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Abstract | CD36 (also known as scavenger receptor B2) is a multifunctional receptor that 

mediates the binding and cellular uptake of long chain fatty acids, oxidized lipids and 

phospholipids, advanced oxidation protein products, thrombospondin and advanced 

glycation end products, and has roles in lipid accumulation, inflammatory signalling, energy 

reprograming, apoptosis and kidney fibrosis. Renal CD36 is mainly expressed in tubular 
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epithelial cells, podocytes and mesangial cells, and is markedly upregulated in the setting of 

chronic kidney disease (CKD). As fatty acids are the preferred energy source for proximal 

tubule cells, a reduction in fatty acid oxidation in CKD affects kidney lipid metabolism by 

disrupting the balance between fatty acid synthesis, uptake and consumption. The outcome 

is intracellular lipid accumulation, which has an important role in the pathogenesis of kidney 

fibrosis. In experimental models, antagonist blocking or genetic knockout of CD36 could 

prevent kidney injury, suggesting that CD36 could be a novel target for therapy. Here, we 

discuss the regulation and post-translational modification of CD36, its role in renal 

pathophysiology and its potential as a biomarker and as a therapeutic target for the 

prevention of kidney fibrosis.   

  

 

[H1] Introduction 

The transmembrane protein CD36 (also known as scavenger receptor B2) has important 

roles in metabolic diseases, including atherosclerosis,1 non-alcholic fatty liver disease2 and 

diabetes melitus3, as well as in metastatic colonization in cancer4. CD36 is ubiquitously 

expressed on the surface of many cell types, including monocytes,5 macrophages,6 

adipocytes,7 myocytes,8 enterocytes9 and hepatocytes2. In the kidney, CD36 is expressed in 

the proximal10 and distal tubular epithelium11, podocytes,12 mesangial cells,13,14 

microvascular endothelial cells and interstitial macrophages15,16. Renal CD36 expression is 

upregulated by hyperlipidaemia and hyperglycaemia, and patients with chronic kidney 

disease (CKD), particularly those with diabetic nephropathy, show increased expression of 

the protein.12,17  

 

CD36 has multiple ligands, which can be classified as lipid-related ligands, such as 

(long-chain) fatty acids,18 oxidized LDL (Ox-LDL),19,20 and oxidized phospholipids21; and as 

protein-related ligands, including advanced oxidation protein products (AOPPs),22 advanced 

glycation end products (AGEs),23 thrombospondin-1 (TSP1), TSP2,24,25 S100 family proteins 

(S100-A8, S100-A926 and S100-A1227), amyloid proteins28,29, and the synthetic 



 3 / 43 

 

growth-hormone-releasing peptide family members hexarelin30 and EP 8031731. Apoptotic 

cells can also act as a ligand for CD3632 (Table 1). Many of these ligands have important roles 

in kidney injury. 

 

The findings of several studies suggest that CD36 serves as a signalling hub for lipid 

homeostasis33,34, immunological responses35, and programming of energy availability36,37. 

CD36 also mediates crosstalk between different cell types — for example between 

macrophages and endothelial cells or between tubular cells and macrophages or 

myofibroblasts — in response to oxidized ligands such as Ox-LDL, oxidized phospholipids, 

apoptotic cells and AOPPs.38 In proximal tubular epithelial cells (PTECs), CD36 is involved in 

energy source regulation via mitochondrial β-oxidation of fatty acids, which are a major 

source of renal ATP production.39 

 

Disruption of any of the above mentioned CD36-dependent pathways, such as defective 

fatty oxidation in PTECs, has a critical role in the development of kidney fibrosis.40 In mice, 

blocking CD36 prevents CKD progression,41 demonstrating an important role of CD36 in 

renal injury and its potential as a therapeutic target. In this Review, we focus on the 

biological, physiological, and pathological roles of CD36 that might promote CKD progression, 

namely roles in lipid homeostasis, metabolic inflammation, apoptosis, and reprogramming 

of energy metabolism.  

 

[H1] The CD36 gene 

The human CD36 gene is ~46 kb in length and is located on chromosome 7q11.2. The gene 

has 15 exons; exons 4 to 13 and part of exons 3 and 14 encode the CD36 protein.42  

Mutations in the CD36 gene are linked to abnormalities of plasma fatty acids and 

triglycerides, which are risk factors for metabolic diseases involving insulin resistance.43  

[H2] Transcriptional regulation 
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The CD36 gene promoter contains CCAAT/enhancer-binding protein (C/EBP) responsive 

elements, which enable C/EBP to bind and regulate CD36 expression in various cell types.7 

Nuclear receptors also have important roles in the transcription of the CD36 gene. For 

example, peroxisome proliferator-activated receptor α (PPAR-α) and PPAR-γ have been 

shown to regulate CD36 expression in human macrophages44 and cardiac microvascular 

endothelial cells45. In addition, study have shown that PPARγ dependent pathway increase 

CD36 expression can be activated by high glucose in the human HK-2 proximal tubular cell 

line.46,47 Whether or not the CD36 promoter contains a PPAR responsive element, however, 

remains unclear. Response element binding sites for Pregnane X receptor (PXR) and liver X 

receptor (LXR) have been identified in the CD36 promoter, and activation these receptors 

could upregulate CD36 expression and promote hepatic steatosis .33  However, LXR 

activation in diabetic kidney models was determined to be renoprotective through 

mechanisms independent of CD36 but expression levels were not examined in all 

studies.48-50 

Lipids including fatty acids12, and Ox-LDL51 can upregulate CD36 expression. Following 

CD36-mediated uptake in macrophages, Ox-LDL is metabolized to produce 9-hydroxy 

octade-cadienoic acid and 13-octade-cadienoic acid. These metabolites are PPAR agonists 

that activate PPAR through protein kinase C (PKC), protein kinase B and p38 

mitogen-activated protein kinase (MAPK) pathways. Following activation, PPAR and retinoid 

X receptor form a heterodimer that binds to the CD36 promoter and increases CD36 

transcription.52 In turn, increased expression of CD36 leads to an increase in Ox-LDL uptake 

in macrophages and promotes foam cell formation.53 In contrast to Ox-LDL, oxidized HDL 

(Ox-HDL) inhibits macrophage CD36 expression via PPAR-dependent mechanisms.54  

Lysophosphatidic acid (LPA) is a central component of cellular phospholipid metabolism and 

an important regulator of vascular remodelling and inflammation.55 LPA downregulates 

CD36 transcription in microvascular endothelial cells via a protein kinase D1 

(PKD1)-dependent pathway.56 LPA/PKD1-induced downregulation of CD36 in these cells is 

mediated by nuclear accumulation of histone deacetylase 7, which interacts with forkhead 
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box protein O1 to suppress CD36 transcription57. In microvascular endothelial cells, 

LPA/PKD-1 signalling activated a transcriptional proangiogenic switch involving ephrin B2, 

which is a critical mediator of angiogenesis and arteriogenesis.57  

In addition to lipids, high glucose levels and insulin have been reported to induce the 

expression of CD36 in mesangial cells58 and cardiac myocytes59, respectively. 

Monocyte-colony stimulating factor60, phorbol ester61, tumour necrosis factor (TNF) 62, IL-463 

and thiazolidinediones64,65 can also promote CD36 expression in monocyte/macropahges. By 

contrast, lipopolysaccharide66, dexamethasone60, interferon67, transforming growth factor 

(TGF)-β1/268, tamoxifen69, and HDL70 inhibit macrophage CD36 expression, whereas statin 

treatment has been reported to substantially reduce platelet CD36 expression.71 

 

[H1] The CD36 protein 

Full-length human CD36 comprises around 472 amino acids and has a predicted molecular 

mass of 53 kDa.72 The protein has two transmembrane domains with a huge extracellular 

region, which contains the ligand-binding region, and two short cytoplasmic tails at the 

N-terminus and C-terminus.42,73 The extracellular loop contains a large hydrophobic cavity 

that traverses the entire length of the molecule. This cavity is thought to serve as a tunnel 

through which hydrophobic ligands (including cholesterol and fatty acids) are delivered from 

the extracellular space to the outer leaflet of the plasma membrane74 (FIG. 1).  

CD36 also has a positively charged domain (155–183 amino acids contain lysine cluster) that 

binds negatively charged ligands.75 Almost all end-stage biological oxidation products are 

negatively charged, including Ox-LDL, AOPPs, AGEs, and apoptotic cells. Binding of these 

ligands, which are markers of cellular oxidative stress and denaturation of lipids or proteins, 

to CD36 triggers pathophysiological responses such as inflammatory and proatherogenic 

processes.15,23,53  CD36 has been shown to interact with TSP1 through electrostatic forces 

mediated by the multiple negatively charged CD36, LIMP-2, Emp sequence homology 

domain (CLESH) residues of CD36 and the positively charged surface of the thrombospondin 
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type I repeat 2 domain of TSP176. This interaction is required for the CD36 CLESH-dependent 

anti-angiogenic activity of TSP1.   

Previous studies indicated that circulating soluble CD36 (sCD36) consists of part of the 

extracellular segment of CD36.77,78 The huge CD36 extracellular segment might undergo a 

‘cut-down' process by a plasma protease, resulting in release of sCD36 into the circulation.78 

Driscoll and colleagues demonstrated that ADAM17 mediates proteolytic cleavage of the 

CD36 extracellular domain, which might be a mechanism to regulate efferocytosis or 

clearance of apoptotic cells.79 However, another group reported that sCD36 is not a 

‘cut-down’ product from extracellular domain, more likely is a specific subset of circulating 

microparticles.80 Thus, the mechanism by which sCD36 is formed is not clear and more 

studies are need for this confusion. 

[H2] Post-translational modifications 

Post-translational modifications might have an important role in regulating CD36 location 

and function. In general, glycosylation, ubiquitination, and palmitoylation are involved in 

regulating CD36 stability, protein folding, and trafficking, whereas phosphorylation at 

extracellular sites affects the rate of ligand (such as fatty acid) uptake.81 Acetylation of CD36 

has also been reported,82,83 but the effects of this modification on CD36 expression and 

function have not yet been elucidated. 

[H3] Phosphorylation. CD36 has two phosphorylation sites at Thr92 and Ser237, both of 

which modulate ligand binding within the extracellular loop. The Thr92 site is a putative PKC 

bindingsite, whereas the Ser237 site is recognized by PKA.84,85 Phosphorylation of these sites 

is positively linked to CD36 function possibly through the modulation of ligand binding.  

In platelets, phosphorylation and dephosphorylation of CD36 on the cell membrane affects 

TSP binding and controls collagen adhesion.85 In vitro cell free condition, inhibition of TSP 

binding to CD36 was correlated with level of Thr92 phosphorylation of CD36.86In addition, 

this site phosphorylation occurred during the process of new protein synthesis and 
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trafficking through the Golgi.86 Phosphorylation of CD36 at Thr92 is also necessary for 

binding of CD36 to erythrocytes that are infected by Plasmodium falciparum.87 

Phosphorylation of CD36 at Ser237 has been reported to inhibit fatty acid uptake in 

platelets and enterocytes88,89. Whether such CD36 phosphorylation also leads to inhibition 

of fatty acid uptake in the kidney has not yet been investigated. 

[H3] Glycosylation. The process of glycosylation occurs within the endoplasmic reticulum 

(ER) and the Golgi, where it provides stable coupling of complex oligosaccharide structures 

to proteins.90 The majority of glycosylation is N-linked at asparagine residues.91  CD36 has 

10 potential glycosylation sites, all of which are located within the extracellular loop,  and 

fully glycosylated CD36 is an approximately 88 kDa transmembrane glycoprotein receptor72. 

Glycosylation of CD36 is a hydrophilic modification, which is very important for protein 

folding, stability, and trafficking, but does not affect ligand binding.91 In intestinal 

enterocytes, enhanced CD36 glycosylation reportedly results in an increase in the absorption 

of fatty acids by unknown mechanisms.9  

In spontaneously hypertensive (SHR) rats, CD36 is mutated at multiple sites including 

Asp102, which is located within the fatty acid binding pocket and is a potential 

N-glycosylation site.92 In the hearts of these rats, both total CD36 protein expression and 

fatty acid utilization were significantly reduced, perhaps owing to a decrease in CD36 

stability as a result of the mutation at Asp102.92 Further studies are needed to investigate 

the role of glycosylation in altered fatty acid uptake in CKD. 

[H3] Palmitoylation. Palmitoylation regulates the subcellular localization, membrane 

interactions, and subcellular trafficking of proteins. CD36 has four palmitoylation sites, 

which are located in the third, seventh, 464th and 466th cysteine residues in the 

cytoplasmic segment of the N-terminal and C-terminal.93  Palmitoylation of CD36 is a 

reversible catalytic process. In most cases the reversible covalent bond occurs between 

palmitate and cysteine residues via a thioester linkage. Protein palmitoylation requires 

palmitoyl-transferases (PATs) and palmitoyl-protein thioesterases (PPTs) for palmitoylation 
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and depalmitoylation, respectively.94 Under palmitic acid stimulation, PATs cause CD36 

palmitoylation in the ER.93,95  

Palmitoylated CD36 is located in the lipid rafts of the cell membrane where it mediates 

adsorption and transport of fatty acids.96 Inhibition of palmitoylation stops the maturation 

of CD36 and causes CD36 precursor proteins to remain in the ER.95 Non-palmitoylated CD36 

has a short half-life as it is more likely to be degraded than palmitoylated CD36.95  

Palmitoylation of CD36 might, therefore, have a role in lipid accumulation. Inhibition  of 

CD36 palmitoylation might be a potential strategy to reduce CD36-mediated lipid 

accumulation and inflammatory signalling; however, whether such palmitoylation occurs in 

renal cells has not been determined.  

[H3] Ubiquitination. The polyubiquitination pathway targets proteins for proteasomal 

degradation. CD36 has two ubiquitination sites in the C-terminus at Lys469 and Lys472 that 

are responsible for its regulation by polyubiquitination.97 In C2C12 myotubes, the degree of 

polyubiquitination of CD36 did not affect the relative distribution of the protein between 

the intracellular storage compartments and thecell surface, but down-regulate protein 

expression level97. 

Platelet-derived exosomes increase the polyubiquitination of CD36 and enhance 

proteasome degradation.98 In a mouse muscle cell line (C2C12), oleic acid increased, 

whereas insulin decreased the polyubiquitination of CD36.97 Concomitantly, fatty acids 

reduce CD36 protein levels and decrease cellular fatty acid uptake, whereas insulin has the 

opposite effect.97  

In contrast to polyubiquitination, mono-ubiquitination is considered to be non-degradative 

and has other functions such as protein complex formation. The intracellular C-terminal 

lysines in CD36 can be targeted by parkin, which has E3 ubiquitin-protein ligase activity and 

participates in the process of protein ubiquitination. 99 In mice, a high-fat diet increased 

hepatic parkin and CD36 levels, which contributed to increased lipid accumulation and 

insulin resistance.100 Parkin-knockout mice on a high fat diet had reduced hepatic CD36 
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levels that blunted the maladaptive response to lipid metabolism and insulin signalling 

compared with controls.  

High-fat diet increased Parkin levels and CD36 levels in liver of mice, suggesting that fatty 

acids should stabilize or increase the CD36 protein level via Parkin-mediated 

mono-ubiquitination.100 Indeed, fatty-acid-mediated polyubiquitination and degradation of 

CD36 in C2C12 myotubes cell lines.97,100  and can be explained by the fact that parkin 

exhibits both mono-ubiquitination and polyubiquitination functions.101 Hence, the 

downstream effects of parkin can be both dependent and independent of the proteasome. 

The function of parkin might vary between different tissues and conditions such that it 

operates as a mono-ubiquitinase in some settings and as a polyubiquitinase in others. The 

role of fatty acids in CD36 degradation in the kidney remains unclear. 

[H3] Acetylation. Protein acetylation has roles in cell apoptosis102, subcellular protein 

localization103, glucose and FA metabolism82 DNA and protein interactions, DNA replication 

and repair, DNA transcriptional activity and protein stability104. Acetylation of CD36 at Lys52, 

Lys166, Lys231 and Lys403 has been shown using mass spectrometry82,83, but the biological 

effects of this acetylation remain unclear. 

[H2] Cellular location 

CD36 is not only present at the cell surface but also in endosomes, the ER and 

mitochondria.105 The protein can migrate between these locations via vesicular transport 

along exocytotic and endocytotic pathways to control lipid homeostasis and energy 

reprogramming2,59,106-108(FIG. 3). A net translocation of CD36 to the plasma membrane is 

induced by several physiological stimuli, most notably elevated circulating insulin levels106, 

muscle contraction109.  

Insulin-induced CD36 translocation requires activation of the phosphatidylinositol-3-kinase–

Akt2 signalling axis,59,106 whereas muscle-contraction-induced CD36 translocation is 

dependent on activation of AMP-activated kinase (AMPK).109,110 Inflammation increases 
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CD36 transcription, translation, and translocation to the cell surface.96 Post-translational 

modifications could be major factors that determine the cellular location and function of 

CD36. 

High molecular weight CD36 homodimers and oligomers have been detected in human 

platelets and in COS-7 cells transfected with human CD36.24,111 G12xxxG16xxxA20 and 

A20xxG23 motifs in the N-terminal transmembrane domain of CD36 are responsible for its 

dimerization112. Whether homodimerization of CD36 and palmitoylation of cysteine residues 

close to the N-terminal region affects its function, cellular location, ligand binding and signal 

transduction remains unclear.  

[H1] Roles of CD36 in renal pathophysiology 

CD36 modulates multiple pathways that have important roles in acute kidney injury(AKI) and 

CKD. 

 

[H2] Fatty acid accumulation 

The lipid nephrotoxicity hypothesis, which was first proposed by Moorhead et al. in 1982113 

and updated by Ruan et al. in 2009114, suggests that. This concept has led to a large number 

of studies focusing on the relationship between lipids and renal disease. Evidence from 

experimental animals and from humans suggests a direct role of lipids, including 

non-esterified fatty acids, triacylglycerols and cholesterol, in the initiation and progression 

of CKD.115 

 

The total lipid content of the healthy human kidney is estimated to comprise approximately 

3% of the wet weight.116  More than half of this lipid content is phospholipids, 

approximately one-fifth is triglycerides, and about one-tenth is non-esterified fatty acids 

(NEFAs).117 In vivo studies using radiolabelled fatty acids in dogs118, as well as analysis of 

differences in substrate (including fatty acids, lactate, citrate and pyruvate) levels  between 

human arterial and renal venous blood116, have indicated that the kidney extracts fatty acids 

from the circulation, and that fatty-acid oxidation could account for more than half of renal 



 11 / 43 

 

oxygen consumption. Importantly, fatty acid extraction by the human kidney in vivo was 

linearly dependent on plasma fatty acid concentrations.116  

 

Kidney uptake of circulating fatty acids requires dissociation from albumin, which is 

mediated by specific membrane proteins such as CD36.119 The renal proximal tubule 

retrieves albumin-bound fatty acids from the filtrate by CD36 or receptor-mediated albumin 

endocytosis.120 In mice, the kidney takes up NEFAs and increases fatty acid oxidation (FAO) 

during fasting states, whereas de novo lipid synthesis pathways are downregulated121. 

Similar to the liver and in contrast to muscle, CD36 and lipoprotein lipase are not required 

for uptake of NEFAs in the normal murine kidney121. These findings do not, however, rule out 

a role of CD36 in fatty acid transport in the kidney as CD36 does not have a role in the 

passive transmembrane movement of fatty acids,105 which might be an important mode of 

fatty acid uptake during fasting. 

 

As fatty acids are the preferred energy source for PTECs, a reduction in FAO in CKD affects 

kidney lipid metabolism by disrupting the balance between fatty acid synthesis, uptake and 

consumption.40 The outcome is intracellular lipid accumulation, which has an important role 

in the pathogenesis of kidney fibrosis.40  

 

In the settings of murine and human CKD, genes that are associated with FAO are 

downregulated in the kidney.40 Kidney biopsy samples from patients with diabetic 

nephropathy showed lipid accumulation in the glomeruli and tubulointerstitium together 

with upregulation of CD36 compared to normal control samples.12,17 Transgenic 

overexpression of tubular CD36 lead to increase intrarenal lipid accumulation but only a 

slight increase in profibrotic genes in the absence of kidney injury and did not show any 

difference in fibrosis.40,122 In podocytes, CD36-dependent uptake of palmitic acid led to a 

dose-dependent increase in the levels of mitochondrial reactive oxygen species (ROS), 

depolarization of mitochondria, ATP depletion, and apoptosis.12,28 Moreover, studies in 

mouse models have shown that in the setting of CKD, CD36 promotes fibrogenesis by 
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increasing oxidative stress and activating proinflammatory pathways, although the role of 

CD36 in FAO was not investigated.123  

 

Further research is required to identify the differential roles of passive and active fatty acid 

transport in kidney disease as well as the major receptors that are involved in fatty acid 

uptake in the kidney. Such studies will enable greater insight into the mechanisms of fatty 

acid metabolic dysfunction in kidney disease.   

 

[H2] Interactions with oxidized lipids   

Accumulation of Ox-LDL in the circulation and renal interstitium has been reported in 

experimental models and in patients with CKD and end-stage renal disease (ESRD).124,125 

Macrophage CD36 can bind large amounts of Ox-LDL and mediates the endocytosis and 

degradation of Ox-LDL in vivo; some studies have reported that CD36 is responsible for 

more than half of Ox-LDL uptake in macropahges126  

 

In hypercholesterolemic mice with kidney injury (as a result of unilateral ureteral 

obstruction), Ox-LDL deposition was evident in the renal tubules and interstitial 

compartment and correlated with fibrosis.11 CD36 deficiency in the same model reduced the 

activation of proinflammatory and oxidative pathways, resulting in a substantial reduction in 

the number of interstitial myofibroblasts compared with wild-type controls.123 Even in 

normocholesterolemic states, however, chronic kidney injury results in the de novo 

generation of intracellular oxidized lipids in macrophages.126  

 

In a mouse model of renal fibrosis induced by unilateral ureteral obstruction, lipid 

metabolism led to a twofold to sixfold increase in the levels of the intracellular lipid 

peroxides hydroxyoctadecadienoic acid (HODE) and hydroxyeicosatetraenoic acid (HETE) in 

CD36+renal macrophages.126 The absence of macrophage CD36 expression in this model led 

to a 50% reduction in the intracellular levels of HODE and HETE, reduced fibrosis and 

preservation of kidney function. In this nonproteinuric model of CKD, macrophage CD36 
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formed a heterodimer with Lyn kinase at its C-terminus to activate a NF-κB 

p50p65-dependent proinflammatory pathway.126  

 

Activation of NF-κB increases the production of proinflammatory cytokines and chemokines, 

which might trigger an influx of monocytes and accumulation of macrophages in the 

kidney.41 In proximal tubular cells, CD36 heterodimerizes with the Na+/K+-ATPase α-1 

subunit in response to Ox-LDL or ouabain15. This heterodimer activates Src and Lyn kinases 

and can potentiate a proinflammatory signaling loop involving TNF, CC motif chemokine 2 

and IL-6.15  Moreover, Ox-LDL or ouabain induced ROS production in proximal tubular cells 

was significantly attenuated by knockdown of the Na+/K+-ATPase α-1 subunit or 

N-acetyl-cysteine. These facts suggsting that CD36 and the Na+/K+-ATPase share ligands and 

downstream molecular cross-talk in kidney and they act synergistically to promote 

inflammation in hyperlipidemic states.15 Sheedy et al. found that sustaining uptake of 

Ox-LDL by CD36 causes the nucleation and accrual NLRP3-activating crystals within the 

macrophage, and induced the release of IL-1β.127  

 

HDL is susceptible to structural modifications, including oxidation, in the setting of metabolic 

disorders.128,129 Oxidative modification of HDL (Ox-HDL) has been reported in patients with 

advanced-stage renal disease, particularly in those with diabetic nephropathy.130 The levels 

of oxidized phospholipids was also significantly increased in apoptotic cells in an 

experimental CKD model.126 In human renal tubular (HK-2) and mesangial cells, binding of 

Ox-HDL to CD36 enhanced ROS production and upregulated the expression of 

proinflammatory factors via activation of p38/MAPK, extracellular-regulated kinase 

(ERK)/MAPK and NF-κB.131 Src family kinase was also activated in HK-2 cells following 

stimulation with Ox-HDL, and apoptosis was increased.131 

 

[H2] Endocytosis of AOPPs 

AOPPs are a family of oxidized, dityrosine-containing, cross-linked protein compounds that 

are formed by the reaction of plasma proteins with chlorinated oxidants. Studies suggest 
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that AOPPs are important renal pathogenic mediators in the progression of CKD and 

associated cardiovascular disease.132,133 CD36 is a receptor for AOPP-modified albumin in 

proximal tubular cells.22 Moreover, anti-CD36 antibody treatment has been shown to inhibit 

oxidant-damaged human serum albumin (AOPPs-HSA)-induced endocytic association and 

degradation of AOPPs in HK-2 cells22. AOPPs-HSA increased intracellular ROS generation and 

TGF-β1 secretion in these cells, whereas anti-CD36 antibody abrogated AOPPs-HSA-induced 

up-regulation of TGF-β1.22  

 

CD36 binding of AOPPs activates the renin–angiotensin system in proximal tubular NRK52E 

cells via PKCα/NADPH-dependent activation of NF-kB.134 Blocking CD36, PKCα or NADPH 

oxidase dramatically abolished AOPP-augmented activation of AP-1 and NF-kB in these cells, 

suggesting that AOPPs activate NF-kB and AP-1 through the CD36-PKCα-NADPH oxidase 

pathway.134 

 

[H2] Interactions with thrombospondin 1  

TSP1 is a matricellular protein that inhibits angiogenesis and causes apoptosis in vivo and in 

vitro in several cells and tissues. Interaction of TSP1 with CD36 is critical for activation of 

latent TGF-β and might be involved in initiating and regulating cellular fibrosis.135 TSP1 and 

CD36 are induced early in renal ischaemic-reperfusion injury (IRI) and TSP1-null mice 

showed substantial preservation of kidney function after IRI.136  In rodent kidneys 

subjected to IRI, formation of the TSP1–CD36 complex in proximal tubular cells led to 

cleavage of caspase 3 and apoptosis.136 Similarly, in an adriamycin-induced nephropathy 

mouse model of focal segmental glomerulosclerosis, TSP1 expression increased in injured 

podocytes and led to CD36-dependent apoptosis via activation of the p38MAPK pathway.137  

 

In a model of diet-induced obesity, podocyte apoptosis and dysfunction were attenuated in 

TSP1-deficient and in CD36-deficient mice, suggesting that the interaction of TSP1 with 

CD36 contributes to obesity-associated podocytopathy138. Moreover, blocking TSP1 binding 

to CD36 using peptide treatment attenuated fatty-acid-induced podocyte apoptosis, 
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suggesting that the TSP1/CD36 interaction mediates this process. 

 

The antiangiogenic effects of TSP1 and TSP2 are mediated through binding to microvascular 

CD36 as evidenced by the finding that TSP1 and TSP2 do not inhibit neoangiogenesis in 

CD36-/- mice.139,140 LPA has been shown to downregulate CD36 transcription via protein 

kinase D1 (PKD1) and antagonize the antiangiogenics effect of TSP1 and TSP2.56  

 

[H2] Endocytosis of AGEs 

AGEs are a heterogeneous and complex group of compounds that have an important role in 

the development of diabetic nephropathy. Using Chinese hamster ovary cells that 

overexpressed CD36, Ohgami et al. made the interesting discovery that AGEs are recognized 

by CD36, endocytosed in a dose-dependent fashion and undergo lysosomal degradation.6  

 

AGE–BSA [Au: bovine serum albumin? Yes] upregulated CD36 expression and lipid uptake 

in monocytes from patients with diabetes and in aortic vascular smooth muscle cells from 

diabetic rats.141-143 AGE-LDL has been shown to potentially induce production of 

proinflammatory cytokines by interacting with CD36 in mouse monocytes.144 Moreover, 

early work from Suztak and colleagues demonstrated that CD36 expression is necessary and 

sufficient to mediate apoptosis of PTECs induced by AGEs and fatty acids through sequential 

activation of Src kinase, p38MAPK and caspase 3.10 

 

[H2] Amyloid deposition 

Deposition of amyloid fibrils derived from serum amyloid A protein (SAA) causes systemic 

amyloid A (AA) amyloidosis, which is a serious complication of chronic inflammatory 

conditions. The kidney is one of the organs that is most often affected by AA amyloidosis. 

Renal AA amyloidosis leads to progressive deterioration of renal function and is considered 

to be intractable.145 CD36 is a receptor for SAA23 and has been reported to have a role in 

SAA-induced proinflammatory activation through JNK and ERK1/2-mediated signalling in the 

HEK293 human embryonic kidney cell line.108 This finding suggests that CD36 has an 
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important role in the initiation of inflammatory reactions and oxidative stress in renal AA 

amyloidosis. Further exploration of the role of CD36 in this disease would, therefore, be of 

interest. 

 

[H2] Other activators of CD36 

In HK-2 cells, high glucose levels increased CD36 expression in a time-dependent manner 

and induced epithelial-to-mesenchymal transition at 72 h.146  This effect could be 

prevented either by knockdown of CD36 or by treatment with the CD36 antagonist 

sulfosuccinimidyl-oleate.146 Studies using a proximal tubular cell line (LLC-PK1 cells) showed 

that albuminuria enhanced the secretion of bioactive TGF-β and fibronectin and 

upregulated CD36122. Treatment with CD36 siRNA abrogated these increases, suggesting 

potential anti-fibrotic effects. 

 

[H2] CD36 signalling and kidney injury   

CD36 is able to generate cell-specific responses to multiple ligands through the binding of 

context-specific binding partners (such as toll-like receptor 2 (TLR2),147 TLR4, TLR6,148 149 13 

150 131 tetraspanin CD9, 151 integrin152,153 and Na+/K+ATPase) and to activate NF-kB154, 

NLRP3127, PKC-NAPDH oxidase,134 Src/Lyn/Fyn and MAPK kinases131, and TGF-β22 signalling 

pathways (FIG. 2). These effects result in metabolic inflammation, energy reprogramming, 

apoptosis and fibrosis, which contribute to the development of renal injury. 

 

Fatty acids and Ox-LDL increase the apoptosis of human macrophages.19,155 In ER-stressed 

murine macrophages, oxidized phospholipids, Ox-LDL, saturated fatty acids, and 

lipoprotein(a) have been shown to trigger apoptosis via an interaction between CD36 and 

TLR2/TLR6 heterodimers.21 When exposed to Ox-LDL and amyloid β, CD36 forms 

heterodimers with TLR4 and TLR6 via its C-terminus Tyr463, and CD36-Lyn kinase interaction, 

causing inflammatory responses.149 The interactions of CD36 with TLR2,147 tetraspanin151 

and integrins152,153 contribute to Ox-LDL uptake and foam cell formation in atherosclerosis. 

 



 17 / 43 

 

Whether all CD36 ligands have similar effects on binding partners, downstream signal 

transduction pathways and their biological effects in the kidney is unclear as are the 

mechanisms by which CD36 senses different ligands and exerts specific responses. The 

specific effects of crosstalk between CD36 ligands, binding partners and signal pathways on 

inflammation, apoptosis, and especially energy reprogramming in the kidney, warrant 

further investigation. 

 

Macrophage infiltration into the kidney has an important role in CKD. Increased CD36 

expression has been observed in the kidneys and peripheral blood monocytes of patients 

and mice with chronic renal failure.156,157 5 158 Moreover, in mouse models of unilateral 

ureteral obstruction and ischaemia reperfusion, knockout of CD36 in monocytes decreased 

the severity of fibrosis and improved kidney function.126 The role of CD36 in crosstalk 

between macrophages and kidney cells and in the initiation and amplification of 

inflammation, apoptosis and fibrosis required further investigation. 

 

[H2] Energy reprogramming 

Mitochondrial β-oxidation of fatty acids is a primary source of renal ATP production, 

particularly in the proximal tubule, which has a high-energy demand and relatively low 

glycolytic capacity, suggesting that fatty acids are the preferred energy source for proximal 

tubule cells.39 A reduction in fatty acid oxidation in CKD would affect lipid metabolism by 

disrupting the balance between fatty acid synthesis, uptake, and consumption, leading to 

dysregulated intracellular lipid accumulation, which has a crucial role in the pathogenesis of 

kidney fibrosis.159  

 

Metabolic reprogramming is characterized by decreased expression of key enzymes and 

regulators of FAO and increased intracellular lipid deposition. Inhibition of FAO in tubular 

epithelial cells in vitro causes ATP depletion, cell death, de-differentiation, and intracellular 

lipid deposition.40     
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Diabetic complications have been shown to arise in the context of distinct tissue-specific 

alterations in metabolism160. In the diabetic kidney, substrate utilization progressively 

increased with simultaneous consumption of glucose and fatty acids, suggesting that 

metabolic reprogramming with enhanced protein acetylation led to mitochondrial 

dysfunction.160 Increasing amounts of fatty acid bound to albumin lead to defects in 

mitochondrial respiration and to peroxide-mediated apoptosis of tubular cells.161 Compared 

to people with normal kidney function, patients with CKD had markedly lower 

transcriptional levels of genes related to fatty acid metabolism and their key transcriptional 

regulator complex PPARα–PPARr co-activator 1-α (PGC-1α).40 Moreover, proximal tubular 

cells with defective fatty acid oxidation showed fibrosis phenotypes with ATP depletion, 

increased cell death, dedifferentiation and intracellular lipid deposition.40 Thus, restoring 

metabolic defects in fatty acid oxidation might be a potential therapeutic strategy for CKD 

(FIG. 3).    

 

Mitochondrial transfer of fatty acids is the rate-limiting step in fatty acid oxidation. This 

transfer requires linking of fatty acid products to carnitine via carnitine palmitoyltransferase 

1 (CPT1) and CPT2.162  The mitochondrial enzyme carnitine O-acetyltransferase (CRAT) 

complexes excess acyl groups to carnitine, enabling them to exit the mitochondria163. The 

importance of CD36 in FAO has been suggested to relate to its function in mitochondrial 

transfer of fatty acids, which has been demonstrated in human skeletal muscle cells.16,162 

CD36 was identified in purified mitochondria from these cells and was shown to 

co-immunoprecipitate with CPT1. In addition, increased mitochondrial CD36 content 

paralleled up-regulation of fatty acid oxidation in skeletal muscle.16,162  

 

CD36 might have a similar function in mitochondrial fatty acid transfer in PTECs, which also 

have a high energy demand. PTECs express high levels of CPT1A, CPT1B, and CPT2 and 

CRAT.164 In contrast to CRAT in the liver and skeletal muscle, which can be both 

mitochondrial and peroxisomal, renal CRAT is almost exclusively mitochondrial.165 Any 

alterations in CPT1 activity will likely affect fatty acid metabolism and oxidation in proximal 
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tubular cells. Deletion of CPT1B in the heart causes cardiac hypertrophy and death,166 

whereas inhibition of CPT1 in the liver leads to steatosis.167 These findings suggest that CPT1 

control of FAO has profound implications for cellular energy balance. In the kidney, too little 

CPT1 expression accompanied by decreases in the levels of other enzymes with roles in FAO 

might lead to an energetic crisis and potentially result in tubulointerstitial fibrosis. 

 

The role of CD36 in FAO seems to be linked to inter-regulation of CD36 and AMPK. In the 

heart, AMPK functions as an important energy sensor and metabolic regulator that is 

activated in response to increasing energy demand and upregulates nutrient uptake, and 

catabolism.168 AMPK enhances fatty acid oxidation by reducing the levels of malonyl-CoA via 

phosphorylation and inactivation of acetyl-CoA carboxylase.169 In cardiac myocytes, CD36 

co-ordinates dynamic protein interactions within a molecular complex consisting of CD36, 

Fyn kinase, LKB1 and AMPK.36  In the setting of low fatty acid concentrations, CD36 

expression maintains AMPK quiescent by enabling Fyn to access and phosphorylate LKB1, 

promoting its nuclear sequestration away from AMPK, resulting in inhibition of AMPK and 

consequently of AMPK-mediated FAO.36 However, high levels of palmitate binding to CD36 

activate AMPK within minutes via its ability to dissociate Fyn from the complex as CD36 is 

internalized into LKB1-rich vesicles.36 The ensuing enrichment in cytosolic LKB1 levels 

activates AMPK, which enhances FAO by inactivating acetyl-CoA carboxylase.36  AMPK 

activation also induces cell surface CD36 recruitment in myocytes.170 This dual effect would 

serve to adjust the capacity for fatty acid oxidation to match fatty acid availability and 

balance on energy saving and usage.171  

 

Dysregulation of AMPK signalling172 or CD36 deletion in myocytes173 is associated with 

metabolic inflexibility evidenced by a diminished capacity to adjust FAO to fatty acid 

availability. Whether these mechanisms also occur in the proximal tubule during kidney 

disease is currently unknown. However, targeted deletion of LKB1 in distal tubular cells 

resulted in renal fibrosis by  significantly reduced the levels of key effectors of FAO, such as 

AMPK, PGC-1α, and PPARα.174 Moreover, Suztak and colleagues demonstrated that free 
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palmitic acid leads to CD36-dependent proximal tubule apoptosis via activation of the p38 

MAPK pathway.10 These results could suggest that the CD36–LKB1 pathways are important 

in promoting metabolic dysfunction in tubular cells during CKD. 

 

[H1] Soluble CD36 —a potential biomarker     

Evidence suggests that sCD36 might have a role in modulating the immune response by 

binding to TLR2.77 The levels of sCD36 correlate with tissue CD36 expression.175  Use of 

HMG-CoA reductase inhibitors (statins) has been reported to affect sCD36 levels by 

unknown mechanisms.176  

 

Several studies have suggested that sCD36 might be a valuable biomarker of disease activity 

in several chronic inflammatory diseases, including diabetes, non-alcoholic steatohepatitis 

and atherosclerosis.177-181 In some clinical studies, serum levels of sCD36 positively and 

significantly correlated with body weight, BMI, waist circumference, monocyte counts and 

the levels of cholesterol and LDL.182,183  In patients with stage 5 CKD (n = 228) on dialysis, 

serum sCD36 levels were significantly increased and predicted cardiovascular mortality.176 

Several studies have analysed sCD36 levels in plasma samples; however, these samples have 

to potential to skew interpretation of the results owing to the presence of CD36 in platelets, 

which could represent a marker of platelet activation.177,184,185 Furthermore, microparticles 

that are released upon platelet activation might represent an important source of CD36.  

 

The available evidence indicates a close relationship between CD36 and kidney disease 

progression. However, the various commercial assays for sCD36 provide inconsistent 

results.186 Further studies are needed with standardized and appropriate methods to 

validate the use of sCD36 as a biomarker in diabetes and CKD.  

 

[H1] CD36 as a potential therapeutic target 

CKD is a global health problem with no therapeutic options beyond 

angiotensin-converting-enzyme inhibitors to slow its relentless progression.187,188 The 
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multi-ligand potential and multi-functionality of CD36 make it an attractive target for 

blocking kidney injury and subsequent progressive loss of kidney function. Several studies 

have demonstrated that blockade or deficiency of CD36 can block fibrosis pathways, 

metabolic dysfunction and proteinuria.41,122,123,126  

 

[H2] CD36 blockade 

CD36-deficient mice develop low-grade proteinuria owing to loss of CD36-mediated albumin 

and other protein uptake in proximal tubules,189 without the formation of fibrosis in aged 

mice. Furthermore, silencing or antibody blockade of CD36 in PTECs exposed to AOPPs in 

vitro blocked TGF-β production,22 and suggests that CD36 is an important mediator of 

proteinuric injury. In addition to tubules, CD36 is also upregulated in podocytes during 

proteinuric injury in experimental models and human podocytes, and blockade of CD36 on 

podocytes in vitro led to an improvement in health with less apoptosis and oxidative 

stress.12,22,137,138,190 Blockade of CD36-dependent pathways, therefore, holds great promise 

as a therapeutic strategy for a variety of kidney diseases. 

 

Apolipoproteins are important for the formation of protein–lipid complexes and have a key 

role in transporting otherwise insoluble lipids within the body. A common feature of 

apolipoproteins is the presence of tandem 22-mer repeating domains in exon 4.191  When 

these sequences are folded into an alpha-helix, they produce a structure with opposing 

polar and nonpolar faces.192 Synthetic amphipathic helical peptides (SAHPs) are able to 

replicate structural motifs of apolipoproteins that are also able to modulate interactions 

with scavenger receptors such as CD36.28,193 In a mouse model of 5/6 nephrectomy with 

continuous angiotensin II infusion, treatment with the SAHP 5A resulted in preservation of 

kidney function with reduced glomerulosclerosis, interstitial fibrosis, and albuminuria 

compared to controls41. Although the 5A peptide affects other scavenger receptors (SR-Bl/ll) 

in addition to CD36, no benefit of 5A administration in the injury model was seen in 

CD36-deficient mice, suggesting a dominant role of CD36 in disease progression.41  SAHPs 

with more targeted activity against CD36 (ELK-SAHPs) have also been developed. Of these, 



 22 / 43 

 

ELK-B has been shown to inhibit pulmonary inflammation and dysfunction in a sepsis 

model.194 Although blockade of CD36-dependent pathways in the kidney and lung might be 

beneficial, the effect of this blockade on other tissues that express CD36 remains unclear.  

 

Cyclic azopeptides are another class of peptidomimetic therapeutics that can be to target 

CD36.195 The azapeptide EP80317 targets the residues Gln155–Lys183 and has shown 

impressive efficacy in reducing disease and altering pathogenic mechanisms in experimental 

models of atherosclerosis and myocardial infarction.31,196 The efficacy of EP80317 in kidney 

injury is currently under investigation. 

 

[H2] Activating mitochondrial CD36  

Evidence suggests that fully modified CD36 translocates to the cytoplasmic membrane and 

mediates fatty acid uptake and inflammatory responses.81,197 In proximal tubular cells, 

increased levels of fatty acids lead to defects in mitochondrial respiration, reduced FAO and 

intracellular lipid deposition, causing renal fibrosis.40,164,198  Thus, activation of 

mitochondrial CD36, which enhances FAO, might restore these metabolic defects (FIG. 3). 

Inhibition of CD36 protein modifications by genetic or pharmacologic approaches could 

potentially result in increased levels of mitochondrial CD36 and, therefore  increased 

shuttling of fatty acids towards oxidation, which might switch fatty acids from an 

accumulation to a consumption phenotype and protect against kidney fibrosis.   

 

[H1] Conclusions 

CD36 has important roles in lipid homeostasis, metabolic inflammation, reprogramming of 

energy metabolism, apoptosis and kidney fibrosis. The expression and intracellular location 

of CD36 is regulated by its multiple ligands in transcription and post-translational 

modifications. Cross-talk between CD36 ligands, binding partners and signalling pathways; 

and between macrophages and kidney cells; leads to inflammation, apoptosis and/or energy 

reprogramming. These effects represent important molecular mechanisms for the 

development of CKD that warrant further investigation. The development of novel CD36 
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peptides have demonstrated efficacy in slowing the progression of CKD. Given the cell 

specific effects of CD36 and its ubiquitous expression in several tissues, future development 

of new CD36 peptides to target specific sites on the receptor and in select cell populations 

will limit off target effects and improve its efficacy in different kidney diseases.  
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Key Points  

 CD36 is a multifunctional receptor for long-chain fatty acids, oxidized lipids, advanced 

oxidation protein products, thrombospondin and advanced glycation end products 

 CD36 is expressed in a wide variety of kidney cells such as PTECs, mesangial cells, 

podocytes and monocytes/macrophages 

 The expression and intracellular location of CD36 is regulated by multiple ligands 

with roles in gene transcription and post-translational modifications  
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 CD36 is involved in lipid accumulation, inflammation, energy reprograming, 

apoptosis and kidney fibrosis through activation of Toll-like receptors, Na+/K+ATPase, 

the NLRP3 inflammasome, PKC-NAPDH oxidase, Scr/Lyn/Fyn and MAPK kinases, and 

TGF-β signalling pathways 

 Circulating soluble CD36 correlates with tissue CD36 expression and could be a 

biomarker for progression of chronic kidney disease 

 Experimental studies have demonstrated that blockade or knockout of CD36 can 

prevent kidney injury, suggesting that CD36 could be a novel therapeutic target for 

the prevention of kidney fibrosis 

Figure 1 | CD36 structure and post-translational modifications. CD36 has two 

transmembrane domains and two small cytoplasmic tails that contain four 

palmitoylation sites. The C-terminus contains two ubiquitination sites and the 

N-terminal transmembrane domain contains two motifs that are responsible for 

dimerization. The large extracellular loop contains ten N-linked glycosylation sites 

and two phosphorylation sites. A variety of ligands bind to CD36 via the hydrophobic 

binding pocket (entrance 1). Crystal structure studies also suggest that CD36 might 

have a second entrance (entrance 2) for fatty acid transport. CLESH, CD36, LIMP-2, 

Emp sequence homology domain. 
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Figure 2 | CD36 ligand and signal transduction pathways with roles in chronic 

kidney disease progression. Binding of a variety of ligands to CD36 on the plasma 

membrane initiates assembly of a complex of CD36 and Toll-like receptor 4 (TLR4) 

and TLR6; TLR2 and TLR6; or Na+/K+-ATPase. This complex activates NF-κB, the 
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NLRP3 inflammasome, protein kinase c (PKC)-NAPDH oxidase, Scr/Lyn/Fyn and 

mitogen-activated protein kinases (MAPK), and transforming growth factor-β 

(TGF-β)-specific cell signalling pathways. Activation of these pathways has been 

shown in kidney reanl cells (green), macrophages (red) or both cell types (yellow). 

These processes result in lipid accumulation, metabolic inflammation, apoptosis, 

energy metabolism reprogramming and renal fibrosis. ACE, angiotensin-converting 

enzyme; AGEs, advanced glycation end-products; AGT, angiotensinogen; Ang ll, 

angiotensin ll; AOPPs, advanced oxidation protein products; AT1, angiotensin II type 

1 receptor; ERK, extracellular-regulated kinase; CCL5, C-C omotif chemokine 5; 

CPT1, carnitine palmitoyl transferase; FAO, fatty acid oxidation; IL, interleukin;  ox, 

oxidized; MCP-1, monocyte chemoattractant protein-1; NF-kB, nuclear factor-kB; 

RAS, renin–angiotensin system; TNF, tumour necrosis factor; PPARα, peroxisome 

proliferator-activated receptor ; PPARGC1α, PPARγ  coactivator 1α ; ox-HDL, 

oxidized high density lipoprotein; ox-LDL, oxidized low density lipoprotein; ROS, 

reactive oxygen species; TGF-β, transforming growth factor β. 
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Figure 3 | Post-translational modifications regulate CD36 distribution and 

function. Fully-modified CD36 translocates to the plasma membrane and mediates 

fatty acid uptake, oxidative stress and inflammatory responses by triggering 

inflammatory signalling (not shown). Post-translational modifications may promote 

dimerization of CD36 and then increase fatty acid load. Increased amounts of 

intracellular fatty acids lead to defects in mitochondrial respiration in proximal tubule 

cells with reduced fatty acid oxidation (FAO) and increased intracellular lipid 

deposition, resulting in renal fibrosis. Metabolic defects in FAO might be restored by 
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activating mitochondrial CD36, which enhances fatty acid oxidation.  
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Table 1 | Ligands and roles of CD36 in kidney and other tissues 

 

Cell type CD36 ligand Roles Refs.   

Proximal tubule 

epithelial cells 

Fatty acids ATP production, lipid 

accumulation,apoptosis 

10,161 

albumin Fibrosis 122 

AGEs Apoptosis 10 

AOPPs Inflammation, apoptosis 134 

Ox-LDL Inflammation, apoptosis, 

ROS production 

11,15 

Ox-HDL Inflammation, apoptosis, 

ROS production 

131 

Monocytes and/or 

macrophages 

Ox-LDL  Foam cell formation, ROS 

production, lipid 

accumulation,apoptosis 

15,19,20,199 

Serum amyloid A Inflammation 29 

AGEs Inflammation, ROS 

production, lipid 

accumulation 

143,144 

Thrombospondin 1 Inflammation, apoptosis 148 

Porphyromonas gingivalis Foam cell formation 147 

Oxidized phospholipids Apoptosis 21 

Podocytes Fatty acids lipid accumulation, 

apoptosis, ROS production 

12,138,190 

Mesangial cells Ox-HDL Inflammation, apoptosis 154 

Cardiomyocytes Fatty acids ATP production 37 

Vascular endothelial 

cells 

Fatty acids ATP production 45 

Ox-LDL  Foam cell formation, lipid 

accumulation, inflammation 

200 
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