
Teachers' Concepts and Beliefs about Educational
Software: A case study of teachers within a software

development process.

Juan Enrique Hinostroza

Thesis submitted in fulfilment of the requirements for the Ph.D.
degree of the University of London

Institute of Education, University of London

1999

1

ABSTRACT

Most present day educational software has been designed for use as a cognitive tool,

aimed at fostering students' learning outcomes and without considering the teaching

framework in which it will be used. A literature review demonstrated that there is a

lack of evidence about teachers' concepts and beliefs concerning educational software.

In order to address this issue a case study was designed in which teachers would need

to think deeply and purposefully about the characteristics and features of software.

The case chosen was a process of educational software development, in which two

teachers, a software engineer, a psychologist and a graphic designer, were committed

to develop a piece of software during a seven month period. In each session the

teachers expressed ideas and conceptions about software and were continuously

reflecting on its nature. The sessions were video-recorded and the tapes transcribed,

these data were analysed using both qualitative and quantitative techniques using

systemic networks to organise and give a structure to the categories of analysis.

Based on the discussion of the findings, the main implications of this study are

represented as a model of understanding of educational software that considers

teachers' actual concepts and beliefs about computers and software.

This model, firstly, shows, that these teachers conceived of the computer as a resource

that could replace them in the role of managing students' rehearsal of materials, and,

secondly, presents the characteristics of the educational software that these teachers

designed and shows the dimensions of their teaching strategies (classroom

atmosphere, pedagogy, and learning conceptions) that were embedded in these

characteristics (human-computer interface, browsing, and interaction with the

software respectively). This model demonstrates significant links between the study

of Pedagogy and the study of Information Technology in Education and has

implications for the relationship between these two areas of research and

consequently for teacher training.

2

Table of Contents

Abstract 	

I. 	Introduction 	

II 	Literature Survey 	

2.1. 	Introduction 	

2.2. 	Educational Software Design 	

2

10

14

14

15

2.2.1 	Educational software classification 	 16

2.2.2 	Learning centred software 	 21

2.2.3 	Teaching centred software 	 23

2.2.4 	Teaching material/resource provider 	 26

2.2.5 	Discussion 	 26

2.3. Educational Software Development 	 29

2.3.1 	Software engineering 	 29

2.3.2 	Development of educational software 	 33

2.4. Software Evaluation 	 35

2.4.1 	What is software evaluation? 	 35

2.4.2 	Types of software evaluation 	 36

2.4.3 	The issue of software evaluation 	 37

2.5. Educational Innovation 	 41

2.5.1 	Innovation and computers 	 42

2.5.2 	Implications for this study 	 47

2.6 Pedagogy 	 47

2.6.1 	Teachers' knowledge and expertise 	 48

2.6.2 	Teacher actions and roles in the classroom 	 52

2.6.3 	Summary 	 57

2.7. Conclusions 	 57

III. Methodology 	 59

3.1. Introduction 	 59

3.2. Theoretical Framework 	 60

3.2.1 	Case study methodology 	 60

3.2.2 	Critiques of case studies 	 61

3.3. Research Design 	 63

3.3.1 	General design 	 63

3.3.1 	Case selection 	 66

3.3.2 	Development of the case 	 68

3.3.3 	Data collection 	 70

3.3.4 	Categorisation process 	 72

3.3.4.1 	Definition of the coding categories 	 72

3.3.4.2 	Data coding 	 73

3.4. Analysis Process 	 74

3

IV

3.4.1 	Participation analysis 	

3.4.2 	Sequences analysis 	

3.4.3 	Contents analysis 	

3.5. 	Discussion of the Methodology 	

Systemic Network Definition 	

75

76

78

79

81

4.1. Introduction 	 81

4.2. Construction of the Systemic Network 	 81

4.3. Operational Definition 	 84

4.3.1 	Characteristics of the software 	 85

4.3.2 	User 	 86

4.3.3 	Pedagogic issues 	 86

4.3.3.1 	Aim 	 86

4.3.3.2 	Teaching strategy 	 87

4.3.3.3 	Actions 	 87

4.4. Discussion of the Coding Process 	 88

4.5 Discussion of the Network 	 90

V. Participation Analysis 	 93

5.1. Introduction 	 93

5.2. Analysis of Contributions 	 96

5.2.1 	Characteristics of the Software 	 96

5.2.2 	User 	 99

5.2.3 	Aim 	 99

5.2.4 	Actions 	 101

5.2.5 	Teaching strategy 	 104

5.3. Analysis of the Profiles of Participation 	 104

5.4. Conclusions 	 108

VI. Sequences Analysis 	 110

6.1. Introduction 	 110

6.2. Analysis per Category of Sequence 	 112

6.2.1 	Sequences involving two units 	 112

6.2.2 	Sequences involving three units 	 117

6.3 Analysis Per Member of the Development Team 	 119

6.3.1 	Two unit sequences 	 119

6.3.2 	Three unit sequences 	 122

6.4. Conclusions 	 122

VII. Contents Analysis 	 125

7.1. Introduction 	 125

7.2. Contextual Information 	 125

7.2.1 	Summary of the contents 	 125

7.2.2 	Overview of the development process 	 129

4

7.2.3 Overview of the software developed 	 131

7.3. 	Characteristics of the Software 	 132

7.3.1 Subject Areas - Abstract 	 132

7.3.2 Subject Areas - Medium 	 134

7.3.3 Subject Areas - Concrete 	 136

7.3.4 Content Organisation - Abstract 	 137

7.3.5 Content Organisation - Medium 	 140

7.3.6 Content Organisation - Concrete 	 145

7.3.7 Browsing - Abstract 	 148

7.3.8 Browsing - Medium 	 149

7.3.9 Browsing - Concrete 	 152

7.3.10 Interaction - Abstract 	 153

7.3.11 Interaction - Medium 	 155

7.3.12 Interaction - Concrete 	 156

7.3.13 Interface Element - Abstract 	 157

7.3.14 Interface Element - Medium 	 157

7.3.15 Interface Element - Concrete 	 159

7.4. 	Actions 	 160

7.4.1 Actions of the teacher in the classroom with the

software 	 160

7.4.2 Actions of the teacher in the classroom with the pupils 	162

7.4.3 Actions of the teacher individually with the software 	163

7.4.4 Actions of the teacher individually with the pupils 	164

7.4.5 Actions of the pupil in the classroom with the software 	164

7.4.6 Actions of the pupil in the classroom with other pupils 	165

7.4.7 Actions of the pupil individually with the software 	166

7.4.8 Actions of the pupil individually with other pupils 	168

7.5. Aim 	 169

7.5.1 Aim of the software for the teachers 	 169

7.5.2 Aim of the computer for the teacher 	 170

7.5.3 Aim of the software for the pupil 	 173

7.5.4 Aim of the computer for the pupil 	 173

7.6. 	User 	 174

7.7. 	Teaching Strategy 	 176

7.8. 	Conclusions 	 179

VIII. 	Discussion and Implications 	 183

8.1. 	Introduction 	 183

8.2. 	Theoretical Perspectives 	 184

8.2.1 The use of computers for teaching 	 184

8.2.1.1 Aims of the computer or software 	 185

5

	

8.2.1.2 	Teachers actions with the computer 	

	

8.2.1.3 	Pupils activities in the software 	

8.2.2 	Issues about the characteristics of the software designed 	

190

198

201

8.2.2.1 	The classroom atmosphere in the software 	 203

8.2.2.2 	The pedagogy in the software 	 207

8.2.2.3 	The learning dimension in the software 	 210

8.3. Methodological Perspectives 	 212

8.3.1 	The case study 	 212

8.3.2 	The systemic network 	 214

8.3.3 	Qualitative versus quantitative analysis 	 215

8.4. Implications 	 216

8.4.1 	Computer aided teaching (CAT) 	 218

8.4.2 	Teaching centred software vs. learning centred software 	 219

IX. References 	 221

X Appendix 	 232

A.1. Interview to Pre-selected Schools 	 232

A.2 Probabilities of Units and Sequences 	 239

A.3 List of Sequences Found 	 243

A.3.1 	Two unit sequences 	 243

A.3.2 	Three unit sequences 	 248

6

Figures

Figure 2.1. 	Model of learning centred software 	 22

Figure 2.2. 	Model of teaching centred software. 	 24

Figure 2.3. 	Revised waterfall model 	 30

Figure 2.4. 	Spiral model of software development 	 30

Figure 3.1. 	The systemic network representing the coding categories 	72

Figure 4.1. 	Final systemic network 	 84

Figure 5.1. 	General distribution of units spoken during the development

process 	 93

Figure 5.2. 	Participation profiles of the members of the development team 	106

Figure 6.1. 	Web of relations between units 	 116

Figure 7.1. 	Categories spoken in each development session 	 129

Figure 7.2. 	Example of three screens of the software 	 131

Figure 7.3. 	Teachers' abstract organisation of the contents in the software. 	142

Figure 7.4. 	Software Engineer's and Psychologist's abstract organisation of

the contents in the software 	 144

Figure 7.5. 	Browsing structure of the software 	 150

Figure 8.1. 	The final browsing structure of the software 	 207

Figure 8.2. 	Model of the role of the computer 	 218

7

Tables

Table 3.1. 	Case study tactics for four design tests 	 62

Table 3.2. 	Figures of the raw data 	 71

Table 3.3. 	Total units per member 	 76

Table 3.4. 	Categories and number of units spoken 	 79

Table 4.1. 	Definition of the group of categories 'Characteristics of the

software' 	 86

Table 4.2. 	Definition of the group of categories 'Aim' 	 87

Table 4.3. 	Definition of the group of categories 'Actions' 	 87

Table 5.1. 	Relative frequencies of units to the total units in the group of

categories 'Characteristics of the software' 	 97

Table 5.2. 	Relative frequencies of units to the total units in the group of

categories 'User' 	 99

Table 5.3. 	Relative frequencies of units to the total units in the group of

categories 'Aim' 	 100

Table 5.4. 	Relative frequencies of units to the total units in the group of

categories 'Actions-Teacher' 	 101

Table 5.5. 	Relative frequencies of units to the total units in the group of

categories 'Actions-Pupil' 	 102

Table 5.6. 	Relative frequencies of units to the total units in the group of

categories 'Teaching Strategy' 	 104

Table 5.7. 	Relative frequencies of units to the total units of each member of

the development team. 	 105

Table 6.1. 	Total units per member and the Group 	 110

Table 6.2. 	Names of the groups of categories 	 112

Table 6.3. 	Total number of sequences involving two units 	 113

Table 6.4. 	Distance matrix for pairs of units 	 115

Table 6.5. 	Total number of sequences involving three units for each length

of strings 	 117

Table 6.6. 	Distance matrix for pairs of units 	 118

Table 6.7. 	Total number of sequences involving two units for each member

of the development team 	 119

Table 6.8. 	Relative frequency of participation of each member of the

development team in each sequence involving two units. 	 120

Table 6.9. 	Relative frequency of participation of each member of the

development team in all sequences involving two units 	 121

Table 6.10. 	Total number of sequences involving three units for each

member of the development team 	 122

Table 7.1. 	Groups of categories and number of units spoken 	 125

8

Table 8.1. 	Correspondence between teaching and software design domains 	220

Table A.2.1 	Probabilities of one unit of each category for each MDT 	239

Table A.2.2 	Probabilities of each two unit long sequence for each MDT 	240

Table A.2.3 	Probabilities of each three unit long sequence for each MDT 	240

Table A.2.4 	Meaningful probabilities of two unit long sequence for each

MDT 	 242

Table A.2.5 	Meaningful probabilities of three unit long sequence for each

MDT 	 242

Table A.3.1. 	Groups of categories 'Interaction' and 'Actions' 	 243

Table A.3.2. 	Groups of categories 'Browsing' and 'Teaching Strategy' 	244

Table A.3.3. 	Groups of categories 'Subject Areas' and 'Content Organisation' 	245

Table A.3.4. 	Groups of categories 'Browsing' and 'Content Organisation' 	246

Table A.3.5. 	Groups of categories 'Content Organisation' and 'Interaction' 	246

Table A.3.6. 	Groups of categories 'Aim' and 'User' 	 247

Table A.3.7. 	Group of categories 'Actions' 	 247

Table A.3.8. 	Groups of categories 'Interaction', 'Subject Areas' and 'Actions' 	248

Table A.3.9. 	Groups of categories 'Interaction', 'Aim' and 'Teaching

Strategy' 	 248

Table A.3.10. Groups of categories 'Content Organisation', 'Aim' and

`Actions' 	 248

9

I. 	INTRODUCTION

'Enlaces' (links in English) is a national project which forms part of the MECE

programme of the Chilean Ministry of Education (for more information see: Hepp,

Laval, Moenne, & Ripoll, 1996; Hepp, Rehbein, Hinostroza, Laval, Dreves, & Ripoll,

1994; Potashnik, 1996). This project has been in operation since 1993 at the

Universidad de la Frontera (UFRO) in the region of La Araucania in the South of

Chile. This Program for Improvement of Educational Quality (MECE) of the Chilean

Ministry of Education seeks to have a long term impact on the quality, equity, and

decentralisation of Chilean education. Through the Enlaces Project, the MECE pro-

gram is achieving the incorporation of modern computer technology in the country's

poorest schools.

To this end, between 1993 and 1998, a computer network has been gradually installed

at 3000 urban and rural primary and secondary schools. Furthermore, an Educational

Computing Institute (Instituto de Informatica Educativa) was established at the

university (UFRO) to design educational activities, produce materials for the schools

and administer the network.

Among the materials being offered to the schools on the network is educational

software. This software is largely produced by the Educational Computing Institute

itself due to the lack of computer software products on the market in Spanish and of

software programs which meet the specific needs of these schools. The experience of

introducing and using educational software in schools is calling into question, not

only the use of educational software (whether available in the market or locally

produced), but also the understanding of educational software and its role in schools.

Within this context, the aim of this research is to contribute to a better understanding

of the concept of educational software through examining teachers' concepts and

beliefs about this technology. In this sense, the present research proposes a model of

teachers' understanding of educational software and computers that convey some new

ideas and views about these elements. These ideas and views represent teachers'

concepts and beliefs about educational software and do not correspond to their

`actions with' nor 'use of existing educational software. This is the key difference

compared with other reports (some examples are: Olson, 1988; Sandholtz, Ringstaff,

& Dwyer, 1997; Schofield, 1995) that makes this piece of research a useful source for

comparison and contrast of what is actually offered to teachers as 'information

technology' with what they actually believe it should be.

10

In this general framework, the following paragraphs describe the structure and general

contents of this thesis.

The literature survey presented in Chapter II, reviews the work in the areas of the

design, development and evaluation of educational software; of the process of

educational innovation and it also includes a brief overview of studies in the area of

pedagogy, which will be used to interrogate the results of this study. The general

claim presented in the literature survey is that there is a need to consider teachers'

beliefs for the understanding and eventual development of educational software. The

argument is based on the premise that educational software is still an arena for debate

and controversy that has not yet clear design prescriptions that could ensure its

effectiveness nor its use (Cuban, 1997; Johnson, Cox, & Watson, 1994; Lowther &

Sullivan, 1994). If this premise is accepted, there are at least four possible

explanations of this: (i) that the design of educational software is focused on learning

and does not include the teaching dimension therefore teachers have difficulty using

it, (ii) that the evaluation of software did not consider this issue before and is only

recently moving to consider the teaching dimension, but some dimensions of it are

still missing, (iii) that the incorporation of teachers into the development process has

not helped to include this dimension because they were asked to contribute only in

certain areas of the design. And finally (iv) that this situation is confirmed by the

observations of the introduction and use of information technology in the classroom

which has been generally reported as innovation processes. These processes usually

demanded from the teacher that (s)he accommodate to the software being introduced

because it implemented theoretical models of learning and therefore theoretical

models of teaching. These four lines of argumentation suggest that there is a need for

research in the area of teachers' concepts and beliefs about educational software.

Due to the lack of evidence concerning teachers' concepts and beliefs about

educational software, a case study (Stake, 1994; Yin, 1994) was designed. The

theoretical considerations about defining this research as case, the description of the

case design process and the analysis methods used are presented in the chapter on the

methodology of the study (Chapter III). In general terms, the case was a process of

educational software development, in which two teachers, a software engineer, a

psychologist and a graphic designer, were committed to develop a piece of

educational software during a seven month time period. Each session of the

development process was observed and recorded to obtain the raw research data. In

each session teachers expressed ideas and conceptions about software and were

continuously reflecting on educational software. The data gathered from the case were

analysed from both, qualitative and quantitative stand points, using systemic networks

11

(Bliss, Monk, & Ogborn, 1983) to organise and give a structure to the categories of

analysis and the software QSR NUD*IST was used to support the coding process.

Because of its relevance for this research, the systemic network developed is

presented and discussed in Chapter IV, together with the definition process (the

evolution of the network), the operational definition of its branches and leaves and the

problems encountered during the analysis.

The three methods of analysis developed are presented in different chapters, these are:

• Participation analysis (Chapter V): Aimed at establishing individual participation

profiles during the development process, based on the calculation of the

frequencies and distributions of participation of each team member in each

category.

• Sequences analysis (Chapter VI): Aimed at establishing the inter-relations among

the different components of the software based on the analysis of the patterns of

sequences of units in the data for the group and each team member.

• Contents analysis (Chapter VII): Aimed at looking for the meanings expressed by

the teachers about the different dimensions of the piece of educational software.

These methods of analysis were used in a complementary way, enabling the

researcher to focus on relevant issues and to present a triangulation of the

implications drawn. The analysis is integrated in the 'Discussion and Implications'

chapter (i.e. Chapter VIII) where these findings are discussed in terms of several

different theoretical frameworks.

The discussion starts with a theoretical perspective that looks for understanding two

dimensions of what the two teachers involved in this study believed. First, what they

believed about the use of computers for teaching, and second, what they believed

about the characteristics that a piece of educational software should have.

The former dimension shows that these teachers conceived of the computer as a

resource that could take over some of the teacher's 'traditional' teaching routines. The

latter presents the characteristics of the educational software that these teachers

designed and shows the particular dimensions of their pedagogy that were embedded

into these characteristics. These two dimensions together constitute what is called

here a model of teachers' understanding of information technology.

In order to also analyse the way in which this model was elicited, the methods used

during the research process are also discussed. This section starts by discussing the

12

definition of this piece of research as a case study and then it examines the way in

which the data gathered were structured, that is, how the systemic network was used.

Finally, the analyses of the data are discussed, encompassing the combination of both,

qualitative and quantitative methods. The implications of this discussion are related to

the process of construction of the systemic network and to the value added by the

combination of quantitative and qualitative methods.

These three sections of the discussion converge in the last section of this chapter,

which presents the implications of this study. The main implications are represented

through the model of teachers' understanding of information technology that

considers a strategy to use computers as an aid for the overall teaching process and

provides a framework to design educational software that incorporates pedagogy

related strategies into particular characteristics of the software.

The existence of this model demonstrates significant links between the study of

`Pedagogy' and the study of 'Information Technology in Education' and has

implications for the relationship between these two areas of research and

consequently for teacher training.

13

II 	LITERATURE SURVEY

2.1. INTRODUCTION

The use of educational software in schools is still an arena for debate and controversy.

There is the software development industry with its growing market of new

multimedia products evolving as fast as new hardware-technology (ABLA Learning

Works, Broderbund, Microsoft Corp., Sanctuary Woods Corp, TAG Development,

The Learning Company, Tom Snyder Productions, Unlimited, ZETA Multimedia,

etc.)1 . On the consumers' side, there is evidence that the role of information

technology in schools is controversial (Lowther & Sullivan, 1994) or at least its

effects not conclusive (Johnson, et al., 1994), and that software products that are most

frequently used in school are based on drill and practice activities (Cuban, 1997;

Evans-Andris, 1995). Then there are research groups producing a growing number of

reports focusing on the teaching and learning processes using particular pieces of

software (diSessa, Hoyles, & Noss, 1995; Laborde, 1995; Mellar, Bliss, Boohan,

Ogborn, & Tompsett, 1994; Schwartz, 1996; Schwartz, Yerushalmy, & Wilson, 1993;

Soloway & Pryor, 1996). These three groups use and offer different software products

and have very different views as to how to assess their value.

This chapter analyses this apparent dissociation, presenting evidence and ideas that

might help to identify the root of the problem. The life cycle of a piece of software is

reviewed, that is, from its design and development, up to its use, evaluation and

insertion in schools as an educational resource.

In order to analyse the design of software, the different classification methods that

have been applied to educational software are presented, in order to see the different

perspectives of analysis that could be applied to the design elements embedded in the

software. Based on this a different classification is presented. The new classification

is aimed at throwing light on some of the reported problems related to the lack of

understanding of the role of the computer in schools and the activities of the teacher

(in relation to computers). This constitutes the first line of arguments about the

problems of educational software.

The development stage is analysed from two perspectives: software engineering and

the reported experiences of research groups. The former presents a general view of

different development methods and the latter presents some experiences of software

developments reported by research groups, and a discussion of the main problems

1 All names of companies are respective Trade Marks

14

identified in the literature follows. One approach to a solution to the identified

problems would be to try to gain an understanding of the social and professional

context in which the software will be used as part of the software development

process itself. This constitutes the second line of argument.

In order to analyse the use of educational software, the way in which software

evaluation has been approached is then presented. This analysis concentrates on the

conception of situated actions and how this can be applied in the area of evaluation

and use of educational software. So the third line of argument is the claim that

research into the conceptions of educational software of teachers immersed in their

practice is needed.

In the fourth section the process of the insertion of software into schools is presented

within the wider perspective of educational innovation. Computers and software are

often more or less consciously introduced into schools and classrooms as catalysts in

order to produce a change (indeed Hawkridge, Joworosky, & McMohan, (1990) gives

the catalytic rationale as one of the four most used rationales for the introduction of

information technology into schools). In contrast to this view, computers are

conceived here as supports for ongoing changes prompted by the needs of the

educational system itself, rather than as causes of changes.

In summary, it is argued that there is a need for research into the concept of

educational software from a situated perspective, and in particular for research into

the understanding of the role of educational software that a teacher has and how (s)he

conceptualises such a product.

2.2. EDUCATIONAL SOFTWARE DESIGN

The task of designing software can be analysed from different points of view:

• from the methodological perspective, that is tools and techniques to design

software (object oriented design, structured design, top down design, bottom up

design, etc.),

• from the design of different elements of software (human-computer interface,

contents, functionality, etc.) and

• from the intentions of the software's author(s), that is, looking at the complete

product as it has been conceived.

In this review the design of educational software is analysed from the perspective of

the intentions of the author, that is from the underlying teaching and learning princi-

15

pies that can be found in the software. Understanding the difficulty of knowing the

'real' intentions of the author, it focuses on the explicit elements of the design.

2.2.1 	Educational software classification

'Learning with Software' (Learning, 1995) presents an overview of the different

attempts to classify software. The same organisation, including additional references,

is used here.

• By subject:

This type of classification is based on school subjects. For example, all those

software programs that can be applied to, say, History. It is not a useful system

when discussing principles of educational computing but it is helpful when simply

describing resources appropriate to specific content areas taught in schools.

• By software type

With the following categories:

• Computer as tutor: To function as a tutor in a specific subject area, the

computer must be programmed by an expert in order to provide a

'surrogate teacher' to the user. In the context of use, the computer (as if it

was an expert) presents the student with some subject-matter content

together with a set of questions or directions; the student responds and the

computer completes the learning cycle by evaluating the response, and

from the results of the evaluation determines what to present next.

• Computer as tool: In order to function as a tool, the computer needs to

run generic software applications, such as a: word processor, spreadsheet,

data base software, etc.

• Computer as tutee: To function as a tutee the computer provides an

environment in which the user can 'teach' the computer through expressing

their own ideas and solutions to problems. In order to teach the computer,

the user must learn to program, to talk to the computer in a language it

understands.

This classification was initially proposed by Taylor (1980) and is mentioned by

Squires & McDougall (1994). A similar classification using the criteria of 'type of

software' was used by Laurillard (1990), she starts from two teaching and learning

models (i.e. didactic and communication models) and does an analysis of tutorial,

simulation and intelligent tutorial software based on the degree of control that the

user (student) has over the following components of the software design:

16

• learning strategy built into the software,

• the manipulation of learning content and

• the description of learning content.

Another approach to classification of software fitting into this category is given

by Chandler (1984):

• Tutorial

• Game

• Simulation games

• Experimentational simulation

• Content free tools

• Programming languages

• By educational paradigm

This classification comprises four paradigms:

• Instructional, e.g. drill and practice software, associated with a

behavioural perspective.

• Revelatory, e.g. simulations, associated with discovery or experiential

learning.

• Conjectural, e.g. programming, associated with the application of

constructivism and other cognitive views of learning to software

development and use.

• Emancipatory, e.g. word processing, associated with reducing workload,

so that teaching and learning can take place free of the time consuming

processing of data.

This classification was initially proposed by Kemmis, Atkin, & Wright (1977). It

is also mentioned by Squires & McDougall (1994) and by Anderson, Tolmie,

McAteer, & Demissie (1993) who propose a simplification of this classification

based on the twin ideas of interaction around the computer and interaction with

the computer. Crook (1987) in a similar vein proposes the two categories of

closed (low in user control) and open (high in user control).

Another classification that matches this group was proposed by Laurillard (1993).

She starts from a definition of the learning process:

17

The learning process must be constituted as a dialogue between teacher
and student, operating at the level of descriptions of actions in the world,
recognising the second-order character of academic knowledge.

(Laurillard 1993, p. 94)

Within this framework she proposes a set of principles to define a teaching

strategy that are then used to classify educational media, including software. She

defines the categories as:

Discursive: both teacher's and student's conceptions are accessible to the
other and both topic and task goals can be negotiable; students must be
able to act on, generate and receive feedback on descriptions appropriate
to the topic goal; the teacher must be able to reflect on student's actions
and descriptions and adjust their own descriptions to be more meaningful
to the student.
Adaptive (by teacher): the teacher can use the relationship between their
own and the student's conception to determine the task goals for the
continuing dialogue, in the light of the topic goals and previous
interactions.
Interactive (at the level of actions): the student can act to achieve the task
goal; they should receive meaningful intrinsic feedback on their actions
that relate to the nature of the task goal; something in the 'world' must
change observably as a result of their actions.
Reflexive: teachers must support the process by which students link the
feedback on their actions to the topic goal, i.e. link experience to
descriptions of experience; the pace of the learning process must be
controllable by the students, so that they can take the time needed for
reflection when it is appropriate.

(Laurillard 1993, p. 100)

In this sense she is using a particular educational paradigm (her model of

university teaching) to classify educational media and in particular, educational

software.

This classification was criticised by Bostock (1996), who argues that it is too

broad and therefore too simple to map neatly onto the more complex educational

processes. He argues that:

Laurillard's attempt may be as good as any is likely to be but this review
found significant gaps in the fit [between the teaching and learning model
and the media classification model]. DAIR [Discursive, Adaptive, ...]
may be useful in the instructional design process as a checklist of the
characteristics of the learning processes which need to be supported.

(Bostock 1996, p. 82; our brackets)

Through his argument, Bostock (1996) emphasises the need of a pedagogical

classification of media that could have a better 'fit' with a classification of

learning activities, but he does not give further answers to this.

18

• By use

Regarding this category, Fatouros, Downes, & Blackwell, (1994) offer a

classification of CAL based on software use, with specific attention given to the

role of the teacher in determining how a software item might be deployed to

engage learning, in young children in particular. They say:

Whether the software is incorporated within a learning centre for children
to explore freely or it is implemented as a planned activity within a unit of
work, teacher decisions about implementation have a significant impact
on the learning processes that are generated. For example, language and
social skills may be developed through the use of a typical drill and
practice program if the activity is implemented in such a way as to
promote discussion and negotiation between a pair of children using the
software, rather than having an individual child use the software as a
means of knowledge testing

(Fatouros, Downes, & Blackwell 1994, p. 186).

These authors offer a classification system based on the key domains or learning

areas that teachers plan for young children to explore:

• images

• sounds

• text

• stories and ideas

• facts and figures

• consequences

These areas broadly define domains that span developmental areas and curriculum

areas for early childhood education; and they emphasise the integrated nature of

young children's learning.

This kind of classification was also used by Watson (1993), he focused on the

'Educational Activity' that is supported by the software, he uses different

categories but the underlying principle is similar. He classifies the software in this

way:

Educational Activity
Information Gathering

The contribution of IT
Electronic mail, Expert Systems, Data Bases, CD-
ROM

Analysis and
Evaluation
Presentation

Spreadsheets, Databases, Modelling software

Word Processing, Desk-top publishing, Desktop
presentations, Multimedia, Teletext and viewdata,
Graphics

19

Also Self (1985) classifies software based on the role it should have in the school.

He includes the following categories:

• Engaging motivation
• Providing new stimuli
• Activating pupil response
• Giving information
• Encouraging practice
• Sequencing learning
• Providing resource

• By impulses to learn

This category is based on a taxonomy proposed by Bruce (1997) where he

provides an exhaustive characterisation of kinds of educational resources

(including software). He uses the ways in which they support integrated, inquiry-

based learning as the key for classification. He defines four broad categories:

• Enquiry
• Communication
• Construction
• Expression

Summarising the different ways in which a classification for software has been

attempted, it was found that classifications were anchored on:

• The contents and subjects (i.e. by subject),

• The functionality build-in to the software (i.e. by type)

• The learning paradigm that is embedded in the software (i.e. by educational

paradigm)

• The teaching strategy that could be triggered by the software or is embedded in

the software design (i.e. by use)

• The relation a user can build-up with the software or the educational need the

software is attempt to fulfil (i.e. by impulse of learn).

Each classification serves a purpose of analysis and comparison and each could well

be used for one or another specific aim. For example, if the aim is to build a library of

software to be consulted by teachers, the subject classification could be used, if the

aim is to compare the effects of software on students' performance, then the

educational paradigm could be used.

None of these classification schemes is really intended to address the issue of

software design from a perspective that incorporates the classroom situation,

including the teacher, the students and the school. Looking at the design of software

20

from such a perspective, an alternative classification is proposed in this study, which

comprises three groups:

• The first group includes educational software which has been designed focusing

on the end-user as a stand alone student (or group of students), examples of these

kinds of products are Intelligent Tutoring Systems, Computer Aided Learning,

Problem Solvers, Modelling Software, Authoring Environments. It is possible to

call the software included in this group learning centred software. The common

characteristics of this group are that it is assumed that the software will be used by

students either in individual or group based activities; and that the software has a

learning theory built into it, together with a set of propositions about how it

should be used for learning derived from that theory.

• The second group corresponds to the software which has been designed focusing

on classroom activities. That is software that includes a specific teaching method

in its design and therefore it has been conceived as a teaching centred software.

Examples of software of this group are discussion organisers, group activity based

software, presentation tools, etc. This group has a didactic proposition embedded

in the software, that has been used as a paradigm for the design rather than as a set

of guidelines for using the software.

• The third group of software corresponds to software that has been designed as a

general tool or resource and can be used in different ways. This kind of software

does not have explicit pedagogical assumptions embedded, it has been conceived

as 'teaching material/resources provider'. Examples of software of this group

are word processors, encyclopaedias, content-rich CD-ROMs, spreadsheets, e-

mail software.

Understanding that this classification has exemptions and therefore that is not

exhaustive, it will never the less serve for the purpose of analysis. These three groups

reflect different tendencies of conceptualising the role of software at the design stage

within the framework of the teaching/learning activity.

The analysis that follows will expand some ideas about each of the defined groups,

addressing the mayor issues that are expressed in the literature.

2.2.2 	Learning centred software

In this group the software design is viewed as an activity whose goal is to produce a

tool that is expected to have an effect, or impact, at a cognitive level. In other words,

21

Communication

Communication

• \

Learning

Learning

Learning

.1(461,

the design is grounded in some learning theory which gives the framework for the

software design. These theories include behaviourism, constructivism, and others but

all have a clear element of self-determined learning and therefore have common

assumptions in the design. This group also includes software that incorporates some

teaching strategies, but generally those are embedded in a learning framework which

is explicit in the software. From the designer's perspective, the arena of learning is in

the interaction of the student with the computer. Software of this group can be

represented with the following figure:

Figure 2.1. Model of learning centred software

In this scheme students interact with the software and while this interaction occurs

they 'learn'. The locus of learning is in the interaction with and around the computer.

Reusser (1993) has software of this group in mind when he describes educational

software as:

Computer environments should be seen as mind-extending or catalysing
tools for intelligent and volitional learners and virtually autonomous
problem solvers. They should provide stimulating and facilitating
structures in order to promote meaning construction activities, such as
planning, representation and reflection.

(Reusser 1993, p. 146)

Another example of this sort of design is given by Laurillard (1990), she describes

two models for teaching and learning: the didactic model and communication model.

In the former she speaks about a 'preceptual knowledge' that is transmitted by the

teacher to the student. In the latter she describes knowledge as a 'negotiable

commodity' between teacher and pupil.

22

Based on this latter model she specifies the following software requirements:

• the student should have direct access to the object domain

• the software should have operational knowledge of the domain

• the software should be able to give intrinsic feedback

• the software should make the goals of the exercise explicit.

As in the previous one, this definition excludes the teacher in the learning process,

which is not the case in all the software included in this group. Other definitions

correspond to the categories mentioned before and include the classification of the

computer as tool, as tutee and by some of the educational paradigms (instructional,

revelatory and conjectural).

From the perspective of the present research, the main problem of this kind of

software is that the assumptions made during the design are well grounded in learning

theories but it is assumed that the computer will be used in a specific way in order to

produce the designed effect. This assumption demands of the teachers that they act in

a particular way in order to create the situation in which the student can interact with

the software in the manner intended by the designer so that learning can take place?.

2.2.3 	Teaching centred software

The design of software in this group has its origins in particular teaching methods,

that is it has been conceived as an organisational aid (i.e. management) for the teacher

in the classroom. The essential difference between this group of software and the

pervious one, is that the software design has one (or several) explicit assumption(s) of

how to use the computer in the classroom.

This alternative way of designing educational software integrates the computer into a

certain teaching strategy, giving the teacher a special role in the activities. This role is

made explicit in the design of the software. The locus of learning is in the classroom

activity, not in the interaction with the computer, in fact, the software could be

2 It is possible to have a second level of classification within this category. This level would be defined
using the different theories of learning, instruction, and cognition. For example:

Learning theories: Constructivism Behaviourism

Instructional theories: Bruner, Gagne, Derived from Vygotsky
Cognitive theories: Derived from Vygotsky, Derived from Piaget
Communication Models: Students control of learning

Wilson & Cole, (1991) present a somewhat similar classification of cognitive teaching models•

23

`Teaching' Activity

designed in such a way that the student does not need to have direct interaction with

it. Software in this group can be represented with the following figure:

Classroom Activity

Figure 2.2. Model of teaching centred software.

In this scheme students are part of a learning activity and the computers take the role

of supporting the activity. The locus of learning is in the classroom activity.

Fraser, Burkhardt, Coupland, Philips, Pimm, & Ridgway (1991) describe the different

classroom roles that the teacher, pupil, or computer adopt when using software in a

classroom situation. The different roles described are:

• Manager (tactical), corrector, marker, computer operator
• Task Setter, questioner, example setter, strategy setter
• Explainer, demonstrator, scene setter, image builder, focuser, imitator,

rule giver, coach
• Counsellor, adviser, helper, devil's advocate, encourager, stimulator,

listener/supporter, observer, receiver, diagnostician, problem solver.
• Fellow pupil, rule applier, hypothesizer, problem solver
• Resource, system to explore, giver of information.

(partial transcript of Fraser, et al. 1991, p. 212):

These roles reflect the behaviour of the teacher and/or students while using a piece of

software in a classroom lesson, and they could form a useful starting point for

thinking about the design of software in this group. An example of this kind of

approach is reported by Dockterman, (1991) in a description of producing software to

be used in a one-computer classroom situation.

Mercer, (1993), describing the implications of the context in learning, writes:

1 It implies that the process of learning about, or through, computers is not
primarily to do with the relationship between a learner/user and the
machine - the 'interface' - or even the software being used. It is instead
very much to do with the contextual framework within which the
learner/user is doing things with the computer.

24

2 It implies that what is learnt by particular children through the use of
computers may only be understandable in terms of the history of the
teaching-and-learning relationship in which that learning took place.

(Mercer 1993, pp. 31-32)

With this definition, Mercer (1993) changes the focus of the software design from the

student-machine interaction to the context of use. But he still assumes a certain

amount of interaction between the student and the computer, which is not required in

this description of software in this group.

In a similar vein, Laurillard (1993), starting from a definition of the process of

teaching at University level, examines how different media could support different

stages of this process. Further on, she presents a classification of existing teaching

media which is structured using her model of university teaching (the classification

was presented in section 2.2.1). In doing so, she is advocating for conceptualising

software as an aid for teaching, and in this sense, she is giving additional support to

this category of software.

On the other hand, looking at her proposition in more detail, it could be argued that

her definition of the university teaching model is based on the learning processes that

should be happening during teacher-student interaction. If so, her classification of

educational media would also be based on the learning processes that the software

would support and therefore it would be useful for classifying learning centred

software rather than teaching centred software. However, her argument is still

consequent with the ideas that support this category.

Further support for the idea that much educational software has a role in the whole

classroom situation rather than in the individual-computer interaction is to be seen in

the work of Olson, (1988), who found two different ways in which teachers use the

computer:

• Trojan horse: The computer is used as an aid to innovate in the teaching strategy.

• Expression tool: The computer is used as an instrument to express how they want

to be seen as teachers.

These findings show two different roles of the computer as a teaching resource in the

sense that it provides the teacher an aid to perform his(her) job. In this case the aid is

not directly related to the specific teaching activity, but to the professional

performance of the teacher.

25

	

2.2.4 	Teaching material/resource provider

In this group of software those packages that could be seen as multipurpose software

are included, which serve basically as a resource to carry on a specific task. The

software here does not include an explicit learning or teaching strategy, but it helps to

perform learning and/or teaching processes.

The focus of learning could be in the student-software interaction or in the activity

organised by the teacher. The computer is conceptualised as a special tool for

performing some activity or as a powerful book-like resource.

There are many experiences that report the use of 'traditional' software in schools,

such as word processor, data bases, spreadsheets, encyclopedias, etc. This is software

that, generally, has been designed to be used in other environments (industry,

administration, library, home, etc.) and is being 'introduced' into classrooms settings

and therefore is unlikely to emphasise cognitive and pedagogical aspects (Squires,

1996). Teachers who use this kind of software are often advocating 'vocational'

arguments for its use, arguing that students need to be prepared to use this kind of

software when they enter into the job market (Squires, 1996).

	

2.2.5 	Discussion

Leaving aside the use of software as teaching material/resource provider it was argued

that educational software design follows one of two tendencies:

• Designing software for learning: Here the authors are trying to build software that

implements some learning, cognitive or instructional theory. In doing so they give

the computer a high degree of responsibility for the learning outcomes.

• Designing software for teaching: Here the authors are trying to discover ways in

which a computer could be used as part of the teaching process. They include a

more systemic view of the process of teaching and learning, rather than simply a

particular conception of learning with or around the computer.

As regards the first tendency, despite the designer's intentions, research shows that

the software most frequently used in school is based on drill and practice activities

(Cuban, 1997; Evans-Andris, 1995). In respect of the second tendency the key

question remains: what is the role of the computer in teaching?

26

Despite high expectations about the use of computers in education, research has

shown that in this field the role of the technology is controversial (Lowther &

Sullivan, 1994) and its effects not conclusive (Johnson, et al., 1994). In trying to

explain this situation there are two main arguments, the first is that the teacher should

be more technology literate in order to master the technology, and the second refers to

the lack of understanding of the software designers about the teaching/learning

process.

Supporting the first argument, Handler (1993) and Winship (1989) complain about

the lack of appropriate training and support for teachers that want to use this

technology. Other problems with software reported by Winship (1989) that reflect a

rather intermediate position are:

• Teachers find it very difficult to identify software that they believe will be useful

in their own teaching.

• Much of the existing software is difficult to integrate into teaching because it is

either too easy, too hard or it takes too long before useful results are produced.

• Often the teachers must put in a great deal of preparation time before the software

can be used in the classroom.

There seems to be a dissociation between what is being offered today as good

educational software design, what teachers really do with software in the schools and

what teachers' expectations are of what could be done with it.

Supporting the second argument, one general critique of the design of educational

software to date is that there is a lack of understanding of what is happening in the

classroom and of the discourse of the teacher and his/her reality. The different

arguments for this general claim can be summarised as follows:

• While studying what teachers do with computers, Mercer & Scrimshaw (1993)

and Olson (1988) claim that too little is known about the activities in the

classroom with the computers. They argue in favour of the observation and

analysis of what teachers actually do with computers and, starting from these

results, they propose to revise the design of existing software.

• While observing what pupils do with computers, Crook (1987; 1991) argues that

technology has a potential for catalysing socially organised learning. He outlines

the theoretical basis for developing computers in such a way. His focus is on the

social interactions that occur around the computer, rather than with the computer.

27

• Winograd & Flores (1986) talk about the general issue of understanding the

domain of action of the user. They analyse the structures of communication that

industry workers use in their daily work. Based on these structures, they propose a

set of guidelines for designing software. In the case of the present study, the users

would be both, the teachers and the pupils. In a similar vein, Crook (1998)

proposes three features of pupils' social interaction that should be considered

while designing educational software for collaborative work. In doing this, he is

integrating features of this particular social context into the software design.

Following a similar tendency, Mantovani (1996) proposes a model for integrating

the social context into the design of software. His model of the social context

considers three levels: construction of context (social context), interpretation of

situation (situations) and local interaction with environment (artefacts).

• Koedinger & Anderson (1993) argue that while designing educational software, it

is important to understand the instructional context and, in particular, to

understand the role of the teacher. In a similar vein, Reusser (1993) speaks about

the pedagogical and didactic philosophy that a software design should incorporate

and the importance of the learning and teaching activities that take place in the

'behavioural setting' of schooling. From a different perspective, Chen (1995)

proposes a methodology for characterising computer-based learning environments

that includes three dimensions of analysis: (i) the types of knowledge presented,

(ii) the pedagogical strategies to communicate the knowledge and (iii) the form

and functions of interaction elicited. In doing so, Chen is indicating the need for

considering these dimensions for the design of educational software.

These arguments coincide in stressing the necessity of having a more situated view of

the software design and they propose different focuses to implement such view. Some

argue in favour of considering the actual experience of the teachers and the pupils;

others highlight the importance of defining a model of the social context in which

computers will be used; and lastly, some point out the importance of the pedagogical

and didactic philosophy (or theory) that the software should incorporate. The main

implications for this study are that the design of educational software needs to be

examined and that, while doing so, all these arguments should be brought into

consideration.

For the aims of the present study, it will be assumed that school software should be

designed to be used in the school, for purposes and needs that are present in the

school. The implication of this assumption is that to design a piece of school

software, first it is necessary to know the needs of the school and from this starting

point, to design a piece of software to help to satisfy these needs. In other words,

28

understanding the role that the software can play in this solution within this context. It

implies not imposing preconceived designs of software to improve teachers

professional activities, but designing, based upon their actual practices, pieces of

software that enable them to do more effectively what they do.

2.3. EDUCATIONAL SOFTWARE DEVELOPMENT

In order to analyse the process of software development, this section starts with a

brief look at the general issues of software engineering and the methods for software

development proposed in this area. Then it presents some reported experiences about

the software development process.

2.3.1 	Software engineering

This section includes a short description of some of the main software development

models proposed in the literature. There is still a strong debate about the utility of

formal methods to develop software, it is not the intention here to recreate such

debate. The idea is to present the main tendencies that are being used and outline the

stages of some software development methods. The purpose of this section is to

provide evidence from a different theoretical framework which will support the ideas

about educational software design presented in the previous section.

The concept of the software 'life cycle', defined by Sommerville (1989), was first

used to define a model of the software development process. Based on this model

there have been several propositions, including the waterfall model and the revised

waterfall model. Both of them are based on the following sequence of activities:

• Requirements analysis and definition

• Design

• Implementation and units tests

• Installation

• Evolution

The waterfall model conceives the software development process as a linear sequence

of activities that are clearly marked and that can be controlled. The revised waterfall

model has similar activities but incorporates feedback between the different activities,

transforming the model from a pure sequential one to an iterative model as shown in

figure 2.3. In each stage there are activities of validation and control incorporated that

give the required feedback.

29

Requirements
Analysis and

Definition

There are other models of software development proposed, such as the prototype

evolution model and the spiral model of software development proposed by Boehm,

(1988). These models propose a sequence of stages that allow the developers to

reduce the risk involved in the development, by introducing reiterative tests of a

prototype of the software which evolves within the project.

Figure 2.3. Revised waterfall model

The use of prototypes allows the software engineer to acquire information about the

requirements, technical feasibility, and other risk elements, but it is not well

integrated to the end product because of its partial and ill integrated step by step

development. Boehm, (1988) proposed a new approach to this development method,

which has been named the spiral model. It integrates the waterfall model with the

evolution of prototypes.
Validation

Implementation

Requirements

Operationa
Conceit

Prototype 2

Prototype Installation and
acceptance

Design

Risk
analysis 2

Risk
analysis 1

Requirements plan
and life cycle

Development
plan

Risk
analysis 3

Figure 2.4. Spiral model of software development

Figure 2.4 shows an example of this model with three cycles. The accumulated cost of

the project is represented by the radius of the spiral at each point.

Yet another model, which is similar to the prototype development model, is the

Exploratory Programming, but it does not have a structured approach. Another model

for software development can be found in Hinostroza, Hepp, & Straub, (1996), which

is the result of adapting, modifying and expanding theoretical models to address real

30

needs (Potts, 1993). These needs arise from the interdisciplinary nature of the work,

the incorporation of multimedia and the focus on education. This latter focus imposes

additional requirements to be considered during the design stage, such as the need of

having a more permanent effect on the user at a cognitive level (for example, the user

should learn something).

This method consists of four principal activities, some of which are carried out in

parallel. It is based on the incremental development of a prototype in which critical

evaluation, modification and redefinition are carried out at all stages, seeking to

culminate in a field-tested product. The four main activities are Project Definition,

Design of the Application, Development of Prototypes and lastly, Product

Manufacture.

In a similar vein Galvis, (1994) describes a method for educational software

development that corresponds to an adaptation of the revised waterfall model (figure

2.3) for this particular type of software. His main contribution is the accuracy in the

description of the activities to be carried out at each stage, particularly at specifying

all the pedagogical and psychological considerations that should be taken into account

in each step of the development process.

The use of fourth generation languages is also an alternative for software

development, in which the problem to be solved is described using an abstract

representation and then code is generated automatically. Generally these types of

systems have been designed to develop information systems for commercial

companies and therefore are not very suitable for developing educational software.

Apart from these models, there are other techniques that are used to produce software,

such as the use of formal specifications that allows to specify software requirements

using formal notations and the code results from the translation of the specifications

into a programming language either automatically or manually. Among these, the

most widely used are the Vienna Definition Method, Z Notation, Programming

through transformations, and the Cleanroom Method (DeGrace & Hulet Stahl, 1990).

Despite of the different methods or techniques used for software development, it is

still difficult to produce a piece of software. In 1987, Brooks published the paper 'No

silver bullet: essence and accidents of software engineering', where he characterises

the essential difficulties of software development. These are:

• Software products are very complex because they are built combining a large

number of different entities (functions, subroutines, etc.) that need to work in a

31

co-ordinated and consistent way. This characteristic is rare in other comparable

human constructions.

• Software products need to be adapted to the different contexts in which they will

be used. There are no unifying principles in software since every organisation

(industry) or human system is different and therefore has particular requirements.

• Software product are under a permanent pressure for change, they need to evolve

into more powerful products and/or products that perform additional functions.

Normally new versions of products replace the old ones, in the case of software,

the new version is basically the same piece of software plus the additional

features.

• Software products are invisible, they only exist in the domain of the ideas of the

author and the user will never 'see' the product, (s)he will only use it and be

aware of its 'effects'.

These characteristics are still part of the software being produced today and Winograd

(1995) supports its 'essentiality', by saying:

One of the key differences between software and most other kinds of
artefacts that people design is the freedom of the designer to produce a
world of objects, properties, and actions that exist entirely within the
created domain.

(Winograd 1995, p.70)

He adds that this special characteristic of software products make it very difficult to

share the idea of the product to be developed, because the artefact belongs to the

author and it is not possible to apprehend it in the computer, but simply to actualise it

through every attempt to use it. These special conditions of software makes it very

complex to produce. Such difficulty, added to the design problems mentioned in the

previous section, constitutes a rather challenging scenario for educational software

developers.

Nevertheless, the issue of software development methods will not be further pursued

here, rather the main focus will be that of software design issues. From this

perspective, the actual scenario can be summarised as:

The design of a computer application, regardless of its specific details, is
intertwined with the design of the organisational interactions that
surround its use.

(Winograd 1995, p. 73)

Given that educational software is supposed to be used in the classroom, the

`organisational interactions' that should be analysed in this case are the ones that

happen between the pupils (or among them) and the teacher. This implies that the

32

users of the software are both, teachers and pupils, so far they are permanently

interacting with each other in the classroom. Considering such perspective, it could be

argued that in order to design a 'good' piece of software both type of users would

need to specify their requirements to the software engineer and participate in the

development process, as Squires (1996) describes that is the case of 'successful'

production of educational software. The problem is that, although this simple idea

could work, research in the Software Engineering area indicates that

misunderstandings between software designers and software users are very common

and that this is one of the main problems faced during the software development

process (Gilb, 1988; Olsen, 1993).

Colin Potts in his article 'A Software Engineering Research Revisited' in 1993,

suggests that an emerging trend exists today toward using industry as the laboratory

for discovering new techniques of developing software and that this tendency

emphasises the relevance of an empirical definition of the problems, the study of

actual cases and its contextual aspects. Hughes, King, Rodden, & Andersen, (1995) in

arguing for a role for ethnography in software development claim that it is vital for

designers to understand the work setting as a socially organised setting prior to

initiating the design stage. Similar arguments that there is a need to understand the

context of use of the technology are given by Crook (1991), Koedinger & Anderson

(1993), Mercer & Scrimshaw (1993), Olson (1988), Reusser (1993) Suchman (1987)

and Winograd & Flores (1986).

2.3.2 	Development of educational software

There are two main tendencies in which different software design teams have tried

explicitly, or implicitly, to tackle the problem just mentioned. The first is transferring

the software design responsibility to the teacher, and the second one is to incorporate

teachers as part of the design team.

The first tendency means that a teacher, by him/her self, designs a piece of software

that (s)he finds to be useful for his(her) activities (Fitzgerald, Bauder, & Werner,

1992). This has been tried in different empirical situations but the essential problem

here is that the highly specialised technical knowledge required (software

engineering, programming methods and techniques, human computer interface

design, etc.) to produce a professional piece of software is far beyond the normal

training of teachers (and other professionals as well). In this sense, it is easy to

understand that resulting software can be very useful in bounded situations, but

certainly not satisfactory in general, neither for external evaluators (for example, the

pupils) nor for teacher themselves. In fact, Hoyles, Noss, & Sutherland (1991), in

33

their final report of the Microworlds project, found that the process of creation of

microworlds was of much more value than the product itself, they say:

We now see the creation of a satisfactory product (i.e. a microworld for
general use in the classroom) to be both more complicated and of lesser
importance....
Achieving a satisfactory product requires a vastly different range of skills
of production and sequencing than is normally required for teachers to
carry out their work in the classroom.

(Hoyles, Noss, & Sutherland 1991, Vol. I, p. 29)

Despite the fact that this experience was focused in other issues (i.e. "to develop, im-

plement and evaluate a programme of in service teacher education concerned with the

use of generic computer applications within the secondary school mathematics curri-

culum" Vol. 1, p.1), this study highlights the difficulties of transforming teachers into

software developers.

The second tendency implies the involvement of one or more teachers in the software

development process with defined roles and activities. There are some experiences re-

ported in the literature about the incorporation of teachers in development of software

(for example: Char & Hawkins, 1986; Hawkins & Kurland, 1986; Watson, 1987;

Watson, 1993)

In Char and Hawkins (1986)'s report, teachers were part of the design process,

advisors in curriculum issues and evaluators in different stages of the software

development process. Hawkins & Kurland (1986) describe an experience of require-

ment specification for the design of information-managing tools in the schools. Both

projects started from a prior conception of the piece of software to be developed but

they didn't have a stage of 'requirements specification' in order to analyse what was

really needed in the school(s).

Watson (1987) describes a similar project that included teachers, curriculum

developers, programmers and system analysts (and as the result of this interaction

there emerged what she defines as a "CAL developer" p. 44) in the development

group. In this case requirements were defined by the curriculum (as the name of the

project suggests 'Computers in the Curriculum'), so they implemented several units

of software based on units of the curriculum. This emphasis on curriculum gave them

the orientation and framework for the software design, not the school itself.

Watson (1993) reports about a study based on the analysis of what is required in the

school from a piece of software. The analysis is based on comparing the general

practices to be found in a school with existing software tools (educational activities

34

v/s the contribution of IT). Based on this argument, they left the teachers to build

projects where the students could program pieces of software.

One study which incorporates a requirements specification is a study by Self (1985),

where he describes the process of software design and includes the requirement

specification stage. But when he explains it, he mentions aspects such as who will use

the software, accommodation of the teacher, etc. He does not include a diagnosis of

the school's problems and a justification of the piece of software.

There are a few good examples of approaches to the use of technology in education

based on requirements analysis, one in particular is McConnel (1994)'s course design,

which starts with an analysis of co-operation and learning, and from this designs

strategies for using the technology to support the different ways of implementing

computer supported collaborative learning.

However, there seems to be little (even if some) experience about development of

software based on an analysis of the needs and activities found in the schools, almost

all the software development projects described above were based in a preconceived

idea of what kind (or specific piece) of software should be developed and teachers

and students were incorporated in the process after this initial definition or

conception.

2.4. SOFTWARE EVALUATION

There are many views of software evaluation, so the first issue is to define what is to

be understood as evaluation. In the literature that defines meanings of evaluation there

are a number of conceptions that range from conceiving evaluation as a pure

quantitative procedure that will state the position of something in a predetermined

scale, to conceiving evaluation as a qualitative analysis that will help to understand

something. In this sense, evaluation is as complex as research and some authors claim

that, in fact, evaluation is research. Accepting this last position it is possible to

envision the type and amount of controversy simply by transferring all the discussion

about research methods and techniques to evaluation. This review tries to keep apart

from these discussions and focus on software evaluation only, hoping to be able to

gain clarity in some points.

2.4.1 	What is software evaluation?

Squires & McDougall (1994) make the distinction between evaluation, selection and

review of software. These concepts are also found in Winship (1989)'s book, where

35

he gives an initial framework to focus the discussion. The different activities defined

by Squires & McDougall (1994) are:

• Selection: we mean the assessment of software by teachers in anticipation
of its use with groups of students in classrooms or with individual
students.

• Review of educational software is the process of assessing it to write a
summary of its features and characteristics for the information of others
who are involved in software selection.

• Evaluation of software can take place during either the development of
the software or the use of a complete package.
• Evaluation during the development (formative) focuses on possible

modifications to the software.
• Summative evaluation after publication, is concerned with the quality

and variety of experiences that the software can support."
(Squires & McDougall 1994, pp. 3-4)

Selection of software could also involve some kind of evaluation. When the teacher

selects one piece of software among other pieces, it could be interpreted as the

consequence of an evaluation, but the sense given here is that in the process of

choosing there is not, necessarily, a formal process that ends in a judgement. It could

be a matter of taste rather than a conclusion of a formal procedure.

The software review process where the evaluator is asked to review the software

holistically (Reiser & Kegelman, 1996) is seen here as one technique that could lead

to an evaluation, but it is still a process of observation which should have no

judgement in it.

For the purposes of this research software evaluation is understood as a formal proce-

dure that helps someone else to build up a judgement about the software, in the sense

of its effectiveness in the areas or activities for which it has been designed or is been

used. In this review, formative evaluation was excluded because it is part of software

development methods, that is, software engineering which is not the focus here.

2.4.2 Types of software evaluation

The different evaluations techniques are classified here in three groups:

Experimental methods

In this approach the experimental method is used in order to assess the effectiveness

of a piece of software. Examples of these methods are found in reports by Reiser &

Dick, (1990) and Zahner, Reiser, Dick, & Gill, (1992), in which they propose a

36

specific method of carrying on an experiment to evaluate software. In general terms,

they follow the model of pre-post tests using experimental and control groups.

Check-list approach

This groups of methods are based on applying a set of predetermined criteria to a

piece of software and the result will enable the evaluator to find out if the software is

suitable or not. Examples of this methods are found in Tolhurst (1992)'s study and

Squires and McDougall (1994) does an extensive review of the different options.

Qualitative evaluation

Some evaluators argue for the evaluation of the software in a situated context and

propose the application of qualitative methods to evaluate software. Examples of this

are given by Crook (1991) where he changes the focus of analysis of software from

the interaction with the computer to the interaction around the computer, and Squires

and McDougall (1994) propose a method of analysis of software based on a

`perspectives interactions paradigm' that contribute to evaluate software, the

perspectives are: teacher- student, teacher-designer and student designer (the designer

is meant to be the software designer or programmer). Each perspective is presented

with several different aspects to be analysed, for example:

• Teacher-Student perspective: analysis of the kind of classroom interactions and

activities that might be sponsored by the package.

• Student-Designer: analysis of the learning process and assumptions which are

designed into the package.

• Designer-Teacher: analysis of the curriculum issues, notably concerns with the

curriculum process and content designed into the package.

These evaluation methods are still being examined (Baumgartner & Payr, 1997;

Squires & Preece, 1996) and there is still no clear conclusion about their effectiveness

(Reiser & Kegelman, 1996).

2.4.3 	The issue of software evaluation

One of the main problems of software evaluation seems to be the nature of software

itself, in that it is not readily accessible, unlike a book or other teaching material, it is

not accessible to inspection, by skimming, scanning, browsing, etc. It must be run and

explored in the computer and the teacher will need a certain expertise to be able to do

it (Squires & McDougall, 1994). Winograd (1995) expressed a similar view about the

nature of software, describing the particularity of software design as the creation of an

independent artefact that exists and has sense in a defined domain. In a similar vein

37

Olson (1988) defines software as 'ideaware'. Another line of argument concerning the

difficulty in using evaluation methods is the lack of time for the teachers to evaluate

the software. There is evidence that the teachers do not spend much time preparing

computer based lessons, they prefer to employ a piece of software that they can use

without even knowing it (Evans-Andris, 1995).

These ideas lead to an understanding of software as an artefact that needs to be used

and explored in order to make sense of it and that in this interaction the user will build

up a personal mental representation of the software. Within this perspective, software

evaluation is transferred to the domain of evaluating situations that are created within

the interaction between the user(s) and the artefact.

Winograd and Flores (1986) base their analysis of software in a philosophical

position derived from Heidegger who argues that the separation of subject and object

denies the more fundamental unity of being-in-the-world (dasein) because:

• Our implicit beliefs and assumptions cannot all be made explicit.
• Practical understanding is more fundamental than detached theoretical

understanding.
• We do not relate to things primarily through having representations of

them.
• Meaning is fundamentally social and cannot be reduced to the

meaning-giving activity of individual subjects.
(Winograd and Flores 1986, pp. 32-33)

This idea is also used by Suchman (1987) in developing the concept of 'situated

actions' as a term that underscores the view that every course of action depends in

essential ways upon its material and social circumstance. She describes the properties

of the ethnomethodological view of purposeful action and shared understanding as:

1 plans are representations of situated actions;
2 in the course of situated action, representation occurs when otherwise

transparent activity becomes in some way problematic;
3 the objectivity of the situations of our action is achieved rather than

given;
4 a central resource for achieving the objectivity of situations is

language, which stands in a generally indexical relationship to the
circumstances that it presupposes, produces, and describes;

5 as a consequence of the indexicality3 of language, mutual intelligibility
is achieved on each occasion of interaction with reference to situation
particulars, rather than being discharged once and for all by a stable
body of shared meanings.

(Suchman 1987, pp. 50-51)

3 The word indexicality is used in the technical sociological sense here.

38

In this definition, the second property refers to the concept of breakdown mentioned

by Winograd & Flores (1986) and the third one refers to construction of common-

sense from the actions. The fourth and fifth refers to the communication process using

the language and specifies its context dependency and particular meaning.

Starting from such a similar theoretical framework these authors (Suchman,

Winograd and Flores) use it to develop different conclusions. On the one hand,

Winograd and Flores (1986) describe the different types of interactions among people

that take place in a particular context (they develop the case of the communication for

management in the context of an office). Their description uses linguistic categories

(speech acts) to characterise each type of dialogue that occurs (or should occur) in this

context for such purpose. Based on this example, they propose the design of what

they call 'tools for conversation', which are pieces of software that implement the

structures of the dialogues described and thereby provide a framework for interaction

which helps to change the interactions themselves.

In this proposal, they are using the technology as a means to change the structure of

the communication among people and thereby to change what is happening in a

situation. Their argument is that "language does not describe a pre-existing world, but

creates the world about which it speaks" (p. 174), and if they change the

communication, they will be able to change the world in which such communication

happened.

On the other hand, Suchman (1987) describes her argument as:

My argument has been that as long as machine actions are detei 	lined by
stipulated conditions, machine interaction with the world, and with people
in particular, will be limited to the intentions of designers and their ability
to anticipate and constrain the user's actions.

(Suchman 1987, p. 189)

Considering that, in a way, a piece of software is a particular implementation of a

`plan' (set of actions to be implemented by a user), it seems reasonable to expand

Suchman's argument as to include not only machines but also other artefacts (such as

software). Then, it would be possible to say that software actions could also be

limited to the designers' intentions and their ability to anticipate and constrain the

user's actions. In this sense, it is possible to realise that Winograd and Flores (1986)

use Suchman's argument for their convenience, this is, they want to constrain the

user's actions in order to make their communication in the office more effective.

39

Whether this can be considered right or wrong, will not be discussed here in so far it

is not the focus of this research, the important issue for this study is that these authors

coincide in the importance of the context in which such artefacts are used and that

they (the artefacts) embed the power of changing a given reality (accordingly to

Winograd and Flores, 1986) and that a given reality changes the artefact in use

(accordingly to Suchman, 1987).

Looking at a similar issue but from a different area (i.e. education), Crook (1987;

1991; 1994) adds another element to this discussion, he concentrates on the concept

of interaction between students and teacher while they are using the computer. In

doing so, he defines a social context in which this interaction occurs. His arguments

are based on ideas proposed by Vygotsky and refer to the Zone of Proximal

Development. As he defines it:

The novice in the cognitive system, the pupil let us say, appropriates the
goals and strategies that are manifest in the overt, jointly organised
problem solving behaviour. Much of this will be carried by the language
that is exchanged within the interaction. It is in this way that the learner is
said to make internal ('intramental' in Vygotsky's terms) the events in
which they have participated on an 'inter-mental' level.

(Crook 1991, p. 83)

Considering the arguments presented until now, it is possible to say that a piece of

software can be designed as to change the structures of conversation; that a user could

change the plan embedded in the software and thereby change its initial design and

finally, that the interactions in the social context in which it is being used could

change what happens with the software.

In such framework, and in order to be able to evaluate a piece of software, it is

possible to argue that it has no sense to evaluate the software as an isolated element, it

needs to be evaluated in a specific social context and circumstance. The software as it

is defined here needs to be internalised4 in order to be understood and thereby

evaluated.

In this sense, the proposition made by Squires and McDougall (1994) could be seen

as the most suitable or appropriate, because it allows to structure the analysis focusing

in different dimensions of use or interaction (teacher-student, student-designer, and

designer-teacher). This way of structuring the analysis could lead to a meaningful

evaluation. This proposition can be complemented with the perspective that the

4 Understanding internalisation as a process wherein an internal plane of consciousness is formed and
the external reality at issue is a social interactional one (Wertsch, 1985)

40

evaluation should take place in a real situation in order to be comprehensive, in this

case an analysis of each interaction in a given scenario would be needed.

In doing so, the evaluation itself loses its predictive value because the software is

already being used. Evaluation then could only explain a certain outcome or process

that is happening or has happened.

2.5. EDUCATIONAL INNOVATION

The introduction and use of information technology in education is commonly

associated to a process of 'educational innovation' (for example: McDonald &

Ingvarson, 1997; Olson, 1988; Wright, 1987). This perspective provides a different

framework for the analysis of educational software, in so far its adoption and use are

considered to be part of a process in which the teacher and the school is engaged.

From this perspective, this section presents an overview of the literature reporting

such processes.

Hurst (1983) raised the question of whether educational change is different from

change in other institutions. The arguments that support the difference are:

• Teachers spend less time with colleagues and more with students

• Teachers are not usually subject to detailed supervision and assessment of

performance.

• In developing countries, at least, teachers are often inadequately trained,

underpaid, and enjoy relatively low status.

• Educational systems are often highly centralised

But, he argues that it is a mistake to think that the organisational context determines

the behaviour of its members, and concludes that teachers do not respond to new

ideas in a way that is fundamentally different from anyone else, and just as with other

people the results of an innovation process directed at teachers will differ depending

on the institution, group or individual.

Fullan & Stiegelbauer (1991) give some conceptions about schools in terms of goals,

power, decision making, external environment and teaching process that could help to

analyse these organisations and their innovation possibilities. Fullan (1992; 1996)

distinguishes between the adoption of an innovation and the implementation of the

innovation, and list the themes and factors that influence these processes.

41

Some conclusions drawn by the authors that have been considered about innovation

in education are that schools, like any other institution, are different from each other

in particular, but share some common characteristics. And, the rejection, adoption or

modification of an innovation by an institution is uncertain, but there are several

conditions that predispose to success, but do not assure it. They mention two points

that are important for success:

i) Mastering the innovation in the classroom and sharing it with colleagues (Fullan,

1992; Huberman, 1992). Huberman (1992) describes innovation it as a process of

grafting the new on the old, and he comments that every 'old' is a distinctive, local

context with its own history and configuration. Olson (1988) also defines the

process of change as not one of substituting one practice for another, but one of

subjecting existing practices to challenge posed by another well conceived

practice. Both definitions have an evolutionary approach to change, rather than a

revolutionary one. They suppose that 'the new' should be somehow grounded in

'the old' (the revolutionary approaches to change are not addressed here).

ii) The importance of understanding the teachers and teachers' self-understanding.

Fullan and Stiegelbauer (1991) argue that the subjective world - the phenomeno-

logy - of the role incumbents needs to be understood as a necessary precondition

for engaging in any change effort with them.

It appears to be clear that although there are institutional conditions that have to be

fulfilled for change to take place, the one who implements the change is the

individual and the focus of change is his(her) practice. Arguments supporting this

assumption are given by Fullan (1993), he says that "systems do not change

themselves, people change them", and Fullan and Stiegelbauer (1991) say that

"educational change depends on what teachers do and think - its as simple and as

complex as that" (p. 117).

2.5.1 	Innovation and computers

In the new 'Information Age' computers and telecommunication are key tools that

permit (and eventually produce) the change from the traditional bureaucratic culture

of organisations to a new professional culture. Schools are part of this new scenario

and they are required to adopt this new paradigm, that means to innovate and change.

The reasons found in the literature are related to the need of society to have citizens

who can live and work productively in increasingly dynamic, complex world (Fullan,

1993).

42

In many cases the justification for investing in information technology is based on the

need to innovate in some or several areas or dimensions, rather than in the need for

the technology itself. In fact, speaking about the rationale for innovation in schools,

Grunberg & Summers (1992) rephrasing Fullan (1982) say: "schools tend voluntarily

to adopt innovations which promote their image as up-to-date and efficient" (p. 259).

Therefore, besides efficiency, efficacy, effectiveness, and other justifications for their

use, computers are often seen as innovation 'symbols' or 'signs' and once introduced,

act as catalysts in the process of change (Hawkridge, et al., 1990).

When computers are introduced into the schools there is an expectation of innovation,

of change. Also, when new software is introduced into a classroom there will be a

change, students and/or the teacher will be confronted by something new. The

introduction of the computers themselves, and then the introduction of new software

can be seen as two different elements triggering innovation in the classroom. This

section adds a new perspective of analysis, presenting the software and computers as

part of a larger process of innovation and, further, playing a special role in such a

process.

Computers produce a wide range of effects in an organisation and much has been

written about the different levels in which they impact (for example Zuboff, 1988,

makes the distinction between automating and informating effects). One interesting

specific effect of computers in schools is reported by Olson (1988), where he was

trying to understand the way teachers use the computer. As mentioned in section

2.2.3, he found two different ways in which teachers use the computer: as a Trojan

horse (the computer is used as an aid to innovate in the teaching strategy) and as an

expression tool (the computer is used as an instrument to express how they want to be

seen as teachers). These ways of using the computer were not perceived by the

teachers itself, but were revealed by the process of analysis and interpretation that the

researcher applied to his observations of their working with computers. In both cases

it is possible to ask whether this is a computer driven or a computer supported

process. In the former, technology plays the role of catalyst and in the latter it is a

support for the ongoing process of change.

This role of technology is coherent with that of Winograd and Flores (1986), who

argue that when a change is made, the most significant innovation is the modification

of the conversation structure, not the mechanical means by which the conversation is

carried out. This focuses the ideas of change not in the technology (computers in this

case), but in the relation or activities that are carried out through (with, by, using)

computers, in this case, teaching and learning.

43

Placing technology in a supportive role implies first, understanding the on-going

process of change and second, choosing an appropriate technology. This view is

coherent with the reflexive concept of change (Olson, 1988). Olson (1988) defines

teacher behaviour as 'reflect on action', research activity as 'understand teacher

intentions' and innovation activity as 'engage in critical analysis of practice'.

This issue was also addressed by Grunberg & Summers (1992), who in a review of

the literature on innovation and computers in education conclude that: "the previous

emphasis on the technical characteristics of the proposed innovation has evolved into

a more context-sensitive approach focusing on how the proposed innovation fits the

teachers' working conditions and value systems" (Grunberg & Summers 1992, p.

272).

In reference to software, Olson (1988) defines it as:

Software is at heart, `ideaware,' and more the 'idea' of the software is
transparent to the teacher, the more likely the challenge to the 'ideas' in
every day practice can be discerned by the teacher, and the process of
reflective conversation begin.

(Olson 1988, pp. 55-56).

The transparency of an idea for teachers will depend on their conceptions, beliefs and

practices, this means that to design such software we should know and understand

what teachers think about software and how they think it could be used in the

classroom. The software should be useful for them, and should fit into their strategies,

enabling them to change from present actual practices to new ones.

In this vein, Sandholtz, et al. (1997) present an interesting study that reports a process

of instructional evolution in technology rich classrooms. The study was part of the

"Apple Classroom of Tomorrow" (ACOT), a research-and-development collaboration

between public schools, universities, research agencies and Apple Computer. The

project started in 1985 and was set out to investigate how routine use of technology

by teachers and students would affect teaching and learning. Based on their

observations, they defined five stages of instructional evolution:

• Entry: Is defined as the first contact of the teachers with computers. At this stage

"teachers found themselves facing problems typical of first-year teachers:

discipline, resource management , and the personal frustration that comes from

making time-consuming mistakes" (Sandholtz, et al. 1997, p 37).

• Adoption: At this stage "teachers showed more concern about how technology

could be integrated into daily instructional plans. Interspersed among traditional

44

whole-group lectures, recitations, and seat work, teachers incorporated computer

based activities aimed primarily at teaching children how to use technology"

(Sandholtz, et al. 1997, p. 38).

• Adaptation: "In this phase, the new technology became thoroughly integrated

into traditional classroom practice. Lecture, recitation, and seat work remained the

dominant from of students tasks, but students used word processors, databases,

some graphic programs, and may computer-assisted-instructional (CAI)

packages" (Sandholtz, et al. 1997, p.40).

• Appropriation: This stage is defined by them as "less a phase in instructional

evolution and more a milestone. It is less by change in classroom practice and

more by change of personal attitude toward technology. It comes with teachers'

personal mastery of the technologies they are attempting to employ in their

classes" (Sandholtz, et al. 1997, p. 42).

Invention: "In the invention stage, teachers experimented with new instructional

patterns and ways of relating to students and to other teachers" ...

"Interdisciplinary project-based instruction, team teaching, and individually paced

instruction became common" (Sandholtz, et al. 1997, p. 44).

From the perspective of the present study, this report is useful, in so far it describes

what teachers do in the classroom in the different stages of instructional evolution (or

innovation process). And it also describes the role of the technology in each of these

stages. One of the interesting aspects of this study is that in their descriptions they

analyse both the hardware and the software that was used during the different stages.

In fact, they characterise some of these stages by presenting the type of software that

teachers or students use (spreadsheets, word processors, etc.). In this sense, they

provide interesting evidence not only about the changes in teacher's roles or

perceptions of the technology, but also about their evolution as users of different

pieces of software.

On the other hand, due to the design of their study, it is possible to argue that because

these teachers were part of an experiment, they were continuously under

`experimental conditions' which, from the researcher's point of view, undermines the

possibilities of generalising the results, and also due to the involvement of a private

company in providing the hardware for the schools, its possibilities of replication are

very lows. Nevertheless, the experiences described constitute an interesting reference

for comparison.

5 Since the research was sponsored by ACOT, another issue that could be considered is related to the
`power' position of the researchers, in so far as the teachers being researched could have been under
`pressure' to show good results. This tension will not be discussed here because there is not enough
information available to make such claim.

45

As regards the description of what teachers do with technology, there are

coincidences with other reports about the introduction of computers into schools. For

example, in the report of a longitudinal study discussed by Cox (1997), she compares

the actions of two secondary teachers (experienced versus inexperienced in using

computers) during a lesson using software. She reports that the experienced teacher

was able to take a facilitating role with the pupils, and was able to promote

individualised learning and innovative uses of software. The inexperienced teacher on

the other hand, restricted herself entirely to technical advice on using the software.

Using Sandholtz, et al., (1997) classification, it would be possible to say that the

experienced teacher was at an 'Invention' stage while the other was at an 'Adoption'

stage of instructional evolution.

In a similar vein, in the report "Computers in Schools: A qualitative study of Chile

and Costa Rica" by Potashnik, Rawlings, Means, Alvarez, Roman, Dobles, et al.

(1998) they describe the role of the teachers in the observed 'technology rich'

classrooms as being at an 'invention' stage, they say:

The researchers found trends toward less explicit direction on the part of
teachers, greater student initiative, and more collaboration among
students.

(Potashnik, et al. 1998, p.19)

But in the same report, it is possible to find some descriptions about classroom

activities that would place these teachers at an 'adaptation' stage of instructional

evolution, where lecture, recitation, and seat work remained the dominant form of

student tasks. In a similar vein, in Olson (1988)'s report, it is possible to see that

teachers' attitudes towards technology and actions in the classroom do not correspond

to a single stage of instructional evolution such as the ones reported by Sandholtz, et

al., (1997). That is to say, some teachers experimented with new instructional patterns

while they kept the role of assisting the pupils in using the software.

The intention here is to show that it is quite difficult to characterise a general pattern

of instructional evolution, in so far as what teachers do in the classroom depends on

several factors, like: the school's conditions (the principal, the community, the

teachers and the particular training they received), national policies (ongoing reforms

processes, type of administration, etc.) and a relevant factor to be considered in this

study is the software available in the school. As Fullan (1996) argues, "educational

change is a dynamic process involving interacting variables over time" (p. 274) and

computers add a large number of new variables to this process, in so far as these

machines serve different purposes depending on the software used.

46

2.5.2 	Implications for this study

From this section three implications can be drawn:

• Computers are highly correlated with innovation processes, generally acting as

catalysts. On the other hand, current views about innovation, tend to emphasise

the importance of relating need to decisions about innovations or change

directions (Fullan, 1996). Therefore, computers should act as supports for ongoing

changes prompted by the needs of the educational system itself.

• In order to use computers as supports for innovation it is necessary to understand

the context in which they will be introduced and the role that this technology will

play in this context.

• Expanding the previous implication, it is possible to say that in order to use

software as support for an innovation process it is necessary to understand the

dynamics and roles that it could play in a classroom situation and specially the

teachers' view of these roles. In other words, if teachers will use the software, it

should be clear which need this software will address. This is coherent with some

of the critical factors that have been found to relate to successful implementation

of change described by Fullan (1996) (i.e. need and clarity).

These implications are coherent with the overall picture presented in previous

sections, they shift the focus of the process of innovation away from the technology

and closer to the context and actions, that is a situated perspective of change.

It must be reminded that these implications refer to the process of innovation, not to

the innovation itself. Whether the particular innovations are in the right path or not, is

not the focus of this study, and therefore alternatives for innovations were not

discussed here.

2.6 	PEDAGOGY

In the previous sections of this chapter it has been argued that in the area of this study

(Information Technology in Education) there is a lack of understanding of the

teachers actions and roles in the classroom and that there is a need for knowing

teachers' actual beliefs about computers and software in order to contribute to the

understanding of the role of the software in education from a situated perspective.

One possible starting point to form this understanding is in previous studies reporting

on the nature of the professional knowledge that teachers share and what teachers do

47

in the classroom. With this objective in mind and in order to form a basis for later in

this thesis examining the pedagogy of information technology, this section briefly

reviews the general literature on pedagogy. Particularly, it will look for answers to the

following questions:

• Teachers' Knowledge and Expertise: What do teachers know that could be

incorporated into the design of educational software?

• Teachers' Roles and Actions in the Classroom. What do teachers do in the

classroom that could be incorporated into the design of educational software?

Nevertheless, it is not the intention here to present a complete survey on this area, as

the main focus of this study is related to information technology in education.

2.6.1 	Teachers' knowledge and expertise

The body of knowledge that teachers share can be analysed from two general

perspectives: First, looking at studies about professional knowledge and expertise in

general, and second to look for studies about the teaching profession in particular.

Within the first perspective, a complete account of the different theories developed to

characterise professional knowledge and competence is found in Eraut (1994), who

presents a review of the following theories:

• Dreyfus' model of skill acquisition (Dreyfus & Dreyfus, 1986) which is based on

the development of "knowing how" rather than "knowing what". In this model,

the pathway to competence is characterised mainly by the ability to recognise

features of practical situations and to discriminate between them, to carry out

routine procedure under pressure and to plan ahead.

• Theories of clinical decision making, he describes the more quantitative views

about the process of medical diagnoses (rational approaches, templates

approaches, Frame System theory, etc.) and the more qualitative approaches that

try to explain decision making in a situated context and individual dependant.

• Hammond's Cognitive Continuum theory (Hammond & al., 1980), that defines

analytic and intuitive thinking as poles of a continuum, arguing that most thinking

is neither purely intuitive nor purely analytical.

• ShOn's theories about reflection-on-action (Schon, 1983), where he, while

criticising the technical rationally models for describing professional expertise,

48

proposes to search for "an epistemology of practice implicit in the artistic,

intuitive process which some practitioners do bring to situations of uncertainty,

instability, uniqueness and value conflict" (Schon, 1983, p. 49)

These theories for characterising professional knowledge and competence in general

and in particular, teachers' expertise, could be used as a general framework for this

study. But it does not seem that these perspectives can in fact help us to see the key

issues that could enable to define the characteristics of a piece of educational software

that could serve as a tool for teaching.

About the second perspective, that is, characterisations of the teaching profession,

Grossman (1995) describes it as covering six domains, these are:

• Knowledge of content

• Knowledge of learners

• Knowledge of general pedagogy

• Knowledge of curriculum

• Knowledge of context

• Knowledge of self

All these types of knowledge could be understood as isolate 'pieces of information'

that teachers should acquire during their training period or early teaching practice.

But what is interesting for this study is the knowledge constructed through the

combination of these dimensions, that is, their professional knowledge or expertise.

In this latter view, while characterising the teacher's expertise, Berliner (1995)

describes five levels of expertise that were defined by Dreyfus & Dreyfus, (1986):

1) Novice

2) Advanced beginner

3 Competent

4) Proficient

5) Expert

Each level is characterised based on the way teachers plan their teaching, their

behaviour in the classroom and their actions while facing critical situations. In general

terms the way to progress through these levels of expertise can be summarised as

improving the management of the classroom and developing strategies to plan the

lessons. As mentioned by Eraut (1994), they do not describe the improvement of the

`didactic strategies' (the way teachers explain the contents and try get to an

49

understanding of the pupils). Then he describes eight different propositions about

teacher expertise, again without reference to didactic principles that expert teachers

would apply.

This short review of the area of 'teachers knowledge or expertise' shows that,

although there is a significant amount of research in the area', the key issues for this

study are not presented in such a way as to have ready applicability in this particular

study.

Another source of information that could help to answer the questions mentioned

before, is the study by Alexanderson (1994) about the way in which primary school

teachers reflect on their everyday practice. In his study, Alexanderson found that

teacher consciousness is focused on three different areas: (i) to the activity itself (65%

of all the quotations), (ii) to aims of a general character (22% of all the quotations),

and (iii) to a specific content (13% of all the quotations). In relation to the first area —

the activity itself-, he found that they reflected on:

• How pupils are developed socially

• How a deep communication and retention is growing

• How the pupils are being noticed

How to teach pupils to listen

How systematic teaching leads to activity

How structured and balanced teaching is performed

How I think and how the pupils think

In these reflections, "methods of teaching were mentioned as a way to establish

contact in terms of a good relationship with the pupils. One could trace the teachers'

intention as being the capture of the attention of the pupils" (Alexanderson 1994, p.

144).

In relation to the second area -aims of general character-, Alexanderson (1994) reports

that the reflections were about:

• Aims of the present conversation

• Aims of the open attitude in the teaching

• Aims for the teacher's active discipline

• Aims for catching the pupil's attention

50

In relation to the third area -specific content-, he reports that teachers' consciousness

was also directed towards the aim "that the pupils learn a specific content". He

describes that:

The teacher's comments concerned mainly the reflection activity of the
individual pupil and his or her ability to verbalise the reflection or to
describe the reflection in a concrete area. Consciousness was then
directed towards the way in which the pupil expressed his or her action in
relation to a fixed content.

(Alexanderson 1994, pp. 145-146)

This is, the teacher was focused on a particular learning episode rather than on a

general learning aim. In general terms, what Alexanderson (1994) indicates is that

highly skilled teachers are not necessarily driven by the aim that their pupils should

develop certain specific understanding, knowledge or skill; the teachers were in

general not directed towards some specific content of the pupils learning. He

concludes that teachers were not oriented towards specific learning aims and that they

rarely focused on means-ends relations.

In the same vein, accordingly to Marton (1994), "the general picture that investigation

yields is that learning goals in terms of the pupil's mastering of some specific content

did not appear as a mayor driving force of the teachers' acts" (Marton 1994, p. 35).

These findings could help to answer the initial question, in so far they show that

teachers are not necessarily aware of the strategies and tactics that they use while

teaching. Further, some research about teachers' practice, indicates that both planning

and classroom interaction are responsive, compositional and situated (i.e.

contextualised) (Yinger & Hendriks-Lee, 1995).

In this framework it could be argued that the actual research to date has been

successful in proposing how to characterise teachers knowledge, and proposing

models that could be used to define such knowledge (for example: Eraut 1994's

proposition). Also, that there is research proposing different levels of expertise that a

teacher could acquire and some research showing that teachers are not aware of the

pedagogic techniques that they use while teaching (Marton, 1994).

As a contribution to this, Elbaz (1990) argues that such knowledge does exist, and

that in order to be elicited, research should provide a space for teacher's voice, so that

`ordinary' teachers can tell stories about their 'ordinary' praxis of 'ordinary' teachers.

She argues for such a method of eliciting teacher's experiences and further on, she

argues that 'story' is "sometimes implicit in teachers' knowledge, that teachers'

51

knowledge in its own terms is ordered by and as 'story' and so can best be understood

in this way" (Elbaz 1990, p 33).

This last claim could be used as an interesting framework to support the methodology

of this study, in so far it would indicate that in order to elicit teachers knowledge they

should engage in a process were they could 'tell a story' about their teaching and

particularly in this present case a story about the use of educational software in their

teaching.

2.6.2 	Teacher actions and roles in the classroom

Teachers actions and roles have been studied and explanations offered from different

perspectives, Olson (1992) describes three models that have been used to describe

what teachers do in the classroom (definitions found in pages 2 to 13):

• Systems Model: this is based on the idea that inputs (decisions) and outputs (what

happens in the classroom) can be tightly coupled and that people will act

accordingly to system plans and, if they do not, the nature of the system will be

adjusted to improve the link between inputs and outputs.

• Ecological Model: this is based on the knowledge of the complex social/technical

situation of the teacher's practice.

• Cognitive Model: the theory behind this model is that teachers consciously

follow rules for processing the information taken from the teaching environment.

This information is processed according to steps determined by rules. This

process goes on at the same time that action goes on - thought and action are

linked.

In his book, Olson (1992) analyses the reasons why these models fail in describing

teachers' actions in the classroom. As a response, he develops the conception of

`folkways of teaching' which is based on classroom routines that he illustrates using

examples of teachers using computers, he argues that such routines express what

teachers know how to do and why they do it. He does not expand on the description

of these routines, but turns to discuss the relevance of understanding the tacit

dimension of practice and the process of change.

In this area, Evertson (1995) describes the research about classroom rules and routines

that teachers follow while teaching. He defines rules as general norms for expected

behaviours and routines as procedures for accomplishing particular classroom tasks

(how-to's). For the purpose of this study, routines appear to be more relevant, so far

they could throw light on what teachers do while teaching.

52

Speaking about classroom routines, Evertson (1995) describes the results of a study

by Leinhardt, Weidman, & Hammond (1987), that defines routines as systems of

exchange that are set up to accomplish tasks, describing three types of routines:

• Management routines, that include housekeeping, discipline maintenance and

people moving tasks.

• Support routines, that is, specific behaviours and actions necessary for a

learning-teaching exchange to take place, for example 'how to pass in papers'.

• Exchange routines, that is, the interactive behaviours that permit the teaching-

learning exchanges to occur. They govern the language contacts between teachers

and students - for example, routines for choral responses.

• Management routines

These routines are described in the literature as 'Classroom Management' (Jones,

1996). In this review, Jones (1996) describes classroom management as "a vehicle for

providing students with a sense of community and increased skills in interpersonal

communication, conflict management, and self control" (p. 503). He argues that:

All teachers care about students, and all teachers need to work with
students to develop a safe and orderly classroom climate. Nevertheless, a
central issue in defending classroom management will always be the
manner in which the teacher chooses to develop safety and order.

(Jones, 1996; p.505)

• Support routines

These are related to 'expected behaviours' that pupils and teacher know and follow.

But from the teachers' point of view, these routines could be described as a set of

tactics that users apply for teaching. For example, in Woods & Jeffrey (1996) they

describe how teachers created 'atmosphere' and used different tones in interaction

with the children to achieve different effects.

In describing the way teachers create this atmosphere, they describe it as having the

following characteristics:

• Anticipation and expectation: teachers are skilled in the construction of

situations and their sense of timing.

Relevance: teachers were able to ensure that pupils felt a strong sense of

involvement by making the pupils identify and get involved in the atmosphere.

53

• Achievement and success: there is a sense of high teacher expectations and

confidence in children's abilities to meet them.

• Satisfaction: Pupils feel satisfaction and the sense of 'a job well done' because of

the achievement.

These characteristics of a 'Classroom Atmosphere' are part of the techniques that

teachers use during the lesson. Woods and Jeffrey (1996) also describe the different

tones that teachers use during the lesson as "Andante (to be performed in moderately

slow time)", "Legato (smoothly and connectedly, no gaps or breaks)" and "Spiritoso

(with spirit)".

• Exchange routines

Exchange routines are related to the particular interaction with the pupils. These are

described in the literature referring to the way teachers conduct dialogue with the

pupils, the way teachers make questions to the students or give feedback to them.

About this dialogue, Hammersley (1990) argues that is based on a question-answers

dialogue and describes the way teachers construct these dialogues. He says that

teachers present the lesson "pitched at a certain level of 'difficulty' according to the

co-ordinate position of the class in relation to age and ability" (Hammersley 1990, p.

47). He argues that teachers gradually provide more and more clues to 'what the

answer is' in order to place the lesson in such a way as to get the answer to emerge

towards the end of the lesson. Further on, he gives some reasons why they do this:

This pre-setting is designed not only to ensure that pupils are taught
something 'new', that they 'keep moving', but also that they have the
resources to understand what the teacher is to teach.

(Hammersley 1990, p.47)

As a complement to this characterisation of teacher-student dialogues, its components

have also been studied, that is, questioning and giving feedback. About the former,

Gall & Artero-Boname (1995) provide a classification of the types of teachers'

questions during a lesson:

• Lower or higher cognitive questions

• Recitation and discussion questions

• Test-relevant questions

In general terms, they present evidence showing that teachers' questions were

frequently closed and factual, made for recitation and similar to the ones that will

54

appear in the tests. Nevertheless, as they argue, in the early 90's contextual factors

were brought into the study of this area and enabled the researchers to have different

perspective about this finding.

The feedback provided to students has also been studied. Mayer (1995) describes the

educational uses of feedback as corresponding to academic learning tasks, behaviour

management tasks and skill learning tasks. In the first, feedback provides information

concerning the correctness of students performance, in the second, it provides

information concerning the appropriateness of students behaviour and in the third it

provides information concerning the accuracy of students behaviour.

Presenting a different view about teacher-student interaction, Cooper & McIntyre

(1995)'s report describes a study aimed at characterising teacher-student interaction

that could lead to effective teaching and learning in the classroom. During their

account they describe two types of teaching: interactive and reactive. The former is

described as the teacher actively employing student perceptions to mediate their

learning objectives. The latter is described as the teacher selecting the lesson content

and teaching strategy based on his(her) perception of students' concerns or interests.

Later on in the report they report that typically reactive teaching existed within a

broader interactive context.

In yet a different view about teacher-student interaction, Edwards & Mercer (1987)

argue that learning partially consists of making knowledge explicitly common to all

members of the class/school and therefore this interaction has particular charac-

teristics or 'ground rules', as they say. In addition to the general ground rules of

conversation, they argue that in the classroom there are additional rules, such as:

• It is the teacher who asks the questions

• The teacher knows the answers

• Repeated questions imply wrong answers

These basic rules provide the general context where the teacher is the 'expert', in

control of the development of knowledge through careful guidance and scaffolding.

While arguing this, they define what they call an 'Ideology of Teaching' that is based

on six principles that teachers reported they followed while preparing a lesson. These

principles are:

1. Setting up conditions which they believe would allow children to discover
things for themselves.

55

2. Planning their teaching to include activities which would give children
direct, concrete experience, and which would require then to act, not just
listen, read or write.

3. Attempting to refer to children's wider out-of-school experience when
planning curriculum topics (in the sense of 'general knowledge', but
hardly ever by reference to the particular life experience of any one child
in the group).

4. By the use of techniques like the 'guessing game' question and answer
sessions, to elicit 'key' ideas from children rather than informing them of
these directly.

5. Never defining (for the children) the full agenda of any activity or lesson
in advance.

6. Not defining explicitly (for the children) the criteria for successful
learning which would eventually be applied to what they had done.

(partial transcript of: Edwards & Mercer 1987, pp. 33-34)

As Edwards & Mercer (1987) say, these principles correspond to "a version of what is

popularly called 'progressive' [teaching] -an approach normally contrasted with the

`traditional' one, which relies heavily on didactic methods and formal procedures"

(Edwards & Mercer 1987, p. 35, our brackets).

From the point of view of this study, these principles also describe the techniques that

teachers could use while interacting with the students and therefore they belong to the

`Exchange Routines' defined by Leinhardt, et al. (1987).

Summarising, while using the general framework of the types of classroom routines

provided by Leinhardt, et al. (1987), it was possible to review some studies conducted

that could help to provide a better idea about what teachers do in the classroom. It has

been showed that what teachers do in the classroom could be classified at least in

three different types of actions or routines (management, support and exchange). Each

of these routines can be implemented using different techniques that were reported by

different studies.

The particular techniques described in the different studies presented serve as

examples for this study, so far it is not the intention here to judge which of them

could be more or less effective or appropriate. The important point here is that there is

a body of theory that describes, starting from different theoretical areas, what teachers

do in the classroom and the fact that the different descriptions coincide in several

dimensions of these actions, provides a basis to argue that they are accurate

descriptions of what teachers do in a classroom. Nevertheless, it could not be argued

that they cover all the possible actions of a teacher in the classroom neither that there

could be alternative descriptions to these actions.

56

Then, what is more relevant for this study is the fact that these descriptions exist and

provide a framework to discuss and analyse particular uses of computers and software

while teaching.

2.6.3 Summary

In the scope of this study, through the short literature review about teachers

knowledge and expertise it was shown that this is still an arena of debate, where

different models for characterising such knowledge are still being developed. In this

sense, these studies provide additional support for the need of research aimed at

characterising teachers' professional craft knowledge and therefore to research what

teachers believe about, for example, educational software.

On the other hand, it was shown that there are a large number of studies aimed at

characterising what teachers do in the classroom. These studies provide a rich

framework for discussing the role of the computers and software in the teaching

profession.

2.7. 	CONCLUSIONS

The previous sections presented five themes:

Software design - where it was concluded that designing software should

incorporate elements from the reality in which it will be used. At present there is a

lack of understanding of the role of the teachers and about the activities that occur

with and around the software that is being used in the schools.

• Software development - where arguments for a modification of traditional

software development methods, incorporating techniques such as ethnography in

early stages of the process, were supported. This, in order to understand the users'

professional activity (the teacher's activity in this study) and through this

understanding being able to design appropriate software.

• Software evaluation - where a case was made for the incorporation of the contexts

of use as a new dimension for evaluation of educational software, transforming it

into a process that could be understood as qualitative research. This highlights the

situated nature of software use.

• Educational innovation - was presented as a phenomenon that is highly correlated

with the introduction of computers in schools. In this sense the role of computers

57

as support tools for such a process rather than as catalysts for it was emphasised.

Therefore, and in order to be able to play this role, it is essential to understand the

contextual setting in which it will be used.

• Pedagogy - the brief literature overview showed that an interesting body of

knowledge about teachers' actions and 'routines' in the classroom has been

already reported in the literature and can provide a rich framework to discuss and

analyse the pedagogy of educational software.

These points all indicate the importance of knowing and considering the reality of use

in order to design, develop and evaluate educational software that could be used to

support an innovation process which engages the teacher and the school.

This review clearly demonstrates the need for further research in the area of

educational software. Particularly, it highlights the need for knowing teachers' actual

beliefs about computers and software in order to contribute to the understanding of

this technology in education from a situated perspective. The main question that was

supported is: what are teachers' concepts and beliefs about educational software?

58

III. METHODOLOGY

3.1. INTRODUCTION

The literature review presented in the previous chapter demonstrates a need for

further research in the area of educational software. In response to this, the present

research project was designed with the aim of improving the understanding of the

concepts and beliefs that teachers can build-up about educational software and

thereby construct a model about teachers' understanding of educational software.

During the design stage of this study, it was considered that neither a review of ex-

isting pieces of software (like the propositions made by Squires & McDougall, 1994)

nor ethnographic studies of teachers' use of software (for example: Olson, 1988;

Schofield, 1995; Fraser, et al., 1991) would be enough to enable us to do this because

of teachers' misleading preconceptions about software and because of the constraints

imposed by the actual software itself.

Considering this argument, and in order to investigate these issues, a situation was

created in which teachers would need to think deeply and purposefully about the

characteristics and particularities of educational software. The situation created was a

process of educational software development, in which two teachers, a software

engineer, a psychologist and a graphic designer, were committed to developing a

piece of educational software in a period of time. This situation was observed, re-

corded and studied as a case (Stake, 1994).

The raw data for this research was not the software being developed, but the content

of each meeting of the development team. In each of these meetings teachers

expressed ideas and conceptions about educational software and were continuously

reflecting on educational software. Because of power issues and preconceived con-

cepts about educational software, the researcher was a non participant observer (or

complete observer) (Adler & Adler, 1994) in each meeting. The data were gathered

using video tape recording and transcripts of each session were analysed from

qualitative and quantitative stand points, using systemic networks (Bliss, et al., 1983)

to organise and give a structure to the categories of analysis.

From the point of view of its design, this research can be conceived as an instrumental

case study in which this particular case was examined in order to provide insight into

the issue or refinement of theory (Stake, 1994). In this situation the case itself is of

secondary interest; because it played a supportive role, facilitating our understanding

of something else, i.e. teachers' concepts and beliefs about educational software.

59

The following sections present some theoretical foundations about the methodology

used, describe the research design and present the analysis methods used.

3.2. THEORETICAL FRAMEWORK

3.2.1 	Case study methodology

As a form of research, case study is defined by Stake, (1994) as "not a methodo-

logical choice, but a choice of the object to be studied", he argues that "it is defined

by the interest on individual cases, not by the methods of inquiry" (Stake 1994,

p.236). He also differentiates the case from what is done in the case, that is, the object

of study from the domain of action of this object. As Stake (1994) writes, "coming to

understand a case usually requires extensive examining of how things get done, but

the prime referent in case study is the case, not the method by which the case

operates" (Stake 1994, p. 245).

An alternative conception of case study can be found in Yin (1994), where he at-

tempts a technical definition, starting with the scope of a case study:

a) Case Studies can be defined as an empirical inquiry that investigates a
contemporary phenomenon within its real-life context, especially when
the boundaries between phenomenon and context are not clearly
evident

(adaptation of: Yin 1994, p. 13)

Here he highlights the importance of situating the inquiry in a real-life context as a

distinctive characteristic of this kind of study compared with other forms of inquiry

(for example, the experiment method— which deliberately divorces the phenomenon

from its context).

As a second part of the definition, Yin (1994) describes:

b) The case study inquiry copes with the technically distinctive situation
in which there will be many more variables of interest than data points,
and as one result relies on multiple sources of evidence, with data
needing to converge in a triangulation fashion, and as another result
benefits from the prior development of theoretical propositions to
guide data collection and analysis.

(adaptation of: Yin, 1994, p. 13)

With these additional definitions, he claims that a case study is a comprehensive

research strategy, explicitly arguing against Stake's definition of it as an 'object to be

studied'.

60

Stake (1994) classifies case studies in three groups:

1) Intrinsic: case study is undertaken because one wants a better understanding of a

particular case (phenomena). Here the purpose is not theory building.

2) Instrumental: a particular case is examined to provide insight into an issue or

refinement of theory. In this situation the case is of secondary interest; it plays a

supportive role, facilitating our understanding of something else.

3) Collective: researchers may study a number of cases jointly in order to inquire

into the phenomenon, population, or general condition. It is not the study of a

collective but an instrumental study extended to several cases.

3.2.2 	Critiques of case studies

Some of the traditional critiques of case studies are reported by Yin (1994) as:

• The lack of rigor of case study research.

• They provide little basis for scientific generalisation.

• They take too long and they result in massive unreadable documents.

The first point is one that the researcher using case studies must continually try to

address, and introduce as much rigor as possible into the process. About the second

point, case studies provide evidence not for populations or universal generalisations,

but for theoretical generalisation. Another way of dealing with this problem is using

triangulation techniques. The third point will depend on the method of inquiry used

(ethnographic v/s other observation method, for alternatives see Ball, 1993;

Hammersley & Atkinson, 1983 or Adler & Adler, 1994).

Despite these critiques there are several quality measures to judge a case study. These

have been summarised by Yin (1994) as presented in Table 3.1 (found in Yin 1994,

p. 33, Source: COSMOS Corporation).

Construct validity is specially problematic in case studies because of the prior

uncertainty of what could be the focus of observation during the study of the case. At

some point during the period of data collection it is possible to have a better

understanding of the case and therefore it is possible to define a set of measures to be

taken. The problems here are twofold:

61

• It is not clear at which stage of the data collection period this should be done and

• that it could happen that the operational measures are chosen because they vali-

date the types of change the researcher is trying to demonstrate (i. e. these changes

are produced by these operational measures) or the other way around (i.e. these set

of operational measures produce this change and that is the one I will observe).

The second problem mentioned is that the researcher will be using something like

grounded theory (Guba & Lincoln, 1994) approach for these definitions and in this

sense these definitions will constitute the research itself.

Tests Case Study Tactic Phase of Research in
which Tactic Occurs

Construct Validity: • use multiple sources of evidence • data collection
establishing correct operational mea- • establish a chain of evidence • data collection
sures for the concepts being studied • have key informants review draft

case study report
• composition

Internal Validity: • do pattern-matching • data analysis
establishing 	a 	causal 	relationship,
whereby 	certain 	conditions 	are
shown to lead to other conditions, as
distinguished 	from 	spurious
relationships

•
•

do explanation-building
do time-series analysis

•
•

data analysis
data analysis

External Validity:
establishing the domain to which a
study findings can be generalised.

• use replication logic in multiple-
case studies

• research design

Reliability: • use case study protocol • data collection
demonstrating that the operations of
a study -such as the data collection
procedures- can be repeated, with
the same results.

• develop case study data base • data collection

Table 3.1. 	Case study tactics for four design tests

Internal validity is used only for causal (or explanatory) case studies where the

investigator is trying to determine whether event x led to event y.

External validity is one of the critiques mentioned before in terms of the possibility

of generating a 'universal theory' based on the findings from a case study. Some

authors claim that case studies provide evidence for theoretical or analytical ge-

neralisation (like Yin, 1994) and others claim for naturalistic generalisation (like

Stake, 1994 referencing Stake & Trumbull, 1983). It could be interesting to explore

the notion of abduction in logic in order to analyse the possibility of generalising the

case.

Reliability in case studies is probably not possible in the sense of 'experiment

replication', the point here seems to be in the replication of the findings and

conclusions drawn from a particular case. In this sense, the researcher should provide

enough information about the process of analysis such that someone else could follow

his(her) reasoning/interpretation strategy/path.

62

3.3. RESEARCH DESIGN

3.3.1 	General design

In order to design a piece of research as a case study, Yin (1994) suggests that the

researchers should define the following points:

i) Study's questions: In case study, these questions are generally: how or why.

ii) Study propositions: It means the focus of the research, and if there are no proposi-

tions, it should have a purpose as well as the criteria by which it will be judged

successful.

iii) Units of analysis: It implies the definition of the 'case' itself. It is related to the

way the initial research questions have been defined and will define what will be

studied.

iv) Linking data to propositions: It is not well defined in the literature of case study

research. Apparently it will depend on the nature of the case and the kind of data

recorded.

v) Criteria for interpreting the findings: Probably this will be part of the process of

analysis and it will become clear in a late stage of the research.

In this research, these are:

i) Study's questions:

The main question of this research is: What are teachers' concepts and beliefs about

educational software?, which can be expressed in the following questions:

a) What do teachers refer to while designing educational software?

b) What is the nature of the software's features (software characteristics, roles, uses,

etc.) that teachers design?

c) How do these elements match with existing descriptions?

d) What are the implications of such designs?

ii) Study propositions

a) To identify the elements of educational software that were referred to during the

design process. This first study proposition was aimed at looking for the different

kinds of educational software elements that the development team expressed

during the process. The classification of the elements to which they refer was:

63

• Characteristics of the software:
• Subject Areas
• Content Organisation
• Browsing
• Interaction
• Interface Element

• Pedagogic issues:
• Aim
• Teaching Strategy
• Actions

• User

This classification of the elements resulted after several revisions of the data and

constituted the basic categories to build the systemic network used in the analysis.

b) To examine the shape of the elements of educational software. This second

proposition was aimed at examining the characteristics of the specific elements

designed by the development team, focusing on teachers' expressions.

c) To quantify the distribution of participation in the design process. This third study

proposition was aimed at quantifying the 'amount' of participation of each

member of the development team in each of the categories, looking at the

distribution of frequencies. This was done in order to quantify and compare

teachers' participation during the process.

d) To identify patterns of design. This fourth study proposition was aimed at finding

patterns of sequences of categories that were spoken by the development team (as

a group) and by each member (as individuals). This was done in order to define

new semantic categories that could carry different meanings.

e) To compare the elements found with reported descriptions about educational

software, about its use and about its role in the classroom.

iii) 	Units of analysis

The unit of analysis was defined as a sequence of one or more utterances made by one

or more members of the team in which they refer to one particular aspect of the

software. Where they referred to two (or more) aspects simultaneously (in parallel),

these have been considered as two (or more) separate units. The unit was called

`Discussion about Software Design' and was described through a systemic network.

64

iv) 	Linking data to propositions

The data gathered consisted of transcripts of the meetings that were recorded using

video camera and a sound recorder. These transcripts were inspected and then cate-

gorised in a systemic network that was developed during this first stage of the

analysis process. Using the systemic network as the basic structure, the data were

analysed using three different techniques:

• Participation analysis (quantitative): Aimed at establishing individual participa-

tion profiles during the development process, based on the calculation of the

frequencies and distributions of participation of each team member in each

category.

• Sequences analysis (quantitative): Aimed at establishing the inter-relations among

the different components of the software, based on the analysis of the patterns of

sequences of units in the data for the group and each team member.

Contents analysis (qualitative): Aimed at looking for the meanings expressed by

the teachers about the different elements of a piece of educational software.

v) 	Criteria for interpreting the findings

The process for interpreting the findings was first to develop a theoretical model of

these teachers' understanding of information technology (theoretical perspective) and

then compare it with previous models and hence show where it differs from previous

models (practical perspective). The theoretical framework used in each perspective

was:

• From a theoretical perspective findings were interpreted using existing theories

about the use and role of educational software in classroom settings (for example:

Fraser, et al., 1991; Olson, 1988; Sandholtz, et al., 1997; Schofield, 1995) and the

characteristics of the software were contrasted with existing descriptions about

what teachers do in the classroom (for example: Cooper & McIntyre, 1995;

Edwards & Mercer, 1987; Hammersley, 1990; Woods & Jeffrey, 1996) and about

their professional knowledge (for example: Alexanderson, 1994; Elbaz, 1990;

Eraut, 1994; Marton, 1994).

• From a practical perspective findings were compared with existing conceptions

about educational software design (for example: Lajoie & Derry, 1993; Laurillard,

1993; Orhun, 1995; Taylor, 1980; Watson, 1993), software development (for

example: Char & Hawkins, 1986; Hawkins & Kurland, 1986; Watson, 1987;

Watson, 1993) and software evaluation (for example: Squires & McDougall,

1994).

65

3.3.1 	Case selection

In order to carry out this research it was necessary to find a development team that

could be the source of the data to analyse, i.e. a group of persons willing to develop a

piece of educational software under observation.

Based on previous research (Hinostroza, et al., 1996), it was decided that the

members of the group should be:

• Two teachers: Teachers are the essential part of this research, thus, the aim was to

analyse, mainly, what they said about educational software. The reasons for

having two teachers were, first to minimise the risk of desertion and second, to

provide a better scenario for discussion about the different software elements to be

designed. A third requirement was that these teachers were experienced

information technology users with some formal background in information

technology in education. This requirement was imposed to provide a realistic

view on what can be done with computers in the classroom and an informed view

about its technological and methodological possibilities.

• A Software Engineer: The software engineer was responsible for the program-

ming and technical design of the software. One requirement was that (s)he should

have the technical qualification but little experience of developing this type of

project. The rationale in this case was that the engineer should not bias the

development project drawing on previous experience of developing similar

projects.

• A Psychologist: The Psychologist was responsible for providing theoretical

support in aspects of the software development such as learning theories,

cognitive development of the potential users, etc. It was also a requirement that

the Psychologist was also had little experience in participating in software

development projects.

• A Graphic Designer. This person was in charge of the design and illustration of

the interface elements of the software. Again, it was required that (s)he had little

experience in software development, so (s)he could stay free of biasing this

particular design. The participation of the Graphic Designer was considered to be

optional at the beginning of the research due to the lack of personnel available.

Therefore she started to participate in the development process at session 14 of 19

sessions.

66

Following these considerations, the group was constituted of two school teachers and

by three undergraduate university students. The university students were studying

Software Engineering, Psychology and Graphic Design (visual arts). These students

were advanced in their careers but had not yet graduated. They were hired as research

assistants to participate in the software development processo.

In order to select the teachers, the first step was to select a school that would satisfy

the following requirements:

a) The school should have at least two teachers participating in the diploma course

of the Universidad de la Frontera7 about Information Technology in Education8.

The rationale behind this was to have teachers with a formal background in

information technology in education in order to focus on software development

and not on general issues of information technology in education.

b) The school should have at least two years of experience participating in the

Enlaces project (more about Enlaces in: Hepp, et al., 1994; Potashnik, 1996). This

restriction was imposed in order to assure a certain amount of experience in the

use of information technology in education and to avoid having the school

involved in an early stage of an information technology innovation process.

c) The school should not have explicit religious or sectarian ascription of any kind.

This restriction was included to avoid possible doctrinaire bias.

d) The school should be from Temuco, Chile. This was a practical reason to avoid

long distance travelling out of the city or the country.

At the time the research started, there were only two schools that met these re-

quirements. The schools were:

Vista Verde: In 1996 it was a rather new school with a population 430 students

and 16 (female only) teachers, 2 of them were in the diploma course. It is located

in a low social class sector of Temuco. This school had seven computers acquired

in 1993.

6 Funds for this were provided by the research project #1960854, of the Chilean research agency,
Fondecyt.
7 This is the University were the researcher actually works.
8 The diploma course started in March 1995 and finished in January 1996. From March 96 to June 96
students had to do a project in their respective schools, applying what they had learned.

67

Standard: This is a rather old school that in 1996 had a population of 420

students and 22 teachers, 5 of them were in the diploma course (including the

head teacher), all are female. It is located in a low-medium social sector of

Temuco. This school had seven computers acquired in 1993.

After this initial definition an unstructured interview (following Fontana & Frey,

1994's guidelines) with the head teacher of each school was conducted to explore the

feasibility of carrying out the research project in one of the schools and to be able to

get a feeling of the internal climate of each school. The interviews are presented in

Appendix A 1 .

Comparing these interviews, it was possible to conclude that the 'Standard' school

had a more authoritarian style of direction compared with 'Vista Verde' school. Also,

`Vista Verde' showed a positive disposition to be part of the project whereas

`Standard' set up conditions to be part of it. Stemming from this background

information, 'Vista Verde' school was chosen. The selection of the teachers in this

case was then determined by the fact that only two teachers of this school fulfilled the

requirements.

3.3.2 	Development of the case

In order to start the development of the piece of software an initial explanation of the

aims and goals was given by the researcher. For the development team, the aim was

to develop a piece of software and during the process, they would be engaging in an

`Action Research' project (Reason, 1994). In this sense, it was not revealed that their

expressions and opinions would be used as raw data for a different analysis. As

mentioned before, from the research point of view, the aim of this process was to

elicit concepts and ideas about educational software and the development process was

used as instrument (a created situation) to elicit such ideas. In this framework, the

presence of the researcher during the meetings was justified arguing that he would

observe what was happening and was responsible for recording the information only.

This decision to not inform the development team of the final purpose of the project,

was taken to release the pressure the teachers could feel if they realised that every

opinion would be transcribed and then analysed. In this sense, the focus of pressure

was the software product, not the process. Another reason was to avoid the situation

where they would focus on finding arguments and ideas that would justify their

beliefs about and actions with the software. In this sense, it was decided that a

68

realistic perspectives of obtaining the data would be more effective and closer to their

actual beliefs, compared to a process of reflection or interviews.

From an ethical point of view, this decision could be questioned considering 'the

principle of informed consent', described by Barret (1995), as:

Wherever it is possible, researchers should inform participants in
psychological research of all aspects of that research which might
reasonably be expected to influence their willingness to participate in that
research; in addition, researchers should normally always explain any
aspect of the research about which a participant inquires.

(Barret, 1995, p 30)

In this case, the participants agreed to be recorded, and knew that this data would be

afterwards analysed. The difference was the focus of analysis of the data, instead of

looking at the software product, the researcher would look for their ideas about

educational software. At the time this decision was taken it was considered that, this

difference, between what was informed and what was actually done, would not

change the possible consequences for the participants, and therefore, would not

influence their willingness to participate in this research.

In order to check this assumption, the researcher conducted a meeting with the

teachers that participated in the study (September 1998). The aim of the meeting was

to present and discuss the main findings. After this discussion they gave full

permission for dissemination of the results.

Another important consideration was that the development team should be able to end

up with a product, or at least with a prototype of the software, because in this way

they would address all the aspects of a piece of software, through completing a

development cycle. In this way it was assured that they would have the opportunity to

express all their ideas about the different aspects of a piece of educational software.

For this purpose, they decided to follow the general guidelines of the software

development method reported in Hinostroza, et al. (1996).

The decision to follow this method was taken without explicit arguments, but it seems

reasonable to assume that at least two factors were implicitly considered, first that

they had some experience in using the method (in the diploma course) and second,

that the researcher was one of the authors of the method. Although this could indicate

9 It is realistic because the development team was engaged in a 'real' activity, that is they believed that
they would develop a piece of educational software, so all the conversations, opinions and discussions
were purposeful and therefore authentic. So, what was recorded was a real situation, from which the
data was extracted.

69

some power issues and therefore a source of bias, the method itself is not influential

in the contents or decisions of the development process, it simply proposes a set of

stages to be developed and, even if it would do so, the development team did not

follow the method exactly.

The development process consisted of 19 meetings of approximately 90 minutes each.

16 meetings were conducted at the teachers' school and because of practical reasons

(that is, in order to review a prototype) the last three meetings were conducted at the

Universidad de La Frontera. The first meeting was on April the 18th 1996 and the last

meeting was on November the 18th, 1996 (a seven month period).

3.3.3 	Data collection

The data collection was performed using a video camera and a sound recorder. The

camera was installed in a fixed position during each meeting and the focus of the

image was always on the teachers. The sound recorder was left over the table.

During the meetings the researcher adopted the role of a non participant observer

(Adler & Adler, 1994), trying not to interfere with the natural flow of each meeting.

Nevertheless, in some meetings it was not possible to keep to this role because of

direct questions from some members of the development team (asking for the

researcher's opinion about different topics). It was also noticed that at some points

some members of the team expressed ideas and opinions looking at the researcher

and, in some way, asking for approval. In this sense, the 'invisibility' of the observer

can be questioned, but considering the relative small number of interventions it was

assumed that it would not bias the results. Also, during the initial meetings the

researcher took notes about what was said, but it was realised that both teachers

observed with great curiosity what was being written, so it was decided to stop taking

notes.

The data collected this way consisted of 19 super-8 video cassettes (120 minutes

each) and 19 audio cassettes (90 minutes each). After several attempts to analyse the

data contained in the video in its original audio-visual format (for example following

Erickson & Wilson, 1984 guidelines), it was decided that for the purposes of this

analysis the corporal expressions and gestures would not be considered, because the

oral expressions were enough to capture the meanings expressed and in the few

situations were these expressions did complement the meaning, the transcript was

annotated. So, all tape dialogues were transcribed to text in their original language,

i.e. Spanish (audio tapes were used to support video tapes' audio and vice versa). The

70

transcription process was done by the researcher and some hired persons who

received instructions about the coding standards that should be used'°.

The transcript conventions used were rather simple, because for the purpose of this

analysis it was not necessary to include all the expressions (facial, gestures, etc.) of

the members of the development team. The convention was to use the marks `<` and

`>` to include relevant comments on what was happening. That is, if one person

expressed an idea about the software ironically (like making a joke) or if someone

made a gesture to complement an oral expression, it should be explicitly marked in

the transcripts (for example, if the size of something was indicated using the hands),

but if one simply looked in another direction, it was not necessarily annotated (unless

this gesture would change the meaning of what (s)he was expressing). Also, the

overlapping of dialogues in some discussions were explicitly marked, but not

rigorously. So, there are a small number of written comments in the transcripts.

Because the transcripts were done by external persons, the researcher reviewed all the

transcripts, complementing and/or amending where required. The data transcribed to

text is presented in table 3.2 and represents the raw data for the analysis.

Characters: 985,832
Words: 192,391
Lines: 19,167
Paragraphs: 12,619
Pages (A4, single space, times 12) 387

Table 3.2. 	Figures of the raw data

Because of the amount of data, a qualitative analysis software was used to support the

analysis. After a short review of alternatives, the software QSR NUD*IST was

selected because of its possibilities to have dynamic reconfiguration of the category

tree (move one branch or node to another position), the possibility of programming

and executing complex commands and the text search functionality.

The text (of the transcripts) was 'inserted' into QSR NUD*IST considering each

session as a document and defining the unit of text as a paragraph (usually one

paragraph corresponded to one utterance of one of the members of the development

team). The alternative of defining the unit of text as a line was not chosen because the

definition of the unit of analysis considered dialogues that could consist of several

lines and paragraphs in which one particular aspect of the software was designed.

10 Funds were partially provided by the research project #1960854, of the Chilean research agency,
Fondecyt.

71

3.3.4 	Categorisation process

The categorisation process consisted of two stages, the definition of the categories

and the coding using the software for qualitative analysis QSR NUD*IST.

3.3.4.1 	Definition of the coding categories

In order to categorise and give structure to the data a systemic network (Bliss, et al.,

1983) was designed. The process of defining the systemic network, that could well

represent all the categories of data, was done following a refinement process. This

process is described in the next chapter which also explains and discusses the coding

categories defined. The resulting network is presented in figure 3.1.

This network describes the two main attributes that characterised the unit of analysis.

These are: the 'Topic' discussed (to answer: what are they speaking about ?) and the

`Participants' in the discussion (to answer: who is taking part in the discussion ?).

Abstract
Medi um
Concrete

Level of
stracnon

Topic

Characteristics

Focus

Subject Areas
.411

of the software

User

Content Org.
Browsing

Teacher

Interaction
Interface Element

Person
Teacher

Pupil
Group

Aim
Pupil

!
Artefact

4111 	
Software
Computer

Discussion
about

Software —411
Design

Pedagogical Teaching
issues (Style strategy 	Style

Actor Teacher
Pupil

Actions Context Classroom
Individual

Engineer Interaction Software
Participants Pupil

I cacher E
Psychologist
Graphic Designer

Figure 3.1. The systemic network representing the coding categories

The 'Topic' of discussion was divided in three main subjects related to the software

design. The first one was related to the dimensions of software engineering (`Subject

Areas', 'Content Organisation', 'Browsing', 'Interaction' or 'Interface Element'); the

second one was about the characteristics of the software's user (`Teacher', 'Pupil' or

72

`Group'); and the third one dealt with 'Pedagogic Issues' that were related to software

and/or computers (`Aim', 'Teaching Strategy' or 'Actions').

The rationale behind this design was to be able to separate the more concrete ideas

about software from the more abstracts ideas about how to use the software or

computer in the classroom or individually, who they imagine will use the software

and the aims of using this resource. In other words, the classification used was

designed to gather data concerning to the following areas:

1 The software engineering characteristics of the educational software designed.

2 The conceptions that teachers have of the users of the software.

3 The beliefs that teachers have about the aims of software and computers for

themselves and for the pupils.

4 Teaching issues that are reflected in the software design process and could

become part of the software.

5 Actions that include data regarding the roles that teachers attribute to themselves

and to the pupils while using the software in the classroom (either individually or

while orchestrating the lesson).

The data, classified in each of these categories in its original language (i.e. Spanish),

were the source for the different analyses carried out, and thereby, enabled the

understanding of some aspect of teachers' conceptions about educational software,

and given the aim of this research, to a lesser degree the conceptions of the other

members of the development team.

3.3.4.2 Data coding

The systemic network was used as the 'category tree' of the qualitative analysis

software used to support the process (QSR NUD*IST). This was possible because the

resulting network was simple enough to do so, that is, it did not have recursions or

simultaneous entries (Bliss, et al., 1983).

Nevertheless, some adaptations were required, because QSR NUD*IST does not

differentiate between 'AND' and 'OR' branches as can be found in a systemic

network, therefore the process of categorising the data was done following a self

imposed convention. That is, for example, if a unit of analysis was defined as 'Topic:

Characteristic of the software: Focus: Browsing' it was also classified by its 'Level of

Abstraction' (for example: 'Topic: Characteristic of the software: Level of

Abstraction: Medium'). In this way it was possible to use the same model of the

systemic network in the software.

73

The process of coding the data was carried out in three steps:

i) The first step was to read all the data in order to pre-select the dialogues that

matched each category. This process was done on paper and helped to develop the

definitive categories of the network.

ii) The second step was to revise the data again, and re-assign dialogues to the

definitive categories. This process was done using the software QSR NUD*IST.

This second review process was done intensively (as continuous as it was

possible), in order to keep freshly in mind of the researcher the non-written

criteria of assignment.

iii) The third step was to print out all the transcripts organised by the categories

defined in the systemic network (using the reports facilities of the software) and

revise each category again in order to identify possible errors in the assignment or

miss-interpretations of the dialogues.

With the described coding procedure, 848 units of analysis were classified in the

different categories which constituted the raw data for the analysis.

3.4. 	ANALYSIS PROCESS

After the data were coded in some category of the systemic network, three types of

analysis were carried out, as described earlier, these were: 'Participation Analysis'

(aimed at establishing individual participation profiles during the development

process), 'Sequences Analysis' (aimed at establishing the inter-relations among the

different components of the software) and the 'Contents Analysis' (aimed at looking

for the meanings expressed by the teachers about the different elements of a piece of

educational software). The combination of qualitative and quantitative analysis

methods enabled the production of an overall interpretation which might be more

convincing than if only one type of analysis method were used (Wegerif & Mercer,

1997).

In order to reduce the possible loss of meanings or misinterpretations during the

translation process, the analyses were done using the original transcripts in Spanish".

11 The researcher is Chilean, speaks Spanish and lives permanently in Chile, he learned English rather
late in his life, and it was therefore felt that any translation at this stage might have resulted in some
loss of meaning.

74

Only selected dialogues were afterwards translated into English to include them in

this thesis.

3.4.1 	Participation analysis

The frequency of units spoken by each member of the development team was

obtained using the software QSR NUD*IST, by searching for the name of each

member of the development team in all the documents. The resulting set was then

intersected with the sets defined by the systemic network (categories). The result of

this intersection produced the distribution of spoken units in each category of the

systemic network for each member of the development team. The number of units

spoken in each category by each member of the development team was not relevant

for this analysis because it did not correspond to the number of units of analysis used,

what was relevant was the distribution of these units (percentage).

These frequencies were transformed into percentages of the distributions relative to:

(i) their participation in a group of categories (Tharacteristics of the software',

`User', 'Aim', 'Teaching Strategy' and 'Actions'), and (ii) relative to each member's

total units spoken. The aims corresponding to each calculation were:

i) To compare the contributions of each member of the development team to each

group of categories. In other words, this analysis provides an answer to

questions like: How much did Teacher M contribute to the group of categories

`Characteristics of the software' compared to the contributions of the other

participants ? or How much did Teacher M contribute to the category 'Abstract

— Interaction' compared to the contributions of the other participants ?.

ii) To compare the distribution of the units spoken by each member of the

development team in all categories. These distributions are called here 'profiles

of participation' and were calculated for each member of the development

team. The aim of this analysis was to answer questions like: Did the teachers

participate with similar emphasis on the different categories (i.e. show similar

profiles)? or Did the teachers participate in a different way compared to the

Software Engineer (i.e. show different profiles) during the development

process ?.

The hypothesis for this analysis was that members of the development team would

show a differentiated contribution to each group of categories and therefore they

would show different 'profiles of participation' in the development process. And the

underlying assumption was that these profiles would be related to their professional

75

backgrounds. This, because they would participate more frequently when discussing

topics (i.e. categories) that were more interesting for them and would participate less

frequently in those topics that they were not so interesting.

If this hypothesis was proved to be right, the profiles of participation of the teachers

would point out their concerns about educational software (i.e. those categories in

which they contributed 'differently') and would serve as a guide for the other

analyses, showing the categories that could be of more interest. As it will be shown in

Chapter V, the hypothesis was proved to be right for some groups of categories.

The analysis also served as a validity check of the research process that ensures the

teachers' participation and therefore supports the argument that the results

corresponds to the teachers' expressions.

3.4.2 	Sequences analysis

In this analysis, the development process was considered to be a string of 848 units of

analysis that represented one set of data. In order to have a better profile of each

member, individual contributions during the development process were separated and

thereby it was possible to obtain one string of units for each member. Through the

process of separating individual contributions the following number of units for each

member (or 'strings length') were obtained:

Member Number of Units
'Teacher E 2,038
Teacher M 2,414
Psychologist 1,894
Engineer 2,498
Graph Designer 819
Group 848

Table 3.3. 	Total units per member

The higher number of units of the individual participation of each member is due to

the division of the dialogues. That is, one dialogue between several members could

have been classified as one unit of the group, but, when looking at their individual

participation the same unit could represent three or more units of each member,

depending on the number of interactions occurred. Because of the difference in the

number of units and her late entrance to the development team, the Graphic Designer

was not included in this analysis.

For the purposes of this analysis a 'sequence' was defined as a consecutive set of 'n'

different units that were present in a string of units more than once. The process of

76

searching for sequences was done using a piece of software implemented by the

researcher (using the programming language 'C'). This software accepts as input a

string of units and looks for sequences of different lengths in the input string.

Using as input for the software each member's string of units (Group, Teacher M,

Teacher E, Psychologist and Software Engineer), a search for 3 to 30 units long

sequences was carried out, but no relevant additional information was found after 9

units long sequences. That is, 3,4,5,... or 9 consecutive units that constitute the

sequence in each string.

For example, consider the following string of units (each letter represents one unit of

analysis and the different letters represent different categories defined in the systemic

network):

nbadfsbmcccccadfjejadfseeeeadfs

In this string, the 3-units long sequence 'a d f, is repeated 4 times (underline) and the

sequence 'd f s' is repeated 3 times (strike through):

n badf-sbmcccccadfjejadfseeeead-f-s

There is also a 4-units sequence 'a d f s' that is repeated 3 times:

n badfsbmcccccadfjejadfseeeeadfs

In the same example the sequence of units `c c c' can be found 3 times (i.e. strike

through, underline and bold):

n badfsbmcccccadfjejadfseeeeadfs

This latter kind of sequence was considered apart from the former example, because it

means that the person talked about 'c' during the whole time and did not change the

subject. In the string that represent the units of the Group this sequence could appear

as only one 'c', but in the process of separating each member's contribution, it is

transformed into five (or more) 'c's, depending on the number of interventions of

other members of the development team.

After identifying the different sequences, a new set of categories was defined in order

to make groups of sequences. These new categories were based on the units that

compose each sequence. That means, sequences that share the same set of units but in

77

different orders correspond to the same category. For example, the sequences `abc',

`bac', `bacab' and `cababcbcb' were considered to be in the category 'a-b-c'.

The hypothesis for this analysis was that some of the categories defined in the

systemic network have a closer relation to each other and that this relation provides

additional meanings (the particular meaning of each relation was not analysed at this

stage due to the very large number of possible combinations). This hypothesis was

proved to be right and the results of this analysis are presented in Chapter VI.

3.4.3 	Contents analysis

The analysis of the contents was done revising the transcripts attached to the

categories of the systemic network in the branch 'Topic'. The resulting categories

from the combination of the AND nodes of the branch 'Topic' of the systemic

network and the number of units spoken by the group are shown in table 3.4.

Table 3.4 shows that 20 units were classified as the development group speaking

about characteristics of the software 'Subject Area' at an 'Abstract' level of

abstraction and 32 about the same focus but at a 'Medium' level of abstraction, and so

on. Each of these units could be a single assertion of one the members of the

development team or a several pages dialogue where they defined some specific

aspect of the software.

Because of the small number of units found in some categories, these were grouped

into one unit, for example, the units about the 'User' were grouped in the unit 'Pupil'

(number 16) and the units in the categories of 'Teaching Strategy' were grouped in

the category 'Feedback' (number 29). The dialogues classified under each of these 29

categories were analysed looking for evidence that could by related to some

conceptual framework and looking for internal contradictions or discussions among

the members of the development team. The process of revising and searching for

meanings in each category was done several times in order to refine and complement

the emergent concepts in each revision. Afterwards, these concepts were refined and

are presented in Chapter VII, including examples of the some 'representative'

dialogues. These dialogues were translated into English, including additional words

between `[` and 	brackets in order to preserve the meanings of the dialogues in

Spanish.

78

Category Units
Characteristics of the Software 583

1 Subject Areas - Abstract 20
2 Subject Areas - Medium 32
3 Subject Areas - Concrete 19
4 Content Organisation - Abstract 22
5 Content Organisation - Medium 48
6 Content Organisation - Concrete 38
7 Browsing - Abstract 16
8 Browsing - Medium 42
9 Browsing - Concrete 46

10 Interaction - Abstract 43
11 Interaction - Medium 62
12 Interaction - Concrete 70
13 Interface Element - Abstract 19
14 Interface Element - Medium 39-
15 Interface Element - Concrete 67

User 57
Teacher 1

16 Pupil 52
Group 4

Pedagogic Issues 208
Aims 77

17 Teacher-Software 2T
18 Teacher-Computer 14
19 Pupil-Software 28
20 Pupil-Computer 12

Action 79
21 Teacher - Classroom - Software 7
22 Teacher - Classroom - Pupil 4
23 Teacher - Individual - Software 14
24 Teacher - Individual - Pupil 8
25 Pupil - Classroom - Software 3
26 Pupil - Classroom - Pupil 9
27 Pupil - Individual - Software 24
28 Pupil - Individual - Pupil 10

'l'eaching Strategy 52
29 Feedback 50

Style 2

Total 848

Table 3.4. 	Categories and number of units spoken

3.5. DISCUSSION OF THE METHODOLOGY

Defining this research as a case study is not a clear choice, in so far as there are

different definitions that lead to different conclusions. On the one hand, based on

Stake (1994)'s definition, it is possible to call this research a case study, because it

examines a bounded system, i.e. five persons that meet once a week with the common

goal of producing a piece of educational software. On the other hand, based on Yin

(1994)'s definition, it is possible to argue that this research is not a case study,

79

because it does not investigate a contemporary phenomenon within its real life

context. That is, the analysis of teachers' understandings of educational software is

within a context of a software development process and not in a context of reflections

about software, neither is this a 'natural' situation, because it was provoked by the

researcher.

The tension between these two definitions is what motivates this discussion. It would

indeed even be possible to take a more extreme position and to call this piece of

research an 'experiment', where a group of people (subjects) wiere exposed to a

stimulus (i.e. to develop a piece of software) and their reactions were recorded (that is

the recorded output were the ideas and claims that came out during this process).

It is possible to argue that, given that a certain process was happening (no matter who

initiated it), the researcher was 'observing' and recording this situation and in that

sense doing naturalistic observation (Adler & Adler, 1994). This observational study

is similar to other classroom observations (like: Fraser, et al., 1991; Hammersley,

1990; McNamara, 1994; Olson, 1988; Schofield, 1995; Woods & Jeffrey, 1996),

where the object of analysis is some dimension or characteristic of what is happening

in the situation. In the present case, the focus of analysis was the teachers' talk about

educational software characteristics. Therefore, despite the fact that the situation was

created, this piece of research can in fact be called a case study.

80

IV 	SYSTEMIC NETWORK DEFINITION

4.1. INTRODUCTION

This chapter describes the design and definition of the systemic network used to

define the categories of analysis of the data. The network was developed following

the guidelines and conventions described by Bliss, et al., (1983). The purpose of this

network was to provide structure and coherence to the data contained in the

transcripts, in order to carry out the analysis process.

The network itself describes the unit of analysis defined for this research and

constitutes an additional product of the research process. Although the research used a

software development process as a means to elicit data, the network does not,

necessarily, describe such a process. It only describes the different categories of data

that were considered to be relevant for the aims of this research. That is, the network

is not intended to be used as a comprehensive characterisation of a software

development process. It represents however the set of (relevant) topics that were

considered during the design of a piece of educational software and therefore, it can

be considered as an accurate structure that represents the categories of teachers'

beliefs about educational software.

The following sections describe: the process of definition of the network, its general

structure, the definition of each category and the main difficulties that arose whilst

using the network categories. Finally it presents a discussion of the network designed.

4.2. CONSTRUCTION OF THE SYSTEMIC NETWORK

In order to categorise and give structure to the data a systemic network (Bliss, et al.,

1983) was developed. The initial version of the network was designed containing

most of the technical aspects to be considered during the process of software design.

It consisted of a hierarchical list of characteristics of a piece of software described in

literature about human computer interface design (for example Laurel, 1990,

Thimbleby, 1990) and containing most of the dimensions (learning models,

psychological models, didactic models) described in literature about educational

software development methods (for example: Galvis, 1994 and Hinostroza, 1994).

The initial version therefore represented a rather theoretically driven description of

the unit of analysis. The reason for this design choice was to ensure that it would be

possible to describe through the network the greatest possible amount of the technical

aspects that might appear in the data.

81

The initial version of the network was used as a starting point of a process of

refinement of both the concepts contained in the network and the organisation of

these concepts (i.e. the network, branches and leaves). This process was carried out

reviewing examples of the data and coding them using the network. After the network

seemed to be stable, all the data was coded using the software QSR NUD*IST (as

explained in section 3.3.4). Then, in order to make further refinements the data

attached to each leaf of the network was printed and re-examined, relocating the data

that was considered to belong to a different category. The network was further refined

at this stage and the data was moved from one branch to another using the functions

provided by the software.

In general terms the process of defining the systemic network, that could well

represent all the categories of data, was done following an iterative refinement

process. This process considered two dimensions of progression:

a) A qualitative dimension, that considers the concepts expressed through the

network, including the internal consistency and the general coherence. The

internal consistency of the network is defined here as the similarity in the

meanings of the categories grouped in one branch of the network. That is, in order

to be internally consistent the elements grouped in one branch should correspond

to the same category of meaning. General coherency was defined here as the

degree in which the meanings of the different nodes located in similar levels of

the network should express similar levels of abstraction. During the design

process, this dimension showed a convergence by the redefinition and relocation

of nodes and branches in the network.

b) A quantitative dimension, which is expressed in terms of the number of end-nodes

and level of deepness of the network. This dimension is useful to measure the

complexity of the network. During the design process, this dimension showed first

an increment (divergence), increasing the number of end-nodes and the level of

deepness and then the complexity decreased (convergence).

These dimensions of analysis of the systemic network are briefly described in this

section, presenting four stages of the network design process. These were:

i) The first version of the network had 55 end nodes (or leaves) and 9 levels of

deepness. This version of the network had many concepts grouped without a clear

conceptual similarity or difference among them. This resulted in low internal

consistency because the elements grouped in one branch referred to different

82

categories and it was not coherent, because the meanings of the different nodes

(located in similar levels of the network) expressed different layers of abstraction.

ii) The second version of the network was more complex than the first one, it had 88

end-nodes (63% more than the previous one) and has the same 9 levels of

deepness. Additionally it showed two other small networks that were used to

classify data that were not included in the main network. Compared to the

previous one, this version of the network showed a convergence in conceptual

terms and a divergence in the granularity of the concepts constituting end-nodes.

The convergence could be appreciated by the fact that the previous branches were

now included in the right branches and some AND nodes were included, helping

to visualise the relation between branches.

iii) After this divergent process in terms of complexity, a new version of the network

was developed, this new version showed a dramatic decrease in its complexity,

having only 23 end-nodes (25% of the previous one) and 6 levels of deepness

(66% of the previous one). The categories in each branch were refined and the

network showed a higher degree of coherence, that is, the intermediate nodes

expressed concepts in similar layers of abstraction and the network also showed a

higher internal consistency, in so far as the concepts in one branch refer to

comparable characteristics. The main changes were that in the new network some

previous end-nodes were subsumed into the prior hierarchical branch and that

several concepts were grouped into one branch, seeking for a higher internal

consistency.

iv) Finally, the definitive version of the systemic network is presented in figure 4.1.

This version of the systemic network has 28 end-nodes and has 6 levels of

deepness. In this sense the network has a similar degree of complexity to the

previous version. The main changes in this case were that some nodes and

branches were eliminated, that some AND nodes were extended, including three

branches (for example 'Actions') and that some new hierarchies of classification

were added or renamed. These changes gave a higher degree of coherence in so

far the as nodes at each level of the branches refer to comparable concepts (the

exemption is the branch "User", which does not accomplish this requirement). In

terms of internal consistency, it is similar to the previous version.

In the systemic network shown in figure 4.1, the AND nodes are represented by the

thick vertical lines with an arrow (representing a 	bracket) and the OR nodes are

the thin vertical lines (representing a T bracket). The next section of this chapter

contains the operational definition of the categories contained in the network.

83

Abstract
Medium
Concrete

Subject Areas
Content Organisa
Browsing
Interaction
interface Llement

Level of

41 Focus

Teacher
Pupil 	
Group

41

Person

Artefact

Teacher
Pupil

Software
Computer

Characteristics
of 	the software

User Topic

Aim

Pedagogical
Issues 	

Teaching 	Feedback
Strategy 	Style

Actor Teacher
	 Pupil

Actions Classroom
	 individual

Context

Interaction
Engineer
Teacher 	M
Teacher 	E
Psychologist
Graphic Designer

Software
Pupil Participants

Discussion
about

Software-4
Design

Figure 4.1. Final systemic network

4.3. 	OPERATIONAL DEFINITION

As it was presented in the Methodology Chapter, the final version of the network

contains two general dimensions that characterising the unit of analysis12. These are:

the 'Topic' discussed (to answer: what are they speaking about ?) and the

`Participants' in the discussion (to answer: who is taking part in the discussion ?).

The topic of discussion was divided in three main subjects related to the software

design; the first one related to the dimensions of software engineering (`Subject

Areas', 'Content Organisation', 'Browsing', 'Interaction' or 'Interface Element'), the

second one was about the characteristics of the software's user (`Teacher', 'Pupil' or

12 As a reminder, the unit of analysis was defined as a sequence of one or more utterances made by
one or more members of the team in which they refer to one particular aspect of the software. In cases
where they referred to two (or more) aspects simultaneously (in parallel), they were considered as two
(or more) separate units.

84

`Group') and the third one was 'Pedagogic Issues' that were related to software and/or

computers (`Aim', 'Teaching Strategy' or 'Actions').

The operational definition of each branch of the network is presented below. In order

to present these definitions, those branches that involve an AND node are presented

as double entry tables.

4.3.1 	Characteristics of the software

This branch contains the data regarding the software engineering characteristics of the

piece of software. These characteristics were classified into five different types

(`Focus'):

• Subject Areas: Content that could be included in the software.

• Content Organisation: Static organisation of the contents of the software

• Browsing: Dynamic sequence of contents that will be displayed while the user is

advancing through the different stages of the software.

• Interaction: Actions designed in the software for the user to interact with. That is,

the human-computer dialogue.

• Interface Element: Objects and entities that are included in the human-computer

interface of the software and its aesthetic properties.

Then, each characteristic was classified according to the level of abstraction in which

they were described, these levels of abstraction were defined as:

• Abstract level, which corresponds to claims that were related to general

principles or issues about software.

• Medium level, which corresponds to claims that referred to a piece of software

and could be applied to all sections or elements of it.

• Concrete level, which corresponds to claims that referred to specific elements of

a piece of software.

Table 4.1 presents a definition of each of the 15 resulting categories (3*5), giving

examples taken from the data to illustrate them.

85

Level
Characteristic

Abstract Medium Concrete

Subject Areas
Cumculum subjects areas
or skills (i.e. history,
reading or basic skills).

Sections of contents to
include in the software (i.e.
which contents to include
given the area).

Specific contents to include
in each module or screen
(i.e. screen one has content
'x').

Content
Organisation

The principle that guided
the contents' organisation
(i.e. in terms of grades v/s
achievements or cross cu-
rriculum v/s subject
oriented).

How to organise the contents
to be presented (i.e. to have a
learning and evaluation
section or a have a round
story).

Decisions about the
combination of content in
each screen (i.e. which
contents to combine in one
screen).

Browsing

Type of sequence of
contents to provide. (i.e. to
progress based on
difficulty levels or
achieved behaviour.

Possible sequences of
browsing and behaviours in
special situations (i.e. given
the organisation, which will
be the browsing sequence).

Sequence of contents in a
screen. (i.e. next content to
present in one screen or
which is the next screen to
show).

Interaction
Interaction metaphor that
was build in the software
(i.e. users' fantasy while
using the software).

Style of interaction with the
software (i.e. type of software
responses, sound, movies.
Times a question is repeated).

Particular interactions in
screens (i.e. specific
actions that the user will do
and software's responses).

Interface
Element

Graphic style, choice of
colours, type of casts (i.e.
persons v/s animals, level
of vocabulary).

Elements such as buttons,
icons, casts that are present in
all the software (i.e. the story
teller character of the
software).

Elements in a screen (i.e.
backgrounds, scenarios and
specific objects).

Table 4.1. 	Definition of the group of categories 'Characteristics of the software'

4.3.2 User

This branch was defined so as to group claims made about the characteristics of the

intended users (i.e. the categories: teacher, pupil or groups) of the software. The data

in these categories correspond to specific characteristics of each type of user, which

could be the teacher, the pupil and in some cases the composition of the groups (when

the software is meant to be used in groups). For example, the members of the

development team could define the age of the users, they could describe their social

background, their cognitive development stage, etc.

4.3.3 	Pedagogic issues

The 'Pedagogic Issues' branch was defined so as to group expressions about issues

that refer to beliefs about software or computers and projections of how these could

be used afterwards. This branch was divided into three categories: 'Aim', 'Teaching

Strategy' and 'Actions'.

4.3.3.1 Aim

This branch refers to the meaning that members of the development group gave to the

software or computer, expressions about what it meant for the 'Teacher' and for the

`Pupil' were grouped under these categories. The definition of each category is:

86

Software Computer

Teacher
The software for the teacher, what does it
stand for (i.e. a cross-curriculum- and cross-
level resource, a lesson)

The computer for the teacher, what does
it stand for (i.e. control instrument,
professional tool)

Pupil's
Role of the software for the pupils (i.e. a game
where they use their time in purposeful ways)

Role of computer for the pupils (i.e. as
source of motivation, as rehearsal
station)

Table 4.2. 	Definition of the group of categories 'Aim'

4.3.3.2 Teaching strategy

This branch included discussions about the software behaviour/characteristics that

relate to the teaching conceptions of the teachers. For example, the decision as to

what kind of feedback should the software give to the user (category Teedback'), or

what should the software do when the user gives a wrong answer, or a long

description of a particular character in the software that is supposed to guide the user

in the different exercises (category `Style').

4.3.3.3 Actions

This branch grouped expressions about different actions that both, teachers and pupils

could be doing while using the software. In this sense, this group of categories reflects

the roles that the development team envisioned for the people involved in using the

software.

The resulting categories were the product of three branches that had two categories

each, this is, eight different categories defined by three different dimensions: 'Actor',

`Context', 'Interaction'. The definition of each category is:

Actor/Interaction Context
Classroom Individual

Teacher/Software
what the teacher
does with the
software

What the teacher does with the
software while teaching in the
classroom (i.e. projecting images,
running simulations, etc.).

What the teacher does with the software
(i.e. setting up levels of difficulty in the
software, remotely controlling pupils'
work).

Teacher/Pupil
what the teacher is
doing with the
pupils

What the teacher does to manage
the classroom (i.e.: asking
questions, telling a story,
motivating)

What the teacher is doing with the
pupils (i.e. help, give advise, evaluate
the content).

Pupil/Software
what pupils do while
interacting with the
software.

The style of interaction and
activities in the classroom
including the computer (i.e.
groups in front of the computer or
individual based activities)

Type of interaction between pupil and
software (i.e. receiving instructions,
discovering, reflecting about something
on the screen, using a tool)

Pupil/Pupil
what pupils do when
not interacting with
the computer.

The type of activities that design
for the classroom (i.e.
collaborative activities,
competitions among groups).

Type of interaction among the pupils
(i.e. discussions around, through the
computer, or peers tutoring)

Table 4.3. 	Definition of the group of categories 'Actions'

87

4.4. DISCUSSION OF THE CODING PROCESS

The operational definition of the coding categories presented in the previous section

was used by the researcher during the coding process. It should be remembered that

this was the result of the iterative process of inspecting the data, specifying some ill

defined categories and solving some inconsistencies. This refinement process was

aimed at improving the clarity, completeness and self-consistency of the network

(Bliss, et al., 1983).

This section presents some of the problems found during the coding process and the

way these were solved or dealt with. Despite these problems, the conventions defined

during the coding were followed in order to ensure validity, (i.e. that it was

appropriate in kind and, within that kind, sufficiently complete and faithful), and to

ensure reliability in the sense that there existed an acceptable level of agreement

between people13 as to how use the network system to describe data (Cohen &

Manion, 1994).

The problems found were:

• Characteristics of the software

During the coding process the data that alluded to the characteristics of the

software was rather easy to identify and to assign to some of the different

categories of 'Focus'. The limits between consecutive groups of categories were

sometimes difficult to differentiate, for example, between 'Content Organisation'

and 'Browsing' or between 'Browsing' and 'Interaction', but similar data were

classified under the same category in order to be consistent.

Another problem with these categories was that there was no clear division

between the different 'Levels of Abstraction'. This, because frameworks, such as

the ones associated with cognition", were not used to define these limits. Rather,

for each subject or focus, an arbitrary division was defined that enabled the

researcher to separate claims about aspects that could appear more general or

more specific in relation to the piece of software that was being designed.

• User

As presented in its definition, this category assumed that data concerning the three

types of users would be found, but data regarding the teacher or groups was

13 In this case the supervisor and the researcher.
14 For example the ones defined by Piaget to describe the different stages of cognitive development:
pre-operational, operational, concrete, abstract.

88

almost absent. So, these categories mainly contained descriptions made by the

development team concerning the pupils.

• Pedagogic Issues: Aim

In this case the difference made between the computer and software was

sometimes difficult to define. For the purposes of this analysis, claims about

software or computers were differentiated by the type of reference the

development team made about it. That is, if they spoke about a generic artefact

that could be any software, it was classified as claims about computers. If they

spoke about any specific software product or 'idea ware', it was classified as

software.

Also, it was difficult to separate their references to 'Teacher' or 'Pupil', because if

they said that "the software is for rehearsal", they expressed their (pedagogical)

goal not the pupil's aim when using the computer (pupils do not realise that they

are 'rehearsing'). The criteria for defining the limit here was to assume that they

spoke about pupils' aim when they referred to the effects or roles that the

computer or software will produce on or play for the pupil. For example, if they

referred to rehearsal, it was assumed to be an effect on the pupil.

On the other hand, there were cross categories issues, like the control of the lesson

flow and classroom management issues. These type of expressions were classified

in both categories, 'Teacher' and 'Pupil'.

• Pedagogic Issues: Teaching Strategy

These dialogues were separated because, in designing these particular elements,

teachers spoke about other issues that dealt more with a certain behaviour of the

software that was closer to the design of a strategy to teach rather than to a simple

response of the software. These behaviours were then embedded in the software.

• Pedagogic Issues: Actions

Some problems regarding these categories were, for example, that it was difficult

to make a clear division between the activities of the teacher interacting as an

individual with the software, or interacting with the software in front of a class in

a classroom context (similar to the report by Fraser, et al., (1991), where the

teacher 'orchestrates' the activities with the software). In this case it appeared

that, because of the type of software designed, there where very few (if any)

utterances that could be classified as an activity of the teacher with the software in

a classroom context. There was one example where the teacher was supposed to

89

set up the level of the software before the children start using it, but this was

considered to be an individual interaction rather than a classroom interaction.

Also, certain claims could be understood as either 'Aim' or 'Actions'. For

example, the issue of the computer taking the role of the teacher is both: an aim of

the computer for the teacher (for example, considering it as an auxiliary teacher),

and a definition of a role of the teacher (for example, as the principal teacher).

4.5 DISCUSSION OF THE NETWORK

As mentioned before, the network can be considered as an accurate structure to

represent the teachers' beliefs about educational software. In this sense, there are two

dimensions to be analysed, first the categories defined and second, the organisation of

these categories.

In relation to the first dimension it could be argued that the categories grouped in the

branch 'Topic' show the different elements that were considered during the

development process and, considering that the focus of this study was on the teachers'

expressions, it could be argued that these categories represent the range of concerns

that teachers expressed about a piece of educational software. Therefore it seems

reasonable to assume that, for example, teachers selecting a piece of software will be

thinking of a similar set of categories to inspect the software.

Accepting such assumptions, a valuable source for comparison of this structure can be

found in the literature about educational software selection (or evaluation). In

particular, the categories in the network could be compared with the different

dimensions that are described as relevant to the evaluation and selection of

educational software. In particular, these categories could be examined using the

`Perspectives Interactions Paradigm' defined by Squires and McDougall (1994) and

described in section 2.4.2 of this thesis. The correspondence between the perspectives

and the categories in the network could be described as:

• The teacher-student perspective could be related to the categories of the branch

`Actions' of the network. In fact, both, the network and this perspective, describe

a similar range of possible actions.

• The student-designer perspective could be related to the categories of the branch

`Aim' when the 'Person' is the 'Pupil'. This perspective is focused on

"identifying implicit theories of learning and decide whether (i) these are

appropriate to perceived needs, and (ii) the software design is consistent with the

90

theory" (Squires and McDougall 1994, p. 99). The network, on the other hand,

adds the aims associated to the use of the computer (alone), which is not explicitly

considered in this perspective.

• The designer-teacher perspective could be related to the categories of the branch

`Aim' when the person is the 'Teacher'. This perspective is "concerned with

identifying and judging the appropriateness to a given educational setting of the

curriculum assumptions in the software design" (Squires and McDougall 1994, p.

110). The network also includes the consideration of the aims that the teacher can

have regarding the use of the computer.

• The categories included in the branch 'Teaching Strategy' of the network are

indirectly considered in the Teacher-Student perspective, but without a particular

emphasis on the 'teaching strategy' dimension.

• The categories included in the branches 'User' and 'Characteristics of the

software' are not included in this paradigm.

Through this comparison it was possible to ensure a higher degree of validity to the

network (Cohen & Manion, 1994), in so far it was complete enough to contain the

characteristics described in the 'perspectives interactions paradigm'. Also, it could be

argued that the categories defined in the network provide additional perspectives that

could be considered while selecting a piece of educational software. Squires & Preece

(1996) propose the 'Jigsaw Model' for software evaluation, which is a result of

integrating learning and usability issues for evaluating software. The model proposes

the evaluation of three different tasks: the learning task, the operational task and the

integrated task. In this sense, they are including the categories that are defined in the

`Characteristics of the software' branch of the network. Whether the inclusion of

these additional categories would result in a better selection or not goes beyond the

aims of the present study, but the fact that these authors tend to integrate these

categories into their selection or evaluation methods opens interesting possibilities for

the proposed network.

In relation to the second dimension - the organisation of these categories - the

network constitutes an analytical tool for examining teachers' work with educational

software. An alternative representation for all these categories would be to transform

it into a check list of the relevant dimensions to be considered while observing

teachers' work with educational software or while selecting a piece of software. In

doing so, it would loose one important feature, i.e. the holistic representation of the

topic of study. This feature enables the researcher to have a complete view of the

91

different alternatives of classification that are available and, further, to keep these

alternatives in mind while reading the data (or reviewing a piece of software). In this

sense, it could be argued that this representation could help to overcome, for example,

some of the difficulties in using the 'perspectives interactions paradigm' reported by

McDougall & Squires (1995), regarding the difficulty that assessors have in applying

the method.

Another aspect that needs to be considered in this dimension are the choices made for

the separation and organisation of the categories into a system of interconnected

branches and nodes. This particular classification of the dimensions to be considered

in the design of a piece of software conveys the organisational interactions that

surround its use (an important consideration as Winograd, 1995, points out for

`environments for designing software'). In this sense, the network is expressing not

only the characteristics of the piece of software but also the way and context in which

it will be used by these particular users. Therefore it can be argued that it can

represent these teachers' model of understanding educational software from the

perspective of its use in the classroom.

92

V. 	PARTICIPATION ANALYSIS

5.1. INTRODUCTION

This chapter presents an analysis of the participation of each member of the de-

velopment team in the discussions during the software development process. The

participation is expressed in terms of the frequency of units spoken by each member

of the development team in each category. The categories used for this analysis are

those defined in the systemic network and explained in Chapter IV, these are:

`Characteristics of the software', 'Pedagogic Issues', (which has the sub categories:

`Aim', 'Teaching Strategy', 'Actions') and 'User'.

The overall distribution of units spoken during the design process is presented in the

next figure:
Abstract 1,600 (17%)
Medium 2,450 (25%)
Concrete 3,494 (36%)

Subject Areas 	744 (8%)
Content Org. 	1,076 (11%)
Browsing 	1,098 (11%)
Interaction 	2,120 (22%)
-Interface Element 2,506 (26%)

Level of
Ab straction

Characteristics
of the software

7,544 (78%) 	Focus

Topic User
302 (3%)

Teacher
Pupil
57-61.ip

Teacher 213 (2%) Person
	 Pupil 	177 (2%)

Aim
390 (4%) Artefact Software 272 (3%)
	 Computer 118 (1%)

Teaching Strgy Feedback

811

' 	
%

Teacher 181 (2%)

	

(8 	%) 	Style'

Actor
	Pupil 	435 (5)

IC0'1daisysridouoaml 417433 ((25.4%))

	

Actions 	Context
616 (7%)

Discussion
about

Software
Design

9,663
(100%)

Pedagogic Issues

1,817 (19%)

Figure 5.1.

Interactionl 	323806 ((34;/.) 0 Spuopftiwl are

Software Engineer 2,498 (26%)

Participants leacher M 	2,414 (25%)
	 I eacher E 	2,038 (21%)

Psychologist 	1,894 (20%)
Graphic Designer 819 (8%)

General distribution of units spoken during the development process

This distribution shows that the majority of the time invested (i.e. number of units

spoken) was in designing the software (78%), particularly the 'Interaction' (22%) and

`Interface Element' (26%). The development team spoke half of the time about these

issues but spoke very little about the 'Pedagogic Issues'. The participation of the

Software Engineer (26%), the teachers (25% and 21%) and the Psychologist (20%)

were similar, which suggests that they did interact during the development process.

93

The low participation of the Graphic Designer is because of her later entrance to the

process.

Although this level of information is useful for such an analysis, this research is

aimed at understanding what these teachers believed about educational software and

therefore their participation during the development process should be analysed.

In order to do this analysis and as mentioned in Section 3.4.1, two calculations were

done, first the individual frequencies of units spoken by each member of the de-

velopment team in each category was calculated and second, these frequencies were

transformed into percentages of the distributions relative to: (i) their participation in a

group of categories (`Characteristics of the software', 'User', 'Aim', 'Teaching

Strategy' and 'Actions'), and (ii) relative to each member's total units spoken. The

aim corresponding to each calculation was: (i) to compare the contributions of each

member of the development team to each group of categories (presented in section

5.2, 'Analysis of Contributions') and (ii) to compare the distribution of the units

spoken by each member of the development team in all categories (presented in

section 5.3, 'Analysis of the Profiles of Participation')

Finally, section 5.4 presents some of the conclusions drawn, based on the findings of

these analyses.

During the design of this analysis, it was supposed that the contribution and partici-

pation profiles of the individual members of the development team during the design

process should be different, in so as far they would contribute to this process from

different knowledge domains. In other words, it was assumed that professionals

would participate accordingly to their professional craft knowledge (Cooper &

McIntyre, 1995; Edwards & Mercer, 1987), and that this knowledge would influence

their design decisions (Hughes, et al., 1995; Mantovani, 1996) and consequently their

frequency of participation in some of the categories would be different. The

assumptions made, therefore, were:

• All members had the same opportunity to speak (except for the Graphic Designer

that was incorporated to the development process in session 14), therefore the

expected value for each MDT's contribution is 20% or 25% (if the Graphic

Designer is excluded).

• The differences between the expected contribution and the observed contribution

of each MDT can be attributed to professional 'deviations' (which are expected to

be present). The assumption is that each of them has a professional background

94

that should induce him/her to be more or less active in certain topics, showing

different frequencies of participation.

• The profile of participation of each member of the development team will depend

on his/her professional background.

Given these assumptions, the hypotheses for this analysis were that15:

a) The two teachers would have contributed more to the categories that are closer to

their professional background. In particular, they would have contributed

comparatively more to the categories of the branch 'Pedagogic Issues' (i.e. 'Aim',

`Teaching Strategy', 'Actions') and to the groups of categories 'Subject Area' and

`Content Organisation' at an 'Abstract' level of abstraction. Consequently, they

would have contributed comparatively less to the other categories.

b) The teachers' profiles of participation would be very similar compared to each

other and it would be different compared to the profiles of the Software Engineer

and the Graphic Designer.

c) The Psychologist would have contributed more to the categories that are closer to

his professional background. In particular, he would have contributed more to the

categories of the branch 'Users' and 'Aim'. Consequently, he would have

contributed less to the other categories.

d) The profile of participation of the Psychologist would be close to the profile of

participation of the teachers, because they share a certain amount of professional

knowledge (that is, they both study learning and development theories). On the

contrary, it would be different compared to the other member's profiles, in so far

they do not study such theories.

e) The Software Engineer would have contributed more to the categories that are

closer to his professional background. In particular, he would have contributed

comparatively more to the categories of the branch 'Characteristics of the

software', particularly to the groups of categories 'Browsing', 'Interaction' and

`Interface Element' at a 'Medium' and 'Concrete' levels of abstraction.

Consequently, he would have contributed less to the other categories.

f) The Software Engineer would have a very different profile of participation

compared to the other team members. This is because he studies computer

science, software engineering theories, programming methods, etc. So, his profes-

sional knowledge is highly differentiated.

15 Note that these assumptions are based on the curriculum of these professions in Chile and more
specifically to the Universities in which the MDTs studied (Universidad de La Frontera, Universidad
CatOlica de Temuco and Universidad de Temuco), and therefore they do not necessarily apply to other
countries or Universities.

95

g) The contribution of the Graphic Designer can not be considered due to her late

incorporation in the development process.

h) The Graphic Designer would have a very differentiated profile of participation

compared to the other team members. The Graphic Designer has a very particular

corpus of knowledge (painting, communication, etc.). Nevertheless, her late

incorporation in the development process should be considered.

Both the analysis of contributions and the analysis of the profiles of participation will

show that these hypotheses are supported only for some groups of categories and that

it was not possible to generalise such behaviour to all the categories.

In the following sections the acronym 'MDT' will be used to replace the expression

`Member of the Development Team'.

5.2. ANALYSIS OF CONTRIBUTIONS

This section presents, for each group of categories, the distribution of frequencies of

each MDT. These data provides the basis to analyse the quantity of participation of

each MDT in each group of categories, and to contrast the observed behaviour with

the expected participation of each MDT.

5.2.1 	Characteristics of the Software

The distribution of frequencies for this group of categories is presented in table 5.1. It

shows that in the distribution of the Group (upper left table), the highest frequency

corresponds to a concrete level of conversation (46%), and the lowest corresponds to

an abstract level (21%). In fact, frequencies in the abstract level are very low, except

for the focus of conversation 'Interaction' (12%) which is over the half of the total

frequency of this level (this can be explained by the fact that the category

`Interaction' at an 'Abstract' level is like telling the 'story' of the software and the

user). The medium level of conversation of the Group is close to the expected value

(32% v/s 30%).

Looking at the focus of conversation of the Group, it is possible to see that the highest

frequency is for the focus 'Interface Element' (33%), closely followed by the focus

`Interaction' (28%). The lowest frequency is for the focus 'Subject Areas' (10%).

This can be explained by the fact that the design of interface elements and interactions

with the software are activities that people expect to design when developing a piece

of software, they belong to the visible attributes of the software.

96

Comparing the contribution of each MDT to this group of categories, the low

percentage of the Graphic Designer (11%) can be attributed to her late entrance to the

development process. The relative high participation of Teacher M (25%) in this

category, similar to the Software Engineer (27%), does not support hypothesis (a).

The Group (7544)
Abstract Medium Concrete Total

Subj. Areas 2% 6% 2% 10%
Content Org. 3% 7% 4% 14%
Browsing 2% 6% 7% 15%

Interaction 12% 7% 9% 28%
Interface El. 2% 6% 25% 33%
Total 21% 32% 46% 100%

Software Engineer (2011)
Subj. Areas 1% 1% 0% 2%
Content Org. 1% 2% 1% 3%
Browsing 0% 2% 3% 5%
Interaction 4% 2% 3% 9%
Interface El. 0% 1% 6% 8%
Total 6% 7% 13% 27%

Graphic Designer (793)
Abstract Medium Concrete Total

0% 0% 0% 0%
0% 0% 1% 1%
0% 0% 0% 1%

2% 0% 1% 3%
0% 1% 5% 6%
2% 2% 7% 11%

Psychologist (1425)
1% 2% 0% 3%
1% 2% 1% 4%
0% 2% 1% 3%
2% 1% 2% 5%
0% I% 4% 5%
4% 7% 8% 19%

Teacher E (1409)
	

Teacher M (1906)
Subj. Areas 1% 2% 0% 3%
Content Org. 1% 2% 1% 3%
Browsing 1% 1% 1% 3%
Interaction 1% 2% 1% 4%

Interface El. 1% 1% 4% 6%
Total 3% 8% 8% 19%

1% 1% 0% 2%
1% 2% 1% 3%
0% 1% 2% 3%
3% 2% 2% 8%

1% 2% 6% 9%
6% 8% 11% 25%

able 5.1. 	Relative frequencies of units to the total units in the group o
categories 'Characteristics of the software'

Looking at the relative distributions among the MDTs, and observing the levels of

abstraction (`Abstract', 'Medium' and `Concrete'), it is possible to say that:

• In the group of categories 'Concrete' level of abstraction, the highest percentage

belongs to the Software Engineer (13%), followed by the Teacher M (11%). The

high percentage of contribution of the Software Engineer supports the initial

hypothesis (e), but the fact that Teacher M shows a similar percentage of

contribution does not support the initial hypothesis (a), about the teachers having

a relatively lower contribution to these categories.

• In the group of categories 'Medium' level of abstraction, the distribution is similar

for all (7%), except for the Graphic Designer (2%). This does not support the

hypothesis (a), (c) and (e).

97

• In the group of categories 'Abstract' level of abstraction, there are two groups,

firstly the Software Engineer and Teacher M that have more participation (6%)

and secondly the Psychologist, Teacher E together with the Graphic Designer that

have less participation (3%). This result does not support hypotheses (a) and (e).

Looking at the relative contributions of each of the MDTs to each focus of conver-

sation, it is possible to say that:

• There are no differences between MDTs in the groups of categories 'Subject

Areas' and 'Content Organisation' (3%), except for the Graphic Designer, who

has a lower participation (1%). This evidence does not support hypothesis (a),

about the teachers having a relatively higher contribution to these categories.

• In the focus 'Browsing' the Software Engineer appears with the highest frequency

in the conversations (5%). Although the difference is small, this result supports

hypothesis (e).

• In the focus 'Interaction', the contribution of the Software Engineer (9%) matches

the initial hypothesis (e), but the contribution of Teacher M (8%) does not support

hypothesis (a).

• In the focus 'Interface Element' Teacher M (9%) and the Software Engineer (8%)

have the highest percentage, followed by the Graphic Designer (6%). In this case,

the contribution of Teacher M (9%) does not support hypothesis (a).

Adding the percentages of the teachers, they represent 44% (=19+25) of all units

about 'Characteristics of the software', the Software Engineer represents 27% and the

Psychologist represents only 19% of these units. So, the overall result does not

support the hypotheses (a), (c) and (e).

On the contrary, looking at the general distributions it could be said that there are

three groups with different degrees of participation, the first group including the

Software Engineer and Teacher M (approximately 26%), the second group including

the Psychologist and Teacher E (19%) and the third group including the Graphic

Designer (11%).

The first group could be characterised by being more concrete and with an emphasis

in contributing to the groups of categories 'Interface Element' and 'Interaction'. The

second group could be characterised by being more uniform in their participation,

contributing in a similar degree to all the categories in the branch 'Characteristics of

98

the software'. The third group is radically different and could correspond to a

specialised role during the development process, focused on the group of categories

`Interface Element', but this result can not be considered in this study because the late

incorporation of the Graphic Designer to the development process.

5.2.2 	User

The distribution of frequency for this group of categories is presented in table 5.2.

Graphic Designer (2)
Teacher Pupil Group Total

0% 1% 0% 1%

The Group (302)
Teacher Pupil Group Total

User 1% 86% 12% 100%

Software Engineer (45) Psychologist (75)
User 0% 14% 1% 15% 0% 21% 3% 25%

Teacher E (88) Teacher M (92)
User 0% 24% 5% 29% 1% 27% 30/0 30%

Table 5.2. Relative frequencies of units to the total units in the group of

categories 'User'

This distribution of frequencies of table 5.2 shows that during the design process very

little was said about the characteristics of the teacher or the Group (of the branch

`User'). This fact may reflect the relative low importance that is given to the teacher

as a user of the software or that the teacher's characteristics were assumed to be

known by the team.

The highest percentages here are from Teacher M and Teacher E (approximately

29%), followed by the Psychologist (25%). The Software Engineer has a much lower

participation in this category. The lower contribution of the Software Engineer

supports hypothesis (e), but the relative lower contribution of the Psychologist does

not support hypothesis (c).

5.2.3 	Aim

The distribution of frequency for the group of categories in the branch 'Aim' is

presented in table 5.3. Looking at the distribution of the contributions of the Group,

the aims for the software and those expressed for the computer (of the branch

`Artefact') have different frequencies (70% and 30%, respectively). This difference

can be attributed to the fact that the team was designing a piece of software, rather

than a computer. The other interesting result is that they express more aims for the

teacher (55%) than for the pupil (45%) (of the branch 'Person').

99

The Group (390)
'teacher Pupil Total

Software 36% 34% 70%
Computer 19% 12% 30%
Total 55% 45% 100%

Software Engineer (67)
Software 9% 4% 14%

Computer 2% 2% 4%

Total 12% 6% 17%

Graphic Designer (0)
Teacher Pupil Total

0% 0% 0%

0% 0% 0%

0% 0% 0%

Psychologist (81)
6% 11% 17%

2% 2% 4%

8% 13% 21%

Teacher E (132)
	

Teacher M (110)
Software 11% 9% 21%
Computer 9% 4% 13%
Total 20% 14% 34%

9% 9% 19%
6% 4% 9%

15% 13% 28%

Table 5.3
	

Relative frequencies of units to the total units in the group of

categories 'Aim'

In this group of categories Teacher E and Teacher M (34% and 28% respectively)

have the highest relative frequency, followed by the Psychologist (21%) and the

Software Engineer (17%). This distribution supports the initial hypotheses (a), (c) and

(e) because this group of categories should reflect what they decide to be the aim of

the educational software to be developed and in this sense it this is an area that is of

more concern to the teachers and to the Psychologist in some degree. The absence of

units from the Graphic Designer is due to her late incorporation to the development

process.

Looking at the aims expressed for each of the users (categories 'Teacher' or Tupir):

• The particular relative low frequency of the Software Engineer (6% v/s 13% of

the other MDTs), when speaking about the aims for the pupil, is consistent with

the initial hypothesis (e) and shows his low involvement in these decisions.

• Comparing the different frequencies about the aims for the teacher, the low

percentage of the Psychologist in this area could indicate that he assumes the

software as a tool for the pupil, rather than for the teacher. The high percentage of

Teacher E in this category differentiates her from Teacher M, not supporting the

initial hypothesis that teachers would show similar contributions, nevertheless,

they still have the highest percentages of contributions.

Looking at the aims of the software or computer (categories 'Software' and

`Computer'):

100

The Group (181)
Classroom Individual Total

Software 22% 55% 77%
Pupil 4% 19% 23%
Total 26% 74% 100%

Graphic Designer (1)
Classroom Individual Total

0% 1% 1%
0% 0% 0%
0% 1% 1%

• The Software Engineer and Psychologist share a relative low frequency when

speaking about the aims of the computer (4%). It could show that they are focused
on the software development and they do not give a role to the computer in this

process, as opposed to the teachers who do speak about the aims of the computer
(approximately 20%).

• The Software Engineer has the lowest percentage of contribution to the categories
'Software', particularly to the category 'Software-Pupil'. Again, this result is
consistent with the initial hypothesis (e).

In general terms this group of categories was 'dominated' by teachers, which supports
the initial hypothesis (a). It is interesting to note the fact that, compared to the other

members of the development team, the teachers contributed most of the units of the
categories 'Computer' (22% of 30%). This result could indicate that they consider the
computer as a separate artefact from the software. One possible explanation could be
that in a classroom, as opposed to the use of computers in an office, the mere presence
of the computer irrespective of the software it is running is noticed by the pupils and
will be motivated to use it. In this way they would be incorporating their professional
background to the design process. Also, while expressing comparatively more aims

for the teacher (35% of 55%), it could be said that they were considering the
computer as a resource for the teacher.

5.2.4 	Actions

To provide a clearer analysis, the group of categories 'Actions' is presented
separating the ones designed for the teacher from the ones designed for the pupil. The
distribution of contributions for the actions designed for the teacher is presented in
table 5.4.

Software Engineer (46)
Software 5% 16% 21%
Pupil 1% 4% 4%
Total 6% 20% 25%

Psychologist (45)
5% 14% 19%
2% 4% 6%
7% 18% 25%

Teacher E (51)
	

Teacher M (38)
Software 6% 14% 20%
Pupil 1% 7% 8%
Total 7% 22% 28%

6% 10% 17%
1% 3% 4%
7% 14% 21%

Table 5.4. 	Relative frequencies of units to the total units in the group of
categories 'Actions-Teacher'.

101

The distribution of contributions of the Group shows that they were very much

oriented to defining actions of the teacher acting individually with the software

(55%), compared with the definition of teacher's actions in the classroom with the

pupil (4%).

In this group of categories, all the MDTS show a similar percentage of contribution.

This result does not support the hypothesis (a), about the teachers showing

comparatively more contributions. Also, the difference between the contribution of

Teacher E (28%) and Teacher M (21%), does not support what was expected about

teacher's similar frequencies of contributions. Consequently, it does not support the

hypotheses about a lower percentage of contribution of the other MDTs ((c) and (e)).

The distribution of contributions for the actions designed for the pupil is presented in

table 5.5.

The Group (435)
Classroom Individual Total

Software 3% 53% 57%
Pupil 19% 25% 43%
Total 22% 78% 100%

Software Engineer (106)
Software 1% 15% 15%
Pupil 3% 6% 9%
Total 3% 21% 24%

Graphic Designer (3)
Classroom Individual Total

0% 1% 1%
0% 0% 0%
0% 1% 1%

Psychologist (59)
0% 6% 7%
3% 4% 7%
3% 10% 14%

Teacher E (140)
	

Teacher M (127)
Software 1% 14% 16%
Pupil 7% 9% 16%
Total 9% 23% 32%

1% 17% 18%
6% 5% 11%
7% 22% 29%

Table 5.5. 	Relative frequencies of units to the total units in the group of

categories 'Actions-Pupil'

In table 5.5. the distribution of contributions of the Group shows that the team

designed much more actions for the pupils individually with the software (53%)

rather than actions for the classroom with the software (3%). This indicates that they

were not designing software for classroom use, they design software for individual

use.

In this group of categories the teachers show the highest percentage of contributions

(32% and 29%), followed by the Software Engineer (24%). The Psychologist has a

relatively low percentage of contributions (14%). Contrary to the previous results, this

distribution of contributions supports the hypothesis (a), about the teachers showing

comparatively more contributions.

102

Looking at the design of actions for the pupil in the classroom or individually

(categories of the branch 'Contexe):

• In the individual actions, the teachers and the Software Engineer have similar

percentages of contribution (22%) and the Psychologist has the lowest one (10%).

The comparatively high contribution of the teachers was expected (hypothesis

(a)), but the one of the Software Engineer was not (hypothesis e), in so far as this

category is closer to designing what pupils will be doing during the lesson.

• In the classroom actions, teachers have a higher frequency (approximately 8%)

than the Software Engineer and the Psychologist (3%). This supports hypotheses

(a), (d) and (e).

Looking at the design of actions for the pupil interacting with the software or other

pupils (categories in the branch 'Interaction'), the highest percentage of contributions

in the design of actions interacting with the software is the one of Teacher M (18%),

especially while speaking about individual interaction (17%). Teacher E, on the other

hand, shows the highest percentage of contributions in the design of actions with

other pupils (16%).

Considering all the categories of the branch 'Actions', it is possible to say that the

development team tended to speak more about actions of the pupil rather than of the

teacher. Also, that they tended to speak much more about individual actions rather

than actions in the classroom context and that their priority was the individual

interaction of the pupil with the software.

This apparent behaviour could be explained by the traditional use of software in the

classroom, which is very much oriented to consider the pupil as the end-user of the

software (an argument supporting this view will be found in Chapter II: Literature

Survey).

If this result is compared with the one for the group of categories 'Aim', there is an

apparent contradiction, because there they talked more often about the aim of the

software or computer for the teacher than for the pupil, whereas in this case they

talked more about actions for the pupil than for the teacher. A possible interpretation

of this is that they are thinking about the computer as a resource for the teacher that

would be used by the pupils.

103

5.2.5 	Teaching strategy

The distribution of contributions to this group of categories is presented in table 5.6.

In this group of categories the Software Engineer, Teacher M and the Psychologist

have similar percentages of contribution (27%) and Teacher M has the lowest

percentage (17%). This distribution does not support hypothesis (a), about teachers

showing a higher contribution in this group of categories.

0/0
Group 100%
Graphic Designer 2%
Software Engineer 27%
Psychologist 26%
leacher E 27%
Teacher M 17%

Table 5.6. 	Relative frequencies of units to the total units in the group of

categories 'Teaching Strategy'

5.3. ANALYSIS OF THE PROFILES OF PARTICIPATION

This section presents an analysis of the distribution of the units spoken by each

member of the development team (MDT) in all categories, that is, their profile of

participation. These profiles constitute an additional source of information for

comparing the participation of each member of the development team in the definition

of each category.

In this analysis an assumption was made that the expected values of distribution for

each participant are the ones from the group, so the analysis was focused on the

difference in individual distributions compared with the group. Table 5.7 shows the

distributions of frequencies of units relative to the total participation of each member

of the development team.

Although the data presented in table 5.7 is interesting, it is difficult to make an

analysis based on the numbers presented. Therefore, figure 5.2 shows a graphic

representation of the profiles of participation.

104

Category / Participant Teacher
E

Teacher M Psych&
ogist

Software
Engineer

Graphic
Designer

Group

Characteristics of the software 69% 79% 75% 81% 97% 78%

Subject Areas - Abstract 2.0% 1.8% 2.0% 1.7% 0.0% 1.7%

Subject Areas - Medium 7.2% 4.4% 7.0% 3.1% 0.1% 4.8%

Subject Areas - Concrete 1.0% 1.1% 1.4% 1.3% . 	1.1% 1.2%

Content Organisation - Abstract 2.8% 2.1% 2.9% 1.8% 0.2% 2.2%

Content Organisation - Medium 6.8% 5.2% 7.4% 4.8% 1.8% 5.6%

Content Organisation - Concrete 3.0% 2.6% 3.7% 3.6% 4.6% 3.3%

Browsing - Abstract 2.0% 1.4% 1.4% 1.4% 0.1% 1.4%

Browsing - Medium 4.4% 3.6% 6.2% 5.0% 1.2% 4.4%

Browsing - Concrete 5.1% 5.3% 4.2% 7.6% 4.4% 5.5%

Interaction - Abstract 2.3% 10.8% 7.6% 12.7% 18.1% 9.5%

Interaction - Medium 6.5% 6.8% 4.4% 5.9% 1.3% 5.6%

Interaction - Concrete 4.6% 7.2% 6.2% 8.3% 8.9% 6.9%

Interface Element - Abstract 2.5% 2.4% 1.4% 1.0% 1.6% 1.8%

Interface Element - Medium 3.1% 5.7% 4.8% 3.7% 11.1% 4.9%

Interface Element - Concrete 15.8% 18.5% 14.6% 18.6% 42.1% 19.2%

User 4% 4% 4% 2% 0% 3%

Teacher 0.0% 0.1% 0.1% 0.0% 0.0% 0.0%

Pupil 0.7% 0.4% 0.5% 0.2% 0.0% 0.4%

Group 3.6% 3.4% 3.4% 1.6% 0.2% 2.7%

Aims 6% 5% 4% 3% 0% 4%

Teacher-Software 2.1% 1.5% 1.3% 1.5% 0.0% 1.4%

'reacher-Computer 1.7% 0.9% 0.4% 0.3% 0.0% 0.8%

Pupil-Software 1.8% 1.5% 2.2% 0.6% 0.0% 1.4%

Pupil-Computer 0.8% 0.6% 0.4% 0.2% 0.0% 0.5%

Action 9% 7% 5% 6% 0% 6%

Teacher - Classroom -Software 0.5% 0.5% 0.5% 0.4% 0.0% 0.4%

Teacher - Classroom - Pupil 0.1% 0.1% 0.2% 0.0% 0.0% 0.1%

Teacher - Individual - Software 1.3% 0.8% 1.3% 1.2% 0.1% 1.0%

'reacher - Individual - Pupil 0.6% 0.2% 0.4% 0.3% 0.0% 0.4%

Pupil - Classroom - Software 0.3% 0.2% 0.1% 0.1% 0.0% 0.2%

Pupil - Classroom - Pupil 1.6% 1.1% 0.6% 0.4% 0.0% 0.8%

Pupil - Individual - Software 3.1% 3.1% 1.4% 2.6% 0.4% 2.4%

Pupil - Individual - Pupil 1.9% 0.9% 1.0% 1.1% 0.0% 1.1%

Teaching Strategy 11% 6% 11% 9% 2% 8%

Feedback 10.4% 5.8% 11.0% 8.8% 2.4% 8.3%

Style 0.3% 0.1% 0.0% 0.1% 0.0% 0.1%

'total 100% 100% 100% 100% 100% 100%

Table 5.7. 	Relative frequencies of units to the total units of each member of the

development team.

In order to have a clear representation of each member's contribution, a linear

transformation was made, adding a factor to the frequencies of participation of each

member of the development team (scale shift). This transformation allows us to see

each member's profile in a different row of the graph. Also, because of the relative

differences in the magnitudes of the participation in some categories, the frequencies

corresponding to some categories were amplified. In summary, the frequencies shown

105

in table 5.7 were transformed using the following formula and The results of these

calculations are presented in figure 5.2.

Profile of participation = (Original Frequency * Amplification) + Scale Shift

MDT
Teacher M (TM)
Teacher E (TE)

Psychologist (PY)
Software Engineer

Graph Designer (GD)
Group

Scale Shift
0

2
4
6
8

10

Group of Categories
Charact. of the software

User
Aim

Actions
Teaching Strategy

Amplification
1
1
5
5
1

70 0

60.0

50.0

40.0

30.0

20 0

10.0

0.0

r roue Group

D

/ 1
GD

At 	Yt

A

It Mt X

SE
 N /

. 	.

PY
.

.

\
PY .

• ' /
A
\

•

"L
/
l \---'%

TE

E 5 C isti ,s1 a..)
E

■-. a) 	.a• al

O .g

U

O
Characteristics of the software

7 E 	' j . r) ' E I 1 - . 5 -a 7:- 1. ., E ' 7E ••- — .. 0 	— 0 — 0 0 0 0 -0 	0 -o P. 	at ■-. as - — 0, ■-. ta, - •- a.) v, eL.)

H
U 0

Aim 	A-aions
Pedagogic Issues

a.)

User
Teaching
Strategy

Figure 5.2. Participation profiles of the members of the development team

Figure 5.2 shows the profile of participation of each member of the development

team. The Graphic Designer is not included in the detailed analysis of these profiles

because, although she has a very different profile (which could support hypothesis

(h)), this result can be attributed to her late incorporation to the development team, in

so far as her participation opportunities were very different from the other members.

Therefore, it can not be assumed that her profile of participation is a consequence of

using her professional background.

Some observations arising from the comparison of each member's profile of

participation with the Group's profile of participation, are:

106

• The Software Engineer has a relatively lower score in the group of categories

`Subject Areas' at a medium level of abstraction and a relatively higher score in

the groups of categories 'Browsing' and `Interaction'. Also, he shows a relatively

lower score in the groups of categories 'Aim-Teacher' and 'Aim-Pupil'.

• The Psychologist has relatively higher score in the groups of categories 'Subject

Areas' and 'Content Organisation' at a medium level of abstraction. His profile of

participation is different in the group of categories 'Browsing', he has relatively

lower score in his participation at a 'Concrete' level of abstraction. Also, he

shows a relatively lower score and then a relatively higher score in the groups of

categories 'Aim-Teacher' and 'Aim-Pupil' respectively. Lastly, he shows a

relatively lower score in the group of categories 'Actions-Pupil-Individual' and a

relatively higher score in the group of categories 'Teaching Strategy'.

• In general terms, Teacher M's profile of participation is very similar to the profile

of the Group, the differences are in the group of categories 'Actions-Pupil-

Individual' where she shows a relatively higher score and in the group of

categories 'Teaching Strategy' where she shows a relatively lower score.

• Teacher E has a relatively higher score in the groups of categories 'Subject Areas'

and 'Content Organisation' at a medium level of abstraction (similar to the

Psychologist). Her profile is different in the group of categories 'Interaction',

where she has a relatively lower score at an abstract and concrete levels of

abstraction. Also, in the groups of categories 'Interface Element', she has a

relatively lower score at a medium level of abstraction. Finally, in the groups of

categories 'Aim-Teacher, 'Aim-Pupil', 'Actions-Pupil-Classroom', 'Actions-

Pupil-Individual' and 'Teaching Strategy', she shows a relatively higher score.

Looking at the groups of categories presented figure 5.2, it can be observed that at

least one member's profile of participation is different in the groups of categories:

`Subject Area' (SE, PY and TE), 'Content Organisation' (PY and TE), 'Browsing'

(SE and PY), 'Interaction' (SE and TE), 'Interface Element' (TE), 'Aim-Teacher'

(SE, PY and TE), 'Aim-Pupil' (SE, TE and PY), 'Actions-Pupil-Classroom' (TE),

`Actions-Pupil-Individual' (PY, TM and TE) and 'Teaching Strategy' (PY, TM and

TE). It could be said that these are the categories where some of the members of the

development team did apply their professional backgrounds.

Contrasting these results and the profiles shown in figure 5.2 with the initial

hypothesis, the conclusions that can be derived are:

107

• That hypothesis (b), about the teachers having similar profiles compared to each

other and different profiles compared to the Software Engineer, can be supported

only for the groups of categories 'Browsing', 'Aim-Pupil', 'Actions-Pupil-

Classroom' and 'Actions-Pupil-Individual'.

• That hypothesis (d), about the Psychologist having similar profile compared to the

teachers and different to the other members, can be supported only for the groups

of categories: 'Subject Area' and 'Content Organisation'.

• That hypothesis (f), about the Software Engineer having a different profile of

participation, could be supported for only the groups of categories: 'Subject

Area', 'Browsing', 'Interaction', 'Aim-Teacher', 'Aim-Pupil', and 'Actions-

Pupil-Individual'.

5.4. 	CONCLUSIONS

This section will present a summary of the results of both analyses and then it will

relate these results. The results of the analyses presented in the previous sections that

support some of the hypotheses were:

i) The Software Engineer did contribute more than the other members of the

development team in the groups of categories 'Browsing' and 'Interaction' and

the analysis of the profiles of participation showed that his profile of

participation was different in these groups of categories. Also he contributed

less to the groups of categories 'Aim' and 'Actions-Pupil', and the analysis of

the profiles of participation showed that his profile was different in these

groups of categories.

ii) The teachers did contribute more than the other members of the development

team in the groups of categories 'Aim' and 'Actions-Pupil' and the analysis of

the profiles of participation showed that their profile of participation was

different in these groups of categories.

The remaining hypotheses were not supported.

These results indicate that during the development process the Software Engineer and

the teachers did use their professional backgrounds in those sections of their

discussion classified in the groups of categories: 'Browsing', 'Interaction', 'Aim' and

`Actions-Pupil'. This result provides a higher degree of confidence about the data that

is being used, in so far as it shows that at least in these categories the teachers were

contributing from their professional stand point. We will turn in the next chapter to

108

examining what they actually said in their discussion which were classified in these

categories.

Two additional observations resulting from the data were: first, if the groups of

categories 'Aim' and 'Actions' are compared, it is interesting to notice that they did

consider aims of the computer and software for the teacher, but they spoke very little

about actions for the teacher with the software or the pupil. This configuration of

participation suggests that they assume the computer and software as relevant

classroom resources, but, as opposed to a blackboard, these resources are to be

manipulated by the pupils and not by the teachers. This may be attributed to the fact

that the machine is part of the activity in the classroom, so they need to consider it

separately. It is interesting to compare the role of the computer in an office with the

role of the computer in a classroom. In the former if the machine is off it is just

furniture, in the latter, even if it is off, the teacher will need to consider its presence

while designing activities. Teaching involves several roles (for descriptions see:

Leinhardt, et al., 1987), and one of them is transmission of contents (or skills,

thoughts, etc.), but teachers need to manage the classroom (Jones, 1996) also, and

provide an adequate atmosphere (Woods & Jeffrey, 1996) and therefore the physical

artefact (computer) matters. In this sense the very presence of the computer would

have some effect on the activity performed in so far it affects pupils' attention and

motivation.

Second, in the group of categories 'Actions' the whole group talked more about

actions of the pupil than actions of the teacher, this difference could show that the

group did not see a particular role for the teacher while using software or computers.

Within the actions of the pupil they talk much more about actions with software

interacting in an individual context than in a classroom context. This may be

attributed to the existing trend in educational software development to produce

learning centred software, which imposes a high degree of interaction between the

pupil and the software.

109

VI. 	SEQUENCES ANALYSIS

6.1. INTRODUCTION

This chapter presents an analysis of the patterns of sequences of units that members of

the development team repeated during the process of software design. For the

purposes of this analysis a 'sequence' was defined as a consecutive set of 'n' different

units that were present in a string of units more than once. The categories that identify

the units of this analysis are the same as those defined in the systemic network and

explained in Chapter IV. These categories are: 'Characteristics of the software'

(which has the sub categories: 'Subject Areas', 'Content Organisation', 'Browsing',

`Interaction' and 'Interface Element'), 'Pedagogic Issues', (which has the sub

categories: 'Aim', 'Teaching Strategy', 'Actions') and 'User'.

This information is useful in that it provides an additional level of analysis of the

data, this is, the combination of certain categories form yet a different category that

has its own meanings associated. In this sense, the aim of this analysis is to identify

and analyse these new categories.

As explained in the Methodology chapter (section 3.4.2), the development process

was considered to be a string of 848 units of analysis that represented one continuos

string of data. The units were ordered, but not separated, accordingly to the

chronological order of the consecutive sessions. In order to have a better profile of

each member, their individual contributions during the development process were

separated and one string of units for each member was obtained. Through the process

of separating individual contributions the following number of units for each member

(or 'string lengths') were found:

Member Number of Units
'feacher-E (TE) 2,038
Teacher M (TM) 2,414
Psychologist (PY) 1,894
Software Engineer (SE) 2,498
Graph Designer (GD) 819
Group 848

Table 6.1. 	Total units per member and the Group

Because of the difference in the number of units and her late entrance to the deve-

lopment team (session 14), the Graph Designer was not included in this analysis.

In order to have a better understanding of the findings, two types of analysis were

carried out. The first, presented in section 6.2, was aimed at finding the relevant

110

sequences that appeared in the data, without making any discrimination for the person

who was the 'author' of the sequence. This analysis showed that there were two types

of sequences, one containing two different units of analysis (independently from the

length of the sequence, i.e. the number of units of the sequence analysed) and another

that contained three different units of analysis (sections 6.2.1 and 6.2.2 respectively).

This analysis enables us to visualise the relation between units and thereby to have a

new set of categories of analysis (constituted by the combination of two or three of

the categories defined in the systemic network).

The second analysis, presented in section 6.3, was about the different degrees of

participation of each member of the development team in the sequences found in the

first analysis (the new set of categories of analysis). That is, given the most frequent

sequences, this analysis allowed us to see who were the authors of these sequences

and with what frequency. This analysis was aimed at understanding what units did

each MDT relate during the design process and thereby to see what categories of the

systemic network did each of them relate.

In order to have a quantitative parameter to define a degree of significance of the

sequences found for each member, the probability of each sequence was calculated

and compared to each MDT's probability for each sequence. This, because the number

of units shown in table 6.1 allow the possibility that sequences were found by chance,

that is, that a certain sequence was found simply because the units appeared in the

data so many times that the probability of combining these units was higher than

combing other units. Therefore the analysis is focused on those sequences that, having

a low probability to happen, did came up in the data. The calculation of the

probability for each unit in the data, for each sequence found and the expected

probability for all units is presented in Appendix A.2.

As complementary infoimation, Appendix A.3 shows the detail of each sequence,

presenting the specific categories that composed each sequence. This detailed view is

useful to provide an insight into the particular patterns of the data.

In order to present this analysis, the categories of the systemic network were grouped

into their hierarchical branch (for example: 'Aim: Teacher-Software', is presented as

`Aim'). The reason for this simplification is to present the data in a more readable

format (the original analysis was done using the detailed categories and is presented

in Appendix A.3). The names of the groups of categories that are used in this chapter

are presented in table 6.2

111

Category of the systemic network Name given to the group of
categories

haracteristics of the software

ubject Areas at levels of abstraction: 'Abstract', 'Medium' or 'Concrete' Subject Areas
ontent Organisation at levels of abstraction: 'Abstract', 'Medium' or

Concrete'
Content Organisation

rowsmg at levels of abstraction: 'Abstract', 'Medium' or 'Concrete' Browsing
nteraction at levels of abstraction 'Abstract', 'Medium' or 'Concrete' Interaction
nterface Element at levels of abstraction 'Abstract', 'Medium' or
Concrete'

Interface Element

ser

eacher, Pupil or Group User
im

eacher or Pupil, for the Software or Computer Aim
ctions

f the Teacher or Pupil, in the or individual, with the Software or Pupil Actions
caching Strategy

eedback or Style Teaching Strategy

Table 6.2. 	Names of the groups of categories

6.2. ANALYSIS PER CATEGORY OF SEQUENCE

At a general level these results showed that almost all of the sequences were combina-

tions of two units. For example: 'Interaction-Actions-Interaction' or 'Interaction-

Interaction-Actions' for 3-units-long sequences and 'Interaction-Actions-Interaction-

Actions-Actions' or 'Actions-Interaction-Actions-Interaction-Actions' for 5-units-

long sequences. That is, a combination of two different units (for example,

`Interaction' and 'Actions') that was repeated. Very few sequences composed of three

different units were found, and almost no sequences composed of four different units.

The next sections present the analysis of sequences composed of two different units

(section 6.2.1) and of three different units (section 6.2.2).

6.2.1 	Sequences involving two units

The most frequent units found consecutively forming a sequence were:

• 'Interface Element' and 'Interaction'
• 'Browsing' and 'Interface Element'
• 'Interaction' and 'Actions'
• 'Browsing' and 'Teaching Strategy'
• 'Subject Areas' and 'Content Organisation'
• 'Browsing and 'Content Organisation'
• 'Content Organisation' and 'Interface Element'
• 'Content Organisation' and 'Interaction'
• 'Aim' and 'User'
• 'Actions' (combinations of actions of the pupil individually or in the classroom)

112

Underlined are those sequences that based on the probability analysis seem likely to

be meaningful and not simply a result of high frequencies of units. The total number

of sequences found for each length of string was:

Sequences 	/ 	Length of string 3 4 5 6 7 8 9 Total 1/%*
Interface Element and Interaction 392 440 446 453 422 395 345 2893 3
Browsmg and Interface Element 191 184 158 146 140 127 103 1049 8
Interaction and Actions 185 153 150 147 135 132 129 1031 8
Browsing and Teaching Strategy 227 211 171 140 105 87 57 998
Subject Areas and Content Organisation 221 174 134 105 67 50 29 780 11
Browsing and Content Organisation 162 131 91 81 73 59 42 639 14
Content Organisation and Interface Element 91 70 66 65 55 52 46 445 19
Content Organisation and Interaction 143 96 53 42 36 34 20 424 20
Aim and User 73 56 38 29 16 12 0 224 39
Actions 59 39 24 17 12 6 0 157 55
Total 1744 1554 1331 1225 1061 954 771 8640

The number was calculated dividing the total number of sequences (8,640) by the total number of
sequences of the row. It represents the inverse of the percentage of each sequence (1/%).

Table 6.3. 	Total number of sequences involving two units.

Table 6.3 shows that the most frequent sequence involved the group of categories

`Interface Element' and 'Interaction'. These software characteristics appeared very

frequently together and accordingly to the probabilities analysis this can be attributed

to chance, in fact, these were the most frequently spoken units (they represent 50% of

all units), as was shown in Chapter V 'Participation Analysis'. Because these units

represent the most 'tangible' elements of the software that was designed, this

sequence could show that they were designing the elements of the interface (digital

images that appear in the screen) and the way in which these elements should be used

(functionality of these images) at the same time.

The second most frequent sequence involved the groups of categories 'Browsing' and

`Interface Element'. Again, accordingly to the probabilities analysis this result can be

attributed to chance. Nevertheless, it might indicate that they were designing the

images of the interface (pictures) and the order in which these images would be

visited (in this case browsing) simultaneously.

The third most frequent sequence involved the groups of categories 'Interaction' and

`Actions' (as it is shown in table A.3.1 of Appendix 3, the actions designed were of

the pupil interacting individually with the software). In this case they were designing

the actions that the pupil would be performing in front of the computer individually. It

should be noticed that due to the specific categories found in these units, this

sequence does not represent design activities related to the activity that the pupils

would carry on interacting with other pupils in the classroom.

113

The fourth most frequent sequence involved the groups of categories 'Browsing' and

`Teaching Strategy'. Considering the definitions of the categories in these groups, it

could be argued that this sequence represent design activities related to the

progression of the user through the contents. This is, while browsing in the software

the user would be actively searching for the next content and the software would

provide him/her with the next content.

The fifth most frequent sequence involved the groups of categories 'Subject Areas'

and 'Content Organisation'. The relation between these two units was not surprising

in so far it could be argued that the development team first defined the subjects and

then organised how they would fit together.

The sixth most frequent sequence involved the groups of categories 'Browsing' and

`Content Organisation'. In this case it could be argued that the development team was

designing the way in which the contents should be organised and visited by the user.

This sequence represents all the claims made about the way in which the contents

should be structured in order to be accessible for the user.

The seventh most frequent sequence involved the groups of categories 'Content

Organisation' and 'Interface Element'. Again, accordingly to the probabilities

analysis this sequence can be attributed to chance. Nevertheless, it could be

interpreted as evidence that they were designing the 'physical representation' of the

contents, that is how to organise and present them.

The eight most frequent sequence involved the groups of categories 'Content

Organisation' and 'Interactions'. Here it could be argued that they were designing the

actual use of the contents, relating the interaction possibilities and the content

structure. Nevertheless, accordingly to the probabilities analysis this sequence can be

attributed to chance

The ninth most frequent sequence involved the groups of categories 'Aim' and

`User'. This relation may indicate that they consider the user while designing the aims

of the software or computer. In fact, table A.3.6 (Appendix 3) shows that they mainly

combine the aims of the software for the teacher with the definition of the pupil as

user.

The last sequence found involved combinations of the group of categories 'Actions'.

This sequence was included here as a separate category due to its diversity. Table

A.3.7 (Appendix 3) shows that while speaking about actions, the development team

combined actions of pupils interacting with other pupils. They did not combine

114

actions that would involve the software as the target of interaction as they did in the

sequence involving the groups of categories 'Interaction' and 'Action'.

Looking at the sequences found at a more general level, it is possible to say that there

were mostly of the branch 'Characteristics of the software' like: 'Subject Areas' and

`Content Organisation'; and 'Browsing' and 'Content Organisation'. These are

sequences composed by groups of categories that have some degree of overlapping in

their definitions. In this sense, the fact that they appeared to be correlated shows some

internal consistency while coding. As mentioned, some other sequences like

`Interface Element' with 'Interaction', 'Browsing' with 'Interface Element' and

`Content Organisation' with 'Interface Element' could be explained by chance.

Sequences that relate groups of categories as 'Content Organisation' and 'Interaction',

`Interaction' and 'Actions', 'Aim' and 'User', 'Browsing' and 'Teaching Strategy'

are less obvious and constitute a matter of further analysis. These relations will be

analysed in the 'Discussion and Implications' chapter and it will be shown that they

share common characteristics that constitute the reason why they appear together in

this analysis.

Finally, it is interesting to note that they did not relate internal characteristics of the

software (such as the groups of categories: 'Subject Area', 'Interface Element',

`Browsing', etc.) with the groups of categories 'Aim' or 'User'. They separated this

more abstract design topics from the concrete ones (the actual piece of software).

As an attempt to visualise the relative closeness of the different units that are part of

the sequences in a different way, a 'distance index' was calculated. This corresponds

to the inverse of the percentage of each sequence (see * in table 6.3). This parameter

is presented in table 6.4 (only meaningful sequences are included).

Interaction Browsing Actions 'teaching
Strategy

Subject
Areas

Contents
Organis.

Aim User

Interaction 8

Browsing 9 14

Actions 8

'teaching Strategy 9

Subject Areas 11

Contents Orgams. 14 11

Aim 	39

User 39 	

Table 6.4. 	Distance matrix for pairs of units

115

The matrix presented in table 6.4, allows to appreciate the 'relatedness' of the

different groups of categories. It is possible to see that the group of categories

`Content Organisation', appears to be related to the groups of categories 'Browsing'

and 'Subject Area'. This matrix can also be represented in a web schemata, where the

link between two nodes represents the existence of a relation (i.e. a sequence

composed by these two groups of categories) and the distance between nodes shows

the relative frequency of the relation (i.e. the more frequently found together the

closer the nodes). For the matrix shown in table 6.4, the web is presented in figure

6.1.
Teaching
Strategy
	

Browsing

9

Interaction 	Actions

14
	 8

User

im 	39

Conten 	 Areas
Organisation

Figure 6.1. Web of relations between units

In this web the number of links starting from each group of categories (`Interaction',

`Actions', etc.) represents the frequency of appearance of this unit in the sequences.

Looking at this, it can be appreciated that the most connected group of categories is

`Content Organisation', which has three links to other groups of categories. These

links are rather long, meaning that the categories did not appear so frequently related

to the other concepts. Nevertheless it shows the 'centrality' of the task of organising

the contents during the development process.

Secondly, the groups of categories 'Browsing' and 'Interaction' show two links each.

These links are rather short, particularly the ones between the groups of categories

`Interaction' with 'Action' and 'Browsing' with 'Teaching Strategy'. This represents

the fact that these groups of categories were very frequently related to each other

during the development process. Lastly, it is possible to appreciate that the groups of

categories 'Actions', 'Subject Areas' and 'Teaching Strategy' have only one link, this

is, they are end-nodes of the relation web.

11 	Subject

116

6.2.2 	Sequences involving three units

The most frequent units found combining three different units were:

• 'Interaction', 'Subject Areas' and 'Actions'

• 'Browsing, 'Subject Areas' and 'Content Organisation'

• 'Subject Areas', ' Interface Element' and 'Interaction'

• 'Interface Element', 'Subject Areas' and 'Content Organisation'

• 'Interaction', 'Aim' and 'Teaching Strategy'

• 'Content Organisation', 'Aim' and 'Actions'

Underlined are those sequences that were meaningfully based on the probabilities

analysis (Appendix A.2). The total number of these sequences found for each length

of strings is presented in table 6.5.

The first thing to be noticed is that the number of sequences found in this case is

much lower than in the previous one (table 6.3, two units sequences). This fact shows

something about the nature of the interaction during the development process. That is,

the conversations during the development process were much more focused in

designing two different elements of the software, rather than relating three or more

different elements.

Sequences 	/ 	Length of strings 3 4 5 6 7 8 9 Tot. 1/%
Interaction, Subject Areas and Actions 5 24 29 5 0 0 0 63 2
Browsing, Subject Areas and Organisation 8 4 4 4 4 4 4 32 4
Subject Areas, Interface Element and Interaction 23 0 0 0 0 0 0 23 6
Interface Element, Subject Areas and Organisation 8 0 0 0 0 0 0 8 18
Interaction, Aim and Teaching Strategy 8 0 0 0 0 0 0 8 18
Organisation, Aim and Actions 8 0 0 0 0 0 0 8 18
Total 60 28 33 9 4 4 4 142
The number was calculated dividing the total number of sequences (142) by the total number

of sequences of the row. It represents the inverse of the percentage of each sequence (11%)

Table 6.5. 	Total number of sequences involving three units

The most frequent sequence involves the groups of categories 'Interaction', 'Subject

Areas', and 'Actions'. It is possible to argue that the development team was designing

the way in which the user should work with the software, considering the subject

areas as the framework for designing these activities. It could perhaps also be

suggested that they were designing content driven activities for the user. If this

sequence is related with the ones involving two units only, it could be argued that this

sequence shows that they were defining the activities in the classroom (context) for

the user based on the subject areas.

117

The second sequence involves the groups of categories 'Browsing', 'Subject Areas'

and 'Content Organisation', but according to the probabilities analysis this sequence

can be attributed to chance. Nevertheless, it could be argued that in these sequences

they were organising the way in which the contents should be visited. It may reflect

that they were designing how to structure the contents and how this structure should

be accessed by the user, in this sense this sequence could be indicating a content

oriented design tendency.

The third sequence involves the groups of categories 'Subject Areas', 'Interface

Element' and 'Interaction' and as for the pervious one, accordingly to the

probabilities analysis this sequence can be attributed to chance. Nevertheless, it could

be interpreted as showing that in these sequences the development team was

designing how to represent and interact with the software based on its contents.

The last three sequences appeared only eight times during the development process

which is considered a rather low frequency, and therefore they will not be considered

in this analysis. Although the last two sequences were found meaningful in the

probabilities analysis due their low frequency it can not be argued that they would

have any important influence in the design process.

So far, the only three unit sequence that could be considered to have some influence

in the design process and that was found meaningful in the probabilities analysis was

the sequence containing the groups of categories 'Interaction', 'Subject Areas' and

`Actions'. In order to visualise the 'distance' between these units the infoiniation can

be presented using a double entry table, as shown in table 6.6.

Interaction Actions Subject Areas

Interaction 2 2

Actions 2 	 2

Subject Areas 2 2

Table 6.6. 	Distance matrix for pairs of units

As in table 6.4, the 'relatedness' of the different units can be seen. The possible web

that would represent this matrix would be an triangle of side 2. This finding

constitutes an extension of the relation between the groups of categories 'Interaction'

and 'Actions' found in the two unit long sequences (Section 6.2.1).

118

6.3 ANALYSIS PER MEMBER OF THE DEVELOPMENT TEAM

The analysis of the contribution of each member only includes the sequences that

were meaningful accordingly to the probabilities analysis (Appendix A.2).

6.3.1 	Two unit sequences

Table 6.7 presents the number of sequences of each member of the development team

in each sequence found.

Sequences of 2 different units TE TM PY SE Group Total
Interaction and Actions 262 433 0 334 2 1029
Browsing and Teaching Strategy 220 277 87 412 2 996
Subject Areas and Content Organisation 129 179 148 319 5 775
Browsing and Content Organisation 84 189 207 153 6 633
Ann and User 57 86 65 14 2 222
Actions 86 42 0 29 0 157
Total 838 1206 507 1261 17 3812

Table 6.7. 	Total number of sequences involving two units for each member of the

development team

In table 6.7 it is possible to see that there was a significant difference between the

number of sequences of Teacher M (TM) and the Software Engineer (SE) compared

to the sequences of the Psychologist (PY) and Teacher E (TE). This is consistent with

the findings of the previous Chapter 'Participation Analysis' in which they were

shown to have had similar participation profiles during the development process.

We present two different analyses, the first looking at the rows and showing the

relative participation of each member of the development team in each sequence, and

the second looking at the columns indicating the frequencies of the sequences.

• Row analysis

Table 6.8 presents the percentages based on the rows. The sequence involving the

groups of categories 'Interaction' and 'Actions' was used most often by Teacher M,

followed by the Software Engineer and Teacher E.

As discussed previously, this sequence contains the design of the pupil's interaction

with the computer and the fact that a teacher has the highest frequency here shows

that this part of the software design was influenced by Teacher M. This combination

of designing the interaction with the computer and the actions of the pupils defines

what occurs in the classroom, and so it is not surprising that 67% of these sequences

119

were spoken by one or the other teacher. The lack of participation of the Psychologist

here may indicate that he is not so much involved in defining what happens in the

classroom.

Sequences involving 2 different units 'FE Tivi PY SE Group Total
Interaction and Actions 25% 42% 0% 32% 0% 100%
Browsing and Teaching Strategy 22% 28% 9% 41% 0% 100%
Subject Areas and Content Organisation 17% 23% 19% 41% 1% 100%
Browsing and Content Organisation 13% 30% 33% 24% 1% 100%
Aim and User 26% 39% 29% 6% 1% 100%
Actions 55% 27% 0% 18% 0% 100%
Total 22% 32% 13% 33% 0%

Table 6.8. 	Relative frequency of participation of each member of the development

team in each sequence involving two units.

The sequence involving the groups of categories 'Browsing' and 'Teaching Strategy'

was used most often by the Software Engineer, followed by the teachers. The relative

`dominance' of the SE in the use of this sequence was not expected, in so far as the

design of a certain teaching strategy would seem to be more related to teachers'

expertise. However, the two teachers together do account for 50% of use of this

sequence.

The sequence involving the groups of categories 'Subject Areas' and 'Content

Organisation' was used most often by the Software Engineer, followed by Teacher M

and the Psychologist. Here, it might be expected that the teachers might play a greater

role in so far this sequence is very much related to 'curriculum' issues, but in fact, the

teachers only account for 40% of these sequences.

The sequence involving the groups of categories 'Browsing 'and 'Contents

Organisation' was used most often by the Psychologist, followed by Teacher M and

the Software Engineer. This sequence may be viewed as representing claims about the

structuring and accessibility of the contents and the fact that the Psychologist had the

highest participation here could be an indication of his concern with the way in which

the user would acquire these contents.

The sequence involving the groups of categories 'Aim' and 'User' was used most

often by Teacher M, followed by the Psychologist and Teacher E, this result is

consistent with the view that teachers would participate relatively more in the

definitions of 'non-technical' issues of the software. The low participation of the

Engineer in this sequence can be similarly interpreted.

120

The sequences involving the categories 'Actions' of the Pupil"Individually' or in

the 'Classroom' were used most often by Teacher E followed by Teacher M, which

may reflect a focus on defining what should pupils do during the lesson.

• Column analysis

The table of percentages based on the rows is shown in table 6.9. The Group shows its

highest frequency of participation in the sequence involving the groups of categories

`Browsing' and 'Content Organisation' followed by the sequence involving the group

of categories 'Subject Areas' and 'Content Organisation'. This could be taken as

indicating that they were engaged in discussing these issues together as a group.

Sequences involving 2 different units TE TM PY SE Group Total
Interaction and Actions 31% 36% 0% 26% 12% 27%
Browsing and Teaching Strategy 26% 23% 17% 33% 12% 26%
Subject Areas and Content Orgamsation 15% 15% 29% 25% 29% 20%
Browsing and Content Organisation 10% 16% 41% 12% 35% 17%
Aim and User 7% 7% 13% 1% 12% 6%
Actions 10% 3% 0% 2% 0% 4%
Total 100% 100% 100% 100% 100% 100%

Table 6.9. 	Relative frequency of participation of each member of the development

team in all sequences involving two units

Teacher E, as well as Teacher M, show their highest level of use in the sequence

involving the groups of categories 'Interaction' and 'Actions'. Their priority then

appears to be to define the activities that will be carried on in front of the computer.

Both have their second highest participation in the sequence involving the groups of

categories 'Browsing' and 'Teaching Strategy' which may reflect their concern with

the design of the strategies associated to the pupil's interaction with the software

(eventually the pedagogy embedded in the software).

Teacher E shows a higher level of use of the sequence involving the groups of

categories 'Subject Area' and 'Content Organisation' and Teacher M has her third

highest level of use for the sequence involving the groups of categories 'Browsing'

and 'Content Organisation'. These two sequences are linked by the group of

categories 'Content Organisation' and while the former relates it with the subjects to

be taught the latter relates it with the navigation through these contents.

The Psychologist shows his highest level of use of the sequence involving the groups

of categories 'Browsing' and 'Content Organisation', followed by the sequence

involving the groups of categories 'Subject Areas' and 'Content Organisation'.

Because these two sequences share the group of categories 'Content Organisation', it

could be argued that he was designing the way specific content should be organised

121

Sequences Ili TM PY SE Group Total
Interaction, Subject Areas and Actions 0 0 26 37 0 63

and visited by the user. Also, he has zero participation in the sequences involving the

groups of categories 'Interaction' and 'Actions' and the sequence involving group of

categories 'Actions' alone, which may imply that he was not interested in designing

the 'learning' activities of the pupils.

The Software Engineer shows his highest level of use of the sequence involving the

groups of categories 'Browsing' and 'Teaching Strategy', followed by the groups of

categories 'Interaction' and 'Actions' and also by the groups of categories 'Subject

Areas' and 'Content Organisation'. This distribution may indicate that rather than

showing any preferred domain of design he was simply responding to other member's

propositions.

6.3.2 	Three unit sequences

Table 6.10 below presents the number of three unit long sequence spoken by each

member of the development team.

Table 6.10. Total number of sequences involving three units for each member of

the development team

In this table it is possible to see that the sequence involving the groups of categories

`Interaction', 'Subject Areas' and 'Actions' was spoken by Teacher M and the

Software Engineer only. This result could show that these two members engaged in a

discussion defining the activities that would be carried on with the software, in so far

they relate those to the subjects to be taught.

6.4. 	CONCLUSIONS

Conclusions drawn from this analysis are mostly based on the two units sequences

found. The reason is that the frequency of the three units long sequences is not

enough for drawing conclusions. The conclusions are:

• Members of the development team combined units frequently. These sequences

were mainly composed of two different units and only a few sequences were

composed of three units. This result shows that the interaction between members

of the development team was characterised by 'long' or repeated iterations

considering two different dimensions of the software, rather than combining three

or more dimensions in one discussion.

122

• The sequences found were mostly combinations of groups of categories of the

branch 'Characteristics of the software'. There were two exceptions:

i) The units involving the group of categories 'Actions', which were combined

with the units involving the group of categories 'Interaction'. This result could

be attributed to the operational definition of these units. Nevertheless, while

analysing the specific categories that were spoken (table A.3.1 in appendix

A.3), it would seem likely that the development team were designing the

actions for the pupil interacting individually with the software, which implies

that they were designing the software interaction thinking about the pupil as

the only user. This supports the view that the development team thought about

the software as a self-learning site (Olson, 1992) or as a rehearsal tool, and did

not visualise the software as teaching centred (Hinostroza, Mellar, Rehbein,

Hepp, & Preston, 1997).

ii) The units involving the group of categories 'Teaching Strategy' that were

combined with the group of categories 'Browsing'. This combination might be

an indication that they considered that the activity of browsing with the

software was closely related to some teaching roles. The rationale behind this

assumption is that browsing is the activity by which users looks for new

contents and while doing this they are guided by the computer. In the

classroom context this would correspond to the exchange routines described

by Leinhardt, et al., (1987), that is, the way teachers enter into dialogue with

the pupils, the way teachers pose questions to the students or give feedback to

them.

• The three unit long sequences found show that the development team designed the

software combining the group of categories 'Subject Areas' with the groups of

categories 'Actions' and 'Interactions' mainly of the pupils individually with the

software. This could be interpreted as indicating that they designed the pupil's

activities focusing on the contents and thinking about 'self-directed' work.

Because this is a common practice of teachers' classroom activities design (Olson,

1992), it would not be surprising if they did indeed transfer this model of

preparing a class to the design of this particular software.

• The group of categories 'Content Organisation' seemed to have a relation with the

groups of categories 'Subject Areas' and 'Browsing', in so far it was found that

this group of categories was frequently close to the other ones. This could show

that the organisation of the contents to be taught has influence in several other

123

dimensions of a lesson design, such as the way in which teachers organise their

teaching (Hammersley, (1990) describes similar activities in normal classroom

teaching).

• The fact that very few sequences were found that combined groups of categories

like 'Aims', 'User', 'Actions' (of the teacher), with groups of categories such as

`Subject Areas', 'Interface Element', etc. (the exception are some three units long

sequences) may indicate that the development team did not relate these design

elements with the specific characteristics of the software. They did not relate the

learning aims and purposes of the technology with what should be done in the

classroom with the software. In other words, their design was focused either on

the pupil's learning a specific content while interacting with the computer.

There are several other types of analysis that could be done with these data, for

example, the levels of abstractions in which they interact or the length of cycles of

iteration for each sequence. But for the purpose of understanding teachers' concepts of

educational software, they do not appear to be so relevant.

124

VII. CONTENTS ANALYSIS

	

7.1. 	INTRODUCTION

As discussed in the Methodology chapter (section 3.4.3) the analysis presented here

was aimed at understanding the meanings of what the Members of the Development

Team said during the software development process. Although all units were

analysed, the focus was on the teachers' expressions about the different dimensions of

the piece of software developed, rather than on the expressions of the other members

of the development team. The need for such an analysis arises from the very purposes

of this research, i.e. to understand teachers' conceptions of educational software. This

constitutes the main analysis and which is supported by the previous analyses of

chapters 5 and 6.

In order to facilitate the understanding of this chapter, the following section provides

an overview of the contents (section 7.2.1), the development process (section 7.2.2)

and of the piece of software developed (7.2.3). Then, sections 7.3 to 7.7 present the

detailed contents of each category defined in the systemic network.

7.2. CONTEXTUAL INFORMATION

	

7.2.1 	Summary of the contents

The number of units analysed in each category was presented in table 3.4. As a

reminder, table 7.1 presents the same information, but grouping the categories into

their hierarchical branches of the systemic network.

Groups of categories Units
Characteristics of the Software 583

Subject Areas 71
Content Organisation 108
Browsing 104
Interaction 173
Interface Element 123

User 57
Pedagogic Issues 208

Aim 77
Actions 79
Teaching Strategy 52

Total 848

Table 7.1. 	Groups of categories and number of units spoken

125

This means that 71 units were classified as the group speaking about the group of

categories 'Subject Areas' (including 'Subject Areas-Abstract', 'Subject Areas-

Medium' and 'Subject Areas-Concrete'), and 108 about the group of categories

`Browsing' and so on. Each of these units could be a single assertion of one member

of the development team or a several page dialogue where they defined some specific

aspect of the software.

The general ideas that were discussed during the development process corresponding

to each category are:

`Subject Area': After exploring several ideas about the subject area of the

software at an abstract level of abstraction, they decided that it would be about

`basic skills' and at a medium level of abstraction they decided that this subject

would be embedded into a playful story that children would 'read' (follow) while

doing exercises. At a concrete level of abstraction the particular contents of each

screen (exercises) were then adapted from a text book.

`Content Organisation': In this group of categories all members of the

development team had different views on the way in which the contents should be

organised in the software. At an abstract level of abstraction, the main difference

was that the teachers organised it focusing on the different degrees of difficulty of

the software's contents, rather than on the specific subjects or school grades as

proposed by the Software Engineer and Psychologist. At a medium level of

abstraction the teachers proposed organising it as a matrix, while the other

members of the development team proposed organising it following a tree-like

structure. The teachers' arguments for this organisation was that it should be based

on pupils' progress (levels of difficulty). The Software Engineer and Psychologist

proposed an organisation based on subject areas and grades (therefore a tree-like

structure). At a concrete level they decided the number and order of the contents

in each screen of the software.

`Browsing': The general browsing possibilities were designed at an abstract level

of abstraction, the teachers proposed designing the progression strategy based on

achieved behaviour (different levels of difficulty) and the Software Engineer and

Psychologist proposed reviewing a specific subject at each time. At a medium

level of abstraction they discussed the different paths that pupils would follow in

the software. There was an interesting discussion between the teachers and the

other members of the development team about the end of the software versus the

end of the story. Teachers assumed that the end of the software was the end of the

story (the 'software' metaphor). The Software Engineer and Psychologist, on the

126

other hand, used 'end' to refer to the end of using the software, which sometimes

would be the end of the story but sometimes it would not (for example, if

somebody 'quits' while working through the story). At a concrete level of

abstraction they discussed about particular problems that could appear while

browsing, for example, whether it would be possible to see the same screen twice

or not. Also, they decided that the user should not know what would come next in

the software.

• 'Interaction': At an abstract level of abstraction they designed the 'spirit' of the

interaction with the software. Thev decided that the user should feel like the

protagonists of an adventure and therefore (s)he should be able to directly

manipulate the objects in the screen and have a dialogue with a special character

in the software. They placed the user outside the computer, that is, they rejected of

the idea of having the user inside the computer. At a medium level of abstraction

they designed sequences of questions (exercises prompted by the software),

answers by the user (actions) and feedback that the computer would give to the

user. At a concrete level of abstraction they designed the particular responses of

the software.

• 'Interface Element': At an abstract level of abstraction they designed the general

shape of the interface elements (colours, type of figures, etc.). At a medium level

of abstraction they designed the objects in each screen, such as backgrounds,

characters and several elements that were part of the scenarios in which the story

would happen. One particular element that they designed was the principal

character of the story, who would guide and tell the user what to do. At a concrete

level of abstraction they discussed the appearance of each element of each screen,

taking care that each should look like a 'real' element and should be similar to the

ones found in their neighbourhood.

• 'Actions': They designed the actions of the teacher so as to help the pupils to use

the software, solving technical problems and to keep the discipline and

management of the classroom. They rejected the idea of designing particular

interactions of the teacher with the software arguing that children should be able

to learn by themselves and that the teacher should guide them in this process of

solving computer related problems. They argued that in the computer lab teachers

would act as 'guides', whereas in the classroom they would teach the subjects.

They did not consider scaffolding, tutoring or coaching to be part of their role in

the computer lab. They described the pupils' actions as rehearsing while

answering the questions prompted by the software, and they did not explicitly

design any other type of actions. They believed that due to the playful interaction

127

designed in the software pupils would not realise that they were learning. They

talked about group work and pupils interacting with each other but they did not

incorporate these ideas into the software design.

• 'Aim': They expressed the idea that the aim of the software for the teacher was to

save time, this is, due to its multimedia capacity the class could go through the

contents much faster because the computer was used as a rehearsal tool. The aim

of the computer for the teacher was defined as both, a teaching resource and a

control tool due its motivational power. That is, a stimulus that they use as a

resource that engages children in learning. They said that the aim of the software

for the pupils was as a game, that while engaging in a playful interaction children

would not realise that they were 'learning' or rehearsing. They said that the

computer was a rehearsal tool that could serve as a complement to what is taught

in the classroom.

• 'User': They described the user as a child of age 4 to 6 attending the early school

levels. They described the children as socially deprived and with several

behavioural problems. They did not describe the teacher as user of the software.

• 'Teaching Strategy': They spoke about teaching strategies while designing the

feedback that the software should give to the user's wrong answers, and while

designing the criteria by which the user would be able to jump to a higher level of

difficulty, and also while considering the case of users misbehaviour in the

classroom.

In order to give support to the results presented, there are several transcripts included

that illustrate what is said about the different ideas and concepts that teachers have

about educational software16. The protagonists of these transcripts are: 'TM' and `TE'

who are the two teachers involved in this study (i.e. Teacher M and Teacher E), 'SE'

who is the Software Engineer, `PY' who is the Psychologist and `GD' who is the

Graphic Designer who participated in the process only from session fourteen onwards

(out of nineteen). Also in some dialogues some input from the researcher (`RE') is

included.

Some ideas were elaborated through extensive dialogues, which sometimes lasted

several sessions (not continuous), where they repeatedly addressed the same point,

but they did not express the complete idea in one dialogue. This type of interaction

16 In order to present the dialogues in a more readable format the gender of the pupils was translated as
male. This does not mean that they referred always to male pupils, in Spanish some expressions do not
distinguish between genders.

128

can only be understood by reading through several pages of disconnected dialogues.

Although these type of dialogues are not included as transcripts, the conclusions of

such processes are summarised.

7.2.2 	Overview of the development process

As mentioned, the development process lasted 19 sessions and in each of these

sessions, several different categories were discussed. Figure 7.1 presents a graph of

the relative percentage of each group of categories spoken in each session.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

• Subject Area 	II Content Organisation • Browsing

El interaction 	• Interface Elements 	• User

• Aims 	 • Actions 	 • Teaching Strategy

Figure 7.1. Categories spoken in each development session

Figure 7.1 shows that during the first five sessions the development team spoke

mainly about aims and something about actions and the users (i.e. data in the groups

of categories 'Aim', 'Actions' and 'User' respectively). Then, in sessions 6 to 10 the

predominant topics were about the content's organisation, the browsing strategies and

actions (i.e. data in the groups of categories 'Content Organisation', 'Browsing' and

`Actions' respectively). From session 10 to 19 the tendency was to speak more about

the interaction with the software and the human-computer interface elements (i.e. data

129

in the groups of categories 'Interaction' and 'Interface Element' respectively). It can

also be noticed that during the complete development process topics like subject area

and teaching strategy were continuously spoken about (i.e. data in the groups of

categories 'Subject Area' and 'Teaching Strategy' respectively).

In general terms, it could be argued that the distribution of topics across the sessions

corresponds to a 'normal' pattern while developing software (for example, see the

method described by Hinostroza, et al., 1996). They started by defining the general

issues about the software, presenting examples and alternatives about possible

products and discussing the possible subject areas to be included. Then, after defining

the subject area and the target user, they focused on the definition of the structure of

the software, organising the contents and, sketching the possible actions of the user

and the browsing possibilities. After these characteristics were defined, they started to

design the interface and particular functionality of the software. During the last 9

sessions, a prototype of the software was presented and analysed, and so, they focused

on designing the human-computer interface elements and interactions of the user with

the software. So, at a general, level the development process shown in figure 7.1

follows the stages described in some models of software development (for example

the Revised Waterfall Model described in section 2.3.1). Nevertheless, there are a

number of 'anomalies' that can be observed, for example:

• The development team started to discuss the browsing strategy of the software

almost from session one (data in the group of categories 'Browsing'). Whereas it

would have been expected that this characteristic would have been defined and

agreed during some later stage of the development process. This could be an

indication of the importance given to this characteristic of the software, in so far

as it contains the way in which the user will navigate through the software, and in

a sense, will follow the lesson.

• The discussion about the subject areas and its organisation occurs in almost all the

sessions of the development process (data in the groups of categories 'Subject

Area' and 'Content Organisation' respectively). It could have been expected that

these topics of discussion would have been defined and agreed during some early

stage, without requiring further discussion.

• The discussions about the human computer interface elements of the software and

the interaction with them occurred mainly during the last sessions of the

development process (data in the groups of categories 'Interface Elements' and

`Interaction' respectively). It could have been expected that, for example, the

human computer interface elements would have been discussed earlier on.

130

This evidence illustrates the complexity associated with the software development

process in so far as it shows the recurrence of some topics and thereby the eventual

difficulty associated with defining them.

Finally, this way of presenting a software development process constitutes an

interesting source for further research in so far it shows the range of topics discussed

at each stage of the development process and could well be used to change and refine

the development process, for example, by recommending a more focused discussion

of the participants at each stage of the process.

7.2.3 	Overview of the software developed

The software starts by presenting an animated introduction where the user is guided

from the street into a house and ends in his/her bedroom. In this room the user is

supposed to select one of three places to go: a farm, a neighbourhood and a school.

Each of these choices is supposed to 'transport' the user into a particular story, a

`fantasy' world in which the user is asked to solve problems and answer questions.

The general shape of these scenarios is illustrated by some screen shots of the story in

the scenario of the farm (figure 7.2). In the first screen (left to right) the user is asked

to identify from which volcano is emitting smoke (click on the volcano) and then to

click on the open window of the house. After successfully finishing these exercises

the user is presented with another screen, that represents the next scenario in the farm

(second screen). The type of exercises in the second screen vary in complexity. In this

case the user is asked to click on the yellow flowers, then the red ones and so on. If

the user does not correctly answer all the questions then the software presents a

different scenario (still in the farm) that asks him to do exercises that are at a similar

level of complexity as the ones in the first screen, but of different type.

Figure 7.2. Example of three screens of the software

131

The third screen shows this option, where the user is asked to drag the apples from the

tree into the basket. This last exercise is supposed to have a lower degree of difficulty,

in that the concepts 'in' and 'out' should be known by the user (since they has already

been rehearsed).

In the following sections, the ideas developed in each category of the systemic

network are presented, including examples of the relevant dialogues.

7.3. CHARACTERISTICS OF THE SOFTWARE

This group of categories correspond to the data that were coded as descriptions of the

software engineering components of the software. In order to present the data, this

section is organised presenting each characteristic of the software at each level of

abstraction defined.

7.3.1 	Subject Areas - Abstract

At an abstract level, teachers defined the subject of the software to be about 'basic

skills', that is, about a curriculum subject of the initial school levels. This choice was

a result of five sessions of discussions, where they started to think about cross-

curriculum contents for the software that could be useful for the first eight years of

school, ending up with one curricular subject for the first two years of school. This

section will show how these teachers decided on the subject area of the software, that

is, the process of convergence and their final decision about the general subject area

of the software.

• Process of convergence

The teachers started defining the subject avoiding references to the level of the pupils

or to curriculum subjects, their goal was to develop a 'source of general information'.

The reason for this, as they said, was that they had pupils that were already using

sources of information in other grades. For example, in session 2 they said:

TE: That's why the idea is to do something with different subjects and groups was good.

That is, in essence, that allows you to rehearse some topics like general culture. Not

necessarily to enclose them into a subject based structure, but as more general topics.

That is, suddenly, topics more for everyone also, that is, that they are useful from the

third grade upwards, or neither so, so, <thinking>. Like when you are looking for some

information and you need to browse the third's year book, or the fourth's one ore the

fifth's one

132

TM: Yes, and this is happening [now in the school]

TE: And it is happening, you need everything [all the subjects]

TM: It is happening definitively. Say, today there was a work of the eighth level to investigate

about flowers and animals of the ninth region

TE: And you need to look for [sources of information] to get around

TM: then, I said to them [to the pupils], take the third level book for natural sciences and

onwards. And we started to browse the book and you know, almost everything was

there.

In this dialogue teachers are saying that the topic of the software should not be

restricted to a specific school grade, rather it should be useful for all grades ("from

third grade upwards"). Apparently, this idea was a consequence of their experience

("it is happening") and they thought that the software could have provided this type of

information source.

Later on, in Session 5, TM expressed what she now wanted to develop, which had

changed from her original ideas. She said:

TM: Because the idea, I suppose, is that we stimulate basic skills with things. That is, that

we have clear which are the basic skills [in general] and which are the basic skills that

we want to develop; and, for example, which activities could be done to develop them,

true ? Which could be different from the ones that the teachers are already using .

Compared to the previous dialogue, TM is now clear about what the subject of the

software should be, that is, basic skills, which is part of the curricular aims of the

initial levels of the school.

• The definition of the subject area

Finally, in Session 6, they started to define the contents of the software. TE gave

examples about the type of basic skills that she would like to include, she said:

TE: I think that if one writes [a piece of software], for example, with really all the subjects of

Kindergarten or [taught] in Kindergarten or not in Kindergarten, I mean, forget about

Kinder, [lets say] first and second [grade]. If one writes a piece of software correctly for

basic skills, there shouldn't be a lesson for it, because there is the writing [to be taught],

you can do the initial sounds, the finals ones, you can work with words that start with A,

show the letter. You can do a lot of things, and everything will be in the area of basic

skills.

PY: Mh

133

TE: OK, then I say: why write [a piece of software], something apart for second and first

grade, why not consolidate this and go deeper in it. That is, I am not sure if I made my

self clear, I mean making like levels, that is to make levels or something.

<silence>

TM: And not get into the letters section [of the software]

TE: No, yes, but inside all, that is, inside where sensory motor co-ordination is. For

example, [basic skills concerning] everything that is visual discrimination OK, auditory

discrimination OK, where the computer says 'Ala' (wing) for example and it shows an 'A'

and tells him 'A', there we have auditory discrimination, isn't it true ?

PY: Mh

TE: And also, visually the child is discriminating, and at the same time, for example, say

[that] he is in grade 2 and he can use the keyboard, true? or in grade 1. He can already

use the keyboard, and he could do more letters with 'A', I don't know, ..., that ... it

contains all about vocals first, but inside the discrimination exercises, inside sensory

motor co-ordination, inside the same [type of basic] skills. That is, that's what I mean.

In this dialogue TE was proposing a certain set of contents for the software that she

automatically related to the school grades ("for Transition") but she tried to avoid the

reference to the school level ("forget about ..."). Also, she was trying to express the

need for having 'deeper' contents in the software ("that is to make levels or

something") and to relate the subject with specific contents, like learning to read as

the same time as developing basic skills. In this sense, she was looking for a piece of

software that integrates different learning aims, but restricted to a specific school

grade.

In a different sense, this shows that she had an `ideaware' in mind (as described by

Olson, 1988) and that she was trying to explain it to the other members of the group.

The way in which she did this was by giving examples of the type of exercises that

could be developed and in doing this, she was already designing the model of the

software's interaction (exercising) and the user's actions (responding to the computer's

prompting).

7.3.2 	Subject Areas - Medium

At this level of abstraction, they designed the contents of the particular piece of

software and they separated the curriculum related contents from the 'contents' of the

software itself. That is, a playful story that they used as a metaphor to present (or

deliver) the curriculum related contents.

134

• The metaphor

They designed a story as a metaphor, that would provide the framework where the

user was supposed to exercise basic skills, interacting with elements of the different

scenes. The specific dialogues where they developed this idea were in Session 5:

TM: Hey, and what if we invent a story, and the child develops basic skills through the

narrative of the story ?

TE: Too much summarised, go on, I do not understand.

RE: How ?

TM: For example, the little Red Riding Hood, and there she goes [to visit her grandmother],

because almost all children know little Red Riding Hood, then he [the user] has to put

apples into the basket [of little Red Riding Hood], and she goes walking to her grand

mother's house, and she goes into the house.

In this dialogue TM proposed the core idea of the software, which was that the pupils

would be developing exercises through a story. Then she gave an example to clarify

the concept: the story was about "little red riding hood going to visit her

grandmother" and the exercise was: "then he has to put apples into the basket". She

assumed that in doing this, the pupil would be rehearsing the concepts 'in' and 'out'.

The idea just presented by TM was not accepted immediately and in Session 6 they

continued arguing about it, but this time the Software Engineer took the control of the

argument, he said:

SE: Sure, if we choose a story

PY: Mh

SE: This idea, did you like it or not ? That of doing all these rehearsals through a mask with

a story for example, that is something [known by the pupils]

TE: That all is camouflaged, but

SE: Clear, that it is, that it should be something more motivating than telling the child: "take

this Apple and put it into the basket", for example.

TE: And after that he does something like

SE: Doing [Presenting] him a story

TE: Sure, because this [,the direct instructions,] would be like, doing like separate things,

and I think that it would be like

SE: Too classic

TE: Like too classic, too

SE: Classic

135

TE: Scholastic, in this way too scholastic, or too, [for example:] here do a labyrinth, there do

that, that is

SE: Sure

TE: It would be rehearsing exactly the skills but it would be too [instructional], OK [the story

is] more motivating.

SE: It is like making him start.

TE: To bring him inside a story or inside of [a fantasy]

At the beginning of the dialogue the Software Engineer presented the idea to the

teachers and then he justified the use of a story using a counter example (to give

direct instructions like "put this thing there") and arguing that a story would be more

motivating for the pupils. TE agreed and said that in the other way (direct

instructions), it would be similar to typical classroom activities, where the teacher

gives such instructions. This image of the teacher giving instructions shows some of

the stereotypes she had about 'traditional' teaching . This can be related to Olson

(1988)'s arguments about the computer serving as a Trojan horse to innovate. Then,

the reason why this teacher is willing to use the computer is because she is rejecting

the image of 'traditional' teaching.

After these discussions the idea of using a story to 'hide' the contents was accepted

and further developed. These type of decisions, as to create a story that engages the

pupil in a playful interaction with the computer, are described by Woods & Jeffrey,

(1996) as a common strategy used by primary teachers as a way to 'bring home' to

the child the contents of the curriculum.

7.3.3 	Subject Areas - Concrete

At this level they defined the specific basic skills that they would include in the

software. They defined the skills based on a book and in the meetings they simply

stated what could be and what could not be included. As a result the number of

dialogues coded in this level of abstraction were very few.

Because of the subject chosen, the role of the Psychologist at this level was much

more clear, he was the one that defined the specific skills to be exercised through the

software and designed the specific exercises to be included.

It is interesting to realise that in order to define the specific curriculum-related

contents of the software they relied on a textbook and the Psychologist. It could imply

that these teachers were aware of the strategies to teach (create the story and

interactions) and the content to teach was given by some one else (Official

136

Curriculum) and the learning strategies by yet another person (textbook and

Psychologist). This fact can be related to ideas about the craft knowledge of teachers,

which is oriented to technical and affective aims and to the goal of learning a given

set of contents, but not on defining those contents nor the learning strategies to be

implemented (Marton, 1994), in so far as they receive a curriculum already designed

by someone else, i.e. the Ministry of Educationu.

7.3.4 	Content Organisation - Abstract

At this level of abstraction, the teachers shared one view, which differed from that of

the Software Engineer and the Psychologist, about the basic criteria to organise the

subject areas. On the one hand, the Software Engineer and Psychologist tried to

define the different areas of the software based on the contents: the different

curriculum areas (Language, Maths, Science, etc.) or different areas of cross

curricular subjects (development of sensory motor co-ordination, visual perception,

etc.). On the other hand, the teachers tried to organise the information based on a

more 'dynamic' basis. That is, they organised the information considering its level of

difficulty and they showed an integrated view of the curriculum subjects (which was

consistent with their talk about the subject area of the software).

This section will present these different views, for example, in Session 2 the teachers

talked about the organisation of the contents based on different levels of difficulty,

which should not be based on the grades nor age of the users. They said:

TE: Now, it could also be done, I don't know. But this is to fall into [a curriculum-like

organisation], yes. If it is atypical, to fall into this, is like doing, like levels, as levels are

made of degrees of difficulty, something like that ?

SE: OK, yes

TM: Not of grades, not to say of levels, [like] from this age to the other. Rather of, you

already played here, and now you can go to another level". It doesn't matter if you [the

user] are in third or fourth grade. That's it ?

TE: Yes, it could be so, or it could, I don't know, be with degrees of difficulty some times, I

don't know. Also, based on the scope of the subject.

TE started with the idea of organising the software based on levels of difficulty and

TM complemented this idea by saying that it should not be based on school grades

nor on the age of the pupils, rather, the organisation should enable the pupil to 'jump'

17 At least this was the situation in Chile at the time this research was carried out. In 1997 a new
strategy was developed by the Ministry of Education where schools will be able to design their own
curriculum, given a common framework of aims and contents that should be included.

137

to different levels of the software without restrictions imposed by the grade, with TE

adding only by the degrees of difficulty.

This way of organising the contents incorporated the user in its design, rather than

looking at the contents as a set of subjects that needed to be structured and presented

through the software, which was the way the Software Engineer and Psychologist

viewed the organisation.

The data suggests that the teachers' ideas were not understood by the Software

Engineer and the Psychologist and they continued designing the organisation of the

contents without realising their differences. In the next dialogue an example of this

situation is presented. In order to understand the dialogue this misunderstanding must

be kept in mind and also the fact that they seemed not to be aware of this. In order to

clarify the dialogue comments are included separating the main ideas. This dialogue

occurred in the same session as the previous one (i.e. Session 2):

TM: Then it would be complete. If the child can be alone in front of the software, and if he

also could have, should have. Look, that way, the chance, alone, [or] in teams, [to

browse] there downwards, [going through a] first phase, second, third, and there

downwards <gesture with the hand>.

PY: That is, the software starts immediately divided in two paths, in group and individual.

TM: OK.

PY: and then, it is divided into subjects, in subjects and these same subjects into levels

[grades].

SE: no, look, the topic should be shared there, based on the subject, we should see the way

to avoid repeating all the things [the subjects].

First, TM described an interaction with the software in which users would be playing

and advancing through phases of the software, referring to levels of difficulty like in a

video game. Then, the Psychologist expressing his agreement, said that the software

would be divided depending on the type of use (individually or in groups), implying a

separated set of contents in each case. After the agreement of TM, he continued

explaining the structure, now dividing it into subjects and each subject in levels. Until

here, it was possible to imagine the tree structure proposed by the Psychologist, where

divisions were made depending on choices like subject or grades. At the end the

Software Engineer argued that the subject should be shared, addressing the need to

repeat the contents in different areas (sections) of the software.

138

TM: Subject in levels [of difficulty], and the other things also are the levels and in each level

a subject. It could be.

SE: In each level [grade] one subject.

TE: No, look, one subject.

SE: Or the same subjects for each level [grade].

TM: Only one subject and that's it.

<noise>

SE: No, not in one level [grade], three subjects for example. But at the same time the three

subjects are deeper treated.

PY: For example, here the basic [subjects], here are Natural Science, Social Science, to

give an example. These are the most typical, Spanish, Maths and some arts, true?

TE: No, but not here.

<laugh>

TM: Don't curricularise me, don't curricularise me.

PY: It is because of the area, I don't know how to define the areas [of the curriculum], you

can define these better.

TM: Areas(?) of expression.

After this initial explanation given by the Psychologist, TM argued that the subjects

should be divided into levels, but also that in each level, there should be a subject.

Here she was talking about the degrees of difficulty and not about the levels of the

school (grades). Then the confusion persisted, on the one hand trying to organise

subjects in levels of the school (grades) and on the other hand trying to say that the

different levels (of difficulty) would contain different subjects. Afterwards, the

Psychologist tried to explain it using the idea of curriculum subjects, but TM refused

to identify the subjects on this basis and she changed to 'areas' that correspond to

cross curriculum contents, which, again, seemed not to be understood by the

Psychologist.

In these two examples, it would appear that teachers showed a more 'developmental'

view of the subject, in that while designing the organisation, they imagined the user

playing with the software, so they incorporated this dynamic dimension in the design.

The Software Engineer and the Psychologist on the other hand, had a more structural

view of it, they referred to subjects and levels for each subject, dividing the contents

into hierarchical categories.

Later on, in Session 6, TE expressed what she really wanted. She referred something

her colleague had said earlier and confirmed that they were talking about the same

organisation, which was to have a story where the pupils did not realise that there

were subjects, they would just be following a story. The dialogue was:

139

<first TE is saying that she and TM have similar approaches>

TE: You see, we can say perhaps completely different sentences. That is, she can say blue

and I red, but we know that, you see, that it is a matter of minimal approach. That it is

about details only, which would be, for example, I don't agree, I don't know if you

understood what I said to her. I don't agree in doing specific contents for 2° grade for 1°.

OK. I want only one story, that is what we want with TM. One story where you go

through, and there it isn't, there is a curriculum crossing, that you don't note that this is

[the subject] history. That, that's why the idea of SE is good, of doing a story, I like it, of

doing a story perhaps a piece of software that is done right in a story where you can

find, or I don't know, a story but where you can find the stages.

TE also said that they wanted to organise the information in a more integrated (cross

curricular) way and that they wanted the pupil to 'go through' the story and not have

separate 'chunks' of contents.

This 'breakdown' between the teachers, the Software Engineer and the Psychologist

throws light on the different ways of approaching the organisation of the contents of

the software. The teachers' way of organising the contents was closer to the

`traditional' way of organising lessons described by Hammersley (1990), that is to

say: "pitched at a certain level of 'difficulty' according to the co-ordinate position of

the class in relation to age and ability".

They wished to organise the contents so that the pupils could look for information

within different degrees of difficulty. The fact that they insisted in having degrees of

difficulty rather than sections of the subjects can be explained through this type of

lesson design.

7.3.5 	Content Organisation - Medium

The discussion at this level was about the way in which the different contents should

be organised in the software, that is how to structure the 'sequence' of the content in

the software. There were two interesting issues here, the first was related to the way in

which teachers organised the specific content of the software based on the progress of

the pupil while using the software. In this case, evidence was found of the different

teaching strategies used by the teachers. The second issue was about the two different

abstract organisations of the contents that came out from the design team.

140

• Sequence of contents

Related to different content organisation and keeping in mind the different points of

view on how to organise the contents (subject areas versus degree of difficulty), the

following dialogue presents the next level of detail. The dialogue occurred in Session

7, after defining the general idea of the way in which contents should be organised. In

the dialogue, TM exemplifies the way in which the user would follow the story and

thereby she designs the content organisation:

TM: Then I, my idea was that a story that starts with something, and we said that it was very

simple, and the child goes through <gesture expression Without problem'> OK?. And

there he does little things. Then, [he] goes on to the next page of the story, which has

different things, but [that are] related to the previous one, and he relates concepts that

are there, that were there [in the previous page]. He relates them, he has to remember

that he saw them, for example, OK. And [then,] we go to a third [page] and we keep

developing basic skills in this, that are rehearsed with these [exercises] and here I

present two or three new [concepts] that are rehearsed with [these exercises],

reinforcing those from there [previous page], let's say five, to say something, OK?. And

he finishes the story <while talking she was drawing the levels on a piece of paper >

PY: OK, the difficulty level would be ascending [while reading the story]

TM: Ascending, yes. But at the same time, reinforcing the previous [concepts] and

remembering things, for example, here there should be elements from there.

In this case TM proposed an organisation based on ascending degrees of difficulty,

but inside this general schemata she proposed to repeat the contents in different

`pages' of the software. That is, she was repeating part of the content in the next page

with the aim that the pupil would remember the previous contents and relate them to

the present ones.

Later on in the same session, TE expressed her view about the way in which the

contents should be organised. She described basically the same type of organisation,

but she changed some of the contents of each illustration, not including the previous

contents:

TE: It is for example, like TM says, I don't know if you thought the same, but I, for example,

TM says that a story that has like 6 or 7 illustrations [could be used], OK?, and that

each of these stories has like, like. What she apparently tried to say was that it should

[be designed for] one specific skill, the illustration [story]. Then, here, for example, we

can go deepening this [skill], you see, here with an increased level of difficulty, the

same as there [in the next illustration]. What was shown in the initial illustration [should

141

be followed], and here [in the next illustration] deeper [more difficult], because you can

graduate the same exercises in terms of difficulty. I don't know if you follow me SE.

And, for example, here, she said, here, we do another thing [exercise], a little more

difficult, also in this way, [similar as] that in the same time that the contents [were

presented]. Let's say that here it is discrimination or conservation OK? we are talking

about conservation, a very simple conservation here OK? For example, the body parts

that the child puts in order [of correspondence], disarranged and then he should

arrange them. There you have a conservation at the level of age 4 or 5. Afterwards, a

conservation, could be, the one about water, and then another one more complex, then,

but that here at the initial story, and that this could also be <she interrupts her

explanation>. That's why I said that at the end we could build like a story but well

structured, that is what I said, like a strong story.

Here, TE is arguing that each story would develop a different basic skill and that the

illustrations of each story should be organised based on increasing levels of difficulty

at each time. She used examples to illustrate her point. The difference of TE's

description from that of TM was in the reinforcing aspect. TM stressed the fact that

the pupil should be reinforcing the previous knowledge and TE said that the content

should evolve in terms of difficulty, and she did not include the reinforcing aspect.

This difference might appear to be rather insignificant, but it could reflect the

teaching strategy used by each teacher. TM is repeating the cycle of contents,

question and feedback described in the literature (for example by Hammersley, 1990),

whereas TE did not include the previous content in the next level of difficulty.

• General organisation of contents

The second issue here was related to the abstract organisation of the contents in the

software.

One screen of the

Start
	

.407 software

Areas
Skill 1
Level I

11,Di fficu lty

Skil I
Level 2

Skill
Level 3

Skill 2
Level I

Skill 2
Level 2

Skill 2
Level 3

Skill 3
Level 1

Sk11 3
Level 2

Skill 3
Level 3

Figure 7.3. 	Teachers' abstract organisation of the contents in the software.

142

Figure 7.3 represents how the teachers proposed that the content should be organised.

This is, they proposed that the content organisation should be like a matrix. The idea

was that the user could browse through the software following a story that is

composed by several illustrations (screens), each illustration would present exercises

about some particular skills at a particular level.

The specific dialogue where teachers proposed this structure was in Session 7, where

they said:

TE: If we do a story, for example. We, as we understand each other better <she refers to

the other teacher>, if we build a story, for example, with ten pages, in one we do visual

discrimination, in another language

TM: <interrupts> OK, perfect, good

TE: Then, but the story is the story, and downwards [,in a column of the matrix,] language is

being graduated, the discrimination is being graduated, it [the level of difficulty] is being

graduated

TM: OK, yes

TE: True ?

TM: Yes

PY: Suppose that in the second scene [,or column of the matrix,] we will see norms,

TE: To call it somehow

TM: Yes

PY: To call it somehow, in the third [column of the matrix] language, on the fourth whatever

it is

TM: OK.

TE is proposing developing a story that had increasing levels of difficulty

`downwards' (referring to the vertical axis of the matrix) and where the scenes of the

software are the different areas of the content of the subject (referring to the

horizontal axis of the matrix).

On the other hand, figure 7.4 presents how the Software Engineer and Psychologist

thought that the content should be organised. In this case the contents were organised

accordingly to the different school grades, then each grade was divided into the way

the software would be used (individual or group based activities) and finally the

different subjects and areas of each subject correspond to the leaves of the tree.

143

Individ
ual

Group Individ
ual

Group Individ
ual

Group

Topics and
subtopics

Topics and
subtopics

Topics and
subtopics

Topics and
subtopics

Topics and
subtopics

Topics and
subtopics

Figure 7.4. Software Engineer's and Psychologist s abstract organisation of the

contents in the software.

The following dialogue from Session 7, shows the discussion of both ideas, and the

decision to follow the teachers' proposition. In the dialogue, the Psychologist was

arguing that with their proposition the level of difficulty would be well organised,

because the pupils would be using the area of the software designed for them and so

they would be able to finish the story. TE argued that with their organisation pupils

would also finish the story because the same row of the matrix would be simple

enough to finish. The dialogue was :

PY: Then, that was the idea. And then so. Because, what happens with this, is that it

wouldn't have a deepening along the story, because if that were the case, if it had a

deepening along the story, it could happen that the child of Kindergarten, supposing,

would not be able to finish the story

TE: Yes

PY: On the other hand, if it is how we explained it, the level of requirement would be a little

less for the kids, then they could finish the story anyway

TE: OK, but anyway with ours he would also finish it [following the first row only], because in

the first illustration, OK, he would have simple things

TM: In our idea

SE: We are, yes we are exactly the same

TE: But, perhaps what you say is simpler. What we want is that, if the idea is present, yes,

what we want is that it [our idea] is present, that there is, for example, here [a simple

path to follow], so the kid could finish the story

PY: Anyway, that is, there wouldn't be a level of deepening along

TM: No,

SE: No, no, no, it is downwards.

PY: It would be always downwards.

TE: Yes.

144

SE: Ours is also downwards, but <he interrupts himself>

PY: No, because in the beginning you said that there would be an advancing.

TE: Eh, eh, in the story she said, but not in what will be taught as strategic in the story.

PY: That is, it wouldn't be more difficult across [the row].

TM: It will be changing

TE: Changing

As mentioned before, this difference in the way of organising the contents of the

software reveals some of these teachers' teaching strategies, the matrix based

structure enables the pupil to 'negotiate' with the computer at which level to interact,

in this sense it was closer to a style of teaching defined as 'Interactive' by Cooper &

McIntyre, (1995). In the other tree-like structure, the computer offers the pupils a

specific subject and level to be learned and in this sense it was closer to a style of

teaching defined as 'Reactive' by Cooper & McIntyre (1995) in which the pupil

decides where to go, without mediation of the 'teacher' (computer in this case).

Also, the argument in which they based the discussion about the organisation of the

contents reveals some of the teacher's craft knowledge, that is, they were concerned

about the affective outcome of the use of the software, "pupils should finish the story"

in order to avoid their eventual frustrations and to encourage their sense of

achievement (as Woods & Jeffrey 1996, describe that primary teachers do during their

normal lessons).

7.3.6 	Content Organisation - Concrete

At this level they discussed the way in which basic skills should be presented in each

screen of the software. They started organising the software so that in each screen

they included one basic skill to be developed, but then they realised that it was not

possible. The dialogue where they realised this occurred in Session 9, where TE

expressed her concern about being able to have only one basic skill per illustration.

She argued that normally the skills are evaluated in groups that belong to the same

area and not individually. The Psychologist seconded this idea arguing that one

isolated skill would not be enough to give the feeling of the story's context, therefore

it should be integrated in the story. The dialogue was:

TE: That is, at the beginning I saw this as, as very simple, as SE said. That is very logical,

here sensory motor co-ordination, here <she interrupts herself>. But then, after thinking

about a little, [I found that] here there is something that I couldn't understand you the

other day <telling it to PY>, that it is impossible to put things this way, that is, [one skill

per illustration]. That's why, that's why, I think that perhaps, I have the intuition, I am not

145

sure if it is so, I am inferring that perhaps, that's why they evaluate the kids like in

areas, because it is very difficult, it is too fine the separation [of basic skills] they do,

you see?

TM: That's why, teachers work integrating [all the skills], they do a 'salad', but they evaluate

[separating them].

TE: <interrupts> That's why, that's why we can't [separate them].

TM: To know where it is wrong and exercise it, build that

TE: That is, we would make a mistake if we develop [each skill] separately, you see? And in

some place, in fact the story is already integral, because the story will have to include

dialogue, it [will] have to include [different] elements.

PY: Sure, because that, exactly, that's the other point, we are working with, in relation to, a

story. That is, we are doing an activity which is relatively playful, in which we need to

integrate [different skills].

TE: <interrupts> We would need to produce the integration

PY: On the other hand, it is highly probable that, perhaps, we could reinforce a specific area

based on a particular illustration, but we would have to stick to it, and forget about the

context of the rest of the story.

The argument of TE in this dialogue was based on what teachers normally do in the

classroom, that is her colleagues' experience and she did not draw on theoretical

considerations. This suggests that TE was using her experience and practical

knowledge to contribute to the design rather than focusing on learning theories as

means-ends relations (as Marton 1994, reports that teachers do).

Later on, in Session 10, they discussed this issue again, but this time they gave dif-

ferent arguments to integrate many skills in one illustration. In these dialogues TE

highlighted the fact that the software would be different from text books or a mul-

timedia copy of them, because it would be integrated, and they (teachers) would be

able to choose which basic skills to work with and the pupils would be reinforcing

several skills in parallel. She complemented this argument by saying that this way of

presenting the exercise would be closer to 'real life'. The dialogue was:

TE: I think that the difference, for example, of all texts available, with what we will do, the

nice thing about our work, is that it wont be simple electronic illustrations with voice,

sound and colour. Ours will be something integrated where we will be able in each

basic skill [to] choose some categories with which we are interested to work, and with

which you can go into a software, because not in all of them you can, as TM and PY

said. Then, that's the nice thing about our software, because you will always be able to

integrate, perhaps in one illustration, you will be able to see two or three skills. What we

were talking about during the last session, for example, while giving one instruction

146

where we force the child to think, true ? That is, he will be using thinking skills, he will

be reinforcing the language, it will be happening, that is, the difference is that we would

be reinforcing something else.

TM: More complete.

TE: Sure, more of a total like kids' real life is really. That is, not illustration after illustration,

which is what we do in Kindergarten or in grade one, where children develop much

manual movement, true? and they fail, and it is hard for them to see the complete

scenario, because they start, exactly, working illustration after illustration, then, I

believe, that that's the nice thing and the innovative part that this work would have.

In the dialogue TE rejected what they normally did in the classroom, arguing that

because of the types of exercises pupils did, they failed to gain a broad view of the

subject. In this sense, she argues, the software would integrate different skills and

therefore would be closer to real life (out of school) experience.

Given the decision that they would include several basic skills in one illustration, the

next decision they faced was how many skills would be included in each illustration

and what kind or level of skills. They decided to include three to four per illustration

and that they should have an increasing level of difficulty, but they would be related

to each other, they would correspond to the same type of basic skill. The reason for

this selection as they said in Session 13, was: "it is not reasonable to teach to add,

multiply, subtract and divide in the same class, you need several sessions to do it. The

software ought to be the same".

Finally, they discussed how to give the instructions to the user. The choices were, to

give all instructions at once, that is, indicating the required exercises for all the skills

to be rehearsed in the screen, or to give instructions one at the time, before each

exercise. The choice made was to give separate instructions to the user, because each

of the exercises contained in one illustration would be about a different basic skill, so

it would not be appropriate to give them all at once.

With these final decisions they had already defined several dimensions of the content

organisation of the software, that is, the contents (basic skills), the software's

metaphor (set of illustrations linked by a story), the content of each illustration (or

screen) of the software and finally the dialogues with the user (in this case these were

instructions). If these elements were compared with the design of a book, there would

be only one difference, which is, the possibility of reading the story following

different paths depending on the user's performance. In this sense, the computer

would be reacting to the user's requirements and 'negotiating' the level of difficulty

with them.

147

7.3.7 	Browsing - Abstract

In this category the previous discussion about the way in which to organise the

contents was also present and they discussed the way in which the pupil should

progress through the software. To present this discussion there are only a few more

dialogues included, because the evidence presented in the previous section illustrated

this category as well.

As described above, the teachers decided that the browsing strategy should be

designed based on levels of difficulty and that the progress criteria should be based on

achieved behaviour (successful answer to a question or exercise). The Software

Engineer and Psychologist proposed to review a specific subject at each time. The

reason used by the teachers to argue this was that in one classroom children of similar

age have different levels of cognitive development, so, they should be able to browse

to reach different levels of the software. This idea was expressed in Session 4:

TE: That is, to call the levels so, because, to call it one for Kindergarten, other for grade

one, for grade two

TM: Sure, rather, [it should be] based on achieved behaviour

TE: By age rather than by maturity

TM: Rather than by chronological age. Because that's the problem we have, and also that

we have the children divided by chronological age which are not their cognitive age.

That is, they do not have the same level true? and you can clearly see this, there are

very immature children

TM: I like this level, that is, the little ones to stimulate basic skills and without levels [grades].

That is, like a game in which he ascends, it becomes a little more complicated each

time, and I wouldn't do it using levels of [depending on] grades, absolutely, rather for

the user group, say between ages 4 and 8 , that's what I would do.

TM argued that it should be based on 'achieved behaviour' rather than age, because,

she argues, their chronological age is not their cognitive age, so they would have

different achievements. Her argument is the same that Hammersley (1990) uses to

explain the reasons for the way teachers structure their lessons, he says:

This pre-setting is designed not only to ensure that pupils are taught
something 'new', that they 'keep moving', but also that they have the
resources to understand what the teacher is to teach.

(Hammersley 1990, p.47)

148

The Psychologist and the Software Engineer, on the other hand, proposed that the

user should browse through the different subjects and grades (these dialogues were

presented in the group of categories 'Contents Organisation' above).

This decision supports the arguments presented in the previous category, that is,

teachers were designing a mechanism in which the pupil and the computer would be

able to negotiate the level of difficulty while browsing, so pupils would have access

to the information that suits their needs.

Coherent with the previous arguments, the teachers suggested that the user should be

able to go directly to different sections of the software, using the same argument

about having pupils with different levels of development (knowledge) in the same

classroom and therefore pupils should be able to select their appropriate level of

difficulty.

7.3.8 Browsing - Medium

At this level the teachers, the Software Engineer and the Psychologist continued with

their different points of view on the way in which browsing should be designed. This

time they argued using concrete examples of what the software should present and

what the user should do there. In this category, teachers engaged in an additional

discussion with the Software Engineer and the Psychologist. This discussion was

related to the definition of the 'end' of the software.

• The browsing strategy

While discussing the browsing strategy, there was an additional issue that appeared at

this level of abstraction, based on a proposition made by the Software Engineer and

the Psychologist which the teachers did not understand. This was that the Engineer

and Psychologist proposed separating the software into two different sections, one

called 'learning' and the other called 'advancing'. In the former the pupils would be

learning different skills while doing exercises because the computer would tell them

the right answer if they did it wrong. In the latter the computer would not tell the

pupils the right answer, so they would need to go to the former section to learn it and

then return to the 'advancing' section to continue18.

18 The dialogues that illustrate this point are several pages long and are about the explanation of a
schemata that the Engineer and the Psychologist draw on the blackboard of the meeting room. So it is
not included.

149

Skill I
Level I

Skill 3 Skill 2 Skill I
Level 2 Level 2 Level 2

Skill 3 Skill 2
Level I Level I

Skill 2
Level 3

Skill 1
Level 3

Skill 2
Level 4

Skill 3
Level 3

This view of the browsing in the software separating the 'learning' from 'advancing'

separated the teaching into two dimensions, one with playful interaction, where pupils

used a game-like software and a second dimension where pupils would learn because

the computer tells them the right answer. The fact that these teachers did not

understand this point could be a consequence of their teaching experience in which

this division is meaningless. In fact, dialogues between teacher and the pupils follow

a different pattern, which is closer to having cycles of Question, Answer, Feedback

(as described by Hammersley, 1990), rather than presenting a set of questions and

then offering an explanation only if pupils do not give the right answer.

In later sessions the Software Engineer and the Psychologist changed the scheme to

match the teachers' expectations, proposing a structure with multiple browsing al-

ternatives, like the one showed in figure 7.5 (this structure was described and illus-

trated in Session 9).
Individual screens of
the software

Figure 7.5. Browsing structure of the software.

In this structure, users would be able to browse through different levels of difficulty

and skills, accordingly to their achievement. For example, if users could solve exer-

cises only at difficulty 'Level 1', then they would be able to see three illustrations

only (i.e. 'Skill l', 'Skill 2' and 'Skill 3' in row 'Level 1'). If users could solve all the

problems, then they would be able to browse through the ten illustrations.

From the teachers' point of view the rationale was that the user should be able to

browse through this story using different paths, but all of them should constitute a

coherent story. This illustrates the argument presented before: they were using their

knowledge about lesson design principles to implement the software, that is, the

timing of the lesson to enable all pupils finish the story and so that all of them could

reach an end, described by Woods & Jeffrey, (1996).

Stan

150

• The end of the software or of the story

Another issue at this level, was to define if the story would have an end or not. The

Psychologist explained the browsing path of the software and at one point he said

"and this is the end". The teachers disagreed with this claim, arguing that the story

should not have an end, so that pupils could imagine different endings. The point here

was that apparently, the Psychologist was speaking about the end of the software (at

some point the user should arrive to the last screen of the software, or simply quit

from it), but the teachers were speaking about the logical end of the story, not the end

of the software. This misunderstanding was resolved by deciding that the software

would have a set of situations that would be linked together by the context. This

linkage was designed in order to avoid the feeling of being lost in a set of

disconnected situations and it was supported using arguments about the classroom

experience of the pupils. The dialogues concerning the misunderstanding lasted

several sessions and they are difficult to understand if they are presented in pieces,

therefore they were not included here. The dialogue where they came to an agreement

occurred in Session 10, it is:

SE: Or it is not a key factor, [the one] about the child knowing where he is standing ?

Without knowing where he is in, or what he is doing ? That is more important than

knowing, say, where he is standing in the software.

TE: I think that that depends, we should see really in concrete what happens but

TM: I think that what will happen is that he will feel like strange because in general he is

accustomed to be confronted by structured situations with a start and an end.

SE: OK

TM: Then, perhaps this will provoke him, a, a, a [disorientation] yes, but I don't know if this

could be negative for the child

TM: To confront him/her with a new situation, that is, in general one says, OK here he

started, here is the middle, and here we end. Not this which is different

Here they started considering the pupils perception of the activity (they should know

where they are in the software) and they supposed that if they were in an disconnected

situation they would feel strange or lost, and therefore the story should be coherent

and have a start and an end (this is the argument of TM).

This separation of the path of the story from the path of the software highlights the

image that these teachers share while designing the software, and how it is different

from the ones of the Software Engineer and the Psychologist. Again, the teachers are

trying to design a complete and coherent activity for the pupil.

151

On the one hand, the teachers were thinking about the user in the classroom context,

they imagined the pupil browsing through the software and enjoying the experience.

On the other hand, the Software Engineer and the Psychologist were thinking about

the software as an artefact, as something that should be developed. These different

layers of software design were a consequence of their different professional

backgrounds and in fact, the teachers, brought their actual professional practice into

the design. The Psychologist and the Software Engineer designed at the layer of

developers, referring always to the particular software that they designed, ignoring the

vision of what would actual happen when the software was used in the classroom.

This situation is rather common while developing software and as Winograd, (1995)

points out, new environments for software design are needed that enable to share the

ideas and conceptions about the artefact that is being designed.

7.3.9 	Browsing - Concrete

At a concrete level they designed the browsing strategy through the different

illustrations of the software, they discussed the possibility of repeating one

illustration, that is, if the user would be allowed to go two times through the same

screen or not. For example, in Session 9 they discussed this possibility, arguing that if

screens were repeated, the user would not realise how to browse to a different screen.

The dialogue was:

PY: Yes, but as SE says it is not necessary. Because the idea, I was telling this only in

order to avoid repeating the same screen, and then, he would not know how to quit. OK.

I did this and how do I quit from here ?

TM: And if they want to play it again ?

The same decision with similar arguments was presented in other dialogues that is,

whether the user should pass or not through the same illustration twice (i.e. Sessions 9

and 11).

One discussion that lasted several sessions was about what happens if the user did one

or two exercises wrong in one illustration that had, for example, four exercises. The

decision here was about how should the software react? Two possibilities were

considered: leave the user at the same level of difficulty in a different area or progress

to the next level of difficulty. This question was addressed in the group of categories

`Teaching Strategy', because in order to decide it, they started to talk about teaching

strategies.

152

Another interesting issue here was the decision made by the teachers that the pupil

should not know what would happen next in the software, that is, they decided to

`hide' the strategy from the user. The following dialogue presents the discussion

when the Psychologist was exemplifying one scene of the software and said that at the

beginning of the software a character should tell the user what would happen next. TE

reacted to this proposition and argued that this character should motivate pupils to go

forward in the software, but it should not tell them what they would find next. The

dialogue was in Session 10:

PY: Look, here he will play in this thing [screen], and the little animal can speak this way,

this [a stone] can be moved here or there and can tell him all the story, that is, the

possibilities, or not?

TE: I think that no, I don't know to which extend you say 'tell', because, where is the fun if it

tells him beforehand what will happen

PY: No, no that it tells him the possibilities

TE: Here, I think that in this illustration where the elements are, there should be a friend, tell,

that is, tell, rather, inviting more than anything, in some way. Not tell him. That is,

motivating, that I think is what you want to say, or not?

TE: Motivation should be at the start, but motivation. That is, an invitation, something funny,

so that he engages to get into it. But not knowledge of what will happen.

As shown, TE reacted to the Psychologist's comment. First, expressing thoughts about

hiding what would come next and then expressing a conviction about it. Her

argument about providing motivation but not certainty of what would happen next,

could be understood as a teaching strategy described by Edwards & Mercer (1987) as:

"Never defining (for the children) the full agenda of any activity or lesson in

advance".

7.3.10 Interaction - Abstract

In this category, they defined the interaction style that the user would have with the

software. The teachers defined the metaphor that the software would present to the

user. The way in which they designed this metaphor presupposed an adventure for the

pupils, that is, they imagined what they would feel and think when they interacted

with the software. They used expressions like "they will feel like in a dream", "they

will go into the room", "they will be afraid". While designing this interaction they

placed the user as a protagonist of the story, creating a fantastic world where the

pupils would interact with the objects in it.

153

The decision about where to place the user was a choice between two options: inside

the computer or outside it. In the former the user would identify himself with one

character of the software. In the latter, the software would give the feeling that the

user is manipulating the elements of the software, in this case the screen would act as

an extension of the eyes, and the mouse pointer should act as the arm and hand of the

user. An example of the discussion is presented in the following dialogue of Session

14, where the Graphic Designer proposed that the user should be physically

represented inside the screen. TM argued against it, because the image of the

character would not, necessarily, resemble the user's appearance.

GD: Why not. In my opinion, one of the characters that you can see there should be the

pupil. That is, that the pupil sees himself coming in through the door, that they can see

the pupil watching, that is not like you say, that the pupil will be the user, he should be

the character.

SE: But there are scenes like.

TM: And what if I don't feel represented through the one that is there [in the screen] ? If I am,

for example, <referring to the PY> blond, thin and with white skin <whereas the PY has

dark hair and skin>.

After this argument they decided to place the user outside the computer, providing

enough visual stimulus so that the user would 'feel' manipulating the objects and

participating in the experience.

This design of the interaction could be interpreted by saying that these teachers were

"planning their teaching to include activities which would give children direct, con-

crete experience, and which would require them to act, not just listen, read or write"

(described by Edwards & Mercer, 1987 as a principle that 'progressive' teachers

follow). Such a view might be supported by the argument that they placed the user

directly interacting with the objects and characters of the software, providing direct

and concrete experiences for the users. An alternative interpretation for this design

could be that these teachers were trying to stimulate the pupils' fantasy, providing

realistic and relevant experiences that would encourage their sense of involvement

(described by Woods & Jeffrey, 1996 as a common tactic of primary teachers).

At this level they started with the definition of the main character of the software, that

is, the 'person' that would give instructions to the users and that would guide them

through the different stories. The instructions that this character would give to the

users, were designed like guessing games and question and answer sessions.

154

7.3.11 Interaction - Medium

At this level they designed the general interaction with the computer following a well

known pattern. That is, the computer gives instructions to the user, the user follows

these instructions (interacts with the computer) and the computer provides some

feedback for him. During the design process they enumerate several different styles of

instructions, interactions or feedback. Following are some examples found in the

transcripts' 9.

• Instructions

The instructions for the user were presented in one of several ways:

• A specific exercise to be done, for example a sequence of points to be linked

(Session 3), a path that should be followed (Sessions 3 and 6) or to erase a figure

in the screen (Session 3).

• Written or oral instructions (Sessions 2 and 5) that could have the form of a direct

order to the user, for example: "place the stone in front of the tree", "now move

forward" (Sessions 7, 12 and 14) or it could be presented as a problem to be

solved, for example: "the child wants to go down, could you help him ?" (Session

11).

• An open place with things to discover (Sessions 5 and 6). In this case there were

no instructions, but they assumed that the pupil would try to click everywhere to

discover all sounds and effects.

Their final decision about how to give the instructions to the user included the last

two types of instructions, that is, they presented to the users the problems to be solved

and provided a rich scenario with different elements to discover.

• Interaction

The interactions of the user with the software were basically of three kinds:

• To draw something on the computer screen, in this case the idea was that the user

should be able to 'create' something that has a consequence on the screen, for

example, to draw lines or to erase a figure.

• To manipulate objects on the screen (Sessions 3, 5, 8, 11 and 12).

19 In order to present the different ways in which they design the interaction some examples from the
data are provided, but not the transcripts themselves, because these are generally long sets of examples
of the kind of interactions designed and therefore add little to the description presented here.

155

• Free interaction, basically point and click (Sessions 5, 6 and 13).

Their final decision was that users could manipulate objects on the screen and that all

the objects on the screen would respond to clicks (i.e. free interaction).

• Feedback

The computer provides feedback for the actions of the user as:

• Sounds, noise and movements (Session 1, 6, 8 and 16).

• Explanations to the user, for example, telling the pupils what elements they were

clicking on (Session 6).

Positive feedback to the user, for example. "good, you made it" or applause

(Session 7).

Teacher of the users (Session 8) or guiding them in a given task (Session 3). This

dimension is analysed in Section 7.7.

They decided that the computer should give positive feedback to the users if they

solved the problem presented, and it should repeat a modified version of the

instruction if they failed. Also, they included noise and special effects for the different

objects on the screen.

The interaction designed by the teachers had two dimensions, the first related to the

learning activities that the user would carry out (instructions, manipulation of objects

and rehearsal), these were designed as question and answer dialogues between the

character in the software and the user. The second type of interaction designed was a

`playful interaction', where the user could discover things on the screen and receive

feedback such as sounds or movements. This latter interaction had no specific

learning goal, it was designed basically to achieve an emotional goal, related to the

surprise and motivation of the pupils.

7.3.12 Interaction - Concrete

At a concrete level they designed the specific actions that the user could do within the

software and the feedback for these actions.

There is one general issue here to be noted, which was that they designed the

reactions of the different objects on the screen based on the everyday world of the

child's experience. For example the lamp could turn on and off, the radio could play

music, the shoes could move. These elements were not part of the 'learning' activities

156

of the software, they were 'toys' designed for the users, but they spent lots of time

designing the interaction with these specific elements and they wanted every element

in the software to give feedback to the user.

This principle of realistic behaviour was also applied to the specific exercises that

they designed. For example, they designed an exercise where the user should paint a

wall and they designed the interaction based on realistic movements ("moving the

brush sideways only": Session 17). The type of objects to be manipulated by the users

were from their environment and should have a realistic response to the user's actions.

The way in which they designed these interactions was by first defining the exercise

that the user would perform and then designing the environment and the objects that

would be manipulated in this environment. For example, they needed a river or

lagoon to place fish inside (the user was asked to order them from smallest to biggest)

and also to put ducks on (the user was asked to order them from the biggest to the

smallest). In this sense, the interaction with the software was designed as a

consequence of the learning activity that the pupils should perform. It would seem

that they saw a necessary connection between the design of the users' actions should

and the software interaction design.

7.3.13 Interface Element - Abstract

At this level they defined the general shape of the interface, they discussed the

colours to be used and the general appearance of the different scenarios. In this sense,

this general level of design of the interface elements was the implementation of the

decision to use a story and it included the selection of the different scenarios. These

illustrations were designed corresponding to three different scenarios in which the

stories occur. One was the farm, the other the neighbourhood near the school and the

third one was the school.

The interface design task was delegated to the Graphic Designer, who produced paper

drafts of the different illustrations that were then critiqued by the teachers.

7.3.14 Interface Element - Medium

At a medium level they designed the different objects of each screen of the story, such

as rooms, surroundings and the artefacts to be found in each room and they also

designed the character that would play the role of 'guide' in the software.

157

• Realistic scenarios

The teachers designed an environment for the users, they created an interactive

experience where they would browse through a set of rooms and places (the farm,

neighbourhood, school) experiencing different situations. In this sense, the interface

of the software was transformed into a 'window' to this fantastic land and the human-

computer interface elements were the objects that would look and behave as if in a

fantastic but real world. In fact, the teachers argued repeatedly that the elements

should be like the ones found in their environment. The graphic style used was

supposed to be for children of age 4 to 6, so it was somewhat fantastical.

Perhaps surprisingly, the more traditional elements of a human-computer interface,

such as buttons, dialogue boxes, menu bars, icons, etc. were not designed. The design

and implementation of these elements was assumed by the Software Engineer.

• The principal character

The other main issue at this level was the definition of the principal character of the

software, who would guide the user 'through the learning experience'. That is to say,

at the beginning the character was defined as a sort of narrator for the user. In the

following dialogue, found in Session 7, TE described some of its characteristics:

TE: But, I thought that we must have in the software a narrator. A fixed narrator in charge of

telling [the story], a narrator that would engage with the children, that would be very

meaningful for them, very contextualised and that this person, animal or so, was the

one who had to [guide the user].

TE: Or a character that is typical, like a pet, I don't know

As TE said, it ought to be meaningful for the pupils, it should be a special person able

to engage children in the story and also provoke feelings of sympathy (like a pet).

This character was considered as the central character in the software (its description

and specific design lasted several sessions, particularly Sessions 14, 15, 17 and 18).

This character was the one that would tell the users what to do, and would provide

them feedback when required.

The teachers defined this character as: a friend of the user, wise, saint, a good person,

patient, audacious, helpful and with a friendly voice (female if possible). Its

appearance had to be fantastic (not a real person-like character) and its description

ranged from a clown or a joker to a teddy bear or an alien.

158

As mentioned previously, the role of this character was to guide the users through the

software and show them the different possibilities, behaving like a partner during

their learning adventure. They implicitly defined the feelings that this character

should provoke in the users as sympathy, trust, admiration, etc. Although there was

no explicit reference in the data to this character as assuming the role of the teacher,

the description of the affective relation with the users was very similar to what is

argued to be sort of relation described between pupils and teacher in the primary

classroom by Cooper & McIntyre, (1995).

7.3.15 Interface Element - Concrete

At this level they defined the look and appearance of the different scenarios that they

had designed before. They reviewed sketches that the Graphic Designer proposed and

critiqued them.

What came up clearly in the data was that they wanted each environment, and all the

elements in them, to be copied from their real environment. They argued against

including foreign scenarios (like Africa or the north of Chile20). To show the idea, in

the following dialogue the Graphic Designer proposed including some illustrations of

the north of Chile (desert), but TE rejected the idea and proposed something closer to

their own context. The dialogue was found in Session 15:

GD: For example, if it were the North [of Chile], it could be the desert, a cactus, I don't know,

colours of the desert. Also, that he should take the opportunity to try the basic skills and

also to know it.

TE: Look that, with these trips, we are taking it [the software] out of the context, a little [out]

of what we though at the beginning. That is, it could be like a trip also, but on the other

hand, it would be like any neighbourhood <pause> a bus.

GD: Something more

TE: Something more within context, closer [to the user].

Here TE was looking for images that were from the local context of the user, when

she referred to the 'neighbourhood' she was referring to the school's surroundings.

They spent a lot of time designing the different elements of each scenario and they

did not design 'typical' software interface elements like buttons, dialogue boxes,

menus, etc. Their focus was to design the scenarios and objects in them.

20 The city where the school is located is in the south of Chile.

159

	

7.4. 	ACTIONS

As explained in a previous chapter, the group of categories 'Actions' refers to the

activities to be performed by the teachers or pupils as individuals or in the classroom

setting, interacting either with the software or with the pupils.

The categories of this group are separated into two layers, the classroom setting and

the individual setting. The former is related to the roles of the teachers or pupils,

considering the classroom as a place where the teacher is in front of the class

interacting with the pupils or the software and the pupils interact as a group with other

pupils or the software. The latter is related to the teachers' or pupils' role when they

interact with pupils or software carrying out an activity that is essentially individual

(for example if a group of pupils are supposed to watch the screen of the computer

and think about strategies to solve a problem, they would be doing an individual

action interacting with the computer).

	

7.4.1 	Actions of the teacher in the classroom with the software

As mentioned before, this category dealt with data describing the actions that teachers

could perform in the classroom context using the software. It will be shown that

teachers rejected the idea of designing interactions of the teacher with the software,

arguing rather that children should be able to learn by themselves and that the teacher

should guide them in this process without necessarily manipulating the software.

• No interaction with the software

To present the idea, there was one interesting discussion involving the teachers, the

Psychologist and the Software Engineer about the need of a role for them. The

Psychologist and the Software Engineer proposed that the teacher should interact with

the software assigning the different levels of difficulty of the software, taking into

consideration the particular level of each pupil. That is, they proposed that the teacher

take the role of strategic manager or task setter for the lesson, tuning the software to

the particular needs of the user. To exemplify the type of design, we present what the

Psychologist said in Sessions 6 and 7:

PY: Also, we, as I told you before, this screen will be for the teacher's use, that is the

teacher will choose where to work. Now, it is probable that it isn't so, it is probable that

you leave the child to choose where to go into, I don't know

160

PY: That is, the teacher, he will appear here in the presentation, for example, [assigning

level] number 1, supposing 6 levels of deepness, then, but this will not be presented to

the child, the child will not know about it, he will not know that there are different levels

of deepness, instead the teacher will say 'look, this child, that is in these conditions,

assign him a level 2'. Then he does a control 2, the teacher, without the student noticing

it and his story will be the same, exactly the same, but what [the software] will ask him

or what the computer will demand from him to do will be of a higher range.

In Session 6 (first paragraph) the Psychologist explains that a certain screen of the

software will be for the teacher to decide where the pupil should work and in the

second paragraph (Session 7) he gives an example of the teacher assigning levels of

the software based on the pupil's actual state.

The teachers, on the other hand, rejected this idea, by arguing that the design should

contemplate the possibility of the pupil interacting with the software alone, without

the need of tuning the software before. They described the teacher's actions in the

classroom as interacting with the pupils, rather than with the software.

The argument for this position is presented in the following dialogue between the

Software Engineer and Teacher M found in Session 7. Here, the Software Engineer

argued that the software should be a tool for the teacher and that they were not trying

to replace the teacher with the computer. TM argues against that, she says that

although the idea that teachers could feel displaced existed, they wanted to be

replaced in some tasks, because the children should learn by doing. Finally, she gives

the possibility of including both types of uses, alone or 'in the classroom' (with the

teacher).

SE: What I had clear until today is that the software is a tool for the class and it is not a

teacher. That is what I don't, what makes me think: Until now we are building a tool for

the teacher, there are problems with those children and this is another tool. We will not

bring this thing here and put a but on the computer and [expect that] the teacher goes

home. We are giving the option that if the child has the teacher, that he can offer

<noise>

TM: Look, to realise that it should be the contrary. That is, we should be discussing the

possibility that we are required [necessary], but it isn't so SE, because at no moment,

that is, for example, I know that at some point Lucio said, the teachers perhaps could

feel a little that they will be displaced, [but] no, he is absolutely wrong, then no, we

never thought this.

SE: Do you know where I am going ?

161

TM: It is the contrary, we think that now that learning by doing is very important, and that the

child is constructor of his own learning and we are guides in this.

SE: I am thinking which is

TM: No, but I am telling you which is the position of thinking that the teacher is not required,

that is, maybe it could be better giving the option that it could be worked in class or that

the child could interact alone at any moment.

This dialogue shows that the underlying reason for rejecting the idea of the teacher

interacting with the software is related to the teachers' conception of learning. That is,

they draw on methodological arguments that justify their design decision. She argues

that pupils would 'construct' their own knowledge, drawing on constructivist theories

of learning.

7.4.2 	Actions of the teacher in the classroom with the pupils

In this category, the teachers described their role as helpers for the pupils in the use of

the software, but not in the learning activity, and as classroom managers.

• Helper with the software

In Session 5, TM described the role of the teacher while using software, separating

what is done in the 'classroom' from what is done in the computer lab:

TM: The role of the teacher with the software is nothing else than being there. Helping [the

pupils] to get in or out of the software, because the rest of the work she will do it in the

classroom, and I think that's the idea and that's the way it should be, because, we

cannot think that it effectively will help us to cover subjects, because that's impossible.

Although TM mentioned the teacher's role "with the software", she was situating the

context of her action in the computer lab and then she exemplifies her role as "helping

[the pupils] to go in or out of the software". This claim was relevant because she

stressed the fact that the actions of the teacher were limited to help in the use of the

software and also because she clearly specifies that her role as teacher would occur in

a traditional classroom.

• Classroom manager

In a similar vein, in Session 7, TE argued that in the computer lab the teacher must do

"other things" (other than in the classroom), and that the pupils must "develop the

software" meaning "following the lesson" that was built into the software. The

162

teacher's role in the computer lab, she says, is to ensure that pupils behave properly

and that they do what they are supposed to do. The paragraph is:

TE: Yes, because the ideal is that the teacher here does like other things. That is, being the

guide means that she has to worry about, to start with, that it is done what should be

done, [this is,] using the software; that children are rotating; that many other things are

happening; that it is happening the fact that, that they have equal chance, all the

children, that is, he [the teacher,' is doing a lot of other things. That is, at no time can he

go home, because it is likely that the computers will burn, or that someone goes for

water and pours it over the computers or turns them over the desk. That is, teachers

cannot be absent, but I refer that , could be better, I don't know. But this seems to be

well structured and it points also to something that I have seen in few pieces of

software, I haven't seen that many anyway, but I have seen few, so as, well structured

for a lesson, you see ? <pause>. Not like the encyclopaedias, that when you look for

something , you have to wait.

Here TE described her role as managing the classroom, not as scaffolding, tutoring or

helping pupils to follow the learning activities of the software. She also argued that

there is a lack of software structured for a lesson, meaning a piece of software

designed to support a lesson.

7.4.3 	Actions of the teacher individually with the software

This category includes data describing actions that were designed to be performed by

the teacher interacting alone with the software. In this piece of software actions

designed for the teacher but that imply some classroom management were excluded

(for example the discussion about the need for the teacher tuning the software of

section 7.4.1) .

There were two descriptions of teachers' actions in this category. The first one

concerned the possibility that the teacher could control the speed of display for each

screen, arguing that in this way the child could try to discover the image. The second

one is that the teacher could interact with the software after the pupils use it in order

to evaluate their progress. Both ideas were rejected or dismissed during the design

process. The data shows that these teachers considered the idea of interacting with the

software and that they explicitly rejected this interaction.

163

7.4.4 	Actions of the teacher individually with the pupils

This category includes data concerning the interaction between the teacher and the

pupil that was not specifically designed as situated in a classroom. Nevertheless, to

understand and interpret what the teachers said here, it is necessary to take into

consideration what they described as their actions in the classroom context. The data

in this category adds additional support to the idea that they designed the role of the

teacher as helper of the pupils with respect to the use of the software and not the

understanding of the contents to be learned.

Following on from the descriptions given in the previous category from Sessions 6

and 7 in Session 9 these teachers continued with the description of their actions,

arguing again that they would interact with the pupils only to help them with the

software. In this paragraph TE described the teacher's role through the example of a

child that has problems. At the beginning of the paragraph it is possible to think that

the child could have a problem with the contents or similar, but then she clarifies the

type of problem by copying the child's expression: "I quit from the software" and it is

there that the teacher should have a role:

TE: What happened when a child had problems, he couldn't go through, it isn't the

computer, after thinking, it isn't the computer the one who should guide him. It is the

teacher, yes or no ? The teacher is the one that should come close to him in this minute

or when the child calls her and so on. The children, when they quit, [for example] the

ones from Kindergarten from the software, when they are working they say to you 'aunt

I quit', and then, see, the teacher must have a role there. That is, telling him to try again,

or give him an instruction, I don't know.

This claim is consistent with the previous arguments about the teacher having a role

of helper in the use of software and managing the classroom. Although in this case

they did not explicitly reject the possibility of helping the children with the contents,

given the examples of the previous categories, it is possible to conclude that they do

insist on this exclusive role.

7.4.5 	Actions of the pupil in the classroom with the software

There was very little data that were categorised as the design of actions of pupils

interacting in the classroom with the software. What was expected here was activities

designed where the software would be part of an activity that is performed in the

classroom. This would correspond to the category of 'teaching centred software'

164

described in the literature review (Section 2.2.3 in Chapter II). The absence of data

categorised here shows that teachers did not engage with this aspect of design.

7.4.6 	Actions of the pupil in the classroom with other pupils

This category includes data categorised as the design of the interaction between pupils

in the classroom. In this sense, the data illustrates that the teachers did talk about

pupils working in groups or teams in front of the computer, similar to reports found in

Crook (1987).

In Session 2 the teachers proposed that the software should allow work in groups,

because the school has few computers so they can not accommodate all the pupils

working in the lab. They also said that working in groups would contribute to solving

the problems of pupils with learning difficulties. Later on, in Session 5, they clarified

the concept, arguing that the software should not be designed in such a way that you

need a group to interact with it, but it should be designed so that you can work as a

group with the software.

The teachers' aim seems to have been that the pupils should feel that they belong to

the team so that they were motivated to work towards a common goal. This idea was

presented by TE in Session 5, where she starts by talking about her experience using

the computer lab with several children. Based on this experience, where she needed

another teacher to control the pupils, she argues that group work does solve the

problem, because children are aimed towards a common goal and they engage in

being part of the group.

TE: The only thing that I can talk about is my experience that I am two years giving lessons

of [with] IT trying to use the pieces of software that come here and with the small

children, with the ones of Kindergarten, and there what happens ? We come with the k-

teacher trying to do a lesson with them, but the older, the more you can increase the

number of pupils in a group, that is, with luck and two teachers you can work with

groups of five, of 30 or 25 pupils. But with the younger ones, you can't, because the

child is jumping or he goes home. Opens the door and he's gone, he has a minute and

he didn't touch a computer and he goes and "I go home because I didn't touch no

computer". We saw even these ones, that's why with the [number of] computers we

have, which is our reality [because] there are no more [computers], that allows to play in

teams, that they inscribe me [the child] or I choose a character that represents me as a

player, I don't know, that's an idea that occurs to me now, because they can't write, the

elders of grade 2 could write their names and play in a sort of team

165

TE: It is incredible, but if you don't identify your self it does not give you a sense of

belonging, that is, it permits you, that the child says: I can't go out there while I am in

the lesson, because its my team I must, at least that he says to you that it is not

necessary that he drives the computer, because that's not the goal, true ? That is, that

he keeps saying, hey, you have to drag it there, don't do that, no don't do it so fast, so

that the others can

Through these claims it is shown that teachers had the idea of designing the software

for team work, but the underlying reason for this was that if the pupils feel

compromised, they will keep doing what they are supposed to be doing, instead of

going out of the room or making a noise. In this sense, they were talking about

classroom management and they consider the work in teams as a strategy to cope with

disciplinary problems. Also, it appears clear that she was not designing collaborative

work necessarily, she only explained the reasons for having team work. Anyway, this

idea of designing the software for team work was not continued after these initial

dialogues, in fact they did not design any special features in the software to enable or

encourage this type of use.

7.4.7 	Actions of the pupil individually with the software

This category includes data concerning the design of actions for the pupil interacting

directly as individuals with the software. The type of actions designed were consistent

with the group of categories 'Interaction' described before (sections 7.3.10 to 7.3.12).

There are additional data in this category which supports what was previously

described as what pupils would be doing in the lesson with the software. The

interaction with the software from the pupil's point of view was described through

examples of what they should do or feel while using the software.

The actions of the user were defined across the sessions in a way that seemed to

closely follow a well known pattern in teaching, that is to say: "the use of techniques

like the 'guessing game' question and answer sessions, to elicit 'key ideas' from

children rather than informing them of these directly" (Edwards & Mercer, 1987). In

fact, in Session 2, TM described the type of interaction using examples of known

`guessing games', and she described pupil's reactions to this prompting:

TM: For example, with guessing, with questions, [for example,] this way: 'how many ducks

are in a basket ?', if there are so many ducks and so many', and <moves her hands like

keyboarding> and then he goes into another thing. In order to have mental agility,

because you get sleepy only by watching them, few light. But the thing should be so

well done that it goes on changing so that he does not memorise it

166

TM: That one could change something in it. For example, at one time guessing, afterwards

riddles, afterwards to complete, a proverb: To a given horse, and that he puts, you don't

look at its teeth, OK, So

TM describes a user who would be engaged in solving these type of questions and she

was concerned about having a sufficient variety of such games. In Session 5, TE

continued with similar examples, and she contributed to the justification that in this

way children would not realise that they are learning:

TE: Sure, he doesn't know, he doesn't know that he is learning sensory motor co-ordination

or anything, he is playing something, in the [text] book the first [chapter] one appears, to

say, for example, 'A' comes sensory motor co-ordination, 'B' comes an other thing, 'C

'another. That is, it isn't necessary, the child [that] works in one sheet three or four

[basic] skills [at once], without problems, that is, there isn't this fine thread

While arguing that the children would engage in a playful interaction, without

realising that they were learning, she was 'hiding' the learning goals and activities

from the children (as Edwards & Mercer, 1987 describe that 'progressive' teachers

do). In fact, in Session 8 TM argued in a similar vein, that for the children these

activities would be games only:

TM: Clear, it is for rehearsal and that he practices them, I think that the goal is that he plays

with these things that at the end they have no idea for what they are, because, for the

children these are games only, ...

In this case TM added the comment that the children would be rehearsing the contents

while playing with the software.

In summary, the specific actions they design were those of the pupil responding to the

software's prompting or instructions. That is, the computer is questioning the pupil

about the material to be learned and the pupils' role is to answer these questions.

The fact that the teachers visualise the pupils' responses to the software's prompting

in the same way as the literature describes pupil's responses to the teacher's

prompting (cf. Hammersley, 1990), supports the argument that they were designing

the way in which pupils would be learning while using the software.

167

7.4.8 	Actions of the pupil individually with other pupils

This category includes data illustrating conversations in which teachers visualised

what would happen among the pupils. As mentioned before, these conversations were

not planned, but they realised that these interactions would happen. In the early

sessions they talked about competition between pupils and about collaboration. The

former appeared as conversations between pupils about the advances (moving

forward) in the software, the latter, appeared as a sort of scaffolding between peers.

In Session 2 TE and the Software Engineer talked about the type of dialogues that

they imagined would happen amongst the pupils. TE reacts to the Software

Engineer's example regretting the use of the curriculum subjects, but she agrees in the

style of conversation:

SE: But, there will come a moment, I imagine, where they will sit and say: 'in natural science

I am in the 6th [level], in social I am in the 2nd'.

TE: No, but it shouldn't be, that's why it shouldn't be subject oriented.

SE: that's what I refer to

TE: Because, for example, the discussion should be different, the discussion with his

partner should be: 'in ecology I am in this stage, in which are you ?'

The main change that TE made to what the Software Engineer said was to change the

name of the subjects. Both were imagining that this type of dialogue would happen

between pupils, but they did not include explicit design elements that would provoke

this to happen.

The actions between pupils that they described were similar to a particular kind of

scaffolding, that is, one pupil helping the other in a certain exercise. In the following

dialogue found in Session 8, TM speaks about her experience as a mother with two of

her children. She explains that the older one helps the younger in some exercises and

she generalises this experience to other children. The Psychologist asks about their

age and she answers that they have different levels of knowledge.

TM: All what gives you the quantity in mathematics in pre-calculus, for example, ..., there

are two children they help each other, you know. Because, because my little children

when they work together they help each other, the older says look who has more, more

is asking you, you see. They reinforce each other, that's why I have the experience with

the children and know that they reinforce each other. Now I don't know if it corresponds

to the psychological level that it is done so, I got no idea, but I know that children

reinforce each other.

168

PY: Of the same age ?

TM: Yes, because they don't have the level of experience and the degree of learning exactly

the same. Therefore one will always know more, except if you sit two that are very

similar in front of the computer.

Again, they imagined that children would co-operate within the groups, helping each

other in areas where they have different levels of knowledge, but they did not design

special features that could trigger these interactions. They saw it as 'naturally'

happening when children work in groups.

	

7.5. 	AIM

This group of categories includes the data that were categorised as expressing the

aims that the group assigned to the software or computer regarding the pupil or the

teacher. For the purposes of this analysis, claims about software or computers were

differentiated by the type of reference they make about it. That is, if they spoke about

a generic artefact that could be any software, it was classified as claims about

computers. If they spoke about any specific software product or 'idea ware', it was

classified as software.

	

7.5.1 	Aim of the software for the teachers

This category includes the claims made by the group about the aims of the software

for the teachers. That is, the purpose that the software should serve for them. In this

sense, it will illustrate that they defined the software's role as rehearsal or as a

complement to the contents of some lessons. That they proposed the aim that the

software should save the teacher time.

In the following dialogue found in Session 5 TE expresses the idea of the software as

a time saver, and as a result of questions from the researcher (RE), she explains in

more detail what she was trying to say and presents arguments that it is effective in

that role:

TE: It is supposed that all what comes out of the software, the teacher will go through it in

the classroom. What happens is that perhaps now, instead of being ten days covering

the subject, [she] will do one session [in the classroom] and will bring them here [to the

lab]. She will put the software in the equipment and its over, you see. It will save a lot of

time and effort to her.

RE: But this results so, has it happened to you with other software ?

TE: Yes, of course.

169

TM: How„ lets see ?

RE: For example, if you went through a subject about biology ,for example, during four

weeks, and now you do a general view of the human body and the child comes here

and learns ? Comes back, or with other software ?

TE: It is the same as if you view a movie, for example, it has happen to me with the human

body, with the [software] one about indigenous [cultures], with some slide shows that I

downloaded about some topic. Because it isn't the same as the blackboard, with the

chalk and the papers with colour pencils, it isn't the same that something that has

sound, it's different.

RE: But is it effective ?

TE: It is effective, the fact even to reinforce a session with a video is very effective, it gets

you closer to reality.

TM: The computer in it self is a stimulus, not perhaps so much value in the contents or the

way to expose the content. Because, in this sense, one uses it more as a complement

of [the classroom activities], in the case of delivering subjects. In this case it will be the

same.

In this case TE's beliefs about the potential of the software as a complement for the

lesson's contents, was based on the possibility of having multimedia software. TM,

supported this claim confirming that it would be a complement for the teacher (she

speaks about the computer, but because of the context of the dialogue is included

here). In this sense the software's role is to expand the resources that teachers have to

teach certain subjects.

7.5.2 	Aim of the computer for the teacher

The data categorised here will illustrate that the teachers argued that the computer

could serve as a motivational tool for them. That is, they could use the computer to

motivate the pupils to do certain activities that with other type of resources pupils

would not do. Also, it will show that they said that the computer should not act as a

teacher.

• Computer as a control tool

The following dialogue found in Session 2 exemplifies this claim. In this case TE

answers a question of the researcher (RE) about the role of the computer compared

with other resources. Her answer takes the form of another question, but she is clear

about the role of the computer as a motivational tool. Although she recognises other

roles (tool for work) for it, the primary role is motivation:

170

RE: Which would be the role of the computer, [compare it] if you have 6 boxes with nice

slides and children take them ?

TE: And you believe that the boxes engage the children the same as the computer ?

Children couldn't care less about the boxes.

PY: These are for motivation only.

TE: Yes, but no, should give <pause> and what other thing is a computer but a tool that

helps to motivate ?

PY: Don't know.

TE: It is a tool for work, well but the boss says that for him it is not like any other resource

only.

TM: It has a lot of [other] things.

TE's definition of the role of the computer seems to be based on her experience and

therefore she had this conviction. The idea about the computer serving as a motivation

tool for the teacher was expanded in the following paragraph of Session 4. Here TE

argues that the real power of the computer is that it is considered to be a 'treasure' by

the children, before this paragraph they were talking about the design of a game and

the Psychologist was explaining that the teacher could organise the players, but TE

reacts saying that the computer can be used as a reward if the children behave well:

TE: The point is that it is not the same PY. You know why? Because the teacher is a

teacher, you see? But the computer is not, if you don't respect what it is telling there

[the computer], you missed the opportunity of working with the computer. You cannot

work the game. It is part of the game. You loose the most loved, which is to work with

the equipment. That is, the computer its true, it can not replace the teacher, but in this

minute it is very motivating for the children, then it is like the engagement tool of this.

In this argument TE was explaining the role of the computer as an instrument for the

teacher to control the pupils, she says that children would follow the instructions

because they wanted to use the computer.

With different arguments but meaning the same, in Session 4, TM argues that the

computer is useful because it controls students with behavioural problems:

TM: Like you said TE, think in a piece of software for 'Macana', for the 'Masos', for Trabor,

something that keeps them busy. But we, [in order] to win, [we] need more space, so

that he can practice. Because at what time should I put him in [front of the computer] ?

The examples they gave here (`Macana', `Maso' and `Trabor) were children that

presented difficult behaviour in the school and she would like to use the computer as

171

a tool to "keep them busy". Underlying is the same argument of motivation, that is,

they would be wishing to use the computer and that is the reason they will "keep

busy".

Also in Session 5, TM argued that the computer is a stimulus and that there may be

less value in the contents:

TM: The computer in it self is a stimulus, there is not perhaps so much value in the contents

or the way to expose the content. Because, in this sense, one uses it more as a

complement of, in the case of delivering subjects. In this case it will be the same.

She talks here about the computer, but because of the context in which this was said,

it was interpreted as expressing an aim for the software rather than the computer.

Through the previous examples it is possible to see that the computer was seen as a

tool for the teachers that solve a control problem. That is, they recognise that for the

pupils the computers are fascinating artefacts and they use this characteristic as an

instrument to control them.

• Not a teacher

Another aim or role that the teachers define for the computer was that it should not act

as a teacher. This argument was presented while they were discussing the feedback

that the software should give to the users if they did a mistake. In Session 9 the

Software Engineer argues that the computer will tell the user exactly how to solve the

problem. The teachers argue against that and deny the role of teaching for the

computer, they say:

SE: But, it isn't necessary, because when I spoke about this, I meant that after the child tries

two or three times, the computer would not tell him no, afterwards the computer tells

him exactly the/way it should be done.

TE: But, do you know ? That is exactly what I was thinking about, then we would fall into a

pedagogical issue. That is, we can not let the computer teach anything, that is, the

computer can not teach. What the computer is supposed to do is to give the

instructions, take the child, guide him, OK? not tell him straight forward for example, put

the Apple into the basket.

TM: [Because] it could happen that he doesn't even try to solve it [the exercise] in order to

hear the computer [telling him what to do].

172

Here TE was clear about the fact that the computer should not teach. The same type of

argument is repeated in Session 13, where TE says that the computer should not solve

the problem instead of the pupils, that the computer should guide them only:

TE: No, in what I disagree, was about that what we talked once. It is that the computer does

the exercise for the child. The computer cannot do any exercise for the children. That is,

it can show them, but not tell him, 'look you know that you should do it this way', no he

will realise, he will look to his friend.

In these arguments the teachers are not really denying the fact that the computer

would act as a teacher, rather they deny that it should provide the correct answer. In

this sense, they were applying some teaching strategies to the way the computer

should 'guide' the pupils. In fact, by saying that the computer should "give the

instructions, take the child, guide him" they were replicating their behaviour as

teachers and when they say that "the computer cannot do any exercise for the

children, but it can show them how, without telling them", again, they were

transferring their own teaching strategy to the computer.

	

7.5.3 	Aim of the software for the pupil

The data in this category will illustrate that the aim of the software for the pupils

(from the teacher's point of view) was described as a rehearsal, as a set of activities

that would help the student to train in certain areas. The teachers also define the

software's aim as a game in which pupils would train certain skills without realising

that they were learning. These ideas were part of several dialogues found in the data

and some of them were included in previous sections, therefore they will not be

included here.

The interesting point in this case is to realise that the teachers defined the aim of the

software for the pupil as a learning aim (or part of a learning cycle). They explicitly

said that pupils would be rehearsing what was taught in the classroom. In this sense,

they designed the software's aims for the pupil as a complement of what is taught in a

`normal lesson'.

	

7.5.4 	Aim of the computer for the pupil

The data categorised here will illustrate that the aim of the computer for the pupil

from the teacher's point of view was defined as an attractive and stimulating artefact.

They referred to the 'potential' of the computer as a stimulating and motivational

resource, as they said in Session 2:

173

RE: Which would be the role of the computer, [compare it] if you have 6 boxes with nice

slides and children take them ?

TE: And you believe that the boxes engage the children the same as the computer ?

Children couldn't care less about the boxes.

PY: These are for motivation only.

TE: Yes, but no, should give <pause> and what other thing is a computer but a tool that

helps to motivate ?

PY: Don't know.

TE: It is a tool for work, well but the boss says that for him it is not like any other resource

only.

TM: It has a lot of [other] things.

As it was commented in a previous category were the same dialogue was used, TE

reacts to the comparison of the computer with other resources (like boxes with

illustrations), defending the motivation that it provokes in the children. Later in the

same session TE continued arguing about the challenge that the computer poses to the

pupils:

TE: OK, they win against the computer, but they have to win. I don't know why. It is not like

with the boxes, with the boxes they will not care if they don't win. But against the

computer, they need to win. Then, they, even if they have problems, but those who do

have problems, of [learning]. This can be solved with team work.

In this sense the teachers defined the aim of the computer for the pupil as a motivator,

which is consistent with some other findings that say that it "increases challenge,

control, curiosity and fantasy that allows for personalisation of one's work"

(Schofield, 1995, p. 196). This powerful role of the computer is used by the teachers

in implementing the rehearsal activities in the computer.

7.6. 	USER

As mentioned in a previous chapter, this group of categories contains data regarding

the characteristics of the users (teacher, pupil or groups). While designing the

categories of the data (the systemic network) it was assumed that they would describe

characteristics of each user, but the evidence found was mostly related to pupils. Only

a few paragraphs were found where they referred to characteristics of a group of

students or to the teacher as user of the software.

174

Also, in the data there were few explicit references to the user which could be

classified in this category, but it is necessary to say that there were several other

implicit references to the user in other categories. For example, when they define the

human-computer interface elements, they hypothesise what users might find

attractive, they design what they believe will motivate them and so on.

In the data categorised here there were two types of user descriptions, one about the

target user of the software and the other about characteristics of the pupils of the

school.

The target user was defined to be of age 4 to 6, which corresponds to Chilean school

levels K to 2. They decided to focus on users with learning difficulties (Sessions 2, 3,

5 and 8) but they also wanted the software to be useful for all the users, i.e. with and

without learning difficulties (Sessions 3 and 8).

They characterised the pupils as ones with low achievement, with reading problems

and poor vocabulary compared to other children of similar age but from different

schools (private schools). Describing the pupils in general, they described them as

ones that can sit and follow instructions if the teacher has the control of the situation,

that is if the teacher is dictatorial, but they agree that this is not the right system to

teach (or at least not the contemporary one). In general, they say, they exhibit bad

behaviour in the classroom and that teachers have difficulty in controlling them.

They described the social background of the user as one with low income and with

lots of family problems, such as low parental control, low levels of positive feedback,

and belonging to families that were not well constituted. This description was

supported by demographic data derived from other studies, indicating the social levels

of the pupils that attend this school.

The teachers described the psychological characteristics of the target users in the

following ways:

TM: They follow instructions, without necessarily understanding them (Session 6)

TE: They have low control over their body (Session 8)

PY: They are egocentric (Session 6)

TM: They have low tolerance to frustration (Session 14).

TM and TE:

	

	They say that at this age they engage with stories (Session 6), they like

animals (Session 15) and certain colours (Session 16).

TM and TE:

	

	They like that the computer gives feedback (Session 1) if it does not, they get

bored (Session 3)

175

The only explicit reference to the user as a group was found in Session 2, where they

argued that groups of users should be of not more than four children each.

Analysing this information, it is possible to see that these teachers had a certain

stereotype of the user and that this image is used in the design of the software. What

is more interesting perhaps is what they did not say. That is, they did not refer to the

teacher as a software user, they draw heavily on their own experience, without

explicitly describing the type of teacher that would use this software or the

composition of the groups of pupils.

Another issue here was that although there are not too many explicit references to the

user, they refer to him in several other categories in a more implicit way. They

assumed that they knew their pupils and therefore it was not necessary to describe

them.

7.7. TEACHING STRATEGY

As discussed in a previous chapter, this group of categories includes data illustrating

discussions about the behaviour of the software that revealed some of the teachers'

conceptions about teaching. For example, the decision of what kind of feedback

should the software provide to the user, or its reaction to a wrong answer from the

user.

In the transcripts there were three interesting issues. The first was about the

computer's response to a mistake of the users: should it teach them or not?. The

second was about the user's progress through the software, when should users step

into a higher level of difficulty? and what kind of feedback should be provided if they

did a sequence wrong?. The third was about the software's response if the user starts

to play instead of following the instructions. Following is a description of each of

these issues.

• Computer's feedback

The first issue was about the type of feedback that the user should receive in case of a

wrong answer, for example, should the computer give the right answer in such a case.

That is, should the computer teach the user about the concept or not.

The Psychologist proposed that the computer should teach the child. The teachers

argued against this, and proposed that the computer should provide an example, but

176

never tell the right answer. The teachers said that the software should let the users

know that they did something wrong (by a simple sound or a visual message), and

provide guidelines or help to show them the concept, and then the user should do the

exercise again. This example or help should be provided by the principal character in

the software, the one that guides the user.

The teacher's argument was presumably based on what a teacher does in the

classroom, and as is explained in the discussion about the group of categories 'Aim',

they argued that the computer should not teach, but it should guide the user, give

instructions and help. In this sense, they were using the same arguments that they

used to describe their behaviour as teachers applying constructivist methods. They

designed the number and type of successive helps and the way in which the computer

should guide the user.

This shows how these teachers transferred their teaching methods to the computer

while designing the feedback. They were following what they did as teachers in the

classroom. The type of arguments were:

TE: Then it [the computer] would be doing what a teacher does when they [the pupils] don't

understand (Session 5).

TM: Yes, that's what we are doing as teachers in this moment without the software, (Session

9),

TE: That the computer gives help to him, that the computer guides them, as you do, that is,

you don't tell them look, you have to do this (Session 9).

TM: As we do it as teachers, if we give him everything done, then he does not think about

(Session 9).

In these examples it is possible to see that they replicated their behaviour as teachers

while deciding about the computer's feedback. This type of feedback is similar to the

type of feedback described by Mayer (1995) as "feedback in academic learning tasks"

that "refers to information concerning the correctness of students' performance" (p.

249).

• Users' progress

The design of the user's progress was another issue, that is, given the structure of the

software (as a matrix) and that each screen of the software would contain three or four

exercises, they had to decide what to do if the users did one or two of three exercises

only. Should they browse to a next level of difficulty or stay in the same level but in

another skill? The teachers argued that if one of the exercises was wrong, the users

177

should browse to another area of a similar level of difficulty, without letting them

know that they could not advance to a higher level of difficulty. This is, after doing

the exercises of one screen, the software should change to the next screen

automatically, without asking the users or letting them know of their overall

performance.

The argument for this decision was given in Session 13 and was based on the

motivation of the user. In the dialogue TE is arguing that children should have

positive inputs only, they should live happy, but the Psychologist is concerned about

reinforcing bad habits when the users are doing something incorrectly wrong and can

continue playing.

TE: But don't forget that children are children OK. They don't think like us that they don't

care, sometimes for them the game is [everything]. And specially with this kind of

children [of these schools]. There can't be more negative things, like the ones you saw

at the school's door <two children fighting>.

PY: Sure, but we could fall into the dilemma of reinforcing [bad habits].

TE: But the computer should be something beautiful. If in the classroom one is always

telling them look you went out of the margin, you draw it wrong, you see?, that's one of

the nice things about computers.

PY: What I say is that we will be reinforcing a behaviour. That is, a wrong learning, because

if the child does this wrong, I don't know, he keeps playing.

TE: But it doesn't matter, the game is not a competition for us.

TE's argument about avoiding negative feedback, even if they did some exercises

wrong, is consistent with the affective outcomes described by Cooper & McIntyre

(1995) that teachers look for and is not consistent with the descriptions given by

Hammersley (1990), of the way in which a teacher would react in case of wrong

answer in a classroom. This may well relate to the specifics of this population of

students where the affective dimension is very important.

This decision is interesting because, on the one hand they designed the feedback for

the actions in each screen (for each exercise) so that it would provide the required

information for the users (first a message indicating that they did something incorrect

and then the help) but on the other hand, they designed the browsing through the

different screens of the software it such a way that it would not let the users realise

that they had made a mistake.

In this design there are two levels of feedback, the first is related to the particular

interaction during one exercise, and the other is related to the overall browsing

178

design. In the former they design a way in which the user should be able to learn how

to do each exercise. In the latter, the idea was that the computer would provide a nice

experience to the users, without disappointing them.

Underlying this issue, it appeared in the data that teachers assumed that the user

would be able to do all the exercises and that these were simple enough to be

completed. That is, they had high expectations and confidence in pupils' abilities to

meet them, as reported by Woods & Jeffrey (1996) this is usual in the classroom

atmosphere.

• Users' general behaviour

The third issue was the discussion about the behaviour of the users in front of the

screen, what happens if they started to play instead of doing the exercises ? or if the

users did not understand the instructions or if they can not click in the given area of

the screen. They decided that there should be written instructions on the screen and

that there should be the possibility of repeating the instruction (by clicking

somewhere). They did not address this issue further, and they assumed that the

teacher would have a role in this in so far as the computer would never 'notice' this

behaviour. That is, they transferred this decision to the 'classroom management'

arena and they decided that the teacher would have this role.

7.8. 	CONCLUSIONS

This analysis showed two main dimensions of what these teachers believed about

educational software and computers. First it showed what they believed the

characteristics a piece of software should incorporate; and second, what they believed

about their roles and actions while using computers and educational software in the

classroom.

The discussion of these findings will be presented in the Discussion and Implications

chapter of this report. The conclusions that are included here will serve as an

introduction to the discussion of this research that will incorporate the results of the

other analyses as well.

• Subject areas and interface elements

It was shown that these teachers decided that the subject area of the software should

be about 'basic skills' and that they embedded this subject into a playful story that

children would read while doing exercises. This design decision can be understood

179

looking at reported experiences about what teachers do in the classroom, for example,

Woods & Jeffrey (1996) say that teachers use stories as a way to 'bring home' to the

child the contents of the curriculum, and establish 'common knowledge' (referencing

Edwards & Mercer, 1987). The concrete subjects (contents) of the software were

drawn from an external source (a textbook) that contained exercises for 'basic skills'

development. These exercises were adapted by the Psychologist in order to be

included in the software.

In order to implement the story they designed the human-computer interface elements

of the software as they were designing the elements of the story rather than 'technical'

human-computer-interface elements (like buttons, dialogue boxes, menu bars). That

is, they designed backgrounds, characters and several elements that were part of the

scenarios in which the story would happen.

One particular element that they designed was the principal character of the story,

which would guide and tell the user what to do. In this sense, they implemented the

atmosphere of the story that would be 'told' during the lesson (which is similar to the

atmosphere in a normal classroom described by Woods & Jeffrey 1996, and reported

in section 2.6.2 of this thesis). This atmosphere would be 'orchestrated' by the

principal character who appears to assume the role of 'story teller'. While designing

these elements, they stressed the need for representing their environment through the

software, that is, the interface elements should behave like 'real' elements and should

be similar to the ones found in their neighbourhood, trying to place instruction within

`authentic' context that mirror real-life problem-solving situations (as Brown, Collins,

& Duguid 1989, argue that a situated approach to teaching and learning should

consider).

In the next chapter, it will be shown that the design of the subject areas and the

human-computer interface elements of the software serve the same purpose, this is, to

provide the classroom atmosphere for the lesson.

• Content organisation, browsing and teaching strategy

These teachers organised the content of the subject area in the story dividing it into

levels of difficulty and type of basic skill to be developed and they designed the

browsing possibilities of the software so that pupils could follow a sequence of

contents accordingly to their performance. In other words, they were designing the

way in which pupils would follow the lesson. In particular, the way they would

progress through the contents and the feedback that they would require in order to be

able to finish one story. While designing these elements, the teachers drew on their

180

experience in the classroom to define and justify their decisions. In the arguments

they gave, they assumed that the computer would take their role, in that what they did

in the classroom as teachers, served as a 'model' of the way the computer should

behave (for example: to present the contents organised as a matrix, based on levels of

difficulty; to let the users progress based on their achievement; to provide guidelines

as feedback for wrong answers; to ensure positive feedback during the lesson).

These discussions were presented across these three categories and, if combined, they

show one particular dimension of the design of this piece of software which is related

to the pedagogy embedded in the software. This pedagogy could be understood by

thinking that these teachers were designing the contents structure and availability not

only to ensure that pupils are taught something 'new', that they 'keep moving', but

also that they have the resources to understand what the software is presenting

(similar to the descriptions found in Hammersley (1990) about what teachers do

during a lesson). Further on, it could be thought that they tried to implement a style of

teaching that was defined as 'Interactive' by Cooper & McIntyre (1995) where the

computer and pupil 'negotiate' the learning aims.

• Interaction and pupils' actions

The interaction with the software was based on exercises that pupils would do while

browsing through the story. This interaction was designed as sequences of questions

(exercises prompted by the software), answers of the user (actions) and feedback that

the computer would give to the user. On the other hand, they described the pupils'

actions as rehearsing while answering the questions prompted by the software,

without explicitly designing other type of actions. This type of dialogue is usually

recognised as a teacher-student dialogue (for example, by Hammersley, 1990) and the

particular decisions that these teachers made about the way the software should

interact with the pupils follows some of the principles that make up what can be

described as 'progressive teaching' (Edwards & Mercer, 1987).

• Actions and aims

The development team talked about two types of teacher actions: first, helping the

pupils to use the software, solving technical problems and second, keeping the

discipline and management of the classroom. These roles are found in other reports

(for example: in Olson, 1988 and Sandholtz, et al., 1997) and in this sense could be

expected. But what is not commonly found is that they rejected the idea of designing

particular interactions of the teacher with the software arguing that the children

should be able to learn by themselves and that the teacher should guide them in this

181

process. Further on, they argued that in the computer lab the teachers would act as

`guides', whereas in the classroom they would teach the subjects. They did not

consider scaffolding, tutoring or coaching to be part of their role in the computer lab.

In this sense they differentiated their role as teachers in the computer lab from their

teaching role in the classroom.

These findings are supported by the discussions related to the aims of the software

where they indicated that the main aim was to save time as a result of its multimedia

capacity. This is, they said that they could go through the contents much faster

because the computer was used as a rehearsal tool that could serve as a complement to

what is taught in the classroom. This is, the aim of the computer for the teacher was a

teaching resource that was used by the pupils as a rehearsal tool, not as a source for

new learning or as a cognitive tool21.

Consequently with the descriptions found in the reports by Lepper & Malone (1987)

and Schofield (1995), these teachers said that the aim of the software for the pupils

was as a game, that while engaging in a playful interaction children would not realise

that they were 'learning' or rehearsing. They recognised the motivational power of the

computer and they decided to use it as a resource that engages children in learning

and becomes part of the punishment -reward system of the classroom. This is, they

were using the computer as a control tool, similar to the descriptions found in Olson

(1988).

21 Cognitive tools are defined by Lajoie, (1993) as software that enhance metacognitive strategies,
share cognitive loads, expand the cognitive possibilities of the learner and allow them to generate and
test hypothesis. The software this Development Team developed was not of this kind, it did not require
the same degree of complexity, for its aim was simply to reinforce what the teacher had already taught
in the classroom.

182

VIII. DISCUSSION AND IMPLICATIONS

8.1. 	INTRODUCTION

This section integrates the findings from the three analyses reported in chapters V, VI

and VII; and discusses them using different theoretical frameworks. The overall aim

is to try to characterise the model of understanding of information technology that

these teachers demonstrated during the 19 sessions of the software design process.

This chapter concentrates on those aspects of the previous analyses which throw light

upon the model, and a number of other interesting insights are not included.. For

example, some previous chapters have shown some interesting data about the

development process, the breakdowns between the teachers and the Software

Engineer and the Psychologist and the particular teaching style of these teachers,

these issues were used to focus the discussion on relevant issues, but are not taken up

here as issues in themselves. The rationale behind this decision is that both the

process whereby the different characteristics of the software were defined and the

identification of the particular teaching style of these teachers, helped to identify the

relevant dimensions of the model, showing what these teachers thought about

computers and educational software and how they embedded their teaching practice

into the software.

The discussion starts by presenting a theoretical perspective that examines two

dimensions of what the two teachers involved in this study believed (section 8.2).

Firstly, what they believed about the use of computers for teaching, and secondly,

what they believed about the characteristics that a piece of educational software

should have.

The former dimension shows that these teachers conceived of the computer as a

resource that could replace them in specific roles and in particular that it could be

used by the pupils as a rehearsal tool. The latter dimension presents the teachers'

model of educational software and shows the particular elements of their teaching

strategies that were embedded in the characteristics of the software. These two

dimensions together constitute what is called here a model of understanding of

information technology in education.

In order to provide a critical view of the way in which this model was elicited, the

methodology used during the research process is also discussed (section 8.3). This

section starts by analysing the definition of the present research as a case study and

then, it examines the way in which the data were structured, that is, the systemic

183

network used. Finally, the analyses of the data are discussed, focusing on the

combination of qualitative and quantitative methods. The implications of this

discussion are related to the process of construction of the systemic network and to

the value added to the overall analysis by the combination of quantitative and

qualitative methods.

These three sections of the discussion converge in the last section of this chapter,

which corresponds to the implications of this study (section 8.4). As mentioned

before, the main implications are represented through the model of understanding of

information technology in education that considers firstly a strategy to use computers

as an aid for teaching and secondly a framework to design educational software that

incorporates teaching strategies into particular characteristics of the software.

Before this discussion starts and as a general framework for the scope of the analysis

it is important to remember two things. Firstly, these teachers decided to design a

piece of software for children of age 4 to 6. Clearly one of the chief interest of these

teachers was the use of computers with young children. The data collected across 19

meetings in which the teachers were designing a piece of educational software does

give us a wider view of the teachers views, since they had to call on their general

perspectives on infoimation technology in education in order to enter into the design

process.

The second consideration is that these beliefs are certainly influenced by their

working context and previous experience. These teachers had three years of

experience in the use of computers and they were teaching poor kids in a rather

average city school with a few but not many computers.

8.2. THEORETICAL PERSPECTIVES

This section discusses the beliefs of the teachers about the use of computers for

teaching and the characteristics that a piece of educational software should have.

8.2.1 	The use of computers for teaching

This section discusses the findings related to these teachers' beliefs about the use of

computers and software in teaching. The discussion is organised around three

questions:

184

• What did these teachers declare as the aims of the computer or software? Why ?

• What was the role of the teacher with respect to the computer in the software

design? Why?

• What activities would the pupil do with the computer in the software design?

Why?

As it will be shown, the teachers defined the aims of the computer as a tool for pupils'

rehearsal and as a control tool for classroom management. These aims were then

implemented through the actions designed for the teacher and the pupils. They

decided that, in the computer lab, teachers would act as computer helpers and

classroom managers, without interacting with the computer. The pupils actions were

designed as interacting with the computer only. The following sections describe these

roles and discuss the rationales that could explain these decisions.

The transcripts that will be included here are used to clarify the arguments, and were

already presented in the 'Contents Analysis' (Chapter VII) and correspond mainly to

the sections 7.4 (`Actions') and 7.5 (`Aim').

8.2.1.1 Aims of the computer or software

During the design process the development team spoke very little about aims, in fact

only 4% of the data were classified under this group of categories. In the

`Participation Analysis' it was shown that the contributions and profiles of

participation of the teachers indicated that they were using their professional

background during the design of these categories. In the 'Sequences Analysis', the

group of categories 'Aim' were mostly related to data about the pupils as users (i.e.

the group of categories `User'). And in the 'Contents Analysis', it was found that in

this group of categories teachers defined the aim of the software as a rehearsal of what

they do in the classroom, not as a source for new learning. A subsidiary aim found

was to manage discipline problems of the pupils.

• Means to an end: Computer as a tool for pupils' rehearsal

The conception of the computer as a rehearsal tool has been largely described in the

literature, in fact, considering that drill and practice software are the most used type of

software (Cuban, 1997; Evans-Andris, 1995), it could be argued that rehearsal is the

most common aim that teachers have in mind when deciding to use computers and the

fact that they use drill and practice software is because it can be easily accommodated

to such aim.

185

Considering this argument about the teachers' aim to use the computer as a rehearsal

tool and recalling some of the teachers' statements:

TE: It is supposed that all what comes out of the software, the teacher will go through it in

the classroom. What happens is that perhaps now, instead of being ten days covering

the subject, [she] will do one session [in the classroom] and will bring them here [to the

lab]. She will put the software in the equipment and its over, you see. It will save a lot of

time and effort to her.

TM: The computer in it self is a stimulus, not perhaps so much value in the contents or the

way to expose the content. Because, in this sense, one uses it more as a complement

of [the classroom activities], in the case of delivering subjects. In this case it will be the

same.

It is possible to argue that, in fact, these teachers explicitly decided to use it as an aid

for efficiency, for performing their teaching better.

Similar aims for computer use were classified by Sandholtz, et al. (1997) as belonging

to an adaptation level of instructional evolution. They report that maths teachers, for

example, relied on computer homework for arithmetic and spent school time on

problem solving. Also, they report one of their teachers saying: "... we've been using

the software as a backup for each of the objectives" (p. 70). Further on, they report

that teachers "developed strategies for increasing the amount of material they could

cover during the school day" (p. 70).

Based on this evidence, the fact that this particular piece of software could appear to

be just drill and practice software does not reflect their real aims, which appear to be

to use the computer to support their teaching strategies and thereby to be more

efficient. It implies that these teachers identified a certain need of the user (pupil) to

rehearse the contents taught in the classroom and they decided that the software could

satisfy this need. On the other hand, they realised that they needed 'more time to

teach' and decided that this type of software could satisfy this need, providing them

with additional time to teach. In both cases, they considered it as a means to an end.

The question that remains is what sort of rehearsal tool did these teachers have in

mind while designing the software. To answer this question the particular

characteristics of the software are discussed in section 8.2.2. Nevertheless, the

interesting fact is that the 'Sequences Analysis' showed that these teachers related the

group of categories 'Aim' with the groups of categories 'Content Organisation' and

186

`Actions'22 only two times during the development process and no further relations

were found. This shows that when they referred to the aims of the computer, they

spoke at an abstract layer, without explicitly transferring their arguments to the design

of the software's characteristics nor to the actions that would be performed in the

classroom.

This finding, together with the results shown in the 'Participation Analysis' that the

teachers did use their professional background while speaking about aims, draws an

interesting picture of these teachers beliefs. First, it indicates that they conceived of

the computer as a professional resource (in so far they used their professional

background to define its aims) and secondly, that this consideration was done at an

`abstract' layer, without explicit connections to the 'real' classroom practice. This

picture is coherent with the findings of Alexanderson (1994) and Marton (1994), that

show that teachers are not necessarily aware of the strategies and tactics that they use

while teaching, so it is reasonable to think that they do not transfer their abstract aims

(or strategic planning) to the classroom practice and therefore, accordingly to Yinger

& Hendriks-Lee (1995), both, planning and classroom interaction are responsive,

compositional and situated (i.e. contextualised). This picture could explain why the

design of educational software has failed to incorporate the teaching dimension, in so

fauteachers would not have explicit awareness of these issues while participating

in a software design process.

Another finding is that, considering the overall picture, it can be argued that they did

not consider that the computer could have different aims depending on the software

that is being used or the context in which it is used. For example, it could be a

communication device (e-mail), a physics lab (simulation software) or a word

processor. This finding has its own implications, in so far it reduces the scope of

possible aims of the computer and confines it to particular roles during teaching, in

this case, rehearsal. In this sense, what is needed is to expand the teachers'

conceptions of computers, including the different uses of the machine that are

supported by different types of software.

• Means to an end: Computer as a control tool for classroom management

The use of the computer as a control tool for classroom management has been

reported in the literature before. For example Olson (1988), describing one of his

teacher's activities, says:

22 The actions that were found in these sequences were about the teacher interacting with the pupils
and the aims were about the software for the pupil.

187

He adopted a rota system, in which access to the computer was part of the
reward and punishment structure of his classroom

(Olson, 1988, p. 29)

And, as Olson (1988) says, one reason that could explain this use of computers is that:

The teachers were interested in the motivating power of computers: 'they
excite students, just the fact they're in the school'

(Olson, 1988, p. 109)

Similar descriptions were also reported as a strategy that teachers use at the adoption

level of instructional evolution (Sandholtz, et al., 1997) and have been reported in

other studies as well (for example, by Schofield, 1995). The reason for designing the

computer's aim for the teachers as a control tool, has been related to the high degree

of motivation that pupils have to use it (Lepper & Malone, 1987; Sandholtz, et al.,

1997), and so teachers use this characteristic as an aid to maintain discipline in the

classroom.

What is particular to these teachers is the fact that they recognised this characteristic

of the computer and they explicitly decided to use it for their advantage. For example,

Teacher E says that:

TE: ... Because the teacher is a teacher, you see? But the computer is not, if you don't

respect what it is telling there [the computer], you missed the opportunity of working

with the computer. You cannot work the game. It is part of the game. You loose the

most loved, which is to work with the equipment. That is, the computer its true, it can

not replace the teacher, but in this minute it is very motivating for the children, then it is

like the engagement tool of this.

This type of awareness was considered by Sandholtz, et al. (1997) as a characteristic

of teachers that are at the adaptation level of instructional evolution, they write:

Teachers now were able to use technology to enhance student motivation
and interest while decreasing the number of discipline problems.

(Sandholtz, et al., 1997, p. 71)

In this sense, these teachers saw a classroom management tool in the computer and

therefore considered it as a control tool. In this case the computer is used as an

instrument for this purpose, as opposed to considering the computer as a source of

new classroom management requirements (for example, technical problems).

188

This fact in itself is not new, it has been reported previously, but teachers' awareness

of this characteristic and their consideration of it during the software design process

enables us to argue the need for considering this issue while speaking about

classroom management during teacher training. This is a neglected area, Sandholtz, et

al. (1997) point out that, in the descriptions about classroom management found in the

`Handbook of Research on Teacher Education' (Jones, 1996) there is no reference to

computers, and that in the report on information technology in teacher education

(Willis & Mehlinger, 1996) or concepts of educational technology (Eraut, 1996),

there is no reference to classroom management issues.

• Means to an end: Computer as an instrumental or expressive tool

Olson (1988) identified additional aims of computers for teachers, he describes the

computer as an instrumental and as an expressive tool for teachers. In the former he

identifies two groups of uses, first, the ones where the computer was used as an

instrument to teach the subject. And second, the ones where the computer was used to

teach computer literacy together with the particular subject. In this case it was shown

that the computer was used in several instrumental dimensions that correspond mainly

to the first group identified by Olson (control tool, efficiency tool), but no data were

found that could support the claim that these teachers intended to use it to teach

computer literacy (second group).

Two reasons for this could be drawn, first that because of the technological evolution

(easy-to-use software) and the availability of computer-like games at home, the focus

of learning to use computers (or similar machines) is no longer considered to be an

issue for these teachers. They assume that children will know how to use them or will

learn quickly. Second, the software was designed for early stage users and therefore

the need to learn to use particular pieces of software based on vocational arguments

(Squires, 1996) was not relevant at this stage.

About the latter aim, the computer being an expressive tool, Olson (1988) argues that

by using computers, teachers express something about how they want to be seen as

teachers. As he says:

Mr Heiburg [one of his teachers] is not only interested in having a
computer in the classroom as an instrument for promoting computer
literacy ... but he is also using the computer as a way of expressing
something about himself as a teacher - about his interest in being modern
and up to date.

(Olson 1988, p.15-16, our brackets)

189

And later on he says that:

He [the teacher] constructed the using of a computer as a way of being
`modern', of expressing something about the kind of teacher he is.

(Olson 1988, p. 28, our brackets)

Olson's description of the computer as an expressive tool can also be understood in

terms of thinking about the computer as a catalyst for innovation (Hawkridge, et al.,

1990; McDonald & Ingvarson, 1997), in so far as Olson's teachers, who had accepted

the use computers in their teaching, were engaging in a process of innovation where

they wanted to experiment with new teaching methods and the computer provided

them with tools to implement a particular innovation (Olson, 1988, describes how in

his studies the goal of the innovation itself changed in the implementation process). In

this sense it is possible to argue that for them the innovation itself was used as an

occasion to project themselves as being avant garde, and the computer was a catalyst

to do so.

From this latter perspective, the two teachers participating in this research were also

engaged in a process of innovation, in so far as they were designing a piece of

software to help in their actual teaching practices. In this sense, they were trying to

use the computer to do their teaching better and thereby to support their innovation.

Within this perspective, the resulting design was not a catalyst for change, but a

support for the ongoing changes prompted by their needs. It is then possible to argue

that the catalyst for innovation in this case was the research process itself.

Although it is possible to find this dimension of expressiveness in this research, no

evidence was found that these aims where explicit in their design, so it can not be

argued that these are means to any explicit end.

8.2.1.2 Teachers actions with the computer

In general tell 	is, the teachers spoke very little about teachers' actions during the

design process, in fact, as presented in the 'Participation Analysis', only 2% of the

units of analysis were classified under this category and 49% of these units where

spoken by the teachers (i.e. 1% of the total). In the 'Sequence Analysis' it was shown

that they did not relate the design of actions for the teachers with the design of the

interaction with the computer. Rather, these teachers assumed that only the pupils

would be interacting with the machine. In doing so, they dissociated their role as

teachers from the use of the computers.

190

While speaking about their actions, these teachers designed two types of actions in the

computer lab: helping the students with the software and ensuring that the students

would follow the instructions given by the teacher (for example, that the groups were

rotating). They also rejected their role as 'subject teachers' in the computer lab.

• Computer helpers and classroom managers

An example of 'helping the students with the software' would be:

TM: The role of the teacher with the software is nothing else than being there. Helping [the

pupils] to get in or out of the software, because the rest of the work she will do it in the

classroom, and I think that's the idea and that's the way it should be, because, we

cannot think that it effectively will help us to cover subjects, because that's impossible.

It seems that Teacher M is expressing two issues, one is that in the computer lab the

teacher needs to worry about the use of the software, and the second is that her role as

subject teacher is in the classroom.

The other role, managing the classroom, is shown here:

TE: Yes, because the ideal is that the teacher here does like other things. That is, being the

guide means that she has to worry about, to start with, that it is done what should be

done, [this is,] using the software; that children are rotating; that many other things are

happening; that it is happening the fact that, that they have equal chance, all the

children, that is, he [the teacher,] is doing a lot of other things. That is, at no time can he

go home, because it is likely that the computers will burn, or that someone goes for

water and pours it over the computers or turns them over the desk. That is, teachers

cannot be absent,...

She is expressing the need for keeping control of the computer lab, that is, she needs

to be worrying about the pupils rotating and doing their work and not 'destroying' the

hardware. She is worried about classroom management issues that are different from

the traditional management requirements described by Jones (1996).

Similar teachers' roles, as classroom managers and helpers in the use of computers,

have been described in the literature. For example, Olson (1988), describes what one

teacher was doing, by saying:

Seat work does take some of the pressure off her as it engages attention,
leaving her free to deal with computer problems.

(Olson 1988, p. 104)

191

In a similar vein, Sandholtz, et al. (1997) describe these type of classroom

management issues as happening at the entry level of adoption of the technology.

They say that at this stage teacher's concerns are related to students misbehaviour and

attitudes, physical environment, technical problems (hardware and software) and

dynamics of the classroom environment.

These findings, as well as other reports, highlight the need for considering computers

as sources of new demands of management in the classroom (for example, technical

problems, source of misbehaviour, etc.). Therefore, there is a need for considering

classroom management issues while designing computer based teaching strategies

(Sandholtz, et al., 1997) and that is precisely what these teachers did.

• Teachers interacting with the computer

There are few reports where teachers manipulate the computer while teaching (one

example is Fraser, et al., 1991) and where teachers indirectly interact with the

computer while developing an activity in the classroom (for example: Dockteruian,

1991). Generally, teachers' actions are described as guiding the pupils while using a

piece of software (as it is described by Olson, 1988 and Sandholtz, et al., 1997). In

this latter type of activity three different teachers' actions are usually described:

helping the pupils to solve computer problems, helping the students to solve subject

matter problems and dealing with discipline problems. Categorising these actions

described in the literature it is possible to say that while using computers in a

classroom a teacher will be doing some of the following actions:

a) Directly interacting with the computer

b) Indirectly interacting with the computer

c) Solving computer problems

d) Helping the pupils to solve subject matter problems

e) Controlling the classroom discipline

As presented in the 'Contents Analysis' chapter (section 7.4.1) while describing their

actions, these teachers explicitly rejected the idea of direct interaction with the

computer and focused on actions (c) and (e). That is, they did not consider that they

should get involved with the contents in any particular way.

In fact, the 'Sequences Analysis' showed that the design of the teachers' actions were

not related to the characteristics of the software nor to the teaching strategies. Further,

these teachers rejected the idea of designing other actions for the teacher with the

192

software. They discussed this issue with the Psychologist and the Software Engineer

and decided to release the teacher from the interaction with the software. These

teachers said: "we want to be displaced by the computer", they did not want to be

required as teachers. They supported this claim arguing about the new pedagogic

tendencies, saying:

TM: ... we think that now that learning by doing is very important, and that the child is

constructor of his own learning and we are guides in this.

Here it is possible to see that, in this context, they saw themselves as 'guides' while

they saw the pupils as 'constructing' their own knowledge. Examining their

conception of 'guide' it can be shown that they define guide as 'classroom manager',

that is, to be worried about the discipline and lesson flow. Teacher E defines her

`guiding' role as:

TE: Being the guide means that she has to worry about, to start with, that it is done what

should be done, [this is,] using the software; that children are rotating; that many other

things are happening; that it is happening the fact that, that they have equal chance, all

the children, that is, he [the teacher,] is doing a lot of other things.

This is an important consideration while trying to understand these teachers'

intentions, because it shows what they understood as 'progressive' teaching methods

(Edwards & Mercer, 1987). This is, they believed that their role in the computer lab,

while using `constructivist' methods, was to manage the classroom and they did not

see their actions as scaffolding, counselling or tutoring the pupils.

This picture of teachers' beliefs could be a valuable source for further research in this

area, in so far as it shows a possible misconception about their roles while using

constructivist methods. This conception could mislead them to adopt rather passive

roles while implementing these new teaching methods and therefore undermine their

eventual effectiveness. The consequences of such a conception could also undermine

the possibilities of success of innovation programs because teaching would be

understood as classroom management only.

Considering that these teachers believed that pupils would be constructing their

knowledge while interacting with the computer without requiring any teachers'

mediation, and that they defined their role as to control the physical and technical

environment (helping with the discipline and computer problems), two questions

about the real implementation of such concepts arise:

193

The first question is whether their understanding of constructivism leads to such

beliefs or their beliefs lead them to understand constructivism in this way. In other

words, are their actions a consequence of the new learning theories or a response to

these new theories?. Some reports indicate that what teachers normally do are both

things, that is they accommodate their old practices to the new tendencies and also

change (when possible) some practices to follow these new theories (Edwards &

Mercer, 1987). Nevertheless, it must be remembered that this finding relates to what

these teachers said they would do and not to what they really would do in the

classroom or computer lab.

The second question is would they really only act as classroom managers or is it the

case that they simply did not express all the actions that they might take part in during

the lesson. This question can be examined based on some research about teachers'

practice, for example, in their report, Yinger & Hendriks-Lee (1995), say that

planning and classroom interaction are responsive, compositional and situated (i.e.

contextualised). In this case, these teachers were, in some way, planning a lesson

using the computer and designing software that could be used during such a lesson.

So, it is possible to say that these teachers, while using the software, would in fact do

other actions that depend on the context. Nevertheless, based on these findings, it can

only be argued that at a level of beliefs, their main concern was acting as guides and

managing the computer lab.

If we combine the finding that these teachers rejected the role of manipulating the

computer with the findings of the 'Participation Analysis', where it was shown that

these teachers expressed aims for the computer but did not design actions for the

teacher with the computer, then we can see something about their beliefs about

computers. This is, they considered the computer to be a resource, like a video that

pupils 'watch' (or use) during the lesson and they did not consider it to be a tool like a

blackboard that is used by the teacher. In this case the resource is interactive, in so far

as computers are regarded as interactive tools par excellence, but they believed that

this interaction should be exercised by the pupils only. This interaction was carefully

designed as to be a model of what teachers do in the classroom. For example, as

shown in Section 7.7, the teachers designed the feedback based on their teaching

practice, transferring their behaviour to the software. This places the use of computers

(from the teacher's point of view) close to the use of other media (like video or

television) and thereby it defines the computer as a resource and not as a tool for the

teacher.

194

Nevertheless, this resource was considered to be very special and, even, close to being

a 'real person', a 'colleague'. This would justify their trust in the computer taking

over some of their teaching roles (but not all of them!).

One possible explanation for this consideration could be that individuals' interactions

with computers are fundamentally social and natural, just like interactions in real life

(Reeves & Nass, 1996). Considering this idea, it is possible to argue that these

teachers treated computers as they treat people, in particular, as colleagues. This

argument is consistent with the overall picture presented and could throw light on the

reasons why these teachers believed that the computer could take over some of their

roles as it were a colleague.

Another possible reason for this belief is mentioned by Olson (1988), he stresses the

need of the teacher to be in control of the classroom and in this sense to be able to

master the technology. The fact that these teachers rejected the possibility of

manipulating the computer could be a consequence of their fear of not being able to

be in control of the situation due to possible hardware or software problems and this

would be added to the normal classroom requirements.

• Classroom and computer lab

The fact that these teachers argued that the subject contents should be taught in the

classroom and not in the computer lab differs from other reports, where the teacher

uses the computer while teaching the subject. For example, Fraser, et al., (1991)

describe the different roles that the teacher, students and the computer take up while

teaching with technology. The difference with this case is that in Fraser's report the

computer was brought into the classroom and it was operated by the teacher, who was

orchestrating the activity.

Also, in Olson (1988)'s report, some teachers taught the subject in the computer lab,

adopting the role of tutors. Quoting one of his teachers, he writes:

I like the idea of being able to sit down with a small group of students
who are working on a particular task while others are at the computer, or
even being at the computer and helping them individually. You are acting
as a tutor rather than a teacher at the front of the class. I don't want them
to see me as the ogre at the front of the class... I can offer them more of
me than in a traditional role.

(Olson 1988, p. 47)

Considering these examples and other reports (for example: Sandholtz, et al., 1997;

Schofield, 1995 and Watson, 1990), in both scenarios (the computer in the classroom

195

and the computer lab) there is evidence that teachers adopt different teaching

strategies while using computers to teach and that in both scenarios they do teach the

subjects. So, what the teachers in this case study designed corresponds to an extreme

position of considering the computer lab as a rehearsal room.

This distinction leads us to go one step further, differentiating the classroom and the

computer room as places with two different teaching and learning aims. For these

teachers, the aims in the classroom were that pupils learn new concepts and that they

teach these concepts. The aims in the computer lab were that pupils rehearse these

concepts and that teachers act as classroom managers only. These conceptions will be

analysed next.

• Means to an end: Class room and rehearsal room

This conception of the computer lab as a rehearsal room could explain the general

tendency described in the literature that software products that are most frequently

used in school are based on drill and practice activities (Cuban, 1997; Evans-Andris,

1995). In this sense, these teachers divided their tasks as teachers in two stages, first

teaching the subject and then rehearse the subjects that were taught. The first stage of

this strategy would be carried out by the teacher in the classroom and the second stage

would be carried out by the computer in the computer lab. In both stages classroom

management would be carried out by the teacher.

This description of their teaching strategy reveals that these teachers were not simply

transferring their instructional role to the computer nor adapting it to their established

curricular and pedagogical preferences as they might be at the adoption level of

instructional evolution (Sandholtz, et al., 1997). Rather, they designed the software to

use it effortlessly as a tool to accomplish real work as described by Sandholtz, et al.,

(1997) to happen at the appropriation level of instructional evolution. In fact, they

separated their roles as subject teachers, as rehearsal teachers and as classroom

managers and then designed the software so that the computer should take the role of

rehearsal teacher, while they would keep the roles of teaching the subjects and

controlling the classroom.

The teaching strategy that these teachers decided to use is very interesting because

they separated their teaching methods into two stages, one that could be interpreted as

being more constructivist and which would be used by them in the classroom and the

other, which could be interpreted as being more instructional (rehearsal), and would

be taken over by the computer in the lab. In this sense, it could be argued that these

teachers did what some other professionals do, that is, delegate the more labour

196

intensive work to the computer (for example, doing calculations). The difference in

this case is that this more labour intensive activity not only involves the computer, but

also the pupils. This key difference lead us to question the necessity of having a

`rehearsal room' where pupils carry on this more instructional activity.

Another question that this type of design raises is whether software designers should

acknowledge this role of the computer and use it as an advantage to design software

that could then be used as rehearsal, or should they try to place the computer into the

classroom and use it as a Trojan horse as defined by Olson (1988):

Good software is a Trojan horse- an appealing new package inside of
which is the germ and challenge of innovative practice.

(Olson 1988, p. 115)

Answers to these questions are not clear yet, so far research reviews do not support

the proposition that any one particular teaching style is more effective than another

(Sammons, Hillman, & Mortimore, 1995). This implies that if software is used as a

Trojan horse to change 'the teaching methods' in general, it is not possible to be sure

that the new style will be better than the old one. These findings show a more focused

possibility, that is, if software is designed to be used as a well conceived rehearsal

tool, that could help teachers to perform some of their specific teaching routines. In

this sense, from an innovation perspective, such a tool would be 'grafting the new on

the old' (Huberman, 1992), in so far it would be designed for similar purposes

(rehearsal) but using different methods.

Leaving such hypothesis to be investigated in further research, what can be observed

here is the fact that these teachers defined a particular role for the computer and that

they think that the computer could help them in this role. Then, it could be argued that

during the design process, these teachers were trying to answer the following

question:

Given that I am expected to maintain order and get students to learn
essential skills, knowledge, and values, how will these machines help or
hinder my mission?

(Cuban, 1997, p. xii)

And they decided that the computer could help them in the rehearsal role during their

teaching. In this sense, these teachers tried to give one answer to this particular

question.

197

8.2.1.3 	Pupils activities in the software

Pupils' actions were designed in this case as respondents to the software's questions,

similar to some pupils' actions described as happening in a classroom without

computers (for example: Hammersley, 1990; Woods & Jeffrey, 1996). The 'Contents

Analysis' showed that the main type of action designed for the pupil was to answer

the questions of the software and, further, the 'Sequences Analysis' showed that

during the design process the pupils' actions category was frequently related with the

software interaction categories.

In order to analyse this design, the software interaction and the classroom activities

can be separated. For example, looking at some reports found in the literature about

alternative actions of the pupils or teachers while using computers in the classroom, it

is possible to find that activities are described in these ways:

• where the computer is used to organise and guide the activity but pupils are not

necessarily interacting with it (Dockterman, 1991)

• where the teacher uses the computer while pupils watch the software and

participate in an activity taking different roles (Fraser, et al., 1991),

• where the pupils take part in a project in which the computer is used as a tool to

analyse information and produce reports (Sandholtz, et al., 1997),

• where the computer is used as a source of information that can be analysed

(Olson, 1988),

• where the computer is used by the pupils as a tool to construct ideas (Laborde,

1995).

These examples refer to descriptions of classroom activities rather than to particular

types of software interaction. The activities in the classroom are not necessarily

conditioned by the particular design of the software, and the same piece of software

could be used to implement different types of classroom activities.

Two different issues can also be identified in this research and need to be considered.

First, the fact that these teachers did not design any other type of interaction with the

software, and second, the type of activities designed for the lesson in which they

would use the software.

Related to the former, it appears clear that they wanted the pupils to spend their time

responding to the software's prompting. Therefore it could be argued that they wanted

the pupil to interact with a drill-and-practice like software. Looking at this issue from

a broader perspective, the rationale for this design can be understood as a

198

consequence of the their conception of the use of the computer as a rehearsal tool for

the pupils that was discussed in the previous point.

Related to the latter, it is possible that they were designing a piece of software only

and they did not mention the other classroom activities that would happen while using

the software. So, based on this evidence, it is not possible to say that these are the

only activities that pupils would be carrying on during the lesson. On the contrary, in

some dialogues they refer to group based activities (reported in Section 7.4.8), pupils'

rotations and other activities that could be used to argue that pupils would be doing

other things as well. Nevertheless, these activities were not described during the

design process.

It is possible to say that what these teachers were doing was to design a tool for

pupil's rehearsal only, and therefore, pupils actions described in this study allow us to

draw the false image of 40 pupils watching the computer screen and responding to the

software. This was not actually possible anyway because the computer lab of the

school where these teachers worked at the time of the study had only 7 computers for

40 children that would take part in a lesson.

Analysing the overall design of pupils' actions, it was possible to see that both

teachers wanted the pupils to construct their knowledge, they said "we think that now

learning by doing is very important, and that the child is constructor of his own

learning". In this sense it is possible to argue that they believed that knowledge is

"something that children must construct for themselves and less as something that can

be transferred intact" (Sandholtz, et al. 1997, p.47) describes this perspective as

corresponding to the invention stage of instructional evolution in the use of computers

in education.

The apparent contradiction here is the way in which these teachers wanted to imple-

ment their beliefs, which is closer to instructional methods. But, as it was mentioned

previously, from these teachers' point of view, this implementation is coherent with

their operational definition of constructivism. This highlights the need for considering

that there are at least two different perspectives of analysis: what these teachers be-

lieved including their interpretation of certain theoretical propositions, and the theore-

tical propositions themselves, which could have different operational definitions.

199

• Summary of the discussion

In summary, the evidence suggests that the teachers held the following beliefs:

• That the classroom and computer lab have different teaching aims. The former is

to teach new concepts and the latter to rehearse these concepts.

• That computers would help them to perform particular tasks of their overall

teaching strategy (in this case rehearsal) and therefore computers are considered to

be an aid for efficiency.

• That computers bring new challenges to the normal classroom management

requirements, and they can be used to control the discipline (it enters the reward

system of the class).

• That while using computers they need to concentrate on helping students to use

the software and controlling the discipline, and they do not interact with the

software. This is, they perform a role of classroom mangers only.

• That pupil's would act as respondents of the software's questions, but this does

not imply that they could do other activities during the lesson.

• That innovation can be supported using computers as resources for teaching

which are tools for the pupils.

Some of these beliefs were previously reported in the literature, but the fact that they

are presented together as a model of what these teachers believed about the use of

computers enables to have a complete picture of the reasons why they constructed

such use of the computer. It is not argued here that this is the 'right' way to use

computers to teach, but the interesting issue is that the computer is being used as a

professional tool, perhaps poorly used, but the challenge of improving such use is for

both, the educational software designers and the teachers.

These findings constitute a rich source of information for the areas of software design

and software evaluation. For the former area, it enables the designer to position the

computer in a certain teaching strategy that teachers are likely to implement and

therefore use the software.

For the latter it throws some light on what teachers believe about the software that

they will use and enables us to understand the perspective of analysis that teachers

would be using while evaluating or selecting a piece of software.

A comparison with the stages of instructional evolution in technology rich classrooms

presented by Sandholtz, et al., (1997) shows that these beliefs have correspondences

with beliefs at each of the four levels of entry, adoption, adaptation and invention.

200

This configuration of their beliefs does not correspond to observed uses of the

technology in the classroom. So, it is not argued that these teachers would use the

computer in the same way as they believed it could be used. But, it can be argued that

these beliefs can be used to understand the underlying reasons why a teacher would

perform particular actions in the classroom, for example the ones described by

Sandholtz, et al., (1997). In this sense, it could be said that these teachers' beliefs

show a 'potential state of instructional evolution'. In order to analyse their 'real' state,

a different piece of research would be needed (i.e. classroom/computer lab

observation).

Finally, this opportunity to characterise what these teachers believed could be very

useful for teacher trainers, in so far using this information they could be able to

understand what teachers need to expand or change and thereby facilitate their

instructional evolution towards an 'appropriate' use of Information Technology23.

8.2.2 	Issues about the characteristics of the software designed

This section is aimed at understanding the reasons that could explain the characteris-

tics of the software that these teachers designed. In this framework, the description of

the particular software designed is not the focus of this analysis, in so far this research

was not aimed at producing a piece of software neither was it intended that this piece

of software could serve as a model of the type of educational software that should be

designed. Rather, the focus of the analysis here is what these teachers believed about

educational software that lead them to design such characteristics and thereby to

understand some educational software dimensions that they considered to be special.

The 'Contents Analysis' showed that, in general terms, these teachers designed the

software focusing on issues that were closer to the design of a lesson and without

much consideration of technical issues like human-computer interface design (for

example: Laurel, 1990) (dialogue boxes, menus, icons, etc.) or special functions

(printing, calculating, navigational aids, etc.). This finding is coherent with the overall

picture presented until now, that is, teachers were planning a lesson that could be

carried on primarily by the software.

The 'Participation Analysis' showed that the units corresponding to the group of

categories of the branch 'Characteristics of the software' were the most frequently

spoken units during the design process. In fact, 78% of the units of analysis found

23 It could also be used to characterise the 'Zone of Proximal Development', or their current state of
internalisation of Information Technology (Wertsch, 1985).

201

were classified in these categories and these two teachers spoke 50 % of these units.

The group of categories that contains the most frequently spoken units was 'Interface

Element', it represents 26% of what was spoken during the overall software design

process. This fact by itself shows the time invested in designing the characteristics of

the software, particularly what they considered to be the interface elements of the

software.

The 'Sequences Analysis' showed that some of the groups of categories were

frequently related to each other for example: 'Browsing' and 'Teaching Strategy'

(996 sequences of these two units were found), 'Interaction' and 'Actions' (1029

sequences of these two units were found) and the three unit sequences 'Interactions',

`Actions' and 'Subject Areas' (63 sequences of these three units were found). Also it

showed that the group of categories 'Content Organisation' was related to two other

groups of categories (`Subject Areas' and 'Browsing) acting as a link between these

categories.

As shown, analysing these findings as isolated pieces of information is limited in so

far it enables to see just one dimension of the data and does not provide an answer to

questions like:

• what were the teachers' intentions while designing the characteristics of the

software ?

• why did these teachers speak so much about 'Interface Elements' ?

• why did these teachers speak so little about 'Subject Areas' ?

• why did they combine the groups of categories 'Browsing' and 'Teaching

Strategy'?

• why did they combine the groups of categories 'Interaction', 'Actions' and

`Subject Areas'?

In order to answer such questions the three analyses together were needed to build up

different layers of information. That is, combining the quantitative findings

(Participation' and 'Sequences' analyses) with the qualitative findings (`Contents

Analysis'), it was possible to construct new meanings that provide a deeper

understanding of what these teachers were designing. These meanings are:

The classroom atmosphere in the software. Looking at the meanings of the

groups of categories 'Interface Elements' and 'Content Organisation' described in

the 'Contents Analysis' it was found that they contain the descriptions of the way

in which these teachers intended that the contents should be presented to the

pupils, that is, the design of a story that has the subject areas embedded. In this

202

sense, the atmosphere of the classroom acts as the link between the other

dimensions of the lesson (pedagogy and learning).

• The pedagogy in the software: Looking at the meanings of the groups of

categories 'Browsing' and 'Teaching Strategy' described in the 'Contents

Analysis', it was found that they present the way in which these teachers

implemented the pace of the lesson, that is, the way in which the software enables

the pupil to follow the contents.

• The learning dimension in the software: Combining the meanings of the groups

of categories 'Interactions', 'Actions' and 'Subject Areas' it was found that in

these categories they were designing the way in which pupils would learn while

using the software.

These new meanings provide a basis for understanding what these teachers were

really designing and the reasons why they designed the software as they did. In this

sense, they show the links that these teachers constructed between their teaching

strategies and the characteristics of the software designed.

As mentioned before, these findings should be interpreted as what these teachers

believed about educational software that would be used by children aged 4 to 6. That

is, the particular characteristics of the software were designed for children that have

such age and therefore that have particular learning potentials and requirements.

Therefore the relevant dimensions of these findings are not the particular

characteristics of the software, but the links that these teachers defined between the

software's characteristics and the particular dimensions of teaching.

8.2.2.1 The classroom atmosphere in the software

The teachers decided to embed the curriculum contents in a playful story, where

pupils could browse through this story, following the instructions given by a character

in the software. They organised the contents dividing them into levels of difficulty

and differentiating the types of contents (in this case different basic skills). The

resulting design was represented as a matrix in which the rows organised the

progression of different levels of difficulty and the columns organised the different

types of contents. In this matrix, users could browse through the cells accordingly to

their achievement and each possible path would constitute a coherent story for the

pupil.

This section will analyse the reasons why these teachers decided to present the

curriculum contents through a story and why they decided to implement these

particular characteristics in the story. While doing this, it will draw on other studies

203

that show that it is a common strategy used by primary teachers, and that in doing so

these teachers transferred their role as 'story tellers' to the software.

The fact that these teachers decided to use a story to embed the contents is largely

described in the literature as a common strategy used by teachers in the classroom as

a way to 'bring home' to the child the contents of the curriculum (Woods & Jeffrey,

1996), and establish 'common knowledge' (Edwards & Mercer, 1987). As presented

in Section 7.3.2, the particular dialogue were they proposed to use this strategy was:

TM: Hey, and what if we invent a story and the child develops basic skills through the

narrative of the story ?

TM: For example, the little Red Riding Hood, and there she goes [to visit her grandmother],

because almost all children know little Red Riding Hood, then he [the user] has to put

apples into the basket [of little Red Riding Hood], and she goes walking to her grand

mother's house, and she goes into the house.

Here Teacher M is proposing to use a known story ("almost all children know...") and

that the exercise ("putting apples into the basket") is embedded into the story's flow.

In this sense, these teachers decided to use the same strategy in the software and

designed it so that users should be immersed in the story and placed as protagonists of

the activities, being able to move and touch all the elements presented in the different

scenarios of the interface and having a dialogue with the character that prompted

exercises and guided them through the software. The difference with teachers'

traditional practice is that, in this case, the story would be told by the computer, not

by the teacher.

While using a story, these teachers used the software as a way to create a 'world' in

which the user is immersed24, rather than providing only a model of the world that the

user can manipulate. In the former users get cognitively involved in the story because

of its motivation (as described by Lepper & Malone, 1987), in the latter they are

outside observers and have access to this world, but are not 'inside' it, they

manipulate the model but do not interact within the model.

The story was designed as to happen in a similar environment to the one known by

the pupils. In fact, during the design process these teachers emphasised that the

scenarios should resemble their real social and geographical environment of the

24 In this sense what teachers designed follows the spirit of Virtual Reality environments, but without
the technical features that enable the user to really 'live' the situation.

204

children, they rejected showing animals or landscapes from other countries (from

Africa for example). This emphasis, on using known images and realistic situations,

could have several explanations, such as:

These teachers saw an opportunity to bring their neighbourhood into the

computer, perhaps expecting that the children would feel 'proud' of seeing their

own world in the computer in contrast to images of foreign scenarios that are

represented in imported software.

These teachers tried to copy the social environment in which the software is

supposed to be used, placing instruction within 'authentic' context that mirror

real-life problem-solving situations. In this case these teachers would have been

trying to build a model of a situated cognition approach (Brown, et al., 1989) in

the software, trying to give the children direct and concrete experiences that

resemble real world situations, just as described by Edwards & Mercer, (1987)

that 'progressive' teacher do.

• These teachers tried to build a shared mental context or image, and thereby enable

the pupils to create common knowledge or shared understandings between the

children and software (similar to the definition found in Edwards & Mercer,

1987).

It is not argued here that this software is the right implementation of these intentions

but it is possible to argue that these teachers may have had in mind a combination of

these ideas while designing the story in the software. In fact, these teachers spent

large amounts of time speaking about the characteristics of each scenario that was

proposed by the graphic designer. Their peinianent critique was related to the fact that

the images should be realistic and be a representation of their environment.

The progression through the story was designed considering the possibility of

different navigational paths as a result of the pupils' levels of achievements. That is,

using a matrix structure, they designed the software so that the user would follow

different paths depending on their perfoimance, and each of these paths would

constitute a coherent story. This organisation of the contents was discussed at length

during the design process and these teachers emphasised each time that the contents

should be organised as a story with multiple paths, as opposed to more curriculum

oriented organisations that were proposed by the Psychologist and the Software

Engineer.

205

Similar software design principles are described in the literature as the possibility that

technology gives to individualise instruction (Sandholtz, et al., 1997) where students

work through the material at their own pace, and in this case, also depending on their

own performance. Comparing this design with traditional drill and practice software,

the difference in this case is that the software was organised in such a way that each

pupil should be able to finish with a coherent story, in doing so, these teachers were

worried about the time available for the lesson and pupils' sense of achievement

(similar to what Woods & Jeffrey, 1996, describe as a common strategy used by

primary teachers).

Looking at the design of the character in the story, it could be said that it provides the

possibility of a more 'traditional' dialogue between the computer and the pupils,

creating a sense of involvement of the user in the situation (similar to some primary

teachers' strategies described by Woods & Jeffrey, 1996). Further on, this character

was designed to provoke sympathy in the user, looking for an affective relation (as

Cooper & McIntyre, (1995) describe that teachers also relate to their pupils). This can

be seen while Teacher E describes the need of a narrator saying:

TE: But, I thought that we must have in the software a narrator. A fixed narrator in charge of

telling [the story], a narrator that would engage with the children, that would be very

meaningful for them, very contextualised

In this description it is possible to interpret that while designing this story these

teachers intended to replicate a 'classroom atmosphere' in the software, transferring

their role of 'story tellers' to the character of the software.

In a way, this type of design follows the principles of software described as tutor

(Graesser, Person, & Huber, 1993; Reusser, 1993) or as adaptive (Laurillard, 1993),

that accommodates its next action to the user's previous answer, giving meaningful

feedback. In this case, if the matrix that organises the contents and the navigation pos-

sibilities had more cells, the software could have been classified under this category.

As mentioned in the previous section, the intention of these teachers could be seen as

providing a tutor (or 'colleague') for the students in the software, that could

implement the specific behaviours and actions necessary for a learning-teaching

exchange to take place (in this case rehearsal), thus delegating to the software what

Leinhardt, et al. (1987) call the 'support routines'.

206

Skill I
Level 1

Skill 1
Level 2

Individual screens of
the software

Start

Skill 3 Skill 2
Level 2 Level 2

Skill I
Level 3

Skill 2
Level 3

Skill 2
Level 4

Skill 2
Level I

Skill 3
Level I

Skill 3
Level 3

8.2.2.2 The pedagogy in the software

The 'Participation Analysis' showed that the teachers did use their professional

background during the design of the groups of categories 'Browsing'. The 'Sequences

Analysis' showed that while designing the software these teachers consistently related

their teaching strategies with the design of the browsing characteristics of the

software. This section discusses this relation and will show that these teachers saw the

navigation of the software as the main 'pedagogic' dimension of the software.

To start this discussion it must be remembered that in this research the group of

categories 'Browsing' was defined as the dynamic sequence of contents that will be

displayed while the user is advancing through the different stages of the software. In

this sense, browsing can be understood as the contents' presentation strategy

embedded in the software. On the other side, the group of categories 'Teaching

Strategy' was defined as discussions about behaviours of the software that relate to

the teaching conceptions of these teachers.

In the qualitative analysis it was shown that during the design of the browsing

strategy the teachers had a breakdown with the other members of the development

team. After several discussions, the teachers' model of browsing was accepted, and so

the final browsing strategy was (same as figure 7.5):

Figure 8.1. The final browsing structure of the software

Looking at what was designed as the browsing structure of the software, it is possible

to say that while designing it, the teachers were trying to design the sequence of

contents that each user would be able to learn or rehearse. They were planning a

teaching sequence, and determining the circumstances under which certain contents

should be taught or not. It was not simply a matter of organising the contents and

enabling the users to be able review all of them. On the contrary, they designed it

207

taking into account that the user would be learning and therefore the browsing

strategy was associated with teaching strategies.

In fact, the resulting design can be understood in terms of some reports about the way

in which teachers normally organise their teaching (without computers). For example,

Hammersley, (1990) writes:

The lesson as presented by the teacher is pitched at a certain level of
'difficulty' according to the co-ordinate position of the class in relation to
age and ability.

(Hammersley 1990, p.47)

Transferring this lesson design to the software, it could be said that it was designed as

to have the possibility to be 'pitched' at several levels of difficulty (at each cell of the

matrix) and these levels of difficulty would be accessed by the users accordingly to

their performance (the pupil would work on a 'cell of the matrix'), responding

automatically to the 'co-ordinate position' of each pupil. In relation to this type of

classroom organisation, Hammersley (1990) argues that:

This pre-setting is designed not only to ensure that pupils are taught
something 'new', that they 'keep moving', but also that they have the
resources to understand what the teacher is to teach.

(Hammersley 1990, p.47)

These teachers solved some of these problems by designing a special browsing

strategy in the software, but they still had to ensure that the pupils would be able to

browse through this structure. Therefore they had to design the way in which the

software should 'guide' the pupils through it. In Hammersley (1990)'s words:

However, despite this pre-setting, teachers have continually to check that
the pupils do understand what is being taught. The teacher's control and
development of lesson-topic constitutes the most important source of
clues to what he is asking for.

(Hammersley 1990, p.47)

In order to ensure this condition, they addressed the following issues which were

classified under the group of categories 'Teaching Strategy' and reported in section

7.7:

• Checking that pupils did understand, and what to do if the did not. In this case, the

software's response to a wrong user's answer. They discussed whether the

computer should teach the users the right answer or give them clues and ask

again. That is the type and content of the feedback for the user.

208

• The development of the 'lesson': In this case: conditions for the user's progress

through the software, that is, under which conditions should users step into a

higher level of difficulty.

• The 'control' of the lesson. The software's response if the user starts to play

instead of following the instructions.

This is, in the group of categories 'Teaching Strategy' it is possible to find additional

teaching strategies that complement the design of the browsing strategy of the

software.

The way in which these teachers designed the software to implement these

dimensions is not what constitutes the interesting finding, in so far they continued

applying their 'normal' teaching strategies to solve them. What is interesting is the

fact that these dimensions of teaching were considered to be part of the browsing

characteristics of the software. That is, they embedded their teaching patterns into the

way in which the software guides the user through the contents.

This shows not only that these teachers believed that the computer could in fact guide

the user and perform some of their roles, but also the relevance that the browsing

strategy has while designing educational software. In this sense, these teachers

implicitly identified this dimension and designed it to copy their behaviour or

`expertise'.

About the type of role delegated to the software through the browsing strategy, in this

case the role is closer to what is defined by Leinhardt, et al. (1987) as the exchange

routines, that is, the way teachers enter into dialogue with the pupils, the way teachers

pose questions to the students or give feedback to them. Looking at this issue from a

different theoretical perspective, the teachers' design of the browsing strategy could

be seen as a style of teaching where the software negotiates the learning outcomes

with the pupils, that is, the software would let them go at a higher level of difficulty

only if they gave the right answer to the software's prompting, thereby controlling

what could be learned next. This style of teaching is similar to what Cooper &

McIntyre, (1995) defined as an 'Interactive' style of teaching. This interactive style is

contrasted by Cooper & McIntyre (1995) with a model of teaching where pupils are in

control of what they want to learn, which they call the 'Reactive' style of teaching.

209

8.2.2.3 The learning dimension in the software

The 'Participation Analysis' showed that the teachers did use their professional

background for the design of the groups of categories 'Interaction' and 'Actions-

Pupil'. Coincidentally, during the 'Sequence Analysis' it was shown that the

categories 'Interaction' and 'Actions' were frequently related to each other, that is,

they were often referred to consecutively in the data. Further, the actions designed

were mostly of the pupils interacting with the computer. The fact that these two

categories were found frequently to be consecutive is not therefore surprising. In the

same analysis it was also found that they related these two categories with the group

of categories 'Subject Areas', which configures an interesting picture in so far as it

indicates that these teachers designed the interactions and the actions of the pupils

while focused on the contents to be learned.

In general terms, these teachers designed that the pupil should act as a respondent to

the software's questions, that is, they assumed that the pupils would participate in a

playful interaction with the computer that had the pattern of a guessing game (as

Edwards & Mercer, 1987 describe that 'progressive' teachers plan their lessons) and

that the dialogue with the computer would be based on questions, answers and

feedback (as described by Hammersley, 1990 to happen in a normal classroom). The

type of questioning that they designed in the software was closer to the sort of

recitation questions (as defined by Gall & Artero-Boname, 1995) in so far as the

pupils were required to 'execute' exactly what the software was asking them to do.

The fact that these actions (groups of categories 'Actions' and 'Interaction') were

combined with the group of categories 'Subject Areas' as shown in the 'Sequences

Analysis', enables us to say that these teachers were designing the way in which the

contents should be presented to the user. That is, they designed the way in which the

pupils should interact with the contents and eventually learn them.

From this perspective, it could be said that these teachers believed that the process of

learning, or rehearsing in this case, would take place during the pupil's answering of

the software's questions.

Looking at the type of interaction designed and the actions of the pupils it is possible

to understand the learning procedure that these teachers had in mind while designing

the software, that is, the way in which they believed that learning takes place. Some

evidence that shows the general framework of this model was already presented in

previous sections of this chapter, particularly when teachers explained that "learning

by doing is very important, and that the child is constructor of his own learning and

210

we are guides in this". It is therefore possible to argue that teachers did not have a

behaviourist model of teaching and learning in mind, at least they did not believe that

they were using a behaviourist model.

It is possible to identify some characteristics implemented in the software that lead us

to say that these teachers had in mind:

a version of what is popularly called 'progressive' [teaching] - an
approach normally contrasted with the 'traditional' one, which relies
heavily on didactic methods and formal procedures

(Edwards & Mercer, 1987, p. 35, our brackets)

The principles of this 'progressive' approach are described by Edwards and Mercer

(1987) as:

1. Setting up conditions which they believe would allow children to discover
things for themselves.

2. Planning their teaching to include activities which would give children
direct, concrete experience, and which would require them to act, not just
listen, read or write.

3. Attempting to refer to children's wider out-of-school experience when
planning curriculum topics (in the sense of 'general knowledge', but
hardly ever by reference to the particular life experience of any one child
in the group).

4. By the use of techniques like the 'guessing game' question and answer
sessions, to elicit 'key' ideas from children rather than informing them of
these directly.

5. Never defining (for the children) the full agenda of any activity or lesson
in advance.

6. Not defining explicitly (for the children) the criteria for successful
learning which would eventually be applied to what they had done.

(partial transcript of Edwards and Mercer, 1987, pp. 33-34)

This confirms that they were acting as teachers and modelling what they thought they

did as teachers25. In itself this is not an issue, but the fact that they tried to apply these

principles to the design of the software (with greater or lesser success) implies first

that they believed that the software should teach following these principles, and

second, that in fact learning could take place during this interaction.

• Summary of the discussion

In this section the characteristics of the software were analysed and it was shown how

these teachers constructed the software to resemble a lesson. This discussion leads us

to suggest that these teachers had the following beliefs about the software:

25 Given the data in this research and the period in which it was obtained it is not possible to know if
what they described during the design process was what they really did in the classroom.

211

• That the software is able to provide the required atmosphere for the teaching and

learning process to take place, using a story that engage the pupils and has the

required balance between fantasy and realism to provide 'common knowledge'

(Edwards & Mercer, 1987) between pupils and software.

• That the software should have a browsing structure that enables it to individualise

instruction, providing self 'pitching' mechanisms and the required feedback for

the pupil. So, the pedagogy would be determined by the browsing of the software

and each pupil would be able to do what (s)he should and could do.

• That the learning occurs during the interaction with the software and that this

interaction should be designed following accepted principles and practices of

teaching.

While discussing these beliefs it was shown that these teachers designed the software

applying their strategies of teaching and embedding their learning conceptions. In

doing so, they were prompting the need for considering such dimensions during the

design of educational software. Further, through this discussion it was possible to

identify in which dimension of the software such elements should be implemented.

Finally, considering these three dimensions it is possible to build the model of

educational software that these teachers had and also it is possible to understand the

reasons why they build such a model.

8.3. METHODOLOGICAL PERSPECTIVES

From a methodological perspective, there are three areas to discuss, the definition of

this research as a case study, the systemic network defined to create the categories of

analysis and the combination of qualitative and quantitative methods of analysis.

8.3.1 	The case study

The discussion about the methodological framework of this research will be guided

by the description of the critiques to case studies reported by Yin, (1994) (see section

2.2 of the methodological chapter for details).

In the first place there are three general critiques of case studies: (i) the lack of rigor,

(ii) the provision of little basis for scientific generalisation, and (iii) they take a too

long time period and produce massive unreadable documents.

212

About the first critique, the relevant data for this research was a consequence of the

software development process, not the process itself. Considering the process, it was

carried out avoiding interventions of the researcher or of any other known source of

bias. In this sense, this piece of research can be defined as an observation of a natural

setting. About the resulting data, the process of transcription, coding and analysis was

done considering all the required additional processes (multiple revisions, re-coding,

validation, etc.) to be able ensure reliable data, and where it was not possible to do so,

the reader has been informed about the possible deviation (see the coding validation

and the description of the systemic network for evidence). Finally, about the possible

bias in the interpretation of the data, three different methods of analysis wiere used in

order to have a sort of triangulation of the conclusions to be drawn. Nevertheless,

despite the procedures taken to avoid subjectivity, while interpreting the findings the

researcher's conceptions and beliefs would necessarily be present, as Eisner, (1993),

says:

The relativity of my views pertain to the belief that knowledge is always
constructed relative to a framework, to a form of representation, to a
cultural code, and to a personal biography.

(Eisner, 1993, p. 54)

In the light of this inquiring paradigm (Guba & Lincoln, 1994), these findings and

implications depend on the questions that the researcher asked and therefore

constitute one possible answer that needs to be contrasted with other findings in order

to be generalised.

In fact, related to the possibilities of generalisation, in this case it is not possible to

generalise starting from the data itself, but some general claims can be made by

drawing on theoretical evidence that support these findings. For example: the studies

reported by Olson (1988); Sandholtz, et al. (1997) and Schofield (1995), the teaching

principles described by Edwards & Mercer (1987), including additional evidence

from Hammersley (1990) and Woods & Jeffrey (1996), the teaching practices

described by Cooper & McIntyre (1995); Jones (1996); Leinhardt, et al. (1987) and

Mayer (1995). These theoretical frameworks give the basis for defining a model of

understanding of educational software.

As regards the criticism regarding the long time and massive documents, this depends

on the analysis technique used, in this case the time period and the size of the end

document is about that of an average thesis.

213

From a different perspective, there are four areas to be addressed while discussing the

methodology: construct validity, internal validity, external validity and reliability.

With respect to the construct validity, in this case one possible source of bias were the

teachers involved in the process, therefore they were not informed about the final

purpose of the activity that they were carrying out. The raw data consisted of the

transcripts of the software design sessions which were reviewed and checked several

times. At a different level the evidence for this case were the data categorised in the

systemic network which was analysed from three different perspectives. In this sense,

it could be argued that the conclusions are based on different sources of information

as recommended by Yin, (1994).

About the internal validity of this case study, although this is intended to concern

only causal (or explanatory) case studies, where the investigator is trying to determine

whether event x led to event y, it is possible to argue that the comparison and contrast

of findings in the different methods of analysis provides evidence to argue that the

ideas and conceptions expressed are internally coherent.

The external validity of this case study has just been addressed and the possible

generalisations are based on other theoretical frameworks from different areas that

inform these findings. Because the model proposed here is sustained by these

theories, it is possible to argue that it can be generalise to some degree. Nevertheless,

it must be kept in mind that this research reports only one case involving only two

teachers.

The reliability of this case study has two dimensions, on the one hand it is not

possible to repeat the process that constituted the source of raw data. Even if the

participants would agree to repeat the 19 sessions of software design, they have

changed during time and because of their experience in this research they would

behave and (probably) think different. But on the other hand, if someone starts from

the raw data gathered (videos, sound records or the transcripts in case of starting at a

higher level) it is possible to replicate the analysis, so far all the data are present and

available on request. Further, the systemic network which guided the analysis, is

described and also available. Finally, the different analyses that were carried on are

presented as well as the evidence from which conclusion were drawn. Hence, at least,

this research can be considered reliable.

8.3.2 	The systemic network

As Bliss & Ogborn, (1979) suggest, a systemic network was used to give structure to

the data gathered and thereby to be able to analyse and discuss the codes used.

214

Several aspects of this network were already discussed in section 4.4, and there is one

further dimension that will be discussed here, this is, the construction process of the

network.

About the process of defining the systemic network, similar reports can be found in

the literature (for example: Bliss, et al., 1983), but the examples shown refer,

generally, to a process of convergence only (simplification of the network). In this

case, the process of definition of the network started using a rather theoretically

driven proposition which was then refined using an iterative process of coding

samples of the data and revising the consistency of the categories defined in the

network. As shown in the Systemic Network Chapter, the process of refinement had

two dimensions: (i) the qualitative one (that considers the concepts expressed through

the network, including the internal consistency and the general coherence) and (ii) the

quantitative one (expressed in terms of the number of end-nodes and level of

deepness of the network). The former process showed a convergence by the

redefinition and relocation of nodes and branches in the network. The latter, showed

first an increment (divergence), increasing the number of end-nodes and the level of

deepness and then the complexity decreased (convergence).

This consideration on the process of building systemic network could help other

researchers to differentiate both dimensions (qualitative and quantitative) and to

conduct the process of definition being aware of their existence.

8.3.3 	Qualitative versus quantitative analysis

The analysis of the data gathered and organised through the systemic network

consisted of three different processes:

• Participation analysis: Aimed at establishing individual participation profiles

during the development process, based on the calculation of the frequencies and

distributions of participation of each team member in each category.

• Sequences analysis: Aimed at establishing the inter-relations among the different

components of the software, based on the analysis of the patterns of sequences of

units in the data for the group and each team member.

• Contents analysis: Aimed at looking for the meanings expressed by the teachers

about the different dimensions of a piece of educational software.

The 'Contents Analysis' was used as the main set of evidence for the implications

drawn from this research, the 'Participation Analysis' was used to ensure all

member's participation and to ensure that teachers' participation was significant and

215

thereby validate the process. It also served to draw a profile of each participating

teacher, depending on his or her participation in different categories. That is, the

`Contents Analysis' showed the meaning and purpose of each category and the

`Participation Analysis' showed who was responsible for these claims, end therefore

for these meanings. The 'Sequences Analysis' was used to define new semantic

categories in the data, combining the ones initially defined in the network. These new

categories were used to support the claims shown in the 'Contents Analysis'. That is,

the three types of analysis were combined and cross referenced in order to give

internal validity to the research.

The use of qualitative or quantitative methods alone would have resulted in probable

misinterpretations or a lost of focus. This is, the participation analysis alone might

have lead one to argue that the software design process was dominated by one of the

teachers and the Software Engineer. This conclusion alone would have missed the

fact that some of the claims made by the other teacher were immediately accepted by

the group without discussion. The sequence analysis alone would not have been

enough to understand the reasons why these teachers combine certain categories.

Finally the meanings analysis alone would have failed to ensure that the claims

included were representative of what was said during the design process and thereby

the validity of the research might have been questioned.

The combination of qualitative and quantitative methods served a double purpose, on

the one hand it helped to focus the research analysis to relevant issues and also it

provided a way to triangulate the findings. In this sense, the combination of these

methods may have produced a more reliable 'picture' of what happened during the

software design process and therefore the claims and implications have greater

validity (Wegerif & Mercer, 1997).

8.4. 	IMPLICATIONS

In this research I have started from the position that it is important to give

consideration to the reality of use of educational software in order to design, develop

and evaluate software that can be used to support an innovation process which

engages the teacher and the school..

These teachers were in fact engaged in an innovation process because they were asked

to design a piece of software. In this sense, their activity in designing the software can

be understood as part of the design of an innovation that would be supported by the

software implemented.

216

The discussion within the design activities supports a view that the teachers expressed

some of their beliefs about information technology in so far as they wanted to use it in

their classrooms, therefore it was possible to construct a model describing their

understanding of information technology. This model describes only one instance of

their understanding of information technology, in so far as it was based only on what

they said and it seems reasonable to assume that they did not say everything what

they believed about information technology (i.e. they could understand it differently,

depending on the purpose or context).

This model of understanding of information technology has two dimensions, one

related to their conception of the role of the computer and the other about their

conception of software. These two dimensions have particular sets of implications,

which are:

• First, that the computer could be understood as an aid for teaching. The actual

environment in which most computers are used (computer lab) was considered to

be a separate place from the classroom. In this place the computer was used as a

control tool by the teacher and was conceived of as a resource for teaching that

acts as a rehearsal tool for the pupils.

• Second, that a prescriptive model of software for teaching could exist, which

considers at least three dimension of teaching practice: classroom atmosphere,

teaching strategy and learning strategy. Each of these dimensions should be

considered while designing the human-computer interface (scenarios and

elements), the browsing strategies of the software and the interaction with the

software, respectively.

This model of understanding of information technology is grounded in two sources of

evidence, first, the data collected in this research and second the evidence reported in

some other studies about common teachers' practices in the classroom, (i.e. their

strategies, routines, roles and some beliefs). This latter source of evidence expands

the theoretical framework of the thesis, covering not only the area of information

technology in education, but also the area of pedagogy. In this sense, this model of

understanding of information technology constitutes an interesting stand point for

further research that would look into the design of educational software from such a

perspective.

The combination of these two areas opens a third set of implications about the need

for cross-references between these two areas and in particular about the need for

considering such issues in teacher training programs.

217

Rehearsal of 	Teacher
these concepts Management

"41-110"
Exchange

and Support

Figure 8.2. Model of the role of the computer

Computer Room

,.---'''--- Learning new
conepts

Pupils ~. Teacher
Management

Support and Exchange

Classroom

Finally, it needs to be said that we draw implications and hence we do generalise, but

only tentatively in the full recognition that this work is based on a small scale study.

However the study does give rise to a number of research questions that were

mentioned in the previous sections and which can only be answered by further

research.

8.4.1 	Computer aided teaching (CAT)

In discussing the role of the computer in the classroom, these teachers indicated how

important for them the role of the computer as rehearsal tool is, it was the role that

they naturally picked-up and expanded on. They designed this role by integrating it

into a larger teaching strategy that separated teaching into two stages: learning new

concepts and rehearsing these concepts. As they themselves said, the former would

take place in the classroom, directed by the teacher and without the computer, and the

latter would take place in the computer room where the software would act as a

rehearsal environment and the teacher would take control of the discipline. This

model of use of the computer is represented in figure 8.2.

In this model the computer is acting as a resource for the teacher that helps him/her

carry out more effectively some of their current tasks. Some ground rules in this

model are that:

teachers do not interact with the computers,

the teacher will teach subjects in the classroom and not in the computer lab,

the teacher guides the pupil's construction of knowledge keeping control of the

students and solving computer problems, (s)he does not 'interfere' with the

contents to be learned (when working in the computer room, not when working in

the classroom)

218

• computers serve as tools for controlling the class that is they form part of the

punishment-reward system of the classroom.

Some of the individual elements of this model are not new, but the fact that these

teachers presented them as a coherent picture could imply two things: first, it could

give a sound explanation for the actual use of computers as drill and practice

machines and second it could be a starting point for re-considering the potential of

computers not only as learning tools (running learning centred software), but also as

teaching tools (running teaching centred software).

This case study provides evidence that at least these teachers consider that the

computer could be used as an aid for efficiency while it takes over the role of

conducting the rehearsal stage. So, it opens a window to consider the computer not

only as a Trojan horse (Olson, 1988) that triggers innovation and change in terms of

`better teaching' or as a 'cognitive tool' that provides an environment that is mind-

extending or as catalysing tools for intelligent and volitional learners (as defined by

Orhun, 1995 and Reusser, 1993), but also as a teaching tool, that helps teachers to do

their teaching better.

8.4.2 	Teaching centred software vs. learning centred software

Our analysis of what the teachers said during the design of the software leads us to

consider that a prescriptive model of 'teaching centred software' could be developed.

Apart from considering the particular characteristics of the software they designed,

what is relevant are the teaching dimensions that they implicitly or explicitly

addressed during the design process. These dimensions were 'Classroom Atmosphere

and Tone', 'Pedagogy', 'Learning Strategy' and 'Classroom Management'. This latter

dimension was considered to be the teachers' exclusive role. Further, through the

analysis of what they said, it was possible to identify the software characteristics to

which these dimensions were correlated and therefore could be implemented. Table

8.1 summarises this correspondence.

The implication in this case is that at least these four dimensions should be considered

while designing and implementing educational software. As a consequence, these

findings open new areas of research that could help to identify further dimensions of

the teaching practice that should be considered, and provide a starting point to design

how such dimensions could be incorporated into educational software.

Incorporating these dimensions into the design of educational software could lead to

implications for software evaluation, in so far as it could give structure and additional

219

theoretical frameworks for judging some characteristics of the software. Particularly it

could enrich the 'Perspectives Interaction Paradigm' proposed by Squires &

McDougall, (1994) for educational software evaluation, giving additional criteria for

evaluating the student-teacher interaction, that is, the kind of classroom interactions

and activities that might be fostered by the software.

Teaching Domain Software Design Domain ,
Classroom Atmosphere and Tone The 	human-computer 	interface 	elements 	(scenarios,

backgrounds, characters and particular functionality of

these elements) and the overall organisation of the

subjects.

Pedagogy: 	Contents provision, lesson

flow and control of the user's progress

The browsing strategy of the software and the response

to certain situations (for example, feedback on errors)

Learning Strategies or Theories Particular 	interaction 	with 	the 	software 	and 	user's

actions.

Classroom Management routines It was excluded from the software

Table 8.1. 	Correspondence between teaching and software design domains.

Even if the particular characteristics of the software designed could be considered to

be badly designed or ill implemented, the fact that these links between two theoretical

areas exist, constitutes an interesting finding of this research and as a case study, it

provides enough evidence to justify and promote further research in this area that

could help identify other links between teachers' roles and actions in the classroom

and the roles that a piece of educational software could (or should) have.

220

IX. 	REFERENCES

Adler, P. A., & Adler, P. (1994). Observational techniques. In N. K. Denzin & Y. S.

Lincoln (Eds.), Handbook of qualitative research (pp. 377-392). London: Sage.

Alexanderson, M. (1994). Focusing teacher consciousness: What do teachers direct

their consciousness towards during their teaching ? In I. Carlagen, G. Handal, & S.

Vaage (Eds.), Teachers' minds and actions: Research on teachers' thinking and

practice (pp. 139-149). London: The Falmer Press.

Anderson, A., Tolmie, A., McAteer, E., & Demissie, A. (1993). Software style and

interaction around the microcomputer. Computers and Education, 20(3), 235-250.

Ball, S. J. (1993). Self-doubt and soft data: Social and technical trajectories in

ethnographic field work. In M. Hammersley (Ed.), Educational research: current

issues (pp. 32-48). London: Paul Chapman & Open University.

Barret, M. (1995). Practical and ethical issues in planning research. In G. M.

Breakwell, S. Hammond, & C. Fife-Shaw (Eds.), Research Methods in Psychology

(pp. 16-35). London: Sage.

Baumgartner, P., & Payr, S. (1997). Methods and practice of software evaluation: The

case of the European academic software award. In T. Miildner & C. T. Reeves (Eds.),

World Conference on Educational Multimedia and Hypermedia. Calgary: Association

for Advancement of Computing in Education.

Berliner, D. C. (1995). Teacher expertise. In L. W. Anderson (Ed.), International

encyclopedia of teaching and teacher education (pp. 46-52). Oxford: Pergamon.

Bliss, J., Monk, M., & Ogborn, J. (1983). Qualitative data analysis for educational

research: A guide to users of systemic networks. London: Croom Helm.

Bliss, J., & Ogborn, J. (1979). The analysis of qualitative data. European Journal of

Science Education, 1(4), 427-440.

Boehm, B. W. (1988). A spiral model of software development and enhancement.

IEEE Computer(May), 61-72.

Bostock, S. J. (1996). A critical review of Laurillard's classification of educational

media. Instructional Science(24), 71-88.

Brooks, F. P. J. (1987). No silver bullet: Essence and accidents of software

engineering. IEEE Computer(April), 80-89.

221

Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of

learning. Educational Researcher(January-February), 32-42.

Bruce, B. C. (1997). Educational technology: Media for inquiry, communication,

construction, and expression. Journal of Educational Computing Research, 17(1), 79-

102 .

Chandler, D. (1984). Young learners and the microcomputer. London: Milton

Keynes, Open University.

Char, C., & Hawkins, J. (1986). Charring the course: involving teachers in the

formative research and design of the voyage of the mimi. In R. D. Pea & K.

Sheingold (Eds.), Mirrors of mind: Patterns of experience in educational computing

(pp. 211-241). Norwood: Abelex Pub. Co.

Chen, M. (1995). A methodology for characterizing computer-based learning

environments. Instructional Science, 23, 183-220.

Cohen, L., & Manion, L. (1994). Research methods in education (4th ed.). London:

Routledge.

Cooper, P., & McIntyre, D. (1995). The crafts of the classroom: Teachers' and

students' accounts of the knowledge underpinning effective teaching and learning in

classrooms. Research Papers in Education, 10(2), 181-216.

Cox, M. J. (1997). Identification of the changes in attitude and pedagogical practices

needed to enable teachers to use information technology in the school curriculum. In

D. Passey & B. Samways (Eds.), Information technology: Supporting change through

teacher education (pp. 87-100). London: Chapman & Hall.

Crook, C. (1987). Computers in the classroom: defining a social context. In J.

Rutkowska & C. Crook (Eds.), Computers, cognition and development (pp. 35-53).

Chichester: John Wiley & Sons.

Crook, C. (1991). Computers in the zone of proximal development: implications for

evaluation. Computers in Education, 17(1), 81-91.

Crook, C. (1994). Computers and the collaborative experience of learning. London:

Routledge.

Crook, C. (1998). Children as computer users: The case of collaborative learning.

Computers and Education, 30(3/4), 237-247.

222

Cuban, L. (1997). Foreword. In H. J. Sandholtz, C. Ringstaff, & D. C. Dwyer (Eds.),

Teaching with technology: Creating student centered classrooms. New York:

Teachers College Press.

DeGrace, P., & Hulet Stahl, L. (1990). Wicked problems, righteous solutions: A

catalogue of modern software engineering paradigms. New Jersey: Yourdon Press -

Prentice Hall.

diSessa, A. A., Hoyles, C., & Noss, R. (Eds.). (1995). Computers and exploratory

learning. London: Springer.

Dockterman, D. A. (Ed.). (1991). Great teaching in the one computer classroom. Tom

Snyder Productions.

Dreyfus, H. L., & Dreyfus, S. E. (1986). Mind over machine: The power of human

intuition and expertise in the era of the computer. Oxford: Blackwell.

Edwards, D., & Mercer, N. (1987). Common knowledge: Development of

understanding in the classroom. London: Routledge.

Eisner, E. (1993). Objectivity in educational research. In M. Hammersley (Ed.),

Educational research: current issues (pp. 49-56). London: Paul Chapman & Open

University.

Elbaz, F. (1990). Knowledge and discourse: The evolution of research on teacher

thinking. In C. Day, M. Pope, & P. Denicolo (Eds.), Insight into teachers' thinking

and practice (pp. 15-42). London: The Falmer Press.

Eraut, M. (1994). Developing professional knowledge and competence. London: The

Falmer Press.

Eraut, M. (1996). Concepts of educational technology. In A. C. Tujinman (Ed.),

International encyclopedia of adult education and training Oxford: Pergamon -

Elsevier Science.

Erickson, R., & Wilson, I. (1984). Making and using research documents of everyday

life in schools. In Sights and sounds of life in school: A reference guide to film and

videotape for research in education (pp. 39-63).

Evans-Andris, M. (1995). An examination of computing styles among teachers in

elementary schools. Educational Technology Research and Development, 43(2), 15-

31.

223

Evertson, C. M. (1995). Classroom rules and routines. In L. W. Anderson (Ed.),

International encyclopedia of teaching and teacher education (pp. 215-218). Oxford:

Pergamon.

Fatouros, C., Downes, T., & Blackwell, S. (1994). In control: Young children

learning with computers. Wentworth Falls: NSW: Social Science Press.

Fitzgerald, G. E., Bauder, D. K., & Werner, J. G. (1992). Authoring cai lessons:

Teachers as developers. Teaching Exceptional Children, Winter, 15-21.

Fontana, A., & Frey, J. (1994). Interviewing: The art of science. In N. Denzin & Y.

Lincoln (Eds.), Handbook of qualitative research (pp. 361-376). London: Sage.

Fraser, R., Burkhardt, H., Coupland, J., Philips, R., Pimm, D., & Ridgway, J. (1991).

Learning activities and classroom roles with and without the microcomputer. In 0.

Boyd-Barret & E. Scanlon (Eds.), Computers and learning Wokingham: Addison

Wesley & Open University.

Fullan, M. (1982). The meaning of educational change. New York: Teachers College

Press.

Fullan, M. (1992). Successful school improvement: The implementation perspective

and beyond. Buckingham: Open University Press.

Fullan, M. (1993). Change forces: Probing the depth of educational reform. London:

The Falmer Press.

Fullan, M. G. (1996). Implementation of innovation. In T. Plomp & D. E. Ely (Eds.),

International encyclopedia of educational technology (pp. 273-281). Oxford: Elsevier

Science - Pelgrum.

Fullan, M., & Stiegelbauer, S. (1991). The new meaning of educational change (2nd

ed.). London: Cassel Educational Limited.

Gall, M. D., & Artero-Boname, M. T. (1995). Questioning. In L. W. Anderson (Ed.),

International encyclopedia of teaching and teacher education Oxford: Pergamon.

Galvis, A. H. (1994). Ingenieria de software educativo. Santafe de Bogota, Colombia:

Ediciones Uniandes.

Gilb, T. (1988). Principles of software engineering management. New York: Addison

Wesley.

224

Graesser, A. C., Person, N. K., & Huber, J. (1993). Question asking during tutoring

and in the design of educational software. In M. Rabinowitz (Ed.), Cognitive science

foundations of instruction (pp. 149-172). Hillsdale: Lawrence Erlbaum.

Grossman, P. L. (1995). Teachers' knowledge. In L. W. Anderson (Ed.), International

encyclopedia of teaching and teacher education (pp. 20-24). Oxford: Pergamon.

Grunberg, J., & Summers, M. (1992). Computer innovation in schools: a review of

selected research literature. Journal of Infoilination Technology for Teacher

Education, 1(2), 255-276.

Guba, E. G., & Lincoln, Y. S. (1994). Competing paradigms in qualitative research.

In N. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (pp. 105-117).

London: Sage.

Hammersley, M. (1990). Classroom ethnography: empirical and methodological

essays. Philadelphia: Open University Press - Milton Keynes.

Hammersley, M., & Atkinson, P. (1983). Ethnography: Principle in practice. London:

Tavistock.

Hammond, K. R., & al., e. (1980). Human judgement and decision making. New

York: Hemisphere.

Handler, M. (1993). Preparing new teachers to use computer technology: Perceptions

and suggestions for teacher educators. Computers and Education, 20(2), 147-156.

Hawkins, J., & Kurland, M. D. (1986). Informing the design of software through

context-based research. In R. D. Pea & K. Sheingold (Eds.), Mirrors of mind: Patterns

of experience in educational computing (pp. 258-272). Norwood: Abelex Pub. Co.

Hawkridge, D., Joworosky, J., & McMohan, H. (1990). Computers into third-world

schools: Examples, experiences and issues. London: McMillan.

Hepp, P., Laval, E., Moenne, G., & Ripoll, M. (1996). Monitoring the 'Enlaces'

educational computer network. Education and Information Technologies, 1(1), 5-20.

Hepp, P., Rehbein, L., Hinostroza, E., Laval, E., Dreves, C., & Ripoll, M. (1994).

Enlaces' A hypermedia based educational network. In ACM Multimedia: The Second

International Conference on Multimedia, . San Francisco, California, USA:

Hinostroza, E., Hepp, P., & Straub, P. (1996). Un metodo de desarrollo de software

educativo. Informatica Educativa, 9(1), 9-32.

225

Hinostroza, E., Mellar, H., Rehbein, L., Hepp, P., & Preston, C. (1997). Disefto de

software educativo o software escolar ? Informatica Educativa, SHE, Colombia,

10(1), 57-73.

Hoyles, C., Noss, R., & Sutherland, R. (1991). Final report of the microworlds

project. London: Institute of Education, University of London.

Huberman, M. (1992). Critical introduction. In Successful school improvement: The

implementation perspective and beyond. Buckingham: Open University Press.

Hughes, J., King, V., Rodden, T., & Andersen, H. (1995). The role of ethnography in

interactive systems design. Interactions, 2(2), 56-65.

Hurst, P. (1983). Implementing educational change: A critical review of the literature

(EDC Occasional Papers No. 5). University of London, Institute of Education.

Johnson, D. C., Cox, M. J., & Watson, D. M. (1994). Evaluating the impact of IT on

pupils' achievements. Journal of Computer Assisted Learning(10), 138-156.

Jones, V. (1996). Classroom management. In J. Sikula (Ed.), Handbook of research

on teacher education (pp. 503-521). New York: Macmillan.

Kemmis, S., Atkin, R., & Wright, E. (1977). How do students learn? (Working Papers

on CAL No. Occasional Paper N° 5). Centre for Applied Research in Education,

University of East Anglia, UK.

Koedinger, K. R., & Anderson, J. R. (1993). Reifying implicit planning in geometry:

Guidelines for model-based intelligent tutoring systems design. In S. P. Lajoie & S. J.

Derry (Eds.), Computers as cognitive tools (pp. 15-45). Hillsdale: Lawrence Erlbaum.

Laborde, J.-M. (Ed.). (1995). Intelligent Environments: The case of geometry.

London: Springer.

Lajoie, S. P. (1993). Computer environments as cognitive tools for enhancing

learning. In S. P. Lajoie & S. J. Derry (Eds.), Computers as cognitive tools (pp. 261-

288). Hillsdale: Lawrence Erlbaum.

Lajoie, S. P., & Derry, S. J. (Eds.). (1993). Computers as cognitive tools. Hillsdale:

Lawrence Erlbaum.

Laurel, B. (Ed.). (1990). The art of human interface design. New York: Addison

Wesley.

226

Laurillard, D. (1990). Computers and the emancipation of students: giving control to

the learner. In 0. Boyd-Barret & E. Scanlon (Eds.), Computers and learning (pp. 64-

80). Wokingham: Addison Wesley & The Open University.

Laurillard, D. (1993). Rethinking university teaching: A framework for the effective

use of educational technology. London: Routledge.

Learning (1995). Learning with Software. In www: http://gwis2.circ.gwu.edu:80/

—kearsley/: Open Learning Technology Corporation Limited.

Leinhardt, G., Weidman, C., & Hammond, K. M. (1987). Introduction and integration

of classroom routines by expert teachers. Curriculum Inquiry, 17(2), 135-176.

Lepper, M. R., & Malone, T. W. (1987). Intrinsic motivation and instructional

effectiveness in computer-based education. In R. E. Snow & M. J. Fan (Eds.),

Aptitude, learning and instruction. Volume 3: Conative and affective process analyses

(pp. 255-296). Hillsdale: Erlbaum.

Lowther, D., & Sullivan, H. J. (1994). Teacher and technologist believes about

educational technology. Educational Technology Research and Development, 42(4),

73-87.

Mantovani, G. (1996). Social context in HCI: a new framework for mental models,

cooperation and communication. Cognitive Science(20), 237-269.

Marton, F. (1994). On the structure of teacher's awareness. In I. Carlagen, G. Handal,

& S. Vaage (Eds.), Teachers' minds and actions: Research on teachers' thinking and

practice (pp. 28-42). London: The Falmer Press.

Mayer, R. E. (1995). Feedback. In L. W. Anderson (Ed.), International encyclopedia

of teaching and teacher education (pp. 249-251). Oxford: Pergamon.

McConnel, D. (1994). Implementing computer supported cooperative learnin,..

London: Kogan Page.

McDonald, H., & Ingvarson, L. (1997). Technology: A catalyst for educational

change. Journal of Curriculum Studies, 29(5), 513-527.

McDougall, A., & Squires, D. (1995). An empirical study of a new paradigm for

choosing educational software. Computers and Education, 25(3), 93-103.

McNamara, D. (1994). Classroom pedagogy and primary practice. London:

Routledge.

227

Mellar, H., Bliss, J., Boohan, R., Ogborn, J., & Tompsett, C. (Eds.). (1994). Learning

with artificial worlds: Computer based modelling in the curriculum. London: The

Falmer Press.

Mercer, N. (1993). Computer-based activities in classroom contexts. In P. Scrimshaw

(Ed.), Language, classrooms and computers (pp. 27-39). London: Routledge.

Mercer, N., & Scrimshaw, P. (1993). Researching the electronic classroom. In P.

Scrimshaw (Ed.), Language, classrooms and computers (pp. 184-191). London:

Routledge.

Olsen, N. C. (1993). The software rush hour. IEEE Software, 10(5), 29-37.

Olson, J. (1988). Schoolworlds/microworlds: Computers and the culture of the

classroom. Oxford: Pergamon Press.

Olson, J. (1992). Understanding teaching. Philadelphia: Milton Keynes - Open

University Press.

Orhun, E. (1995). Design of computer-based cognitive tools. In A. A. diSessa, C.

Hoyles, & R. Noss (Eds.), Computers and exploratory learnin (pp. 305-319).

London: Springer.

Potashnik, M. (1996). Chile's learning network. Education and Technology Series 1

(2). Washington, D.C.: The World Bank.

Potashnik, M., Rawlings, L., Means, B., Alvarez, M. I., Roman, F., Dobles, M. C.,

Umaila, J., aliga, M., & Garcia, J. (1998). Computers in Schools: A qualitative

study of Chile and Costa Rica. Education and Technology Series: Special Issue.

Washington, D.C.: The World Bank.

Potts, C. (1993). A software engineering research revisited. IEEE

Software(September), 19-28.

Reason, P. (1994). Three approaches to participative inquiry. In N. K. Denzin & Y. S.

Lincoln (Eds.), Handbook of qualitative research (pp. 324-339). London: Sage.

Reeves, B., & Nass, C. (1996). The media equation: How people treat computers,

television, and new media like real people and places. Cambridge: Cambridge

University Press.

Reiser, R. A., & Dick, W. (1990). Evaluating instructional software. Educational

Technology Research and Development, 38(3), 43-50.

228

Reiser, R. A., & Kegelman, H. W. (1996). Computer software evaluation. In T.

Plomp & D. E. Ely (Eds.), International encyclopedia of educational technology (pp.

257-260) Oxford: Elsevier Science - Pelgrum.

Reusser, K. (1993). Tutoring systems and pedagogical theory: Representation tools

for understanding, planning and reflection in problem solving:In S. P. Lajoie & S. J.

Derry (Eds.), Computers as cognitive tools (pp. 143-177). Hillsdale: Lawrence

Erlbaum.

Sammons, P., Hillman, J., & Mortimore, P. (1995). Key characteristics of effective

schools: A review of school effectiveness research. London: Institute of Education,

University of London.

Sandholtz, H. J., Ringstaff, C., & Dwyer, D. C. (1997). Teaching with technology:

Creating student centered classrooms. New York: Teachers College Press.

Schofield, J. W. (1995). Computers and classroom culture. New York: Cambridge

University Press.

Schon, D. (1983). The reflective practitioner. New York: Basic Books.

Schwartz, J. L. (1996). Motion toys for eye and mind. Communication of the ACM,

39(8), 94-96.

Schwartz, J. L., Yerushalmy, M., & Wilson, B. (Eds.). (1993). The geometric

supposer: What is the case of? London: Erlbaum.

Self, J. (1985). Microcomputers in education: A critical appraisal of educational

software. Brighton: The Harvest Press. Ltd.

Soloway, E., & Pryor, A. (1996). Using computational media to facilitate learning.

Communications of the ACM, 39(8), 83-109.

Sommerville, I. (1989). Software engineering (3rd ed.). New York: Addison Wesley.

Squires, D. (1996). Production of educational software. In T. Plomp & D. E. Ely

(Eds.), International encyclopedia of educational technology (pp. 217-221). Oxford:

Elsevier Science - Pelgrum.

Squires, D., & McDougall, A. (1994). Choosing and using educational software: A

teachers' guide. London: The Falmer Press.

Squires, D., & Preece, J. (1996). Usability and learning: evaluating the potential of

educational software. Computers and Education, 27(1), 15-22.

229

Stake, R. (1994). Case studies. In N. Denzin & Y. Lincoln (Eds.), Handbook of

qualitative research (pp. 236-247). London: Sage.

Stake, R. E., & Trumbull, D. J. (1983). Naturalistic generalisations. Review Journal

of Philosophy and Social Science(7), 1-12.

Suchman, L. A. (1987). Plans and situated actions: The problem of human machine

communication. Cambridge: Cambridge University Press.

Taylor, R. P. (Ed.). (1980). The Computer in the School: Tutor, Tool, Tutee. New

York: Teacher College Press.

Thimbleby, H. (1990). User Interface Design. New York: Addison Wesley.

Tolhurst, D. (1992). A checklist for evaluating content-based hypertext computer

software. Educational Technology(March), 17-21.

Watson, D. (1987). Developing CAL: Computers in the curriculum. London: Harper

& Row Ltd.

Watson, D. M. (1990). The classroom vs. the computer room. Computers in

education, 15(1-3), 33-37.

Watson, L. (1993). Appropriate tools ? IT in the primary classroom. In J. Beynon &

H. Mackay (Eds.), Computers into classroom: More questions than answers (pp. 78-

91). London: The Falmer Press.

Wegerif, R., & Mercer, N. (1997). Using computer-based text analysis to integrate

qualitative and quantitative methods in research on collaborative learning. Language

and Education, 11(4), 271-286.

Wertsch, J. V. (1985). Vygotsky and the social formation of mind. London: Harvard

University Press.

Willis, J., & Mehlinger, H. (1996). Information technology and teacher education. In

J. Sikula (Ed.), Handbook of research on teacher education (pp. 978-1029). New

York: Macmillan.

Wilson, B., & Cole, P. (1991). A review of cognitive teaching models. Educational

Technology Research and Development, 39(4), 47-64.

Winograd, T. (1995). From programming environments to environments for design.

Communications of the ACM, 38(6), 65-74.

230

Winograd, T., & Flores, F. (1986). Understanding computers and cognition: A new

foundation for design. New York: Addison-Wesley Pub. Co.

Winship, J. A. (1989). Information technology in education: the quest for quality

software. Paris: Organisation for Economic Co-operation and development.

Woods, P., & Jeffrey, B. (1996). Teachable moments: The art of teaching in primary

classroom. Buckingham: Open University Press.

Wright, A. (1987). The process of microtechnological innovation in two primary

schools: A case study of teachers' thinking. Educational Review, 39(2), 107-115.

Yin, R. (1994). Case study research design and methods (2nd ed.). London: Sage.

Yinger, R. J., & Hendriks-Lee, M. S. (1995). Teacher planning. In L. W. Anderson

(Ed.), International encyclopedia of teaching and teacher education (pp. 188-192).

Oxford: Pergamon.

Zahner, J. E., Reiser, R. A., Dick, W., & Gill, B. (1992). Evaluating instructional

software: A simplified model. Educational Technology Research and Development,

40(3), 55-62.

Zuboff, S. (1988). In the age of the smart machine: The future of work and power.

Oxford: Heineman Prof. Pub.

231

X 	APPENDIX

A.1. INTERVIEW TO PRE-SELECTED SCHOOLS

These unstructured interviews were carried out in March 1996 and the following

report was a personal communication to the supervisor.

a) Standard

School name: Standard

Participants:

Head of school: Ana Rieu and

Vice head: Maria Angelica Quintana

School population: 430 students.

e-mail: coordinador@standard.tco.plaza.cl

I told them about the research project and that I was looking for a piece of software

that could support in a better way what they do in the classroom as teachers. I

mentioned action research and explain them why it was useful.

They asked some things in order to understand better what I was telling and how

many teachers should be involved.

They agreed with the need of better software design that could be used in the

classroom.

The first reaction was that the project seems very interesting, they were thoughtful

about the time it could involve and asked, laughing, what they would win with the

project. I told them the piece of software and knowledge.

Afterwards, we spoke about innovation:

This school is seen as an innovative school, they have about 10 different projects

running now, six related with computers (like involving the family of the students

with the school reinforcing parent-child communication) and others like a radio

station for the school.

When I asked them about the reasons that could make the school 'different' from

others in terms of innovation they answered that they make participate the colleagues

in the decision process and that the working environment (organisational climate) was

232

very good. That the colleagues do not reject what is being said from the 'upper level'

(the head) because they are all friends. They do a lot of social activities together

(birthdays celebrations, etc.). They make the colleagues fill engage with the new

projects. In order to produce this engagement they 'create' workshops and activities

in which the teachers are trained in new methods. They keep the colleagues informed

of each project of the school.

In summary they told me that the two key elements for their successful innovations

are: the friendship relations they have and that they make them (all colleagues)

participate. In this sense, colleagues always believe that they are deciding the projects

and innovations, without realising that the projects were defined by the director. That

means that the innovation starts from a group of 3-4 teachers (head, vice-head and

other) and the rest of the colleagues are 'induced' to participate.

Not all the teachers of the school participate actively in these innovations, because

some of them are about to retire.

They say that the computers are not enough for the schools.

I asked them if the computers made any difference in terms of the projects they do.

They told me that the time before they had computers, projects were mostly extra

curricular activities (singing groups, etc.) but that the colleagues participated too. And

when Enlaces appeared they started to do projects related with the curriculum and

afterwards they started with Educational Improvement Projects 26. The first project

they had was Enlaces.

They say hat the project was effective because the students now are able to organise

themselves to carry on activities (like playing a piece of theatre or doing a radio

program). This is one way in which they evaluate their projects.

They use the computer to produce written material and also like a tool. This type of

use, as a tool, is the emphasis of this year. The idea is that all the courses rotate using

the computer room and browsing through the different pieces of software they have

available and that in this process the teacher can see (evaluate) the material (s)he has

available and will be able to design activities using the computer. Also, there will be

activities with the teachers alone looking for material that could be useful for their

teaching.

26 This is the other important motivation for this new project oriented activities called the PME
initiative (Education Improvement Project) of the Chilean MECE program. Through this initiative
each school can apply for funds to carry on some specific project.

233

I asked them if these projects and innovations are also transferred to the classroom

(teaching). They answered that the teachers in the school are realising that if they

want to have a good discipline and motivated students they need to innovate, to do

new things. That if the students are interested in the activities they do not interrupt the

class.

One concrete effect of this is that students do not want to miss a class, because they

will miss an activity. And if they are working in groups the group will suffer the

absence and that is important.

They are doing a lot of group learning using collaborative projects. They are trying to

induce all the colleagues to do collaborative work, facilitating materials and giving

personal assistance (from the head) to each teacher.

The idea is that each student should be working because if not (s)he will bother the

teacher.

They say that the colleagues have no fear to innovate. One task for the second half of

the year for each teacher will be that each course designs a project, simple but

including all the students and that the project incorporates the use of computers, visits

and other resources they have (radio station, etc.). The idea behind is that the teachers

design something that changes the traditional activities, because any change produces

enthusiasm in the students.

I asked them why the emphasis in keeping the student s working and not bothering

the teacher (referred to the difference with other schools that emphasise the learning

and/or teaching methods).

They answered that they think that when the student is engaged with the activity (s)he

is learning and that their students are very difficult.

This difficulty is because most of the social (cultural) level of the students. Most of

the parents are divorced and have very low educational level. They told me some

stories about aggressions from the students to teachers, use of drugs, students that are

almost criminals, and suffer of home violence, etc.

This situation influences the vocation of the teachers and changes their behaviour,

being more tolerant. To make this point more clear: when they ask the students why

are they in this school, they answer because I like the school, and if they ask what do

234

you dislike of the school they answer the toilets, etc. And when they ask what do you

like, they answer the teachers.

They want to build up useful citizens and good 'persons', they are not focused in the

contents of the curriculum.

b) Vista Verde

(in English: Green View)

School name: Vista Verde

Participants:

Head of School: Amanda Deramond

School's population: 421 students in 1995.

e-mail: coordinador@vverde.tco.plaza.cl

I told her about the research project and that I was looking for a piece of software that

could support in a better way what the teacher does in the classroom. I mentioned

action research and the process of software development we would follow. I described

the need of designing more appropriate pieces of software that support better the

activities of the teacher.

She agreed with me and seemed to understand what I was looking for.

Her first reaction was that this is a new challenge and she explained to me that there is

a lack of knowledge within the teachers about research methodologies. So this project

would be very useful in this sense. And she said that if we could schedule the

meetings in a way that they fit into the actual activities, not demanding extra time

from the teachers it would be no problem.

We talked about the possible teachers that could participate in the project and

designed a possible schedule. We left the decision to the possible candidates (two

female rather young teachers that were students in the diploma course of Enlaces).

In order to speak about innovation I asked her about the projects they are carrying on.

They have two main projects:

• One Education Improvement Project for grade 1 to 8. The aim of the project is to

improve written, oral and corporal expression of the students trough activities that

aloud the to know all about the ninth region (political division of the Chilean

235

territory, equivalent to a county), including cultural, artistic environmental

dimensions, among other. The activities planned are small.

• The other project is related to Enlaces and is focused on students from grade 1 to

3.

They also have small projects in each course, some of them with the parents, self

esteem, involving the parents, etc.

I asked, how do you 'propagate' the projects among the other teachers ?

She told me that last year (1995) not all the teachers were involved in the projects

(especially Enlaces), there was a group of 6 teachers that were very enthusiastic and

did all the work with the computers. This year they left the responsibility of designing

and writing the new project for Enlaces to the teachers that were not participating in

it. So, now they fill owner of the new projects and they started to work in it

enthusiastically.

With this strategy a 100% of the teachers are now involved in the projects (I think she

meant only the Enlaces project).

Following the innovations, they are changing also the classrooms' layout, trying that

all the students do collaborative projects in groups.

I ask her how did they train the group of teachers that were not 'innovators', and she

told me that they do technical meetings once a week sharing experiences.

I asked if the computer had a special role in this process, she answered that the

computer played the role of a challenge for the teachers. And now they transfer new

methods from the computer lab to the classroom and from the classroom to the

computer lab.

About the future, she told that in the past it was impossible to think about what they

have now, and in the future they want to involve more the parents with the school.

For example teaching the parents to read and write using the computer.

About the organisational climate, she said that they always have had a very good

relation, there is no explicit authority. She thinks that the project will be useful to

keep the colleagues together. But she mentioned that it is a very sensible area, that she

must be very careful about the human relations. There is no one that owns the

236

computer lab, on the contrary, she said that they are reinforcing the autonomy of each

teacher in the use of the computer. Each teacher is responsible for her time in the lab.

They are starting to use international communication with e-mail.

(I promised her to find schools in France to have key pals with the school.)

Comments:

Both schools are candidates to be part of the project.

In order to decide which one I could say:

Standard school has a self concept of a very innovative school, but the way in

which they 'propagate' the innovations is rather tricky. A small group decides the

characteristics of the project and then they induce the rest of the colleagues to

make it. On the other hand, Vista Verde has only a small group of teachers that

are willing to innovate, but it seems to me that the strategies they use to involve

other colleagues is more 'open'.

• I got the idea that in the Standard school there is more authoritarian present, in

spite of what they say about friendship. I think the rest of the colleagues have a

clear picture of who is the boss. In the Vista Verde, it seems that apparently the

head plays her role of being the boss more straight forward, but she plays to be a

reasonable and accessible boss.

• Some additional evidence is that the Vista Verde school showed immediately the

disposition to participate and the head organised meetings with the candidates in

order to ask them if they agree to be part of it. The Standard school was willing to

participate, but they had to ask the teachers first and discuss this with other

colleagues.

• The focus on the research training of Vista Verde worried me a little bit, but

afterwards it became a low priority.

• In other aspects, both schools offer advantages and disadvantages, but I do not see

another point that could help in the decision.

In this sense, it would be easier to work with Vista Verde, because of the

organisational climate and the way in which they perceived the project. I have the

felling that I would be better working with Vista Verde. So, if you have no objections

237

I would decide to work with Vista Verde. I need to tell the schools early next week

(Wednesday the 17th).

I plan to start with the process the week of the 15th of April 1996.

238

A.2 PROBABILITIES OF UNITS AND SEQUENCES

The probability of a sequence (called P(Seq)) was defined as the multiplication of the

probability of each unit that is included in the sequence. In the case that the units

included in the sequence are composed by more than one category (for example

`Actions' has 6 categories, 'Aim' has four and 'Browsing' has 3), the probability of

the unit was calculated as the addition of the individual categories. For example:

P(Aim) = 	P(Aim_Teacher Software) + P(Aim_Teacher Computer) +
P(Aim Pupil_Software) + P(Aim_Pupil_Computer)

Or

P(Browsing) = P(Browsing Abstract) + P(Browsing Medium) +
P(Browsing Concrete)

and if the sequence found were composed by 'Aim' and 'Browsing', then its

probability would be:

P(Seq) = 	P(Aim) * P(Browsing)

The probability of each category (e.g. P(Aim_Pupil_Software), P(Aim Teacher_

Computer), etc.) is calculated dividing the number of units found of that category by

the total units spoken by each member of the development team and multiplied as

explained before. The next table shows the probability of each group of categories:

TE TM PY SE Gll Group
Actions 0.0937.0684 0.0549 0.0608 0.0049 0.0637
Aim 0.0648 0.0456 0.0428 0.0268 0.0000 0.0404
Browsing 0.1138 0.1027 0.1172 0.1397 0.0574 0.1136
Interface Element 0.2144 0.2664 0.2086 0.2330 0.5482 0.2593
Interaction 0.1340 0.2481 0.1822 0.2686 0.2833 0.2194
Content Org. 0.127T 0.0994 0.1404 0.1025 0.0672 0.1114
Subject Areas 0.1021 0.0729 0.1040 0.0612 0.0122 0.0770
Teaching Strategy 0.1070 0.0584 0.1103 0.0893 0.0244 0.0839
User 0.0432 0.0381 0.0396 0.0180 0.0024 0.0313

Table A.2.1 Probabilities of one unit of each category for each MDT

In table A.2.1 it is possible to see that in the given set of data the probability of

finding a unit of analysis of , for example, Teacher E (TE) talking about 'Actions' is

equal to: P(Actions) = 0.0937 and that the probability of finding a unit of analysis of

the Software Engineer talking about 'Browsing' is equal to: P(Browsing) = 0.1397.

As explained, the probability of each sequence of units was calculated as the multipli-

cation of the composing units. In the case of the 2-units long sequences, the proba-

bilities are:

239

Sequences involving 2 different
units

'FE TM PY SE Gll Group Total*

Interface Element and Interaction 0.0287 0.0661 0.0380 0.0626 0.1553 0.0569 0.3507
Browsing and Interface Element 0.0244 0.0274 0.0244 0.0326 0.0315 0.0295 0.1402
Interaction and Actions 0.0126 0.0170 0.0100 0.0163 0.0014 0.0140 0.0572
Browsing - Teachmg Strategy 0.0122 0.0060 0.0129 0.0125 0.0014 0.0095 0.0450
Subject Areas and Content Org. 0.0130 0.0072 0.0146 0.0063 .0.0008 0.0086 0.0419
Browsing and Content Org. 0.0145 0.0102 0.0165 0.0143 0.0039 0.0127 0.0593
Content Org. and Interface Element 0.0273 . 0.0265 0.0293 0.0239 0.0368 0.0289 0.1437
Content Org. and Interaction 0.0170 0.0241 0.0256 0.0275 0.0190 0.0244 0.1138
Aim - User 0.0028 0.0017 0.00170.0005 0.0000 0.0013 0.0067
Actions 0.0088 0.0047 0.0030 0.003T 0.0000 0.0041 0.0202
Prob. Of speaking any of the
sequences

0.1612 0.1914 0.1760 0.2001 0.2501 0.1897 	0.9788

otal represents the probability of sequences spoken by any of the members of the development team,
so it is the addition of these probabilities.

Table A.2.2 Probabilities of each two unit long sequence for each MDT

In table A.2.2 it is possible to see that the probability of finding a sequence

combining, for example, units of the groups of categories 'Interface Element' and

`Interaction', spoken by TE is P=0.0287.

The distribution of probabilities of the three-units long sequences are presented in

table A.2.3:

Seq. involving 3 Units TE TM PY SE GD Group Tot*
Interaction, Subject Areas and
Actions

0.0013 0.0012 0.0010 0.0010 0.0000 0.0011 0.0046

Browsing, Subject Areas and
Content Org.

0.0018 0.0024 0.0028 0.0038 0.0011 0.0027 0.0119

Subject Areas, Interface Element
and Interaction

0.0029 0.0048 0.0040 0.0038 0.0019 0.0044 0.0174

Interface Element, Subject Areas
and Content Org.

0.0028 0.0019 0.0030 0.0015 0.0004 0.0022 0.0097

Interaction, Aim and Teaching
Strategy

0.0009 0.0007 0.0009 0.0006 0.0000 0.0007 0.0031

Content Org., Aim and Actions 0.0008 0.0003 0.0003 Th.0002 0.0000 0.0003 0.0016
Prob. of speaking 	any of the
sequences

0,0105 0,0114 0,0120 0,0109 0,0034 0,0114 0,0483

so it is the addition of these probabilities.

Table A.2.3 Probabilities of each three unit long sequence for each MDT

Due that the sequences found were combinations of repeated units (for example,

'Interaction'-'Browsing'-'Browsing'-'Interaction' for two units long sequences),the

probability calculated for each sequence is the upper limit (maximum), because, if

another unit is added, it should be the multiplication of the three unit's probabilities.

Nevertheless, because of the consistency of the findings independently of the length

of the sequence (table 6.2 and table 6.4), this factor should not interfere with the

analysis.

240

• Expected probability

In order to be able to analyse these data, it is necessary to define a degree of

meaningfulness, that is, a range in which we can consider a probability to be high,

low or expected. In order to do this, it can be assumed that in the ideal case, all

participants had the same chance to speak (uniform distribution) about any category.

Starting from this premise, the average participation during the development process

was 215 units per category, considering all the groups of categories defined for the

sequences and the average number of units spoken by each member was 1933 (total

number of units divided by five: 9663/5). So, the probability of an individual category

for any member of the development team can be calculated dividing the average

number of units spoken in each category by the average units spoken by each

member, that is 215/1933= 0.111. This is, the expected probability to find any unit

spoken by any member of the development team is P(one unit)=0.111. Then, the

probability of repeating a unit two times is P(two unit sequence)=0.0123 and three

times is P(three unit sequence)=0.0014. Also, the probability of a sequence spoken

by any of the members of the development team is five times the probability of a two

units sequence P(any member two unit sequence)= 0.0617 for two-units long

sequences and P(any member three unit sequence)=0.0069 for three-units long

sequences. This number were used to define the limit of meaningfulness of the

sequences found. Summarising:

• One unit: 	 P(to find any unit spoken) = 0.111
P(to find any unit spoken by any MDT) = 0.555

• 2 units-long sequences: P(to find any two units spoken by one MDT) = 0.0123
P(to find any two units spoken by any MDT) = 0.0617

• 3 units long sequences: P(to find any three units spoken by one MDT)= 0.0014

P(to find any three units spoken by any MDT)= 0.0069

• Meaningful sequences

Based on the previous calculation, the meaningful two unit long sequences found for

each MDT (p<0.0123) and for any member of the development team (p<0.0617) are

presented in table A.2.4.

The meaningful three unit long sequences found by each member of the development

team (p< 0.0014) and of any member of the development team (p<0.0069) are

presented in table A.2.5.

241

Sequences of 2 different units TE TM PY SE GD Group Total*
Interface Element and Interaction 0.0287 0.0661 0.0380 0.0626 0.1553 0.0569 0.3507
Browsmg and Interface Element 0.0244 0.0 0.0244 0.0326 0.0315 0.0295 0.1402
Interaction and Actions 0.0126 0.0170 0.0100 0.0163 0.0014 0.0140 0.0572
Browsing -'Teaching Strategy 0.0122 0.0060 0.0129 0.0125 0.0014 0.0095 0.0450
Subject Areas and Content Org. 0.0130 0.0072- 0.0146 0.0063 0.0008 0.0086 0.0419
Browsing and Content Org. 0.0145 0.0102 0.0165 0.0143 0.0039 0.0127 0.0593
Content Org. and Interface Element 0.0273 0.0265 0.0293 0.0239 0.0368 0.0289 0.1437
Content Org. and Interaction 0.0170 0.0247 0.0256 0.0275 0.0190 0.0244 0.1138
Aim - User 0.0028 0.0017 0.0017 -0.0005 0.0000 0.0013 0.0067
Actions 0.0088 0.0047 0.0030 0.0037 0.0000 0.0041 0.0202
Prob. of speaking any of the sequences
... 	.

0.1612 0.1914 0.1760 0.2001 0.2501 0.1897 0.9788
otai represents the probability of sequences spoken by any of the members of the development team,

so it is the addition of these probabilities.

Table A.2.4 Meaningful probabilities of two unit long sequence for each MDT

equences involving 3 Units 'IT TM PY SE GD Group Total*
nteraction, Subject Areas and Actions 0.0013 0.0012 0.0010 0.0010 0.0000 0.0011 0.0046
rowsmg, Subject Areas and Content

Org.
0.0018 0.0024 0.0028 0.0038 0.0011 0.0027 0.0119

ubject, Interface Element. and
Interaction

0.0029 0.0048 0.0040 0.0038 0.0019 0.0044 0.0174

nterthce Element, Subject Areas and
Content Org.

0.0028 0.0019 0.0030 0.0015 0.0004 0.0022 0.0097

nteraction, Aim and Teaching Strategy 0.0009 0.000'T 0.0009 0.0006 0.0000 0.000 / 0.0031
rganisation, Aim and Actions 0.0008 0.0003 0.0003 0.0002 0.0000 0.0003 0.0016
rob. of speaking any sequence 0,0105 0,0114 0,0120 0,0109 0,0034 0,0114 0,0483

Totalrepresents the probability of sequences spoken by any of the members of the development team,
so it is the addition of these probabilities.

Table A.2.5 Meaningful probabilities of three unit long sequence for each MDT

242

A.3 LIST OF SEQUENCES FOUND

This appendix presents a detailed list of the meaningful sequences found in each

category. In order to present useful information (and avoiding endless lists),

compacted repeated units in each sequence. That is, if a sequence had the form:

`aabccf
it was transformed into:

`abcf

In this way it was possible to analyse the relation between two different units. Se-

quences obtained this way that presented less than 10 occurrences were eliminated.

This is the reason why the totals do not coincide with the previous tables.

A.3.1 Two unit sequences

In this section, for each sequence the specific units found in each data set is presented.

Charact. of Software: Interaction and Action Group PY TM TE SE Total
CInMecielnConcAcPIS 0 0 26 15 23 64
ClnConcAcPISCInMcd 0 0 23 15 18 56
AcPISCInMedClnCone I 4

ClnMedeInConcAcPISCInMed 0 0 22 14 17 53
AcPISCInMedeInConcAcPIS 0 0 21 13 16 50
AcPISCInMedelnConcAcPISCInMed 0 0 21 13 16 50
ClnConcAcP lSCInMedClnConc 0 0 21 13 16 50
ClnConcAcPISCInMeclelnConcAcPIS 0 0 21 13 16 50
ClnConcAcPISCInMedClnConcAcPISCInMed 0 0 21 13 16 50

ClnMedCinConcAcPISCInMedClnConc 0 0 21 13 16 50
CInMedelnConcAcPISCInMedClnConcAcPIS 0 0 21 13 16 50
AcPISCInMedClnConcAcPISCInMedClnConc 0 0 20 12 15 47
ClnMedClnConcAcPISCInMedClnConcAcPISCInMed 0 0 20 12 15 47
Ac P JSClnMedClnConcAc P 1 SC1nMedCInConcAc P 1 S 0 0 19 11 14 44
AcPISCIn MedelnConcAcPISCInMedClnConcAc P I SC1nMed 0 0 19 11 14 44
ClnConcAcPISCIn MedClnConcAc P I SC1nMedClnConc 0 0 19 11 14 44
ClnConcAcPISC1nMedC1nConcAc P 1 SCInMedClnConcAcPIS 0 0 19 11 14 44
CIn ConcAc P I SCIn MedCln ConcAc P 1 SCIn MedCln ConcAc P 1 SC
In_Med

0 0 19 11 14 44

ClnMedClnConcAcPISCInMedelnConcAc P I SCInMedelnConc 0 0 19 11 14 44
Cln MedClnConcAcPISCInMedeInConcAc 13 1_SCIn_Medeln_ConcA
c_PJ_S

0 0 19 11 14 44

Ac P 1 SCIn MedClnConcAcPISCInMedeln_ConcAc P 1 SCInMedC1
n Cone

0 0 18 10 13 41

Total 2 0 431 260 328 1021

Table A.3.1. Groups of categories 'Interaction' and 'Actions'

Here we can see that almost all of the actions in this sequence are related to the use of

software by the pupil individually. This fact is interesting and shows that they were

designing what the user should do in the classroom without involving the teacher as

243

user of the software. The Software Engineer, Teacher M and Teacher ME combine

the deign of actions and the design of interactions with the software at a medium and

concrete level of abstraction.

haract. of Software: Browsing and Teaching Strategy Group PY. TM TE SE Total
Br_ConcTStr_Fee 2 25 44 45 55 171
BrConcTStrFeeCBrConc 0 10 28 20 53 111
Str FeeCBr Cone 0 24 22 19 41 106
BrConcTStrFeeCBrConcTStrFee 0 7 17 14 49 87

Str_FeeCBr_ConcTStr Fee 0 5 19 17 45 86

StrFeeCBrConcTStrFeeCBrConc 0 4 22 20 24 70

BrConcTSt 	FeeCBrConcTStrFeeClirConc 0 3 21 14 27 65
StrFeeCBrConcTStrFeeCBrConcTStrFee 0 5 12 14 16 47

StrFeeCBrConcTStrFeeCBrConcTStrFeeCtirConc 0 0 17 12 15 44
BrConcTStrFeeCBrConcTStrFeeCBrConcTStrFeeCBrCon 0 0 16 10 15 41
BrConcTStrFeeCBrConcTStrFeeCBrConcTStrFee 0 0 12 6 15 33
StrFeeCBrConcTStrFeeCBrConcTStrFeeCBrConcTStrFee 0 0 8 4 11 23
Str FeeeBr_ConcTStr_FeeCBrConcTStrFeeeBrConcTStrFee
Br_Cone

0 0 8 6 9 23

BrMedTStrFee 0 2 8 7 2 19
Br ConcTStrFeeCBrConcTStrFeeeBrConcTStrFeeCBrCon
TStr Fee

0 0 5 4 7 16

Br ConcTStr FeeCBr ConcTStr_ FeeeBr ConcTStr FeeeBr Con
TStr FeeCBr_Cone

0 0 5 4 3 12

BrMedTStrFeeCBrMed 0 2 3 2 5 12
Str FeeCBr ConcTStr _I- eeCBrConcTStrFeeCBrConcTStrFee
Br ConcTStr Fee

0 0 4 2 5 11

oral 2 87 271 220 397 977

Table A.3.2. Groups of categories 'Browsing' and 'Teaching Strategy'

The most frequent sequences relate browsing at a concrete level of abstraction and the

teaching strategy, therefore all member of the development team had the same

combinations of units as their most frequent ones. The cycles of combinations of units

here were rather long, involving seven iterations between browsing at a concrete level

of abstraction and teaching strategy.

244

Charact. of Software: Subject and Organisation Group PY. TM TE SE Total
CSu_MedC0rMedCSu_Med 0 7 8 10 18 43
COrMedCSu_MedC0r_Med 0 7 8 10 17 42
COrAbsCSu_AbsCOrAbs 2 6 12 6 15 41
CSu_MedC0rMedCSu_MedC0r_Med 0 7 7 10 17- 41
CSu_AbsCOrAbsCSu_Abs 0 6 . 	12 6 15 39
CSu__AbsCOrAbsCSu_AbsCOrAbs 0 6 12 6 15 39
CSu_MedC0r_Abs 0 18 18 0 2 38
COr_MedCSu_MedC0rMedCSu_Med 0 6 7 7 14 34
CSu AbsCOr Abs 0 13 0 11 10 34
COr_AbsCSu_AbsCOrAbsCSu_Abs 0 5 9 5 14 33
COr_AbsCSu_AbsCOrAbsCSu_AbsCOr_Abs 0 4 8 4 14 30
CSu_MedC0rMedCSu_MedC0rMedCSu_Med 0 5 6 6 13 30
COr_MedCSu_MedC0r_MedCSu__MedCOr_Med 0 5 6 6 12 29
CSu_MedeOrMedCSu_MedC0rMedCSu_MedC0r_Med 0 5 6 6 12 29
CSu_AbsCOr_AbsCSu_AbsCOr_AbsCSu_Abs 0 4 8 4 11 27
CSuAbsCOrAbsCSuAbsCOrAbsCSuAbsCOrAbs 0 4 8 4 11 27
COrAbsCSuAbsCOrAbsCSuAbsCOrAbsCSuAbs 0 3 7 3 10 23
COr AbsCSuAbsCOr_AbsCSu_AbsCOrAbsCSuAbsCOLA
bs

0 2 6 2 9 19

CSu AbsCOrAbsCSu_AbsCOr_AbsCSuAbsCOrAbsCSuA
bs

0 2 6 2 9 19

CSu AbsCOrAbsCSuAbsCOr_AbsCSuAbsCOrAbsCSuA
bsCOr_Abs

0 2 6 2 9 19

COrMedCSuMedC0rMedCSuMedeOrMedCSuMed 0 4 2 3 9 18
COr AbsCSu AbsCOrAbsCSuAbsCOr_AbsCSu_AbsCOLA
bsCSu_Abs

0 0 5 0 8 13

CSu MedC0rMedCSuMedC0r__MedeSuMedCOrMedCSu
Med

0 3 0 2 8 13

COrMedCSuMedC0r__MedeSu_MedCOr_MedCSu_MedCOr
_Med

0 3 0 2 7 12

CSu MedCOr MedCSuMedC0r__MedCSu_MedCOr_MedCSu
MedCOr Med

0 3 0 2 7 12

COrAbsCSuAbsCOr_AbsCSu_AbsCOr_AbsCSu_AbsCOLA
bsCSu AbsCOr Abs

0 0 4 0 7 11

CSu AbsCOr AbsCSuAbsCOrAbsCSu_AbsCOrAbsCSuA
bsCOr AbsCSu Abs

0 0 4 0 7 11

Total 2 130 175 119 300 726

Table A.3.3. Groups of categories 'Subject Areas' and 'Content Organisation'

They combine units at an abstract level or at a medium level of abstraction, without

mixing these levels too much. The combination of these units is repeated in long

cycles again. That is, they talked about the subject areas, then about the way to

organise the content and then again about the subject areas, and so on.

245

Charact. of Software: Browsing and
Organisation

Group PY. 'FM '1E SE Total

CBr_MedC0r_Med 2 82 101 25 78 288
COr_MedCBr_Med 0 68 68 22 34 192
CBrConceOr_Cone 0 14 10 13 24 61
CBr_MedC0rMedCBrMed 4 3 0 4 2 13
COr_MedCBrMedC0r_Med 0 4 4 4 0 12
COrMedCOr_ConcCBr_Med 0 6 0 3 3 12
CBr_AbsCOr_Abs 0 2 4 0 4 10
COr_ConcCBr_MedCBr_Conc 0 5 0 3 2 10
COr_MedC0rConcCBrMedeBr_Conc 0 5 0 3 2 10
Total 6 189 187 77 149 608

Table A.3.4. Groups of categories 'Browsing' and 'Content Organisation'

They combined these units at a medium level of abstraction. The cycles were short,

that is, they talked about browsing and then about the organisation of the contents and

then they stopped.

Charact. of Software: Organisation and interaction Group PY. TM TE SE Total
COr ConcCln Abs 0 0 14 0 14 28
COrConcCInMedClnConc 0 0 8 4 6 18
COrMedC0rConcCInMed 0 0 8 4 6 18
COrMedC0rConcCInMedCInConc 0 0 8 4 6 18
ClnMedeOrMed 0 0 0 8 9 17
COrConcCInConcCOrConc 0 4 6 0 5 15
ClnConcCOrConc 3 5 2 0 3 13
ClnConceOrMedCOrConc 0 0 7 -2 4 13
ClnConcLOrMedCOLC,oncClnMed 0 0 7 2 4 13
C1n_MedCln_ConcCOrMed 0 0 7 2 4 13
ClnMedC1nConcCOrMedC0rConc 0 0 7 2 4 13
COrConcCInMedCInConcCOrMed 0 0 7 2 4 13
COrConcCInConc 0 4 2 0 4 10
'total 3 13 83 30 73 202

Table A.3.5. Groups of categories 'Content Organisation' and 'Interaction'

Teacher M and the Software Engineer combined the design of the organisation of the

contents at a concrete level of abstraction with the design of the interaction with the

software at an abstract level of abstraction. Teacher ME combined these units mostly

at a medium level of abstraction.

246

Aim-User Group PY. 'FM '1E SE Total
UserPAImsPS 2 16 16 0 0 34
AnnsTSUserPAimsTS 0 6 9 7 4 26
UserPAimsTSUserP 0 7 9 7 3 26
AnnsTSUserPAimsTSUsery 0 6 8 7 3 24
UserPAimsTSUserPAims'fS 0 5 7 6 2 20
AunsTSUserPAimsTSUser_PAims_T_S 0 4 5 5 2 16
Aims_T_SUser_PAims_T_SUser_PAims:c_S
User_P

0 4 5 5 0 14

UserPAimsTSUserPAimsTSUserP 0 4 5- 5 0 14
UserPAimsTSUser_PAims_TSUserPAI
ms_T_S

0 3 4 4 0 11

Total 2 55 68 46 14 185

Table A.3.6. Groups of categories 'Aim' and 'User'

In table A.3.6, it can be seen that they combined the design of the aims of the

software for the pupil with the description of the pupil as user (particularly Teacher M

and the Psychologist). It is interesting to see the long cycles alternating the design of

the aims of the software for the teacher (Aims T S) with descriptions of the pupil as

user.

Actions Grou
P

PY. TM 'FE SE Total

AcPIPAcPCPAc P I P 0 0 5 11 4 20
Ac P C PAc P I PAcPCP 0 0 5 10 3 18
Ac P C PAc P I PAc_P_C_PAc_P_I_P 0 0 5 10 3 18
AcPIPAcPCPAcP1PAcPCP 0 0 3 7 3 13
Ac_y_l_PAc_P_C_PAc P 1 PAc P C PAc P 1 P 0 0 3 7 3 13
Ac P C PAc P I PAcPCPAcP1PAcPCP 0 0 3 6 2 11
Ac P C PAc P I PAcPCPAc_P1PAcPCPAc
P_I_P

0 0 3 6 2 11

Total 0 0 27 57 20 104

Table A.3.7. Group of categories 'Actions'

It is interesting to see that they combined the design of actions that involved what

pupils would do with other pupils in the classroom (Ac P C P) and what they would

do individually (Ac

247

A.3.2 Three unit sequences

This section presents the meaningful sequences composed by three units.

Charact. of Software: Interaction, Subject and
Action

Group PY. TM TE SE Total

AcPISCSuMedCSuConcCInMed 0 0 3 0 4 7

AcplSCSuMedCSuConcCInMedClnConc 0 0 3 0 4 7

CSu_ConceIn_MedCln_ConcAc_P_I_S 0 0 3 0 4 7

CSu_MedCSuConcCInMedelnConcAcP IS 0 if 3 0 4 7

Ac P 1 SCSu MedCSuConceln_MedC1n_Conc
AcPIS

0 0 2 0 3 5

CInConcAcPI_SCSuMed 0 0 2 0 3 5

ClnConcAcPISCSuMedCSuConc 0 0 2 0 3 5

CInConcAcPISCSuMedeSuConcCInMed 0 0 2 0 3 5

ClnMedClnConcAcPISCSuMed 0 0 2 0 3 5

ClnMedeInConcAcPISCSuMedCSuConc 0 0 2 0 3 5

CSuConcC1nMedClnConcAcPISCSuMed 0 0 2 0 3 5

Total 0 0 26 0 37 63

Table A.3.8. Groups of categories 'Interaction', Subject Areas' and 'Actions'

The actions that they designed in this sequences involved only the pupils using the

software individually (AC_P I S), similar to the sequence 'Action-Interaction'

described earlier.

Charact. of Software: Interaction, Aims and
Teaching Strgy

Group PY. TM TE SE Total

TStr_FeeCln_MedAnns_P_C 0 2 0 0 2 4

CInMedAimsPCIStrFee 0 2 0 0 2 4

Total 0 4 0 0 4 8

Table A.3.9. Groups of categories 'Interaction', 'Aim' and 'Teaching Strategy'

Here they combined the design of the teaching strategy with the design of the

interaction with the software and the aims of the computer for the pupil (Aims P_C).

Charact. of Software: Organisation, Aims and
Action

Group PY. TM TE SE Total

COr_MedAnnsP_SAcTIP 0 0 2 2 0 4

Arms PSAcTIPCOrMed 0 0 2 2 0 4

Total 0 0 4 4 0 8

Table A.3.10. Groups of categories 'Content Organisation', 'Aim' and 'Actions'

They combined the design of the organisation of the contents, with the design of aims

of the software for the pupil and with the design of actions of the teachar:in-divjdually

with the pupil.

248

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248

