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Abstract 

Although crucial for designing separation processes little is known experimentally about multi-

component adsorption isotherms in comparison with pure single components. Very few binary 

mixture adsorption isotherms are to be found in the literature and information about isotherms over 

a wide range of gas phase composition and mechanical pressures and temperature is lacking. Here 

we present a quasi-one dimensional statistical mechanical model of binary mixture adsorption in 

metal-organic frameworks (MOFs) treated exactly by a transfer matrix method in the Osmotic 

Ensemble. The experimental parameter space may be very complex and investigations into multi-

component mixture adsorption may be guided by theoretical insights. The approach successfully 

models breathing structural transitions induced by adsorption giving a good account of the shape of 

adsorption isotherms of CO2 and CH4 adsorption in MIL-53(Al). Binary mixture isotherms and co-

adsorption phase diagrams are also calculated and found to give a good description of the 

experimental trends in these properties and because of the wide model parameter range which 

reproduces this behaviour suggests that this is generic to MOFs. Finally a study is made of the 

influence of mechanical pressure on the shape of CO2 and CH4 adsorption isotherms in MIL-53(Al). 

Quite modest mechanical pressures can induce significant changes to isotherm shapes in MOFs 

with implications for binary mixture separation processes.  
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1. Introduction 

 

Solvable statistical mechanical models such as the Ising model, even when somewhat physically 

unrealistic, have played a very significant role in the theory of condensed phases. Here we discuss a 

development in the statistical mechanics of binary mixture adsorption. In this special memorial 

issue ‘Modern Theoretical Chemistry’ which celebrates John Murrell’s contribution to theoretical 

physics and chemistry it is appropriate to discuss binary mixture adsorption as he had a deep 

interest in statistical mechanics. We were privileged to have worked with him over many years on 

topics ranging from the theory of superconductivity to models of melting and the statistical 

mechanics of fluids
1,2,3

. 

Finding viable separation procedures for binary component mixtures is a challenging and important 

problem and a consideration in the development of ‘green technologies’ where for example carbon 

dioxide needs to be separated from methane in natural gas
4,5,6,7,8

. Carbon dioxide separation is also a 

central issue in carbon sequestration for the mitigation of climate change
9
. Although crucial for 

designing separation processes relatively little is known experimentally about multi-component 

adsorption isotherms. Very few binary mixture adsorption isotherms are to be found in the literature 

over a wide range of composition, pressure and temperature. The parameter space can be 

challengingly complex and experimental design may be guided by theoretical insights. 

Multicomponent adsorption isotherms may exhibit counter-intuitive features which when 

accompanied by possible structural transitions make a rich variety of behaviours possible
10

.  

Recently significant attention has been focused on metal-organic frameworks (MOFs) which are an 

important group of hybrid organic-inorganic nanoporous solids with remarkable adsorption and 

structural properties. MOFs constitute a family of soft porous crystals, described by Kitagawa and 

co-workers
11

 as “porous crystals that possess both a highly ordered network and structural 

transformability”. Metal-Organic Frameworks (MOFs) have high potential for use in adsorptive 

separation processes
12,13,14,15,16,17,18,19,20,21

 due to the unique characteristics of structural pores which  

may be adapted to permit adsorption to take place on the basis of molecular shape and size and in 

particular structural flexibility
22,23,24,25,26,27,28

. In MOFs metal framework centres and organic units 

link thereby allowing structural transitions to occur upon gas adsorption
29,30,31,32,33,34

. Temperature 

and pressure can also induce structural transitions
32,33,35

. Coudert and co-workers
36

 classify guest 

induced structural transitions into gate opening and breathing, which they define as two successive 

transitions, from a large pore (LP) to a narrow pore (NP) state and back again to the LP state. 

Despite great interest in mixture adsorption in MOFs, adsorption data is still extremely scarce 

because of the challenge of undertaking comprehensive measurements. Baron and co-workers
37

 

have reported measurements of isotherms of methane/carbon dioxide adsorption in MIL(53)Al 

which we have modelled here. However, we do not consider specific MOF structural details but 
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focus on developing a statistical mechanical model which mimics the essential features of mixture 

adsorption in these materials.  Mixture adsorption in MOFs has been extensively studied by Coudert 

and co-workers
38,39

. They have made significant advances in the development of the theory of 

mixture adsorption in MOFs
38

. They presented an experimental and theoretical study of CO2/CH4 

mixture co-adsorption and breathing in the metal-organic framework MIL-53(Al)
39

. Successful co-

adsorption predictions were made from pure-component adsorption data using the Osmotic 

Framework Adsorption Solution Theory (OFAST). The co-adsorption phase diagrams derived show 

surprising characteristic features which we will discuss below as these are reproduced by our 

model. 

 Llewelyn and co-workers
28

 and Gomez et al
40

 have also reported measurement of 1:1 

methane/carbon dioxide adsorption in MIL(53)Cr and MIL(53)Al respectively which will concern 

us here. Other relevant simulations are those of Snurr and co-workers
41

.   

Thus, in this article we discuss the development of an exactly soluble lattice model of binary gas 

mixture adsorption in MOFs in the osmotic ensemble. The osmotic ensemble was developed 

initially by Brennan and Madden
42 

 and Panagiotopoulos
43

. The theoretical approach taken here is a 

natural development of our earlier presentation of an exactly solvable statistical mechanical lattice 

model of a MOF in the Osmotic ensemble using a transfer matrix method which treats the solid and 

gas component on an equal footing
44

. We previously only considered a single component but here 

we consider mixture adsorption in MOFs and develop a phenomenological lattice model which is 

parameterized against single component adsorption isotherms. These parameters are then used to 

predict mixture adsorption characteristics and comparisons made with the Coudert results and the 

experimental studies of Barron et al
37

 for MIL-53-(Al) for CO2/CH4 mixture adsorption and Gomez 

et al.
40 

Our approach cannot compete with more computationally demanding methods such as Monte-Carlo 

simulations which treat three dimensional crystals. We do not expect the semi-empirical parameters 

found for our quasi-one dimensional model to accurately describe binary mixture adsorption in a 

real MOF. In comparison to more computationally based approaches which model three 

dimensional crystals our methodology has a different purpose and value. Our exactly treated 

statistical mechanical models may readily afford original predictions of novel behaviour of these 

widely studied systems. Hence, our objective is to devise a model which enables the broad features 

of binary mixture adsorption isotherms to be studied quickly and cheaply. Furthermore, exactly 

treated statistical mechanical models may provide novel insights into these phenomena.  We also 

investigate the influence of mechanical compression on mixture isotherm which as far as can be 

checked is new. 
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2. Quasi-one Dimensional Model of Binary Mixture Adsorption in Metal-

Organic Frameworks.  

 

Recently we have developed an exactly solvable transfer matrix treatment of statistical mechanical 

lattice model of a MOF which enables single component adsorption isotherms and the compression 

of these flexible soft materials to be modelled
45

. Here we extend this accurate transfer matrix 

treatment of a quasi-one dimensional statistical mechanical Osmotic ensemble model of pressure 

and adsorption induced structural transitions in MOFs to mixtures. We give a full analysis of the 

extension of the theory to mixture adsorption. The calculation of the Osmotic Potential requires the 

solution of a matrix eigenvalue problem which may be treated numerically or exactly in some 

instances. It is found that for weak unit-cell interactions it is possible to obtain all the eigenvalues of 

the osmotic ensemble transfer matrix for a binary mixture adsorbed in a MOF by an analytical 

approach. The theory then allows a wide range of chemical and physical features to be modelled. 

It is widely felt that the most valuable ensemble to study adsorption in soft expandable materials is 

the osmotic ensemble
42,43

. Coudert and co-workers
46,38,47

 developed the osmotic ensemble for 

molecular simulation studies of adsorption in MOF. In his classic book Hill
48

 formulated a number 

of ‘Generalized Ensembles’ and the Osmotic ensemble falls into this classification. For this 

ensemble the independent thermodynamic variables for a binary mixture adsorption are the 

temperature, 𝑇, the number of gas adsorbing unit cells N in the MOF, the mechanical pressure σ 

and the chemical potentials ,
a b

   of the adsorbed gas species a,b. The set of chemical potentials 

,
a b

  and mechanical pressure σ can be considered as independent thermodynamic control 

variables.  

We focus on a chain of N groups of unit cells each with a finite volume discussed below, which 

may be in either a large pore (LP) or narrow pore (NP) conformation. The chain extends in the x- 

direction and is subjected to a mechanical compressive stress σ (loosely termed pressure) directed 

along this axis as shown in Figure. 1. If no external mechanical stress is applied σ is equal to the 

gas pressure P but otherwise σ and P can be independently varied. The mechanical stress or 

pressure term σ includes that exerted by the gas pressure P along the ends of the chain. This is 

evidently an unrealistic description of a three dimensional crystal in contact with a gas reservoir but 

nevertheless gives a tractable model providing useful insights into adsorption in MOFs. 
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Fig. 1 An example of a typical configuration of a group of species considered in the infinite 

quasi-one dimensional chain. All possible occupations and configurations are allowed in the 

model. The structure is subjected to a mechanical compressive stress (pressure) directed 

along the x -axis. The large pore (LP) on the far left contains 1 methane molecule (blue); the 

next LP to the right is vacant, while the neighbour narrow pore (NP) on the right contains 1 

carbon dioxide molecule (red).  The NP on the far right contains 3 methane molecules (blue) 

and 1 carbon dioxide molecule and so on. Both types of molecules are treated as spheres. All 

energetically possible configurations and cell occupations are considered. 

 

The adsorbed molecules occupying the cells are in equilibrium with those in a gas reservoir at 

pressure P and temperature T. The gas phase mole fractions of components a,b are denoted by X 

and (1-X) respectively. The chemical potential a of component a is expressed for convenience as 

0= + ln(X )a a kT P   where the standard chemical potential 
0

a is given
48

 by

3/2

0

2

2
=  - ln a

a

m kT
kT kT

h




  
  
   

 and where modification for non-ideal behaviour is 

straightforwardly achieved by replacing pressure by fugacity. ( Note that the arguments of the two 

logarithmic terms defining a  have the dimensions of pressure, allowing the chemical potential to 

be expressed if desired as a single term with dimensions of energy. This point is discussed by 

Hill
49

). am  is the molecular mass, k is Boltzmann’s constant and h is Planck’s constant. Similar 

expressions exist for component b.  

 Each unit cell may be occupied by a mixture of methane/carbon dioxide molecules so that all 

possible occupations and configurations are allowed in the model. 
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For the mixture of species adsorbed in the one-dimensional chain of N unit cells, the Osmotic 

Partition function  ( , , ),
a b

T       may be expressed as: 

,

( , , ) exp ( , , , ) exp( ) ( ),
a b

a b

a b

a a b b

V n n

n nV

kT

T
kT

Q n n V T
 

  


                (1) 

The summation runs over the varying volume V occupied by the 2 types of N unit cells shown in 

Fig. 1 and the numbers ,a bn n of gas molecules a, b.  ( , , , )a bQ n n V T  is the Canonical partition 

function for volume V. The Osmotic Potential   used by Coudert is given by lnkT    

obtained here from the logarithm of the maximum term in the generalised partition function. In our 

method we calculate this exactly by a transfer matrix method thereby obtaining thermodynamic 

functions by using the method of the maximum term.  

The method of the maximum term in which the logarithm of the sum in equation (1) is replaced by 

the logarithm of the maximum term can be used to evaluate the osmotic potential without making 

any error for all practical purposes to thermodynamic quantities. Thus, the logarithm of the 

maximum term may be written as 

                                             

* * *
* * *

ln ln ( , , , ) a a b b

a b

V

kT

n n

kT
Q n n V T

  
              (2)                

where * signifies optimum values. 

 

The optimum values 
* * *, ,a bn n V  must simultaneously satisfy the extremum conditions 

                                                 
ln ln

( ) ( ) 0
Q

V kT V

   
  

 
                                   

                                               
ln ln

( ) ( ) 0
a a

a
kT

Q

n n

  
  

 
                                 (3) 

                                                  
ln ln

) ( ) 0
b b

b
kT

Q

n n

  
  

 
 

 

The Reader will recognize these equations as those for pressure and the adsorbed species chemical 

potentials in a canonical ensemble. This demonstrates that by using the method of the Maximum 

term the Osmotic ensemble has degenerated as expected into a Canonical ensemble as discussed for 

Generalized Ensembles by Hill
48

.  Differentiation of equation (2) gives  

                             
*( ln ) ( * * )

a ba bd kT V d SdT n d n d                (4)           

which yields the following relations for the optimum values: 
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                  * ln
( )V kT



 
 


   ,    

* ln
( )a

a

n kT


 



   ,     

* ln
( )b

b

n kT


 



     (5).  

ln  will be evaluated by a transfer matrix method which we describe in the next section.  

 

3. Transfer Matrix Treatment of Binary Mixture Adsorption in Metal-Organic 

Frameworks.  

 

We have previously reviewed matrix methods for the statistical mechanical treatment of one-

dimensional lattice fluids
50

. A recent study applying matrix methods to MOFs has been presented 

by Simon et al
51

. 

The Osmotic partition function equation (1) can be written as the sum of the products of N factors 

(unit cells) given by
45

 

                      1 1 1 1
= ..... A A A .....A

j j j j

         
                (6) 

where the N summations run over the j clusters formed by all possible energetically allowed 

occupations of unit cells by adsorbed molecules. Cyclic boundary conditions have been assumed 

where the chain is folded on to a ring. As is usual in the matrix method we define the terms Aαβ in 

(6) as the product of internal partition functions   fα for cluster α and fβ for cluster β and an 

interspecies exponential interaction term:                

                                

- /1/2A ( )
kT

f f e 

  
                                    (7) 

where the subscripts α,β run over the species 1 to j and the parameter  ε
αβ

 is the interaction energy 

of nearest neighbour pairs of clusters α,β. 

We have observed that the essential features of the MOF adsorption iostherms can be reproduced by 

introducing two limiting cases by setting selected values of εαβ to either zero or infinitely repulsive 

as described for models A and B below.  
 

Using the inner product rule ij ik kj

k

D B C  for matrix multiplication of a pair of conformable 

matrices B and C the Osmotic Partition function given in equation (6) can be expressed as: 

 1

=1

( , , ) ( )  =  Tr ( )  = ( ),
j

j N N N

i

i

a b
T


   


  A A

      (8)

 
where  1  2  3 ,  ,  ,....  j       are the eigenvalues of the transfer matrix A which is given below as 
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1

1 1

111

11/2

/1/2

/

-- /

- /
( )

( )

j

j

j

j jj

TT

T T

j

kk

k k
f f

f e f f e

e ef



 



 
 
 
 
 

A

    (9)                   

As is usual in matrix evaluations of partition functions only the largest eigenvalue of A concerns us 

here since for large N equation (9) reduces to  

                                                           max( , , ), ( )
a b

N
T    

                  (10)
 

where  is the largest eigenvalue of the matrix A found as discussed below in particular 

circumstances. 

Co-adsorption into the MOF structure can occur by several mechanisms. The large and narrow 

pores may be occupied simultaneously by pure CH4 or CO2 molecules or a mixture of these as 

shown in figure 1. Each type of pore has temperature dependent maximum occupation numbers 

NmaxLpa , NmaxLpb, NmaxNpa, NmaxNpb for species a,b given in Table 1 below taken from Boutin et 

al
52

 and are rounded to the nearest integer. 

 

 (-2253.0-4.29T)k (-9750+20.511T)k Round(19.5-

0.045T) 

Round(4.87-

0.0035T) 

 

Table 1. The adsorption energies of the pure components and maximum occupations for the 

large and narrow pores are parameterized as shown below. These are valid in the 

approximate temperature range 200-300 K.  The adsorption energies have the form  u=(f-gT)k 

where f has dimension K and g  is dimensionless.  The maximum occupations have the form 

Nmax=Round(s-rT) where r has the dimension K
-1

. 

 

max

Component a, 

CO2 
,LP au  ,NP au  

NmaxLpa NmaxNpb 

 (1254.0 -15.75T)k (-244.73 -15.789T)k Round(16.8-

0.025T) 

Round(2.3-

0.0002T) 

Component b, 

CH4 
,LP bu  ,NP bu  

NmaxLpb NmaxNpb 



                                                                                                                                                                                

 10 

 

Δ which is treated as an adjustable parameter is the energy difference required to convert from the 

more stable LP to the NP which is discussed further below.  
   and 

NP LP
v v  are the NP and LP 

volumes whose values are 1000 and 1400 Å
3 

giving a 40% volume difference between these 2 

forms.  

A model for the clusters of adsorbed  molecules in the LP and NP is required for pure a/b molecules 

and mixtures of these. For pure a molecules absorbed in the LP we assume the existence of a cluster 

of molecules and vacancies occupying 
max LPaN  sites in total. With na  molecules there are 

max( )LPa aN n holes or vacancies giving rise to a configurational degeneracy from all the 

permutations of these species (given as the first factor on the right hand side in equation 11 below). 

Similar considerations apply to b molecules and the NP.  

For the mixture  in the LP we let max LPN  be  number of accessible sites in the large pore accessible 

to both a and b type molecules given by  and assume random mixing considering all configurations 

with up to max LPN  molecules in total. However, the maximum number of each species is restricted 

to not exceed the individual saturation uptakes. There are max( )LP a bN n n  vacancies giving rise 

to a configurational degeneracy (given as the first factor on the right hand side in equation 13 

below) from all the permutations of all these 3 species. Again, similar considerations apply to the b 

molecules and the NP. The experimental studies of Barron et al
37

 suggests that 
max 10LPN   and 

max 4NPN  which were used in the mixture adsorption calculations shown below. 

We have estimated the number of pair interactions as 
2

2( ) /n n    for n like molecules and nm for 

n,m unlike molecules. Treating carbon dioxide and methane in a spherical molecule approximation, 

the interaction energies Jaa and Jbb are – 245k and - 161k respectively taken from literature values 

and where the pre-factors are in absolute degrees (K)
53

.  Ja,b is the mean effective interaction energy 

between a pairs of adsorbed gas molecules a,b in the cluster which we treat as an adjustable 

parameter below . 

Thus the cluster partition function , aLP nf  for a LP containing na type a molecules is 

2
,max

,

max ,

! ( ) / 2
exp( )(exp( )) exp( )

( )! !a

LP a aLPa LP aa a a
LP n

LP a a a

anuN J n n
f

N n n kT kT kT

    



 

(11) 

where ,LP au  is the adsorption energy of component a in the large pore as given in Table 1 above. 

Similarly, a NP cluster containing na type a molecules has a cluster partition function 
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2
,max

,

max

! ( ) / 2
exp( )(exp( )) exp( )

( )! !a

NP a aNPa NP aa a a
NP n

NPa a a

anuN J n n
f

N n n kT kT kT

     



 

 

(12) 

with similar expressions for type b molecules.                                                                                 

For a LP containing na type a molecules and nb  type b molecules the cluster partition function is 

 

2
,max

, ,

max

2
,

! ( ) / 2
exp( )(exp( )) exp( ) 

( )! ! !

( ) / 2
               (exp( )) exp( )exp( )

a b

LP a aLP LP aa a a
LP n n

LP a b a b

LP b b bb b b ab a b

a

b

n

n

uN J n n
f

N n n n n kT kT kT

u J n n J n n

kT kT kT





   
 

 

    
    

(13) 

and with similar modified expressions for the NP.  

 

 

4. Eigenvalues of the Transfer Matrix 

In order to calculate thermodynamic functions the largest eigenvalue of the transfer matrix given in 

equation (9) is required. In the general case this must be obtained numerically. However, 

we have considered two particular relevant cases where it is unusually possible to extract all the 

eigenvalues of the transfer Matrix analytically by exploiting some properties of symmetrical 

matrices.  

 

Consider the symmetrical matrix eigenvalue-eigenvector relationship 

1

1

1

1/2

1 1

1/2

( )

( )

j

j

k

j j jk k

f f

f f

f

f

c c

c c



     
     

     
    
    

        (14) 

By inspection it may be observed that one of its eigenvalues and associated eigenvector satisfies 

1

1

1 1 1

1

1/2 1/2 1/2

1/2 1/2 1/2

( )

( )

( )

j

j

j

i

i

j j j

f f

f f

f f f

f

f f f


    
    

    
    
    

        (15) 
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The standard rules for the inner product of 2 conformable square matrices can be used to show that 

since the maximum eigenvalue is 
1

max ( )
j

i

i

f


    then all the other eigenvalues are zero. We have 

the relations 

                          

1

1

1

2
1/2

2

, 11/2

( )

( )

( )

j

j

j

m n k

m n k

j

f f

f f

f

f

Tr f f 


 
 

  
 
 

                                (16) 

Since  

                                  (17)

 

and since all the eigenvalues of a symmetrical matrix are real then all the other eigenvalues of the 

transfer matrix in equation(14) are zero. 

 

5. Sharp Transitions (Model A) and Gradual Transitions (Model B) from phase 

mixtures in a sample  

 

We consider mixed LP, NP and phase separated behaviour and discuss eigenvalues in both cases. 

The matrix A (equation (9)) can be partitioned into two diagonal blocks which deal with LP and 

NP configurations and off-diagonal blocks which describe the coupling between these two types of 

configurations as shown below 

, ,

, ,

LP LP LP NP

NP LP NP NP

 
 
 

A A

A A    (18) 

The neglect or inclusion of the off-diagonal blocks leads to two models A and B. 

If we follow Coudert and co-workers
54

 and assume that LP and NP phases do not co-exist in a 

perfect sample  then the off-diagonal couplings disappear giving the matrix 

,

,

0

0
LP LP

NP NP

 
 
 

A

A
       (19) 

The LP and NP blocks in this equation decouple and this allows a study to be made of homogenous 

and inhomogenous systems. This we call model A. 

Inclusion of this coupling allows for short range ordered phase mixtures in a sample which we name 

as model B.  

We will discuss results for both models which may arise in various experimental situations 

depending on the sample history. 

2 2

max

1 ,

( )
j

k m n

k m n

f f 


  
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6. Adsorption Isotherms of Pure Methane and Pure Carbon Dioxide  

 

Adsorption isotherms have been measured by Boutin et al
52

 for CH4 and CO2 on MIL(53) Al. The 

energies of adsorption of the pure components and maximum occupations for the large and narrow 

pores are parameterized are shown in Table 1. Δ (chosen as 2.5 kJ/mol) is the energy difference 

between the LP and NP states and is the energy required to convert from the more stable LP to NP.  

They are effective energies valid in the approximate temperature range 200-300 K but we do not 

expect them to accurately reflect such parameters for a 3 dimensional MOF crystal.  

It can be seen in Fig.2 that a satisfactory reproduction of the shape and temperature dependence is 

obtained when compared with the adsorption experimental isotherms of Boutin et al
52

. The 

isotherms from Model A are sharp and similar to first order phase transitions. Model A forbids the 

coexistence of large and narrow pores and corresponds to a thermodynamic NP/LP phase transition 

as postulated by Coudert and co-workers
54

 where all narrow pores convert to large pores or vice 

versa at once. The isotherms predicted by Model B on the other hand are more rounded. Model B 

allows coexistence of both types of pores meaning that the NP/LP transition takes place at 

individual pore level rather than collectively.  

Model A (sharp transition approach) predicts breathing, NP/LP transition, for pure carbon dioxide 

adsorption at the whole studied temperature range (204-320 K) as indicated by the sharp rises of 

adsorbed carbon dioxide amount. The transition pressure increases with temperature. For pure 

methane adsorption at 183 and 213 K, Fig. 2 (top – Model A) shows NP/LP transition at pressures 

below 2 bar. However, Model A predicts NP/LP transition at higher pressures, above the figure 

scale, for methane adsorption also at higher temperatures. At 273 K the original LP structure 

undergoes transition to NP at near zero bars, similarly to lower temperatures of 183 and 213 K, and 

at around 9 bar the NP structure undergoes transition back to LP. We have retained the pressure 

scale in the figure to 6 bar which is the same as the experimental literature isotherms
37

 to enable 

direct comparison.  
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Figure 2 Adsorption isotherms of pure methane (on the left) and pure carbon dioxide (on the 

right) calculated using model A, sharp transition approach (two top diagrams) and model B, 

gradual transition approach (two lower diagrams). The curves are labelled with absolute 

temperature  

Calculations of MOF volumes and adsorption isotherms was performed straightforwardly using the 

above methodology and  the Mathcad 15 software package
55

. Finite difference calculation of 

derivatives was performed.  

 

7. Adsorption Isotherms of Methane/ Carbon Dioxide Mixtures  
 

Using the parameters for the pure single components, binary mixture isotherms of methane – carbon 

dioxide were calculated using both approaches, sharp transition, Model A and gradual transition, 

Model B at various carbon dioxide mole fractions (0, 0.2, 0.5, 0.8 and 1) are presented in Figs. 3 

and 4 for 294 K and 304 K respectively. To reproduce the essential features of the mixture 

isotherms of Baron and co-workers
37

 and also the equimolar mixture isotherm of Gomez et al
40

, we 

have adjusted the interaction parameter Jab to 198k indicating that CH4 and CO2 molecules in a pore 

experience an effective repulsion possibly due to competition for same binding sites. 
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Fig 3 Methane-Carbon Dioxide mixture adsorption isotherms at various Carbon Dioxide mole 

fractions at 294 K. Top five isotherms are predicted using Model A, sharp transition 

approach, while bottom five isotherms are predicted using Model B, gradual transition 

approach. Methane- black curve ,Carbon Dioxide-red curve.  The dotted green curve 

indicates the NP/LP state of the MOF. 

For methane no LP to NP transition takes place (breathing) at 294K with the methane pressure 

below 20 bar. At 20 % gas carbon dioxide a LP to NP transition takes place in a narrow window 

from around 2.5 bar to just above 5 bar with carbon dioxide being adsorbed and immediately 

displaced by methane when the reverse NP to LP transition occurs. At 50%-50% gas mixtures the 

pressure range of NP existence is the largest (1-15 bar) with methane being dominantly  adsorbed in 

the narrow pore. When the transition is reverses from the NP back to LP both component adsorbed 

amounts increase sharply with the adsorbed carbon dioxide rise sharper. As the pressure increases 

further carbon dioxide displaces methane from the large pore. Similar behavior, albeit gradual 

rather than sharp rises, is observed with Model B. The LP/NP transitions are gradual rather than 

sharp with the corresponding pressures where changes happen being similar to the very well defined 

pressure values of the sharp transitions of Model A. It is interesting to remark that the X=0.5 

isotherm shown in Fig. 3, Model B is very close in form to that reported by Llewelyn and co-

workers
28

 for MIL53 (Cr). In particular, the carbon dioxide component shows a plateau up to about 

10 bar as seen experimentally. 

Comparing the mixture isotherms, at the slightly higher temperature of 304 K (Fig 4) we can see 

that NP to LP transitions occur at higher carbon dioxide gas mole fractions, corresponding to higher 

partial pressures. At 20 % carbon dioxide no LP to NP transition takes place.  
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Fig 4 Methane-Carbon Dioxide mixture adsorption isotherms at various Carbon Dioxide mole 

fractions at 304 K. Top five isotherms are predicted using Model A, sharp transition 

approach, while bottom five isotherms are predicted using Model B, gradual transition 

approach. Methane- black curve ,Carbon Dioxide-red curve.  The dotted green curve 

indicates the NP/LP state of the MOF. 

 

8. Binary Mixture Adsorption as Function of Gas Phase Composition 

 

In order to reproduce the Baron and co-workers
37

 experimental mixture results, we have calculated 

adsorbed amounts against carbon dioxide gas mole fraction curves at 1 and 7.5 bar (Fig. 5, note the 

different Y axis/adsorption scales) using the parameters for the pure single components and using 

both Models A (Lower part) and B (Upper part).  

The agreement of Model B (gradual transition approach) results with the experimental data is 

reasonably good. The apparent inconsistency of Model A predictions could be simply explained by 

the fact that the LP/NP transition occurs at all mole fractions at pressures above 7.5 bar, Fig. 4, 

upper part. At 1 bar (Fig. 5, lower part, left) the LP to NP transition occurs at a gas phase carbon 

dioxide mole-fraction of around 0.25. At 0-0.25 mole-fractions, the structure exists at LP of low 

occupation and at higher mole fractions 0.25–1 the structure exists at NP.  The Model B 1 bar 

adsorption (Fig. 5, upper part, left) is the rounded adsorption curve version of Model A. At 7.5 bar 

(Fig. 5, lower part, right), the LP to NP transition occurs at a gas phase carbon dioxide mole-

fraction of around 0.55. At 0-0.55 mole-fractions, the structure exists at LP of low occupation and at 

higher mole fractions 0.55–1 the structure exists at NP.  At pressures above 7.5 bar, a reverse 

transition from NP to LP occurs (Fig. 4, upper part) leading to higher adsorption. Considering the 
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higher adsorbed amounts at higher pressures, Model B 7.5 bar adsorption (Fig. 5, upper part, right) 

is the rounded adsorption curve version of Model A. 

 

Fig 5 Binary mixture adsorption vs. gas phase carbon dioxide mole fraction calculated using 

Model A (lower) and Model B (upper) at 304 K and total pressures of 1 bar (left) and 7.5 bar 

(right). Methane- black, Carbon Dioxide-red.   

 

9. Mixture Co-adsorption Phase Diagrams for Methane/Carbon Dioxide 

Mixtures. 

 

We have used the results of our Model A (sharp transition approach) calculations to construct the 

mixture co-adsorption phase diagrams at three temperatures, 284, 294 and 304 K (Fig. 6) similarly 

to the experimental and theoretical study of Coudert and co-workers
39

. In Fig. 6 the pressure is 

plotted against gas phase carbon dioxide mole fraction at which NP/LP transitions take place, 

enabling to record areas of LP and NP existence. Blue areas indicate NP existence while yellow 

areas indicate LP existence. It should also be noted that the pressure scale at 284 K is different from 

the scale at 294 and 304 K. Furthermore, red horizontal lines indicate the pressure upper limit of NP 

existence while purple vertical lines indicate the carbon dioxide mole-fraction low limit of NP 

existence. The essential features of the calculated co-adsorption phase diagrams are in good 

agreement with Coudert and co-workers’ results
39

. 
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The carbon dioxide mole-fraction low limit decreases as temperature decreases. At 284 K, in this 

model the system breathes in pure methane, whereas experimentally MIL-53(Al) breaths in pure 

methane below 245 K
52

.  

 

 

 

Fig 6 Mixture co-adsorption phase diagrams at 284, 294 and 304 K. The red horizontal line 

and vertical purple line indicate the pressure and carbon dioxide mole fraction limits of NP 

existence. 

 

10. Role of Mechanical Pressure  

 

Finally, we calculated using Model A (sharp transition approach) adsorption isotherms when the 

MOF structure is subjected at a constant mechanical pressure of 300 bar at various gas phase 

compositions, Fig. 7. Additionally to the gas phase pressure, the MOF structure is subjected to a 

purely mechanically applied pressure resulting in a total mechanical pressure of  as illustrated in 

Fig. 1. The gas pressure is included in the total mechanical pressure. As the gas pressure changes, 

the applied mechanical pressure stays constant at  = 300 bar.  

 

Fig. 7 Methane and carbon dioxide mixture adsorption isotherms at various carbon dioxide 

mole fractions (X) using model A, sharp transition approach under a mechanical pressure of 
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300 bar at 294 K. Methane- black curve ,Carbon Dioxide-red curve.  The dotted green curve 

indicates the NP/LP state of the MOF. 

 

The isotherms in Fig. 7 under mechanical pressure of 300 bar should be compared with those in Fig. 

3, Upper Part, where no additional purely mechanical pressure is applied and therefore the total 

mechanical pressure is equal to the gas phase pressure.  

Under a mechanical pressure of 300 bar, breathing occurs at 294 K at all gas phase compositions, 

even for pure methane. The additionally applied mechanical pressure compresses the MOF structure 

into the NP configuration at zero gas pressure. The gas adsorption triggers the NP to LP transition 

with corresponding sharp rises of adsorbed amounts. In the 50-50 % mixture the NP to LP transition 

leads to displacement of adsorbed methane by carbon dioxide, similarly to Fig. 3. Much interesting 

work seems possible regarding the influence of mechanical pressure on adsorption isotherms in 

MOFs 

 

11. Conclusions  

 

In this paper we have discussed the development of an exactly soluble lattice model of binary gas 

mixture adsorption in MOFs in the osmotic ensemble and present its application on methane - 

carbon dioxide system using the model parameters for the pure single components. The trends in the 

calculated pure component and mixture isotherms are in good agreement with experimental 

behaviour. In particular, the model is able to predict adsorption induced narrow/large pore 

transitions.  Using the transfer matrix treatment and partioning of the matrix into two parts, LP/NP 

configurations and off-diagonal blocks, we have presented two models for binary mixture 

adsorption model, depending upon neglect (Model A) or inclusion (Model B) of the off-diagonal 

couplings. Model A forbids the coexistence of narrow and large pores leading to sharp transitions, 

while Model B allows the coexistence of both pore types leading to gradual transitions. 

Furthermore, we have used the model to reproduce mixture co-adsorption phase diagrams for 

methane/ carbon dioxide at various temperatures which are found to give a good description of the 

experimental trends. Finally, we have investigated the effect of the mechanical pressure on the 

methane – carbon dioxide mixture adsorption isotherms. The mechanical pressure of 300 bar 

compresses the MOF structure into the narrow pore configuration, thus widening the range of 

conditions where narrow/large pore transition occur. 

Overall, it seems that the model reproduces the trends in the experimentally observed behaviour of 

MOFs undergoing binary mixture adsorption. The predictions are not particularly sensitive to the 

choice of model parameters. Much work remains possible regarding the influence of mechanical 
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pressure on adsorption isotherms in MOFs. Further work is underway to develop a three-

dimensional model of binary mixture adsorption in MOFs treated by mean-field theory. 
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