and Katterns (1984) write that: "Children fall into the trap of counting numerals, 

and overlook, therefore the importance of the spaces on the number line." (p. 33). It is 

not correct, they argue, to assume that a number line per se is a concrete illustration of 

measurement. Rather, they assert it is a symbolic representation, a point reinforced by 

Bright et al (1988), who observe that the number line requires the integration of two 

forms of information, visual and symbolic. This integration, they say, does not seem 

essential with other models. They hypothesise that it is translations between and within 

modes of representations which facilitate learning. 

Vergnaud (1983a) writes that because 7- or 8-year-olds are already able to reproduce 

the graduation of their ruler upon a line, teachers may have the illusion that they 

understand the number line properties. However, he asks: 'which properties?' (p. 16). 

He writes that in order to understand the conventional number line representation, it is 

necessary that they synthesise the order properties of dots and the length properties of 

segments, and the concept of origin accompanies this synthesis. "Space as a signifier is 

then used to represent both order and magnitudes." (p. 17). He says that 13 year-olds 

may have two different ideas: either they use the order properties of space or they use 

measures, refusing the principle of inclusion. 

A 

A 

B 

C 

B  

I 	 I C 	I 	  

Figure 3.2: Students' number line representations: (Vergnaud and Errecalde, 
1980, p. 288 — 289) 
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IN 	OUT F(X) = X + 4 
3 --->----- 7 or 
-2 	2 X ---> X + 4 

1.5 --->-- 5.5 

Vergnaud and Errecalde (1980) write that the status of intervals is not fixed for many 

students at this age, with the inclusive case being particularly difficult, so that some 

children separate diagrams, whilst others feel the need to explain. They illustrate three 

of the methods used by students (aged 10 - 13) to represent data on a line (Figure 3.2). 

This close connection between representations and the concept represented has been 

addressed by Pimm (1987) who writes of how 'extra-mathematical metaphors' are 

imported from the real-world to illuminate mathematical concepts, a function as a 

machine with inputs and outputs being one of these. These are so institutionalised, he 

notes, that teachers may not accept that they are metaphors at all. Such usage, he 

suggests, is acceptable in an introductory setting where the metaphor is being used as a 

conceptual bridge, but he cautions (p. 98): "It is essential for pupils ultimately to be 

aware that a function is not a machine." Elsewhere (1995), he observes: 

`The' notion of function is actually subtly different, depending on whether it is accessed 
through algebraic forms, graphs or numerical tables. Because the generative direction from 
representation to 'object' is seen as the reverse, the central role of representations in 
conditioning mathematics is insufficiently appreciated. (Pimm, 1995, p. 102) 

Sutherland (1988) reproduced the following three common representations of functions 

and drew attention to the close affmity between the mathematical notion of a function 

and the functional structure of Logo. A subsidiary aim of her functions materials was 

"to provoke pupils to use decimals and negative numbers" (p. 205). 

[  (a) Logo Notation 	I 

ADDFOUR "X 	1 
, OUTPUT ADD :X 4 
END 

Figure 3.3: Common representations of functions (Sutherland, 1987. p. 203) 

In this, she set a precedent for the function machine study (chapter 9) of this research, 

but whereas she employed representation (a) above, which is essentially textual, I used 

a function machine representation which is essentially visual. 

3.2.2: Visual Representations in Computer Environments 

Thompson and Dreyfus's (1988) research shared some characteristics of one of the 

number studies in this research (chapter 8) in that it employed a computerised number 

line. In their study, a model of integers as transformations was presented with a turtle 

(b) Mapping Diagram 	c) Algebrak Notation 
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walking up and down the number line according to the operation proposed. They 

conclude that sixth graders can conceive of integers as transformations in non-trivial 

ways, but they also comment on the instability of students' conceptualisations, and 

point to diSessa's (1983) notion of phenomenological primitives for a theory of 

explanation. 

Goldenberg (1988) remarks that although students spend years perceiving and drawing 

visual forms before they encounter algebraic symbols, graphs have conventions and 

ambiguities of their own. To interpret graphs correctly, he says, we need mathematical 

knowledge and expectations, not just perceptual experience. He goes on to discuss 

issues of partial views, scale, the role of the student vis-a-vis the computer and 

problems of presentation. 

Two conclusions stand out: simplistic software design or thoughtless use of computer 
graphing in classrooms may further obscure some of what we already find very difficult to 
teach. On the other hand, thoughtful design and use of graphing software presents new 
opportunities to focus on challenging and important mathematical issues that were always 
important to our students but that were never so accessible before. 

(Goldenberg, 1988, p. 135) 

Yerushalmy and Chazan (1991) identify three obstacles, culled from previous research, 

which students must overcome when examining and interpreting diagrams: firstly, 

diagrams are particular; secondly, common usage confuses certain standard diagrams 

with the classes of objects to which they belong; thirdly, a single diagram can be 

viewed and described in different ways. They outline the resources of `Supposer', a 

set of microcomputer software tools which were designed to aid students in overcoming 

these obstacles. 

Kaput (1986) argues for the creation of multiple representations of the same concept in 

the belief that this multiplicity of views will somehow enable the learner to see what it is 

that is central to that concept. He claims that such an environment renders three very 

important goals of mathematics far more attainable than previously. The first of these 

has three sub-goals: by presenting a family of iconic representations varying in 

concreteness, it increases the chances of linking with the student's existing cognitive 

structures; it provides schematic representations for different problem situations; and it 

exposes the deeper mathematical commonalities. Secondly, by making visually explicit 

the relationships between different representations and the ways that actions in one have 

consequences in the others, the most difficult pedagogical and curricular problem of 

building cognitive links between them becomes more tractable. Finally, by providing a 

series of carefully chosen representations that begin with the student's primitive and 
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inflexible ones and ramp upward to ever more powerful and abstract mathematical ones, 

a new level of longitudinal coherence in the mathematics curriculum is possible. 

In a later paper, (Kaput, 1989), he again emphasises the visual linking of different 

representations: "Our effort is also marked by a deliberate attempt to tie visually 

concrete and enactive operations on objects (in this case, objects on a computer screen) 

with more formal and abstract representations of these operations." (ibid., p. 35). 

However, he acknowledges some of the difficulties which might occur "Just as the 

visual experience is a powerful organiser of appropriate cognitive structure in some 

cases, when it acts in other cases to produce a structure contradictory to an existing one, 

it leads to debilitating confusion." (ibid., p. 42). 

Goldenberg (1988) also considers multiple representations. He begins by asserting that 

"Common sense supports the notion that multiple representation will aid 

understanding." (p. 136), but then goes on to say that very little is known about what 

actually takes place when multiple linked representation software is used extensively in 

the classroom: "While potentially reducing ambiguity, multiple representation also 

presents a student with more places to look and is potentially complicated and 

distracting" (ibid., p. 137). 

A different form of a 'manipulable multiple representation' approach is the software 

`Math. Path' as described by Kaput (1986): "With this, the student can build, modify, 

and otherwise pedagogically engage a machine-based representation of arithmetic and 

algebraic expressions. An input-output device is connected by wires. When one inputs 

numerical values, they travel along the wires as a mouse in a snake, passing through the 

various components and eventually landing in an output bin." (ibid., p. 202). diSessa 

(1986a) writes that such 'device programming' is attractive because it has such a simple 

and graphic method of combining elements to make compound things. "There is reason 

to believe it can have some intuitive accessibility that the hidden data flow and complex 

sequencing of pure procedural languages does not." (p. 138). 

Laborde (1993) writes that: "The graphical and computing possibilities of software allow 

now a reification of abstract objects and in particular of mathematical objects ... " (p. 40). 

Cuoco (in press) is more specific. He compares how different computational media affect 

students' conceptions of function along a continuum of action --> process --> object. 

Function Machines (cf. Goldenberg, 1985), he says, help students to iteriorize actions 

into processes, but Logo helps them iteriorize processes into objects. In chapter 9, an 
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account is given of how one of the computational number objects of this research, the 

function-machine object, embraced some elements of both forms of media, and how these 

qualities helped to provide the 'scaffolding' to support the encapsulation (Dubinsky, 

1991) of number processes into number objects. 

3.3: Programming and Boxer 

3.3.1: Visualisation and Programming 

The manipulation of icons on a screen, along with menu-driven choices mark out in many 

respects a region in which the question of what constitutes programming becomes 

increasingly blurred. When computers were first introduced, the only interface to them 

was at the machine language level. Since that time, designers have attempted to simplify 

that interface by introducing 'higher level' languages. However, as the level of a 

language increases, its domain of generality decreases. For example, most menu systems 

are easy to use but the user has limited choices. Conventional programming, on the other 

hand, might seem to offer unlimited choice or control, but the difficulties in learning these 

languages are such as to afford only limited access. 

Hoyles and Noss (1992a) are critical of systems whose major design consideration is 

ease of access, arguing that such systems limit users to interpretation rather than 

construction. Similarly, they believe that 'authoring systems' constrain what can be 

written and close down the flexibility of a true programming environment. They write: 

Given that a primary aim of mathematical activity is for students to interact with 
mathematical objects and processes, it is often insufficient for students to see what happens, 
they need to know how it happens - and this is why we see programming as an important 
component of computer-systems. (Hoyles and Noss, 1992a, p. 3) 

Zloof (1984) illustrates the relationship between the level of programming and its 

generality by the following diagram: 

Level 
of 	At 

Programming 

t 
Visual 

i 

Single Program 
Menu Systems 

High el Non-Procedural 

High-Le 1 Procedural {FORTRAN, COBOL} 

Assembly 

Machine Languag 

Domain —►} 
Levels of Abstraction 

Figure 3.4: Programming languages and generality (Zloof, p. 232) 
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Programming that allows visual manipulation would appear to offer both choice and 

access, so it is questionable whether Zloof s diagram can accommodate such languages. 

Indeed, as I hope to make clear in what follows, it is the intention of designers of visual 

programming environments (including Boxer), to shorten the distance between 

programmers and users or between experts and novices. 

Myers (1986) attributes the growth of visual or graphic programming to the widespread 

use of personal computers and the recognised difficulties in learning conventional 

programming languages. But he writes that another motivation for using graphics is 

that it tends to be a higher level description of the desired actions (often de-emphasising 

issues of syntax and providing a higher level of abstraction) and may therefore make the 

programming task easier for professional programmers. This, he says may be 

especially true during debugging. 

Raeder (1985) writes that traditional computer programming languages and 

environments are usually rather difficult to use because designers have not come very 

far in adapting them to the user. This lack of adaptation, he says, exists both at the 

representational level (that is the graphical layout seen by the user) and at the conceptual 

level (which is to say, in the computational model). Because traditional computer 

systems show very little of their internal state to the user, he or she must remember and 

manipulate a large, complex, and abstract system structure with only hints from the 

computer about whether his or her conjectures regarding the state are correct. Screen 

editors, spreadsheets, and electronic desktops attempt to remedy this situation by 

making use of graphics to show as much of the state as possible. 

Shneiderman (1983) found that certain interactive systems generated glowing 

enthusiasm amongst these users — in marked contrast with the more common reaction of 

grudging acceptance or outright hostility. He reports: 

As I talked with these enthusiasts and examined the systems they used, I began to develop a 
model of the features that produced such delight. The central ideas seemed to be the 
visibility of the object of interest; rapid, reversible, incremental actions; and replacement of 
complex command language syntax by direct manipulation of the object of interest - hence 
the name 'direct manipulation'. (Shneiderman, 1983, p. 57) 

However, he also notes that direct manipulation systems are not devoid of problems. 

He records that using spatial or graphic representations of a problem does not 

necessarily improve performance and suggests that the content of a graphic 
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representations is a critical determinant of their utility. As he says "Choosing the right 

representations and operations is not easy. Simple metaphors, analogies, or models 

with a minimal set of concepts seem most appropriate." (p. 64). 

3.3.2: Visualisation and Boxer 

3.3.2.1: The boxes of Boxer 

Perhaps the first thing one should say about Boxer is that it is a computational 

environment in which the central metaphors are visual, yet the programming language 

itself is based on text processing. As diSessa (1986a) writes: "In comparison to iconic 

programming or programming by direct manipulation, Boxer's text orientation may 

seem conservative, if not reactionary. But the main reason we chose to move in that 

direction was to promote a synergy between the written word, including all the 

incremental advantage it offers, and the advantage that programming and programming 

structure offers to written communication" (p. 141). 

In contrast to the range of objects in most computer systems such as lists, character 

strings, numbers, variables and so on, in Boxer there is a single entity: the box. The 

name 'Boxer' stems from the fact that programs are typed inside boxes on the screen. 

There are two major kinds of boxes: `Doit' boxes and 'Data' boxes which can be 

thought of as corresponding to verbs and nouns in the English language. Figure 3.5 

shows examples of data boxes (rounded corners) and doit boxes (square corners) as 

well as a graphics box (dashed outline). 

I shapes-2 1 

Figure 3.5: The boxes of Boxer 
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Data boxes combine things so that they can be accessed in an organised way, named, 

and operated upon by programs. A data box identifies its contents as a data object, that 

is, a unit that can be named, passed as an argument to a procedure, or returned as a 

value by a procedure. The contents of data boxes can be changed either by typing in the 

box on the screen or by using the command 'change'. Doit boxes (or procedure boxes) 

group expressions to form programs. Besides evaluating an entire doit box as a unit, 

users can also step through the procedure line-by-line. Boxes can also be named, and 

evaluating the name will evaluate the lines in the doit box. 

There are also three subsidiary boxes: graphics boxes, closets, and ports. A graphics 

box is an area on the screen on which drawings can be made. Graphics boxes can be 

inhabited by sprites, which are objects that can draw and have local data, procedures 

and touch-sensitive capabilities. Associated with each ordinary box is a transparent 

box, the closets which is usually invisible. It can be made visible to put tools in it, then 

hid again. Ports allow data and programs to be shared among different parts of a Boxer 

environment. Ports give a 'view of' an ordinary box located somewhere else. 

Changing the port (by typing in it or by using the 'change' command), also changes the 

original box. 

There is thus a tremendous compression of diversity to simplify structural 

comprehension. The diversity needed in programming is provided in two basic ways. 

Firstly, the internal structure of the box can be varied. Secondly, any box may be 

named, and naming accomplishes the transition of a data or do-it box into a variable or 

defined procedure. Any box may be saved to disk (with or without a name), making it 

a file, and also making the surrounding box structure implicitly into a hierarchical file 

system. A record with fields is simply a data box with named data sub-boxes. A local 

variable or sub-procedure is simply a data or doit box located inside some other 

procedure. 

Boxes can be closed, opened or expanded to full screen size. Novices can simply use 

the procedures (doit boxes) as given: they can open shrunken boxes to examine details 

of procedures or execute pieces of them to see how they work. As they gain in 

experience, they can of course write the procedures themselves. Since any aspect of 

Boxer, can be inspected, microworlds can be designed to be used at different levels. 

Beyond just controlling how things are displayed, the arrangement of boxes forms a 

structure that organises how programs and data are used. The nesting of boxes within 
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boxes organises a Boxer environment by providing a concrete representation for block 

structure. In general, the Boxer evaluator will 'see' the names of boxes that are in the 

same box as the expression being evaluated. But it cannot look inside sub-boxes to see 

the names of their internal boxes. If it does not find a box of that name then it looks in 

the next outermost box, than the next outermost, and so on (referred to as shadowing ). 

This means that a single name can be used to mean different things in different parts of 

a system without confusion. Another way to say this is that a name is local to the box 

in which it is defined. On the other hand, should the sharing of names be desired, then 

this is accomplished by nesting boxes within boxes. 

The internal programming language of Boxer is essentially that of Logo, but there are 

important differences. There is, for example, no distinction between the editor and the 

workspace; the system is always at editor 'top-level'. The syntactical devices of quotes 

and colons used to mark variables have gone, so that the first line of a procedure is of 

the form 'input x'. There are also changes with respect to the list processing facilities. 

The data box takes on the role of the list and has its own data operators, and variables 

are simply named data boxes. 

The motivation for these design decisions can be understood firstly by reference to the 

Boxer group's overall aims and secondly to their views on epistemology, pedagogy and 

programming. 

The Boxer Project is aiming to test the feasibility of filling a rather grand and still 
hypothetical social niche, that for a computational medium. We are trying to produce a 
prototype of a system that extends with computational capabilities the role now played in 
our culture by written text. We wish to change the common infrastructure of knowledge 
presentation, manipulation and development. We want a general purpose system to serve the 
needs of students, teachers and curriculum developers, something that is so useful for such a 
broad range of activities that the community as a whole will judge it valuable enough to 
warrant the effort of learning a new and extended literacy. (diSessa, 1990b, p. 303) 

diSessa (1983) sets out the beginnings of a theory of knowledge that traces the origins 

of scientific understanding in simple abstractions of everyday events 

(Phenomenological primitives). diSessa (1987) argues that many of the behaviours that 

Piaget attributed to pre-formal stages of reasoning can be seen to be a result of these 

naive conceptions, while diSessa (1988) sees the fundamental question as being that of 

the transition from intuitive understanding to scientific understanding. diSessa (1989) 

challenges the assumption that intelligence is an invariant that does not change 

substantially from context to context, and is impervious from instruction and learning. 

He writes instead of what can be achieved in tandem with computers: 
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There are important other ways to think about intelligence. In particular, consider the 
possibility of .symbiotic intelligence, that individuals in concert with computers (via our 
new medium) simply are able to accomplish much more in intellectual tasks than 
individuals alone, no matter how well trained, or what general skills they have. 

(diSessa, 1989, p. 7) 

A central image for the Boxer group is that of a tool-rich culture where individuals 

borrow, share and invent a broad range of tools to serve their purposes. A 

computational medium, they believe, can support a new tool-rich culture in schools. 

They argue that computational tools can take over the menial tasks, say arithmetical or 

graphical ones (such as plotting points), to allow students to work at the more important 

higher levels of deciding on approach and interpreting results. 

The Boxer group begin with the premise that, in the future, most computer users will be 

people who are not computer specialists. Rather, they are likely to be people who wish 

to use the computer as a tool to serve their own needs without requiring inordinate 

computational sophistication or effort. As diSessa, Abelson and Ploger (1991) put it: 

"Students and teachers can shape an expressive computational medium for their own 

ends"(p. 3). Amongst these needs are: text-editing, using and modifying pre-written 

programs, writing programs, searching and manipulating databases and producing 

graphics with a flexible programming graphics facility. 

They believe that these needs can best be served by providing an integrated 

computational environment that can accomplish these tasks via common facilities rather 

than by means of special sub-systems. They argue that even if novices need not deal 

with all of the above facilities, there are advantages in having a system in which 

learning in one area could be carried over to another. They use the phrase synergistic 

effect to refer to this carrying over of competences. Focusing in what might be 

required for the successful implementation of such a system, diSessa (1990a) sets out 

parameters. 

On the high end, we are not interested in expertise as defined by current professional 
programming. The things people will be doing with computational medium are not the 
same things professional programmers do. The scale of complexity in programming will 
not approach that of 50,000 line programs. The capability to design, comprehend and 
modify diverse, small but non-trivial programs is more central. My personal estimate is 
that our target lies largely within the range of programming that can be done in a day by an 
expert programmer (presuming an excellent, tool-rich programming environment). 

(diSessa, 1990a, p. 17). 

The design of such an integrated computational environment for novices raises many 

issues. In particular, there is the issue of understandability of such a system as 

perceived by its user. It is therefore necessary to try to comprehend the mental models 
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that people form of such complex systems. Towards this end, the distinction between 

structure and function is helpful. This distinction focuses on the characteristics of an 

object or action which are independent of specific use (structure) or alternatively, 

characteristics which have to do with specific use (function). diSessa (1986b) 

approaches understanding by reifying three kinds of models: the structural model, the 

functional model and the distributed model, and argues that "All of these models can 

and should be cultivated simultaneously in the learner" (p. 201) 

The expression mental models has come to denote a very rich and well-developed 

knowledge system that serves as a means for understanding less accessible knowledge. 

An example of this sort of model is Papert's (1980) 'little man' model of Logo. 

diSessa (1986b, p. 202) notes that Young (1983) uses the term 'surrogate models' but 

he prefers the description structural model for the same thing. 

Typically these are abstract dealing with a system independently of how it is used. 

Although, structural models may be very good for debugging, they can suffer from a 

number of problems when it comes to understandability. Firstly, since structural 

models aim at being uniform views of rather complex systems, they themselves tend to 

be complex which leads to a related problem in that they are slow to run and hard to 

learn. Incremental learning is sacrificed for the sake of uniformity and completeness. 

Furthermore, functional understanding is not well supported by a structural model. 

The characteristics of functional models are in many ways complementary to those of 

structural models. With functional models, the constructs of a system are understood 

according to what they do. diSessa (1986b) refers to Young's (1983) study of 

students' understanding of how a calculator works as an archetypal functional model. 

Keying in 3 + 5 and pressing "=1  gives no hint as to the structural model of the 

algebraic calculator, but it provides a perfectly adequate functional model which is 

based on the user's previous knowledge of arithmetic. Functional models have 

advantages because they allow sufficient understanding of a machine to get something 

done. They are also useful when it comes to designing and building something. On the 

other hand, functional models are often not comprehensive enough. They are good at 

the early stages of understanding but they will need to be supplemented by other kinds 

of models (structural models or the equivalent) at later stages. 

diSessa (op cit.) identifies a third class of model (distributed or patchwork) models by 

noting how students explain to themselves early constructs of languages. These 
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descriptions, he writes, typically fall far short of the intended structural models, with 

much more diversity in their sources and unreliability in their transfer to other 

situations. Distributed models depend on specific prior knowledge that users have and 

may bring to the system. diSessa (1985c) gives the example of FORWARD 100 from 

beginner's learning Logo. Initially, he says, this is interpreted simply as an 

abbreviation for the English sentence "Go forward 100 steps." The need for input to 

the command FORWARD is not, therefore, understood structurally, but according to 

the semantic need to complete the sentence FORWARD <how far?>. "Linguistic and 

semantic function here come first and provide a preliminary model of the structure 

command plus input." (p. 11). 

He asserts that the long-term effects of particular functional models need to be 

considered. Some will fade away and be replaced by structural models. Others will be 

integrated as special cases. The Boxer group believe that in designing complex 

systems, it is vital to take into account the distributed models that learners use in coming 

to understand such systems. 

The design of Boxer relies critically on human spatial/visual capabilities as the basis for 

both structural and distributed models. Two important principles guided Boxer's 

design towards achieving this. The first, naive realism, is an extension of the "what 

you see is what you get" concept that has become commonplace in text editors and 

spreadsheets, but not for programming languages. In Boxer, users can usefully 

pretend that what they see on the screen is their computational world in their entirety. 

In particular, any text that appears on the screen can be edited or evaluated. 

The second principle, spatial metaphor, uses people's intuition of space as the basis for 

programming the entire computational system. Whereas in many hypertext systems, 

relations are expressed abstractly as links between nodes, in Boxer, almost all relations 

are expressed by the place the box appears. Because of the spatial metaphor, Boxer 

needs no separate browser. One simply moves the cursor about in Boxer's space. 

Spatial arrangements of objects on the screen are meaningful and permanent until the 

user changes them directly or indirectly (through programs). Unlike window-based 

hypertext systems, spatial arrangements are created almost exclusively to express 

relatively long-term semantic relationships rather than for transient screen-management. 

Visual understanding alone is insufficient to explain the choices made by Boxer's 

designers. So, whilst recognising the importance of icons and visual analogues of real 
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world objects (desk tops, file folders, trash cans) as important to comprehensibility, 

they rejected these functionally-oriented aids and chose instead visual devices that relate 

directly to the underlying structure of Boxer programming. Similarly, purely 

graphically programming in Boxer was avoided because the choice of that kind of 

structure moved too far away from the uses intended for Boxer, and it would thus 

afford too little functional modelling support. The most prominent decision in this 

respect was to use a text-based surface representational form. The choice of text 

derives both from the desire to import familiar language and to pave the way towards 

incorporating a text-editing facility as part of an integrated computational environment. 

At the time of this research, the balance between functional, structural and distributed 

models was part of an on-going debate within the Boxer community — a debate which 

was informed by the experimental results, which form the subject of the next section. 

3.3.2.2: Experimental Results  

In this section, the research evidence relating to Boxer is reviewed. Three categories of 

research are identified: that concerned with novel aspects of Boxer; that concerned with 

programming; and that which relates to Boxer representation. It should be emphasised 

that few studies fall completely into one or other of these categories, and my accounts 

vary proportionately to what I see as their relevance to this study. 

Adams' (1989) study belongs in the first of these categories. He documents a case 

study of students' knowledge of dinosaurs. Adams illustrates his discussion with 

images from the Boxer dinosaur microworld. However, there is no research evidence 

presented in support of his claims for databases in Boxer generally, or the dinosaur 

database in particular. Nevertheless, the study is valuable both in terms of showing 

how the full integrated components of Boxer can be exploited to create and interrogate a 

database, and in the way it indicates how Boxer might be used to build on students' 

knowledge and interests. 

I have located three quite different studies in the category of Boxer as a programming 

language. The first of these was undertaken by a graduate student Chuen-Tsai Sun but 

reported in diSessa (1990a). There were five students involved aged 11 - 13 years old, 

from a private and academically oriented school in Oakland, California. The students' 

experience with Boxer ranged from a few months to a little over a year. They were 

judged to have understood the notions of data, variable and procedure in Boxer, but 

none of the students had any instruction in Boxer scoping. 
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The researchers found that transfer of scoping rules to procedure variables located 

inside a procedure initially unproblematic. "Students understood intuitively and 

immediately that local variables would be accessed on execution of that variable in place 

of more global ones." (p. 48). However, they observed that no notion of copy was 

needed up to this point. The copy-and-execute model, they report, was appropriated 

with some false steps and trepidation on the part of the students, but in the end all of 

them applied it successfully to novel problems without help. All in all, this study was 

that of validating design principles. Distributed models were found to be adequate to 

the early stages of learning and were of the form of visual-spatial type that were 

expected. Clearly, there are limits to this study in that the teachers were all 'experts' 

and the students probably atypical. But, the designers write that they "were 

extraordinarily pleased with this formative study." (p. 53). 

Visual-spatial considerations were central to a second study by Schweiker and Muthig 

(1987) also. In recent years, they note, a great deal of work has been devoted to 

reducing the cognitive load on naive users of computers. In particular, a much greater 

emphasis has been placed on visual programming. However, despite this emphasis, 

they write that (cf. Gorily and Tauber, 1987) empirical evidence on the relative pros and 

cons of visual aids in programming are lacking. 

They conjecture that this seems to be due to the difficulties in isolating the relative 

effects of the visual aids provided, since programming languages which differ in this 

respect, often also differ with respect to their inherent structure. Thus, in order to 

evaluate the relative efficiency of visual aids in programming, languages have to be 

compared which are basically similar with respect to their inherent structure but differ 

from each other with respect to presentation mode. Logo and Boxer were adjudged to 

satisfy these criteria. 

To study performance in programming, they observe (cf. Brooks, 1980) that measures 

could be used for each of the following tasks: program construction (time to write a 

program), debugging and program modification (number of bugs identified, time to 

identify a certain bug), memorisation-recall and reconstruction (speed and accuracy in 

reproducing a program), question answering (number of correct answers, time to 

answer), and hand execution (speed and accuracy of the execution). However, since 

they had no implementation of Boxer available at the time of the study, their 

investigation was restricted to debugging and program modification. 
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The task domain for the research concentrated on list related operations, since these 

operations form an important part of many Logo applications. In order to apply the 

respective list operations on actual lists, it was decided to use lists which contain two 

pairs of randomly selected letters each. By using these this kind of artificial lists, it was 

hoped that possible familiarity effects might be prevented. Twenty-three students (13 

university undergraduates and 10 student-workers from IBM) volunteered to participate 

in the experiment, and were randomly assigned to either a Logo or Boxer group. 

Although most of the subjects had expertise in at least one programming language, none 

of them had any prior experience with Logo or Boxer. 

The researchers found that, on average, significantly less time was needed to evaluate a 

proposed solution in Boxer (11.44 seconds.) than in Logo (29.5 seconds). They 

surmised that this might be due to the simple step-wise comparison of the respective 

outcomes with the desired result which can be performed in Boxer; whereas, in Logo, 

intricate checks of correctness are required. They concluded that, overall, the visual 

aids provided by Boxer proved to be efficient in reducing the cognitive demands for 

solving these kind of problems and in providing a more concrete problem space for 

solution. They also found that mean error rates in evaluating the proposed solutions 

were considerably smaller in Boxer (1.04%) than in Logo (11.36%). The results of 

their experiment indicate, they argue, that Boxer must not be regarded as only a 

modernised update of Logo, but as a real improvement over Logo - at least with respect 

to the features which were the subject of the investigation. 

A very different approach to the Heidleberg research was that undertaken by Leonard 

(1990). This study focused on how two 8th grade girls learned recursion in Boxer. 

The theoretical perspective taken is that students learn by constructing new knowledge 

to overcome impasses in their problem solving. The particular knowledge with which 

the research is concerned is structural knowledge of programming. Since Boxer was 

designed to make structure more visible and understandable to students, and given that 

an understanding of recursion requires a fairly deep understanding of structure, the 

researcher set out to test this hypothesis. 

Most work on learning computer programming, he observes has focused on plans for 

writing programs. This work is limited, he suggests, since firstly, it does not explicitly 

consider structural or strategic knowledge, and secondly, it considers the products of 

learning, but provides no models of how actual students acquire these plans. By 
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contrast, he says his study provides a detailed model of how one of the students 

acquired structural knowledge. His research focused on two of the misconceptions 

identified by Kurland and Pea (1989): namely "mental model of embedded recursion as 

looping" and "decontextualised interpretation of commands". 

Leonard concludes that many aspects of Boxer were well understood by the student. In 

this sense, he says, the study is compatible with that of Schweiker and Muthig's 

controlled study given above. It showed also how impasse-analysis could be used for 

assessing students' knowledge and it demonstrated how Boxer helped to overcome the 

aforementioned misconceptions. 

Outside of programming, Boxer research appears to have been conducted in three main 

knowledge domains: biology, physics and mathematics. Several studies (Ploger and 

Lay, 1990; Ploger, 1990a, 1990b, 1991) have testified to the efficacy of dynamic 

Boxer representations in the field of Biology. Other studies in physics (diSessa, 1989; 

Adams and diSessa, 1990) have emphasised the constructivist roots of the Boxer group 

pointing to how visual representations have fostered child expertise and continuity of 

activities. They observe how programming in Boxer replaced algebra thus enabling 

young students to deal with concepts (like relative motion). These twin notions of 

visual representation and visual thinking were also central to the Boxer studies in 

mathematics which I shall look at in more detail. 

Picciotto's study (1989b) was with a group of twelve students aged 12 to 16 in the 

context of a six week summer course as part of the University of California's Academic 

Talent Program. Some had neither experience of programming nor algebra, whilst 

others had considerable experience of both. In addition, he writes of having too few 

computers and of bugs and inexplicable crashes with the implemented version of 

Boxer. He decided to teach the concept of sampling, and designed a discovery-based 

curriculum to assist the theoretical understanding. To simulate the random sampling of 

a yes-no population, dice, marbles and spinners were used. The students were then 

asked to simulate each process in Boxer. He recalls what happened next: 

The transition from a real world experiment to a Boxer version was remarkably easy as 
compared with doing the same thing in Logo or BASIC, perhaps because variables and 
graphics are visible at all times. However, this SAMPLER program still proved to be 
much too difficult for beginners to write, and two (out of four) teams failed to complete it. 
For them, this was rather frustrating, and it became clear that while Boxer was easier to 
learn than other languages, programming is a difficult mental discipline, and cannot be 
picked up on the fly in a couple of weeks. (Picciotto, 1989b, p. 12) 
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As a result, he decided to de-emphasise programming. He re-arranged the student 

Boxer teams to be more homogeneous and asked the students to create Boxer projects at 

their own level of programming expertise. They were free to borrow procedures from 

teacher-written programs and from one another. He suggested four topics and found, 

to his surprise, that all four were implemented, each one by a different group. He 

reports that he was not surprised that the experienced programmers were successful, 

but adds that he was stunned by the achievements of group of three students who were 

beginners with very limited exposure to programming (one had done a little Logo, one 

had done some BASIC and the third had never used a computer). 

Following Picciotto's suggestion, these students designed a random walk for a turtle in 

a graphics box. This would go straight down or diagonally, depending on the outcome 

of asking a random member of a simulated population for a yes-no answer. This was 

done repeatedly, creating paths that follow the design of Pascal's triangle and provide a 

dynamic visual model of sampling. The students implemented a suggestion of another 

researcher (Don Ploger) that the turtle drop a 'marble' at the end of its walk with the 

result that a histogram was drawn which dramatically displayed the distribution of the 

samples. 

He writes that, while the key ideas behind the program were suggested by teachers, and 

the most difficult pieces of code were borrowed from the work of more experienced 

programmers, the scope of the project and every step of its implementation were 

determined by the students themselves. He concludes that a program of this 

sophistication could not have been achieved in this short a time in any other language, 

by people with as little experience as they had. 

Like the Picciotto study reported above, Ploger and diSessa (1987a) also carried out an 

experiment concerned with the topic of probability. They report a case study of a 12-

year-old student exploring a topic in probability by rolling simulated dice and recording 

the results within the Boxer computer system. They stress that the activity had two 

goals: that of learning probability and learning programming. In this experiment, the 

student was told that of three dice, two were loaded. He had to experiment to discover 

which dice were loaded and also how they were loaded. What was novel about the 

experiment is that the (simulated) throwing of the dice as well as the recording of the 

results were all carried out within Boxer. The authors analyse this experiment from the 

points of view of both educational content and those of programming. 
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The simplicity of what has been done here belies its importance. An object of investigation 
(die) has been implemented as a general computational object (program) in such a way that 
the correspondence between the two is obvious, including how to operate the object (roll the 
die = execute the program). (Ploger and diSessa, 1987, p. 4) 

With respect to content, they emphasise several aspects. Firstly, the experiment 

began with a question which was both easy for the child to understand and which 

was also interesting. Secondly, it had a solution that was easy to comprehend, but 

was not easy to find. Thirdly, the student found the search for the answer 

challenging. In the course of this process, the student learned to use powerful 

computational tools. These aspects of learning were not separate features, they 

argue, but rather different benefits from a coherent, integrated, educational process. 

A more recent study involving mathematics is reported by Williams and Rochelle 

(1993) who write of four 16 year-olds using Boxer to model the spread of a disease 

through a city. They say certain features of Boxer lent themselves to different 

stages of solving the problem (cf. Polya, 1945). At the point of formulation, 

Boxer's capacity to integrate text and program was particularly helpful. Students 

were able to deal with the concrete manifestations of variables in the form of named 

data boxes and the spatial block structure help them organise their thinking. 

Boxer's ability to permit line-by-line execution and its manner of building data 

structures gave students a simple means of solving for a particular case. 

However, they say that the algorithm that had worked for one particular case began 

to go wrong when tried with another specific case. They write that because the 

model was an active one and was visually represented in a concrete manner, and 

because the process could be stepped through, the cause of the error was readily 

isolated. "The video shows the teacher and the two students using their hands and 

the mouse pointer to identify the source of error and to communicate with each 

other. They have objects to talk about." (p. 497). 

Finally, they write that in presenting the report of the problem and its solution, 

certain features of Boxer are unique in that they enable a written description of the 

solution and the process to be juxtaposed on or integrated with the active 

expression of the model or the solution to the problem. Boxer, they say allowed an 

almost physical interaction between the person and the mathematical computational 

environment thus allowing students to engage with, provide models for and 

solutions to complex mathematical problems. 
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3.4: Summary 

This chapter has reviewed the literature relating to visualisation in mathematics, and the 

role of computers in that visualisation. It has also reviewed the visualisation literature 

in relation to programming in general, and to Boxer in particular. There have been two 

central themes throughout this review: visual thinking and visual representations. 

Section 3.1 examined the role of visualisation in the practice of mathematics. It showed 

that although mathematicians frequently employed visual images, there were strong 

professional pressures (Davis, 1993) to omit such images in their proofs — perhaps the 

defining characteristic of mathematics. Similar pressures existed in the classroom 

where symbolic reasoning was generally accorded higher status and visual reasoning 

relegated to a supporting role if used at all. 

However, section 3.1 also showed that with the advent of computer generated images, 

the status of visual reasoning was experiencing potentially far-reaching changes. 

Several authors (e.g., Turkle and Papert, 1990; Goldenberg, 1989) highlighted the fact 

that in working with computational objects, young students were gaining access to 

doing mathematics in ways similar to that of mathematicians. Other writers (e.g., Tall 

and Thomas, 1989) suggested that computer environments enabled students to adopt a 

holistic way of thinking and thus deal with concepts much earlier than might otherwise 

have been possible. 

Section 3.2 moved the discussion to visual representations. The review pointed to the 

variety of visual representations used in mathematics, but noted major differences 

between them, and possibly in the nature of the reasoning which they sponsored. Such 

observations serve to reinforce Vergnaud's view (chapter 2) of the need to study 

concepts in contexts. This section also noted that the models and diagrams used to 

introduce concepts pre-supposed an understanding of certain spatial/geometric 

concepts. Consequently, misunderstandings about such concepts were often closely 

linked to misunderstandings about the models that were used to illustrate them. In 

particular, the number line representation was looked at in some detail as a Boxer 

version of it formed the basis of one of the number studies of this research (chapter 8). 

The review of computer-mediated representations indicated that such misunderstandings 

were equally likely in computer environments. On the other hand, it was pointed out 

how sophisticated software could help students overcome conceptual obstacles, and 
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could enable them to engage with concepts at an earlier age than usual. The potential of 

using computerised function machines was discussed in the light of their potential for 

encapsulating actions into processes because the second number study in this research 

(chapter 9) involved students in constructing and interacting with one such device. 

Section 3.3 reviewed the literature pertaining to the role of visualisation in programming 

and in Boxer. It began by pointing to the fact that previous efforts at making 

programming accessible did so at a cost of removing control from the user. Visual 

programming languages attempt to overcome the 'complexity barrier' by having the 

user directly manipulate screen objects. But such systems, as diSessa (1986a) points 

out, stress functional considerations at the cost of structural ones. For the Boxer 

group, programming is a long-term goal, and one which can best be accomplished by 

giving students access to structural as well as functional and patchwork models. 

The second half of section 3.3 reviewed the available Boxer research. In doing so, it 

returned to the theoretical concerns of chapter 2: constructivism, concepts in context and 

how to build on students' intuitions. It drew again on the twin notions of visual 

thinking and visual representation, but this time in the context of Boxer. The 

experimental results gave some indication of how learning to program in Boxer and 

learning mathematical knowledge could be integrated. In particular, they showed how, 

in interacting with visual representations, students might make connections between 

their intuitive notions and the more formal and abstract concepts of mathematics. 

These two ideas: that of integrating programming with mathematical learning, and 

exploiting the medium to make connections between students' intuitive notions of 

number and more abstract concepts were central to this study also. The long-term 

nature of this research implied that it would be necessary to develop students' 

programming knowledge both as a precursor to the number studies, and in the course 

of those studies. 

This chapter complements chapter 2 in providing a theoretical framework for the thesis 

as a whole. The following chapter provides a more detailed outline of the research and 

presents a methodological and pedagogical framework for the remainder of the thesis. 
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Chapter 4: Research Methodology 

4.0: Introduction 

The purpose of this chapter is to look in detail at the methodology of the present 

research. It begins by discussing the major research traditions in the field of 

educational research, their origins and the nature of the questions that they pose. My 

choice of methodology is then related to my research questions, to my theoretical 

disposition, and to the research tradition within which much of the work of a similar 

nature is located. In the subsequent discussion, I consider key characteristics of my 

chosen research methodology in relation to my role as participant observer, the nature 

of the research site, the students involved and the collection and analysis of data. 

4.1: Issues for Research Methodology 

4.1.1: Theoretical Perspective 

It is a truism to say that research methods should be selected according to purpose. 

Nevertheless, there are distinct traditions or paradigms in educational research which 

differ in assumptions, goals and primary research questions. The roots of these 

differences each be located in different research traditions: experimental psychology on 

the one hand, and cultural anthropology on the other (Smith, 1988; Eisenhart, 1988). 

Most educational research, according to Eisenhart (op cit.), has been conducted in the 

general tradition of experimental psychology — a tradition characterised by its attempts 

to emulate the physical sciences (positivism). It embraces a conception of scientific 

method, aims for deductive universal laws, and adopts a neutral observation language. 

Schools tend to be viewed as quasi-laboratories where the students' environment can be 

constrained to promote the development of certain skills assumed to be good for 
everyone. 

Educational anthropologists or ethnographers, on the other hand, have been trained to 

assume that human behaviour and human learning are responsive to a context that is 

interpreted by its participants and that is dominated by social relationships. The school 

is seen as an institution that organises meanings and social relations in particular ways. 

They argue that to restrict investigation of social behaviour to experimental settings is to 
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discover only how people behave in such settings. The search for universal laws is 

rejected in favour of detailed descriptions. 

From a positivist perspective however, the methodology favoured by ethnographers is 

seen as subjective and particular. Since the observer plays a significant role in the 

research, they argue that there is no way of knowing whether another observer in the 

same setting would not yield different results. Moreover, since resources and time limit 

observers to one group, there is no way of knowing whether this group is 

representative of others. 

These two traditions also differ in the nature of the research questions that they each 

pose Eisenhart (op cit.). Research questions in the psychological tradition tend to be 

derivatives of the general question: 'How can mathematics teaching and learning be 

improved?' The main goals of the research are descriptive and prescriptive: to identify 

psychological, psycho-social, or instructional factors and processes that affect 

mathematics education and then design and implement treatments to achieve better 

results. 	In contrast, she writes, research questions posed by educational 

anthropologists interested in mathematics tend to take the general form: 'Why is 

mathematics teaching and learning occurring in this way in this setting? The goals are 

descriptive and theoretical: to identify the socio-cultural processes that constitute 

mathematics education in a particular setting and to make sense of this configuration 

through the development, modification or adoption of theories of culture or social 

relations. 

Dichotomising traditions of enquiry serves to polarise their differences, but it does so at 

the risk of obscuring the variety of methods that lie in between. The research strategy 

employed in ethnography is participant-observation, but then all research involves some 

participation. Observing two students programming with a prototype language on a 

commercial computer at the back of a classroom, as I intended to do, shared 

characteristics of an experimental approach. It was not 'natural' in the sense that the 

term tends to be used in the ethnographical literature. There were limitations in the 

extent to which the research intruded on the social relations of that classroom still less 

of the school. My research questions also suggested a cognitive bias. On the other 

hand, I felt that other factors disposed my research towards an ethnographical 

approach. 
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4.1.2: Pre-conceptions 

The style of research that I was interested in was not the sort that sets out to prove or 
disprove a hypothesis. I had an area of interest which was to investigate how working 
in the computational medium of Boxer would affect students' developing sense of 
number. I also had a series of 'working questions' in order to provide a focus, but 
simultaneously I wanted to leave myself free to explore and report how Boxer was 
mediating the students' expression of number. Moreover, I was beginning my research 
from a Logo baseline and shared the constructivist paradigm within which much of that 
research was located. Aggregating these factors, I felt that the most appropriate 
research method would be one that tended towards an ethnographical approach. 

But, there were also many unknowns. There was, for example, no guarantee that the 
Logo wisdom, accumulated over the previous decade, could be built on in a Boxer 
setting. Nor was it clear whether the technical problems of programming in Boxer and 

using a Sun work-station were within the capabilities of primary school students. 
There was also a question of access: how to best to deploy one computer in a typical 
primary classroom of 30 students. Finally, there were the mathematical unknowns. I 
wanted to adopt a holistic approach to my investigation of students' understanding of 
directed numbers and decimals — areas which were at, or beyond the limits of the 
normal primary school curriculum. It was not at all clear whether this was a viable 
objective. These then were the 'sensitising concepts' (Hammersley and Atkinson, 
1983) at the beginning of the search for a research site. 

4.1.3: Research Setting 

My study was part of a broader Boxer project involving two other researchers so the 
criteria for selecting a school reflected the needs of this overall project. It included 
proximity to the University, a degree of computer literacy amongst the participating 
teachers, enthusiasm from these same teachers to undertake such a project and a 
willingness to accept research workers into their classrooms. There was also a 
requirement that the teachers concerned would participate in an induction programme 
prior to the beginning of the research. 

The selected school is an inner-London primary school, little more than two miles from 
the University. The pupils attending the school come from a wide range of ethnic and 
social backgrounds. It is a two-form entry school, meaning there were two parallel 
classes in each year, with approximately 30 students in each class. The ethos of the 
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school is purposeful, disciplined and yet relaxed. The students, for example, address 

all members of staff including the Headteacher by their first names. While this might be 

regarded as an incidental idiosyncrasy of the school, in practice it meant that the role of 

participant-observer was that much easier to assume. 

Both of the year 5 and year 6 class teachers were experienced practitioners who had 

some knowledge of Logo. In each of their respective rooms, there already was a single 

computer which was used for Logo, word-processing, drawing packages etc. At the 

point when the computers were placed in the school (January, 1991), the year six class 

had four terms experience of Logo and the year 5 had two terms experience. So, it 

would be reasonable to say that at the outset of the project, the teachers and students 

were familiar with Logo. 

During the orientation week at the University, it was decided to place one of the two 

Sun computers, on which Boxer was mounted, in the year 5 room and the other in the 

year 6 room, and to place the laser printer — which could print out pictures of the screen 

for either computer — in the year 6 room. In English primary schools, it is usual to find 

students working in small groups, often on different activities linked by a common 

theme such as 'Weather' or 'Space'. We agreed that the most promising way of 

introducing Boxer would be to integrate it with these activities and themes. Thus, while 

the classroom teachers carried on with the normal business of the class, the researchers 

would observe pairs of students programming in Boxer at the back or side of the room. 

In the absence of researchers, the teachers themselves would attempt to continue with 

the Boxer work. 

4.1.4: Field Relations: 

The expectations which the hosts have about the researcher's identity and intentions can 

have serious implications for the amount and nature of the data collected. These may 

well lead to anxiety on the part of those under surveillance. As Hammersley and 

Atkinson (1983) point out, the challenge is to establish an affinity with the host while 

maintaining a critical distance. 

I sought to allay these fears by playing down my role as university lecturer, stressing 

instead my (former) classroom teacher identity. Anxieties about mathematics were 

reduced by focusing on Boxer, and anxiety about Boxer were reduced by stressing that 

Boxer was new to all concerned. Occasionally because I was present, the teacher felt 

free to leave the room. On such occasions, students might engage in behaviour which 
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was clearly in breach of normal class rules. This posed a dilemma for me: whether to 
ignore the behaviour or to assume the mantle of teacher? Each course of action carried 
dangers for the relationships which I had built up with teachers and students. This was 
resolved whenever possible by commenting on the behaviour, but also deferring to the 
authority of the class teacher. In a sense, this was part of the wider tension between the 
observer role and the participant role, as summarised in the following diagram: 

Fieldwork 
Comparative involvement: 	 Comparative detachment: 
subjectivity and sympathy 	 objectivity and sympathy 

Participant II 	 HI  Observer 
as observer 	 as participant 

Complete I 	 Complete 
Participant 	 N observer 

Figure 4.1: Theoretical social roles for fieldwork 
(Junker. 1960. from Hammersley and Atkinson. 1983. p. 93) 

My role as participant-observer fluctuated during the course of the research. During the 
introductory phase of the longitudinal study (chapter 6), I was participating in that I was 
helping students overcome difficulties with software and hardware. In the later number 
studies (chapters 8 and 9), I was more inclined towards the observer role as I wanted to 
take a more detached view of how the students were utilising their Boxer programming 
knowledge, and how interacting in the Boxer was mediating their sense of number. 
However, it would be true to say that I was much more inclined to act as a complete 
observer with regards to the number investigations than with respect to programming. 
In the latter case, I still had to intervene occasionally when students reached an impasse. 

4.2: Data Collection 

In ethnography, the analysis of data is not a distinct stage of the research. Theory 
building and data collection are linked throughout the research. The intention of this 
section is to not only detail the collection of data, but to also indicate also how that 
process influenced the research and, of course, the nature of subsequent data collection. 
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4.2.1: Research Timetable 

For convenience, the account of data collection is divided into two distinctive stages. 

The first of these, the exploratory stage, describes the process leading to the 

progressive focusing of the research (reported in chapter 5). The second stage, the 

longitudinal study, denotes the period over which I observed four pairs of case study 

students. It is in turn sub-divided into distinct phases: a programming phase (reported 

in chapter 6) and a number phase (reported in chapters 8 and 9). These two phases 

were linked by a series of semi-structured interviews away from the computer with 

Boxer and non-Boxer students (reported in chapter 7). 

Table 4.1: Timetable for the Research 
The Exploratory 

Study 

Year 1 

The 
Longitudinal 

Study 
Year 2 	 Year 3 

Jan. 1991 to 
July 1991. 

Programming 
Phase 

Sept. 1991 to 
July 1992 

Interview 
Phase 

Sept. 1992 to 
Dec. 1992 

Number 
Phase 

Jan. 1993 to 
July 1993 

Class A (Y6, D)* 
Class B (Y5, M) 

Class C (Y5, M) Class C (Y6, D) Class C (Y6, D) 

*The symbols in brackets denote the year group and the teacher. 

It was common practice for the teachers to be assigned to a year. Thus, they might 

remain year 5 or year 6 teachers for a number of years. The students, on the other 

hand, changed teachers each year. In the original planning of the project, the intention 

was that the students would first experience Boxer with teacher M in the fifth year and 

then continue it with teacher D in the sixth year. As can be seen from Table 4.1, only 

class C (the one selected for the longitudinal study) achieved this. 

Table 4.2: Timetable of Data Collection 

	

Period 
	

Activity 
	

Data 

Exploratory • Exploring how students with 
	

(a) Annotated print-outs 

	

Stage 
	

Logo experience learned to 
	

(b) Written responses by 

	

Jan. 1991 — 	program in Boxer. 	 teachers and students on 
July. 1991 
	

• Exploring how they learned 
	

Boxer. 
number through its use. 

• Developing a classroom pedagogy 
for introducing Boxer. 
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Longitudinal 
Stage 

Programming 

• Investigating how students with 
no experience of Logo learned to 
program in Boxer. 

• Investigating how different 

(a) Annotated print-outs of: 
First-Boxer, Second-Boxer; 
and Third-Boxer. 
(b) Videos of case study Phase 

Sept. 1991— representations in Boxer affected students. 
July 1992 students' conceptions of number. 

• Investigating the issues involved 
in using the medium to introduce 
itself. 

Semi-structured • Investigating students' (a) Written responses by 
Interviews interpretations and representations students on number. 

Sept. 1992 — of number. (b) Audio recording of 
Dec. 1992 Interviews with Boxer and 

non-Boxer students. 
Number Phase • Investigating the issues involved (a) Annotated print-outs of: 
Jan. 1993 — in having students program their 'Number Line' and 
July 1993 own microworlds. 'Function Machines' 

• Developing a Boxer 'operational' (b) Videos of case study 
approach to the investigation of 
number concepts. 

students and others. 

4.2.2: The Exploratory Study 

The exploratory study was necessarily broad in its scope, and as might be expected, it 

was 'loosely defined' in terms of goals (see Table 4.3). Some goals were set within the 

`Turtles' microworld; others were chosen by the students themselves, or were in 

response to the current theme, while the remainder were suggested by the teachers or 

myself. An analysis of the 28 sessions observed during this period, reveals a break-

down of goals as follows. 

Table 4.3: Task Domains for Phase 1 of Exnloratory Research 

Category 
Number of 
sessions 

Working mainly within the 'Turtles microworld 8 
Goals chosen by the students 9 
Goals chosen in_part or full by teachers/researcher 3 
Theme-related tasks 8 
Total 1 	28 

These categories are not discrete. Often, teachers or I would suggest extensions to 

tasks begun in the 'Turtles' microworld or started by the students themselves. 

Data was recorded in the form of screen print-outs at approximately 20 minute intervals 

or after students had made a significant change to the screen display. In the latter case, 

this might be as a result of a student's program not performing as expected, or it might 

show a significant event in their programming, e.g., the use of modularity. 
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Tom  and Tani5 /2.04 1/2/97] clhornhi/ 

r_1  round 41  

fd 50 
rt 38 

Inenu 1 	(1) dirtied immediately on round 4 and by usbeg  

triangle 	calculator calculated 360 - 12 = 30 for the angle.  
square 	?thy to this, they asked hoar many sides a 
pentagon dodecagon had 
hexagon (2) Obey then asked hong they could get a pattern 
septagon 

using 'repeat' as they had done before but cold:in't 
octagon 

remember. dodecagon 
cs 	(3) AfterAftersome hurts, they wrote a procedure mhth 

ht 	tookred repeat@ 'triangle rt 381 

	 ((V grext they merit on to do 

repeat 30'6/angle rt 1 and oblated 

	 apattern which looked lice a segment of a 
I hexagon  	 dartboard 

(c7bis was called Tanis) 

gupiter — 'Denise 
	

0 

Turtles 

These print-outs were annotated to record what was happening. The screen print-outs 

therefore act as 'markers'. They do not capture all that was happening — even on the 

screen. The annotations note what was happening on the screen as well as what the 

participants were doing and saying away from the screen. They also record my insights 

at that particular time. The following example gives some idea of the nature of these 

annotations: 

Figure 4.2: A typical print-out with annotations 

The date, time and names of the students were noted on each page of the print-outs. 

The annotations were also numbered and times were noted against key events. Thus, it 

was possible to get some insight into how progress was made. In the longitudinal 

study, these print-outs were supplemented by systematic video recordings of the 

sessions. 

4.2.3: The Longitudinal Study 

The longitudinal study consisted of three phases: a programming phase, an interview 

phase and a number studies phase. The research methods adopted in each phase were 

different, although all were characterised by case-study research. 
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4.2.3.1: Programming Phase 

The programming phase combined case-study research with exploiting the medium as a 
means of introducing itself (see chapter 5). I began by designing an introductory 
programming microworld 'First-Boxer'. This was later followed by 'Second-Boxer' 
and "Third-Boxer'. At first, I observed eight pairs of students, four pairs from the year 
5 class and four pairs from the year 6 class. My original intention was to work with 
and video all eight case study pairs, but this turned out to be over-ambitious in terms of 
the time needed. So, I decided — in consultation with the class-teachers — to work 
primarily with the four year 5 pairs. My intention now was to video all of the year 5 
students working through the microworlds. As can be seen from Table 4.4, this was 

not quite achieved. 

ProgrammingPhase 

Name 
First- 
Boxer 

Second- 
Boxer 

Third-Boxer 

Liam & 
Jason 

✓ ✓ ✓ 

Nico & 
Joanna 

✓ ✓ ✓ 
J with Faye 
J on own 

Courtney 
& Laura 

✓ ✓ 
L with 
Meliha 

✓ 

Jessie & 
Oliver 

✓ ✓ X 

4.2.3.2: Semi-Structured Interviews 

The exploratory stage had given some clues to how number activities might be 
structured in Boxer, but these were nevertheless still vague when the programming 
phase came to an end. I therefore decided to interview a group of non-Boxer students 
as well as the Boxer students with the intention of progressively focusing in on how the 

investigation of number could best be carried out in the medium. 

Three distinct groups of students were interviewed: a pilot study group of eight students 
from the parallel year six class, a second group of eight students from the same class, 
and ten students from the Boxer class. This latter group included all of the case study 
students (seven at this stage), and three additional students who had some Boxer 
experience, a total of twenty six students. This study employed a series of semi-
structured interviews. The students were first interviewed in pairs or individually (the 
format was modified in the course of the study). A second set of interviews was then 
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conducted in which the students in groups discussed certain of the representations 

arising from the earlier interviews. 

With the pilot-study group, I began by attempting to engage all of the students in a 
discussion, in which members of the group critiqued each other's representations in a 
constructive way, in much the same way as the students in diSessa et al.'s (1991) 
study. However, this format was not entirely successful for three different reasons. 
Firstly, it was difficult to manage a group of eight students while allowing each child to 
express her/his view. Secondly, because the diagrams (at this stage) were labelled with 
their names, some students were unwilling to criticise drawings completed by their 

friends. Finally, these students — unlike those in diSessa's study — were not used to 
discussing each other's ideas. With the comparison and Boxer students, the follow-up 
discussions were conducted in groups of twos or fours (chapter 7). These interviews 
were audio recorded. A list of the students involved is given in Table 4.5. 

Table 4.5: Year 6 Students interviewed on Number 
Comparison 

Group 
Boxer 

Case-study 
students 

Boxer non- 
Case-study 

students 
Aim-Maria Nico Kathleen 
Tahir Joanna Rosie 
Blake Liam Sara 
Hannah Jason 
Ahmet Courtney 
Cerisse Laura 
Rebecca Jessie 
Dillon 

4.2.3.3: The Number Studies 

The exploratory study indicated the merits of involving students in the construction 
process, but it gave few clues as to how this might best be done. The data furnished by 
the semi-structured interviews supplied some of these clues. It pointed the way 
towards an 'operational' approach to number and moreover attested to the number line 
as being a potentially evocative representation. The number line study (chapter 8) was 

designed to put these ideas into practice. The function machine study (chapter 9) 
supplemented that study and helped to triangulate its findings. 

In each of these studies, the students constructed their own microworld. In the first 
case, the number line goal was set by me. In the case of the function machine study, 
the goal was set by the students themselves. Each of these computational objects than 
became the means through which I observed students interactions with number. 

81 



Table 4.6 shows the students who were video-recorded on each of these: 

Table 4.6: Video Record for Number Phase 

Names 
Number 
Lines 

Function 
Machines 

*Nico & *Joanna ✓ ✓ 
*Liam & *Jason ✓ ✓ 
*Laura & *Courtney ✓ ✓ 
*Jessie & Kathleen ✓ 
Rosie & Chloe ✓ 
Natalie & Sara ✓ 
Naomi ✓ 
Total number of students I 8 	11 

* (Origina se study students. 

4.3: Case study students 

The case study students were chosen by the class teacher to be representative of the 

mathematical ability range (one pair from each quartile) and to be balanced in terms of 

gender, but how she measured 'ability' was not known. Probing the teacher's 

categories might have been seen as questioning her professional judgement. In any 

case, it was not clear what could be gained by doing so. It later transpired that she had 

applied another criterion of her own, in that she balanced the pairs in terms of their 

perceived social class. 

Table 4.7: Composition of the Case Study Pairs (September 1991 

Name Age, DOB Boy/Girl Maths Quartile 
Liam 9, 27-11-81 Boy 3 
Jason 9, 31- 7-82 Boy 2 
Nico 9, 19-10-81 Boy 1 
Joanna 9, 9- 9-81 Girl 1 
Courtney 9, 28- 5-82 Girl 2 
Laura 9, 23- 3-82 Girl 3 
Jessie 9, 19- 5-82 Girl 4 
Oliver 9, 10- 8-82 Boy 4 

The teacher also selected the case study pairings. In some cases (Laura and Courtney, 

Liam and Jason), these were based on existing friendships. In other cases (Jessie and 

Oliver, Nico and Joanna), the teacher had a different agenda. In the former pair, the 

students were perceived as struggling with classroom work generally and working with 

Boxer was thought to be one way of 'bringing them along'. In the latter case, Joanna 
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was paired with Nico, because the teacher thought that while each child was of 

comparable high ability, Joanna lacked confidence and she hoped the partnership would 

benefit her. 

4.4: Data Analysis 

4.4.1: The Interviews 

All interviews are structured by both researcher and informant. The important 

distinction is between standardised and reflexive interviewing. In the latter case, 

questions are frequently generated by previous responses. In reacting to what the 

students did on the computer, I would ask questions such as: "Why did you do that?", 

"What do you think that means?", "What do think might happen if ... ?" — in other 

words, unstructured or reflexive interviewing. 

In recording the sessions, I was conscious of the need to capture what was said — the 

`situated vocabularies' rather than translations of them. Thus, the significance of a 

student's utterances such as "Point fifty four." could be incorporated in the emerging 

theory. But, I also became alert to my own practice in referring to quantities such as 

0.54 in several different ways: "Point five four.", "Nought point five four.", "Point oh 

five four." and even "Nought point oh four." 

The success of such interviews depends not only on the relationship between the two 

parties but on assumptions made about the interviewer's knowledge. Informants may 

not 'spell out' what they mean because they may assume that the interviewer will draw 

on their background knowledge. For example, when Courtney and Laura were probed 

on the meaning of 0.2, Courtney replied: "It's a decimal." I responded: "Suppose I 

pretend I don't know what a decimal is." A little later, Laura exclaimed: "It's one tenth 

of two.", a description that conveyed its operational origins and was thus of importance 

for this research. These were captured on video as well as on annotated print-outs. 

The use of video solved some problems but led to others. The original aim was to 

capture what was on the screen as well as what the students were doing away from it. 

But problems in matching a British video camera to an American computer meant that a 

clear picture of the screen could only be obtained by focusing the students out of the 

picture. The decision was therefore made to place primacy on what the students were 

doing, and to rely on the annotated print-outs for relating this activity to the screen 

display. 
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Using a video camera made it possible to more accurately locate the context in which an 
utterance was made. It demonstrated, in a way that would be difficult for words to 
capture, the physical interaction between the students and the various components of the 
Boxer environment on the screen. In chapters 8 and 9, for instance, the students' 
experiences in interacting with the Boxer number line and the function machine are 
analysed. But the words used therein cannot capture all of the finger-pointing between 
different parts of the graphical objects and the corresponding symbolic expressions in 

the program's doit box. 

The use of the video recorder in the main body of the study enabled me to engage in 
reflexive interviewing in a way that would not have been possible had I relied solely on 
note taking. This explains why in chapters 8 and 9, the activities which the students 
pursued are seldom the same. A response which gave an opening into, say decimal 

quantities, could profitably be followed up. Likewise an incorrect response became not 
a dead answer but a 'strategic aperture' (Hoyles and Noss, 1992b) which could be 
exploited in the Boxer environment to yield more information and guide the next step in 
the interview. The presence of the video as a supplement to note-taking also meant that 
the nature of note-taking changed from being primarily a record of students' work to 
being more akin to an analytic memo. Such notes in turn led to preliminary hypotheses 
being refined as well as the generation of new hypotheses. 

4.4.2: Triangulation 

Technique triangulation can be achieved by comparing data produced by different 
techniques. In the computer-based interviews, the use of field notes together with the 
video record meant that there was an on-going form of technique triangulation. The 
number inferences made as a consequence of the semi-structured interviews were later 
tested through reflexive interviewing in the number line and function machine study. 
Moreover, the findings from function machine study acted as a form of triangulation 
with those from the number line study. There were differences as well as similarities, 
but these differences were also of importance to the emerging theory (chapters 8 and 9). 

Another form of triangulation relates to respondent validation. Its value lies in the fact 

that the participants involved in the events may have access to additional knowledge of 
the context that is not available to the ethnographer. To this end, I invited both teachers 
to give their accounts of the Boxer work. The teachers themselves conducted a survey 
of the students' feelings about Boxer. Finally, at the end of the research I conducted a 
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semi-structured interview with the students about their feelings of working with Boxer. 

This was audio recorded. 

Over the period of the research, I built up a relationship of trust with the teachers. I 

was thus able to compare the written accounts with what had been said or observed 

over that period. There was little in the different accounts to suggest any discrepancies 

in the data. Although not commented upon, either verbally or in writing, I did observe 

a marked preference, from students and teachers, for elaborate visual goals. This may 

relate to the primary school tendency for displaying work. 

4.4.3: The process of Analysis 

In the longitudinal study, my initial organisation of data was in terms of the students 

observed. This allowed a temporal recounting of what happened, but made it difficult 

to see what was common across groups. For the programming phase, the data was 

reorganised through categories derived from previous Logo research, e.g., 

`procedures', 'variables', and so enabled me to compare students' Boxer programming 

with Logo. At the same time, I imposed a second categorical layer, derived from the 

organisation of the microworlds, to highlight issues involved in using the medium to 
introduce itself. 

Similarly, the organisation of the data from the number phase also underwent several 

changes. Initially, this too was in terms of the students observed. I then attempted to 

organise it in terms of school topic boundaries in mathematics. While this permitted a 

comparison with previous research, it moved too far away from what did happen, 

where students frequently mixed numbers and operations, and thus reinforced the 

reification of topic boundaries. In the current framework, the data is organised in terms 

of the operations used to introduce the numbers. It thus reflects the number line or 

function machine interactions, and goes some way towards showing how these Boxer 

objects mediated students' expression of number. 

Although no number of confirming instances can ever guarantee the validity of a theory, 

the chances of its acceptance can be increased if we specifically choose to study those 

cases where, because of the strength of rival explanatory factors, it seems least likely to 

be proved correct (Hammersley and Atkinson, 1983). My original choice of the 

traditionally non-visual area of number can be seen as exemplifying this notion in terms 

of the technical component of the research, while the decision to work with the full 

ability range can be seen as doing the same in terms of the students. 
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Each posed challenges. In the first case, it was some time before an obvious way of 
utilising the medium to visualise number emerged and when it did, it became apparent 
that it would necessitate considerable programming skills. In the second case, the early 
evidence from Jessie and Oliver seemed to suggest that the demands of Boxer were 
proving too difficult for students representing the bottom quartile of the ability range, 
and the teacher and I reluctantly agreed to drop them from the research. In the 
following academic year, when Jessie re-joined the research with her new partner 
Kathleen, some very unexpected differences were observed. It was apparent that 
Jessie, although from the bottom quartile like Kathleen, not only had a better 
understanding of programming, she also had a much more sophisticated insight into 
numbers than her partner (chapter 8). 

The context in which the observations were made must also be made clear. There was 
no way of knowing, for example, whether the students interacted with the classroom 
teacher in a similar way when I was not present. Working with groups of one to three 
students on a computer gave me insights into students' reasoning that had never been 
possible in my own teaching career (with classes of 25 to 30 students). More precisely, 
I was able to observe how their interactions in the Boxer computer environment was 
shaping their emerging sense of number. None of these facts — the effect of the 
researcher, the small group sizes and the Boxer environment — detract from the status of 
the data or theory, but each serve as warnings against generalising the findings beyond 
such contexts. 

4.5: Summary 

The problem investigated in this thesis was to identify and examine how working in the 
computational environment of Boxer would mediate students' developing sense of 

number. The research concentrates on three inter-related aspects of the problem. 
Firstly, to study the programming activities of the students to gain insights into the 
kinds of learning involved. Secondly, to investigate their interpretations of number and 
to probe which representations were evocative for these students. Thirdly, to examine 
utilising the students' programming experiences as a basis for extending their 
developing sense of number. Clearly, an investigation of these areas could take place in 
several different ways. This chapter has detailed the important characteristics of the 
methods that I chose to use. 
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My joint decision with the classroom teacher to seek a method which ensured equitable 
access to all the students looks, at first sight, to be peripheral to the main research 
question. However, it proved to be crucial in several respects. Firstly, it showed how 
using the medium to introduce itself could overcome the obstacles posed by a shortage 
of computers in a normal classroom. Secondly, it moved the classroom teacher from 
being a user to being involved in the design process. Thirdly, giving the other children 
access to Boxer not only overcame the ethical question raised earlier, it proved 
important in the later function machine study when several of those children participated 
in the research. 

The constructivist basis of this study has been alluded to throughout the previous 
chapters. The semi-structured interviews, which served as a bridge between the 
programming phase and the number studies, sought to build on and build in the 
knowledge which the students in this research had regarding number. Using a 
comparison group of students helped to accentuate differences between the two groups 
conceptions of number and thus point towards the research methods for next phase. 

The two number studies of this phase of the research were characterised by two 
features. Firstly, each involved students not merely interacting in microworlds 
constructed by someone else, but in constructing the microworlds themselves. 
Secondly, the object of their construction was operational. Thus, the product of their 
construction became the agent through which number processes might be reified. 

In chapter 5, the exploratory study is analysed. It gives an account of how students 
who had previous Logo experience adapted to Boxer. It also shows how my initial 
ideas for introducing number in the medium evolved. 
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Chapter 5: Exploring the Medium 

5.1: Introduction 

This chapter discusses the exploratory stage of the research, which lasted from January 

1991 to July 1991. The intention was to use this period to generate more focused and 

coherent issues for the second longitudinal phase. Two groups of students were 

observed: a year 5 class (ages 9 — 10) and a year 6 class (ages 10 — 11). The class 

teachers were both experienced teachers of Logo, and all of the students had previous 

Logo experience. This stage was characterised by three aspects: 

• distinctive strategies used by the students to learn the fundamentals of programming 
in Boxer; 

• the creation of microworids to explore how visual representations in Boxer 
mediated students' expression of number; 

• the development of a pedagogical approach by the class-teachers in conjunction with 
the researcher. 

5.2: Exploring Programming in Boxer 

During the course of this study, students were observed programming in Boxer in ways 

that differed to that reported in comparable Logo research (Hoyles and Sutherland, 

1989). There were similarities too, which is hardly surprising since Boxer was 

designed as a successor to Logo (diSessa, 1986a). To take account of these differences 

and similarities, three categories of programming, derived from Hoyles and 

Sutherland's (1989) study with Logo will be utilised. These are: 'working at a 

syntactical level', 'making sense of, and 'goal-directed activity'. 

5.2.1: Working at a Syntactical Level 

Hoyles and Sutherland (op cit.) categorise this activity as consisting of the syntactically 

correct use of Logo primitives, procedures (or sequences of these) but with a focus on 

obtaining a screen output without any apparent reflection on how or why the output was 

achieved. In this Boxer study, the temptation to engage in such activity was 

exacerbated both by the facility for repeating a sequence of actions (pressing the 

linefeed key), and by the facility for getting an instant screen print-out on the classroom 

printer. 
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fd 50 
cs 
ht 
rt 90 
1t90 
square 
big-square 
small square 
rt 60 
design 

I design I 

right 250 
forward 50 

repeat 7 
small-square' I squalel 

	
Ibig-square 

Episode 1— Focus on Product 

This episode has been selected to show how Boxer's simplicity enabled Luisa and 

Sukey to obtain a complex visual pattern, and how these powerful visual effects became 

a goal in themselves. 

1 round-3 

 

!menu' instructions 

 

Figure 5.1: The 'saw-tooth' pattern 

As part of the 'turtles' microworld (chapter 4), the students were invited, by an on-

screen message, to complete a procedure called 'design' (Figure 5.1) which could then 

be used to create a screen pattern. 

Two year 6 girls, Luisa and Sukey, typed 'repeat 7 [right 250 fd 50]' in the doit box 

called 'design'. On running this, they obtained an 'incomplete' pattern, so they 

continued to execute it (by pressing the 'linefeed' key) until they made a 'saw-tooth' 

pattern (Figure 5.1). Later, they changed the input to 'repeat' from 7 to 40 and ran the 

program again. This was the first instance of the often observed practice of students 

combining 'linefeed' with 'repeat' to obtain `whizzy' effects. The girls did not seem 

aware that the input to 'right' signified an angle, nor did they reflect on the relationship 

between this part of the program and the visual effect on the screen. At this point, 

Luisa and Sukey seemed only concerned to obtain striking visual patterns. 

Against this, it could be argued that, although the students may not have fully 

comprehended the relationship between process and product, the product itself was 

highly motivating. Evidence to support this contention could be inferred from the way 

1  Note square brackets [ ] will be used in text to represent a doit box in Boxer. 
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they showed their print-outs to other students and by their requests to take them home 

to show to their parents. It was also noticeable that the desire solely for spectacular 

visual effects was a feature of their early encounters with Boxer and tended to fade as 

they gained more experience. 

5.2.2: 'Making Sense or 
For Hoyles and Sutherland (op cit.), 'Making Sense Of' is exploratory activity in which 

students try out a new idea or procedure and reflect on what is happening. Sometimes 

such activity is completely non-goal directed, sometimes it takes place within goal-

directed activity and sometimes a goal emerges from the activity. 

Episode 2 — Attaining a goal by a Visual strategy  

This episode has been selected to show how Boxer allowed two year 5 boys Finneas 

and Tariq to utilise a visual means of achieving a goal that might not have been 

attainable to them through analytical means. 

round-21 

forward 20 
right 30 

small-squard 	1 big-square 
repeat 4 

1 menu 1 
forward 50 
right 150 
left 90 
st 
cs 
square 
big-square 
cs small square 
clearscreen 
penerase 
pendown 
penup 
pattern 
st 
star 
cs cup ht 

(cup  
big-square 
big-square 
big-square 
right 180 
fd 100 
right 270 
fd 75 it 270 
fd 100 rt 180 
fd 100 rt 90 
fd 75 rt 90 
fd 60 fd 20 
rt 270 fd 40 
it 270 fd 40 
rt 270 fd 40 
it 270 fd 10 
it 270 fd 20 
rt 90 fd 20 
rt 90 fd 20  

Ftg!  sq !pattern! 

Figure 5.2: Finneas and Tariq's cup doit box and drawing 

Like, the pervious episode, this also took place within the 'Turtles' microworld. An 

on-screen box entitled 'big-square' contained the line 'repeat 4 [forward 20 right 90]'. 

The two boys changed this so that it read 'repeat 4 [forward 20 right 30]' . They then 
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executed this line three times and — to their surprise — obtained a dodecagon. Noting the 
resemblance between this polygon and the top of a coffee cup, drawing a cup now 
became their goal. 

They then began to type and execute commands in one of the boxes on the screen. At 
this point, their programming could be classified as 'direct execution'. When they were 
sure that a command was doing what they wanted, they typed it inside a procedure 
called 'cup' (see Figure 5.2). In this way, they were able to tell where their program 
worked up to. They decided on dimensions for the various components of the cup by a 
`guess-and-test' process. Mistakes or other unwanted effects were overcome by re-
writing the commands for the most recent component and than running the line `cs cup 
ht' from the menu. 

It seems that for some parts of their program, they were operating at a syntactical level 
rather than reflecting on how or why the output was achieved. Some evidence for this 
could be seen in their use of 'big-square' three times for the top of the cup, in their use 
of 270' instead of 'it 90', and in their later typing of 270 fd 40' four times even 
though they had used the 'square' procedure earlier on. On the other hand, they were 
pursuing a goal which had been generated by their earlier activities and one which they 
were unlikely to attain by analytical means. For example, they had no choice but to 
employ a 'homing-in' strategy to draw the bottom of the cup, since the mathematics of 
calculating the 'diameter' of a dodecagon with sides of 20 units and an external angle of 
30°  was simply not within their grasp. 

Episode 3 — 'Borrowing' chunks of programs to attain a goal 
This episode has been selected to show how a semi-structured Boxer environment gave 
two year 6 boys Tom and Tavis a 'wedge-in' to more sophisticated programming, and 
how the programming activity motivated them to engage in mathematical activity. 

In `round-4' of the 'Turtles' microworld, procedures for drawing a triangle and a 
square were given and students were invited to complete procedures for pentagons and 
so on (Figure 5.3). 
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Inenu  

triangle 
square 
pentagon 
hexagon 
septagon 
octagon 
dodecagon 
cs 
ht 

tnanglel sq 

fd 50 rt 30 

pentagon 

repeat 5 

Itavis 1  
repeat 30 

hexagon 

torn 

repeat 6 tavis rt 30 dodecagon rt 1 

dodecagon 

repeat 12 

round 41 

Figure 5.3: Tom and Tavis's dodecagon pattern 

The boys began by asking how many sides a dodecagon had. On being told '12', they 

used a calculator to work out 360 ÷ 12 = 30, opened the 'dodecagon' doit box, wrote 

the program 'repeat 12 [fd 50 rt 30]' and then ran it. Earlier, the boys had obtaining a 

rotational pattern by running the procedure 'repeat 6 [triangle rt 60]' and they now tried 

to do the same with 'repeat 6 [triangle rt 38]'. Next they wrote 'repeat 30 [triangle rt 

1]' and on running it, obtained a pattern which looked like a sector of a dart-board. 

This was called `tavis'. Finally, they created a super-procedure `tom' with which they 

rotated `tavis' to get a full 'dart-board'. 

They continued to experiment, first replacing the triangle in `tavis' with a square and 

running 'tom', and then repeating this process in turn with a pentagon, hexagon, 

heptagon, octagon and finally a dodecagon (Figure 5.3). For each of these polygons 

(other than the square), they had to calculate the angle of rotation. Frequently, they 

would ask how many sides a particular polygon had before computing 360 ÷ n on their 
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calculator. The connection between the number of sides n and the angle of turtle turn 

360 n appeared to be unproblematic. 

Tom and Tavis's were motivated throughout this activity by their goal of obtaining 

spectacular visual effects. But this goal prompted them to use more structure in their 

programming than might otherwise have been the case. It also encouraged them to 

engage in the mathematical activity of working out the angles of polygons. For this 

study, it gave clues as to how similar semi-structured environments might be employed 

in the second phase of the research. 

5.2.3: Goal-directed Activity 

In the third category of programming identified by Hoyles and Sutherland (op cit.) the 

activity is aimed at achieving a specific goal whether posed by the pupil or teacher. 

Episode 4 — Teacher Intervention 
This example has been chosen to show how a goal chosen by two girls Anoushka and 

Natasha was greatly enriched by appropriate intervention by the class teacher. 

The girls set themselves the goal of drawing a house. They adapted procedures given 

in round-7 of the 'Turtles' microworld in order to do so. 'Square' was used for the 

body of the house, and 'triangle' re-named 'roof'. They added 'orientation' commands 

to position and combine them. The girls then began to draw the door and the windows 

by typing and executing commands in the menu, using `penerase' to correct errors. 

The failure of `penerase' to work for print-outs together with the effort required to 

completely re-draw their house made them receptive to the teacher's suggestion of a 

creating modules for each component of the house and for navigating between them. 

She also set the girls the task of creating the house in one super-procedure. The 

students worked through their lunch-time to obtain the house shown in Figure 5.4. 
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window' . I menu)  
penup 
roof 
pendown 
square 
penerase bk 40 
cs house 
window 
rt 90 
rt 45 
st 
ht 
cs 
bk 150 
,pu fd 40 pd 

	I 

r a zr 90 
Pd 
fd 75 
1t90 
fd 30 
1t90 
fd 75 
It 180 
pu 
fd 75 
rt 90 
fd 10 
rt 90 
fd 5 
pd 
fd 60 
1t90 
fd 10 
1t90 
fd 60 

I house  
square 
roof 
window 
move 
window 
move-2 
door 

I roof I 	 sm-sq square' 
rt 180 repeat 4 It 90 repeat 3 fd 150 

It 120 
repeat 4 fd 30 

It 90 
fd 150 
It 90 

'move' 'move-21 
pu 	It 180 
It 180 pu 
fd 45 fd 45 
rt 90 	rt 90 
fd 15  fd 45 

rt 90 
fd 150 
rt 90 
fd 60 
rt 90 

6und-71 

Figure 5.4: Anoushka and Natasha's house 

The early part of Anoushka and Natasha's programming had similarities and differences 
to that seen frequently in Logo research. It was similar in that they executed commands 
directly. It was different in that they could easily adapt pre-written procedures. The 
latter part of their programming activities was quite different. The girls wrote separate 
modules for separate parts of their drawing 'roof, 'window' etc. and then used a 
super-procedure 'house' in which to combine them. The teacher's intervention was 
important in focusing attention on the merits of modularity, while the simplicity of 
creating such modules in Boxer meant the students were able to implement her 
suggestions. 

Anoushka and Natasha goal of drawing a house drove their early activities. Their later 
actions were motivated by the goal of creating a procedure to draw a house in one 
move. The teacher's intervention was crucial in that it had moved the students' focus 
from the product to the process of their programming. 
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5.3: Exploring Number in Boxer 

During the exploratory phase of the study, I investigated several different ways of 

exploiting the visual nature of Boxer for representing number. This section discusses 

one of these representations line-numbers' (Figure 5.5), in which parallel vectors were 

used to compare numbers. It was used only with class B (Table 4.1), i.e., the class 

who had Boxer experience, but were not involved in the longitudinal study. 

line-numbers 

0.07 
	> 

0 

menu 
`Cs 
cs start rt 90 
line numl 
line num2 
compare numl num2 

open-mel 
Which is bigger 
(a) 129 or 213; 
(b) 346 or 428; 
(c) 1.5 or 1.23; 
(d) 0.7 or 0.54; 
(e) 1052 or 1439; 
(f) 3456 or 5123? 
Put the numbers in numl and 
num2 boxes and then do 
'compare numl num2' . 
help 

 

!compare I 

 

  

   

   

You might have to scale up or down. 

If your number is big like 1052, 
use a small number like 0.5 for scale. 

If your number is small like 0.7, 
use a big number like 100 for scale. 

Figure 5.5: The line-numbers' representation 

	1 

5.3.1: Number Issues arising from the gine-numbers' representation 

I began by asking the students to answer each on-screen question. They were then 

invited to check their response by putting the numbers in the `num1' and `num2' boxes, 

and then run 'compare num 1 num2' which drew vectors for each number. If the 

resultant drawing did not show up the differences clearly, the students were invited to 

either scale up or down. After the first session (with Leonie and Jermaine), the 
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microworld was modified by adding the 'start-number' box and adjusting the 'line' 
program. This enabled a better comparison of numbers, such as 1.12 and 1.2, which 
were very close (in value) to each other. 

Of the screen questions, the problem which caused most consternation for the students 
was (c) comparing 1.5 and 1.23 (Table 5.1). But, although the other questions 
appeared unproblematic, caution needed to be exercised in interpreting correct answers 
as signifying understanding. Rather, answers needed to be analysed in conjunction 
with the students' spoken responses. Sian, for example, answered (d) correctly, 
comparing 0.7 and 0.54, but reacted to the visual representation by saying: "How 
come that one is bigger and it's only seven?" 

Table 5.1: Results from the on-screen Comparison Questions 
(a) 129 (b) 346 (c) 	1.5 (d) 0.7 (e) 	1052 (f) 3456 

n = 6 or 213 or 428 or 1.23 or 0.54 or 1039 or 5123 
5 5 2 5 6 5 

The students were now asked to set questions for each other, and to use the vectors to 
check them on screen. This was only partially successful, as the students' lack of 
knowledge prevented them from choosing the most challenging questions, a fact that 
they themselves signified by asking me to set the questions. Their choices, responses, 
and actions are shown in tables 5.2, 5.3, and 5.4 along with extra questions set by me. 

Table 5.2: Leonie and Jermaine's Number Challenges 
Questioner Which is bigger Response* Scales 

Jermaine: (1) 0.07 or 0.1? L: 	0.07 500 
Leonie: (2) 4089 or 2444? J: 4089 0.5, 0.1 
Jermaine: (3) 1.12 or 1.2? L: 	1.2 100, 500 
Leonie: (4) 4.00 or 5.09? J: 5.09 500, 0.1, 0.5,100 
Jermaine: (5) 5.5 or 5.05? L: 5.5 100 
Leonie: (6) 56.02 or 56.20? J: 56.20 500, 0.1, 1.00,5.00 
Jermaine: (7) 5.2 or 5.11? L: 5.2 100 
Leonie: (8) 05.90 or 0.09? J: 5.90 100 
Jermaine: (9) 111 or 111.1? L: 	111.1 0.1, 100, 20, 5 
Interviewer: (10) 0.0034 or 0.65? L: 0.65 100, 500, 1000 

J: 0.65 
Interviewer: (11) 0.054 or 0.21? L: 0.054 100, 500 

J: 0.054 
Interviewer: (12) 0.01 or 0.1? L: same 100, 500 

J: 	0.1 
Interviewer: (13) 0.02 or 0.2? L: 0.2 100, 500 

J: 	0.2 
ncorrect answers are given in bold. 
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Jermaine: 
Leonie: I 

........._......„...____T__ ..„.........._ 
Diaiogue 	 commentary  

, Which do you think is the bigger: poin-t1-0-.0-5-4-or 0.21 	—1 
1 	oh five four or 	twoolie? 	I 

Jermaine: 	pointokkft 	 Note ex ression. 	----1 
Interviewer: 

Interviewer: 

Extract 17, 
er 

Interviewer: 

What about you Leonie, which doTO-01—  
think is the 
Point oh fifty four. 
Let's have a look. 

It's normally fifty four.  
It's  just the nought and fifty four. 

Again, note exi 
Runs 	am. 

ey loo at eac other. 

In the course of these interviews, I became more conscious of the importance of the 

links between the way students say decimal numbers and their understanding of them. 

Thus, 5.20 could be pronounced as "Five point two oh" or "Five point two nought" or 

as "Five point twenty", but the latter articulation might indicate the established research 

finding of 'Decimal Point Ignored' (APU, 1985, p. 53). That research fording was 

replicated many times in this study, as can be seen in Leonie and Jermaine's responses 

to question (11) of Table 5.2. 

At the beginning of the interview with Ella and Steven, Steven said: "We've been doing 

fractions and stuff like this." However, they too expressed decimals in ways that 

hinted at the DPI error. 

 

Extract 2:  
peaker 

   

  

Dialogue 

How about these: nought point one 
and nought point two? 
I think it is nought  point two.  
I think it is nought point seventeen. 

Commentary 	I 

seven Note the way the 
decimals were expressed. I 

Note the way Steven has I 
changed the expression.  

 

Interviewer: 

 

 

Steven: 

 

    

Table 5.3: Ella and Steven's Number Challenges 
Questioner Which is bigger Response (Start No)* & 

Scales 

Ella (1) 453.5 or 454? S: 454 (400), (450), 10 
Interviewer: (2) 0.17 or 0.2? E: 0.2 500, 1000, 5000 

S: 0.17 
Interviewer: (3) 0.314 or 0.67? E: 0.67 1000 

S: 0.67 
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Ella: 

Extract 3:  
Sneaker 

Interviewer: 
Ella: 

terviewer: 

Ella: 

Interviewer: (4) 0.314 or 0.216? E: 0.216 
S: 0.314 

1000 

Steven (5) 0.75 or 1.64? E: 1.64 1000 
Interviewer: (6) 0.356 or 0.4? E: 0.4 

S: 0.356 
1000 

Interviewer: (7) 0.3421 or 0.356? E: 0.356 
S: 0.3421 

(0.3)1, 6, 12 

Ella (8) 99.5 or 99.1? S: 99.1 (99) 5, 512 
Steven (9) 0.26 or 0.7? E: 0.26 1000 
Interviewer: (10) 0.7 or 0.70? E: 0.7 

S: 0.70 
(0.6) 1000, 5000 

Interviewer: (11) 0.5 or 0.50? E: same 
S: same 

1000, 5000, 
50000 

Interviewer: (12) 0.3 or 0.30 or 0.300? E: same 
S: same 

5000 

Interviewer: (13) 0.03 or 0.7? E: 0.7 
S: 0.7 

5000 

*The number in brackets indicates the start number if this is different from 0. 

The APU finding 'Largest is smallest' (Foxman et al., 1985, p. 53) was put forward by 
Ella as a theory after running the program to compare 0.314 and 0.67 (question (3) in 

Table 5.3). 

Dialogue 	  -Cal 

	

tfink the stnallerit is the biggeritriwOrth. 	 
3 Do ou? 
I 	don't know 	 

I Well let's try another one then. You think 
the smaller it is the more it's worth? When 
you say the smaller . . . 
The lower the number. Hy  

After comparing the vectors for 0.314 and 0.216 (question (4) in Table 5.3) - chosen to 
confront her hypothesis - Ella said "It doesn't depend on the size of the number." by 
which she meant the number of digits in the number. Following question (9), I became 
aware that the students thought that numbers such as 0.5 and 0.50 were different. 
Questions (10), (11) and (12) were chosen to confront this belief. 

Working interactively in the Boxer setting made it possible to immediately create visual 
counter-examples which in turn led to students generating new hypotheses. The pupils 
were not told that one quantity was greater than another, but faced with an on-screen 
representation which demonstrated that this was the case, they were motivated to re-

consider their thinking about such numbers. 
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Table 5.4: James and Sian's Number Challenges 
Questioner Which is bigger Response (Start No). & Scales 

James: (1) 6751 or 5481? S: 6751 1 
Sian: (2) 879 or 0.9? 879 1 
James: (3) 4371 or 4367? S: 4367 100, (4000), (4300)10 
Interviewer: (4) .46 or .5? S: 	.5 100, 500 
Sian: (5) .899 or .900 J: 	.899 (.850) 900, 5000, (.880) 

10000 
Jermaine: * (6) 11.50 or 11.5? S: 	11.5 (10)10, (11.0)200 
Interviewer: (7) 0.213 or 0.45? S: 0.45 500 
Interviewer: (8) 0.213 or 0.19? S: 0.19 

J: 	0.213 
500, 1000, 2000 

Interviewer: (9) 1.5 or 1.25? S: 	1.5 
J: 	1.5 

2000, 200 

Interviewer: (10) 0.57 or 0.216? S: 0.57 
J: 0.216 

200 

Interviewer: (11) 0.475 or 0.4136? S: 0.475 
J: same 

200 

Interviewer: (12) 0.5678 or 0.5681? no clear 
answer 

500 

*(Jermaine set question (6) for Sian and James.) 

Sian, who despite having said correctly that 0.5 was bigger than 0.46 (question (4) in 

Table 5.4) reacted to the visual representation by saying "But how? It's a lower 

number." Later, having compared 0.213 and 0.45 (question (7) in Table 5.4) with the 

vectors, she put forward the hypothesis: "The lesser the number without the dot is it?". 

The next question comparing 0.213 and 0.19 (question (8) in Table 5.4) confronted her 

hypothesis as her reaction shows: "But how come? Forty five was bigger." After 

comparing 1.5 and 1.25 (question (9) in Table 5.4), she developed a new theory: 

Extract 4: 
S Dialogue Commentary 

   

I think I know how to tell which one is I 
	  bigger.  
Interviewer: j Do you? 
Sian: 	the front oneis bigger the other must be I Refers to the digit 

immediately to the right 
of the decimalpoint._ 

Interviewer: Aaah. I see. What you're saying is that Fr -------- 
the number just after the decimal point is  
bier 
Yes. The first number. 

Interviewer:  lvvnydon't we test it on something? 

Sian: 
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cs 
cs start rt 90 
line numl 
line num2 
compare numl num2 

line 

.i 

open-me ompare 

5.3.2: Design Issues arising from the 'line-numbers' representation 

The line-numbers' study was useful in illuminating issues of design as well as of 

number. In interacting in this microworld, students needed to compare numbers such 

0.07 and 0.1, or 3456 and 5413 on the same graphics screen. I chose not to automate 

the scaling. This meant that the students had to go into the 'scale' data box to change 

the scale factor. Frequently, this number was a decimal. So, in effect, the microworld 

provided a visual refutation of the 'multiplication makes bigger' notion, but whether the 

students were aware of this is a different matter. If numbers were close together, the 

students also needed to alter the 'start number'. 

Figure 5.6: Controlling the 'scale' and 'start-number' 

The students became fluent in doing this, but again whether they fully understood what 

they were doing is debatable. By having to change both the scale and the start-number, 

it is possible that some students lost sight of the original task. There was frequent 

researcher intervention to help in choosing the scale and the start number. For some 

students, the choice of scale was at times haphazard, and a start-number too was 

occasionally chosen bigger than one or both of the numbers being compared. Steven, 

for example, chose a start number larger than either of the two values to be compared, 

and Ella said "You can't do that. You'll get two minuses." 

In not automating the drawing process, I had attempted to make accessible all the parts 

of the program that could be changed. However, whether the things that the students 

were manipulating were the things that mattered in relationship to the numbers they 

were comparing is open to question. 
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5.4: Developing a Pedagogical Approach 

It had been the original intention of teachers and researchers to integrate the Boxer work 
within the class themes, but in practice, this turned out to be difficult to do. The 
teachers were extremely busy in managing all the activities of a primary school 
classrooms of some 30 students, so there was a limited time that they could devote to 
the two students on the computer at any one time. In any case, the fact that there was 
only one computer per class imposed practical limits to this ambition. 

Instead, the teachers adopted a 'cascade model' of distribution: certain students who 
appeared to have displayed enthusiasm and skill  in learning to use Boxer were given 
unequal access with the intention that they could disseminate that skill amongst their 
peers. These students did become very proficient at programming in Boxer, recovering 
from 'crashes' and in using the operating system. They also proved to be very willing 
to help other students and were of great assistance to the classroom teacher. On the 
other hand, it was also true that at the end of this period, the number of classroom 
`experts' was small relative to the size of the class. Moreover, there was a gender 
imbalance in this expertise — the boys were the 'experts'. The class teacher was also 
aware of this imbalance, but as she pointed out (personal letter) in an evaluation of the 
first year, this imbalance reflected the make-up of the class, two-thirds of whom were 
boys. We began to look for another method of integrating Boxer work into the 
classroom activities. Events at the end of this period gave impetus to this search. 

The year 6 class teacher, who by now was quite proficient in Boxer and who was also a 
key figure in suggesting programming goals and extending tasks, began a year's 
maternity leave. This meant that the new year 6 class (who had begun Boxer in the fifth 
year) had a new teacher with no Boxer experience. To compound matters, it quickly 
became obvious that the new year 5 class (class C in Table 4.1) had very little 
experience with either Logo in particular, or computing generally. 

To gain a deep insight into how students engaged with Boxer, it would be necessary to 
work with small groups of students over extended periods. On the other hand, to do so 
raised ethical questions of access by the rest of the class — an issue which was of 
concern to the year 5 classroom teacher. Boxer was new. It was exciting. The 
students could see what their peers were able to achieve with it. It did intrude on the 
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life of the class. The dilemma faced at the end of the exploratory period of the research 
was how to develop a pedagogical approach which reconciled these two needs. 

5.5: Summary and Implications 

This chapter has considered issues which arose in the exploratory phase of the research 
concerned with programming, number and developing a pedagogical approach. The 
results replicate Logo research in the forms of programming observed, but differ in 
qualitative respects. 

5.5.1: Programming Issues 

The results show that the visual format of Boxer changed the nature of students' 
programming in comparison to Logo. By having a single environment in which 
communication, editing and execution took place, it reduced the 'overheads' needed to 
achieve complex goals. It also gave these students access to programs written by more 
experienced programmers. On one side, this motivated them to use more structured 
programming techniques, and encouraged them to engage in mathematical activities. 
But, it brought to the fore the issue of the match between the programming and 
mathematical demands of pre-written programs. The Turtles microworld, for example, 
combined introductory programming with problems relating to fmding the angles of 
polygons, and students often found the latter harder than the former. 

In Boxer, as in Logo, students were often motivated by the desire to obtain powerful 
visual effects, but it seemed that simplicity of writing or adapting procedures in Boxer 
enabled students to attain complex goals with greater ease. The presence of the 
program and its consequence on the same screen together with line-by-line execution 
medium gave them the tools to exploit their perceptual thinking. The results also 
replicate Logo research in pointing to the importance of appropriate intervention, but 
raised the question of whether in Boxer this might be devolved from the teacher to the 
medium itself. 

5.5.2: Number Issues 

The 'line-numbers' representation gave students a way of visually comparing numbers, 
especially decimal fractions. Interacting with this Boxer object motivated them to 
confront their intuitive notions of such quantities, and provoked them to generate 
alternative hypotheses. But, I felt that the representation was inadequate in limiting 
them to interpretation. My original — and simplistic — idea that working with Boxer 
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would somehow enhance students' understanding of number needed to be modified in 

the light of the data emanating from this study. 

Working within my pre-constructed microworlds exposed their number misconceptions 

to them and to me, but it did nothing to address the root causes of those 

misconceptions. It seemed to me that they lacked meaning for the quantities that they 

were being asked to represent. I felt that there was a greater likelihood of generating 

such meaning if the students played a greater role in the construction of the 

representation itself. 

5.5.3: Pedagogical Approach 

The exploratory study threw up two apparently conflicting needs. On the one hand 

there was my need to observe students in depth and this implied working with small 

numbers. On the other hand, the class teacher and I felt that there were ethical grounds 

for making Boxer as accessible to the remainder of the students in the class as possible. 

In order to accommodate the different demands. I made two changes to the mode of 

working with students. Firstly, I made the decision to undertake case-study research. 

Secondly, I decided to exploit the medium as a means of introducing itself. 

5.5.4: Implications for the remainder of the thesis 

My main research aim implied that students needed to have a certain degree of 

programming expertise with Boxer. The prevailing circumstances at the beginning of 

the longitudinal study meant that the students who would participate in that study had 

no programming experience. There was therefore an obvious need to build up that 

expertise. The evidence from the programming activities together with the pedagogical 

considerations pointed to the potential of Boxer as a way of introducing itself. But, the 

evidence from the number activities led me to the conclusion that there was a need for 

greater involvement by the students in the construction process. The rest of this thesis 

can be seen in terms of my attempts to take account of — and indeed reconcile — these 

two conclusions from the exploratory phase of the research. 

Chapter 6 analyses how I attempted to achieve the first objective through a process of 

iterative design, whilst chapters 8 and 9 recount two different studies aimed at 

accomplishing the latter. Chapter 7 discusses the interviews with the Boxer and non-

Boxer students. As such, it represents a bridging chapter between the programming 

and number activities of the longitudinal stage of the research. 
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Chapter 6: Exploiting the Medium 

6.1: Introduction and Overview 

6.1.1: Introduction 

This chapter consists of an analysis of the programming, number and design issues 

which arose through using the medium of Boxer to introduce itself. It describes how a 

process of iterative design was used to construct introductory Boxer microworlds 

through which year 5 students (ages 9 to 10) learned programming ideas, and began to 

extend their concept of number. This first phase of the longitudinal research lasted 

from the September 1991 to July 1992. 

Altogether, eight case-study students were closely observed (chapter 4) using three 

microworlds known as 'First-Boxer', 'Second-Boxer' and 'Third-Boxer'. However, 

the microworlds were also being used simultaneously by the remainder of the year 5 

class in so far as time, hardware and other classroom limitations allowed. The feedback 

from these two sets of users formed an integral component of the iterative design 

process. 

This phase of the research had three interlocking aims: 

(i) to provide students with a foundation of programming knowledge on which to build 
the long-term number aim of the research; 

(ii) to continue the search for an evocative number representation; 

(iii) to document the design issues which arose through using the medium to introduce 
itself. 

6.1.2: Overview 

Three distinct microworlds were employed in the research: First-Boxer, Second-Boxer 

and Third-Boxer. First-Boxer was designed to introduce fundamental programming 

ideas, while Second-Boxer was mostly devoted to the single idea of variables. Third-

Boxer then exploited the notion of variable as a means of investigating number. The 

microworlds were divided into sections, each of which had a main programming or 

number focus. Figure 6.1 shows how First-Boxer appeared to users on opening, while 

Table 6.1 indicates the programming and number contents of the sections. 
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shapes-1 

shapes-2 

shapes-3 

shapes-4 

shapes-5 

reading-and-saving-your-own-work 

I first-boxer 

Figure 6.1: First-Boxer 

Table 6.1: Programmingand Number Organisation of First- to Third-Boxer 

Main Focus of Section 

First-Boxer 
Sections 

Second-Boxer 
Sections* 

Third-Boxer 
Sections 

Sense of command. Shapes-1 
Procedure as an entity. Shapes-2 
Patterned procedures. Shapes-3 
Sub- and super-procedures. Shapes-4 
Modularity. Shapes-5 
Variables Variables-1 to -3 
Number in the context of area Variables-4 
Directed numbers in the 
context of co-ordinates 

Lines 
Writing 

Directed Numbers and 
Decimals in the context of an 
on-screen counter. 

Change-it, 
Build-it 

Directed Numbers and 
Decimals in the context of a 
list processing command. 

Lots-at-once 

* Second-Boxer also had a section called 'Set-up' whose main focus was the 
creation of boxes and screen management (Appendix 3). 

The remainder of this chapter separates out the programming, number and design issues 

which arose in this phase of the research. 
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6.2: Programming 

Hoyles and Noss (1987a) observe that a microworld cannot be defined solely in teams 

of its technical component, i.e., the software. Rather, they stress the need to also take 

into account the pedagogical, contextual and pupil components of such microworlds. 

In making a selection from the research data, my choice has been guided by three 

factors. Firstly, the selection attempts to illustrate how changes in the technical 

component of Boxer (compared to Logo) influenced the other components. Secondly, I 

have tried to include representative sections from each of the microworlds (The 

complete microworlds can be found in Appendices 2 - 4). Finally, the selection tries to 

show how the data from the students' interactions was also used to modify the 
microworld itself. 

6.2.1: Developing a sense of command 

Students first encountered commands in `shapes-1'. Figure 6.2 shows `shapes-1' 

partially open, whilst figure 6.3 shows it fully open. 

(shapes-1I 

menu 

read-mel  
open-me-first  

open-me-next 

Challenee I 

A 

forward 126 
right 90 
left 90 
clearscreen 

Figure 6.2: Shapes-1 partially opened 

These are presented here to assist the reader. In reality, the facility for opening and 

closing boxes meant that students experienced many other intermediate views before 
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I menu I  
forward 126 
right 90 
left 90 
clearscreen 

fd 78 rt 90 

rt 90 fd 31 

fd 64 It 90 

It 90 fd 32 

I read-mel 

         

 

1 open-me-first I 

       

 

Do each of the lines above the dotted line in the menu. 

(Click on the line and press LINE-FEED). 

 

'open-me-next 

       

 

Open the first Doit box in the menu. 

Click on that line and press Line-feed. 

Do it until you get a square. 

 

I Challenzei 

       

         

 

Make this pattern 

       

        

        

         

         

         

         

/ 

	I 

and between each of these. It needs to be stressed that figures 6.2 and 6.3 represent 
one version of 'shapes-1'. Like all the other components of the microworlds, `shapes-
1', was modified as the research proceeded. 

The first point that needs to be made here is the obvious one that all of the above details 
appeared on the screen. Boxer facilitated an on-screen form of presentation that would 
not have been possible in say, Logo. The scoping rule (chapter 3), for example, 
allowed the presence of more than one graphics box on the screen at once (e.g., the 
`challenge' in Figure 6.3). Boxer's hypertext capability for suppressing or revealing 
information through closing and opening boxes was another significant change from 
what was possible in Logo. 

shapes- 

Figure 6.3: Shapes-1 fully opened showing the 'window' challenge 

`Shapes-1' was intended to introduce students to the notion of a programming 
command, but to do so in a way that focused on the process and not merely the 
product. My initial interventions were designed to introduce the students to Boxer 
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commands by encouraging them to repeatedly execute the lines in the menu. Each of 

these repetitions led to their drawing of a square, but the squares were of different sizes 

and were each drawn in different areas of the screen (Figure 6.3). These features were 

designed to motivate students to reflect on the processes involved. My interventions 

were now aimed at encouraging prediction and reflection by drawing students' attention 

to the differences between each square and asking why such differences might have 

arisen. The following extracts from Laura and Courtney's first encounter with Boxer 

give some indication of what occurred in practice. 

The girls began the session by creating a square through repeating the lines 'forward 

126' and 'right 90' in the menu. Having, cleared the screen they drew a new square by 

repeating the top doit box in the menu `[fd 78 it 90]' four times. Laura, now queried 

the screen product. 

Extract 1:  
Speaker 

Laura: 

Interviewer: 
Laura: 

How come it's smaller? 	 i Points into the screen 
graphics box at the 

	 :  square of side 78.  
What do you think?  

l•   

Oh, because that one says seventy eight 	She answered her own I 
question by pointing at 1 

I the 78 inside the program! 
j doit box (Figure 6.3). 	' 

Dialogue 
	

Commentary 

Correct, as her inference was, the students' knowledge was still tenuous at this stage. 

The following exchanges came after Courtney had drawn a new square Irt 90 fd 31]' 

by repeatedly executing the second doit box in the menu. 

Extract 2;  
speaker 1 	 Dialogue 	 Commentary 1 

ura: 	
i 

As we're coming down, they might be Traces finger down the 1 
smaller. 	 menu doit boxes, and 

then pinches fore-fingeri 
1 and thumb together onl 
the edge of the small 

1 square to indicate an 
I even smaller square.  

ura: 	 1 After Courtney had I 
: 

I executed the third menu! 
doit box `[fd 64 It 90]'. 1 

Courtney It'll  get smaller. 
Hey. It's getting bigger! 
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Make this pattern 

Putting a Doit box round lots of commands 
lets you do them all at once. 

Do the Doit boxes in the menu. 

 

J 	 

 

open-me-next I 

 

   

Put some of your own commands in the 
empty Doit box and try doing it. 

 

    

I Challenge I 

  

Lam,, 	
rBig, smaller, big, smaller. 

 

: Pointed-to each cirthei 
1  doit boxes in turn. 	1 

Leans towards Laura 
I and points to each of 
I the doit boxes in turn......j 

  

Courtney: 	
i  
I No! small, big, small, big. 

	 J.... 

 

   

, . 

 

 

This was a typical incident in Boxer in that it highlights the way the students' dialogue 

was accompanied by pointing to the visual images on the screen. It also highlights the 

manner in which the students interacted with the programming code and the resulting 

drawing. The presence of both together on the screen meant that process as well as 

product was the focus of attention. 

6.2.2: Procedure as an entity 

`Shapes-2' was designed with the aim of developing the notion of procedure as an 

entity (cf. Papert et al., 1979). In Boxer, this can be achieved in several ways, perhaps 

the simplest being that of placing a series of commands associated with a composite 

action inside an un-named doit box. 

I shapes-2 

Iread-me I 
open-me-first 

A 

	 / 

menu 
CS 

bk 16 It 90 
bk 16 It 90 
bk 16 It 90 
bk 16 It 90 

it 120 fd 72 
rt 120 fd 72 
it 120 fd 72 

	/ 

Figure 6.4: Shapes-2 fully opened showing the 'staircase' challenge 
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The un-named doit box can then be executed by placing the cursor outside of it and 
pressing the line-feed key. In Figure 6.4, for example, the first un-named doit box in 
the menu drew a square when executed while the second drew a triangle. The empty 
doit box was intended to give students an opportunity to produce a pattern by repeatedly 
running their own group of commands. 

In designing shapes-2, my dilemma was how to introduce the notion of a procedure as 
an entity without focusing too much attention on the product. Demonstrating the power 
of the language to obtain interesting geometrical patterns from simple procedures 
needed to be balanced with reflection on the processes involved. The doit boxes in the 
menu gave students a means of obtaining the former, i.e., getting interesting patterns 
from relatively simple procedures. I saw this as being beneficial in terms of motivating 
students to undertake designs of their own. On the other hand, it quickly became 
apparent that students' attention was solely on the product. Initially, process reflection 
was achieved by way of my interventions, but as the microworlds developed, I 
attempted to design the challenges to take on this role. In particular, I created 
challenges which required the recognition of state-transparency. The following episode 
illustrates Laura and Courtney's first attempts to come to terms with this idea. 

Extract 1:  
`Speaker 

laura: 
Courtney: 

InTeivteieii 
Both: 

Dialogue 

We of a square. 	 
I don't know what we've done 
wroripz._ 
Suppose  I act  out the turtle? 
[Courtney reads out commands 
from their doit box and tries to 
explain why the program won't 
work. Then Laura does the same.] 

-- commentary 

Points to screen output.  

They disagree on why things are 
going wrong. 

Interviewer: 

a 

Interviewer: 
a 

Suppose I'm the turtle and you 
want me to draw out the staircase, i 
tell me what to do.  
forward ten right ninety 	i 
forward ten left ninety 	1 
forward ten right ninety 	1 
forward ten left ninety 
forward ten right ninety 
forward ten left ninety  

e they starting to repeat 
anywhere? See which ones you 
can Ft rid of. 

Laura calls out the commands 
while I act out the turtle. 

Laura calls out commands while] 
Courtney types and executes them 
in the doit box. 

Refers to superfluous commands. 

Courtney: Yes! 	 , The girls reduce the commands in 
i the doit box to [fd 10 rt 90 fd 10 lt 
90] which they run five times.  
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The girls were not alone in experiencing difficulties with state transparency. Other 

students also had difficulties with this idea. To help them overcome this impasse, three 

different strategies were adopted: (i) I or one of the students acted out the role of turtle 

with the other student calling out instructions; (ii) one student called out instructions and 

the other student drew the shape on paper; (iii) I encouraged students to use line-by-line 

execution to get one 'step' before going on to repeat it. 

Jessie and Oliver, for instance, experienced considerable difficulties with the challenge. 

Jessie spoke of doing 'half-a-box', i.e., drawing the bottom and right sides of a square 

and repeating it. Their first attempt led to their drawing the top and right sides of a 

square and they now discussed drawing the stairs going down instead of up. After a 

number of attempts, during which they drew squares etc., I acted out the turtle, with 

Jessie giving the orders and Oliver writing them down. Some of these commands, 

e.g., Id 90 rt 60' revealed that Jessie had not appreciated the significance of the various 

inputs. By guiding me and drawing my path on paper, they were eventually able to 

draw the first step. They completed the staircase by repeated use of the linefeed key. 

Shapes-2, like shapes-1 before it, was being used by 9 year old students who were still 

coming to terms with the physical manipulation of the keyboard, the Boxer conventions 

etc. For students with learning difficulties such as Jessie and Oliver, these factors were 

of some importance. Nevertheless, they were able to do the challenge - albeit in a form 

different to the other students — and to gain some insight into the structure of 
programming in Boxer. 

This episode illustrates two significant features of Boxer. Firstly, it shows how 

interventions were being devolved to the medium in the form of on-screen challenges, 

and secondly it shows how Boxer provided an alternative means for students to achieve 

the same goal (repeatedly executing an unnamed doit box) thereby giving them a sense 

of achievement. In the event, all the students were able to do the challenge. 

6.2.3: Structured Programming 

Shapes-3 introduced the 'repeat' command and initiated the use of sub-procedures and 

super-procedures in the form of un-named doit boxes inside other un-named doit 

boxes. Shapes-4 took this a stage further by naming the procedures. In Boxer, this is 

achieved simply by creating name tags at the top of the appropriate box. Shapes-5 now 

stressed the modular nature of these procedures. 

111 



men 	

I 

mila 
cs 
start 
rectangle 
move 
cs start fence 

A 

(read-me 

lopen-me-first  
( Do each of the commands in the menu.) 

lopen-me-next 
(Make different sized fences ) 

!Challenge I 
Make this pattern 

11011[1110[110 ,, 
rectangle 

pu 
setxy -200 -150 
pd 

repeat 2 fd 100 rt 90 
fd 25 rt 90 
	  pd 

. ou 
rt 90 fd 25 It 90 

repeat 8 rectangle 
move 

A 
(a) 

, - 

 

I I 

    

I (b) 

    

 

■■••••• 

          

(shapes-5 

Figure 6.5: Shapes-5 fully opened showing the 'fence' challenge 

In earlier episodes, students had expressed a desire to start their drawings elsewhere on 
the screen, i.e., other than at the centre. Shapes-5, was designed so that they could do 
just that, but it was constructed in such a way that they might see the advantages of 
modular programming. There was, for instance, a doit box called 'start', another called 
`move' along with doit boxes named 'rectangle' and 'fence'. The on-screen challenge, 
that of drawing a 'fence with gaps' (Figure 6.5), was also designed with the intention 
that students might approach it in a modular way. The following episode shows how 
Nico and Joanna reacted to the challenge. 

The students' approach to the earlier sections had been to ignore the screen instructions 
completely and launch immediately into the challenges. In shapes-5, they attempted to 
complete the 'fence' challenge all at once. At their first attempt, Nico and Joanna 
obtained a set of rectangles without gaps (Figure 6.6a). A later attempt led to the 
drawing of pairs of rectangles with gaps between each pair (Figure 6.6b). 

Figure 6.6: Nico and Joanna's first attempts at the 'fence' challenge 

In 'shapes-4', they had demonstrated that they knew how the 'rectangle' procedure 
worked and they appeared to understand how to use both the 'start' and the 'move' 
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read-me 

A 

I open-me-first I 

Look at the Doit box called 'square'. 
Inside it is a Data box called 'side'. 

lopen-me-next I 

Do 'square' in the menu. 
Then change the number in side and 
do 'square' again.  

Do a shape of your own 
('my-shape' has been started for you.) 

I Challenge 

Make this pattern 

CS 

square 

repeat 4 

20 

fd side It 90 

menu I square my-shape 

repeat 

modules. However, at that point, they had not perceived the need to match the 

components of one module with the other. Likewise, in attempting the 'fence' 

challenge, they began by typing directly into the 'rectangle' program, and this led to 

their bugs. They were now receptive to my interventions which focused on modularity. 

The use of the 'start' and 'move' modules in shapes-5 was part of what might be 

termed a 'subliminal' agenda: it was hoped that students would also adopt a modular 

way to organise their programs. However, over the course of the research, it was rare 

for a student to create a separate 'move' module. On the other hand, students did 

organise their Boxer programs in a modular way, the modularity being related to 

functionality. For example, in a house program, a distinct module would be created for 

the door, the windows and so on. It seemed that the boxes acted as natural receptacles 

in which to write distinct programs. 

6.2.4: Variables 

The 'Second-Boxer' micro-world was intended to expand students' programming 

power and to provide a wedge into their exploration of number concepts. This was 

achieved in two ways: firstly by giving them the means of creating Boxer environments 

for themselves, and secondly through the use of variables. 

Ivariables-1 

Figure 6.7: Variables-1 
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It consisted of five sections 'set-up' and 'variables-1', to 'variables-4'. `Variables-1' 

introduced the notion of variables in the form of internal data boxes. In the doit box 

`square', the first line 'repeat 4 [fd side rt 90]' uses the variable 'side' which is the 

name of an internal data box (Figure 6.7). The instructions in the 'read-me' data box 

invited students to experiment with different values of side. 

In creating a microworld devoted to the exploration of variables, I made a conscious 

design decision to avoid two of the common features of introductory Logo courses: 

firstly the emphasis on variables in the context of angles, and secondly the practice of 

introducing procedures, first without, and later with variables. In each case, I felt that 

the initial gains which these approaches allowed, were more than offset later by the 

gaps that needed to be bridged to more general notions. The design criteria were thus 

intended to facilitate novice's introduction to programming in a way that would be 

contiguous with later more sophisticated demands. 

I hypothesised that students would best appreciate the significance of variables if these 

were first represented by internal data boxes. By having to manipulate directly the 

value in the variable data box, I thought the students would come to have a better 

understanding of a variable as representing a range of values. This approach also had 

the advantage that it meshed well with the tendency in British mathematical textbooks to 

introduce variables by means of empty brackets or boxes (e.g., SMP, NMP). 

All of the students were able to do the 'nested-squares' challenge by successively 

changing the number inside 'side'. This in itself was significant since it gave them an 

intermediate form of programming power, i.e., between the Logo procedures of 

`square' without and with variables. But the challenge itself raised questions. On the 

one hand, it prompted the students to ask if there was an easier way to obtain the 

`nested squares' thus motivating the later use of general variables. On the other hand, 

at the time of the research, there did not seem to be an obvious link between the internal 

variable data box and the general variable which came with the 'input' liner . 

The evidence from the interviews suggested that, just as students had earlier appreciated 

the arbitrary nature of naming procedures, so too did they appreciate that the names of 

variables were also arbitrary. 

1  In current versions of Boxer, pressing 'doit' on the line 'input side' will change the 'side' into a data 
box with the name 'side', so this goes some way to making the link. 
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repeat 4 fd something 
rt 90 

tart square menu I I move I  
pu rt 90 
fd something 
It 90 pd  
'something'  

70 	) 

cs 
start 
square 
move something I  

100  

Extract 1:  
--speaker — 	Dfilogue COmmentary 

Joanna: 

Interviewer: 

Niro: 

Raises the possibility of changing I 
the name of the variable 'side'. 	 

;Joanna. 
m. 

 Reads out error message. 

Ohit6i, because you have to change 
I  there as well. 

Interviewer: 

`repeat 4 [fd side rt 90]'. 

Changes 'side' to 'Joanna' and 
€ runs 'square' from the menu. 4-m

essage appears next 
`s uare' in the menu. 
Points to 'side' in the lin& 

`Variables-1', introduced the notion of variable in the form of an input for the side of a 
square. `Variables-2' extended this usage by using variables in the contexts of co-
ordinates ('x' and 'y') in a 'start' module and a distance (`something') in a 'move' 
module. The variable for the size of the square was now named 'something' also. 

variables-2 

read-me 

!open -m e - fir s t I 
Do each line in the menu. 

Question: what does 'start' do? 
Try some plus and minus numbers. 

lopen-me-next I 

(Try doing 'square' and 'move' more than once. 

Change each of the numbers in the 'something' 
boxes and do 'square' and 'move' again. 

i Challenge I 
Make this pattern" 

--11 
	 / 

Figure 6.8: Variables-2 

In an earlier version of 'variable-2', the numbers given in 'x' and 'y' in 'start' had 
negative values. But, this meant that the students could begin their drawing without 
reflecting on the processes involved. In a later version (Figure 6.8), the co-ordinates 
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given were such that the drawing would not begin on the bottom-left hand-side of the 

screen. The students therefore had to reflect on the meaning of these numbers. 

`Variables-2' also planted the notion that the 'square' and 'move' modules needed to be 

co-ordinated. The names of the variables in each had the same name, but their initial 

values were different, again with the intention that students would have to reflect on the 

relationship between the two modules. 

The students did not at first appreciate the need to change the value of the variable in 

`move' to match that in 'square'. Generally, they drew the first square and then used 

the 'move' module with its current value. The following extract from Jason and Liam 

illustrates this phenomenon. 

Extract 2:  
speaker 

 

Dialogue 

     

    

Commentary 

 

terviewer: I Try move and see if it does what you 
want it to. Does it?  
No. 

I So, how can you change it to get it to do I Both students point at the 
1 what you want it to? 	 i data 	box 	• called 
I 	 1 	'something' 	in 'move. 

Jason: 	I Change that so it's the same as 'square'. I Refers to variable values 
i 	 in 'move' and `square'. 

Variables-3 extended the contexts in which variables were used. 'start' was unchanged, 

but in 'move', the variable name was changed to 'amount'. The main change was the 

introduction of the 'type' command with the variable input 'length' (Figure 6.9). The 

`type' command gave a means of integrating text and graphics, and the 'Shrinking 

Lines' challenge required students to exercise this facility. Few of them had difficulties 

in doing so. Jessie and Oliver, who hitherto had displayed little feeling for the size of 

numbers, had the following dialogue about the gap between the lines. 

Interviewer: 

Jessie: 

Jessie: 

Extract 3:  
Speaker 

ver. 

Dialogue Commentary 1 

A ninety, I know ninety. 	
1 
i Refers to the 'amount' I 
data box in 'move'.  

It can't be ninety. It has to be a smaller  
	

1 
number like forty to  get a smaller  gap. 

Shall I  put zero in here? 
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!start I 
pu setxy x y pd 

r20  Fri  -0 1 1  -100  

I line 
fd length bk length 

I mark I 
pu bk 25 
type length 
fd 25 

menu 
cs 
start 
line 
move 

I moveI  
pu rt 90 
fd amount 
lt 90 pd 

amount)  
70  

variables-3 

I o o en - m e - fir s t I 
(Do each of the commands in the menu. ) 

open-me-next 

Try doing 'line' and 'move' more than once. 

Change the numbers in the 'length'and 'amount' 
boxes and do 'line' and 'move' again. 

i Challenge I 

Make this pattern' 

300 250 200 
1 

150 
I 	I 	I 	A  

100 50 0 

A 

	J 

Figure 6.9: Variables-3 

Variables-3, like its predecessors, introduced new programming commands, and the 
challenges were always related to these new commands. However, it is important to 
observe the cumulative effects of each successive section on students' programming. 
Each presented a model of modular programming, which progressively motivated 
students to attend to the links between modules. Each extended the range of contexts in 
which students used variables, and increasingly these contexts necessitated students to 
extent their notions of number. The following section details how concern with 
variables per se gave way to situations in which variables were subordinated to the 
investigation of number representations. 

6.3: Number 

6.3.1: Investigating Number in the context of Area 

Variables-4 employed variables in the context of area. The technical component 

encapsulated a more explicit mathematical agenda than had previously been the case. 
The procedures 'rectangle', for example, incorporated commands to draw a rectangle, 
and calculate and print the area inside it (Figure 6.10). 
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/ 

rt 90 
repeat 2 fd x It 90 

fd y 1t90 

1 
■	 

'rectangle 

	. I 

I read-me I  

[open-me-first I  
( Do each of the commands in the menu.) 

(open-me-next I  

(Make different sized rectangles.) 

I Challenge I 
Make 3 rectangles with the same area like this: 

3600 

3600 

3600 

•,, 

, 

L menu 	igiairtl move 
pu 
rt 90 
fd bit 
It 90 
fd bop 
pd 

x * y 

I area I 
3120 

change area 
move 
type area 
In  

(261 

I move I  
pu fd x / 2 
lt 90 fd y / 2 
pd 

A 

cs 
start 
rectangle 
move 
s t 

pu 
sexy x y 
pd 

irTI 	1771  
-200 	t -100 ) 

Area seemed to be the kind of context that would lend itself to a visual representation in 
Boxer. I thought that by changing the values of the two sides and then seeing the 
resulting area typed in a rectangular box, students would begin to appreciate the 
connection between the numbers. My hope was that this might give me a context in 
which to introduce decimals. However, this was not successful - the major source of 
the difficulty stemming from the fact that the students' concept of area was not 
sufficiently robust. 

Ivariables-4 

Figure 6.10: Variables-4 

Oliver and Jessie at first professed ignorance of the notion of area (It had in fact been 
introduced during an earlier class lesson.). 

-Tr 	......,...._ .... .............., 
Dialogue ---------7----ConimenTry---' 

Interviewer: If 1 draw a rectangle 3 this way and 6 that 1 Drawing on papeiT1 
i wail_would 	you be able to work the area 	out? I 	 1 

Jessie: 	36? 	 , 

Extract 1; 
Speaker 
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Both 	[They try 800, 600, 300, and 200.] 
Jason: 	I  Sixty.  

-Interviewer: mrso you know Nifiat areamein0—  
Jessie: 	No. 
Interviewer: I That's what I was trying to find out. You 

' haven't done area? 
Both nod heads. 

IN 

Interviewer: 

Jessie:-
Interviewer: 

Jessie: 

1 Area means how many squares there are 
alto ether. 	 1 

hyea, I know what area means. 	r 1 1 Oh, you do? So how would you work out the 
area of this rectan • e? 

an 

The following extract with Liam and Jason also shows initial difficulties with the 

relationship between area and sides. The boys were trying to find the sides of the 

square with area 3600. 

Extract 2: 
S 

   

Dialogue Commentary 

Inteniiewer: When you say it should be even, Liam, i 
what 	do you mean? 

	

Liam: 	The same size. They should be the same I 
numbers.  

	

'Liam: 	r  Let's try one thousand, eight hundr 	i Appears to reason that the 
i 'same numbers' can be 
I found by halving.  

	

Jason: 	i How about nine hundred times four? 	Liam ignores Jason' s 
suggestion.  

	

Liam: 	Try nine hundred by nine hundred . 	Tries this and says it's al 

	E  bit too big.  i 
I 	 i 
J. 	 i 

Despite these difficulties, most of the students went on to do the challenge. They drew 

all three rectangles, mostly using a guess and test approach. In that sense, 'Variables-

4' was successful. The students seemed to gain in terms of their understanding of area 

as a result of experimenting with the values of 'x' and 'y' and seeing the resultant 

rectangle on the screen. There was other incidental learning. Joanna, for example, a 

queried whether a square was a rectangle leading to a discussion of definitions of each. 

`Variables-4' was successful too in providing a meaningful context for using variables, 

that of relating the sides and area of rectangles. However, it did not succeed in terms of 

its original number aim: that of using area as a context in which to extend their notion of 

number to decimals. I felt that the students' knowledge of area was not a sufficiently 
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I lengthi 

10 

menu I 	I start 
pu setxy x y pd 

60 ) 

cs 
start 
line 
move 

set-pen-width width 
fd length 

move 
pu 
rt 90 fd bit lt 90 
fd bit 
pd 

solid foundation on which to build such an approach. In 'Third-Boxer', I again used 

variables as a wedge into number but in different contexts. 

6.3.2: Investigating Number in the context of Co-ordinates 

The whole of 'Third-Boxer' was concerned with the investigation of number, with 

variables the vehicle for doing so. Two of its sections 'Lines' and 'Writing' used 

variables in the context of co-ordinates. 

lines 

read-me 

!oven-me-first I 
IDo each of the commands in the menu.) 

lopen-me-next I 

Change the numbers in the 'width' and 'length' 
boxes and do 'line and 'move' again. 

I Challenge I 
Make this pattern 

Figure 6.11: Lines 

`Lines' was designed to familiarise students with the 'set-pen-width' command and in 

the process use variables in a different and wider context. In earlier sections, the 'start' 

doit box was a useful but not prominent part of the set-up. In this section, I wanted to 

focus attention on how it worked, and changed it so that the internal data boxes 'x' and 

`y' had initial values of 80 for x and 60 for y. It was thus intended that start would not 

place the turtle where the students wanted it to, and hence provoke reflection on its 

operation. 

The challenge forced the students to change the variable values in 'start' so as to begin 

in the bottom left-hand corner. It thus motivated the use of directed numbers. It also 

required students to go in and out of 'line' to change the values of the two data boxes 

A 
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John and Milton 

Go for a Gallop 
Arabmist 

Lippizaner 

Tack up and lets go 

Horse riding is brill 

Pony mad 

line I 
pu 
setxy x y 
pd 

(j-71  
-200 (-loo 

set-pen-width width 
fd length bk length 

I length) 
30 

start move 

pu 
rt 90 fd bit lt 90 
fd bop 

Pbit  
70 

(`width' and 'length') there. Finally, the students needed to choose a suitable value for 
the variable in 'move'. In order to draw the various lines, it was necessary both to use 
the 'move' module and to change the value of its variable 'bop'. In the past, some 
students had avoided using the move module by recreating its commands in the menu, 
e.g., `pu rt 90 fd 30 It 90 pd', but it was noticeable now that they were making 
increased use of the modularity afforded by 'move'. 

The section named 'writing' extended the work begun in 'lines'. The doit box 'write' 
contained a new command 'set-pen-font' so the students could experiment with Boxer's 
fonts. At that time, these were somewhat limited. The 'type' command was now re-
introduced but in the context of words rather than numbers. 'Move' was changed so as 
to have two variable data boxes, one for each direction (Figure 6.12). 

writing 

I oven-me-first I 
( Do each of the commands in the menu.) 

(open-me-next 

Change the number in the STYLE inside WRITE 
and do 'line', 'write' and 'move' again. 

Try changing the word inside MESSAGE also. 

I Challenge I 

Make this pattern 

Imo 

miny 

meeny 

eeny  

cs 
start 

set-pen-font style 
px type message 

line CM 	I message I 
I  write 
move 
st 

4 	(John and Milton 

j note I 

h t The fonts go from 1 to 10 
only. 1 is the biggest. 

	I 

Figure 6.12: Writing 

By providing students with a context which combined text with graphics, I hoped to 
motivate them to use directed numbers to a greater extent than before. By and large, 
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Speaker 	 Dialogue 	 Commentary 

Courtney: 	The more you get higher, it goes This refers to the effect of large 
down there. 	 negative values of y.  

Interviewer: Where do  you want it? 	 ,  
Down. 
Minus goes downwards. 	I'm I 

Laura:  
	understandin it now. ---1----  s exact y w ere want it. 

Courtney: 
Laura: 

this was successful, but the prototype version of Boxer that we were using caused 

difficulties. The 'type' command, for example, printed only the top line of data box 

text on the screen, and although different fonts appeared on the screen, the hard copy 

was always in the same small font. 

Courtney and Laura, who were interested in horse-riding, changed the contents of 

`message' so as to write: 'riding is brill.' across the centre of the screen. They then 

changed this to 'Horse riding is brill.' This led them to experiment with values of x and 

y in 'start'. At one stage, the girls deliberately chose -290 as a value for y knowing that 

it would wrap round the screen to get where they wanted to be. I intervened at this 

point to show them how to achieve the same effect without wrapping. The girls now 

became engrossed in experimenting with negative numbers, the motivation throughout 

being that of getting their messages on different parts of the graphics box. 

Extract 3: 

The girls' choice of values for x and y became more and refined. At one point, they 

used (-1, 150) to position the message 'John and Milton' exactly where they wanted it. 

Boxer facilitated this experimentation through the simplicity of typing messages and of 

positioning those messages: in each case all that was required was to change the 

contents of the visible data boxes. 

The prospect of typing their own messages on the graphics screen motivated other pairs 

also. In response to a request from Joanna and Faye, I drew a set of axes on paper to 

explain the screen co-ordinates. The girls then experimented with 'start', trying values 

such as (100, 75), (-200, 80), and (-200, -150). They looked at the challenge but 

decided not to do it, choosing instead to type their own messages. 

The desire to get to 'clear' parts of the screen motivated the girls to ask if they could use 

`move' to do so. This drew attention to the fact that my design employed two different 

conventions in 'start' and 'move', and prompted a discussion about the difference 
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The fonts go from 1 to 10 
only. 1 is the biggest. 
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menu 
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move 
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faye is the best 

      

              

  

mo 

          

              

	J 

set-pen-font style 
px type message 

!message I  
( joanna helen kathleen amay 

note 

between absolute and relative values of variables - not usually a source of interest to 9 
year old students! For example, Joanna asked if using -150 in 'move' would move the 
turtle down to 150 (-150 on the y axis). After explanation of how 'move' worked (in 
comparison to 'stare), she used it with values of (0, -150), (0, -150), and (-300, 0). 
When I asked if she could do this in one step, she correctly used (-300, -300). By the 
end of the session, the girls used 'move' for even small movements and the graphics 
box looked something like Figure 6.13. 

Figure 6.13: Joanna and Faye's use of 'move' for writing 

By now, the students were becoming sufficiently confident in working with the 
environment of Boxer for me to consider a more ambitious, but potentially more 
complex approach to number. I began to build an on-screen counter in Boxer. This 
formed the basis of the two sections of Third-Boxer called 'change-it' and 'build-it'. 

6.3.3: Investigating Number in the context of a screen Counter 

The two sections of Third-Boxer called 'change-it' and 'build-it' differed from earlier 

sections of the microworlds. Firstly, neither contained a graphics screen - an 
apparently trivial point - but it meant that the programming activity had moved beyond 
the simple manipulation of a screen turtle to the control of number sequences. 
Secondly, each of these sections provided the means (the 'change' command) of 
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" Idisplayl 
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change display (--) 

change window 

change store = 

(how 

are you 

clear-all 
change display 

change window 

change store 

change display 
change window 

join-right display window 
join-bottom window store 

happy 

(is Bugs Bunny) change store join-bottom store 
counter 

change display join-right display window 

	. 

'menu 

counter, 

I read-me 

clear-all 

	J 

change window 8 
sleep 0.5 
change display window 
repeat 27 

Make the Doit box called 
COUNTER count up in 
threes, starting at 8 
and ending at 89. 

Make it show the numbers in 
window. 

change window window + 3 

I open-me-first I  
( Do all of the commands in the menu.) 

I Challenge I 

changing a variable under program control. Finally, these two sections presented a 
much more overt mathematical agenda than had previously been the case. 

The pedagogical intentions embodied in the design of 'change-it' and 'build-it' were 
aimed at providing a meaningful context for the use of directed numbers and decimals. 
The on-screen challenges initiated this process by inviting the students to generate a 
sequence of positive whole numbers. The interviews then provided the setting in which 
further such sequences could be generated, and through which the notion of number 
could be extended. 

I build-iti 

Figure 6.14: Build-it 

The challenges of the earlier sections had motivated the students to ask if there was an 
easier way of changing variable values, so the introduction here of the 'change' 
command was seen to fulfil a perceived need. It was felt that the success of these two 
sections depended crucially on students understanding the functioning of every part of 
them. To this end, they each began with the students using the new commands 
(`change', 'join-right' and 'join-bottom') in the menu to see their effects before using 
them with the 'counter' doit box. Their initial usage was in terms of words rather than 
numbers as I felt this would give a clearer indication of the command's action. 
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The 'counter' number-machine in 'build-it' generated a sequence of numbers which 

were displayed across the screen in the data box 'display' (Figure 6.14). I began by 

asking the students to predict what would happen when they executed each line. I then 

took time with every pair to explain what each line did in 'counter'. For example, by 

placing a semi-colon in front of 'sleep', it was simple to show what happened when 

this was not run. Similarly, by varying the input to 'sleep', the effects could be seen 

instantly. The students demonstrated that they knew how to change the lines in 

`counter' to set the start number, to vary the step-size, and to decide how many times 

they wanted to repeat. Interventions at this stage were thus intended to provoke 

reflection on the structure and function of the parts of the program and the logical 

sequence within it. 

I then challenged the students to obtain particular outcomes such as starting at 8 and 

ending at 89 by repeatedly adding 3. For the students, this activity involved: 

• making conjectures; 
• carrying out the necessary calculations, using pen and paper or a calculator; 
• changing the appropriate variables of the 'counter' program; 
• running the program to test their conjectures ; and 
• accounting for the result obtained. 

In generating a sequence of numbers, there were thus three variables which could be 

changed: (i) the start number, (ii) the step-size and (iii) the number of repeats. 

Mathematically, using either the operation of addition or subtraction, this is equivalent 

to the arithmetic progression Un = a + nd where Un is the nth term, a is the first term, n 

the number of terms, and d the common difference. 

In each of the following episodes, the initial intervention began with the symbolic code 

and invited prediction as to how changes to it would effect the desired mathematical 

outcome. 

The first episode has been selected to show how the 'counter' gave Steven and James a 

way of conferring meaning on directed numbers. The boys were set the challenge of 

starting at 20, increasing in steps of 5, and ending at 120. The underlying formalisation 

of this activity is that of solving the equation 20 + 5n = 120. For the boys, this task 

was a matter of deciding how many times they needed to repeat the process of adding 5. 

They changed the appropriate variables in the program to set the start number and the 

step-size. They used pen and paper calculations to work out that the number of repeats 

needed was 20 and ran the program. 
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In the course of their session, Steven asked: "Could you use minus?", and I now 

sought to exploit his curiosity by challenging the boys to reverse the earlier process, 

i.e., by starting at 120 and, using the same step size, ending up at 20. In formal terms, 

this is 'equivalent' to solving the equation 120 - 5n = 20. The boys changed the step 

size from 5 to -5, and decided that they would again repeat 20 times. However, they 

forgot to change the start number inside 'counter', so that they began at 20 and 

subtracted 5 twenty times which resulted in the screen displaying -80. The visual 

feedback provided a scaffold for an extension to negative numbers which I now sought 

to exploit. 

Dialogue 

, Points to the -80 in the 
1 `display' data__  box.  

It started at 20. It just went away E  Traces his finger across  
from 20. It took away 5s and just I 'display' data box. 

The following episode shows how the pedagogical situation could be structured so as to 

capitalise on this accidental foray into negative numbers. The boys were set the 

challenge of starting at 50 and ending at -50, again with steps of 5. The underlying 

formalisation this time is that of solving the equation 50 - 5n = -50. 

Extract 2:  
Speaker T 	Dialogue 

Steven: 	I Repeat one hundred. 

Steven: 
	

Repeat ten.  
Interviewer: 	Steven says 'Repeat ten'. 

you think? 
James: 
	

Yes, because he has taken 
fifty. 

James: 

James: 

Throughout this exchange, the boys pointed alternatively at the program code inside 

`counter' and the resulting display. Steven's initial suggestion of 'repeat 100' may 

Extract 1:  
Speaker 

Interviewer: 

IaER 

—1-WhyTryOu think it did that? 

- inn-CO—iii ---itary i 

i 
i 	

.  camed on. 	 L.. 	 i 

I've got the answer now. It' 
twenty  
I know. If ten makes it go to 1 
nought, then ten more will make it! 

, go to minus fifty:  

this is wrong.  
t 

What dol To James. 

away James has multiplied the 
number of repeats (10) by the 
step size (5) to  get 50.  
After running the program with i 
repeat 10 . . .' 

-  
1 	Commentary 
1  
I They run the program and see 1 
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Refers to ten lots of four. 

have stemmed from an intuitive grasp that the overall amount needed to move from 50 

to -50 was a hundred (Note how subtraction is denoted as movement here). The screen 

display compelled him to attend to the inner relationship between the step size and the 

overall movement, from which he derived his second conjecture: 'Repeat ten'. James, 

who until now was the silent partner, accounted for Steven's explanation and then 

builds his own rationale upon it: "If ten makes it [Boxer] go to nought, then ten more 

will make it go to minus fifty." 

In another episode with Joanna and Faye, it can be seen how decimals also could be 

ascribed meaning in terms of step size. The girls were set the challenge of starting at 2, 

going up in steps of 0.25 and ending at 12 (the formalisation of which is 2 + 0.25n = 

12). Joanna's response is interesting in terms of the method she used. 

There's four lots of 0.25 in 
if I did twelve lots of four? 

commentary 

one so She changed the start value to 2, the 
step size to 0.25 and the repeat 
number to 48, and ran the program, 
at which the screen display showed: 
2.00 2.25 2.50 2.75 . . . 14.0 

Dralogne 
Extract 3:  

—s..------ei 

-Joanna: 

rnierv--ieVeYou are right except for one thing 

Joanna: 	Oh yeah. It started at two. So it is 
ten. 	 

Joanna: — [Changed the repeat number to 40, 
and ran the ro u . in endin at 12.]  

As with all of these episodes, the mathematical activity was an amalgam of 

thinking/writing/calculating off-screen, interspersed with changes to the program on 

screen and pointing both to the program code and the line of numbers which resulted 

from running that program. The way the students referred to the actions of Boxer as "It 

did ... " or "It started ... " etc. is noteworthy. The anthropomorphism suggests that 

Boxer was giving the students a dynamic model for the mathematical formalism. 

6.3.4: Investigating Number in the context of List Processing 

I had two motives in creating this section, each of which was related to the command 

`for-each-item'. In the first place, I hoped that this command would give me an 

powerful but more easily understandable alternative to recursion as a programming tool. 

Secondly, I hoped that it would be a powerful device for investigating number. The 

Boxer command `for-each-item' provides a means of handling lists (data boxes). It 
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I clear! 

change display clear 
for-each-item n nums 

change nums 

change nums 0.1 0.2 0.3 0.4 

I num4  

(1 2 3 4 5 6 7 8 9 10 
idisplay I 

12 4 6 8 10 12 14 16 18 20 

!menu I read-me 

function 
clear 

Iopen-me-first I 
Do all of the commands in the menu. 

I Challenge I 
Put all of the numbers from 1 to 10 in nums. 

Make the Doit box called function 
change each of these numbers to: 
(i) 1.3 	2.3 	3.3 	4.3 	5.3 	6.3 	7.3 8.3 9.3 10.3 
(ii) 0.9 	1.9 2.9 3.9 4.9 5.9 6.9 7.9 8.9 9.9 
(iii) 0.5 	1.0 	1.5 	2.0 2.5 	3.0 3.5 4.0 4.5 5.0 

function 

change display join-right display ISE 

takes two inputs: a variable which 'runs' through the list and the list or box itself. In 
Figure 6.15, this variable is represented by the data box 'n' in 'function' and the list by 
the data box 'nums'. With the function 'n * 2' as below, the effect of running the 
`function' doit box would be to change the contents of the 'display' data box to 2 4 6 8 
10 12 14 16 18 20 as shown. 

hots-at-once I 

	1 

Figure 6.15: Lots-at-once 

To begin with, I ran the 'function' doit box on the 'nums' data box containing 12 3 4 5 
6 7 8 9 10, and explained its operation line-by-line. I then changed the doit box first 
from '* 2' to '* 3' and then to `+2' and ran it each time. When the students were 
confident about how to change the function, the challenge was set. 

Liam and Jason, found the first part of the challenge hard, so I used drawings of flow 
diagrams (on paper) to help. Jason and Joanna, although in different groups, each 
suggested -0.5 for (iii) of the challenge (Figure 6.15). Having tried this value, they 
each realised their mistake and corrected it. Joanna said "I think it is take-away half of 
all of them". This correct, but algebraically awkward formalisation (equivalent to n -
(0.5 * n)), was countered by my intervention suggesting that she tried dividing by 2 or 
multiplying by 0.5. Joanna adopted the latter of these, and ran the program again. The 
screen display exposed Joanna's still fragile knowledge of decimal multiplication, as the 
following extract shows. 
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Extract 1:  
M 	 Commentary alogue 

Joanna: 	It halves them. I was thinking it After trying the program. 
would take 0.5 from each of them. 

Interviewer: 	Instead of 0.5 t 0.1. 
Joanna: 
	

That will be one-tenth of it. 
Interviewer: I You are ahead Or me. 

Interviewer: 	Try it.  
Joanna: 	I don't understand. I thought it 

would be take away one tenth not 
nine 	tenths. 

terviewer: 1 Instead of taking away a tenth, it , 

Joanna: 
	  gets one tenth of it.  

So this times by 0.1 gets a tenth. 

But, Joanna again talks of 
taking away.  

  

  

Having seen the screen 
display. 

  

  

   

   

   

   

   

The lots-at-once' section was not successful either in terms of my programming aim or 

in terms of my number aim. In the former case, its structure proved harder to 

understand than I had anticipated. In the latter case, the mathematical challenge required 

students to be able to choose the correct function to map one set of numbers to the 

other, and they appeared to have considerable difficulty in doing this. 

6.4: Design Issues 

The previous two sections have given an account of how the medium of Boxer was 

exploited to introduce itself. It showed how Boxer environments were constructed to 

foster the learning of elementary programming ideas, and how these environments 

progressively integrated programming with number. As stated earlier, the pedagogical 

approach also entailed using these microworlds with the remainder of the class. The 

feedback from both sets of students led to several design changes as the microworlds 

were being used, a process referred to as 'iterative design'. This section discusses 

these design issues. 

6.4.1: Presentation 

The transcripts of Oliver and Jessie's early sessions with 'First-Boxer' reveals that 

much of the dialogue was concerned with the mechanics of using the computer, e.g., 

controlling the mouse on the optic pad, pressing the correct mouse button manipulating 

the cursor into the right position before pressing the linefeed key and so on. These 

mechanical skills caused 'start-up' problems for many students, but they seemed 

especially prominent for Oliver and Jessie. 
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The students, who were using the early version of 'First-Boxer', also seemed reluctant 
to read the instructions on the screen. It quickly became obvious that the source of their 
reluctance was twofold: reading and readability. Jessie read very slowly and Oliver - at 
first — did not seem to read at all. But, equally, the screen presentation was not as clear 
as I had thought. Together, these factors motivated a redesign of the presentational 
format of 'First-Boxer'. 

One of the sources of Oliver and Jessie's difficulties was related to the technical jargon 
of programming. In the first version of this micro-world, I used expressions such as 
`Execute the commands' which were meaningless to them. In a later version, the 
expression 'Try doing each of the commands in the menu.' proved to be little better 
since students needed to know what 'commands' were. This was replaced by the 
simpler `Do the lines in the menu.' The notion of readability is well recognised in the 
world of traditional media (Shuard and Rothery, 1984). The findings of this part of the 
research suggested that it may be equally cogent in the world of the new visual media. 

In one sense, the revisions to the on-screen text were no different to those that might be 
might be made to a traditional textbook or worksheet as a result of trialling. But, in 
another sense, there were significant differences. As the design evolved, it became 
apparent that with Boxer, the programming vocabulary itself was open change. 
Replacing the term 'procedure' by `doit box' was more than just a simplification of 
language. The new terminology was supported both by its visual and operational 
characteristics. Doit boxes appeared as rectangular boxes on the screen, i.e., as 
physical containers for programs, and moreover these (unnamed) doit boxes could be 
executed in place. When sub-procedures were physically inside the super-procedure, it 
was possible to refer to them as 'inside doit boxes'. 

The visual nature of Boxer facilitated a form of communication that was not possible 
with earlier languages. This work was not supplemented by worksheets or by 
instructional manuals. The medium introduced itself. The text, the graphics and the 
programs were integrated on the same screen which clearly helped students to navigate 
from one to the other. Information overload was reduced by simply closing boxes no 
longer in use. But, communicating in this way raised a second design issue concerned 
with reading: namely whether students read what was written on the screen — clearly an 
important issue in a microworld designed to be used independently. 
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read-me 

	♦ 	 . ♦ 	  
lb) A later version text in unnamed boxes 

. 

) read-me I 

Do each of the lines above the dotted line in the menu. 
(Click on the line and press LINE-FEED). 

Open the first Doit box in the menu. 
Click on that line and press Line-feed 
Do it until you get a square. 

'Challenge I 

read-me 

Challenge i 

I 	  
1. Try doing each of the commands above the\  
dotted line in the menu. 

(Click on the line and press LINE-FEED). 
2. Open the first Doit box in the menu. 

Click on that line and press Line-feed. 
Do it until you get a square. 

I Challenge I  

I read-me 

(a) An early version: fines of text 

read-me 

I 'vett-me-next 

read-me I Challenge I 

read-me 

	I \ 	 

open-me-first 

pen-me-next 

I Challenge I 

Open the first Doit box in the menu. 

Click on that line and press Line-feed. 

Do it until you get a square.  

Do each of the lines above the dotted line in the menu. 

(Click on the line and press LINE-FEED). 

Perhaps not surprisingly, I found that, if students were presented with a lot of writing, 

they didn't read at all. On the other hand, I observed that students were inclined to read 

text in boxes which they had opened. So, one of my first design changes to the 

presentation was to put the text inside boxes. But then, like diSessa (1990), I found 

that students frequently ignored closed boxes, and so a further modification was made 

by naming the boxes. I found that boxes with names such as 'read-me-first' were 

likely to be opened and the text inside read. Figure 6.16 shows the evolution of these 

ways of presenting screen information. 

cc) A third version: text inside named boxes 

Figure 6.16: Changes to the presentation mode 
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I menu I  

forward 126 
right 90 
left 90 
clearscreen 

fd 78 rt 90 

rt 90 fd 31 

fd 64 It 90 

It 90 fd 32 

I menu I  
forward 126 
right 90 
left 90 
clearscreen 

fd 78 
rt 90 

rt 90 
fd 31 
fd 64 
It 90 

1t90 
fd 32 

Another presentational issue concerns the challenges in each section of the microworld. 
The notion of on-screen challenges supported by a graphic of the goal is one of the 
features which Boxer offers over and above Logo. However, the choice of the 
challenge itself was mine. As the research progressed, I made several changes to the 
challenges replacing some altogether. These changes were made usually in response to 
students' difficulties or in order to better match the challenge to the key aim of that 
section of the micro-world. For example, in one early challenge (for shapes-1), I asked 
students to draw a hexagon, but this led to mathematical as well as programming 
difficulties and so it was removed. As stated earlier, I also increasingly devolved 
interventions to the challenges as a result of feedback, e.g., the need to consider state-

transparency. 

6.4.2: Programming 

In my early attempts at writing programs in Boxer, I carried over practices from my 
experiences with Logo. Only later, as students' difficulties arose with matters such as 
the recognition of state-transparency, did I reflect that some of the programming 
problems might be alleviated by changes to the mode of presentation. 

6.4.2.1: Commands 

I menu I 

forward 126 
right 90 
left 90 
clearscreen 

fd 78 A 90 

rt 90 fd 31 

fd 64 It 90 

It 90 fd 32 

Figure 6.17: Changes to the presentation of commands 

Initially the commands were presented on a single line. Later, these lines were placed 
inside doit boxes. The doit box fulfilled two roles here: emphasis and function. 
Firstly, placing text inside rectangular boxes emphasised the text as it would in 
traditional media, but it also drew students' attention to the fact that boxes were 
functional, i.e., they were programs that could be executed. Later still, each command 

132 



was placed on a separate line inside doit boxes. This last version meant that students 

could run each command, e.g., 90' on its own from within the box, or they could 

place the cursor outside the box and run a combination of commands. Figure 6.17 

indicates the manner in which commands were presented evolved over the study. 

6.4.2.2: Procedures  

Likewise, the way procedures were created evolved in the course of the study. In 

Logo, creating a procedure and naming a procedure are synonymous. This is not the 

case in Boxer, where procedures can be defined by un-named doit boxes. This facility 

proved to be of significance as the research progressed. Students frequently wrote and 

executed their programs line-by-line in an un-named doit box. This gave them a 

`correct-up-to-here' facility. When the program did not perform as expected, they 

altered the offending line, placed the cursor outside the unnamed doit box and ran the 

whole program again. 

The difficulties which the 'Ls' challenge in 'shapes-4' (Appendix 2) caused for several 

students led to changes in the way I approached the construction of procedures. 

Students, such as Joanna and Nico, for example, encountered problems because they 

were attempting to do too much at once. At their first attempt, they obtained a `squares-

on-squares' pattern rather than the 'Ls'. With their next attempt, they obtained a set of 

`Ls' without gaps between them. My interventions were now aimed at suggesting that, 

rather than trying to do all the 'Ls' at once, that they might first write a program to do a 

single L. Over the study as a whole, this evolved into a common programming practice. 

rt 90 
fd 10 
bk10 

rt 90 
fd 10 
bk10 
1t90 
fd 10 

rt 90 
fd 10 
bk10 
It 90 
fd 10 

repeat 5 

fd 10  

L 
pu 

pd  

(a) 	(b) 	(c) 
	

(d) 

Figure 6.18: Combining 'repeat' with doit boxes 

Figure 6.18 shows how this method might be adapted to the task of drawing five Ls. 

In (a), the commands can be stepped through line-by-line. In (b), it can be ascertained 

that the program to draw a single L is successful by running the whole doit box. 

Naming the box in (c) not only saves typing but reifies the existence of the procedure as 

an entity, whilst (d) shows a program to obtain the five Ls. The latter program can now 

be named also. This process seems rather natural in the visual environment of Boxer 
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square side 
change side side + 10 

input side 
repeat 4 

nests 
square 10 
square 20 
square 30 
square 40 

nest2 

10 

and it is easy to overlook that it involves the creation and naming of procedures along 

with the use of modularity and sub-procedures. Moreover, debugging — usually seen 

as a post-programming repair activity — is built in to the construction of the program. 

6.4.2.3: Variables 

The initial findings from the early parts of 'First-Boxer' replicated those of the research 

from Logo, e.g., students failing to recognise the significance of inputs. However, this 

raised an interesting question: was this phenomena being replicated in Boxer because I 

was writing programs in a Logo-like way? It is common practice in beginner's courses 

in Logo to write procedures without variables and at a later stage to introduce variables. 

In the course of designing the 'Second-Boxer' microworld, I found myself changing to 

a practice of always using variables, e.g., Id length' rather than Id 50' say. 

Boxer permitted the creation of variable data boxes so this represented an intermediate 

stage between the two Logo-like ways of using inputs. Because the students had to 

directly change the contents of the data box to effect a change on the screen, they were 

forced to consider the significance of inputs. Changing the contents of a data box made 

transparent the idea of changing the value of a variable, i.e., Boxer has visible 

variables. Some evidence for this can be deduced from Joanna's description. 

Referring to the data boxes, she remarked: "They're called variables because you can 

vary the numbers in them." 

On the other hand, repeatedly changing the contents of a local data box led many 

students to ask if there was an 'easier way to do it'. This led to a dilemma: the use of 

internal data boxes did lead to an appreciation of input, but their use imposed 

limitations. This was a design problem arising from the use of internal data boxes. For 

example, the nested square challenge could have been accomplished if the design had 

used either an external data box (global variable) or a general input variable. Figure 

6.19 shows two ways of doing this. 

(b) Internal 
of commands 	program control 

Figure 6.19: Two ways of doing the nested squares 

(a) A running record 
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I counted 
change window 8 

(a) sleep 0.5 
change display window 
repeat 27 change window window 	+ 3 

change display build @display Ovvindovi 

Icounter 

(b)  
change window window + 3 

change window 8 
sleep 0.5 
change display window 
repeat 27 

change display join-right display window 

At this stage of the research, I rejected each of these options as I thought that the 
physical act of directly changing the number in the data box provided a concrete model 
of the notion of variable. In the event, students were introduced to external data boxes 
along with the command 'change' in the later sections `change-it' and 'build-it' (section 
6.3). Later still, they used general variables in the contexts of constructing number 
lines and function machines (chapters 8 and 9). 

6.4.2.4: Program Transparency  

The section entitled 'Build-it' was in effect a design modification of 'change-it'. In 
`change-it', the numbers were displayed momentarily one-by-one in data box 'display'. 
But, in 'build-it', all of the terms were printed across the screen. I made this 
modification because I thought that students might better appreciate the relationship 
between the terms of a sequence if they could see the pattern as it was being generated. 
Later, I added the line 'sleep 0.5' to emphasise this step-by-step generation of the 
sequence. Later still, the counter program itself was modified. 

For my long-term number aim, I wanted students to construct their own microworlds. 
Therefore in presenting them with my own constructions, I felt that it was important 
that they should understand every part of it. 

Figure 6.20: The two versions of 'counter' 

Originally, the 'counter' program used the 'build' command for concatenating terms 
across the screen (Figure 6.20a). Following trialling however, I felt that the 
programming code needed to achieve this aim was off-putting for students, so I made a 
design decision to create a new command 'join-right'. From the students' point of 
view, loin-right' could be treated like any primitive command and it behaved in a 
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manner that could be understood intuitively. Moreover, the program used to create 
`join-right' command was concealed in a 'closet' (chapter 3), and was thus available for 
inspection should any student be curious about its operation. 

6.5: Summary and Implications 

This chapter has examined the first phase of the longitudinal research in which the 
medium of Boxer was used to introduce itself. It has described how distinctive features 
of the technical component of Boxer (in comparison to Logo) influenced the way 
students learned to program, and reported how programming then became the vehicle 
for investigating number representations. It has also indicated how the students 
interactions with these microworlds became the data through which they were modified. 
The subsidiary role of this phase of the research in the study as a whole means that both 
programming and number findings were tentative at this point. The design findings, on 
the other hand, are unique to this phase and so are presented first. 

6.5.1: Design Issues: 

The idea of exploiting the medium to introduce itself evolved from the observations of 
the exploratory study. The findings raised important design issues which had not been 
anticipated at the outset of the research. 

Presentation and Communication 
The fact that the screen was being used as a means of communication as well as an 
environment in which to work raised several issues. On one level, the observation that 
changes to the presentational mode affects readability is common sense, and comparable 
to traditional media. But on another level, the fact that boxes can be closed and opened, 
hiding and revealing text, adds another dimension. An interesting insight into how one 
student perceived these characteristics can be gauged from Oliver's remark: "It is sort of 
like a game book. You can make your own pages appear." 

The structure of the screen environment as a whole, and the on-screen challenges in 
particular, were modified as the research progressed as I attempted to devolve 
interventions to the medium. But the relationship between the microworld sections 
themselves remained relatively unchanged. An issue for future research is how the 

hypertext facilities of Boxer can be more fully exploited to offer alternative routes 
through a microworld or alternative challenges within it? 
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Programming Constructs 

The observation that presentational changes might affect program comprehension is 
again perhaps obvious. Yet, these are nevertheless non-trivial observations. Placing 
commands on separate lines which can be individually executed was a powerful means 
through which students connected the process and product of their programming. 
Similarly, presenting commands inside un-named doit boxes did more than merely 

emphasise those commands. Over the course of study, students adopted this as a way 
of working, i.e., they wrote and ran lines inside doit boxes, building up procedures as 
they went. This practice also meant that they debugged their programs as they wrote 
them rather than afterwards. 

6.5.2: Programming Issues: 

Learning to program was secondary to the long-term goal of using this knowledge to 
construct learning environments in Boxer in which to investigate number. 
Nevertheless, at this point, some preliminary findings could be made. 

Developing a sense of command 
Developing a sense of command implies associating that command with a particular 
action, and relating its inputs (where applicable) to that action. The evidence suggests 
that students quickly acquired the sense of command, and this acquisition was 
influenced by the following two Boxer features: 

• (i) the presence on-screen simultaneously of program and resultant drawing; 
• (ii) the facility for line-by-line execution. 

Procedure as an entity 
Coming to appreciate a procedure as an entity implies associated it with a composite 
action. Noss (1985), for example, notes how using 'procedures' marks a significant 
step in students' learning of programming. In Boxer, the students can begin their 
programming with procedures. The evidence suggests that the notion of a procedure 
was appreciated by students more quickly than might have been the case in Logo. The 
Boxer features which made this possible: 

• (i) the facility for writing and executing commands directly inside doit boxes; 
• (ii) the absence of the need to learn intermediate skills for entering and leaving the 

editor, 
• (iii) the manner of naming procedures, i.e., the 'name-tag' boxes. 
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Variables 

The students in this phase of the research encountered variables in a wide range of 

contexts. They were also introduced to two of the three different manifestations of 

variables in Boxer: the internal data box and the external (global) data box. The 

evidence suggests that they came to appreciate the concept of a variable as representing 

a range of numbers. The Boxer features which contributed to this learning were: 

• (i) the spatial appearance of data boxes as containers; 
• (ii) the facility of being able to directly manipulate the contents of the data boxes; 
• (iii) the manner of naming variables, i.e., the 'name-tag' boxes. 

Hillel (1992) observes that the variable concept is introduced in Logo through 

generalised procedures, and hence the learning of the one is tied up with the learning of 

the other. The data of this study implies that in Boxer this need not be the case. 

6.5.3: Number Issues: 

In these microworlds, four different number contexts were investigated as part of my 

continuing efforts at finding an evocative Boxer representation. None of them were 

fully satisfactory. The area context was unsuitable because the students' notion of area 

was insufficiently developed. The co-ordinates context succeeded in motivating the use 

of directed numbers, but I could not see it doing the same for decimals. The counter 

representation supported visually the relationship between numbers by generating a 

pattern across the screen. However, I had some reservations about whether students 

would find it too difficult to program something similar. Finally, the list-processing 

command 'for-each-item' was not as accessible as I had hoped. 

6.5.4: Implications for the rest of the thesis 

The long-term nature of learning to program meant that the programming achievements 

of this phase of the research would have to be judged over the longitudinal study as a 

whole. On the other hand, choosing a representation in Boxer which would prove both 

visually evocative in terms of students' conceptions of number and be within their 

capacity to program was an immediate priority. 

In order to assist my search for such a representation, I decided to investigate more 

closely the kinds of knowledge which these students already had of number, as well as 

the kind of number representations which they might spontaneously deploy. Chapter 7 

gives an account of how I undertook this part of the research. 
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Chapter 7: Students' Interpretations and Representations 
of Numbers 

7.1: Introduction and Overview 

7.1.1: Introduction 

This chapter consists of an analysis of the semi-structured interviews that were 

conducted with the case-study students and a comparison group of non-Boxer students 

from a parallel year 6 class. The interviews took place during the Autumn term 

September 1992 to December 1992, following the programming phase of the 

longitudinal study (chapter 6), but prior to the number phase (chapters 8 and 9). The 

intention was to use this period to generate more focused and coherent issues for the 

number phase of the study. 

A precedent for such an investigation can be found in diSessa et al. (1991),who report a 

study in which students 'invented' representations to depict motion. In discussing and 

critiquing their own and other students' representational forms, these students gained 

`meta-representational' competence, i.e., they acquired an appreciation of the 

relationship between motion and the various ways in which it could be depicted. By 

undertaking a similar off-computer study with respect to number, it was hoped to 

establish some baseline data on the Boxer students' understanding of number, and to 

gain insight into the representations that they employed and found helpful. 

The aims of this phase of the research were threefold: 

• (i) to establish baseline data on the case-study students' knowledge of number in 
general, but of directed numbers and decimals in particular; 

• (ii) to establish the kinds of representations that the students used for different 
numbers, and to solicit their views concerning the suitability of these 
representations for extended systems of numbers; 

• (iii) to probe differences in the number knowledge and representations exhibited by 
the Boxer and non-Boxer students in the hope of gaining pointers for the next phase 
of the research. 
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Following a pilot study, modified interviews were conducted with the case-study 

studentsl and a comparison group of eight non-Boxer students from a parallel year 6 
class. 

7.1.2: Overview 

Section 7.2 is the first of a two-part analysis of students' conceptual understanding of 
number. It is concerned with their interpretations of quantities obtained through 
extending the number system. It gives an account of findings which reveal students' 
thinking about the existence of such quantities, as well as the relationship between 
numbers. Questions about representations usually followed immediately after those on 
interpretations. Thus, if a question asked students to write down numbers between 0 
and 1, the following question might ask them to create a representation to depict their 
numbers. However, for the purpose of this analysis, I have separated the interpretation 
from the representation items. 

In section 7.3, the focus is on the documentation and analysis of students' visual 
images of numbers. For the purposes of analysis, it is helpful to draw again on 
Bruner's (1968) of enactive, iconic, and symbolic representation. Although, it is 
Bruner's notion of iconic representations that will be of most relevance to that 
discussion, nevertheless, the enactive roots of students' drawings can easily be 
discerned in their choices of icons, and at the other end, the merging of iconic forms 
with symbolic notation can be seen in the work of students like Joanna. 

Von Glasersfeld (1987) observes that representations of numbers, do indeed, provide a 
complex illustration of what is iconic and what is not: 

With regards to icons, Piaget's distinction between the "figurative" and the "operative" 
would seem to be of some importance. Number is not a perceptual but a conceptual 
construct; thus it is operative and not figurative. Yet, perceptual arrangements can be used 
to "represent" a number figuratively. Three scratches on a prehistoric figurine, for instance, 
can be interpreted as a record of three events. In that sense they may be said to be "iconic", 
but their iconicity is indirect. (1987, p. 223) 

Section 7.3 documents the kind of representations which the students chose for natural 

numbers, rational numbers and directed numbers, and discusses the limitations inherent 
in certain of these. 

1  Interviews were also carried out with three other non-case study students from the Boxer group: 
Kathleen, Rosie and Sara, all of whom later participated in one or other of the number studies. 
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7.2: Students' Interpretations of Number 

7.2.1: Natural Numbers 

By way of a gentle introduction to the interviews, students were simply asked to choose 

any three numbers, and having done so, were then asked to select two of these numbers 

(Qla and Qib). 

Qla: 	Choose any three numbers and write them down. 

Qlb: 	Now choose two of these numbers and write them down. 

All of the students chose whole numbers, which would seem to suggest that, for them, 

the concept of number was equated with whole number. Moreover, most of the 

selected numbers were relatively small (all but one were within the range 1 - 100), 

suggesting further that the numbers chosen were those within their experience. There 

were no discernible differences between the Boxer and the comparison group of 

students. 

Table 7.1: Students' choice of whole numbers 
Non-Boxer Boxer 

Ann-Maria 10, 11, 15 Nico 3, 9, 8 
Tahir 10, 15, 40 Joanna 3, 8, 15 
Blake 3, 5, 9 Jason 1, 6, 11 
Hannah 3, 20, 69 Liam 6, 19, 210 
Ahmet 9, 15, 20 Courtney 5, 24, 18 
Cerisse 3, 6, 9 Laura 1, 2, 3 
Rebecca 10, 120, 3 Jessie 2, 4, 9 
Dillon 1, 100, 5 Kathleen 9, 12, 55 

Rosie 12, 6, 22 
Sara 7, 3, 2 

e final two numbers chosen are in 

7.2.2: Rational Numbers 

Question 1, besides intending to help the students feel at ease, was also meant as a lead-

in to question 3, which probed students' awareness of non-integer quantities. As part 

of the protocol, I continued to ask this question until the students gave two successive 

integers. I then asked the students to choose a number between these. In contrast to 

the responses to question 1, there were very marked differences between the Boxer and 

non-Boxer group's answers to question 3. 

Q3 a, b, c. etc.: 	Can you write down a number that is bigger than 
[the smaller number] and smaller than [the bigger number]? 
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A frequent first response at this point was for the non-Boxer students to deny that there 

were any numbers between two whole numbers. Their later fractional answers, which 

followed researcher interventions, reinforced the contention that the term 'number' was 

seen - at least initially - as synonymous with whole number. It was very noticeable that 

all of these students gave fractional answers and most of these (Dillon's final response 

was the exception) were obtained by employing a bisection strategy. It suggested that 

their notion of fractional quantities was tied to the physical operation of halving. Only 

one student (Dillon) was able to identify more than two numbers between the 

successive integers. 

Table 7.2: Students' successive choices of non-integers 
Non-Boxer Boxer 

Ann-Maria 101/2, 101/4. Nico 3.5, 3.49, 3.489, 3.487. 
Tahir 151/2, 151/8. Joanna 81/2, 81/4, 81/8, 81/16. 
Blake 31/2, 31/8. Jason 11/2, 11/3, 11/4, 11/5. 
Hannah 31/2, 31/4. Liam 19.5, 19.3, 19.1, 19.01. 
Ahmet 91/2. Courtney 5.5, 5.1. 
Cerisse 63/4, 61/2.* Laura 11/2, 11/4, 11/8. 
Rebecca 41/2, 41/4. 	' Jessie 21/2, 21/3, 21/4. 
Dillon 51/2, 5114, 5115. Kathleen 91/2. 

Rosie 6.5, 6.1, 6.05. 
Sara 21/2, 21/4. 

Some of the Boxer students also employed a bisection technique, but there were other 

indicators that this was not the sole strategy available to them. Joanna, for example 

when asked to produce a drawing to represent her numbers (see section 7.3), switched 

from fractions to decimals and chose a new set of numbers: 8.0, 8.25, 8.23, 8.10, and 

8.05. The Boxer students also tended to choose more numbers. There was a marked 

difference between the two groups in their use of decimals. Five of the ten Boxer 

students gave a decimal expression as a number in between two whole numbers, in 

contrast to the non-Boxer students where no student gave a decimal answer to this 

question. In a later question (Q.9), I again probed the students' appreciation of 

decimals, and again, there were marked differences between the two groups. 

Q9a: 	Do you know about decimals? 

Q9b: 	Which is the bigger 0.5 or 0.13? 

All of the comparison group claimed to know about decimals, but only two out of the 

eight chose 0.5 as bigger than 0.13 (Table 7.3). At the time of the interviews, the non- 
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Boxer students had begun to learn about decimals in the context of money, and this may 

account for the disparity between their two answers. 

Eight of the ten Boxer chose the correct answer 0.5. But, again some caution needs to 

be exercised in interpreting their answers. Most of the students recognised 0.5 as a 

half, but several of them had difficulties in explaining why 0.13 was a smaller quantity. 

This may be because this is a difficult question to answer orally. I did not simply 

accept the Boxer students' answers as construing self-evident knowledge of decimals, 

but rather continued to probe the rationale for their choice. 

Table 7.3: Students' knowledge of Decimals 
Non-Boxer 

._ 
Boxer 

9a 9b 9a 9b 
Ann-Maria yes 0.13 Nico yes 0.5 
Tahir yes 0.13 Joanna yes 0.5 
Blake yes 0.13 Jason yes 0.13 
Hannah yes 0.5 Liam yes 0.5 
Ahmet yes 0.13 Courtney yes 0.5 
Cerisse yes 0.13 Laura yes 0.5 
Rebecca yes 0.13 Jessie not sure 0.5 
Dillon yes 0.5 Kathleen not sure 0.13 

Rosie yes 0.5 
Sara yes 0.5 

Kathleen, who chose 0.13, said: "But, I think I'm wrong." Courtney, who chose the 

correct option, asked if it was a 'trick question', and could not explain why 0.5 was 

bigger than 0.13. Jessie chose 0.5 and knew it was a half, but she could not explain 

why it was bigger than 0.13. Laura justified her choice of 0.5 by saying: "The lower it 

is, actually the higher it is." The reasoning for this classic 'LS' (larger is smaller) error 

could be inferred from what she said a little while later, i.e., "That's a half and that's a 

thirteenth." 

7.2.2: Directed Numbers 

Question 5, like question 1 for decimals, was intended as a lead-in question for further 

investigation of students' conceptual understanding of directed numbers. 

Q5: 	What is the smallest number that you know? 

Often a first response by the non-Boxer students to this question was to ask "Is zero a 

number?". Assured that it was, many chose it as their smallest number. For some, 

there also seemed to exist a quantity `-0', which may have arisen because they had 
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heard of temperatures below zero, although this is speculation on my behalf. Six of the 

eight chose 0 or -0, with Rebecca's '0 — 1/4' being a variation on this. 

A frequent first response by the Boxer students was to ask: if they could use 'minuses'. 

Five of the ten did so, choosing quantities ranging from Kathleen's -1 to Nico's minus 

sign followed by his depiction of a infinite number of nines. Of the remaining five 

students, three chose decimals and two chose 0. 

Table 7.4: Students' choice of smallest number 
Non-Boxer Boxer 

Ann-Maria -0 Nico -99, 999, 999, 999, 999, 999, 
999, 999, 999, 999, 999 .... 

Tahir -0 Joanna -1000 000 000 000 000 000 0 
Blake 0 Jason 0.1 
Hannah -infinity Liam 0.00001 
Ahmet 0 Courtney 0 
Cerisse 0 Laura -infinity 
Rebecca 0 —1/4  Jessie 0 
Dillon 0 Kathleen -1 

Rosie -50 
Sara 0.1 

The question arises as to why the responses of the two groups should have been so 

different? Neither of the groups had been exposed to negative numbers as part of the 

formal school curriculum. However, the Boxer students were coming into contact with 

both decimals and directed numbers in the course of their work in the computer 

environment. These findings suggested that these contacts were indeed affecting their 

expression of number. They appeared to have both a wider and a deeper insight of 

numbers than their non-Boxer counterparts. Two follow up questions (Q6 and Q8) 

reinforced this impression. 

Q6a: 	Can you think of a cold temperature? 

Q6b: 	Can you give me a colder temperature? 

The responses to question 6 appeared to contradict the answers to question 5, in that 

many of the students who gave 0 as their smallest number responded by depicting 

numbers below zero. However, three points may be proffered as partial explanations. 

Firstly, there is the obvious one of temperature being a meaningful context: it is not 

claimed that they knew which number was smaller but rather which temperature was 

colder. Secondly, it could be that the term 'smallest' is ambiguous when negative 

numbers are involved, i.e., students may have been giving the smallest absolute value 
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Ix' of a number x. Thirdly, 0 may be the smallest number that students have 
experienced. 

Several of the students, both Boxer and non-Boxer, used non-standard notation to 
depict the relative values of negative numbers in the context of temperature. 

Table 7.5: Students' co parison of Temperatures 
Non-Boxer Boxer 

6a 6b 6a 6b 
Ann-Maria 20 below 0 30 below 0 Nico oc -10c 
Tahir 1 c 1/2 c Joanna oc -1c 
Blake C 3 -1 C o Jason -40° C -60° C 
Hannah -0° C -20° C Liam 1F 0.1 F 
Ahmet -0 Freezing Courtney lc Oc 
Cerisse -1 -0 Laura 4C -22c 
Rebecca 0 — 1/8 c 0 1/24 c Jessie Cold 1 or 2 o F0  Freezing o F0  
Dillon 0 c - 100 c - Kathleen 5FH below 1 

Rosie -10 -30 
Sara 0.1 below freezing 

Another question (Q8) was designed to elicit further information concerning students' 
conceptions of both decimals and directed numbers in terms of the real number 
continuum. 

Q8: 	Suppose the temperature was minus one and it warmed up to one. 
Can you write down any numbers it would pass through? 

Table 7.6: Students' interpretation of the Real Number continuum 
Non-Boxer Boxer 

Ann-Maria 2, 6, 8, 10 Nico - .6 -.5 	0 	.3 	.4 .5 
Tahir 5, 7, 3, 8 Joanna 0.05, 0.10, 0.15, 0.25, 0.50, 0.75 
Blake -00 -1 00 1 Jason -1 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 

-0.8 -0.9 0 0.1, 0.2, 0.3, 0.5, 0.6, 
0.7, 0.8, 0.9, 1 

Hannah -1 -0 1 Liam 00.1 	00.2 
Ahmet -2 Courtney -2 -4 -6 -8 -10 + 
Cerisse -7 Laura -1/4, -1/8, -1/2, -1, +1/4, +1/2, +1/8, +1/16 
Rebecca 0 1/2 Jessie 1/2 
Dillon +1 +50 +90 +Hot Kathleen 11/2  

Rosie -1.55 	0.5 	0.05 
Sara 0.1 +1 1/2 1/4 1/3 3/4 4/2 4/4 -3/4 

The qualitative differences in the responses to this question by the non-Boxer and 
Boxer groups were quite stark (Table 7.6). Only three of the eight responses by the 
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non-Boxer group could be interpreted as being correct. The response of two of the ten 
Boxer students, Courtney and Kathleen were also incorrect, and Rosie's -1.55 was 
outside the specified range. Of the remaining seven students, six gave two or more 
fractional or decimal quantities. Jason, for instance, wrote down all the numbers 
between -1 and 1 obtained by using 0.1 increments. 

On the other hand, it seems clear that there was some confusion with the relative sizes 
of negative numbers, particularly if these were not whole numbers. Joanna, who gave 
only positive decimal numbers in her answer, was asked whether she could write down 
any numbers between -1 and 0. The difficulties she had in doing so can be gauged 
from her comments: "I don't know. If you write a number like one point something 
that's making it smaller, because you go down in the negatives. But if you make it zero 
point something, that's above zero." 

7.3: Students' Representations of Numbers 

Reacting to a conference on representation, Belanger (1987) warned of the dangers of 
neglecting students: 

I have felt during our deliberations that students are strangely absent from our discussion; 
this is similar to the period of the 1960s when they were absent from the new math and the 
new science and there is a danger they will be missing from the new representations. One of 
the things we need to remember is that students construct representations. (1987, p. 105) 

In the light of Belanger's warning, this section can be seen as constituting my efforts to 
ensure that students' contributions were included. 

7.3.1: Natural Numbers 

Having chosen two whole numbers for question 1, the students were asked if they 
could illustrate their choice with drawings. 

Q2: 	Suppose you were trying to explain to a younger child which of 
your two numbers was the bigger, can you make a drawing that 
would help her or him to understand? 

Their responses to this question indicated that the relationship between what was 
represented (the signified) and the mode of representation (the signifier) was more 
complex than had previously been supposed. It seemed that for some students, it was 
sufficient to depict the 'bigness' of one number relative to the other — they felt no need 

to accurately preserve the absolute size of each number. Secondly, there was some 
ambiguity as to what the representations were meant to convey. There was also some 
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doubt regarding whether the visual representation was intended to be a prop for the 

accompanying symbol or meant to stand independently of it. 
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Figure 7.1: Students' representations to compare whole numbers 

In the follow-up discussions, the students themselves critiqued the limitations in their 
own and other's representations. Hannah, who had drawn the picture of jumpers 

(Figure 7.1a)2, reacted to Maker's preference for it by pointing out what she thought 

was its weakness. 

2  The representations which make up this and subsequent figures are a sub-set of the representations 
given by all of the students. These can be found in Appendix 5. 
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Interviewer: 
Rebecca: 
Cerisse: 

[to RebessalWhy40 you not  like it so much? 
It would be hard to count. 
Yes, but even if it is hard to count, they'll still 
see the difference because of the amount of 
raindrops.___ 

Refers to depiction 
of relative sizes. 

■•••••••••••••• 

     

Dialogue 

 

Commentary 

  

        

Maker: 

         

I like this one. I like that because it 
shows size. 
I  don't think that' saymigood:Asa. 
You don't think your own idea is very 
ood now. Why not? 	 

Because if it was a bigger number, this 
would be like gigantic. 

Points to the drawing of 
dumpers. [Figure 7.1a]. 

 

Hannah: 
Interviewer: 

   

Refers to the -diffieulties ink  
keeping the drawings in 
proportion to the numbers.  

 

Hannah: 

Figure 7.1a was also criticised by another child because "It is not clear what the 
numbers stand for." Other students criticised figure 7.1b because "One is for Summer 
and one is for Winter, but what's that got to do with 10 and 11?" Figure 7.1c was 
thought defective because "The parts aren't the same", but there was disagreement 
between Rebecca and Cerisse about the merits of figure 7.1d (the raindrops). 

Extract 2:  
'Speaker 

Liam, who thought the drawing of stones (Figure 7.1e) was good was countered by 
Joanna leading to a discussion on -whether a diagram should be able to convey its 
meaning without the need for back-up writing. 

Extract 3: 
Speaker I— 	 Dialogue 

That one. Fi een is smaller an 	Points to Figure 7.1e. 
Yea, but just looking at that, you couldn4t 
tell the difference between thirty-nine and I 
fort . 
But you can write the numbers next to 
them. 
But, in that case, you can just write them. 	 

Iiam: 
Joanna: 

'Tram: 

Joanna: 

Joanna's implicit use of an abacus mirrors a common teaching approach to place value. 
Before drawing/writing it, she asked "Do you want a `drawing-drawing', or can I write 
it?" This hints at an intermediate interpretation of this representation, i.e., between that 
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of a drawing and the purely symbolic form of a number. Jessie, chose this diagram 

saying: "If they understand about tens and units, that one would be quite good". This 

was also the response of Rosie, who said: "If children already knew a lot about 

numbers, that one would be a good idea." 

7.3.2: Rational Numbers 

Just as question 2 was intended to evoke representations to illustrate the two whole 

numbers from question 1, question 4 was meant to fulfil the same role with respect to 

the rational numbers from question 3. 

Q4: 	Suppose you were trying to explain to a younger child which of 
your two numbers was the bigger, can you make a drawing that 
would help her or him to understand? 

TTT1 
T\ii.v\py 

Figure 7.2a: Hannah's drawing (of 

cp•-- 
0- 
Figure 7.2b: Cerisse's drawing to 
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Figure 7.2: Students' representations to compare rational numbers 
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Often students chose representations for fractions which were similar to those used to 

compare whole numbers even when these are clearly inappropriate. An answer which 

included half a person or half a car seemed to be regarded as quite acceptable. Hannah 

was the exception to this. She later described her own diagram (Figure 7.2a) showing 

portions of butterflies as "Disgusting". Students also mixed representations within the 

same drawing as in Cerisse's case (Figure 7.2b), where stick people were used for 

whole numbers, but fractions were represented by parts of a circle. Another 

phenomenon observed was for students to represent the fractional parts only, ignoring 

the whole number part. In general, the students experienced some difficulties in 

conjuring up a representation for non-whole numbers (Dillon, for example, could not 

produce one). This may be due to the novelty of the idea, i.e., representing numbers 

rather than manipulating them. 

The phenomena of using inappropriate representations, of mixing representations, and 

of depicting only the fractional parts were also observed amongst the Boxer students. 

But, also observed were tendencies towards representations which depicted all numbers 

and a general trend towards more symbolic notation. Joanna and Nico consistently 

chose conventional classroom representations, the implicit abacus model for Joanna 

(Figure 7.2c) and the number line for Nico (Figure 7.2d). Although he did not draw a 

number line, Liam's depiction of numbers in a line (Figure 7.2e) was clearly 

equivalent, as can be gauged from the following extract. 

Extract 1: 
Speaker 

Liam: 

Liam: 

       

Commentary 

   

Dialogue 

  

 

You have nineteen and twenty there. Writes 19 on paper, leaves a 
space and then writes 20.  

       

 

Now, in between these two numbers, there 
are lots of littler numbers. No, not littler. 
There are lots of other numbers. First, 
there is nineteen point one. 
. . . and then it goes up like this to ten.  
But then there are more littler numbers. 
No, more numbers. Th , o u like this. 

Writes this. 

   

Liam: 

 

Writes 19.2 and then 19.3. 

  

Counts up 10.4 19.5 etc. 

Re ers to next step in-trie 
sesuence beyond 19.9.  

Liam: 

Liam: 

 

 

They go on to ten which is twenty. 

 

        

        

This clearly means that 19.9 + 0.1 = 20, but note how orally counting with decimals 

might go nineteen point eight (19.8), nineteen point nine (19.9), and then nineteen point 

ten (19.10). 
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In the follow-up interviews with both Boxer and non-Boxer students, criticisms of 

other representations tended to be linked to the accuracy of the representation of the 

fractional part. Rosie's comment on Figure 7.2a was typical: "Because if you were 

trying to show a small fraction, like a tenth, you wouldn't be able to see it." 

7.3.3: Directed Numbers 

As explained earlier, questions about directed numbers were asked in the context of 

temperature, and so the request for representations were similarly framed (Q7): 

Q7: 	Suppose you were trying to explain to a younger child about 
temperature, can you make a drawing that would help her or him 
to understand ? 
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Figure 7.3c: Jason's 
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Snow 
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16 
Figure 7.3d: Hannah's drawings to compare temperatures of -40 and -60 

compare temperatures of 0 and -20 degrees degrees. 

Figure 7.3: Students' representations to compare directed numbers 

Not surprisingly, many students drew thermometers, but often these were graduated in 

a way that gave no clear indication of the difference between their two numbers, or not 

graduated at all. In this sense, they might best be considered as labels for temperature. 
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Hannah's drawings of summer and winter clothes (Figure 7.3d) alongside 
thermometers to denote the difference between her two temperatures of 0 and -20 
degrees lends weight to this labelling conjecture. The use of light and warm clothing 
was also used by Courtney (Figure 7.3b), who added 'cold' and 'warm' shading to her 
images. Jason's juxta-positioning of numbers next to images of rain and a snowman 
(Figure 7.3c) again draws attention to one of the deficits of this form of representation, 
namely the lack of clarity concerning the nature of the relationship between the number 
and its accompanying drawing. 

7.4: Summary and Implications 

This chapter has analysed the semi-structured interviews which were conducted with 
eighteen students in a non-computer setting. It has detailed how questions were posed 
which probed students' conceptions of number. Two indicators of these conceptions 
were used: interpretations and representations. 

7.4.1: Students' Interpretations of Numbers 

The findings show that there were few problems with whole numbers. However, this 
was not the case for non-integers. Pimm (1987) observes there is no such thing as a 
decimal number or a fractional number per se. 2.5 and 21/2 are simply different 

representations for the same number. However, my questions designed to probe 
students' interpretations of such numbers suggested that the relationship between 
signifier and signified is not a simple one. Fractional notation, used predominantly by 
the comparison group, carried with it an action-based connotation of its derivation, i.e., 
`a half of, a quarter of . 'In-betweeness' could thus be signified by such expressions. 
The greater use of decimals by the Boxer group appeared to suggest a greater 
appreciation of a number continuum, but attaching meaning to decimal symbolism was 

problematic for both sets of students. 

Investigating directed numbers in the context of temperature demonstrated the 
advantages of a meaningful context for all of the students. There were some conceptual 
problems in deciding whether zero was a number, and some unorthodox notation to 
depict temperatures below zero. The greater use of directed numbers by the Boxer 
group again pointed towards a greater appreciation of a number continuum, but there 
was some confusion with the relative sizes of negative numbers, particularly if these 

were not whole numbers. 
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7.4.2: Students' Representations of Numbers 

It is apparent that there were a wide variety of representations employed by the students 
to denote number. Some of these (the thermometers) were used only for directed 
numbers. Others (the match-stick men) were used primarily for natural numbers, with 
some attempts to extend them to non-integers. It is not clear how these might be used 
for depicting directed numbers. Still others were idiosyncratic, as might be expected 
with such young students. 

Vergnaud (1987b) points out that representations always involve keeping some features 
of the concept in focus whilst losing sight of others. Thus the way that symbols are 
used in the representation of the concept determines what is represented and what is not 
represented at particular moments. As Pimm (1995, p. 119) writes: "One function of 

representation can be to allow access to some event, although any choice of 
representation carries with it certain stressings and ignorings." Certainly, the students 
in this research often emphasised one feature at the expense of another. For example, 
in comparing mixed numbers, the fractional parts were stressed whilst the whole 
number parts were ignored. Ann-Maria's device of using a conventional 'parts-of-a-
whole' diagram (Figure 7.20 for fractions but tally marks for whole numbers can be 
viewed as one child's attempt to represent both. 

Care must be taken that, in our critique of their constructions, we do not adopt a 
patronising stance. The limitations which students identified in their own models of 
numbers alert us to deficits in our own conventional representations. It is common, for 
example, to use parts of rectangles or circles to depict fractions, but it is questionable 
whether such a representation could be easily extended to include large numbers, and it 
is not at all apparent how directed numbers might be represented in this form. The 
number line representation may appear to overcome some of these difficulties, but it 

may be necessary to use a device such as 'zooming-in' or 'zooming-out' for small and 
large numbers respectively. This chapter shows how students' representations were 
particular to the numbers they were depicting, but this is not unlike the practice of 
mathematicians, and model builders in general. 

7.4.3: Implications for the Remainder of the Thesis 

The models used in elementary school textbooks to depict number vary according to 
both the type of number and the operation being modelled. Not unnaturally, there is an 
implicit assumption that if students are learning about number operations, then there 
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already exists a base level of understanding about the numbers themselves. The 
evidence of this chapter challenges that assumption. 

It shows that, while students did not naturally use either directed numbers or decimals, 
contexts could be found which elicited the use of the former. In the latter case 
however, similar contexts very often elicited the use of fractions rather than decimal 
expressions, particularly from the non-Boxer students. Furthermore the students' own 
explanations seemed to point towards understanding gained as a result of operations 
rather than preceding them. A hypothesis was generated to the effect that the medium 
could foster 'an operational approach' to number. 

Thus, the usual teaching sequence could profitably be reversed. Rather than beginning 
by introducing decimal quantities and directed numbers, to be followed by operations 
on those quantities, the operations would be the means by which the numbers 
themselves were first created. Subtraction would be the means by which directed 
numbers acquired meaning, while division would provide an introduction to decimal 
quantities. An epistemological foundation for such an approach can be located in the 
formal axiomatic extension of IN to Z and Z to Q. Peano's Axioms (Stewart and Tall, 
1976) encapsulates precisely this technique to extend the Natural Numbers to the 
Integers, the Integers to the Rationals and the latter to the Real numbers. 

The findings also show that students' representations of numbers tended to be linked to 
the particular numbers. In some cases, it was not clear whether diagrams were intended 
to stand alone and in others, it was uncertain what aspect of number was signified by 
the diagram. Where whole numbers and rational numbers were mixed, it was often the 
case that students also mixed representations: one aspect of the diagram to denote the 
whole number and another to denote the rational part. Representations for directed 
numbers were generally quite different than those for positive rational numbers. The 
desirability of having a single representation for all numbers was not generally 
appreciated. 

The purpose of this phase of the research was to generate more focused and coherent 
issues for the number phase of the study. Strictly speaking, this could have been done 
using only the Boxer students. However, having a comparison group not only 
increased the knowledge base, but also accentuated differences between the groups 
which otherwise would not have been possible. 
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Two main differences were observed. In the first place, it seemed that the Boxer 
students were more inclined to interpret numbers in a manner that suggested a greater 
insight into the existence of a number continuum. Secondly, the Boxer students were 
more likely to employ representations which were amenable to extended systems of 
number. It was not possible to attribute these differences to any one episode they had 
experienced within the Boxer microworlds prior to these interviews, but it seemed most 
likely that the 'counter' representation (Chapter 6) might have influenced their notion of 
a number continuum. 

However, this computational object did not appear to be within the capacity of the 
students to program. The challenge now was to find a representation which offered 
both the visual and dynamic support of such a device and yet could be constructed by 
the students on their own. This challenge was resolved by the creation of a new 
representation: the number line object. Chapter 8 gives an account of how the students 
constructed a dynamic number line object in Boxer, how interaction with this object 
fostered an operational approach to number, and thus enabled me to gain greater insight 
into how Boxer was mediating their developing sense of number. 

155 



Chapter 8: The Number Line Study 

Within computational environments which genuinely offer the opportunity for the 
expression of mathematical ideas, pupils can use ideas before they have fully discriminated 
the relationships involved, and moreover, use them in ways which inevitably push in the 
direction of formalisation. (Hoyles and Noss, 1992b, p. 32) 

8.1: Introduction and Overview 

8.1.1: Introduction 

This chapter consists of an analysis of the programming, and number issues which 

arose as a result of students constructing and interacting with a Boxer number-line 

microworld. It describes how the case-study students began to utilise their 

programming knowledge to construct an 'operational' number line in Boxer, and how 

the insight gained through this construction influenced their subsequent interactions 

with it. It then analyses the ways that this 'evocative computational object' (Hoyles, 

1993, cf. Hoyles and Noss) mediated their expression of number, particularly in 

respect of decimals. 

This was the first of the two number studies which formed the final part of the 

longitudinal research, and which lasted from January 1993 to July 1993. A total of 

eight year 6 students (ages 10 — 11) were observed. Seven of these eight had 

participated in the earlier First to Third-Boxer microworlds, whilst one (Kathleen) had 

replaced Oliver as Jessie's partner. With this one exception, all had approximately 20 

hours programming experience in Boxer. 

The exploratory work (chapter 6) implied that students should be involved in the 

construction of representations, rather than being confined solely to interpretation. 

The evidence from the interviews (chapter 7) indicated that, of the representations 

which students employed, the number-line was perhaps the most accessible and also 

the most flexible in terms of depicting rational numbers. The interviews also seemed 

to point to students acquiring meaning for numbers gained as a result of operations 

rather than preceding them. By having students program their own Boxer number line 

representation, which would form the basis of subsequent number investigations, my 

intention was to build on these earlier research findings. 
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The aims of this phase of the research were thus: 

• to document the programming issues involved in students constructing a number 
line object in Boxer, 

• to investigate how their interactions with this 'operational' object mediated their 
understandings of number. 

8.1.2: Overview 

Section 8.2 consists of vignettes from two of the four case study pairs with the 

intention of showing how students began to apply and extend their programming 

knowledge in the course of constructing the Boxer number line. 

Section 8.3 recounts how the students' interactions with this Boxer object mediated 

their expression of number. It points to the importance of the construction process in 

structuring these interactions, and it attempts to link aspects of the students 

manipulation of the programming code with these expressions. 

8.2: Constructing the Boxer Number Line 

Mathematicians seem commonly to possess an iconic number-line permanently available in 
their heads, and we might attempt to give children a similar icon. (Plunkett, 1981, p. 183) 

As the longitudinal study progressed, the emphasis changed from programming to 

number. Programming became a means to an end rather than simply an end in itself. 

The following two episodes have been selected to show how, in the course of 

constructing the Boxer number line, the case study students began to apply and extend 

the programming knowledge gained in the earlier phase (chapter 6). But, it needs to 

be stressed that the programming activity was of equal importance in terms of the 

insight it gave to me into the ensuing interactions with the object of their construction: 

the number line. 

8.2.1: Constructing the Number line 1 

The following episodes feature two girls Jessie and Kathleen during their first two 

hours (approximately) of programming. 

Jessie and Kathleen were chosen by their teacher as being representative of the 

bottom quartile of this year six class. Jessie and Oliver formed one of the original 

four case-study pairs. This partnership had been dissolved towards the end of the 

previous year when it appeared that the work was becoming too difficult for them, 

and when it seemed that they were no longer willing to co-operate (chapter 4). 
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As the number-line study got under way, Jessie pleaded to again be allowed to 
participate in Boxer work, and even went to the extent of finding herself a new 
partner: Kathleen. As Kathleen, like Jessie, was also from the 'bottom quartile' of the 
year six class, this allowed the research to again represent the whole ability range. 
Nevertheless, it needs to be emphasised that Kathleen had very little Boxer experience 

in comparison to Jessie. 

8.2.1.1: Episode 1— Separating Process and Product 

This episode has been chosen to show how Kathleen and Jessie separated the process 
and product of procedures in the course of constructing their number line. 

At the beginning of the session, I created an on-screen 'challenge' box which invited 
the girls to make a sideways 'T', the intention being that this might be repeated to 
make the number line (Figure 8.1). 

kandjbox 

Figure 8.1: The 'T' challenge 

The girls made a doit box which they named 'green' (the colour of Kathleen's shirt), 
in which they typed the first command Id 90'. I assumed this to be a case of 
confusing angle measure and linear measure. However, Jessie's next command was 
`bk 45' showing that I was mistaken. Kathleen said: "Now we have to get it this 
way.", indicating right by moving her body in that direction. Jessie asked "What's the 

angle? Shall I get a compass?" She meant a protractor and fetched one which had a 
moveable centre section. Holding this against the screen, she decided the angle was 
90 degrees. The girls now executed the commands line-by-line from within the 
`green' doit box until they obtained the sideways 'T' shape (Figure 8.1). 
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This episode shows one of the differences between interpretation and construction. 
Frequently, students are given the command and input as a pair, e.g., 'ft 90'. Some of 
the difficulties they experience in separating process and product may stem from this 
practice. The fact that the Kathleen and Jessie needed to measure to determine that 
the angle needed was 90 degrees could be read as indicating their relative weakness 
mathematically, but it also shows that they had discriminated the inputs needed for 
Id' and `rt'. 

8.2.1.2: Episode 2 — Building up procedures and Debugging 

This episode has been chosen to show how the girls built up procedures and how they 
debugged their program. 

The girls swapped positions and began to write a program to draw the number line. 
Jessie pointed to the doit box 'green' and said: "We can repeat that. We can do that 
again." She created a new doit box which they called 'mum' and typed the line 
`repeat 5 green' inside it. Upon running this, the girls discovered a bug (Figure 8.2). 
Jessie said: "Shall I do one?" 

Ikandjbox 

	 , 

Figure 8.2: Jessie and Kathleen's buggy procedure 'green'  

After Jessie had run 'green' repeatedly from the menu, Kathleen said: "I see what's 

gone wrong", but, before she had time to explain, Jessie said "We want to go back 
90." They re-wrote 'green' with `bk 90' followed by Id 45' and so on, executed 
`mum' and discovered they still had the same bug. Kathleen now said: "Do fd 45 and 
bk 90." They ran 'mum' and were delighted to see that it worked. The session up to 
here had lasted approximately one hour. 

	1 
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menu  
cs 
green 
mum 

I green 
fd 45 
bk 90 
fd 45 
rt 90 
fd 45 
It 90 

mu mA 

repeat 25 green 

start 
pu 
setxy -300 -50 
pd 

challenge) 

This episode shows how the doit boxes enabled Kathleen and Jessie to begin their 

programming with procedures and to build up super-procedures from there. The bug 

in their sub-procedure 'green' was not apparent when it was completed. It drew the 

desired shape and the turtle faced in the right direction. It only became apparent when 

they ran the super-procedure 'mum'. The fact that they had built up 'mum' seems to 

have enabled them to deconstruct it and hence helped them to debug it. 

8.2.1.3: Episode 3 — Relating Commands within and across Procedures 

This episode has been chosen to show how the girls made finer discriminations as 

they related the effect of changing the input to one command to the need to change the 

input to another to compensate. 

After a short break, I asked the girls how they would get the number line to start over 

on the left-hand-side of the screen. Much to my surprise, Jessie replied: "I know. 

I've done that before." She then retrieved a print-out of work she had done almost six 

months previously. She copied out the line `pu setxy -300 -100 pd' from inside a doit 

box called 'start'. This did not get her quite where she wanted to be in the elongated 

graphics box. 

The following transcripts capture the next thirty or so minutes in which the girls were 

placing the line in the desired starting position, adjusting the size of the graduation 

marks and the distance between these, and changing the input to 'repeat' to 

compensate for changes in the length of the line. 

kandjbox 

1 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 

	1 

Figure 8.3: Stage 1 of Kathleen and Jessie's Number Line 
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- Speaker r 	Dialogue 	rCommentary 

Interviewer: t  Suppose you didn't want these Points to vertical graduations. 
lines to be quite so long, would you 
know how to do this? 
No. 

five and back 
i- 

Change forward forty Jessie also changed the third 
fd 45 in 'green' and I 
questioned this. 
Points to segments and 
graduations of number line in 
the graphics box. 

The girls complete the changes to They change 'repeat 22' to 1 
`green', run 'mum' and observe 'repeat 25' to compensate. 	1 
that the no. line is not as long as  
before.  

-4- 

Kathleen: 
Jessie: 

Jessie: 

ninety to forward forty and back 
eighty.  

1 
 We wants these bits (the horizontal 
components) to be the same as 
these 	bits 	(the 	vertical 
components).  

Both: 

Extract 1: 
Speaker 

Kathleen: 

Jessie: 

4---- 
Dialogue "tommentary 

i Shall we clear screen? The girls have run 'mum' with 
an input of 15 to `repeat' 

If you don't do clearscreen, it will 
add 15 on the 15 already there and 
o wa/over. 

ta.,  
Kathleen changes the input to 
'repeat 	from 15 to 18 and 

 	Jessie runs 'mum' again. 

After the girls changed the 
input to 'repeat' to 22, and rani 
it again. 

Kathleen: 
Jessie:  
Both: 

, Try 20. 
This is fun! 

i Yes! 

Extract 2: 

Extract 3:  
— Speakei --r--------------PTJOgiie --T— 	Commentary 
,.., 	 -4 	 Both: 	Smaller. 	 1 Kathleen changed 40 to 30 and 

j 80 to 60.  
Jessie: 	Not right ninety. 	 1 She meant that 'ft 90' should 

I not be changed.  
Jessie: 	We'll need to change repeat. 	She said this before the 

program 	was 	run. 
I Subsequently, they changed 
I 'repeat 25' to 'repeat 32'.  

The extracts in this third episode show how Jessie, in particular, had identified 
individual program lines with their effect on the screen, and moreover could predict 
how changes in one part of the program affected other parts. 

I 
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jmenu  
es 
jam 
honey 
start 

•arn 

	IIIIII 1A 

honey 	I start I 
icpeat 7 jam 
rt 90 fd 50 It 90 

pu setxy -200 0 pd 

■..  

rt 90 
fd 50 
1t90 
fd 30 
bk 60 
fd 30 i 

8.2.2: Constructing the Number line 2 

The following episodes feature Liam and Jason who were selected by the class 

teacher as representing the middle of the ability range. Unlike the episodes from 

Kathleen and Jessie, these are not continuous, but selected to illustrate different 

aspects of the programming involved in the number line construction. 

8.2.2.1: Episode 1— Creating and Naming Procedures 

This episode has been chosen to show how Liam and Jason created and named 

procedures in the course of constructing their number line. 

shoe 

Figure 8.4: Stage 1 of Liam and Jason's Number Line 

The boys began by creating a doit box which they named 'jam'. They executed the 

commands line-by-line to draw one segment of the number line, and also typed 'jam' 

in the menu. They then created a new doit box named 'honey' in which they executed 

the line 'repeat 7 jam'. 'Honey' too was added to the menu (Figure 8.4). The boys 

asked how they could start at the left-hand-side of the screen and I reminded them of 

how `setxy' worked, but left them to experiment with its inputs. They created a 'start' 

doit box in which they at first wrote `pu setxy 45 55', but after a number of trials 

settled on `pu setxy -200 0 pd'. 

The names which the students chose for the boxes themselves are worth remarking 

on. Early Logo writings (e.g., Papert, et al, 1979; Harvey, 1985) argued for the use of 

suggestive names for procedures and variables. Later writers (e.g., Hoyles and 

Sutherland, 1989) warned of the danger that students might think the names as having 

special significance. In this episode, the names chosen by Liam and Jason indicated 
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start 
honey 
start 

El 
iov-6 
pu 
fd 25 
type 20 

1 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 	1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

menu i 
es 
jam 
honey 
start 
op-5 
op-6 
ear 

[honey 

= 
l'a7 in 

MB 
I ov-5 Istart I 

rt 90 
fd 24 
1t90 
op-6 

Y 
op-5 
op-6 
repeat 41 ear 

2 \.. 	 

that they were aware of the arbitrary nature of names and had chosen names which 

were significance to them personally. It would appear that in Boxer the manner in 

which procedures are named (append a name box to a doit or data box) gives a 

directness to the naming process that seems to eliminate the danger of associating too 

much meaning to the name. 

8.2.2.2: Episode 2 — Structured Programming 

This episode has been selected to show how Liam and Jason's programming 

incorporated more structure than that reported for previous Logo research. It 

followed a period in which they had experimented with different inputs to 'repeat' to 

change the number of graduation marks on the line, and then adjusted the inputs to the 

commands in 'jam' and 'honey' to compensate for changes in the length of the line. 

!shoe 

Figure 8.5: Liam and Jason's 'op-5'. 'op-6' and 'ear' procedures 

Liam suggested using 'start honey start' as a way of beginning in the appropriate 

position, drawing the number line and returning to the start position, and the boys 

created a new procedure 'op-5' to do this. In response to my challenge of typing a 

number above the left most graduation mark, the boys created a new procedure 'op-

6', and when I challenged them to do this for every graduation mark, they first created 

`ear' and then the super-procedure 'yo'. At this point they encountered a bug (Figure 

8.5): the typed number continued to move up as well as along at each execution of the 
`ear' procedure. 



honey = type 20 

rt 90 
fd 24 
It 90 

'shoe 

1 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Jam►  
honey 
start 
op-5 
op-6 
ear 
ht 
st 

‘,.... yo 

jmenu I  Fa—Irn  
es 

op-5 I rear 
start 
honey 
start 
pu 
fd 25 

I mr-bean I 
mr-bean 	set-type-font 9 
op-5 
repeat 41 ear 
ht 

I start I = 

9 

Figure 8.6: Stage 2 of Liam and Jason's Number Line 

In response to my question: "What went wrong?" Jason immediately said "We need 
to take out the forward twenty five in op-6." Liam now asked: "Can we get rid of 
some of these? Can we put 'op-6' in 'op-5'?" He then instructed Jason to type `pu fd 
25' in 'op-5' after which then tested it, and saw that it worked. They moved the line 
`type 20' from 'op-6' to 'ear', removed the line 'op-6' from 'yo' and then deleted the 
doit box 'op-6' completely. Finally, having complained that the fonts were "a bit 
boring", they created a new procedure `mr-bean' to change fonts and added the line 

`mr-bean' to the super-procedure 'yo'. 

The degree of structure which Liam and Jason employed in their programs supports 
the contention that the long term programming aims embodied in the earlier phase of 
the research were coming to fruition. It seemed that with the doit boxes of Boxer, 
they found it as simple to write a procedure as to write a series of commands in direct 
drive. 'set-type-font', for example, could simply have been appended as a single line 
to 'yo', but the boys chose to create a special module `mr-bean' for it. The evidence 
would also suggest that they were able to construct hierarchies of procedures in a 
flexible way. 

The relationship between debugging and structured programming observed in this 
study was also different to that reported in comparable Logo research. In the number-
line study, the students were inclined to create procedures line-by-line. In executing 
these lines, bugs in procedures usually became apparent. Students tended to follow a 
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similar practice in building up sub-procedures into super-procedures so that 

debugging was an on-going process. 

The Brookline authors (Papert et al, 1979, p. 4.20) note that "Beginning students 

rarely separate the interface steps needed to go from one part of a design to another, as 

an independent sub-procedure, though it is a practice that can aid readability and 

debugging." This was also the case in this study, but as this example with Liam and 

Jason shows, line-by-line execution allowed them to overcome the disadvantages of 

working in this way. 

8.23: Linking Programming and Number 

The final part of the construction process was concerned with tabulating the number 

line with different numbers. This required the students' program to be adapted to take 

a variable input and to change that variable under program control. This had been 

done in the programming phase using the 'change' command, and although I 

intervened to remind students how to do this, they appeared to have few conceptual 

difficulties with the programming itself. 

The ensuing number investigations were centred on changing the appearance of the 

number line by manipulating the program's parameters. From the students' 

perspective, the focus was still on the Boxer number line, but now attention had been 

shifted from its construction to its operation. 

8.3: Interacting with the Boxer Number Line 

The real problem which confronts mathematics teaching is not that of rigour, but the 
problem of the development of 'meaning', of the 'existence' of mathematical objects. 

(Thom, 1973, p. 202) 

This section documents the way that the Boxer number line mediated students' 

expression of number, and tries to identify facets of the representation and the 

interaction which influenced this expression. It identifies three different categories 

related to whether the students were operating within the natural numbers, extending 

the number line to include negative numbers, or dividing to obtain decimals. 



num + 2 

type num 
rt 90 
fd 30 
1t90 
change num 

start I menul 	challen2e1 'green lgogo  
input num 
pu 
fd 50 
repeat 32 

cs 
green 
mum 
gogo 2 

8.3.1: Visualising Natural Numbers 

The following episodes show how Jessie and Kathleen, and Courtney and Laura were 
able to exploit their Boxer number lines to express number relationships in a visual 

form. 

8.3.1.1: Episode 1— A new way of expressing familiar numbers 

This episode has been selected to illustrate how Jessie and Kathleen utilised their 
Boxer number line to express large numbers and tables 

(
. 11candjbox 2.   

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 3236 38 40 42 44 46 48 50 52 54 56 58 60 62 64A 

IIIII1111111111 4 11111111111111 	 

Figure 8.7: Expressing Patterns with Kathleen and Jessie's Number Line 

Extract 1:  
Speaker 

 

Commentary 

 

Dialogue 

 

 

    

Interviewer: Suppose now I wanted you to start 
at one and • o u in twos? 

Jessie: 	Change that to two. 	 Points at 1 in the line 
`change num [num + 1]' inside 
the doit box 'Fo'.  
Jessie questions the goal.  

Kathleen Changes `gogo 10 in 
the menu to `:o:0 

Jessie: Do we want it on one? 
Kathleen 	Yes. 
Jessie: No 'cause we want it to go two, 1 Kathleen changes `gogo 1' in 

four, six, ei • t. 

This extract shows that the girls were able to connect the components of the program 
with their effects on the screen sequence. This is not surprising, since they 

constructed it in the first place. Jessie's change of goal, from my starting value of 1 
and increment of 2, to one which had also had a starting value of 2 is further evidence 
of their appreciation of the link between process and product. Rather than calibrating 
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the number-line 1, 3, 5, 7, etc., she chose to calibrate it 2, 4, 6, 8, etc., which she 

presumably found more aesthetically pleasing. 

The next extract shows how they decided to use the number line to express what were 

for them large numbers, and presumably ones which they might have experienced 

difficulties in articulating otherwise. 

Extract 2:  
---gPearer 

 

Dialogue 

  

  

ommentary 

WOuld you like to choose where to+ 
istart and what to go up by? 

Start at a thousand and go up by Kathleen changes the program i 
hundreds. 	 line inside `gogo' to: 'change! 

num [num + 100]' and the 
5 menu line to 'pp 1000'. 

i  That's brilliant! 	1  After running it. 	 i 

Interviewer: 

Jessie: 

Jessie: 

The number line now appeared across the screen graduated from 1000 to 4100 in 

steps of 100. Jessie's remark shows clearly that she appreciated the fact that the 

number line could be used to articulate large numbers. 

Next, the girls decided to use the number line to express their 8 times table. Kathleen 

changed the program line inside `gogo' to: 'change num [num + 8] ' and the menu line 

to `gogo F. Jessie disputed this latter decision by saying: "But, we have to change 

that to 0", meaning that her 8 times table should start at 0 rather than 1. On running 

`gogo 0' from the menu, the girls got a new number line calibrated in steps of eight 

from 0 to 248. 

This first episode shows how the girls were able to exploit the number line to 

visualise large numbers as well as their multiplication tables. While the emphasis had 

shifted from programming to number, it is clear that knowledge of the programming 

code — which they had acquired through constructing the number line — was the key to 

being able to express these numbers. A second example reinforces this claim. 

8.4.2.2: Episode 2 — Modelling 'times' tables with the number line 

The following episode has been selected to show how Laura and Courtney's also used 

the number line program to model their 'times' tables, but also how the Boxer number 

line accentuated certain features of using the number line in this way. 
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Extract 2: 

input jay 
pu 
fd 50 
repeat 21 type jay 

rt 90 
fd 50 
1t90 
change jay pay + 12 

jmenu 	I huhul  I start 
cs 	fd 10 
huhu 	bk 20 
mad 	fd 10 
start 	rt 90 
waky 	fd 50 
s t 	It 90 
doit-2 0 	 

90  

mad 

repeat 20 huhu 
fd 10 
bk 20 
fd 10 

I wake 

cs 
start 
mad 
start 

doit-2 

1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 

Extract 1:  
W—aker 

Laura: 

Courtney: 

ura:  

Laura wrote the line 'change 
jay to [jay + 1]' and I 
intervened to point out that 
Boxer did not understand the 
word 'to'. 

Let's doit-2 one and see if it works. f  Note how this sounds like "Do 
it to one". 

Yeah. We've done it. 
	 Try starting at a different number. 

It finishes at ninety nine. 

Interviewer: 

Both: 
Interviewer: 

Dialogue 	 --COin-m-eiftiry------1 1.--- 
i 

Lets not start at nought. Lets starti 
at one.  
Change jay to jay plus one. 

Fi They run `doit-2 50' and 	 I 
obtain a number line calibrated 
from 50 to 99 in steps of 1.  

Speaker Dialogue Commentary 

Interviewer: Suppose you didn't want to go up 
l in ones. Suppose you wanted to 
j o up in twos or fives. 

Laura: 	ou could change-the 'jay plus -Points to the line: 
one'. 	 'change jay [jay, + 	1] ' in doit-2' 

'Interviewer: . OR, try that.  
Courtney: 	Here we go. doit-2 fifty. 	The The starting number is 50 and 

the increment is 5. 
Interviewer: iWhat's 	 _ 
Courtney: 	It's going fifty, 	 NOre the expression: "It's going– 

sixty-five, seventy, seventy-five, fifty..." They obtain a number 
eighty etc. is adding five to, line calibrated from 50 to 295 
each number. 	 Lstas of 5. 

isecret code 1 

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240 

Figure 8.8: Visualising the 12 time table with Courtney and Laura's Number Line 
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Extract 3:  
- -Speaker 

 

l5Calogue 

 

Commentary 

  

Interviewer: 

Interviewer: 
Laura: 
Courtney:  
Interviewer: 

Both: 

4-- 

Suppose you wanted it to do your 
three times table or your four 
times table ... 
You'd go up like ... times five 'Times five' here is being related to 
repeat. 	 'pay + 5]' in the program line 

`change jay (jay + 51' 
What times table do you not like? J.  

They alter the program line to: I Number line drawn in the centre of 
`change jay [jay + 12)' and run it. graphics box with typing unclear.  

The twelve times table.  
Can we do twelve? 
Sure. What about you Laura?
Do you know how to do a twelve 
times table? 

Responding to my challenges to adapt their number line to depict different sets of 

numbers involved more than simply changing the parameters to the `doit-2- program. 

The students' typing program was independent of the line drawing program, so 

changes to the two needed to be co-ordinated. Changing from increments of 1 or 5 to 

increments of 12 led to numbers being typed too close together on the graphics 

screen. The girls compensated by reducing the number of graduations on the line. 

But, this meant the new line was squashed in the centre of the graphics screen. They 

then adjusted the width of each horizontal segment, and - for aesthetic reasons - the 

length of each vertical section. 

Through construction and re-construction the students became aware that the number 

line had one more vertical than horizontal segment, a seemingly trivial point. But, it 

meant that in starting the number line at 0 to represent tables (as many students did), 

there was always one more number than one would expect in a times table. The 

number line was, in fact, providing a model of multiplication as repeated addition. It 

may, therefore have been modelling their intuitive notion of multiplication. 

8.3.2: Visualising Directed Numbers 

There is of course nothing new about using the number line to depict directed 

numbers. However, in many textbook approaches, it tends to be used as a means of 

modelling operations on the numbers (Kiichemann, 1981). Students are introduced to 

operations on directed numbers in the form of -7 + 3, or -5 - -4 etc. and the number 

line is then used to support these operations. The assumption underlying this 
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num + 1 

type num 
rt 90 
fd 30 
It 90 
change num 

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

im 
input num 
pu 
fd 50 
repeat 33 

Funi 	I gogcl menu)  I challeneei 'green  
cs 
green 
mum 
gogo -10 

Figure 8.0. 

girls run 'mum' and `gogo 
-10' 
Reads from left to right 1 
on the number line. 
Points to screen number 
line. 
The number-line was 
calibrated in steps of 1 
from -10 to 22 (Fig 8.9). 

approach is that students already have a meaning for the numbers themselves. In the 

number line study, negative numbers were introduced simply as different starting 

positions, and students were then asked to predict how the number line would be 

graduated as a result of repeatedly adding a fixed positive whole number. Few of 

them had difficulties with this. 

8.3.2.1: Seeing Directed numbers as a process 

This episode has been chosen to show how Jessie and Kathleen expressed directed 

numbers through their Boxer number line. 

ilcandjbox 

Figure 8.9: Visualising Directed Numbers with Kathleen and Jessie's Number Line 

Extensions to negative numbers was often provoked by interventions which built on 

the students' successes with natural numbers. With the screen number line displaying 

the numbers 0 to 32 in steps of 1, I asked Jessie and Kathleen what would happen if 

they started at -10 instead. 

 

Dialogue 

   

Commentary 

 

Extract 1:  
Speaker 

Interviewer: What do think will happen if we start at 
minus ten and go up in ones?  
Don't know. 
No ideas? [no response] Okay, just put 
minus ten. 
Minus ten, minus nine, minus eight, 
minus seven, minus six ... 
There's a nought there as well. 

Interviewer: There's a nought, one, two, and—all-The 

I 
rest. 

Jessie: 
Interviewer: 

Interviewer: 

Jessie: 
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Points liThafreriaiOfiliel 
number line in the 
graphics box.  

Jessie i If we do minus half of thirty two. 
That's sixteen. If we do minus sixteen, 
then it will be sixteen each end. 

Interviewer: I  Try it. 

This last interjection by Jessie points to the way the Boxer number line was mediating 

her expression of directed numbers. Her remark "If we do minus half of thirty two." 

suggested that the number line could be made symmetrical by beginning at -16. But, 

what is particularly striking is the manner in which she calculates this -16 from the 

previous end-point of 32. "Minus half of thirty two." is in effect a composite function 

fg: x ---> -(x/2) where g: x --> x/2 and f: x ---> -x, as her own solution demonstrates. 

It is hard to imagine a child spontaneously wishing to calculate 'minus half of thirty 

two' in a pen-and-paper medium, even with the aid of a number line. Here, the 

combination of the visual and the dynamic motivated such expressions. 

She went on to change the line `gogo -10' in the menu to `gogo -16', ran the program, 

and obtained her symmetrically labelled number line from -16 to 16. That she was 

developing a sense of how these numbers behaved as a consequence of addition can 

be seen in the following examples. 

Dialogue 	 Commentary 

Interviewer: 3 What do think would happen if you went i 
up by plus two? 

Jessie: 	i Per aps it would go sixteen, fourteen. I Refers to -16, -14, -12, 
twelve, ten, eight, and then up. 	 -10, -8, etc.  

Interviewer:  x 	 Try it.  

Extract 2:  
Speaker 

Extract 3:  
Speaker Dialogue 

Interviewer:Pick a number. 	 —17 
Both: 	Minus two. 	 !After discussion. 	i 
Interviewer: i What do think would happen if you start at 

minus two and go up by two each time? 1  
Kathleen: 	Minus four, and then minus six. 	1 

1 
Try it and see what happens. 

Interviewer: So the next number was nought, not minus To Kathleen. 
four. You were thinking of going the other 
way.  

Jessie: 
Interviewer: 

Nou t, then two and then four. 
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Laura: 	Jay plus one. 

Suppose you wanted to end at The number line was calibrated 
thirty? 
	

from 0 to 60 in 20 steps of 3. 
Points to line: 'change jay [jay + 
3] '. 

Speaker Dialogue Commentary 

Interviewer: 

I wanted to  go up in twos. 
Plus one. 

nd a al . You've got 
Ione and a half.  

Interviewer: How woul you put one and a 
half in Boxer? 

Courtney: 	I tint five. 
Interviewer: My it.  

Tries 'jay + 2' and ends at 40.  
Tries + 1 instead and ends at 20. 

Courtney: 
ura: 

:111 s out excit y. 

Although Kathleen was still encountering difficulties, the evidence suggests that 
Jessie was developing a sense of how directed numbers behaved as a consequence of 
interacting with the Boxer number line. The formalisations which she was able to 
deal with in the Boxer medium could be expressed algebraically as -16 + 2n, and -2 + 

2n respectively. 

8.3.3: Visualising Decimals 

The following episodes show how students were able to express decimals through 

their Boxer number line. The operational approach which the number line embodied 
helped to link their existing knowledge of fractions with that of decimals. 

8.3.3.1: From Program code to Number expression 

This episode has been selected to show how Laura and Courtney's number 
expressions were framed round their interaction with the number line, and how 
Laura's confusion of decimal and fractional notation was related to the program code. 

Extract 1: 

Extract 2: 
Dialogue 	 i 	Commentary 

1 	...._........_ 	..i 
Keeiiiii—tiiisiiiier ofThe number 7iii 	was-1  
repeats, what I'd like is for you to I graduated in steps of 1.5 from 
end u round about ten. 

You were quick. How did you work 

Well if one is twenty, the Or Cie 
that has to be ten. 

Speaker 

Trifer-vieWii: 

Laura: 
Interviewer: 

'--Courtney: 

Laura: 

I 0 to 30. 
H 
Try it. 	 They &digand the number 

line appears as in figure  8.10. 
Yes. We'vegot41-101_ 

it out? 
Refers to earlier number line. 	I 
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jay + 0.5 

type jay 
rt 90 
fd 50 
1t90 
change jay 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 

I 	I 	I 	I 	I 	I 	I 	I 	I 	I 

I doit-2 I 
input jay 
pu 
fd 50 
repeat 21 

wakv 

cs 
start 
mad 
start 

mad 

repeat 20 huhu 
fd 10 
bk 20 
fd 10 

I start I huhu I 
fd 10 
bk 20 
fd 10 
rt 90 
fd 50 
It 90 

jmenu 
cs 
huhu 
mad 
start 
waky 
st 
doit-2 0 
rt 90 

Commentary 

I'd like you to start at nought add-This would necessitate an 
finish about one. 	 increment 	of 0.05 

esigt:..._,,a_se twenty  oneth. 
Point one. 	 Runs this and ends at 2.0. 
I think it's int twent oneth. 
Tapoint twentyone. 	 Runs this and ends at 4.2. 
I can't see how it got to four point two. 

Dialogue Speaker I 

Interirewer: 

Figure 8.10: Visualising Decimals with Courtney and Laura's Number Line 

Laura's expression "If one is twenty, then half of that's got to be ten." would appear 
to amount to reasoning that since 20 x 1 = 20 then the solution of 20x = 10 must be 

0.5. Its significance lay in the way it was derived from the earlier visual 
representation and the way it opened up the process for investigating other decimal 

expressions. 

I now asked the girls if they could get the number line to end at 1. Courtney's first 
offering was: "Point one." which the girls inserted in the program code and which 
resulted in a number line ending at 2.0. Laura now said: "I think it's point twenty 
oneth." After running the program with 0.21, she read off the end value of the 
number line and remarked: "I can't see how it got to four point two." 

Extract 3: 

At this point, I intervened to recall what had been tried so far. They could see that 
with an increment of 0.5, the number line ended at 10. With an increment of 0.1, the 
number line ended at 2. Therefore, there must exist a quantity which enabled it to 
stop at 1. 'Zero point zero' was a first attempt to articulate such a quantity. 
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Extract 4: 	 
Laura: 	Try zero point zero.  µThey try Phis 	I point out 

that 0.0 is the same as 0. 
Interviewer: I Recalls that 0.1 was a bit too big 

and 0 was too small. 
Laura: 	Nought point five [waves hand Laura trying to articulate-the 

about]. It's like half of . . . . 	number that lies at the midpoint 
of 0 and 0.1. 

Interviewer: You try and say it.  
Laura: 	Nou t I int nou t five. 
Interviewer: 

	

	ura is saying ' oug t point 1  
nou ht five'. 

ourtney: 	I ye got a ee in she s nght. 	Runs  program. 
Interviewer: What made you choose that i 

number, Laura? 	 1 
ura: 	1 1 Em [No answer.] — 

Interviewer: 	1.  Reviews situation. 
ura: 	I I chose 	one twenty oneth. 	t 

Interviewer: I didn't understand you. -- r-------  
1 wondered why you had chosen 
point two one. 

At the time of the earlier exchange, I thought that Laura's 'point twenty oneth' was 

simply a wild guess. However, later when she had discovered a way of articulating 

quantities between 0 and 0.1, she continued to express puzzlement as to why her 

earlier offering did not work. In the ensuing discussion, it emerged that she was 

confusing decimal and fractional notation, i.e., her 'point twenty oneth' was intended 

to express 1/21 in decimal form. Her choice of 'point twenty one' was directly related 

to the Boxer program. Since the program line responsible for graduating the number 

line read 'repeat 21' she concluded that the increment needed was the (multiplicative) 

inverse of 21, which she articulated as 'point twenty oneth'. 

8.3.3.2: Inventing Notation for Decimals 

The following episodes constitute further evidence for the compelling nature of this 

Boxer object in convincing the case study students that other numbers must exist. In 

each case, the students invented their own notation to express these numbers. 

Episode 1: From fractional to decimal expressions 

This episode has been chosen to show how Liam and Jason used a notation which 

they were familiar with (fractions) to express a quantity that they lacked familiarity 

with (a number between 0.1 and 0.2). 
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input num 
mr-bean 
op-5 
repeat 25 type num 

ear 
change num num + 0.5 

"am mr-bean 
set-type-font 9 cs 

jam 
honey 
start 
op-5 
ear 
ht 
st 

,.3/o 0 

0 0.5 1.0 1.5 2.0 23 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 

II 	111111111111 	II 

11011 

!shoe 

Figure 8.11: Visualising the Number Continuum through Liam and Jason's Number 
Line 

At the beginning of this episode, the number line was graduated from 0 to 25 in steps 

of 1. The boys were challenged to change the increment so that the line ended at 

`about 13'. The vagueness of the formulation 'about 13' was deliberate: my intention 

was that they employ a decimal not a particular decimal. 

Interviewer: 

Interviewer: 
Jason: 

iam: 

Dialogue 	 Commentary 

Suppose you started at one and you The implication was that the  
wanted to finish at about thirteen? . number of graduations would 
What would  you change? 	remain the same.  
That. Point six or point four. 	I Points to the line 'change num 

1  num + 1' inside 'yo'.  

The boys amend the line to 
I 'change num num + 0.5'. 

Extract 1: 
Speaker 

What about you Jason? 
Point five. 

The number line was now graduated in steps of 0.5 up to 12.5 (Figure 8.11). Hart 

(1981, p. 216) writes that a half: "seems to be an honorary whole number" by which 

she implies students are familiar with it unlike other non-integer quantities. So, it 

might be thought that Liam and Jason's solution stems from this familiarity. 

However, the next extract belies this explanation. 

Extract 2:  
— Speaker 

  

Dialogue 

   

     

     

       

-Suppose you started at nought andi The assumption is that the input 
ou wanted to finish at about seven.  to 'repeat' will be unchanged.  

Point three. 	 1 The boys amend the program to 
`change num num + 0.3'. 

Interviewer:
.. 

 

Jason: 
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The boys obtained a new number line on the screen graduated from 0 to 7.5 in steps of 

0.3. So far, the number line simply let them express what they already knew, but the 

activity of doing so was important in setting the scene for extending that knowledge. 

Extract 3:  
Weaker 

Interviewer: 

Liam: 

Interviewer: 

Liam:  
Interviewer: 

Interviewer: How would you write down what 
Jason just said: point one and a 
half?  

Interviewer: ! Would you mind changing that 
point one to point two? 

Jason: 

Interviewer: 

4 1 point two wasn't quite right .  
I Point one wasn't quite right and 

- In between point one and point 
two. 

omt one and a uarter. 
Interviewer: s  xp ins convention o point one 

and a half as int one five. 

Jason: 

arkirogue 	 T - -Commentary 	-I 

I Suppose you started at nought and i 
you wanted to finish at about three!  
point five.  
Where's that? 	 Points to the on-screen numbeil 

line. 
I  Roughly in the middle there. 	1 Points to the centre of the on- 

screen number line. 
Try point one. 	 They run this.  
It looks like point one is a little on After getting a number line I 
the small side. 	 graduated from 0 to 2.5 in 

steps of 0.1.  

Hands Liam a piece of paper.1 

Points to increment. The boys I 
change this and run the 
program.  
Refers to new screen number 
line ending at 5.0  
Refers to the value of the 
increment in 	m line. 

Point one and a half. 

Liam writes: .11/2. 

They run it with 0.15 and then 
with 0.14 which gives the 
exact answer 3.5.  

Liam: 
	

Can we try it? 

The activity was framed around the students' number line. It was therefore a 

relatively natural step from using it to depict natural numbers to representing 

decimals. The initial challenge simply involved bisection, and so the students' choice 

of 0.5 was not a difficult choice for them. 

The later step was not so simple. It obliged them to seek a number between 0.1 and 

0.2 - a quantity which they had difficulty articulating. Yet, they were convinced that 

such a quantity existed. The Boxer number line gave them visual proof that an 

increment of 0.1 in the program resulted in a number line that was graduated in steps 
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Kathleen:  
Interviewer: 

Kathleen: 

of 0.1 and ended at 2.5, and an increment of 0.2 in the program resulted in a number 
line that was graduated in steps of 0.2 and ended at 5.0, so there must be something in 
between. Liam's 'point one and a half' and later 'point one and a quarter' shows how 
the medium disposed him to these expressions. 

At about this time, I explained that in order for Boxer to handle their expression, the 
number would need to be written as 0.15. The boys ran the program with an 
increment of 0.15 and watched as the screen number line was drawn and graduated 
from 0 up to 3.75. Without further intervention, they changed 0.15 to 0.14, ran the 
program and now got a number line that ended exactly at 3.5. 

It is perhaps worth recalling the rather inexact formulation of the original question. 

The challenge was to finish at about three point five. Such an expression was 
necessary since challenges were often set in response to on-going activities and I did 
not have time to check the number of decimal places needed for an exact solution. 
So, the students were using the medium to get better (more accurate) results than I had 

anticipated. 

Episode 2 — A historical notation for decimals:  
This episode has been chosen to show how working with the Boxer number line also 
disposed Jessie and Kathleen to invent a notation to express decimals, although in 

their case, the notation did not owe its origin to fractions. 

Extract 1:  
peacer 

 

Dialogue 

 

----Commentary 

 

   

Interviewer: 

Jessie: 
Interviewer: 

Jessie: 

Interviewer: 

Suppose, you didn't want to go all t The number line was 
the way to thirty two, like ending at calibrated from 0 to 32 in steps 
sixteen?   of 1. 
Up in twos. 
You did twos a minute ago and 
ended at sixty four. What about 
you Kathleen? Aaideas? 
Minus two. 	 1 
Minus two would take it the other 
way. Do you know any number 
smaller than one?  
Minus one. 

Minus one would take it the other! 
way. Do you know any number 
between nought and one?  

I Half. 

1 

Correct answer to the question! 
as stated! 
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type num 
it 90 
fd 30 
1t90 
change num num + 0.2 

I menu! 	I challenge! 	Igreen 	Im 	start I gogcl 
cs 
green 
mum 
gogo 0 

input num 
pu 
fd 50 
repeat 33 

Commentary 

The number line 	graduatedwai 	l 
from 0 to 16 in steps of 0.5. 

you Strictly speaking, this is not 
So true. 	Boxer can handle 

you fractional quantities. 
`It' refers to the program line. 

Interviewer: Half. Right. Well, in Boxer, 
have to write it as a decimal. 
where it says num plus one, 
put num plus nought point five. 

Kathleen: 	[Does this]  
Interviewer: Where did you end up? 

(Jkandjbox 

0 0.2 0.40.6 081.01.21.41.61.82.0222.42.62.83.03.23.43.63.84.04.24.44.64.85.05.25.45.65.8 6.06.26.4 

I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	1 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 

Figure 8.12: Visualising the Number Continuum through Kathleen and Jessie's 
Number Line 

Kathleen and Jessie had drawn a number line which was calibrated from 0 to 16 in 

steps of 0.5. They were now asked if they could arrange for the number line to end at 

8. Kathleen said: "I think its something under nought point five. Nought point two?" 

They changed the program code from [num + 0.5]' to [num + 0.2]', ran the program 

and obtained a line which ended at 6.4 (Figure 8.12). Kathleen now proffered: 

"Nought point three?" This was again inserted in the program and run, resulting in a 

new screen number line with an end point of 9.6. Jessie now interjected: "Nought 

point two point two." In written form, Jessie's answer is equivalent to 0.2.2. 

A 

Jessie: 	/—Sixteen.  

Extract 2:  
Speaker 
	

Dialogue 

Suppose instead of finishing at 
sixteen I asked you to finish at 
about eight, any ideas.  
No 	response. 	 
Do you know any decimals other 
than 	nought 	point five? 	 
I think its something under nought Kathleen: 
point five. Nought point two? 

Interviewer: 

Both: 
Interviewer: 
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Iiiievei: T  

Kathleen: 	Nou t 	int three ................................ 

The girls alter the programde 1 
to  'change num [num +  0.2]'. 
After running 	it with 0.2. 

Again, the girls change the 

	

_ream code and run it. 	, 
I showed her the conventional 
notation. 	 w- 
They run the program with 1 
0.22. 

Interviewer: Try it. 

Jessie: 	! Nought point two point two. 

Interviewer I Try it. 

Jessie: 

Kathleen: 	Try nought point two four, Jessie. Kathleen points to end of the ' 

I Try point two three. It can't be 
I anything if it isn't three. 

i If it doesn't work, we can try line and reads the number 
1 something else.  

Jessie: 	Its got to be five. 	 They run it.  
Interviewer: Have you ever come across 

Both: 	I No.  
nought point two five before? 

This non-standard notation, which Jessie had 'invented', actually has a precedent in 
the history of the development of the decimal system (Smith, 1925). But what is 
important about this incident is the way the medium pre-disposed the students to such 
an expression. Faced with a number line that ended in 6.4 for an input of 0.2, but 
giving an end-point of 9.6 for an input of 0.2, the students sought a number between 
0.2 and 0.3. But, such numbers were not within their previous experience, with the 
consequence that they invented a notation to articulate their concept. 

8.3.3.3: From Programming to Conceptual Precision 

Working with the Boxer number line prompted me to set challenges for these students 
at a level of difficulty that I would hesitate to set for much older students using 
conventional media. Even when they did not resolve problems immediately, they 
persisted apparently convinced that the visual feedback would lead them eventually to 
the desired result. In persisting, they began to express decimals to greater and greater 
degrees of accuracy. 

Episode 1: Accuracy of Expression 
This episode has been selected to show how Joanna and Nico's Boxer number line 
motivated them to persist in seeking a solution to a challenge (equivalent to solving 
the equation 24x = 1) to the extent of going to 4 decimal places. It suggests that the 
accuracy of the expression in this case serves as a measure of their understanding. 
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Joanna 

cs 

start 
lot-a-t's 10 20 0.041 
num 
set-type-font 10 
fd 10 
type 

'menu lot-a-t's1 I start num 

type begin 
pu 
rt 90 fd 201t 90 
Pd 
change begin begin + 0.041 

Figure 8.13: Expressing small decimal quantities with Joanna and Nico's Number 
Line 

input begin 
pu 
bk 20 
Pd 
set-type-font 5 

repeat 24 

0 0041 0.002 0.123 0.164 0.235 0.248 0287 0.325 0.382 0.410 0.461 0.422 0.533 0.574 0.615 0.858 0.897 0.738 0.779 0.820 0.881 0.902 0.043 0.984 

I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	1 	1 	I 

At the beginning of the following episode, the number-line was graduated in steps of 

1 from 0 to 24, and the students were challenged to finish at twelve. Joanna instantly 

responded with: "Point five." 

Extract 1:  
Speaker 

Interviewer: 
Joanna:  
Joanna: 

   

Dialogue 

    

Commentary 

  

         

         

  

I'd like you to finish at about twelve. 

      

        

        

  

Point five. 

        

  

Yes! 

   

1 After running it. 

  

       

         

rulerl 

I now challenged the students to finish at about two point five. Joanna said: "Zero 

point one.", to which Nico agreed. They ran the program and got a number line 

which ended at 0.24. While solving 24x = 12 and 24x = 2.4 within this computer 

setting might not seem too daunting, the next problem (equivalent to 24x = 1) was 

expected to be. The pair were asked to finish at about one. 

"Wviewer: 

Joanna: Try point zero four. Maybe 
int nine six. 

Commentary 
	

1 

Note the approximate nature of this 
and later i uestions. 
Before running program. 

Extract 2:  
Speaker Dialogue 

Pinish at about one. 

Joanna: 1  One! 

	 1 
Joanna: 	I Ah. Zero point nine six. 

The program had rounded up.1 
Boxer's printing-precision needed to I 
be adjusted.  
After the adjusted program had been 
re-run. 
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Interviewer: Could you adjust that to end 
up even closer to one. 

Nico: 

	

	Changes increment from 0.04 
to 0.041. 

 

Both: Point nine eight four. 

 

    

 

Joanna: Point oh four two. 

 

    

Iliiilirm—r—One point oh oh oh oh eight. 

set-type-font 9 es 
jam 
honey 
start 
op-5 
ear 
ht 
st 

`yo 0 

1mr-bean 1 input num 
mr-bean 
op-5 
repeat 25 type num 

ear 
change num num + 0.001 

lo -5 I m honey menu 

0 aan 0.002 0.003 0.004 aam aam aan aam 0.009 QOM 0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.019 0020 0.021 0.022 0.023 0.024 0.025 

	1 11111111 11111 1111111 1111 

Rereis to the the 	6.04 in the 
line: 'change begin [begin +  0.04]' 
Figure 8.13 

Reads end number on new line 
Both students pleased by answer. 
The number line ends at 1.008. 
They then go on to try .0418, .0417, 
.0416, then .04168. and .04167. 
At each stage, the students appeariiil 
be very pleased with the degree of 
accuracy that they are obtaining.  

In this exchange, the assumption was that the only parameter that mattered was that 

for the increment. The start number was fixed at 0 and the number of repeats set at 

24. Joanna's first choice of 0.04 was thus a very good first approximation to my 

initial challenge of ending at 1 (It resulted in the number line terminating at 0.96), 

while their second 0.041 was even better leading to 0.984. They now spontaneously 

ran the program with increments of .0418, .0417, .0416, then .04168. and finally 

.04167, suggesting that the precision afforded by manipulating the program's 

incremental parameter was also promoting conceptual precision. 

Episode 2 — Relative sizes:  

This episode has been selected to show how the visual feedback from their Boxer 

number line enabled Liam and Jason to eventually solve a challenge (equivalent to 

25x = 0.1) by relating very small decimal quantities to other decimal numbers. 

shoe 

Figure 8.14: Expressing small decimal quantities with Liam and Jason's Number 
Line 
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Commentary-----1  

Extract 1:  
Speaker T  . ogUe  

Interviewer:iT have a really hard question for 
you. I want you to end at nought 
point one  over there.  

Liam: 	I Try minus nought point one. 
Interviewer:  See what  happens.  
Both: 	!They run the pprroogram.  
Interviewer:  It's going back anis.  
Liam: 	Can we just delete that? 
Both: 	They run the program with an 

increment of 0.1. 

The challen a is to be at 0  
and end at 0.1 with 25 
increments. 

Refers to the minus sign.  
The number line is now 
graduated in steps of 0.1 and 
ends at 2.5. 

Interviewer:  
Jason: 

I want you to end on that. 
Point minus one. 

Points to 0.1. 

	 That would go down. 

This challenge caused difficulties for the boys and I intervened. 

Extract 2;  

Interviewer: Your problem is to try to go up by very 
1 small amounts.  

Liam: 	A hundredth. 

     

 

Interviewer: Right. So how would you write a 
hundredth  as a decimal?  

Liam: 	Point oh one. 

 

[To Jason] do you agree with that? 	Nods his head. 
They run the program and end up at 
0.25. 

Interviewer: Point two five is a bit too much. You 
have to make it smaller still.  

Jason: 	I  Point oh ? 	 not clear 
Liam: 	3 You have to make it even smaller.  
Interviewer: So how would you make it even 

smaller? 
aam: 

a2pLyou 	try that. Interviewer:  
Both: 	They run the program and end up at -Figure 8.14. 

, 0.025. 
Nought point nought two five. Change Reads end number and 
that to point nought nought four. 	points to increment in 

	program line. 
Both: 	---rThey run the program and end up at 
	 1. 0.100  
Interviewer: I know these numbers are new to you. 

I know they are hard. You gave me 
nought point nought nought one. Any 

!idea what this number means?  
Liam: 	I  A thousandth.  

Interviewer:  
Both: 

Liam: 
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Extract 1:  
Speaker Dialogue Commentary 

Interviewer: Let's put nought point one there. I Points to the number line on 
Before you do it, can you tell me the screen. 
what will ha i • en on the screen? 

Jessie: Nought point thirty two. She 	had 	presumably 
interpreted 32 x 0.1 as 0.32.  

Interviewer:  What about you Kathleen? 
Kathleen: 
	

Same. 
Interviewer: In the end, where did it  enc up  
Both: 	 ee point two. 

Theyruntepom:ro 

Speaker Dialogue Commentary 

Nought point nought, on its own, is 
the same as nought. 
Suppose somebody said to you 
what is nou ht . I int one? 

Suppose I asked you to finish not at Points at end of the number-
three point two up here but at one line drawn which is graduated 
point six. Any idea how we would I in steps of 0.1 from 0 to 3.2. 
do that? 

;Minus numbers? 

rI ClOnci ow any number smaller ` This  
than nought point one. 	 Jessie's earlier answer. 	 
Oka . What about  you Kathleen? 
Nought point nought? 

question as posed. 

A  per cent h n 

Jessie: 

Interviewer: 
Kathleen: 

Interviewer: 

Interviewer: 

Jessie: 

This seems to be a relapse to a 
wild_guess. 

o. Do you remember that we said! 
minus numbers would take us the 
other waC 

A correct solution to the 
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Interviewer: 

Jessie: 

InterViewer: 

These latter extracts show that the challenges were becoming difficult for the 

students. But these were difficult challenges. Yet, within the medium of this Boxer 

number line environment, they were able — albeit with some help — to resolve them. 

The manner in which the number line scaffolded their learning can be seen in Liam's 

deduction that since 25 x 0.001 gave an end number of 0.025, what was needed was 

25 x 0.004 to obtain an end number of 0.1. 

Episode 3: Relating decimals to each other 

This episode has been selected to show how in interacting with their Boxer number 

line, Kathleen and Jessie were able to impute meaning to very small decimal 

quantities by relating them to other decimal quantities. 

Extract 2: 



At this point, it would seem that the questions really were too difficult for the 
students. Jessie's "I don't know any number smaller than nought point one." and 
Kathleen's "Nought point nought." each express an impasse caused by not having a 
familiarity with numbers between 0 and 0.1. In the next extract, it can be seen how 
using such numbers provided the basis for their later discrimination of the behaviour 
of these quantities. 

jkandjbox 

0.01 0.02 Q03 0.04 0.05 0.06 0.07 0.06 0.09 0.10 0.11 au 0.13 0.14 0.15 016 0.17 0.18 0.19 Q20 021 0.22 0.23 0.24 0.25 0.26 0.27 0.28 019 0.30 0.31 0.32 

1 	  

do this and end at 1.28. 

1.  Means 0.05. 

menu !  

cs 
green 
mum 
gogo 0.01 

challenzei green I fm I 	gogol 
mput num 
pu 
fd 50 
repeat 32 type num 

rt 90 
fd 30 
1t90 
change num num + 0.01 

Figure 8.15: Expressing small decimal quantities with Kathleen and Jessie's Number 
Line 

Extract 3:  
Speaker 1 	Dialogue 1 	Commentary 
	 1 	  
Interviewer: I Change that to nought point Refers to increment in the i 

I nought one. 	program. 	
Jessie: 	'That only comes to point three. 	1 They re-do this and end at! 

1 0.32.  
Jessie: 	I you s oub e that, you will double' Asserts that doubling the 

that 	 1 increment will lead to twice 
i the  end no . 

InterViewer: Okiy. Try :IL 	____,:tL-The do this an creiii1:410.6cl: 
Jessie: 	If you go uP---63,--  nought point i Doubling strategy. 

i nought four, it will be even closer 
Interviewer: ' Okay. Try 	it. 

Interviewer: Where did you finish? 
Jessie: 	One  point two eight.  
Interviewer: { One point two eight. You are 

I getting very close to my original 
target of onepoint six.  

Jessie: 	I think five would do it. 
Interviewer:i Okay. Try it.  
Jessie: 	i One point six! 
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While, I would not claim that Jessie and Kathleen had a robust understanding of the 
meaning of quantities such as 0.05, they were gaining a relative knowledge of certain 
decimal quantities, e.g., 0.04 is double 0.02, and so on. In operating within the 
medium, they were acquiring experiences which might serve as a basis for such 
understanding. 

Extract 4: 
Dialogue 

"TrirervIeweEl-My challenge to you this time is to 
start at nought and finish close to 

Ione:  
Jessie: 	!Nought point six four 

Interviewer: 1 What about you Kathleen? Any 
thoughts?  

Kathleen: 	[no response] 

Jessie: 	I Ninety six! [refers to 0.06] 

Interviewer: I Well done! I didn't expect you tol 
	 get any closer than that.  

Interviewer:  That's quite good but it's not quite ! 
I bid enough. 

ommentary 

Jessie changes the step size to 
0.03. 	  	 •j 
Clearly recognises that this is 
close to one. 

The number line was 
graduated from 0 to 1.6 in 1 I 

_fritepsolms. 	 -a 
Reads from screen. She has 
used an increment  of 0.02.  

Jessie's unfamiliarity with decimals between 0 and 0.1 was not surprising. None of 
the comparison group in the semi-structured interviews had given a decimal answer at 
all. I doubt that the evidence would support the contention that she had a solid 
understanding of such quantities, but it does suggest, I believe, that within the 
medium of the Boxer number line, she was expressing these numbers in meaningful 
ways. 

8.4: Summary and Implications 

This chapter has analysed the Boxer number-line study. It has detailed how four pairs 
of case-study students first constructed and then interacted in their own number-line 
Boxer microworld. It shows how, in the course of constructing this number-line, they 
were able to apply and extend programming ideas developed in an earlier phase. It 
then indicates how the mathematical characteristics of this Boxer object mediated 
their expression of number. 
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8.4.1: Programming Findings 

Separating the process and product of a procedure 

The evidence supports the contention that the students were able to separate the 

process and product of a procedure. Even students who were regarded as weak 

mathematically were able to discriminate the significance of the inputs to different 

commands. The programming activity, in which students were challenged to create 

number lines with varying degrees of precision, motivated them to attend to the 

interdependence of commands within and across procedures. The evidence suggests 

that they were able to do this. 

Building up procedures and Debugging 

All of the students in this study adopted a 'bottom-up' style of programming. In 

contrasting this way of working with the opposing 'top-down' mode of placing 

procedures in a hierarchy, the Brookline authors (Papert et al., 1979) observe that: 

"The latter lop-down' approach usually allows better fitting of the hierarchy of the 

process to the logic of the product and hence makes procedures easier to plan, read, 

and debug." (part II, p. 4.22). In this study, there did not appear to be such 

disadvantages in adopting a bottom-up style. It seems that in building up procedures, 

the students were also building up a picture of the process needed to debug them. The 

observations suggest that debugging was not a major obstacle to programming. 

Creating and Naming Procedures 

It would appear that in Boxer the manner in which procedures are named (append a 

name box to a doit or data box) gives a directness to the naming process that seems to 

eliminate the danger of associating too much meaning to the name. 

Structured Programming 

The degree to structure which students employed in their programs suggested that the 

earlier phase of the research influenced the way they programmed. It seems that with 

the doit boxes of Boxer, it is as simple to write a procedure as to write a series of 

commands in direct drive. The data points to students beginning programming with 

procedures. There is also evidence, which differs from comparable Logo research, 

that students were more able to create hierarchies of procedures. 
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8.4.2: Number Findings 

The Boxer number line object mediated students' expression of number in certain 
distinct ways which were directly related to its screen characteristics on the one hand 
and to nature of the numbers themselves on the other. Its screen manifestation linked 
the visual representation of the various number sequences with the program 
containing the formal Boxer description of that sequence. So, in manipulating the 
program's parameters, the students were making connections between the formal and 
the visual, and between conceptual and procedural notions of number. The form of 
this manipulation depended on the numbers. Natural number investigations were 
defined by setting a start number as a positive whole number and doing the same for 
the increment. The directed numbers investigations differed only in that the start 
number was no longer positive. For the decimal investigations, both the start number 
and the number of repeats were fixed, but my challenges motivated students to 
consider increments that were not whole numbers. 

Natural Numbers 
Initially, the students used the number line to depict sets of numbers which they could 
check. In this sense, the dynamic number line supported their existing knowledge and 
provided the scaffolding for extending it. In the room where the research took place, 
there was a number line poster on the wall graduated from 1 to 100. The students 
were quick to see the power of Boxer in producing number lines to obtain visual 
counterparts to their tables. Liam and Jason created a number-line which was in 

effect a 9 times table running from 0 to 360. Laura and Courtney tested the 5 times 
table beginning at 50 and then depicted the 12 times table. Jessie and Kathleen, the 
`weakest' students, tried the 2 times, the 8 times and the 100 times tables beginning at 
1000, describing the latter as 'brilliant'. Other students also used the number line to 
express multiplication tables. Their reactions to this practice were broadly similar. 
They appeared to think that in using the number line to depict their 'tables', they were 
somehow 'cheating', but this didn't diminish their pleasure in doing so. 

Directed numbers 
Manipulating the number line's parameters in order to display various natural number 
sequences, meant there was nothing new to learn in order to display other kinds of 
numbers. Directed numbers were introduced by simply changing the starting position 
of the number line, and asking the students to predict the consequences of repeatedly 
adding positive whole numbers to it. Few of the students found difficulties with this. 
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In generating a dynamic number pattern from left to right across the graphics screen, 
the number line object seems to have helped students to form a visual image of how 
the numbers themselves behaved under addition. Jessie's observation that the number 
line, which was calibrated from -10 to 22, could be made symmetrical by doing 
"minus half of thirty two." illustrates the influence of the visual on her thinking. 

Decimals 
The Boxer number line appeared to mediate students' expression of decimals in three 

distinct ways. 

(i) From program parameters to number expression: In the first case, it seemed that 
through manipulating its parameters, students were disposed to reason in particular 
ways. Decimals were conceptualised as small increments and their sizes related 
initially to whole numbers or to other (previously tested) decimal increments. In the 
case of Laura's confusion of decimals and fractional notation, the roots of her 
misconception could be attributed to her association of the number with the parameter 

for 'repeat'. 

(ii) From program interaction to existence theorem: 	Secondly, rather than 

encountering difficulties with 'in-betweeness' as research has shown is frequently the 
case with conventional media (Hart, 1981, Markovits and Sowder, 1991), the Boxer 
number line seemed to pre-dispose the students to the belief that such numbers must 
exist. This manifested itself in several ways. It could be seen in remarks such as 
Jessie's: "I don't know any number smaller than nought point one." which suggested 
her difficulty was not with existence but rather with articulation. It could also be seen 
in the invention of notation by two of the four case study pairs to express these 

quantities. Liam and Jason's 0.11/2 for a number between 0.1 and 0.2 was one 
example of this. Jessie and Kathleen's 0.1.1 was a second. Finally, it could be seen 

in the students' desire to attain greater degrees of accuracy than the problem required. 

(iii) From Programming to Conceptual Precision 
Thirdly, the programming precision afforded by the Boxer number line appeared to be 
also promoting conceptual precision. 

Some evidence for this could be seen in Joanna and Nico's successive trials of .0418, 
.0417, .0416, .04168 and .04167 in attempting to graduate the number line from 0 to 1 
in 24 increments. The degree of accuracy at which these investigations took place 
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caused difficulties for several students. Nevertheless, the data shows that with the 
Boxer number line, students were able to attribute meaning to these very small 
quantities by virtue of relating them to each other. Jessie's recognition that 0.04 was 
double 0.02 was perhaps elementary, but it enabled this pair to 'close' in on a solution 
to their problem, which in formal terms, was equivalent to solving the equation 32x = 
1. Similarly, Liam's deduction was made from a number line graduated in 25 steps of 
0.001 from 0 to 0.025. Recognising that four lots of 0.025 gave 0.1, he was then able 
to amend the increment from 0.001 to 0.004 to obtain an end point of 0.1. 

In effect, these students were engaged in programming a 'zoom' effect, and in 
programming it, they appeared to be gaining access to the conceptual precision 
engendered by this process. 

8.4.3: Implications for the Remainder of the Thesis 

The number line study encapsulated the findings of the earlier stages of the research 
in three ways. Firstly, students constructed their own microworlds by programming 
in Boxer. Secondly the number line object itself proved to be the extensible and 
flexible representation that the semi-structured interviews had suggested. Finally, the 
operational nature of the pedagogical approach — also adopted as a result of these 
interviews — succeeded in provided a context in which students were able to confer 
meaning on both directed numbers and decimals. 

The number-line object gave these students a means of moving back and forth 
between the notion of number as process and number as concept. Chapter 9 recounts 
how another such computational object, the function machine, did likewise. 



Chapter 9: The Function Machine Study 

9.1: Introduction and Overview 

9.1.1: Introduction 

This chapter consists of an analysis of the programming and number issues which 

arose as a result of constructing and interacting with a function 'number machine' 

microworid in Boxer. It describes how in replicating a classroom project (making 

cardboard models of function machines) in Boxer, the students utilised and extended 

their programming knowledge. It shows how the insight gained through this 

construction influenced their subsequent interactions with it. It then analyses the 

ways this 'operational' Boxer object mediated their expression of number. 

This phase of the research, which lasted from May 1993 to July 1993, was the final 

part of the case-study research. A total of eleven year 6 students (ages 10 — 11) were 

observed, six of whom were from the original eight case-study students (chapter 4). 

The remaining five acquired their Boxer knowledge through using the First to Third-

Boxer microworlds independently (chapter 6). 

At the beginning of the Summer term, the sixth year class had spent approximately 

two weeks constructing cardboard models of function machines. Figure 9.1 shows a 

typical example. The classroom teacher used this model to structure a follow-up 

activity in which the students had to 'guess' each other's function. 

Figure 9.1: A typical cardboard model of a Function Machine 

Some of the students then asked if they could 'do' their function machines in Boxer. 

It transpired that what they wanted to do was to use Boxer to draw a likeness of their 
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cardboard models on the screen. However, it quickly became apparent that, with a 

little more programming, it would be possible to make these models operational. 

The interview findings (chapter 7) indicated that students were more likely to attribute 

meaning to number if representations could be found that conveyed an action-based 

derivation for those numbers. The number line study (chapter 8) was my first attempt 

to implement those findings. The students' request to build their function machines in 

Boxer now provided another opportunity to put those findings into practice. 

The aims of this phase of the research were thus: 

• to investigate the programming implications of students constructing 
their own function machine microworld in Boxer; 

• to investigate how their interactions with this 'operational' object mediated 
their expression of number. 

In following analysis, a distinction is made between the programming and number 

aspects of the activity. However, for the students, the construction of their function 

machine could not be separated from the subsequent activity. 

9.1.2: Overview 

Section 9.2 consists of an analysis of the programming issues which arose through 

students' construction of their own function machine microworld in Boxer. It shows 

how students in re-creating their classroom number machines in Boxer programmed 

in ways that were significantly different to that reported in existing Logo research. 

Section 9.3 recounts how the students' interactions with this Boxer object mediated 

their expression of number. It points to the importance of the construction process in 

structuring these interactions, and it attempts to link aspects of the students' 

manipulation of the programming code with these expressions. 

9.2: Constructing the Boxer Function Machine 

9.2.1: Students' Programming in Boxer 

In chapter 5, three categories of programming, 'working at a syntactical level', 

`making sense of, and `goal-directed activity', derived from Hoyles and Sutherland's 

(1989) study with Logo, were utilised to analyse students' programming in Boxer. 

This chapter is only concerned with the last of these activities, and it will again draw 
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on that work to make finer categorical distinctions. Hoyles and Sutherland (op cit.) 

classified pupil goals along the following dimensions: 

Loosely de i Well defined 
Real world ; Abstract 

They concluded that only when students were working towards a well-defined 

abstract goal do they begin to perceive a need to break down their program into sub-

procedures or modules at the beginning of a project in a top-down way. They also 

found that students only took up the idea of sub-procedure when it was a useful 

problem solving tool for them. Subsidiary goals of this phase of the research was to 

assess the extent to which the new setting (Boxer instead of Logo) might change the 

situation regarding modularity, sub-procedures, debugging and the use of variables. 

9.2.1.1: Modularity  

Research has shown (Hoyles and Sutherland, op cit.) that novice programmers 

frequently favour programming in 'direct drive'. Experts point to the disadvantages 

of programming in such a way, particularly when things go wrong. As Papert (1993, 

p. 52) writes: "A strong argument for modularising programs is that they facilitate 

debugging." 

In most implementations of Logo, 'direct drive' as a way of working is in contrast to 

procedural programming. The advantage of the former is that by directly executing a 

command, the result can be seen on screen. The disadvantage is that there is no 

simple way of collecting together these commands to form a procedure. To define a 

procedure often necessitates moving into editor mode, writing the procedure, exiting 

the editor, and then executing it as a whole. There are thus discontinuities in two 

senses between these ways of writing programs: line execution and program 

execution cannot easily be combined, and the place of definition and that of execution 

are different. As Noss (1985) and Hoyles and Sutherland (1989) show, students 

frequently experience confusion concerning whether they were in defining or 

execution mode. 

Episode 1— Direct Drive. Direct Execution and Modularity:  

This episode has been selected to illustrate how direct execution affected Laura and 

Courtney's programming in the function machine study. The girls goal was to draw 

their 'face' number machine (Figure 9.2) in Boxer. 
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Figure 9.2: Laura and Courtney's cardboard face function model for 2x — 1  

In beginning their drawing, the girls set themselves the goal of drawing the outline of 
the face in the centre of the graphics screen. They did not — as might have been 
expected — define a 'square' procedure. Instead, they created a module with the 
arbitrary name `cryu' (Figure 9.3) into which they typed commands, executing them 
line-by-line. 

,.,  'Computer- axel 
1  r 	 menu 

cs 
pu 
cryu 
ht 

rYu 
cs 
pu 
1t90 
fd 112 
rt 90 
pd 
fd 100 
rt 90 
fd 150 
rt 90 
fd 150 
rt 90 
fd 150 
rt 90 
fd 50 	.1 

Figure 9.3: Laura and Courtney's `cryu' procedure 

The motivation for programming in this way seems to have been related to their desire 
to 'centralise' the drawing. They combined the navigation commands `pu It 90 fd 112 
rt 90 pd' with the commands for drawing a square, while the square itself began and 
ended one-third of the way up the left-hand side. 

As the drawing progressed, the girls alternated tasks in that one would create modules 
to draw the eyes, the other the nose and so on. layrh' (Figure 9.4), for example, is a 

module to draw the eyes but it also contains two 'move' modules: the first beginning 
quarter way up the left-hand side of the large square and the second moving from one 
eye to the next. Similarly 'mat' combines navigation commands (from the right eye) 
with the commands to draw the nose. Finally lopter' combines navigation 
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CI 1 0 

cs 
pu 
cryu 
ht 
layrh 
st 
mat 
lopter 
gill 
ridd 

commands (from the nose) with the commands to draw the rectangular mouth. The 

module `ridd' was added later to draw the central line of the mouth. 

I Computer-axe 
(cryu 

 

gill ~ Find 

  

pu 
fd 30 
It 90 
fd 75 
1t90 
pd 
fd 52 

  

 

cs 
cryu 
layru 
mat 
lopter 

  

Ilayrh 	Fat I  Iloroteri 
pu 
It 90 
fd 20 
rt 90 
fd 20 
1t90 
pd 
fd 20 

 

pu 
fd 20 
rt 90 
pd 
fd 30 
11 90 
fd 15 
11 90 
fd 52 
It 90 
fd 15 
1t90 
fd 22 

  

   

menu 
cs 
pu 
It 90 
fd 112 
rt 90 
pd 
fd 100 
rt 90 
fd 150 
rt 90 
fd 150 
it 90 
fd 150 
rt 90 
fd 50 

pu 
fd 50 
it 90 
fd 30 
1t90 
pd 
fd 20 
rt 90 
fd 20 
it 90 
fd 20 
it 90 
fd 20 
pu 
it 180 
fd 60 
1t90 
pd 
fd 20 
rt 90 
fd 20 
it 90 
fd 20 
rt 90 
fd 20 

	I 

Figure 9.4: Laura and Courtney's `semi-modular' programming 

Laura and Courtney's programming illustrates the propensity to continue using 

collections of commands when they might have used modules: the use of direct 

commands in `cryu' when they could have used a 'square' module and a 'move' 

module. Similarly, `layrh' is a long list of commands which could have been made 

more elegant by including two 'square' procedures for the eyes. Against this, could 

be set the degree to which they did employ modules, e.g., 'mat' for the nose, `lopter' 

and `ridd' for the mouth. These were modular in that different programs were written 

for different parts of their drawing. However, none of these programs are strictly 

independent, since each also contains navigation commands. 
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input button 
3 * button -5 

menu I  

es 
k-5 6 
cs make 

I make I  
pu 
rt 90 
fd 60 
1t90 
pd 
fd 100 
it 90 
fd 90 * 
1t90 
fd 200 
11 90 
fd 60 * 
1t90 
fd 100 
1t90 

It would seem that in Boxer, direct execution as a programming technique represents 
a half-way stage between direct drive and modular programming. It offers the instant 
feedback of direct drive, but it also permits executed commands to be combined into 
procedures. As Lorna and Courtney's programming shows, these may be semi- rather 
than fully independent modules. 

Episode 2 — Direct execution. Debugging and Modularity:  
The second episode illustrates how direct execution affected the relationship between 
modularity and debugging in Liam and Jason's construction of their function 
machine. Their goal was to draw a number machine resembling Figure 9.5. 

Figure 9.5: Liam and Jason's cardboard function model for 7x —11  

They created a module 'make' to position and draw the main body (rectangle) of their 
number machine. 'Make' was also typed in the menu. 

mikel 

Figure 9.6: Liam and Jason's 'make' procedure and the first bug 

From then on, they adopted the procedure of first typing new lines in the 'make' doit 
box, and then executing the line `cs make' from the menu. However, because they 
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changed their minds about the desired size of the central rectangle several times in the 
course of drawing, they obtained a shape similar to that in Figure 9.6. 

The boys went inside the 'make' module and began to execute the commands one-by-
one. This enabled them to locate the bug in their program (marked with asterisks in 
figure 9.6) fairly quickly. They replaced each line with Id 120', and successfully 
drew the intended rectangle. 

Liam and Jason then created a new module 'live' to draw the three right-hand output 
boxes. At this point, the turtle was at the middle of the right-hand side of the large 
rectangle facing inwards, so they included the commands 270 fd 100' in 'live' in 
order to begin at the bottom right-hand corner. Having done so, they executed the 
line `cs make live' from the menu, and encountered their second bug (Figure 9.7). 

mike! 

menu I 	 liv 

rt 270 
fd 100 
repeat 3 

 

1t90 
fd 72 
11 90 
fd 40 
11 90 
fd 72 

es 
k-5 6 

cs make live 

k-5 
input button 

3 * button -5 

Mr• 

Figure 9.7: Liam and Jason's 'live' procedure and the second bug 

Liam intervened to say: "Do 'make' and then each one and see where we go wrong." 
In doing this, i.e., in making each output box separately, the boys decided to move the 
top 'it 90' out of 'repeat' and place it above it. They then added the extra lines 'it 90', 
Id 40', 90'. In effect, the repeated procedure draws three sides of the output box, 
and moves up ready to draw the next box. However, because they had repeated it 
three times, the boys got three boxes and three moves instead of two of the latter. 
They resolved this by changing 'repeat 3' to 'repeat 2' and then supplementing this 
with a final move (Figure 9.8). 
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1 life 

fd 72 
It 90 
fd 40 
1t90 
fd 72 
it 90 
fd 40 
rt 90 

rt 270 
fd 100 
1t90 
repeat 2 

input button 
I 3 * button I - 5 

menu I  
cs 
k-5 6 

cs make live 
st 
live 
make 
life 

live 
rt 270 
fd 100 
11 90 
repeat 2 fd 72 

1t90 
fd 40 
It 90 
fd 72 
rt 90 
fd 40 

90 
fd 72 
1t90 
fd 40 
1t90 
fd 72 
fd 120 
1t90 
fd 100 
11 90 

fd 72 
It 90 
fd 40 
1t90 
fd 72 
st 

make I 

A third major bug emerged as a result of the boys attempting to re-use their 'live' 

module to draw the left-hand boxes. The boys made a copy 1  of their 'live' module 

and re-named it 'life'. In order to get 'life' to begin at the equivalent position at 

which 'live' started, i.e., at the centre of the left-hand side of the rectangle facing 

inwards, they went back inside 'live' and added the lines Id 120', 'it 90', Id 100', 'it 

90'. But, they failed to adjust 'life' for the left-hand side of the rectangle and so got 

another bug (Figure 9.8). Liam asked: "Shall we do it line-by-line?" As they did this, 

Liam pointed at one of the 'it 90' lines in the 'life' doit box and said: "I know what it 

is. That has to be right. We didn't change it." They now went into 'life' and 

interchanged the commands 'le and 're, ending up with their desired shape. 

Figure 9.8: Liam and Jason's third bug 

It could be argued that the bugs which Liam and Jason encountered were self-

inflicted, i.e., they were a consequence of their programming not being strictly 

modular. Yet, their attempt to re-use the module 'live', showed that they appreciated 

at least some of the merits of modularity. The difficulties stemmed from their 

inclusion of 'extra' navigation commands. The crucial point is that Boxer's single 

mode and line-by-line execution made it more natural for them to locate and 

1This can be done by 'dragging' over the box in Boxer. 

197 



remediate the bugs in the course of programming rather than afterwards and hence 
helped overcome some of the disadvantages of a semi-modular form of programming. 

Episode 3 — Modularity and Perceived Complexity of Goal:  
This episode illustrates how the complexity of the goal seemed to influence the degree 
to which students employed modularity. It features Naomi — a girl with relatively 
little Boxer experience — who nevertheless made extensive use of modularity. 
Naomi's goal was to reproduce her cardboard function spider in Boxer (Figure 9.9). 

Figure 9.9: Naomi's cardboard spider function model for 3.5x — 6 

Naomi created a module called 'spider', obtaining the 'body' of the spider by using 
`stamp-hollow-circle 100', a Boxer primitive. She now went on to draw all 8 legs 
encountering few problems in doing so. A combination of the repetitiveness of typing 
the same commands over and over, together with the space needed to accommodate 
her typing, made her susceptible to my suggestion that she group the commands for 
the leg in a doit box which she could then repeat. Not unnaturally, she called this 

second module 'leg'. 

By the end of the session, she had obtained a working function machine consisting of 
a large central circle and eight orbital circles (Figure 9.10). In one sense, she had 
achieved as much as the other students — albeit with help. But Naomi said she wanted 
to draw the spider's eyes, nose etc. Each of the eyes required the drawing of arcs etc. 
for which there were no ready-made primitives. I thought that she would encounter 
both programming and mathematics difficulties in pursuing this goal. However, 
Naomi was insistent on drawing a spider machine in Boxer that exactly resembled her 
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11.5 

25.5 ) 

1.0 

32.5 

function 5 

function 9 

function 2 

function 11 

cs 
spider 5 9 2 11 

original cardboard model. Modular programming now became the problem-solving 
tool through which she could her achieve her goal. 

naomi-function I 
menu 

I spider I 
input legl leg2 leg3 leg4 
pd st stamp-hollow-circle 100 
It 50 
leg type legl pu bk 195 pd It 30 
leg type leg2 pu bk 195 pd It 30 
leg type leg3 pu bk 195 pd It 40 
leg type leg4 pu bk 195 pd 
rt 195 
leg type function leg 4 pu bk 195 pd rt 30 
leg type function leg 3 pu bk 195 pd rt 30 
leg type function leg 2 pu bk 195 pd rt 40 
leg type function legl pu bk 195 pd rt 30 
ht 

leQ 
pu fd 100 pd 
fd 70 pu fd 25 pd stamp-hollow-circle 25 

function I 
input hello 

hello * 3.5 -6 

ctrl-s -key 

Figure 9.10: Naomi's Spider Function Machine 

She asked: "Is left its left or our left?" before creating a new module which she named 
`1-eye'. She experimented with angles and sizes, executing her '1-eye' program line-
by-line. If the drawing was not quite right, only the last line needed to be re-written, 
after which the whole doit box could be re-run. Once Naomi was satisfied that her 
drawing of an eye in Boxer resembled that on her cardboard model, she creating a 
new module 'r-eye' and then copied across all the lines from '1-eye', swapping `le for 
`re where appropriate. 
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The next problem was to place the eyes in an appropriate position inside her spider. 
For this task, she ran each command from the menu (Figure 9.11) and, when it 
matched her intentions, moved it inside the super-procedure 'spider'. Neither the 
nose nor the mouth caused great problems, but it was noteworthy that she created 
separate modules for each of these components also. 

naomi-function 

I menu I 

function 1 I 

cs 
pu setxy -25 0 pd 
1-eye 
pu setxy -25 0 pd 
pu home pd 
st 
nose 

cs 
spider 1 2 3 4 

0.01 

fd 2 It 5.5 

Ir-eye  
cs 
fd 30 
rt 105 
repeat 20 
rt 138 
repeat 9 

Inose mouth I 

fd 3 rt 5 

input hello 
hello / 100.0 

rt 75 fd 6 
stamp-ellipse 12 20 
bk 6 It 75 
repeat 7 fd 2 It 5.5 

Figure 9.11: Modularity and Complexity in Naomi's Spider Machine 

Naomi's function machine like that of Laura and Courtney was based on a drawing of 
a face. It was therefore more complex than Liam and Jason's which simply had input 
and output boxes along with a central body. Like Laura and Courtney, she employed 
a considerable number of modules in her programming, and this modularity seems to 
be linked to her perceived complexity of the goal. However, the procedures 
themselves were more modular than those of Laura and Courtney in that they did not 
contain navigation commands. This increased modularity stemmed from her practice 
of using modules as a way of testing each component without repeatedly drawing the 
main body of the spider. So, ultimately both quantity of modular procedures together 

200 



with the degree of modularity could be attributed to her perceived complexity of the 

goal. 

9.2.1.2: Sub- and Super-procedures  

The extent to which students made use of sub- and super-procedures also seemed to 
differ according to how they perceived their goals. If the goal was seen as relatively 
complex, then there was a corresponding increase in structured programming and vice 
versa. Some students viewed super-procedures as a 'correct-up-to-here' facility. 
They thus employed them throughout their construction. Others preferred to run 
modules one by one from the menu, only combining them into a super-procedure at 
the end. In their case, naming the super-procedure was in effect announcing the 

completion of their task. 

In Boxer, sub-procedures can be physically inside the super-procedure. This means 
that the sub-procedure can only be accessed from within the super-procedure, i.e., it is 
local to it. It is doubtful if any of these young students appreciated the benefits of 
having local procedures, but some did place sub-procedures inside the super-
procedures. The following examples illustrate each of these various practices. 

Episode 1— Super-procedures and Perceived complexity of goal:  
The form of programming used by Joanna and Nico was at the opposite extreme to 
Naomi. Joanne's cardboard model for her function looked something like Figure 
9.12, but in drawing it in Boxer, the students decided to dispense with the top 'dome' 

part of the model and its inside 'bulb'. 

Guess 
my 

function 

Figure 9.12: Nico and Joanna's cardboard function model for 7x — 5  

They began by creating a procedure `rectan' to position and draw the main body of 
the number machine. Unlike every other set of students, they did not create sub- 
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procedures to draw the input and output arms. Rather, they included the commands to 
do this inside 'red', using line-by-line execution to check that they were obtaining 
their objective. At first, they used a single command to a line but as regularities 
began to become apparent, blocks of commands were grouped (Figure 9.13). They 
used the 'control-K' and 'control-Y' keys to copy and paste these groups of 
commands, i.e., a labour-saving device rather than elegance was the motivation. 

funmaz 

Imenu I 

E 
E 

I I reetan guess 
rt 90 
fd 50 
it 90 fd 25 
1t90 
fd 50 
rt 90 
fd 20 
rt 90 fd 50 lt 90 fd 25 lt 90 fd 50 
it 90 
fd 20 
rt 90 fd 50 lt 90 fd 25 
it 90 fd 50 
pu fd 150 pd fd 50 
It 90 fd 251t 90 fd 50 
rt 90 fd 20 rt 90 fd 50 It 90 fd 25 It 90 fd 50 
rt 90 fd 20 it 90 fd 501t 90 fd 25 lt90 fd 50  

	 } 

Figure 9.13: Joanna and Nico's Function Machine under construction 

Although the drawing was completed with little difficulty, it was noteworthy that they 
used very little structured programming in the process. These two students were the 
two most able of the case-study students, so it seems reasonable to ask why the 
programming techniques employed in drawing their function machine seem the least 

sophisticated? 

One answer may be found by reflecting on the way they dispensed with the 'non-
essential' parts of the cardboard model. They abstracted what seemed to matter. A 
speculative answer for their programming technique would be that they also 

input x 

x *7 -5 
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dispensed with sub-procedures etc. because they saw no need for them, the goal being 
perceived as simple to achieve. Boxer's facilities for line-by-line execution (and 
copying) enabled Joanna and Nico to overcome any immediate problems of 
programming in such a direct way. 

Episode 2 — Using un-named doit boxes as Super-procedures  
This example has been selected to show how Rosie and Chloe adopted a practice 
(possible in Boxer, but not Logo) of using unnamed doit boxes for super-procedures 
whilst the program was under construction. They used this to run and join sub-
procedures, naming the super-procedure when the task was complete. Their goal was 
to reproduce their cardboard function model in Boxer (Figure 9.14). 

Figure 9.14: Rosie and Chloe's cardboard function model for  X/2 + 3 

The girls began by creating an un-named doit box, in which they placed the 
commands to draw a square 'repeat 4 [fd 180 rt 90]'. This led to the drawing being to 
the right rather than about the centre of their graphics screen. They expressed the 
desire to begin their drawing to the bottom left of the central position, and I helped 

them create a 'start' module to do so. 

Next, they made a new module, which they called 'in', to draw one of the left-hand 
arms. They executed commands line-by-line from within 'in' and, following some 
experimentation until it was seen to work, appended it to the commands in the un-
named super-procedure (Figure 9.15). Id 60 It 90'. Then, having executed a 'ft 90' 

command, they used 'in' again to draw the top left-hand arm. 



function 7 I 

f7 (28.0 

15 

cs 
start 

repeat 4 fd 180 rt 90 
in 
rt 90 
in 
rt 180 pu fd 180 pd 
out 
rt 90 fd 60 It 90 
out 
in 
fd 60 
It 90 
fd 60 pu fd 20 pd 
stamp-hollow-circle 20 
pu bk 80 pd 

out  
fd 60 pu fd 20 pd 
stamp-hollow-circle 20 
pu bk 80 pd 

start 
pu 
setxy -100 -100 
pd 

n 

ROCLA 

!menu 

Figure 9.15: Rosie and Chloe's named sub-procedures 'in' and 'out' inside an un- 
named super-procedure 

With the left-hand arms of their number machine drawn, the girls set out about doing 
the same for the right-hand side. But first, they executed a line (`rt 180 pu fd 180 pd') 
in the super-procedure to move the turtle across to the right-hand side of the square. 
They created a new module 'out' to draw one of the right-hand arms, which they also 
repeated. Interestingly, 'out' in contrast to 'in' did not include navigation commands. 
Instead, these (`rt 90 fd 60 It 90') are part of the super procedure (un-named doit box) 
in which they were executing their program line-by-line. Later, when variables were 
used, they created new sub-procedures 'in! 'in2', 'outl' and 'out2'. When their 
super-procedure drew the whole of the number machine, they named it 'machine'. 

The use of sub-procedures for sub-components of the drawing was typical of the 

research overall, but I observed no consistent pattern as to whether these were placed 
inside the super-procedure or not. The manner in which this pair used the un-named 
super-procedure can be compared to the earlier use of a sub-procedure by Naomi. In 
each case, they were seen as a means to an end, i.e., as problem-solving tools. 
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Episode 3 — Named Super-procedures:  

This episode has been chosen to show how Sara and Natalie adopted a different 

strategy: that of naming their super-procedure from the start. Their goal was to draw 

their number machine 'Nintendo Gameboy' in Boxer (Figure 9.15). 

NINTENDO 

GAMEBOY 

Figure 9.16: Sara and Natalie's cardboard Nintendo Gameboy function model for 8x 
+ 94 

The girls began by creating a super-procedure, which they named `gameboy', to draw 

their number machine. Next, they created an internal doit box called 'red' which they 

then stepped through to obtain the main body of their machine (Figure 9.17). 

Figure 9.17: Sara and Natalie's named sub-procedure 'red' inside a named super- 
procedure `gameboy' 

Their next aim was to draw the four left-hand-side 'input boxes'. They created a 

module called 'square' inside `gameboy' to draw the first (bottom left-hand) square, 

appended the command 'square' to `gameboy' along with the navigation commands 

`ft 90 fd 60 It 90' and they repeated this until they had all four squares (Figure 9.18). 
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At this stage, they asked how they could make more screen space and I suggested that 

they put all their work inside a new doit box. They named this box `malcom-x' (sic). 

Figure 9.18: Sara and Natalie's developing use of structured programming 

The girls then moved the turtle across to the bottom right-hand corner, and tried to use 
`malcom-x' again, but it drew the four squares down and off the screen. Natalie saw 
that she could use still use `malcom-x' if she started at the top right-hand-side instead, 
and so she went back into `gameboy', amended the navigation commands, after which 
they ran the `gameboy' again. Later still, when there was a need to take account of 
the input and output variable values, they created a new sub-procedure `malcom-x2' 
for these right-hand output boxes. 

Sara and Natalie's approach to super-procedures was different to Rosie and Chloe's 
in that they named the super-procedure from the start and then executed it from the 
menu. It was also different in that they employed a super-procedure `malcom-x' 
inside another super-procedure `gameboy'. It was similar in that they saw the merits 
in re-using sub-procedures elsewhere, e.g., their use of `malcom-x' twice. It seems 
that they too saw super-procedures as problem solving tools. 
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9.2.2: Linking Programming and Number 

The final part of the construction process was concerned with making the graphic of 

the function machine operational. This entailed using variables and functions and it 

was through these that the programming activities were linked to the number 

activities. 

9.2.2.1: Variables 

The students' goal in constructing their function machines in Boxer was to draw a 

likeness of their cardboard models, including typing their numbers in the input and 

output boxes. Few of the students were able to make the move from specific inputs to 

using variables without help. I adopted two different approaches to intervention. The 

first approach was to wait until they had successfully drawn the function machine 

using the 'type' command for input and output numbers before intervening to suggest 

variables. The second was to intervene at an earlier stage to suggest that they use 

`type function 1', 'type function 2' etc. for the output numbers. My later intervention 

was to ask if they could now make their function machines work for any number. 

The first approach entailed adding an input line to the super-procedure, and replacing 

the specific inputs to the 'type' command with variables. For the output boxes, the 

students also needed to use their function on their variable, i.e., they needed to write 

something like 'type function x'. The following examples illustrate some of the 

students' responses. 

Sara and Natalie adapted `malcom-x' to include the line 'input numi num2 num3 

num4'. They changed the program so that 'type numl"type num2' type num3' and 

`type num4' replaced their specific inputs of 'type 10"type 3"type 2' and 'type 5' 

for the four input numbers in the left-hand-boxes. They then repeated this on the 

right-hand side also, but got the same numbers again and in the wrong order. Naomi 

chose legl leg2 leg3 and leg4 to depict her four input variables, but she thought that 

she could also get the output numbers by writing 'type leg5', 'type leg6' etc. 

With Laura and Courtney, the output 'typing' lines were written (at my instigation) as 

`type function 1', 'type function 2' and 'type function 3' from the start. When I asked 

them to change their function machine to handle other numbers. it became clear that 

the microworld as it stood was limited and all of the lines concerned with typing 

would have to be changed every time the numbers were changed. This provided the 
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motivation for the use of variable inputs which were now included in 'toe?, `toer,2' 
and 'gill'. I took a similar approach with Liam and Jason. 

Figure 9.19: Changing the Domain and Range for Liam and Jason's Function 
Machine 

Once the boys had achieved their goal of typing the numbers in all of the output 
boxes, I intervened to ask about varying the input numbers. 

Extract : 
Name 

'Tam:  
Jason: 

Liam: 

Jason: 

... yes, you change all these [points to the I Note the referencCiii 
1 numbers in the doit box 'six] 	 5 the 	m lines. 	_..4  

Say, You wanted this to be twelve [refers 1 Liam acting out the 
Ito the '13']. You delete [He does this]. 	role of teacher. 

I 
well

. 
[points to the line '1(-5 12'] 

  

Dialogue Commentary 

You know that you have just done this or Ponns to 6, 13 andel 
I six, thirteen and twenty-one. 	If you I in the input boxes. 
wanted to use other numbers, would you 

I 	know how to do that? 
Yeah,  you justlype,„____ 

ro . 

But, you have to change the bottomiiiiiiiTai refers to the need' 
to match the output 
with input, i.e., in this 
case `k-5 12' and 12. 
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Another pair, Joanna and Nico, had no difficulties in moving from specific numbers 
to variables. Nico said "Just, change the inputs." They changed the commands 'type 
8', 'type 9' and 'type 15' to 'type numl' , 'type num2' and 'type num3' respectively. 
Nico wrote the line 'type guess num3' etc. to correspond with the line 'type num3' 
showing that he understood the need to apply the function 'guess' for the output 

numbers. 

In this section, I have given an account of how students adapted their function 
machines to handle variables. The idea that their Boxer function machine could be 
made into a functioning machine was often a revelation for the students and it set the 
scene for the ensuing number investigations. Few of the students seemed to have any 

difficulties with the concept of variables. The difficulties that arose were primarily 
concerned with adapting the program for the output boxes to include their function. 
My approach (with Laura and Courtney, and Liam and Jason) of including the 
function with their specific values from the start proved the most successful in 

motivating the use of variables. 

Questions relating to the concept of function arose at two main points in the study: as 
the students expressed their function rule in Boxer, and after they had made the 
graphic of the number machine 'operational'. In the first case, the students needed to 
formalise their language "Times two and add one." etc. in order to express it in Boxer. 
In the second case, they became aware that their number machine (together with its 
rule) operated on a larger domain of numbers than those they had used on their 

cardboard models. 

9.2.2.2: Formalising functional expressions 

Episode 1— From Intuitive to Formal expressions for Functions:  
This first episode with Rosie and Chloe has been selected to illustrate how the Boxer 
formalism structured their expression of functions. 

Rosie and Chloe asked to 'do' their function machines in Boxer. My response was to 

inquire what their machines did. The girls fetched their cardboard models, and I 
helped them make the doit box 'function' (Figure 9.20) for Rosie's 'Times two and 
add one' function, which she had used with her cardboard model. They expressed this 
in Boxer as [number * + 
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Figure 9.20: Articulating informal algebraic expressions through Rosie and Chloe's 
function doit boxes  

The students decided to create a doit box for a new function 'f', which they spoke of 
as "Divide by point five and times by two." and which they expressed in Boxer as 
`[number / .5] * 2'. This seemed an unusual way to articulate a function which is 
algebraically equivalent to '4x', so I asked the girls what would happen if the function 
had an input of 7. Using a calculator, they keyed in the steps 7 ÷ .5 x 2 and obtained 
an output of 28. They then checked it by executing 1 7' from the menu. 

Within the medium of Boxer, the formalism `[number 1.5] * 2' directly articulated the 
function which the students wished to express. Of course, the need for unambiguous 
programming imposes a discipline which is not unique to Boxer. Tall (1983), for 
example, writes of similar difficulties in relating the formalism of algebra in BASIC 

to conventional pen-and paper algebra. However in Boxer, the students were not 
merely adopting a textual convention such as '(number /.5) * 2', they were writing 
directly into executable boxes. The doit box provided a 'functional' model for their 
expression in the same way that the '--=-2 symbol on a calculator does for numerical 
operations (diSessa, 1986b). 

Shuard and Rothery (1984) have observed how the translation of mathematical 
expressions from verbal to written form is not one-to-one. Thus, the 'Divide by point 
five and times by two' function in its verbal form clearly denotes priority: what is said 
first is done first. However, the written 'form x -:. .5 x 2' could be ambiguous. The 
Boxer expression `[number 1.5] * 2' contains no ambiguity: what is in the box is 
executed first. In this sense, doit boxes are 'operational' brackets. Even if the 
students had not inserted 'number /.5' in a doit box, there would still have been a 
significant difference between the Boxer expression 'number /.5 * 2' and the written 
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algebraic expression `x 4- .5 x 2' In the latter, students would face what Tall and 

Thomas (1991, p. 126) have termed the 'parsing obstacle', i, e., the need to unravel 

the sequence in which the algebra should be processed. In the former, they could 

learn how the computer prioritised such expressions by experimenting with key-

presses. 

Episode 2 — Detaching Signifier and Signified in functional expressions: 

This second episode illustrates how Liam and Jason in expressing functions in Boxer, 

could on the one hand attach meaning to functional and variable names and on the 

other hand detach the arbitrary nature of the names from the underlying concepts. 

Figure 9.21: Expressing functions through informal algebra with Liam and Jason's k- 
5 doit box  

Liam and Jason created a doit box called `1(-5' in which to put Jason's 'Times three. 

Take away five' function. They expressed this function in Boxer as 13 * button] - 5'. 

1-5' was then typed in the menu and tested it with an input of 6 (Figure 9.21). Whilst 

this expression mirrored the pen-and-paper convention, neither their function name 

`k--5' nor their variable name 'button' did. The fact that they chose to use such names 

demonstrated that they were aware of their arbitrary nature, but it also shows, I 

believe, how within the medium of Boxer, the concepts of function and variable were 

disassociated from their algebraic symbolism. 

In a pen-and-paper context, deciding which features of a function are essential and 

which are arbitrary may not be simple. Consider the following examples of functions 

which students encounter at later stages of mathematics. 
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(i) f:x ---1.2x + 1 , (ii) g:x --, 2x + 1 , (iii) f:t -w2t +1 , (iv) f:x ->i+1. 

The first three all represent the same function, but the formalism is different in each 

case. (i) and (ii) differ only in the name (letter) denoting the function. (i) and (iii) 

differ in the letter denoting the variable. (ii) and (iii) differ in both of these. Finally, 

(iv) uses the same names (letters) for the function and the variable as (i), but the 

function itself is different. 

Within the context of their function machine, students were able to visualise the 
concept of a function not simply as a letter f or g along with a rule, but rather as the 

name of a doit box which performed the function. Similarly, a variable was more 

than an 'x' on the page. It stood for what went into the function machine — a use 

stressed by the preceding word 'input'. Thus, Liam and Jason felt confident in 

choosing their own names: `button' number' etc. The evidence suggested that the 

Boxer function machine was giving students a means — 'a generic organiser' (Tall and 

Thomas, op cit., p. 132) of accessing a form of algebraic thinking, and as the 

following section relates, this was crucial to their subsequent visualisation of number. 

9.3: Interacting with the Boxer Function Machine 

This section documents the way that the Boxer function machine mediated students' 

expression of number, and tries to identify facets of the representation and the 

interaction which influenced this expression. It separates interactions into two 

categories according to whether the students were dealing with directed numbers, or 

with decimals, and in terms of the operations involved. It indicates how the content, 

methodology, and the students' construction of meaning were all structured by their 

interactions with these computational objects. 

9.3.1: Directed Numbers 

9.3.1.1: An Operational approach to Directed Numbers  

The semi-structured interviews (chapter 7) which hinted that these students found the 

idea of directed numbers unproblematic was confirmed in this part of the research. 

But, it also demonstrated that procedural misconceptions could co-exist with 

conceptual understanding. The episodes selected here illustrate how the medium 

enabled students to correct these misconceptions and to generate their own meanings. 
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Episode 1— Conceptual and Procedural Understanding 

This episode illustrates how the function machine enabled Naomi to overcome 

procedural misconceptions concerning directed numbers. 

Figure 9.22: Approaching Directed numbers through subtraction with Naomi's 
Function Machine 

Extract 1: 
Speaker Dialogue Commentary 

Interviewer: uppose you changed your 	nctioni The inputs were 1, 
machine into a take wa four machine. 	and 4. 

Naomi: 
	

Take way four? 

Interviewer: Yes. 

Any idea why you got those numbers? 

Because one take-away four is minus 1 
I three. If you've got one and you take i 
1 away one, you get nothing, and if you take i 
away more it goes into minus numbers.1 
After one, you get minus one, minus two, 
minus three, minus four, and  so on. 	i  

The next extract shows how Naomi gave a different formulation for the subtraction of 

directed numbers, as well as showing that my articulation left something to be 

Interviewer: 

Naomi: 

She changes the 
! function's expression 
1  to 	'hello - 4' 

Naomi runs 'spider 1 21 
3 4' from the menu 	I 
Points to -3, -2, -1, 01 
down the spider's 
output legs.  
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desired! In this case, I challenged her to find a function to map the input to the output 

numbers. 

Interviewer: 

Dialogue 	 TommenFary1 

Suppose instead of that, I wanted to end upl Reading down, thil 
with minus ten, minus eleven, minus inputs are 1, 2, 3 and 4. 
twelve, minus thirteen. 
You won't have minus ten, minus eleven, ; Naomi points down the 
minus twelve, minus thirteen like that screen and corrects 
though, because that's a smaller number '': me! 
[points at 1], so that will take up more 
minuses. 

Extract 2:  
Speaker 

Naomi: 

Naomi initially changed the function to 'hello - 15', and obtained -14, -13, -12 and 

-11 on her spider graphic. She observed that the output numbers differed in each case 

by one from the target numbers, and so she changed the function to 'hello - 16'. Re-

running 'spider 1 2 3 4', resulted in her spider displaying -15, -14, -13 and -12. 

Realising that she had adjusted the function in the wrong direction, she re-entered the 

function doit box, and finally changed the function to 'hello - 14'. 

This episode was typical in that it revealed that Naomi did not appear to have any 

difficulties with the idea of negative numbers, and moreover had a good conception 

of their relative sizes. Nevertheless, she had procedural misconceptions. The 

function machine supported both her conceptual and procedural understanding. In the 

former case, the operation inside the function machine was the means through which 

negative numbers came into being. Her description: " ... that will take up more 

minuses." seems to have stemmed from the way the function machine carried out 

successive subtractions such as 1 — 4, 2 — 4, 3 — 4, 4 — 4, and displaying the results 

down the screen. In the latter case, it enabled her to overcome her procedural 

misapprehension by allowing her to directly change the function's expression in the 

doit box and observe the consequences. It thus gave her the means to self-correct 

these initial misconceptions. 

Episode 2 — Directed Numbers as a Process:  

This episode has been selected both because it offers evidence that the operational 

nature of the function machine fostered what might be termed an 'operational' form 

of reasoning, and also because it demonstrates how Boxer enabled Joanna and Nico to 

formalise Nico's expression "Take away two lots of what you've got." 
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Figure 9.23: Approaching Directed Numbers through functions with Joanna and 
Nico's Function Machine 

In probing the students' conceptions of directed numbers, I began with a somewhat 

clumsy formulation of the intended question. The intention was for the students to 

find a function to map 1, 2 and 3 to -3, -2, and -1 respectively, i.e., x --> x - 4, but by 

expressing the negative numbers in descending order, it was interpreted to mean 

finding a function to map 1, 2 and 3 to -1, -2, and -3 in that order, i.e., x --> -x. On 

the other hand, this ambiguity opened up windows into the students' conceptions of 

numbers generally, e.g., Joanna's "You can't go under nought by dividing it." 

Extract 1:  
Dialogue 
	

1 Commentail—I 

Interviewer: Start at one, two and three here and end up , Points to input boxes. I 
with minus one minus two and minus  

Interviewer: 

Interviewer: 

Interviewer: 
Nico: 

Joanna: 

ico:  
Interviewer: 

three. 
You'll have to change your function Refers to the function 
machine. 	doit box.  
Divide b ten.  
What do  you think Joanna?  
You can't go under nought by dividing it. 
I agree.  
Taking away? 

 

 

T ce away the numberIoicieg-OE 
wouldyou do this in Boxer? 

e 	away two 
Oh, I see what you are saying. 
tw 

 
probably 

and atw minus 
ou

three. 	
 because x   I n  7  said minus one 

Well done! That's not what I ex t 
Wh 

Joanna: 
Interviewer: 

-ROW wis re ers to 1 --> - 
2 --> -2, 3 --> -3 	.al 

ot. 	A 
It' si Changes expression in i 

minus I 'function' to `x - 2*x' I 
and they, run it. 	i 

E 
ed.  

.1....  x2 lains•  
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My request for a function that mapped 1 2 and 3 to -1 -2 and -3 was ambiguous in its 
articulation. The function I expected the students to obtain was x --> x - 4, but 
Nico's: "Take away two lots of what you've got." was probably a better response to 
the question as formulated. In a pen-and-paper context, Nico's expression would 
translate as the function x --> x - 2x, and might seem an unusual way to write the 
function x --> -x. In this Boxer context, writing `x - 2*x' inside the 'function' doit 
box directly captured the students' informal expression without any loss of clarity. 

Joanna's response "You can't go under nought by dividing it." amounted to saying 
that for any positive numbers n and m, fri- > 0 . Whether this insight was a situated 

abstraction or more general is not clear. What is clear is that it is a non-trivial insight, 
and one which seemed to be engendered within the operational context of this 

microworld. These students were reasoning about directed numbers and not simply 

carrying out algorithms with them. Their number machine formed the core of this 
way of thinking since it was its operation that they were discussing. 

9,3.1.2: Relating Addition and Subtraction through Inverse Functions 

Although I have separated out subtraction and addition for the purpose of analysis, in 
the Boxer situation, one usually followed the other. Each of the following episodes 
came immediately after the students had succeeded in using subtraction to map 
positive whole numbers to negative numbers. I then reversed the formulation by 
asking them to find a function that would map negative whole numbers to positive 

whole numbers. 

Episode 1— Constructing Meaning for adding Directed Numbers:  
This episode has been selected to show how two girls Sara and Natalie, who had little 
knowledge of directed numbers, could nevertheless construct meaning for such 

quantities in the context of their Boxer function machine. 

Sara and Natalie were asked to predict what the function machine `x + 5' would do to 
inputs of -4, -3, -2, -1. Neither was able to answer. However, when the program was 
run and the numbers 1, 2, 3, and 4 were displayed, Natalie drew her finger from left to 
right across the graphic screen from the numbers in the input boxes to the numbers in 
the output boxes (Figure 9.24) and said: "You could do four add one is five, three add 
two is five, two add three is five, one add four is five." This observation amounts to a 
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Sara: 	1 [To Natalie] You were going down and I Refers to order of dealing 

I was going up. 	 i  with -4, -3, -2, -1. 

741 

Figure 9.24: Approaching Directed Numbers through inverse functions with Sara and 
Natalie's Function Machine 

It is not only the proffered solution that is situated, but the whole exchange. My 

question, for example, in a pen-and-paper setting could be expressed simply as '5 - 4', 

`5 - 3' etc. This would undoubtedly summon up the subtraction algorithm, whereas 

`-4 + 5', '-3 + 5' etc. would possibly cause a search for some other number 'facts'. 

Likewise, the students' discovery of a pattern between input and output numbers was 

structured by the situation. It would, of course, be possible to find such patterns with 

a conventional 'arrow' diagram, but then directed numbers are seldom introduced in 

this way. A little later, I asked the girls to predict how the functions x --> x + 10 and 

x --> x + 20 would behave with the same inputs of -4, -3, -2, -1. 

Extract 1:  
Speaker ------T 	 Dialogue 	 V— 	Commentary 

Interviewer: Let's change that to ten so we have a Sara changes the function 
plus ten there. Now before we do it, to `x + 10'. 
what do  you  think? 	  

Sara: 	Six, seven, eight, nine. 	 I Both point to the output 
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In interacting with the visual trace of their number machine's action, the girls were 

able to formulate a rule about how addition affected negative numbers. But, in the 

course of the dialogue, something else happened. We became aware of our 

predilection for listing these quantities in the opposite way to their positive 

counterparts. It seemed natural, for example, to say minus one, minus two, minus 

three etc. Yet in doing so, we were counting down rather than up. This can be seen in 

the menu command `gameboy -1 -2 -3 -4' above. 

Episode 2 — Connecting directed numbers through Functions:  

This episode has been chosen to show how the number machine setting pre-disposed 

Liam and Jason to search for a function as a way of building connections between 

directed numbers. 

mike 

Figure 9.25: Approaching Directed Numbers through functions with Liam and 
Jason's Function Machine 

Dialogue -- 'Coniinentary 
Extract 1:  

Name 

Interviewer: Suppose this time you ve got minus one, J 	The function was: 
minus two and minus three going in. And -1 --> 2 
coming out is two, one, zero. 	 -2 --> 1 

-3 --> 0 
Liam: 
Jason: 

Both: 
Jason: 
Liam: 

Take away one. 
Take away three. Get rid of . . . 

They run 11 button] - 3' and Ft -4, - 
How do you do nothing? 
Nought. 

Points inside 1-5' doit 
I box. 

4 

They run 
* button] -3' and get 

-3, -3, -3 
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Why do you want add? Jason: 

Jason: 	Oh es, now I see. It's add. 

you think is I 

equals minus 3 Liam realises that lx1 was 
ettin big er. 

Liam: 
Jason: 
Jason: 
Interviewer: 

Liam: 

Minus one take away three . . 
. . . minus four.  
It's still not right.  
Perhaps you could say what 
wrong: 	 
Minus one take away three 
four. It's an add! 

Points to + key.  
They run 'button + 
and get 2, 1,0  

!Gestures towards screen. 

The boys' first attempt led them to create the function `[1 * button] - 3' and instead of 

getting 2, 1 and 0 from their input numbers of -1, -2 and -3, they obtained -4, -5, -6. 

This didn't deter them, and they immediately tried the function 10 * button] -3', and 

got outputs of -3, -3, -3. Unfortunately, they used -3 instead of - 3 and so when they 

tried other coefficients of the variable in the doit box, they continued to obtain the 

screen trace of -3, -3, -3. Nevertheless, this provoked Liam to consider afresh the 

effect of subtracting 3 from -1, and hence prompted him to exclaim: "It's an add." 

Jason was running a little behind Liam at this point, but he too seemed to have seen 

why the function was 'an add'. 

Some evidence for this could be gleaned from my follow-up question, in which I 

asked the boys to predict the effect of having an 'add two' machine (again with inputs 

of -1, -2 and -3). The students answered immediately and together "One, zero and 

minus one". Thus, while their initial attempts at finding a function to map -1, -2, and 

-3 to 2, 1, and 0 were incorrect, through their interactions with the function, they 

began to see how their solution differed from what they expected and this visual 

feedback ultimately gave them sufficient clues to create the desired function. 

In pen-and-paper settings, the equivalent algebraic expressions to Liam and Jason's 

initial attempts might appear as lx - 3 and Ox - 3. It is perhaps more likely that they 

would appear as x - 3, and -3 respectively. But, these symbolic shortcuts cut out a 

stage of expression that many students need to go through, i.e., the recognition for 

themselves that lx = x and Ox = 0. Boxer's formalisations for functions constitutes an 

operational algebra in that the students could see the effect of the expression by 

running it, and it was this which seemed to have given the students the extra prop for 

supporting their thinking. 

Liam: 
Jason: 

Interviewer: Okay ...  
How  do I do add though? 

--It's that one. 
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93.2: Decimals 

9.3.2.1: An operational approach to Decimals 

The findings from the semi-structured interviews (Chapter 7) suggested that, while 

students did not naturally use either directed numbers or decimals, contexts could be 

found which provoked the use of the former. In the latter case however, similar 

contexts very often elicited the use of fractions rather than decimal expressions. It 

appeared from the evidence obtained that, for these young students, fractions 

construed an action-based (operational) conception of number, i.e., a quarter of a 

whole, or a tenth of a whole, whereas symbols such as 0.25 or 0.1 conveyed no such 

meaning. Two episodes have been chosen to illustrate how in interacting with their 

Boxer function machine, students began to construct such meaning. 

Episode 1— Building bridges between informal and formal expressions for Decimals 

This episode has been selected to show how Liam and Jason were able to attribute 

meaning to decimals by directly relating them to the expressions inside their `1(-5' 

function doit box. 

mike 

I k-5 
	 make I 	rlive 1 	I life I 

input button  
Ibutton * -0.2 I 

i 

Figure 9.26: Approaching Decimals through functions with Liam and Jason's 
Function Machine 

The boys were challenged to find a function that would map 1, 2, 3 to 0.1, 0.2, 0.3 in 

that order. Jason said: "Take away nought point two." They entered the k-5 doit box 

to alter the function to 'button - 0.2'. Instead, they wrote 'button * -0.2'. They forgot 
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lam: 
nterviewer: 

to delete the multiplication symbol `4" (left over from a previous function) and they 

wrote `-0.2' for `- 0.2'. So, on running it, they multiplied by -0.2. 

Extract 1:  
Name 

Interviewer: -This time, [points toeaCEOTifiFoutputs 
in turn] I'd like nought point one, nought! 

Commentary 

The challenge was to 
find a function to map: 

I point two, nought point three coming 1 ---> 0.1 
out. How do you think you are going to 2 ---> 0.2 
do that? 3 ---> 0.3 
Take way nought point two. [They run 
this] 
Times nought point one. See-if I havel 

'-Jason: 

Liam: 

'-Jason: 
Interviewer: 

I done it right. 	 
1 It's ettin there. 

You are doing two things ... 

I point-out that they have 
multiplied by -0.2. 

-- 

Both Jason and I point 
into the doit box at the 
function. 

Jason: 
Liam: 

Get rid of the minus. 1 
I've done it.  

 

 

There are several noteworthy features of this exchange. Jason's "Take away nought 

point two." suggests that, at the beginning of this episode, the boys did not have a 

well developed knowledge of a functional relationship between the whole numbers 1, 

2, 3 and the decimals 0.1, 0.2, 0.3. The error itself and its consequences were both 

rooted in the function's expression in the 'k-5' doit box. The expression in the doit 

box was 'button * -0.2' rather than 'button – 0.2' as the boys had intended. The 

screen trace of -0.2, -0.4 and -0.6 enabled the boys to exploit their mistake first in 

changing the function's expression to 'button * -0.1' and then to 'button * 0.1'. They 

did not seem to find it surprising that multiplication by 0.1 resulted in a smaller 

number. 

Of course, there was a degree of serendipity in their choice of multiplication by 0.1, 

and I intervened at this point to probe the meaning which they attached to 0.1. 

Extract 2:  
Name 

         

         

 

Dialogue 

   

Commentary 

 

          

          

Interviewer: You've used the function to change one to 
!nought point one, two to nought point two, 

three to nought point three. But what have 
you actually done? Why does it work?  
`cause times int one is i s int one.  
That s circu ar. It s oesn t tell me much. 
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Points at nction-
machine. 

Why shad—rib-int oneiirtwo give you 
int two? 

Liam: 	I It's se int one. 
Okay. A better question then. What is  
nought point one? 
It's less 	than one. 
Well that's true. If you had a bar of 
chocolate and I asked you to split it up so 
that everyone got point one of it, what 
would you be doing? 	 
Taking a hundredth of it. A thousandth'? A  
thousandth of a millionth?  

'What do you think, Jason'? 
1  A tenth of one.  

Interviewer: 

Liam:—  
Interviewer: 

iam: 

Interviewer: 
Liam: 

Doesn't answer. 

This was a fairly typical extract in that the initial utterances were often quite wild 

indicating that the meaning which the students attached to symbols such as 0.1, 0.01 

etc. were not yet stable. But the final phrasing of Liam's answer "A tenth of one." for 

0.1 was also typical. It seems to be derived from the fact that they could see the 

Boxer expression 'button / 10.0' inside the 1-5' doit box in front of them. 

Following this exchange, I (perhaps unwisely) drew attention to the equivalence of 

multiplication by 0.1 and division by 10. The boys were then successively challenged 

to find functions which (with the same inputs of 1, 2 and 3) led to 0.01, 0.02, 0.03 and 

then 0.001, 0.002, and 0.003 respectively. I then probed the meaning they attached to 

the decimal fractions. 

Extract 3:  

 

Dialogue Commentary 

     

That's one-hundredth, two-hundredths,1 Points to 0.01, 0.02, 0.03 
three-hundredths. 	 in the output boxes  

y are you saying one-hun&edth, two I 
-hundredths, three-hundredths?  
In one hundred, there are three digits, 
and there's three digits there.  
Okay, that's one explanation, but [points to 0.01 in the 
suppose I said what's the connection output box] 
between this and your function machine?  
It's divided by a thousand. I mean one 

Liam's ways of linking 0.01 with 100 were not idiosyncratic to him. A number of 

other students discovered this same pattern or 'backward rule', i.e., division of 1 by 

10 led to 0.1 (ten backwards); division of 1 by 100 led to 0.01 (a hundred backwards) 

Liam: 

Interviewer: 

Liam: 

Interviewer: 

Liam: 
	 1  hundred. 
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spider r-eye I nose mout 
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hello / 0.1 

cs 
spider 1 2 3 4 I 

(ctrl-s-key 1-eye 

and so on. Boxer was mediating the students' expressions in that they were relating 

the Boxer formalisation 'button / 10.0' in the function doit box to the display 0.1 on 

the graphic number machine. This was not as straightforward as it seems since we 

were expressing functions as 'button / 10.0' rather than 'button / 10', and it thus 

required recognition of the equality of 10 and 10.0. 

On the other hand, Liam's description of 0.01 as "Its [one] divided by a hundred." 

was also common. This articulation was also rooted in the medium. Rather than 

using the conventional description of 0.01 as 'one hundredth', it was expressed as 

"One divided by a hundred." Like many of the other students, Liam appeared to be 

making direct links between the decimal '0.01' and the function's expression 'button / 

100.0' which generated it. In this sense, the function machine gave him a way of 

conferring an action-based meaning onto decimals comparable to the meanings they 

already attached to certain fractions (chapter 7). 

Episode 2 — Constructing meaning for Decimals:  

This episode has been selected to show how Naomi's initial attempts to link whole 

numbers and decimals were somewhat confused and how, in interacting with her 

Boxer function machine, she began to construct meaning for decimal quantities. 

naomi-function  
menu 

Figure 9.27: Approaching Decimals through division with Naomi's Function 
Machine 
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Interviewer: Suppose over here that I wanted nought 
point one, nought point two, nought 
point three and nought point four, could 

	 you find a function that might do that?  
Naomi: 	I Nought point one, nought point two, 

nought point three ... [starts to change 
function] 

Points to the output legs of 
the spider. 

She changes the 'function' 
doit box to 'hello / 0.10' 
and gets out 10.0, 20.0, 
30.0 and 40.0. 

I began by setting Naomi the task of finding a function, that would map 1, 2, 3, and 4 

to 0.1, 0.2, 0.3, and 0.4 respectively. 

Extract 1:  
' Speaker Dialogue 	 1 

 

Commentary 

 

Interyieweitcloyout  think ink ha ened? 
Naomi: 	I I put ... No wait a minute. Let me try She now changes the 

I again. 	 'function' doit box to 
	 1 	 _ 	Bello / 0.1'. 

i-- Naomi: 	How did it manage to do that againiRefer s to the same output 
I "numbers 	 

Naomi: 	1 Ah I know. Point oh one. 	 She changes the `functionr 
1 doit box to 'hello / 0.01'  

Naomi: 	Oh gosh. Its  getting worse. 
Naomi: 	Wait a minute! I know. Its probably Changes 'function 	to 

going to get even worse. 	 'hello / 10' and then to 
	i  'hello / 10.0'. 	 

In this episode, Naomi's efforts to find a function to map 1, 2, 3, 4 to 0.1, 0.2, 0.3, 0.4 

led her to divide by 0.10, then 0.1, then 0.01 and finally 10. Her first two attempts 

yielded outputs of 10.0, 20.0, 30.0 and 40.0, and reveal her puzzlement at obtaining 

the same answers for 0.10 and 0.1. Naomi clearly thought that these were different 

quantities at this point. Her next attempt using 0.01 produced a 'worse' answer, but 

nevertheless seemed to provide her with a clues to her final — and correct — strategy of 

dividing by 10. 

The next extract show how Naomi was asked not merely to find a function which 

would map 1, 2, 3, 4 to 0.01, 0.02, 0.03, 0.04 but to justify it as if explaining to a 

younger child. 

Extract 2:  
Speaker 

  

_____ 
Dialogue 	 : , , Commentary , 

j 
Could you change your function so that The input numbers were 
what you get out is nought point nought 1, 2, 3, 4. 
one, nought point nought two, nought 
point nought three and nought point 
nought four? 

  

      

Interviewer: 
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Maybe. 

Do ou understand what has happened? 
Yes, because a tenth is one tenth of a 
hundredth [stops here as she realises her 
account is 
Suppose you were trying to explain to 
someone what your machine does, what 
would you say? 
It's dividing by one hundred.  
Suppose someone — maybe in a younger 
class — came along to you and said "What 
do those numbers mean?"  
These are whole numbers and these are 
zero point one and [stops] point zero one 
[hesitates]. Part of the number is whole 
[stops]. There's like a tiny little bit at the 
end of the number. It's hardly a number 
at all. 

know. One hundredth. 

Speaker Dialogue 

Interviewer:  Suppose I said I wanted one thousandth, i 
two thousandths, three thousandths, and 
four thousandths, but as decimals, could! 
you do that? 	 i  

1■Tabi 	You' it Nit liaTeTO add another nought I 
onto there. 

Naomi: 	You get more and more noughts after 
there. If you wanted to get a millionth, 
you'd divide  it by a million. 

Naomi 

Interviewer: 
Naomi: 

Interviewer: 

Naomi: 
Interviewer: 

Naomi: 

Naomi: 

hµe cnanged the unction 
to 'hello / 100.0' and ran 
`spider 1 2 3 4'. 

[She may be trying to 
say that one tenth of a 
tenth is a hundredth]. 

Points to 0.01, 0.02,1 
0.03, 0.04 in the spider's 
output legs.  
Points to lett hand legs. I 

Points to output leg of  
1  the spider with 0.01 in it.  

Naomi's initial articulation : "There's like a tiny little bit at the end of the number. 

It's hardly a number at all." typifies the struggle which young students have in 

conceptualising decimal quantities. Her later identification of 0.01, 0.02, 0.03, and 

0.04 with one hundredth, two hundredths, three hundredths etc. seemed to have been 

directly related to her interactions with the function machine. Moreover, it marked a 

key instance in her developing sense of decimal numbers. From this point on, she 

seemed to be able to generalise her discovery. 

Extract 3: 
Commentary 

Points in turn to 0.01 
0.02, 0.03, 0.04 in the 
output legs of the spider. 

Points to the line 
`hello/100.0' in the! 
function doit box and i 
changes 	it 	to 1 
`hello/1000.0' 	1 
Faints to output numberil 
0.001, 0.002, 0.003,1 
0.004. 	 i 
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These extracts illustrate how Naomi set about creating functions to map 1, 2, 3, and 4 

to decimals such as 0.01, 0.02, 0.03, and 0.04. To do so, she needed to go inside the 

program 'function' doit box. Initially, her choices led her in the opposite direction. 

However, from the trace on the machine's graphic, she was able to create functions 

that not only gave her the desired mapping, but also gave her an operational means of 

generalising the relationship between whole numbers and decimals. The Boxer 

formalisation seems to have structured Naomi's expression of decimals in that she 

articulated them in terms of operation in the doit box. 

9.3.2.2: Multiplication as the Inverse of Division  

Although I have separated out division and multiplication for the purpose of analysis, 

in the Boxer situation, one usually followed the other. Each of the following episodes 

came immediately after the students had succeeded in using division to map whole 

numbers to decimals. I then reversed the formulation by asking them to fmd a 

function that would map decimal to whole numbers. 

Episode 1— Linking multiplication and division through reverse patterns  

This episode illustrates how Sara and Natalie related the inverse nature of 

multiplication and division through a reverse pattern in the way the Boxer graphic 

displayed decimal expressions. 

tY 

menu 

0.4 

0.3 

0.2 

4.0 

NINTENDO 

GAMEBOY 3.0 

  

functio 

       

gameboyl 

 

     

start 

    

           

  

input x 

         

  

x *10 

         

            

            

            

            

Figure 9.28: Relating Decimals through inverse functions with Sara and Natalie's 
Function Machine 
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it round there. Points to the menu ox, 
where the inputs of 1, 2, 
3, 4 have been changed 
to 0.1, 0.2, 0.3, 0.4. 

am: 	ou chang 

Following an episode in which I asked the girls about the relationship between whole 
numbers and decimals, and which involved the use of division, I now asked the girls 
about functions involving multiplication. 

Extract 1:  
Speaker Dialogue 

Let's change those numbers to nought 
point one, nought point two, nought point 
three, nought point four. Change the 
function to times ten.  
Nought point forty, nought point thirty. 
[Anticipates question] 

Interviewer_ Try it and see_ 
Sara: 	Backwards. 

Interviewer 	war s. -Wh do think t iat is? 

Commentary 

Interviewer: 
1 
t 

Natalie: 

Sara changes the inputs 
to 0.1, 0.2, 0.3, 0.4, and 
the function to `x * 10'. 

Points to output boxes 
on screen. 

Refers to pattern: 
0.1 --> 1.0, 0.2--> 2.0, 
0.3 --> 3.0, 0.4 --> 4.0 

My motivation, in reversing the operations along with the input/output numbers, was 
to investigate whether the function machine would pre-dispose Sara and Natalie to 
seeing the connection between division and multiplication. The girl's identification of 
a 'backwards' pattern of the form 0.1 --> 1.0, 0.2--> 2.0, 0.3 --> 3.0, 0.4 --> 4.0 was 
something I was not even aware of (Figure 9.28). But, it was probably the most 
obvious visual connection between the numbers. My focus was on the functions as 
objects. Their focus was on the functions as processes. The next extract reinforces 
this contention. 

Extract 2: 
Speaker Dialogue Commentary 

  

   

Interviewer: Any idea what will happen? 	Changes the inputs to 0.01, 
0.02, 0.03, 0.04 and the 

I function to x --> x * 100.  
Points to inputs and output"' 

I boxes, and indicates that the 
'numbers will be reversed. 
They ruri—ii—ariTieelil 
works. 

e earlier 
operations of division and 
multiplication by 10. 

Natalie: 	That will be there. That will be there. 
1 That will be there. 

kay. You are saying that they re all 
going to be reversed. Why did you 
sassy that Natalie?  

ecause when we did it before, that s 
what happened. 
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Interviewer: Suppose someone said to you 'You 
times point oh one by a hundred and 
lyoujet out one. Wl...._aisthat? 

Natalie: 	;Because it's underneath. 	It's at 
1 hundred underneath one. 

The students again identified a 'backward' pattern in multiplying by 100, i.e., they 
saw the links 0.01 --> 1.00, 0.02--> 2.00, 0.03 --> 3.00, 0.04 --> 4.00. In fact, this 
pattern arose because of the way the prototype version of Boxer handled decimals at 
that time. As pointed out in chapter 2, visualisation can be misleading as well as an 
aid to learning, and in this case, the visual feedback seemed to be pre-disposing them 
towards a syntactical rule. On the other hand, Natalie's explanation: "Because it's 
underneath. It's a hundred underneath one." to account for the effect of multiplying 
0.01 by 100 suggested an operational rationale. Her expression indicated that she was 
relating 0.01 back to the Boxer formalisation `x / 100.0' inside the 'function' doit box. 

Episode 2 — Inverse functions as a way of conferring meaning 
This episode illustrates how in the Boxer function machine context, Liam and Jason 
were able to attribute meaning to decimals by relating them to the inverse nature of 
multiplication and division. 

Figure 9.29: Relating Decimals through inverse functions with Liam and Jason's 
Function Machine 

In using their function machine to express division, Liam and Jason like several other 
students discovered the so-called 'backward' rule. One way of probing whether they 
were simply acquiring a syntactical rule was by reversing the question formulation. I 
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now tried this. Liam and Jason were challenged to construct a function which, with 

inputs of 0.01, 0.02, and 0.03, gave outputs of 1, 2 and 3. 

Extract 1:  
Name 	 Dialogue 

Interviewer: Suppose instead of having nought point 
nought one coming out, we had nought 
point nou ht one oin_a in ... 

Jason: 	1... and, you had 1. coming out. 

'Commentary 1 

Points from output tol 
input boxes on number 

_machine 
Also points to number 

Interviewer: 

Jason: 

Both: 

machine. 
1 That's what I was going to ask you. I was 
I going to ask you to try and get one, two 
and 	three coming 	out. 	 1 
Change that. 

Change inputs to 0.01, 0.02 and 0.03, 
change the function inside `k-5' from 
`button / 100.0' to the function 'button * 
100.0' and run it. 	 1 	 1 

Points inside `1(-5' to 
the function: 'button /1 
100.0'  
Here, the boys are 1 
`running ahead' of me! 1 

There are different ways that this episode could be interpreted. It may have been that, 

by pointing at the numbers 0.01, 0.02 and 0.03 in the output boxes and then saying I 

wanted them in the input boxes, I had predisposed the boys to reversing the operation. 

On the other hand, I didn't expect them to immediately know that multiplying by a 

hundred was the inverse of dividing by a hundred. It is, of course, possible to find a 

function to map 0.01, 0.02 and 0.03 onto 1, 2 and 3 without knowing this. However, 

the evidence does seem to point to the Boxer function doit box 1-5' as being critical 

in making this link. 

Extract 2: 
Name Dialogue Commentary 

   

Interviewer: Suppose Denise came back and said "Right, 
Liam and Jason. Why is a hundred times 

, nou ht oint oh one ual to one?" 
Liam: 	Because nought point oh one is a hundredth 

of one. So if you times nought point oh one 
by a hundred,  you  just  get one.  

Interviewer: 1 What about the next one? 
--rraa------tr you divide two by a undr , you get 

Lioupptpointohtwo. 

Denise was the year 
6 teacher. 

Inverse relationship. 

Note the rephrasing. 

The phrasing in Liam's first utterance suggests that the Boxer function machine 

together with the Boxer function `1(-5' have given him a means of ascribing meaning 
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to decimals such as 0.01. A 'hundredth of one' contains an action-based derivation 

unlike say 'one hundredth'. His later expressions "So if you times it by a hundred, 

you just get one." and "If you divide two by a hundred, you'll get nought point oh 

two." suggest that his situated knowledge is underpinned by a functional connection 

in each direction, i.e., from whole numbers to decimals and from decimals to whole 

numbers. 

In interacting with the Boxer function machine, the students had used the function 

doit box as a way of mapping whole numbers to decimals and vice versa. It would 

appear that in doing so, they had begun to recognise the inverse relationship between 

these two operations, and this gave them the explanatory power for describing the 

number concepts themselves. 

9.4: Conclusions and Implications for Research 

This chapter has analysed the Boxer function machine study. It has shown how a 

project that had previously been undertaken with conventional classroom resources, 

was greatly enriched by its re-construction in the medium of Boxer. It has 

demonstrated how students deployed programming ideas introduced in an earlier 

phase of the research and developed them in ways that differed from what is known 

on the basis of existing Logo-based research. It has also shown how the Boxer 

function machine representation mediated students' expressions of number in ways 

that were significantly different from pen-and-paper representations. 

9.4.1: Programming Findings 

In one way, the data supports previous Logo research, but in other ways, it is radically 

different. It supports Hoyles and Sutherland's (1989) finding that students were more 

likely to employ structured programming when engaged in well-defined abstract 

goals. Likewise, it supports their contention that the use of such programming 

techniques was directly related to their usefulness as problem solving tools. 

On the other hand, the results of the function machine study extends and challenges 

those findings in the context of Boxer. It suggests that the uptake of structured 

programming by the Boxer students stemmed not only from the abstract nature of the 

goal, but also from the perceived complexity of the goal. It provides evidence that the 

Boxer students were far more likely to employ sub-procedures and modular 

programming than their Logo counterparts, and it suggests the more sophisticated 
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programming employed by these students emanated from the structure of Boxer itself. 
Modular programming and super-procedures appeared to be used more frequently in 
Boxer than Logo because the design of Boxer (editor and workspace combined; line 
execution and box execution; boxes as containers for programs; naming of boxes etc.) 
made them more effective problem solving tools. 

Modularity  
In Logo, modularity is frequently contrasted to 'direct drive'. Defining a procedure 
implies waiting until it is finished in order to test it as a whole, the advantage being 
that if it does not work, there is no need to write all of it again. On the other hand, it 
usually means entering an editor mode and thus, to see the result of executing each 
line as it is written, would necessitate an inordinate (and confusing) degree of 
movement between modes. Not surprisingly, many students go for instant feedback 
by staying in the workspace and running their program line-by-line. The problem 
with this form of programming, of course, is that if something should go wrong, the 
programmer must begin again, i.e., there is no simple way of collecting together these 
commands to form a procedure. 

In Boxer, the distinction between editor mode and workspace is removed. The system 
is always in 'editor' mode. Programs can be executed line-by-line and then combined 
to form a procedure. In this research, these Boxer facilities directly influenced the 
way the students programmed. The students frequently adopted line-by-line 
execution as a way of programming, but, because these lines were inside doit boxes, 
they were being combined into procedures as they were being written. So, the 
students were getting the best of both worlds: the instant feedback of direct 
programming together with procedures that collected all that had been done so far. 

Of course, there is more to modularity than its opposition to direct drive. One of these 
is the notion that if modules are independent, they can be used elsewhere. Another is 
the advantage of this form of programming as a means of locating bugs. Virtually all 
of the students created modules in the course of their function machine programming. 
The Boxer doit box as a visual container for programs together with Boxer's manner 

of naming programs (a name-tag attached to the box) led to students identifying 
programs with different parts of the function machine drawings (e.g., Naomi's '1-eye', 
`r-eye', 'nose' etc., Liam and Jason's 'make', 'live', 'fife' etc.). But, these were not 
necessarily completely independent. 
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The students' use of line-by-line and box execution allowed them to overcome bugs as 
the program was being written, rather than afterwards. But, in some ways, this 
mitigated against their adoption of a strictly modular way of programming, since they 
were able to overcome the disadvantages of including 'navigation' commands within 
modules (e.g., Courtney and Laura) by running the box again and altering the 
navigation commands. It would probably be truer to say that the students used a 
semi-modular way of programming. 

Sub- and super-procedures 
One of the advantages of using sub- and super-procedures is that it permits the 
construction of complex programs out of simpler ones. This seemed to have been 
appreciated by the students in this study, but the extent to which they made use of 
these techniques again depended on their perceived complexity of the goals. Joanna 
and Nico, perhaps the most accomplished of these novice programmers, drew the 
whole of their function machine with a single procedure 'red'. It seemed that for 

them the task did not warrant the need for structured programming. 

Most students however, viewed super-procedures as a 'correct-up-to-here' facility, 
and employed them throughout their construction. Certain distinct approaches were 
observed. Super-procedures, either in the form of un-named doit or named doit 
boxes, were built up by running modules along with 'joining' commands from within 
the box. Bugs were overcome by correcting the last line run and then executing the 
whole super-procedure in situ, in the case of the un-named doit box (Figure 9.30a); or 
from the menu, in the case of the named doit box. Rosie and Chloe, Sara and Natalie, 
and Naomi programmed like this. Some students (Sara and Natalie for example) 
placed their sub-procedure doit boxes inside the super-procedure doit boxes (Figure 
9.30b), but most students chose not to. The disadvantage of programming like this 
was that it used up a lot of space down the screen. The advantage was that the 
programs were 'local' to that super-procedure. It seemed that the students appreciated 

the former but not the latter. 

Other students used the menu as a kind of half-way house in that they built up super-
procedures by running each module from there. Courtney and Laura, and Liam and 
Jason worked like this. In the case of the two girls, the modules were combined in a 
named super-procedure only at the very end. This was done as a labour saving device 
as they tired of executing the modules on-by-one from the menu (Figure 9.30c). The 
two boys however combined the modules by successively joining them on a single 
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line in the menu (Figure 9.30d). At first, they had 'Cs make', then once 'live' was 
tested, 'Cs make live' and so on. Thus, it can be seen that Boxer permitted a flexible 
approach to building super-procedures. 

square 
rt 90 fd 60 It 90 
square 
rt 90 fd 60 lt 90 
square 
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square 

(a) 

Figure 9.30: Ways of constructing super-procedures in Boxer 

Variables and Functions 
Variables played a significant role in the function machine study, both in terms of 
making the graphic functional and in the subsequent activities. Previous research 
(Noss, 1985; Sutherland, 1988; Hillel, 1992) had shown how the concept of variable 
can derive meaning from its use with Logo. However, even within Logo settings, 
there are degrees of abstraction. At one level, variables may 'stand for' the side of a 
square, or the angle of a turn. These have physical referents. The variables in the 
function machine study were more abstract entities in that they stood for inputs to 
functions, and as such they were much closer to the notion of variable as used in 
algebra generally. 

With the cardboard models, the students did not express their functions in algebraic 
form, but rather in 'rhetorical' fashion (Boyer, 1968). For example, Sara's function 

was originally expressed as a "times 8 add 94" machine. In re-creating their function 
machines in Boxer, they needed to re-express their informal expressions into the 
formal language of Boxer. This resulted in expressions which appeared non-standard 
in comparison to pen-and-paper algebra. Sara now expressed her function as 
`[number * 8] + 94'2  while Nico's "Take away two lots of what you've got." was 
expressed as `x — 2 * x' and Jason's "Times one and take away three" was re-stated as 

* x] - 3'. The medium enabled them to articulate their informal expressions. 

2  It is interesting to relate that this 'syncopated algebra' (Boyer, op cit.) also minors an intermediate 
stage in the historical evolution of algebra, between the rhetorical and the symbolic, in which words 
and symbols were combined. 
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Moreover, these Boxer expressions constituted an operational algebra: they could run 

them to check that they worked. 

Unlike earlier Logo studies (Leron and Zazkis, 1986; Sutherland, 1988), functions and 

variables were not the subject of the research per se. Nevertheless, it can be claimed 

that through using functions in their study of numbers, students were picking up many 

of the essential properties of the function concept. Within Boxer, they were able to 

detach signified from signifier. Different names for variables were used (`button', 

`number' etc.) and different names for the function itself (`function', 1-5' etc.). The 

equivalence of functions was recognised and there was some linking of functions with 

their inverses. The range of numbers which the function operated on was also 

extended to include decimals and directed numbers. 

9.4.2: Number Fmdings 

The interplay between graphic and program was intimately connected. Both were 

visual, and both were close to each other in a physical as well as a metaphoric sense. 

At times, we found ourselves using the description 'function machine' to refer to the 

graphic, yet at other times, using it to refer to the program. The content, pedagogy, 

and the students' construction of meaning were all structured by this interplay. 

The content was not 'directed numbers' nor 'decimals' much less sub-categories of 

these such as 'adding directed numbers' or 'multiplying decimals' as is often the case. 

Rather, the subject of enquiry was the function machine itself and how it behaved 

over a range of numbers. I did not teach nor ask students to subtract or add directed 

numbers nor did I ask them to multiply or divide decimals. Instead, I invited them to 

find functions that mapped one set of numbers to another, or I asked them to predict 

the effects of applying certain functions to numbers. Moreover, they were asked to 

account for that behaviour. 

The students' ability to work proficiently within the medium with directed numbers 

and decimals was in marked contrast to research findings with traditional media 

(chapter 2). The findings reported in this chapter were selected to illustrate how the 

function machine supported their construction of meaning. In doing so, I have chosen 

a worse-case scenario, i.e., the examples show what happened when things went 

wrong, when meaning was not clear etc. As stated above, I adopted a holistic 

approach to number, but for clarity of analysis, the findings are presented under the 

headings of directed numbers and decimals. 
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Natural Numbers 
The data shows that the students initially checked the operation of the Boxer function 
with reference to the numbers on their cardboard models, which in most cases were 
natural numbers. My early interventions were aimed at probing whether they were 
aware that the Boxer model would operate over a range of numbers and not just the 
three or so numbers etched on their cardboard model. It was clear that in some cases 
their was uncertainty about this. 

Directed Numbers 
Surprisingly, the students experienced few difficulties with the idea of negative 
numbers, i.e., they seemed to consider negative numbers a natural consequence of 
subtracting a larger number from a smaller one. This, if it is a general finding, has 
interesting consequences for the teaching of subtraction since in the common 
algorithmic approach, young students are frequently admonished "You can't take 
away a larger number from a smaller one." 

However, subtracting and adding negative numbers produced mixed results, with 
initial responses which were often in the wrong direction. This was perhaps 
exacerbated by the tendency (by researcher and students) to say the negative numbers 
in descending order, i.e., -1, -2, -3 etc. Whereas, in the case of subtracting a larger 
number from a smaller one, students derived support from the formalisation in the 
function doit box 'number — 4' etc., in the case of subtracting and adding negative 
numbers, they appeared to be generating syntactical rules from the trace on the 
graphics of the machine. These rules were correct (equivalent to -a — b = -(a + b) and 
-a + b = b — a), but they were situated in the medium. 

Perhaps, of equal significance, was the way that the function machine structured the 
discourse around concepts and not simply algorithms. The focus was on the operation 
of the function machine rather than the numbers per se. "You can't go under nought 
by dividing it." was one instance of this. Another involved the successive trials of the 
functions `lx - 3' and 'Ox - 3' in order to map -1, -2, -3 to 2, 1, 0 respectively. 

Decimals 

In general, the students did not find the notion of decimals as a consequence of 
division as readily comprehensible as they had directed numbers as a result of 
subtraction. This could be deduced from their first responses to challenges inviting 
them to change their function machine so that it mapped whole numbers to decimals. 

235 



Frequently, this evoked incorrect choices of operation or operators. However, it was 
also clear that these were first responses. Within a relatively short time of interacting 
with the function machine, the students could construct such mappings, the 
consequences of their actions giving them the means of closing in on the functions. 

The Boxer function machine appeared to mediate students expression of decimals in 
several distinct ways. 

(i) In the first case, students gave operational descriptions of the numbers. Examples 
of this were 0.1 being referred to as a 'tenth of one' and 0.01 as 'a hundredth of one'. 
These descriptions linked the decimals to the operations within the function machine 
which brought them into being, and contrast with those used in conventional settings 
such as 'one tenth' and 'one hundredth'. It suggests that the Boxer function machine 
activities were indeed enabling students to confer an action-based meaning to these 
decimals, i.e., of linking operational and conceptual notions. This supported the 
hypothesis generated from the data of the semi-structured interviews (chapter 7). 

(ii) Secondly, for division, students generated a syntactical 'backward' rule which 
related patterns in the decimal expression to those in the operator in the doit box. 
They observed that when they divided numbers such as 1 by 10, 1 by 100 and so on, 
the resulting decimals 0.1 and 0.01 looked like the operators 10 and 100 written 
backwards. This was not as obvious as it appears because I was expressing 10 as 
10.0, 100 as 100.0 etc.3. 

(iii) Thirdly, students directly linked decimals like 0.01 to the operation in the doit 
box. Examples of this were Natalie's: "Because it's underneath. It's a hundred 
underneath one." and Naomi's "If you wanted to get a millionth, you'd divide it by a 
million." 

(iv) For multiplication, students also generated a syntactical 'backward' rule but in 
this case it related patterns in input and output boxes on the graphic. Multiplication 
by 100 mapped 0.01 --> 1.00, 0.02 --> 2.00, and 0.03 --> 3.00. Again, this was a by-
product of the way the software forced a specified decimal precision. 

3  In Boxer, numbers can be expressed in the form of fractions or decimals. One way of ensuring the 
latter is to express the operator in decimal form, e.g., 10.0 instead of 10, and this is what I was doing. 
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(v) The close interplay between decimal expression on the graphics box and the 

operation in the function doit box seems to have disposed some students to recognise 

inverse relationship between division and multiplication. Liam's "Because nought 

point oh one is a hundredth of one. So if you times nought point oh one by a hundred, 

you just get one." is an example of this. 

9.43: Implications for the Thesis as a whole 

Hoyles (1993) has observed that software environments differ both in the extent to 

which mathematical ideas are embedded within them, and in how far software 

interactions are self-evidently structured by mathematics discourse. The drawing of a 

function machine could have been done in Logo. Boxer, like Logo, is a functional 

programming language, that is the underlying model is the mathematical idea of a 

function. It is therefore possible to represent functions in the programming language 

in a way which resembles their algebraic formalisation. However, Logo and Boxer 

differ in how they represent functions in their programming code. 

The differences lie in Boxer's facility for permitting direct visual manipulation 

(Hutchins, Hollan and Norman, 1986). In the function machine study, both 

articulatory directness (the closeness of relationship between entities in the domain 

and their embodiment on the screen) and semantic directness (the closeness of 

relationship between a user's intentions and their expression in the interface language) 

were evident. This could be seen in the visual manner with which the students and I 

interacted with the programming code and related this to the drawing, and in the 

degree that this was explicitly related to the number concepts being investigated. 

More cogently, it was evident in the operational manner by which the students 

expressed those concepts. 



Chapter 10: Overall Conclusions and Implications of 
Research 

This thesis has been undertaken to investigate how working in the computational 

environment of Boxer mediated students' developing sense of number. Following an 

exploratory study, the major part of this investigation was carried out by means of a 

longitudinal study, which consisted of a programming, an interview, and a number 

phase. The longitudinal study was concerned with three issues: the learning of 

programming, the learning of number, and developing a pedagogical design for 

integrating the first two issues. 

This chapter will synthesise the findings from all three phases of the research by 

relating them to these issues, consider their limitations, and draw out conclusions of the 

study. The subsequent section will then weigh the implications for future research. 

10.1: Programming 

The students programmed throughout the longitudinal study, but the emphasis changed 

as the research progressed. In the programming phase, the focus was on learning to 

program with number issues being secondary. In the number phase, the position was 

reversed. Programming was now a means to an end: that of learning about number. 

The following sections synthesise the programming findings from both phases. As 

stated in chapter 3, at the time of this study, there was not yet a developed research 

literature in Boxer, so the Logo literature will often serve as a baseline for these 

findings. 

10.1.1: The General Programming Environment 

10.1.1.1: The technical language of programming 

This study found that the technical language of programming was open to change in 

Boxer. The spatial metaphor at the heart of Boxer's structure provided a hook for a 

language to describe that structure as well as its execution. In the former case, `doit 

box' could be substituted for procedure, 'inside doit box' for sub-procedure, 'data box' 

for variable and so on. In the latter case, 'Do the lines' could replace 'Execute the 

commands' and 'Do the box' could replace 'Run the procedure'. This language had 

referents on the screen and hence was better able to convey its meaning to students. It 

238 



indicates that in Boxer, there is less of a jargon barrier for students to overcome in order 

to learn to program. 

10.1.1.2: Single mode of operation 

In Logo, procedural programming is frequently contrasted to 'direct drive'. This 

dichotomy of observed behaviour reflects the technical dichotomy of what is possible. 

Procedural programming generally means changing to editor mode, defming or altering 

procedural definitions, and then exiting the editor and moving back to the workspace. 

Not surprisingly, novice programmers get confused about which mode they are in and 

many choose to execute commands in direct mode despite the disadvantages of doing so 

(Hoyles and Sutherland, 1989). Boxer effectively removes the dichotomy of modes 

(and the confusion) by having a single mode of operation. 

10.1.1.3: Separating the process and product of commands 

The evidence suggests that certain constructs of Boxer help students to discriminate the 

process from the product of commands. These include having a single mode of 

operation and having line-by-line execution. Students were quickly able to identify 

components of programs with actions on the screen and to appreciate the significance of 

the inputs to different commands. In the programming phase of the longitudinal study, 

several changes to the presentational mode were found to assist this process. These 

included presenting a single command to a line, combining this with writing commands 

inside un-named doit boxes, and creating on-screen challenges which motivated 

students to attend to state-transparency. 

10.1.1.4: State transparency 

In Boxer, the practice of grouping commands one-to-a-line within a doit box, can help 

students' appreciation of state transparency. In Logo, it is common practice to combine 

commands for linear and angular motion on the same line, e.g., Id 50 rt 90'. Within 

procedures, there is no good reason for separating them. However, the ubiquity of this 

practice may conceal one reason why novices encounter problems with state 

transparency. In the course of this study, the design evolved from grouping commands 

on a line as above, to grouping commands on a line within a doit box, and finally 

separating out commands, one to a line, within a doit box. 

10.1.1.5: Modelling Structured Programming 

The visual environment of Boxer to can be exploited to provide explicit models of 

structured programming. It is not obvious in Logo how structured programming can be 
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modelled on the screen. The editor lay-out need not reveal clues to the inter-relationship 

between different procedures. This fact may influence the practice often adopted in 

introductory Logo courses of creating a learning hierarchy which places structured 

programming somewhere down the line. The design employed in this study exploited 

the visual environment of Boxer to deploy explicit models of structured programming 

right from the start. The programming gains exhibited by the students indicates that this 

had beneficial effects. 

10.1.2: Procedures 

10.1.2.1: Procedure as an entity 

In Boxer, the evidence suggests that there is no discontinuity between direct drive and 

procedural programming. It is thus possible to begin programming with procedures. 

The point at which students are introduced to procedures in Logo, as Noss (1985) 

points out, depends very much on the pedagogical design, but both he (op cit.) and 

diSessa (1986d) observe a 'learning plateau' between these two forms of programming. 

The evidence from this study suggests that this did not occur, with students quickly 

appreciating the notion of a procedure as an entity. The physical form of the doit box as 

a rectangular container for the program clearly helped in this respect. 

10.1.2.2: Naming and procedures 

In Boxer, the separation between naming and creating procedures means that students 

are more likely to adopt procedural programming. In Logo, naming a procedure is 

synonymous with creating a procedure. In Boxer these can be distinct processes, with 

procedures in the form of un-named doit boxes forming an intermediate stage between 

direct execution of single commands and named procedures. The manner of naming 

procedures, i.e., the 'name-tab' boxes, is also quite different in Boxer. These changes 

— which the research design exploited — resulted in different findings to the Logo 

research. Firstly, students did not attach undue significance to procedural names. 

Secondly, procedures (in the form of un-named doit boxes) were created as the norm 

rather than the exception. 

10.1.2.3: Procedures and debugging 

In Boxer, debugging can be an on-going rather than a post-hoc activity. All of the 

students in this study adopted a 'bottom-up' style of programming. This did not appear 

to disadvantage them. As the study progressed, many students adopted a practice of 

writing and executing lines inside un-named doit boxes. In doing so, they were in 
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effect in building up procedures — a practice which meant that debugging became an 

ongoing process rather than a post hoc activity. The observations suggest that 

debugging was not a major obstacle to programming. 

10.1.2.4: Sub- and super-procedures 

In Boxer, structured programming was adopted as a practice because it was seen as an 

effective means of problem solving. One of the advantages of using sub- and super-

procedures is that it permits the construction of complex programs out of simpler ones. 

This seemed to have been appreciated by the students in this study, but the extent to 

which they made use of these techniques depended on their perceived complexity of the 

goals: a task perceived as complex appeared to evoke a greater use of super-procedures. 

Thus structured programming was adopted as a practice because it was seen as an 

effective means of problem solving, a finding which extends that reported in Logo 

research by relating it to changes in the technical component of Boxer. 

10.1.2.5: Procedures and modularity  

In this study, the Boxer facilities of line-by-line execution and executable boxes pre-

disposed students to a semi-modular style of programming. The students frequently 

adopted line-by-line execution as a way of programming, but, because these lines were 

inside doit boxes, they were being combined into procedures as they were being 

written. From one perspective, these changes can be seen to facilitate modular 

programming techniques, but from another, they can be seen to remove some of the 

disadvantages of working in a direct way. Virtually all of the students created modules 

in the course of their function machine programming. But, these were not necessarily 

completely independent. Students were able to overcome the disadvantages of 

including navigation commands in modules by means of direct execution. 

10.1.2.6: Procedures and problem solving 

In Boxer, students employed more structured programming because the structure of the 

language made their usefulness as problem-solving tools more transparent. The 

findings support Hoyles and Sutherland's (1989) finding that students were more likely 

to employ structured programming when engaged in well-defined abstract goals. But, 

it suggests that the uptake of structured programming by the Boxer students stemmed 

not only from the abstract nature of the goal, but also from the perceived complexity of 

the goal. Thus, if students perceived a goal as being made up of several parts, it was 

more likely that they would create separate procedures for those parts. 
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Likewise, it supports their contention that the use of such programming techniques 

relates to their usefulness as problem solving tools. However, the evidence points to 

the Boxer students employing more structured programming than their Logo 

counterparts, and it suggests that the use of more sophisticated programming techniques 

emanated from the structure of Boxer itself. Students used procedural and modular 

techniques because the visual structure of the language (boxes as containers for 

programs, name tags for boxes etc.) made their usefulness as problem-solving tools 

more transparent. 

10.1.3: Variables 

10.1.3.1: Declaring variables 

In Boxer, syntactical changes to the way variables are depicted helps the students' 

understanding of variables. The manner of creating variables in Boxer is quite different 

to that in Logo. Instead of syntactical markers such as the colon (:) or apostrophe 0, 

variables are declared either by means of the 'input' command or by the use of named 

data boxes. The evidence suggests that the physical appearance of variable data boxes, 

the manner of naming the (name-tab boxes), the means of changing variable values 

(change the contents of the data box), and the research pedagogy which employed 

variables in a wide range of contexts, all influenced the students' understanding of 

variables. They appreciated the concept of a variable as representing a range of 

numbers. They also appeared to understand that different variable names could depict 

the same quantity, and that the same variable name could signify different quantities. 

10.1.3.2: Introducing variables 

The constructs of Boxer are such that it makes pedagogical sense to introduce variables 

through the 'input' line from the first time that procedures are used. In Logo, it is 

common practice to introduce commands first with specific values and later with 

variables. In 'First-Boxer', I replicated this practice. However, by the time of 

`Second-Boxer', the possibility of always using declared variables occurred to me. 

Local variables in the form of internal data boxes with names such as 'side', 'angle' 

made this an alternative viable practice. At the time of this research, there did not seem 

to be a clear (visible) link between variables as represented by internal data boxes and 

the more general variable introduced by means of the 'input' command. In current 

versions of Boxer, this link is made more explicit. Pressing 'dolt' on the line 'input x' 

replaces the letter 'x' with an internal data box named 'x'. Values can then be placed in 

this box and run internally thus reinforcing the feeling of direct manipulation. In view 
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of the earlier finding, it would now make pedagogical sense to introduce variables 

through the 'input' line from the first time that procedures are used. 

10.1.3.2: Variables and functions 

The concrete nature of variables and functions help students understand these concepts, 

but also make it feasible to deploy these algebraic devices as a way of shedding light on 

other areas. Previous research (Noss, 1985; Sutherland, 1988) had shown how the 

concept of variable can derive meaning from its use with Logo. This study extends that 

finding by showing not only how variables can derive meaning from their use with 

Boxer, but also how numbers can derive meaning through the use of variables. The 

transparent nature of variables in Boxer enabled students, to use Mason's (1988) 

expression, to see through the particular to the general. 

In the function machine study especially, variables were used in the context of functions 

and together, function and variable, played a significant part in enabling students to 

confer meaning on directed numbers and decimals. At the same time, students were 

building up their notion of the function concept itself. This process was greatly assisted 

by the concrete manner in which functions are expressed in Boxer. 

10.1.4: Discussion of Programming Issues 

This thesis was concerned with how students' developing sense of number might be 

mediated through working in the computational environment of Boxer. Learning to 

program was thus a means for preparing the ground for the learning of number. In that 

sense, it is located in existing research (Noss, 1985; Hoyles and Noss, 1993b) which 

has concentrated on the creation of Logo mathematical environments. This study 

indicates that Boxer is an even more effective means for creating mathematical learning 

environments in the classroom. 

It owes its effectiveness to the structure of the medium, particularly its visual structure. 

This research shows that over the two year period of the longitudinal study, students 

were able to move from a position of knowing no programming to one in which they 

were able to construct their own microworlds. This is all the more impressive if the 

limitations are borne in mind. The fact that, as a part-time researcher, I could visit the 

school on only one day a week combined with the fact that there was only one computer 

in the class meant that each pair of students had a gap of between two and four weeks 

between one Boxer session and the next. Despite these conditions, the important 

conclusion is that students learned to program with a relatively high degree of structure. 
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Assessing the impact of IT in schools, Hammond (1994) observes how the authors of 

two major research projects, the Plait report (Gardner et al., 1992) and the ImpacT 

report (Watson, 1993), both attribute the failure of teachers and pupils to fully exploit 

software to: "... their lack of knowledge of the programs or the principles behind 

them." (Hammond, op cit., p. 256 and p. 257). Seen from this perspective, a research 

design in which students program their own software to pursue their own goals ensures 

both knowledge of, and principles behind, that design. An important conclusion of this 

study is that Boxer makes this possible for 10 to 11 year old students. 

Noss (1985, p. 33) observes that: "It is the language which determines the nature of the 

interaction between learner (programmer), machine and the ideas being programmed." 

and he argues that the essence of the case for learning to program rests on the process 

rather than the product. Gray and Tall (1994), in discussing the use of software to 

learn mathematics, write: "... we have evidence that the use of the computer to carry out 

the process, thus enabling the learner to concentrate on the product, significantly 

improves the learning experience." (p. 137). In the past, these were necessarily 

discrete domains for the novice programmer. 

The results of the present research suggest that this need no longer be the case. My 

number studies indicate that Boxer makes it possible for young students to program 

their own interactive software, and in the process gain the kind of mathematical insight 

of the product that was previously the prerogative of the professional programmer. As 

Dubinsky (1991) writes: 

... it seems that if a student implements a process on a computer, using software that does 
not introduce programming distractions (such as complex syntax, constructs that do not 
relate to mathematical ideas etc.), then the student will, as a result of the work with 
computers, tend to interiorize the process. If that same process, once implemented, can be 
treated on the computer as an object on which operations can be performed, then the student 
is likely to encapsulate the process. (1991, p. 123). 

My claims are twofold: firstly, that the design of the two number studies corresponds to 

Dubinsky's description and secondly that, in these microworlds, programming was the 

operational algebra which enabled them to make connections between conceptual and 

procedural notions of number. 
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10.2: Number 

In the number phase of the research, the students constructed two computational 

objects: the Boxer number line and the Boxer function machine and each mediated their 

sense of number in ways that related to the programming code which they had built into 

these objects. In each case, the construction process seems to have being critical in 

terms of the students' ability to identify and manipulate the program's parameters. 

Familiarity with their number line or their function machine ensured that attention 

(rather than being diverted on matters of syntax or such like) was focused through the 

computational object on to the mathematics which its construction embodied. The 

following sections summarise the number findings which emerged from the students' 

interactions. 

10.2.1: The Boxer Number Line Object 

10.2.1.1: Visualising natural numbers  

Their construction of a number line in Boxer enabled students to gain new insight into 

familiar sets of numbers. The data shows that the students initially utilised the Boxer 

number line to express familiar sets of numbers such as their multiplication tables. 

Expressing numbers symbolically in Boxer mediated their reading of the visual. They 

— and I — became aware that there were subtle differences between the number line 

representation of their tables and the usual non visual depiction of them. Thus a seven 

times table, beginning at 0 and ending at 84 had 13 rather than 12 numbers printed on 

the screen. It appeared to me that the number line was modelling their intuitive notion 

of multiplication as repeated addition. It appeared to them that, in exploiting the number 

line to represent their tables, they were somehow cheating, a view which perhaps again 

highlights the uncertain status of visual reasoning in mathematics. 

10.2,1.2: Visualising directed numbers  

The Boxer number line was used to explore only one aspect of directed numbers, 

namely the effect of beginning with a negative number and then repeatedly adding 

positive whole numbers to it. Running the program generated the numbers term-by-

term along the number line, so providing a visual model of the relationship between the 

successive numbers. Few of the children found difficulties with this. Directed 

numbers was not reified into a separate topic area. Rather, the activity was contiguous 

with their earlier work with natural number sequences. 
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10.2.1.3: Visualising decimals 

The Boxer number line appeared to mediate students' expression of decimals in three 

distinct ways. 

In the first case, it seemed that through manipulating its parameters, students were 

disposed to reason in particular ways. Decimals were conceptualised as small 

increments and their sizes related initially to whole numbers or to other (previously 

tested) decimal increments. Their construction of the number line meant that they were 

modelling the multiplication of decimals by repeated addition, and this gave them a 

means of overcoming the 'multiplication makes bigger' misconception. 

Secondly, their construction of the Boxer number line seemed to pre-dispose the 

students to the existence of a number continuum. Evidence for this could be seen in 

students' remarks which suggested their difficulties was not with existence but rather 

with articulation. It could also be inferred from the invention of a notation by two of 

the four case study pairs to express these quantities. Finally, it could be seen in the 

students' desire to attain greater degrees of accuracy than the problem required. 

Thirdly, the programming precision afforded by the Boxer number line appeared to be 

also promoting conceptual precision. It was no more difficult to program the number 

line in steps of say 0.01 rather than steps of 0.1 for example, whereas conceptually, 

these are some distance apart. Evidence for this could be seen in the way that students 

constructed new solutions on the basis of previous ones. There was, in fact, a dialectic 

between data and conjecture, which motivated students to adopt sophisticated modes of 

thinking. Students were able to program a number line to do what they wanted it to do. 

This gave them power over decimals so they could directly manipulate and visualise 

numbers with three and more decimal places with an ease that would not have been 

possible in conventional media. It then became an intellectual challenge for students to 

seek greater degrees of accuracy than the task required. 

10.2.1.4: Limitations of the number line object  

The number line object represented my first attempt to engage students in the 

construction of their own microworld. It therefore needed to be simple to program. As 

the number investigations got under way, it became clear that whilst the relative 

simplicity of the program was a strength in terms of its transparency, it imposed other 

limitations. For example, in generating numbers across the screen, the numbers were 
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typed from left to right. This meant that if the program line which effected the 

incrementation was of the form 'change num [num — l]' , then the numbers on the 

screen line would be in the opposite direction to the usual convention, i.e., negative 

numbers would be off to the right. 

One response to this might have been to say it did not matter. In an earlier experiment 

with an on-screen counter (chapter 6), children were not perplexed by sequences of 

numbers which descended from left to right. Another response might have been to re-

write the program so that it took account of both the starting number and the operation 

being used. In the event, I chose not to investigate the subtraction of directed numbers 

with the Boxer number line, as I felt that representing directed numbers in a way that 

conflicted with their usual classroom representation might be potentially confusing. I 

rejected the latter option as I felt that the programming required to carry it out (almost 

certainly involving conditional statements) was not within the students' capacity at that 

time. I also rejected the option of writing such a program myself, as I felt this would 

trade programming power for programming transparency. 

The direct consequences of these programming decisions was that the number line 

investigations with directed numbers were concerned only with their behaviour under 

addition. Since few of the children found this behaviour problematic, I tended to 

explore those elements of number that did cause conceptual difficulties, namely 

decimals. The term 'decimals' has come to reify certain distinct if related topics 

(chapter 2). Many of these, e.g., multiplication of two decimals, multiplying by 

powers of ten etc., were not touched upon. As stated earlier, my focus was on 

students' developing sense of number, i.e., on their conceptions of decimals. My 

investigations were thus deliberately limited to exploring how the Boxer object of the 

number line mediated those conceptions. 

10.2.2: The Boxer Function Machine Object 

10.2.2.1: Visualising natural numbers 

In programming a function machine in Boxer, students were extending an earlier 

classroom project: that of constructing cardboard models of functions. These cardboard 

models displayed input and output numbers, which in most cases were natural 

numbers. The data shows that in every case, the students began by checking the 

correspondence between the numbers on the Boxer function machine with those on 

their earlier models. It was clear that in some cases, students' conceptions of functions 
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were tied to the numbers on their models. Their early interactions with their 

computational function machines were instrumental in making them aware that their 

function machine could operate over a wider domain. 

10.2.2.2: Visualising directed numbers  

Few of the Boxer students experienced difficulties with the existence of negative 

numbers. In this case, they derived support from the formalisation in the function doit 

box, and the trace down the function machine graphic. Negative numbers were seen as 

a natural consequence of subtracting a larger positive whole number from a smaller one. 

However, several students encountered procedural difficulties with both subtraction and 

addition of negative quantities, i.e., when the input numbers to the function machines 

were negative. Initial predictions were often in the wrong direction. This was perhaps 

exacerbated by our tendency (researcher and students) to express negative numbers in 

descending order, i.e., -1, -2, -3 etc. Frequently, the students appeared to be 

generating syntactical rules from the trace on the graphics of the function machine. 

Sara's observation of the effect of the function `x — 10' on inputs of -4, -3, -2 and -1 

"Because they're both minuses, you like add them." was typical. These rules were 

often correct, the above example being equivalent to -a — b = -(a + b), but it was also 

apparent that they were situated in the medium. The Boxer function machine gave 

students a way of overcoming procedural difficulties with both subtraction and addition 

of negative quantities. 

10.2.2.3: Visualising decimals 

Whereas the idea of subtraction as a way of introducing directed numbers was generally 

borne out, the parallel idea that division might be a way of introducing decimals did not 

seem to be as intuitive. Initial responses to challenges often evoked incorrect choices of 

operations or numbers. However, it was also clear that in the course of interacting with 

the function machine, the students began to construct meaning for decimals in terms of 

their functional relationship with whole numbers. 

The Boxer function machine appeared to mediate students' expression of decimals in 

several distinct ways. 

(i) In the first case, students gave operational descriptions of the numbers. Examples 

of this were 0.2 being referred to as a 'tenth of two' and 0.01 as 'a hundredth of one'. 

These descriptions linked the decimals to the operations within the function machine 
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which brought them into being, and contrast with those used in conventional settings 

such as 'one tenth' and 'one hundredth'. It suggested that the Boxer function machine 

activities were enabling students to confer an action-based meaning to these quantities. 

(ii) Secondly, students directly linked decimals like 0.01 to the operation in the doit 

box, e.g., "It's a hundred underneath one." It would appear that whereas the rationale 

in (i) above might be called a 'post-operational' description, this might be termed a 'pre-

operational' explanation. In both cases, meaning was derived from the operations. 

(iii) Thirdly, students generated a syntactical 'backward' rule which related patterns in 

the decimal expression to those in the operator in the doit box. For division, they 

observed that when they divided numbers such as 1 by 10, 1 by 100 and so on, the 

resulting decimals 0.1 and 0.01 looked like the operators 10 and 100 written 

backwards. For multiplication, students also generated a syntactical 'backward' rule 

but in this case it related patterns in input and output boxes on the graphic. 

Multiplication by 100 mapped 0.01 --> 1.00, 0.02 --> 2.00, and 0.03 --> 3.00. This 

was a by-product of the way the software forced a specified decimal precision. 

(iv) Finally, there was evidence that the recognition by some students of the inverse 

relationship between division and multiplication was related to the close interplay 

between the decimal expression on the graphics box and the operation in the function 

doit box. 

10.2.2.4: Limitations of the function machine object  

Perhaps, the first limitation that needs to be acknowledged concerns the extent of my 

intervention. In particular, I intervened to help most of the students with the use of 

variables in the latter part of the construction process. My interventions tended to be 

inversely proportional to the students' knowledge. For the non-case study students in 

particular, I intervened when it appeared they had reached an impasse. I had greater 

knowledge of, and confidence in the case-study students, and so was inclined to 

intervene less. 

There were limitations in the number investigations also, perhaps the most obvious 

being in the range of numbers and functions explored. I did not, for example, ask 

students to multiply by decimals like 0.29 and I did not even contemplate division by 

decimals. I was primarily interested in how operational links could be established 

between whole numbers and other quantities and this interest influenced my priorities. 
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No attempt was made to link the students' work within the Boxer context to pen-and-

paper contexts. One reason for this was that much of what we were doing within 

Boxer was beyond the normal primary school curriculum. Secondly, I felt that there 

was little to be gained and much to be lost by engaging in symbolic manipulations on 

paper. My agenda was to explore how Boxer mediated students' expressions of 

number — not to see if it improved their understanding in pen-and-paper situations. 

10.2.3: Discussion of Number Issues 

In summarising the CMF research, Johnson (1989) observes that the students practical 

activities (in algebra) were "... not analogous with the formalization ..." or, (in the case 

of algorithms), "... there is really little or no match between the two procedures." (p 

222). A significant feature of the two number studies in this research was the fact that 

there was no divide between the practical and the formal. The students' competence in 

programming meant that they were able to construct Boxer computational models of the 

formal. Interacting with these models did not take them away from the formal, so there 

was no problem of transfer between different modes. Rather, Boxer provided the 

students with a direct visual means for manipulating formal mathematical expressions 

thus giving them access to a way of mathematical thinking which is usually the preserve 

of more advanced students (Tall and Thomas, 1989). 

Contrasting street mathematics with school mathematics, Nunes et. al. (1993) observe 

that in the written forms of representations typically used in schools, the meaning of the 

situation is purposely not represented, and that as situational aspects are lost, syntactic 

rules become the focus. The lesson for school mathematics, they write, is about ways 

of "... preserving meaning during the mathematising of situations" (p. 147). The 

findings of the exploratory and interview studies indicated that the situation is not 

simply about the preservation of meaning, since for many students, certain numbers do 

not have meaning for them in the first place. 

The two pedagogical principles which guided the number studies, i.e., the holistic and 

operational approaches, were intended to ensure that meaning was conferred on 

numbers in this study. In the first place, students were able to derive meaning for 

unfamiliar quantities by relating them to familiar numbers. In the second place, number 

symbols derived meaning from the operations which brought them into existence. The 

computational objects were the catalyst for making connections between the number 

operations and number concepts. 
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10.3: Pedagogy 

Each of the three phases of the longitudinal study had its own distinctive pedagogical 

design, and all of them contributed to the constructionist nature of the research. The 

following sections summarise the findings relating to these, discuss their limitations, 

and draw out conclusions. 

10.3.1: Developing a Pedagogy for Introductory Programming 

In the programming phase, the pedagogical approach exploited the medium to introduce 

itself. Using Boxer in this way raised issues which are not comparable with Logo 

research. Three distinct, though not necessarily discrete, issues were identified: 

communication and presentation; the iterative design process, and devolving 

intervention to the medium. 

10.3.1.1: Communication and Presentation 

Using the medium to introduce itself depends on students not only being able to read 

the text on the screen, but also willing to read it. In this phase, three different modes of 

presentation were tried: lines of text; lines of text in closed boxes; and lines of text in 

closed boxes labelled with names such as 'read-me-first'. The latter method was found 

to be the most likely to lead to text being read. Some of the students compared Boxer to 

a game-book, so the motivation for reading may have been related to their enjoyment of 

such activities. A tentative conclusion is that exploiting Boxer's hypertext capabilities is 

likely to lead to a greater engagement by the students. 

10.3.1.2: The iterative design process 

The pedagogical approach adopted in the programming phase owed a great deal to the 

prevailing circumstances. It was developed with the intention of reconciling two needs: 

that of observing small groups of students in depth, and that of giving access to Boxer 

to the remainder of the class. The process of iterative design was the means by which 

these two needs were met. These tnicroworlds were also being used independently by 

the other students in the year 5 class when I was not present, and the classroom teacher 

frequently made suggestions as to how they might be clarified for the students. In 

working with the case study students, the need for excessive intervention was taken as 

a cue for the need to redesign the technical component. Using Boxer to introduce itself 
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meant that we were devolving interventions to the medium, and this raised further 

issues. 

10.3.1.3: Devolving intervention to the medium  

Firstly, there is the question of whether, in enacting such design changes, we were 

making the microworlds more prescriptive? Secondly, it raises the question of whether 

the organisation of these microworlds into sections pre-disposed the students to a linear 

way of working. Each section of the 'First-Boxer' microworld had a similar structure: 

closed boxes which contained instructions or suggestions, a menu data box containing 

commands for the key idea in that section, a series of doit boxes containing some of the 

programs for that section and filially a challenge. Each of these were individually 

modified as the research progressed, but the relation between the sections themselves 

remained relatively unchanged. A question for future research is whether the hypertext 

facilities of Boxer could be more fully exploited to offer alternative routes through a 

microworld or alternative challenges within it? 

Perhaps the most significant question that needs to be faced is whether the introductory 

microworlds simply constituted computer tutorials? The answer to this question 

depends very much on what constitutes a 'tutorial'. I would claim that these Boxer 

microworlds re-defined the notion of 'tutorial' in two main ways. Firstly, there was 

`space' within the design for the students to adopt their own means of meeting the 

challenges, or indeed pursue their own goals. Secondly, there was 'space' for the 

teacher and myself to respond to the students' experiences in redesigning the 

microworlds themselves. A greater exploitation of Boxer's hypertext facility is likely to 

give even more flexibility. 

As stated above, the research design employed in this phase was a response to the 

circumstances in the school, principally the fact that there was only one computer in a 

class of 30 students. While, this may suggest one mechanism by which this all too 

familiar problem may be overcome in school settings, I believe that the iterative design 

process has something to offer even in circumstances where resources are plentiful. 

Teachers have always gone beyond the textbook or scheme to design worksheets or 

other materials for their students. However, until recently, the parallel activity in a 

computer environment was not possible. The research design employed in this study 

indicates one way in which the reconstructible medium of Boxer can open up the 

possibility of teachers writing software tuned to the needs of their students. 
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10.3.2: Creating a Constructionist Pedagogy for Number 

The programming phase of the longitudinal study provided students with the means of 

constructing their own microworlds. The interview phase sought to determine the best 

way of doing this by building on students' existing conceptions of numbers. Finally, 

the number phase implemented a constructionist design based on these earlier phases. 

10.3.2.1: Building on students' knowledge 

The semi-structured interviews were aimed at generating more focused and coherent 

issues for the number phase of the study. These interviews were concerned with two 

facets of number knowledge: students' interpretations and representations of number. 

In the first case, the interviews provided valuable data concerning students' conceptions 

of integers and non integers, and gave some insight into their understanding of the 

number continuum. They also revealed how students were able to assign an action-

based meaning to certain fractions. In the second case, eliciting students' 

representations not only illuminated their earlier offerings, but also gave valuable 

insight into their notions of the role of representations generally. Consulting students 

as part of the research design helped in attaining a constructivist perspective, and in the 

process contributed to the epistemological integrity of the research. 

10.3.2.2: Constructing Computational objects 

The number phase of the research embraced a constructionist (Papert, 1993b) approach 

to number. In it, the students constructed public entities with which they engaged in 

multiple and complex relationships and through which they 'concretised' number 

concepts. The two number studies had three features in common. Firstly, in each of 

them, the students constructed their own microworld. Secondly, the computational 

objects at the core of each microworld were made up of representations which were 

extensible, i.e., they could be used to represent natural numbers, directed numbers and 

decimals. Thirdly, they were operational. These characteristics afforded me a way of 

adopting a pedagogical approach that was at once holistic and action-based. 

Hoyles and Noss (1992a) observe that a key question in evaluating Logo activities is to 

ask: "What do the children think they are doing?" (p. 451). In each of the number 

studies, the discourse was predicated around the operation of the computational object 

rather than on number algorithms per se. This was of significance in two ways. I was 

asking, and they were answering, questions about their number line or their function 

253 



machine. Having constructed these, they had a vested interest in knowing how they 

worked. Secondly, my questions were of a form that directly related to the structure of 

the number object. Thus questions on the number line might be phrased: "Can you 

make your number line [in n steps] start at minus fifty and end at 30 ?" or for the 

function machine: "Can you change your function machine so that 1 2 and 3 go in and 

0.01 0.02 and 0.03 come out?" Thus, these computational devices directly linked 

action-based notions of number with the idea of numbers as objects, i.e., they fostered 

`proceptual thinking' (Gray and Tall, 1994). 

The above paragraphs abstract commonalities of the number line and the function 

machine objects. But, as the previous number section shows, there were significant 

differences between these two objects also. In the first case, the number line object 

mediated students' developing sense of number in ways that might be described as 

geometrical. The evidence, which included the invention of notation and the application 

of an unusual degree of precision, suggests that the number line scaffolded their 

understanding into the number continuum to an extraordinary extent. In the second 

case, the function machine mediated their sense of number in ways that could be 

described as being broadly algebraic. In this case, the evidence included operational 

descriptions of numbers, the linking of numbers through functions and the linking of 

numbers through functions and their inverses. 

10.4: Implications for Research 

10.4.1.1: Linking Microworlds  

The Logo literature is replete with examples of concept acquisition within microworlds. 

However, less attention has been given to the linking of microworlds with each other. 

As diSessa (1986a) argues in relationship to Boxer: 

Multiple microworlds, each strongly tuned to its own particulars, may be too disparate to 
allow any economy of learning the interactive medium. (diSessa, 1986a, p. 129) 

In a similar vein, the Vygotskian or Brunerian notion of 'scaffolding' has been used to 

show how carefully constructed microworlds can support concept acquisition. But, as 

far as I am aware, there is nothing in the literature to describe how learning might be 

supported across microworlds. 

Two issues arise: the first concerns programming in the mathematics curriculum; the 

second concerns the role of programming in general. The school mathematics' 

curriculum takes place over eleven or so years. Few would suggest that it should be 
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compressed into say, two years. Yet, studies aimed at evaluating programming have 

seldom lasted even this long. It would be foolish to claim that Logo, or other 

languages, have not had greater success in school simply because they were not used 

over a long enough period. Clearly, there were many other factors involved. However, 

it is equally clear that there is a need to get away from what has been termed 'the 

technological fix' (Weizenbaum, 1984), i.e., to see the computer — or programming —

as a simplistic solution to complex problems. We need to examine afresh the role of 

programming vis-a-vis the mathematics curriculum and learning in general. 

As Noss (1985) points out, the history of programming in school is inextricably 

intertwined with the mathematics curriculum, and the justification for teaching the 

former has often been made in terms of their common underlying structure, e.g., in 

constructing algorithms. Not surprisingly, programming has become or is viewed as 

an esoteric activity. If, on the other hand, programming is seen as a new literacy, as an 

expressive medium, then the justification for including it alongside mathematics — and 

indeed alongside other subjects — as a long-term goal becomes reasonable. One of the 

implications of this study is that such long-term goals are worthwhile. 

10.4.1.2: Boxer Computational Objects 

The notion of a computational object is now a familiar one in the literature. Turkle and 

Papert (1990) use the term 'transitional objects' to refer the role played by screen 

entities in bridging the gap between the concrete and the abstract. Hoyles and Noss (cf. 

Hoyles, 1993) have coined the term 'evocative computational objects' in order to 

emphasise the resonance between these objects and the knowledge domain. I wish to 

draw a further distinction between a computational object, such as a polygon drawn in 

Logo, and the nature of the computational objects as constructed in this research. 

The essence of the latter is that they are interactional. Unlike Logo, Boxer objects can 

themselves become objects for (further) manipulation. They thus make it possible for 

mathematical activities to continue beyond the initial programming phase. In this study, 

the students' construction of the interactional objects of the number line and the function 

machine gave them a powerful means of visualising number, and enabled them to 

confer operational meaning on those entities. A question for future research is how 

other such Boxer objects can be exploited for the investigation of similar or different 

mathematical domains. 
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Appendix 2: 
First Boxer 
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First-Boxer Overview 
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Appendix 3: 
Second Boxer 
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Second-Boxer Overview 
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Appendix 4: 
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Third-Boxer Overview 
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Appendix 5: Students' Representations 
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The Comparison Group's Representations of Natural Numbers 
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The Boxer Group's Representations of Natural Numbers 
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The Comparison Group's Representations of Rational Numbers 
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The Boxer Group's Representations of Rational Numbers 
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The Comparison Group's Representations of Directed Numbers 
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