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Abstract 

 

The application of real options and fuzzy real options to renewable energy investment 

decisions is explored in the context of the valuation of three urban rooftop solar 

projects. Four real options methods were used to analyse the abandonment option 

present within these projects. Two of these methods, Fuzzy Black-Scholes and Fuzzy 

Binomial, used fuzzy numbers for the cashflow and salvage inputs. The resulting 

European put valuations for the option to sell the projects off for salvage were 

consistent across the various techniques, including both classical and fuzzy. The real 

options present within the solar projects consistently added value to the adjusted net 

present values of the projects, which should improve their investment prospects. 

Additionally, we discuss the role of using fuzzy options pricing techniques as opposed 

to traditional real options and their usefulness to the practitioner.  

 

 

1. Context1 

 

 

In response to rising pressure from growing urban populations and their demands on 

infrastructure, significant investment is needed for the development of urban energy 

systems (Townsend 2013). However, innovative renewable energy and energy 

efficiency (referred to hereafter as “smart energy”) projects still have difficulty in 

raising capital (Merk et al. 2012; OECD 2015). These types of projects are susceptible 

to policy risks which can make potential investors reluctant to invest in energy 

infrastructure (Foxon et al. 2005; Mitchell et al. 2006). One key approach towards 

encouraging investment in smart energy projects is appropriate project valuation, 

especially where there is risk and flexibility present. 

 

Smart energy projects are traditionally assessed by using the Net Present Value 

(NPV) technique, which is based on Discounted Cash Flow (DCF) analysis (Brealey 

et al. 2011). However, this type of analysis has a tendency to undervalue projects that 
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require long timeframes or which have managerial flexibility in their executions 

(Amram and Kulatilaka 1998), such as smart energy infrastructure projects (OFGEM 

2012).  As stated by Fernandes et al. (2011), “Traditional evaluation models relying 

mainly on discounted cash-flows fail to assess the strategic dimension of [renewable 

energy] investments and do not allow for properly dealing with the risk and 

uncertainty of these particular projects.” NPV has the disadvantage that it requires 

“the assumption of perfect certainty of project cash flows.” (Miller & Park 2002), and 

the use of NPV has important consequences when valuing long term projects, which 

would include many energy infrastructure projects, “such that the far future may 

appear worthless” (Aspinall et al. 2015). Copeland and Antikarov (2003) assert that 

NPV “systematically undervalues every project” due to the fact that “it fails to capture 

the value of flexibility.” As a result, some even go so far as to declare the use of NPV 

in environmental decision making as invalid and unethical (Robinson 1996). 
 

In reality, most projects have many options available, such as the option to delay the 

start of the project, the option to expand, and the option to abandon. In order to 

address the shortcomings of traditional project valuation, Real Options Valuation 

(ROV) allows the elements of project flexibility and uncertainty to be factored into 

the project valuation by modelling them after financial options, namely calls (options 

to expand) and puts (options to contract) (Trigeorgis 1996).  Therefore, well-

established financial option pricing techniques, such as Black-Scholes (Black & 

Scholes 1973) or Cox Ross Rubinstein (CRR) Binomial Trees (Cox et al. 1979), can 

be applied to determine the value of project flexibility, which can then be used to 

enhance the expected value of the project. 

 

However, while ROV captures uncertainty in project cashflows and options, the 

financial options valuation techniques still have the drawback of requiring quite 

precise input parameters, and real options values can be sensitive to small changes in 

the underlying inputs. (Dixit & Pindyck 1994) In order to overcome these limitations, 

the use of fuzzy options valuation techniques has been proposed as a way to value real 

options when inputs like cashflow forecasts are less precise (Wang & Hwang 2007). 

In fuzzy real option analysis, instead of the inputs having one specific value, they are 

formed of a range of values in order to model the natural uncertainties that may arise 

in cashflow or other parameters.  The motivation behind fuzzy real options is 

ultimately to provide the user with a practical means of handling project uncertainty 

and forecasting future cash flows arising from the value of such options. As stated by 

Collan et al. (2009), “This means that fuzzy sets can be used to formalize inaccuracy 

that exists in human decision making.”  In the domain of smart energy infrastructure, 

which is subject to various uncertainties such as price and policy risk, this is 

characteristic is important, because when it comes to investing in renewable energy 

projects, “getting the numbers right […] is far from simple” (Abadie and Chamorro 

2014). 

 

 

2. Objectives 

 

Against this background, the main aim of this work is to explore the application of 

fuzzy real options analysis to urban renewable energy infrastructure. In so doing, a the 

use of real options models will be explored, focusing in particular on their use of 

fuzzy numbers to capture the value of real options under the presence of uncertainty.  
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The classical (non-fuzzy) Black-Scholes and CRR models will be compared with the 

fuzzy Black-Scholes and fuzzy CRR models in order to determine whether real 

options can be used to improve smart energy investment valuation, and also to 

evaluate their consistency and ease of use.  

 

We will apply Real Options Valuation (ROV) and Fuzzy Real Options Valuation 

(FROV) to three rooftop solar projects in London in order to determine whether the 

additionality of project flexibility adds to the overall value of the projects.  To this 

end, three projects (Brixton Energy 2012a; Brixton Energy 2012b; Brixton Energy 

2013) had their proposed initial investments and potential cashflows analysed using 

Discounted Cash Flow (DCF) in order to establish their nominal NPV. These inputs 

were used to feed into the ROV and FROV pricing models so that the resulting option 

prices could be compared for consistency, and in order to investigate whether adding 

additional flexibility to the inputs in the form of “fuzziness” returned results 

consistent with non-fuzzy ROV models.   

 

The analysis continues in Section 3 with a literature review and survey of the relevant 

theoretical and practical works underpinning the models used here. Section 4 sets out 

a detailed description of our case study of rooftop solar projects, and the methodology 

for our real options analysis of these case studies is discussed in Section 5. The results 

of the solar projects analysis are presented in Section 6, followed by a critique of the 

usability of fuzzy real options in Section 7. Section 8 presents our final conclusions. 

 

 

3. Literature Review 

 

Fernandes et al. (2011) presents a review the application of real options analysis to 

investments in non-renewable and renewable energy sources thus demonstrating the 

positive impacts of ROV on assessing these types of projects. We focus on real 

options as applied to renewable energy (RE) investments, because the case study that 

this work focuses on is based on solar power generation, however most existing 

literature on the application to RE investments applies to wind and hydropower. 

 

Zeng et al. (2015) explores the application of ROV to solar projects that generate part 

of their income from renewable energy credits (REC), which are subject to their own 

price uncertainty.  This paper implements a Monte Carlo simulation and optimization 

method based on approximate dynamic programming to solve their real options model 

to determine the optimal time for buyback of third-party owned generating assets.  

This paper does not focus on overall project valuation, but rather on decision timing, 

and the only source of uncertainty in the model are REC prices.  

 

Venetsanos et al. (2002) applies real options valuation to renewable energy generation 

in the form of a wind farm.  This approach used the Black-Scholes options pricing 

model, and found that for their wind farm business case, the ROV-enhanced NPV was 

greater than the traditional NPV.  Boomsma et al. (2012) use real options to 

investigate the effects of different renewable energy support schemes, such as feed-in-

tariffs and renewable certificate trading, on wind farm investments. This paper 

compared different RE support schemes, and accounts for uncertainty in capital costs, 

electricity prices, and subsidies. They used a least-squares Monte Carlo options 

pricing model and used the option values to determine optimal time to investment and 
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also optimal RE support schemes, finding that feed-in-tariffs encourage earlier 

investment.  Similarly, Abadie and Chamorro (2014) explore the valuation of the 

option to delay an irreversible investment in wind energy in a decentralised, 

deregulated energy market setting under various RE support schemes. Their approach 

uses mean reverting trinomial and binomial lattice options pricing models and 

considers uncertainties in electricity prices, wind load, and renewable credit prices. 

They found that initial one-off subsidies have a stronger effect than ongoing 

mechanisms like feed-in-tariffs. Finally, Min et al. (2011) performed an analytic 

analysis of optimal entry and exit times for renewable generation assets by 

considering operations and maintenance (O&M) costs as the primary source of cost 

uncertainty.  Their work assumes that the O&M costs follow a geometric Brownian 

motion (GBM) process, and models the problem as an optimal stopping problem, or 

an abandonment option. 

 

Monjas-Barroso and Balibrea-Iniesta (2013) also investigate wind projects with real 

options present from policy frameworks in three European countries using both 

Monte Carlo and binomial tree techniques to value the call options, and they found 

similar results from both techniques as long as the number of nodes and iterations are 

sufficiently high. They compared RE investment frameworks in Finland, Denmark, 

and Portugal, and found that Finland had the strongest economic support for wind 

energy. Their primary sources of uncertainty were construction costs and electricity 

prices. Thomas and Chrysanthou (2011) apply Black-Scholes real options analysis to 

find the optimal time for investment in nuclear power, offshore wind, and onshore 

wind, and found that nuclear power is most economically viable under contemporary 

market and policy conditions. The main source of uncertainty was electricity prices, 

although the effect of renewable obligation credits was also explored.  

 

Two papers consider the use of real options analysis using binomial pricing 

techniques as applied to renewable energy policy in Taiwan (Cheng et al. 2011; Lee 

and Shih 2010).  Cheng et al. (2011) applies a modified binomial model based on 

sequential compound options to explore the effects of uncertain future electricity 

demand on lead time for implementing a clean energy policy. Their main forms of 

uncertainty were energy demand, for which GDP forecasting was used as a proxy. 

They use a multistage binomial tree to value the real options and therefore attempt to 

optimise policy strategy in Taiwan. Lee & Shih (2010) also use binomial options 

pricing to explore the interactions of RE policies and the uptake of wind energy 

generation.  They found that feed-in-tariffs for wind energy in the context of Taiwan 

negatively impacted policy return on investment, and their models used the cost of 

non-renewable energy, the cost of renewable energy, and levels of policy support as 

their inputs. 

 

As can be seen, all of these papers use various real options pricing approaches for the 

valuation of investment in renewable energy, however none of them use fuzzy real 

options analysis, which is considered in the works below. 

 

The application of fuzzy numbers to finance started with Buckley’s paper (1987) on 

fuzzy set theory as applied to cashflow analysis and the ranking of fuzzy investment 

alternatives. Fuzzy numbers have since been used in real option valuation, as 

presented in several papers. In particular, Carlsson & Fullér (2003) and  Collan et al. 

(2003)  both describe a model of pricing real options using a Fuzzy Black-Scholes 
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(FBS)  model based on fuzzy trapezoidal numbers. In these papers, they apply the 

FBS pricing approach to real options present in giga-investments with lifetimes of 15-

25 years.  Carlsson & Fullér (2003) concluded that a fuzzy real options model “that 

incorporates subjective judgments and statistical uncertainties may give investors a 

better understanding of the problem when making investment decisions.” Following 

on from this work, the fuzzy payoff method, which is based on the Datar-Mathews 

payoff method, is explored in Collan et al. (2009) and Collan et al. (2012). The latter 

work incorporates the use of a credibility factor to weight the fuzzy inputs according 

to confidence.  

 

There have been several works that also look at fuzzy implementations of CRR 

binomial tree options pricing. Ho and Liao (2010; 2011) present a fuzzy Cox-Ross-

Rubinstein (FCRR) binomial tree model based on fuzzy triangle numbers in their 

papers and propose a method for computing the mean value of a fuzzy number so that 

it can be compared with a crisp number. Similar implementations of fuzzy binomial 

tree models are also discussed by Muzzioli & Torricelli (2004) and Yu et al. (2011).  

Muzzioli & Torricelli (2004) describe a FCRR approach to financial options pricing 

using a triangle fuzzy volatility input. This paper shows some comparisons of FCRR 

options prices compared with standard CRR.  Yu et al. (2011) also describes a FCRR 

model using a fuzzy triangular volatility parameter, however they do not perform a 

numerical implementation or compare the results of their FCRR implementation with 

the standard CRR. None of these papers uses a certainty parameter. None of these 

works are specific to the use of fuzzy real options analysis in deployment of smart 

energy infrastructure, nor do they discuss application to specific case studies, which 

this paper will address.  

 

Our work differs from these previous papers in several ways. The first set of these 

papers focuses on real options as applied to renewable energy projects, however they 

do not explore the residual value of solar assets, which is a key point of managerial 

flexibility with response to policy change risks. Additionally, these papers use 

traditional real options valuation rather than fuzzy real options valuation and most of 

them pertain to optimal investment time rather than overall project valuations.  The 

second set of papers focuses on various fuzzy real options valuation models, however 

they do not apply these techniques to the valuation of renewable energy projects.  

Furthermore, very few of these papers provide a direct comparison of fuzzy real 

options valuation compared to classical real options valuation, especially with respect 

to increasing fuzziness.  This paper distinguishes itself from the previous literature in 

that it applies multiple fuzzy and classical real options valuation techniques to solar 

powered renewable energy projects to check their consistency of performance and 

ease of implementation, and furthermore performs a sensitivity analysis to investigate 

the behaviour of fuzzy real options valuation techniques under the influence of an 

increasing uncertainty (fuzziness) parameter and proposes an altered FCRR model 

that provides more stable fuzzy options valuation. 

 

 

4. Case Studies 

 

Three projects (Brixton Energy 2012a; Brixton Energy 2012b; Brixton Energy 2013) 

had their proposed initial investments and potential cashflows analysed using 

Discounted Cash Flow (DCF) in order to establish their nominal NPV. This was done 
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in order to establish a baseline project valuation before the application of real options 

analysis, and to determine the underlying value of the asset along with the volatilities 

of the cashflows, which are inputs required by options pricing models. The inputs for 

each business model were pulled from the three share offering documents (Brixton 

Energy 2012a; Brixton Energy 2012b; Brixton Energy 2013), which describe three 

rooftop solar projects in London, along with their cashflows. According to these share 

offering documents, the revenues for these projects were Feed-in-Tariff (FIT) 

contracts with lengths of 20 years (or 25 years in the case of Brixton 1) were agreed, 

whereby each project would receive a fixed payment for each kilowatt of electricity 

generated.  The outgoings included maintenance and insurance costs. The Feed-in-

Tariffs would provide the revenues that would nominally pay back the initial 

investment costs, service the annual running costs, and give a return on investment to 

the shareholders.  Because the FIT agreements are fixed, the main uncertainties in the 

business cases were the estimates for the running costs.  

 

Table 1: Three solar projects are shown, financed two different ways, where “Capex” indicates an initial 

upfront investment, and “Loan” indicates loan financing. The expected net cashflow is shown for the first 

year of the project, along with the projected salvage value of the solar arrays at year 20. 

 

The business cases also described an intended repayment scheme for local 

shareholders and charities, but in order to simplify our models, we have performed 

two types of discounted cashflow analysis (DCF) for each project: one as if all of the 

initial investment capital has been funded from internal budgets; and the other on the 

basis that the investment capital comes from a ten year business loan. We therefore 

model the cashflows for the three projects were modelled, first, as if they are outright 

capital expenditure (capex) investments, and second, as if a loan of 10% interest on a 

down payment of £10,000 is used to finance the projects. Both cash flow analyses are 

conducted under the assumption that there are no shareholders or dividends to pay.  

Our result is six DCF analyses, yielding six Net Present Value (NPV) project 

valuations, two for each project, respective to the means of financing, as shown in 

Table 1.  These initial valuations serve as the original figures against which our ROV 

enhanced valuations will be compared. 

 

For real option analysis to be relevant and effective, the project must have some 

element of managerial flexibility (Trigeorgis 1996; Dixit & Pindyck 1994; Amram & 

Kulatilaka 2000).  The public share offering documents (Brixton Energy 2012a; 

Brixton Energy 2012b; Brixton Energy 2013) gave no speculation as to what would 

happen to the projects after the expiration of the FIT contracts, despite the fact that 

the lifetime of photovoltaic (PV) cells could be up to 20 years longer than the duration 

of those contracts (Jordan & Kurtz 2013). However, due to policy and market 

uncertainty, there are several scenarios that would prevent the continuing operation of 

PROJECT 
 

Size Investment 
 

IRR NPV 
NPV w/ 

Extension Salvage 

Brixton 1: Capex  37 kW £75,000 6% £5,696 £10,046 £13,263.98 

Brixton 2: Capex 45 kW £61,500 10% 26,497 35,826 16,131.87 

Brixton 3: Capex 52.5 kW £67,000 8% 17,668 23,192 18,820.51 

Brixton 1: Loan 37 kW £10,000+Loan 4% -4,595 -245 13,263.98 

Brixton 2: Loan 45 kW £10,000+Loan 11% 18,309 2,307 16,131.87 

Brixton 3: Loan 52.5 kW £10,000+Loan 5% -2,511 3,013 18,820.51 
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the solar installations: the rooftop lease might not be renewed, or the purchase price 

for the electricity may be too low to generate sufficient revenue. If the projects need 

to be discontinued after the FIT expires, the PV arrays could be sold for salvage since 

they would still have operational lifetime remaining.  Here lies the source of the 

optionality present in this project: the managers will be able to execute some 

oversight in reaction to the prevailing conditions and new information, through which 

they can attempt maximise future revenues.  

 

The ability to sell the array for salvage can be modelled as an abandonment option 

because it would be exiting the market and shutting down the project. Since it occurs 

after a fixed term, this scenario can be priced as if it were a European put option since 

that is the method for pricing options to sell an asset to the market at a fixed time 

(Brealey & Myers 2010). In short, the salvage options give valuations for the 

opportunity – but not the obligation – to sell the photovoltaic arrays for salvage at the 

end of the FIT contracts.  For this reason we include the value of these salvage 

options in our analysis of the project valuations. 

 

In order to perform a real options analysis on these three projects, a number of values 

are needed for each project, namely: initial investment, NPV, discount rate, revenues, 

outgoing expenses, variation in cashflows (volatility), and salvage value for each 

array.  The initial investments and NPVs are obtained as described above.  The 

discount rate was established to be 5% since the cash flows are fixed in advance and 

therefore fairly low risk.  

 

The revenues for each project are based on the amount of electricity projected to be 

generated each year, with a FIT payment per kWh produced.  Solar PV cells do 

degrade in efficiency over time, and the public share offering documents have 

factored in a decrease in productivity of 1% per year, although this is higher than 

observed degradation in modern solar cells (Jordan & Kurtz 2013).  However, the FIT 

agreement is fixed to inflation, so payments will also be adjusted according to RPI 

every year.  Inflation in RPI is generally upwards, and to produce a forecast of 

inflation rates, a Monte Carlo analysis was performed on inflation data from 1986 to 

the present, which gave a projected rate of inflation of 3% in 20 years.  The payments 

for generation were adjusted upwards annually according to this level of inflation, as 

were the variable outgoing maintenance and running costs.  Because of the fixed 

nature of the FIT contracts, the volatility of energy prices does not affect the project 

revenues directly.  The underlying assets for these analyses are the present value of 

the total cash flows for each of the solar projects and the intrinsic value of the 

photovoltaic arrays. 

 

The salvage value for each array is calculated by assuming that it would be possible to 

receive 50 pence per kilowatt of generating PV, and then discounting that total value 

back to the present value.  This was done according to information given by McCabe 

(2010), which stated that $1 per kilowatt is not uncommon.  The same paper states 

that banks often calculate salvage value for PV arrays by estimating them at 15-25% 

of the initial investment.  However, as can be seen by comparing the project costs of 

Brixton 1 (£75,000 for 37kW) with the later project Brixton 3 (£67,000 for 52.5kw), 

PV and installation costs have dropped dramatically in the past few years, so it is 

more consistent to fix the salvage price to generating capacity of the arrays rather than 

to initial investment amounts. 



 8 

 

The future expected cashflows are calculated using the following assumptions.  The 

first assumption is that even if the FIT can be renewed in the future, it will be at a 

lower rate on the basis of recent policy changes with respect to FIT tariffs from the 

UK Department of Energy & Climate Change (2015). According to the current policy 

changes, agreed FIT payments for solar schemes are 4.59 pence per kWh as of 

January 2016.  It is very difficult to predict energy tariffs 20 years in the future, 

whether subsidised or not, but for the purposes of our calculations, we have assumed 

a FIT rate of 4 pence per kWh and 1 pence per kWh for export for any renewed FIT 

contract beyond year 20.  We have also assumed two outcomes for the purposes of 

calculating future expected cashflows: 1) a 50% chance of renewing a contract with 

the updated FIT terms, or 2) a 50% chance of failing to secure a new FIT contract or 

rooftop lease. We also assume that the fixed annual costs remain constant over the 

lifetime of the project.  

 

With these parameters in place, we then calculated the expected average cashflows for 

each project from the years beyond the standard FIT contract, as follows.  We 

summed the present value of the cashflows from year 20 (or 25 for Brixton 1) to year 

40.  We averaged this sum with zero to reflect the 50% chance of receiving no 

revenues over those years. The standard deviation was also calculated, and these were 

used to calculate the variance in the projects’ returns at the time of the expiry of the 

option (either year 20 or 25).  The coefficient of variation (CV) was then calculated as 

the standard deviation divided by the average expected cashflows.  This way, the 

variance, σ2, of the projects’ returns was calculated using 

 

𝜎2 =  
ln(CV2 + 1)

𝑡
 

( 1 ) 

 

where CV is the coefficient of variation, and t is the time until the option expires (20 

or 25 years, respectively). The square root of the variance is the volatility, σ, and 

according to this analysis, the volatilities of all three of the projects were consistently 

21%.  It is also notable that the expected cashflows (asset value) for each project were 

the same regardless of financing due to the fact that a ten-year loan would be paid off 

before the timeframe being considered, rendering the cashflows from year 20 (or 25) 

onward equivalent.  This meant that only one option price per project needed to be 

calculated, irrespective of whether it was cash or loan financed.  If the loan repayment 

had stretched into the option time horizon being considered, this would not have been 

the case. 

 

Now that the inputs necessary to price an option (asset price, strike price, lifetime, and 

volatility) are established, the salvage option price is calculated using the four option 

valuation techniques as described below. 

 

 

5. Methodology 

 

In order to determine whether fuzzy real options can be used to improve smart energy 

investment valuation, and to evaluate their consistency and ease of use, the traditional 

real options valuations techniques (Trigeorgis 1996; Amram & Kulatilaka 2000; 

Copeland & Antikarov 2003) must be compared with their respective Fuzzy Black-
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Scholes and Fuzzy CRR Binomial Tree methods. To this end, the Black-Scholes and 

CRR binomial tree models are utilised because they are the standard ROV models for 

use in continuous-time (analytic) and discrete-time scenarios, respectively (Martínez 

Ceseña et al. 2013). Because our business cases and their resulting cashflows consist 

of one option scenario that is fixed in time, both the Black-Scholes and the CRR 

binomial tree approaches are applicable. The two results from the two FROV models 

are compared with the results from the ROV models to explore whether additional 

“fuzziness” or uncertainty in the inputs yields options values that are consistent with 

the ROV models, and to determine if the ability to take fuzzy inputs makes the FROV 

models easier to use than the traditional ROV models. 

 

The options prices for three rooftop solar projects were calculated using four 

valuation techniques: classical Black-Scholes (BS) (Black & Scholes 1973; Merton 

1973); Fuzzy Black-Scholes (FBS) (Carlsson & Fullér 2003; Collan et al. 2003); 

traditional Cox, Ross, and Rubinstein (CRR) binomial tree (Cox et al. 1979); and 

Fuzzy CRR Binomial Tree (FCRR) (Liao & Ho 2010; Ho & Liao 2011; Yu et al. 

2011; Muzzioli & Torricelli 2004). The Black-Scholes and CRR binomial tree 

techniques were used because these are the most common techniques used in existing 

real options calculators. In the case of the Black-Scholes, Fuzzy Black-Scholes (FBS), 

and CRR binomial tree analyses, we implement the models exactly as described in the 

previous literature so that our findings can be directly comparable to those found in 

the previous literature.  In the case of the Fuzzy CRR (FCRR) model, we have 

implemented our model differently to the previous literature for two reasons:  firstly, 

in order to draw comparison between the different models, we needed to ensure that 

they all took similar inputs, and secondly, we altered the FCRR pricing method in 

order to avoid a distortion in the option prices, which is explained in detail below.  

The options were modelled as European puts with a fixed lifetime of 20 years (or 25 

for Brixton 1), which corresponds to the expiry of the Feed-in-Tariff (FIT) contract 

for each of these projects. 

 

 
Figure 1: Fuzzy Trapezoidal Number (Collan et al. 2003) 

 

 

a b
x

FROV

α β

FROV

x

AL AR

C1 C2 C3
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Figure 2: A Fuzzy Triangle Number (Ho & Liao 2011) 

 

In order to compare the fuzzy options prices calculated from the FBS and FCRR 

techniques, the fuzzy outputs must be converted to a crisp number. As shown by 

Carlsson & Fullér (2003b), the possibilistic mean value of a fuzzy trapezoidal number 

A’ can be calculated as 

 

𝐸(𝐴′) =  
𝑎 + 𝑏

2
+  

𝛽 − 𝛼

6
  , 

( 2 ) 

 

where a, b, α, and β are as depicted in Figure 1 above, and a and b correspond to the 

lower and upper bound of the fuzzy trapezoidal number, and α and β correspond to 

the “fuzzy” parameter, or an additional range of possibility above or below the core 

[a,b] range. This technique for finding the fuzzy mean value essentially operates as a 

weighted average. Therefore if the trapezoidal fuzzy number is symmetric such that α 

and β are equal, then the second term in E(A’) drops out and ( 2 becomes a 

straightforward arithmetic average for a number A’=[a,b].   

 

A similar technique is used for the triangular fuzzy numbers resulting from the FCRR 

model, in accordance with the approach described by Ho & Liao (2010; 2011). In 

order to derive the crisp option value from the fuzzy, a weighted arithmetic mean of a 

fuzzy number Vn’ is used as follows: 

 

𝐸(𝑉𝑛
′) =

(1 − 𝜆)𝑐1 + 𝑐2 + 𝜆𝑐3

2
         

( 3 ) 

 

 

where c1, c2, and c3 are the range values of the fuzzy triangle number Vn’ = [c1, c2, c3] 

(as shown in Figure 2), and 𝜆 =
𝐴𝑅

𝐴𝐿+𝐴𝑅
. Because AL and AR are the areas of the 

triangles as defined by the values c1, c2, and c3, 𝜆 can be expressed as 

 

𝜆 =  
𝑐3 −  𝑐2

𝑐3 − 𝑐1
. 

 

Similar to the FBS model, if the triangle fuzzy number is symmetric such that c3 – c2 

= c2 – c1, then the resulting crisp option price is equivalent to pricing a CRR option 

using c2, the middle value. 

a b
x

FROV

α β

FROV

x

AL AR

C1 C2 C3
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We performed a sensitivity analysis to confirm that changes in the overall fuzziness of 

the inputs did not introduce a skew in the resulting fuzzy options pricing. To 

investigate the robustness of the fuzzy options methods with respect to increasing 

fuzziness, a series of call option prices were generated using the FCRR model (based 

on (Ho & Liao 2011; Yu et al. 2011; Muzzioli & Torricelli 2004; Liao & Ho 2010))  

where all of the inputs are kept static except the fuzziness parameter, which was 

increased in increments of 5%.  The results of this procedure are displayed in Figure 3, 

which shows that the mean values of the fuzzy options prices that are produced 

increase exponentially with respect to the fuzzy parameter. This increase in mean 

option value comes from the positive skew in interim option values at each node in 

the CRR options lattice, and is due to fact that an increasingly fuzzy volatility leads to 

larger spreads in the “jump” factors that are used to construct the payoff lattice. In the 

CRR model, negative payoffs are discarded at each step in favour of zero, in 

accordance with the standard implementation of the payoff equations, which leads to 

an increase in option value proportional to the fuzziness. As stated by Liao & Ho 

(2010), “the characteristic of right-skewed distribution also appears in the FENPV of 

an investment project when the parameters (such as cash flows) are characterized with 

fuzzy numbers,” so this appears to be an implementation decision, however as shown 

in Figure 3, this approach has the effect of overinflating option values when 

uncertainties increase.  Given that FCRR options prices should remain stable and 

consistent with prices generated by other methods like FBS, our FCRR valuation 

method is implemented slightly differently. 

 

 

 
Figure 3: Call prices resulting from the Ho & Liao fuzzy volatility-based implementation of CRR compared 

with a fuzzy asset and strike price based implementation of CRR. 

 

In order to decouple the skew in FCRR option values from the increase in fuzziness, 

we implemented the FCRR in a modified manner.  In our FCRR model, instead of 

using the fuzzy parameter to generate a fuzzy volatility input, σ′, we instead kept the 

volatility constant while using the fuzzy parameter to generate a fuzzy triangle asset 

price S0’ and a fuzzy triangle strike price X’.  This means that the lattice jump factors 
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are dependent on a crisp volatility value alone, preventing the introduction of an 

exponential rise in asset and option values in the lattices, which in turn prevents the 

increase in mean option price.  In this method, the up and down jump factors and their 

corresponding probability is calculated according to the traditional CRR method. The 

fuzzy asset and strike prices, S0’ and X’, are used to create a fuzzy version of the 

payoffs for the option pricing lattice subject to the condition max(𝑋′ −

𝑆′𝑖𝑢′𝑖𝑑′𝑛−𝑖, 0).  By using this method of using fuzzy asset and strike price inputs, a 

fuzzy triangle European put option value is calculated, but without the skew 

introduced by using a fuzzy volatility input. 

 

As compared with the Ho & Liao (2010; 2011) options prices shown in Figure 3, the 

mean call option prices that result from our model are stable with respect to fuzziness.  

As shown in Figure 4, the range of fuzzy call values increases as fuzziness increases, 

but the mean remains stable, as expected.  This, in turn, yields option prices that are 

consistent with other pricing methodologies, rather than inflating the options 

valuation. 

 

 
Figure 4: The spread of fuzzy option values increases with respect to increasing fuzziness, however the 

mean remains stable.  

 

 

6. Results and discussion of the analysis 

 

As discussed above, inputs that are symmetric around a crisp asset and/or strike value 

will yield mean option prices equal to their crisp counterparts (see Equations ( 2 and 

( 3).  However, as the symmetric case is also the most trivial case, it does not offer 

any insights into the sensitivity of the fuzzy options models when they are responding 

to human inputs that are less likely to be symmetric and more likely to incorporate a 

greater variance in estimates for the asset and strike inputs. Therefore a random 

element of fuzziness introduced into the strike and asset price inputs for the fuzzy 

models in order to replicate the vagaries of human uncertainty. In this way, we are 

able to explore whether these fuzzy real options models return values that were robust 

under slightly varying levels of fuzziness. 
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Using the inputs from the rooftop solar projects, the four options valuation models, 

both traditional and fuzzy, were checked for consistency.  In order to do this, the put 

option valuation was calculated for the salvage option present after year 20 (25 in the 

case of Brixton 1) when the Feed-in-Tariff (FIT) contract expires, and yet the PV 

installations should still be generating useable electricity.  In order to calculate the 

value of the salvage options, the average of the future expected cashflows was used as 

the underlying asset, and the salvage value of the PV arrays was used as the strike 

price. The technique that was used for calculating the salvage option is analogous to 

the approach of valuing an abandonment option (Brealey et al. 2011) due to the fact 

than an asset would be sold on after project abandonment. In this method, the 

contracted FIT cashflows for the first 20 (or 25) years are used to calculate the 

standard NPV, and then the uncertain cashflows for the years beyond to year 40 are 

used to calculate the expected cashflows.   

 

We found that the existing fuzzy volatility-based FCRR models skewed the resulting 

option prices as the fuzziness parameter was increased (as shown in Figure 3). 

Thereafter, the model was modified such that the new fuzzy asset/strike-based FCRR 

model became stable with respect to fuzziness, or in other words, the mean option 

price neither increases nor decreases as the degree of fuzziness is changed.  Instead, 

as expected, the spread of the resulting fuzzy option prices does increase, but so as 

along as this spread is symmetric, it should have no effect on skewing the mean 

option price.  We have therefore used this modified FCRR model in our real options 

analysis in order to yield stable results. 

 

After the input parameters were established from the cash flow analysis of the three 

rooftop solar projects in Brixton, the data from each project was fed into the four 

options valuation models described previously: traditional Black-Scholes (BS); Fuzzy 

Black-Scholes (FBS); traditional Cox, Ross, and Rubinstein (CRR) binomial tree; and 

Fuzzy CRR Binomial Tree (FCRR).  The NPVs and salvage values are shown for the 

projects in Table 1. In this analysis, the fuzziness parameter was set to 5% in order to 

represent a reasonable level of uncertainty in the cash flows. All four options pricing 

models were implemented so that the resulting option prices could be compared for 

consistency, and in order to investigate whether adding additional flexibility to the 

inputs in the form of “fuzziness” returned results consistent with non-fuzzy options 

valuation models.   

 

Because the fuzzy option value in the FBS model shifts according to the changes in α 

and β, we used a Monte Carlo technique in order to get a truly average FBS option 

value to compare with the traditional Black-Scholes. The FBS model was run 100 

times for each set of input parameters, with a small element of randomness introduced 

each time. The mean was taken of the resulting option prices, which was then be 

compared with the traditional Black-Scholes price to see if the values were consistent 

and whether the FBS model was robust under the introduction of random variations in 

inputs. 

 

A similar technique was applied to the triangle fuzzy asset and strike price inputs for 

the FCRR model.  The fuzzy parameter was used to set the triangle points, c1 and c3, 

equidistant about the midpoint, c2, and then multiplied them by a random number 

between 0 and 1 to deform the triangle distribution randomly around c2. As in the 
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FBS case, this has the effect of also skewing the mean option price, so in order to get 

a true average FCRR option value to compare against the traditional CRR case, the 

model was also run for 100 times for each set of inputs.  The crisp average of these 

resulting options prices was then compared against the traditional CRR results. 

 

The mean European put prices resulting from the four options pricing techniques were 

found to be consistent (see Table 2).  Despite using fundamentally different 

techniques for calculating the put option prices, the resulting values were consistent 

with each other across each project within 2%. The consistency of the resulting option 

prices, regardless of the pricing method used, demonstrates that even when allowing 

for some fuzziness in the inputs, consistent option prices are obtainable.  

 

Table 2: The outputs of the European Put options pricing models for each project according to the following 

methods: Black Scholes (BS), Fuzzy Black Scholes (FBS), CRR binomial tree, and fuzzy CRR binomial tree 

(FCRR). 

One of the main objectives of this work has been to verify the hypothesis of whether 

real options analysis increases the valuation of these smart energy projects in order to 

improve their investment potential. Since the put option prices generated were 

consistent across the four valuation techniques, the average put option price for each 

project was used to adjust the original net present value (NPV) of each project to 

produce an Enhanced NPV (ENPV). This was achieved by adding the value of the 

salvage options to the original NPV (Trigeorgis 1996; Amram & Kulatilaka 2000). By 

so doing, the ENPV will then take into account the salvage value and expected future 

cashflows beyond FIT expiry, which are the main inputs into the put option 

calculation, where the salvage value is the strike price, and the cashflows are the asset 

price. 

 

 

PROJECT Investment FIT NPV 40 Year NPV ENPV 

Brixton 1: Capex £75,000 £5,695.67 £10,045.95 £7,728.69 

Brixton 2: Capex £51,500 26,497.22 £35,824.56 £28,914.75 

Brixton 3: Capex £67,000 17,668.42 £23,192.40 £21,976.49 

Brixton 1: Loan £10,000 + Loan -4,595.17 -£245.00 -£2,562.14 

Brixton 2: Loan £10,000 + Loan 18,309.45 £27,637.00 £20,726.98 

Brixton 3: Loan £10,000 + Loan -2,510.71 £3,013.00 £1,797.37 
 

Table 3: The Enhanced Net Present Values (ENPV) resulting from combining the salvage option with the 

FIT NPV.  As can be seen, the ENPV values lie between the FIT NPV and 40-Year NPV values, which is 

consistent with the fact that these options factor in a level of uncertainty in the expected cashflows. 

 

The project valuations increased when real options analysis was used. Some of the 

original project NPVs were negative, indicating that their potential for success was 

low (Brixton 1: Loan and Brixton 3: Loan).  The ROV-adjusted NPVs are all positive, 

PROJECT BS Put FBSput ECRRput EFCRRput Avg StdDev Error 

Brixton 1 £2,046.70 £2,045.45 £2,019.11 £2,020.83 £2,033.02 £15.10 0.74% 

Brixton 2 2,439.64 2,442.19 2,393.75 2,394.53 2,417.53 27.03 1.12% 

Brixton 3 4,327.33 4,329.62 4,284.98 4,290.35 4,308.07 23.68 0.55% 
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showing that allowing for the optionality of selling the photovoltaic arrays for salvage 

does improve the investment potential for these solar projects.  A summary of these 

results is given in Figure 5. These results are consistent with the behaviour of options 

prices themselves.  The put prices can be interpreted as a forecast of project viability 

in that a higher put price indicates a higher likelihood of exercising that option.  

 

 
Figure 5: The original NPV of the three projects (with both up-front capital and loan financing cases 

shown) as compared with the adjusted NPV after the value of the abandonment option is added, along with 

the NPV of running the project with an extension to 40 years after FIT expiry. 

 

To further investigate the use of option prices as an indicator of project viability, we 

calculated the internal rates of return for each of the six projects using their forecasted 

cashflows, and plotted these values against their respective ENPVs.  Since IRR is 

related to NPV, and both are used as benchmarks of returns on investment, we would 

expect a linear relationship. The resulting graph (Figure 6) shows this linear 

relationship between the IRRs and ENPVs, with an R2 value of 84%, albeit with a 

small sample size. 
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Figure 6:  The internal rates of return (IRR) for each project plotted against their respective Enhanced 

NPVs.  The resulting relationship is linear, with an R2 value of 84%. 

 

To summarise our findings, we first found that the fuzzy real options models returned 

values that are consistent with the traditional real options models, and that the results 

are robust under changing levels of fuzziness. For every project, the project valuations 

were increased when real options analysis was applied. Originally, some of the 

project NPVs were all negative, demonstrating pessimistic prospects for payback, 

however the valuations according to the real options models were all positive except 

one (which still improved), indicating that investment prospects are improved when 

the values of flexibility and managerial oversight are included.  

 

One rationale given for the use of FROV is that these models are easier to use than the 

traditional and well-established models in circumstances where the cash flows or 

strike prices are uncertain. In such cases, the process of carrying out a business case 

and balance sheet analysis in order to determine the cash flow and salvage value 

inputs for the fuzzy ROV models would yield a range of values from pessimistic to 

optimistic.  These values would then be arranged into a triangular or trapezoidal fuzzy 

number and input into the relevant FROV model. 

 

However, we argue that it is no more of an onerous process to merely run the 

traditional options valuation models at least twice, once for each set of pessimistic or 

optimistic values, in order to generate a plausible range of options prices. Furthermore, 

since there are many options calculators in the business world that have already 

implemented the traditional versions of Black-Scholes and CRR binomial trees, this 

would mean that practitioners could take advantage of pre-existing tools rather than 

having to seek out or create specialised options pricing implementations. 

 

For example, when we examine the case of Brixton 3, where the value of the cashflow 

S0 was £3,045, and the salvage value X was £18,820, triangle and trapezoidal fuzzy 

numbers can be created to estimate the pessimistic and optimistic ranges for these 

values as follows: 

 

𝑆0𝑡𝑟𝑖
′ = [2890, 3045, 3198];   𝑋𝑡𝑟𝑖

′ = [15000, 18820, 18920] 

y = 2E-06x + 0.0465
R² = 0.8436
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𝑆0𝑡𝑟𝑎𝑝
′ = [2969, 3121, 80, 250];    𝑋𝑡𝑟𝑎𝑝

′ = [18350, 19221, 510, 1220]  

These fuzzy numbers were created based upon the actual cashflows, but the ranges 

were chosen to reflect both a reasonable level of uncertainty and/or volatility; the 

ranges were also selected to be deliberately non-symmetric so that the classical crisp 

option value would not be trivially reproduced. 

 

The fuzzy trapezoidal numbers were input into the fuzzy Black-Scholes model, and 

the fuzzy triangle numbers were input into the fuzzy CRR model.  The European put 

option price according to the fuzzy Black-Scholes model was found to be 

𝑉𝐹𝐵𝑆
′ = [4147, 4337, 117, 240], and the put option price according to the fuzzy CRR 

model was found to be 𝑉𝐹𝐶𝑅𝑅
′ = [4186, 4214, 4209]. For comparison, the crisp 

Black-Scholes value was VBS = 4262, and the crisp CRR put value was VCRR = 4197. 

 

The fuzzy put values yield an option range of about 4030 to 4577. By comparison, the 

traditional crisp Black-Scholes model was then used for the following two pairs of 

inputs: S01 = 3121, X1 = 18350; and S02 = 2969, X2 = 19221.  These values represent 

the optimistic cashflow values paired with the pessimistic salvage values, and vice 

versa, to obtain the indicative option price spread.  The Black-Scholes put values 

resulting from these two sets of values are V1 = 4045 and V2 = 4441, with an average 

put value of 4243, which is within 2% of VBS and VCRR given above. This 

demonstrates that rather than having to deal with the complexity of implementing a 

new fuzzy ROV model, comparable values can be obtained through the use of 

traditional real options valuation by using the same pessimistic and optimistic values 

for cashflow and salvage. 

 

 

6. Conclusions 

 

The main objective of the analysis here has been to explore whether fuzzy real 

options could improve the investment prospects of renewable energy and energy 

efficiency projects. Four real options analysis methods were used to value the salvage 

option present in three urban rooftop solar projects. Two of these methods, Fuzzy 

Black-Scholes and Fuzzy Binomial, used fuzzy numbers for analysis.  These 

techniques take fuzzy cash flows and salvages as inputs, and output the options prices 

as fuzzy numbers.  The values produced from the fuzzy options models were found to 

be consistent with the outputs from the traditional options models. This consistency in 

values demonstrates that, despite allowing for uncertainties in the inputs, reliable 

outputs can be attained from both of these fuzzy option valuation methods.  

Furthermore, the use of real options valuation to adjust project NPVs retains a linear 

relationship with IRR, confirming that both can be useful as project viability 

indicators. 

 

For the projects analysed in our case study, their financial valuations were indeed 

improved by real options analysis, and fuzzy real options models gave robust and 

consistent results. Ideally, the flexibility inherent within fuzzy real options valuation 

would help with incorporating the policy and cashflow uncertainties that are common 

to many renewable energy projects, however we found that similar results could be 

found from traditional ROV with less effort. Therefore, in relation to the effective 

applicability for practitioners of the FROV models, we conclude that they require 
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some work in implementation, since standard options calculators cannot be used. 

Similar results (i.e., a set of option values) can be found by merely running the 

traditional ROV models over a range of crisp inputs. The resulting range of crisp 

ROV option values is very close to those returned by the FROV models, which brings 

into question the usefulness of FROV techniques, particularly in the scope of 

renewable energy investment. 
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