
1 

 

Ageing as a risk factor for ALS/FTD 

Teresa Niccoli1,2, Linda Partridge2,3 and Adrian M. Isaacs1,4 

1Department of Neurodegenerative Disease, 4 UK Dementia Research Institute at 

UCL, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 

2Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, 

UCL, Darwin Building, Gower Street, London WC1E 6BT, UK 

3Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 

Cologne, Germany 

 

Abstract 

Like many other neurodegenerative diseases, age is a major risk factor in the 

development of ALS/FTD. But why is this the case? Recent genetic advances have 

highlighted some of pathways involved in the development of disease, and, 

strikingly, they appear to substantially overlap with those known to directly modulate 

the ageing process. Many ALS/FTD linked genes play a direct role in 

autophagy/lysosomal degradation, one of most important pathways linked to ageing. 

However, systemic processes such as inflammation, as well as cellular maintenance 

pathways including RNA splicing and nuclear-cytoplasmic transport have been 

increasingly linked both to disease and ageing. We highlight some of the shared 

mechanisms between the ageing process itself and emerging pathogenic 

mechanisms in ALS/FTD. 

 

Introduction 

Frontotemporal dementia (FTD) comprises a diverse array of disorders broadly 

characterized by the progressive degeneration of the frontal and temporal lobes [1]. FTD is 

the second most common cause of early onset dementia after Alzheimer’s disease [2, 3] and 
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is strongly heritable, with 30%-50% of patients displaying a strong family history [4]. FTD can 

be clinically categorized either by behavioural symptoms (behavioural variant FTD, bvFTD, 

the most heritable form) or by language dysfunction (primary progressive aphasia, PPA) [5, 

6] At the pathological level FTD is characterized by an accumulation of proteinaceous 

inclusions in the brain, with each pathological subtype defined as frontotemporal lobar 

degeneration (FTLD) followed by the specific inclusion identified. Inclusions in the majority of 

FTD patient brains contain either tau protein (FTLD-Tau) or TDP-43 (FTLD-TDP). However, 

about 10% of FTD patients present with FUS inclusions (FTLD-FUS) and some have poly-

ubiquitinated inclusions with none of these proteins (FTD-UPS), or no inclusions at all (FTD-

ni) [7]. The clinical symptoms of FTD appear to be determined by the pattern of brain 

atrophy rather than by the molecular identity of the inclusions [8].  

 

Although clinically distinct in their pure forms, FTD is genetically and pathologically related to 

amyotrophic lateral sclerosis (ALS), a motor neuron disease that causes upper and lower 

motor neuron degeneration, eventually leading to paralysis and death by respiratory failure. 

The link between FTD and ALS has been long known [9, 10], yet only recently was it 

discovered that several mutations can cause either of these diseases [11] and in about 15% 

of cases (both familial and sporadic) patients develop both diseases [12, 13]. FTD and ALS 

also overlap pathologically, as nearly all sporadic forms of ALS (sALS) and nearly 90% of 

familiar ALS (fALS) are associated with TDP-43 inclusions, with the exception of fALS 

caused by SOD1 and FUS mutations, which are characterized by SOD1- or FUS-containing 

inclusions respectively [14-16]. 

 

The similarities between FTD and ALS suggest that these are two forms of the same 

disease spectrum. However, unlike FTD, ALS is mostly a sporadic disease [17]. It is a 

complex polygenic trait with approximately 10-20% common SNP-based heritability [18, 19], 

which is significantly lower than, for instance, Alzheimer’s disease [20]. Low-frequency 
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genetic variants play a major role in heritability of ALS, and many of them are not yet 

identified [18].  

 

Ageing is the main risk factor for both FTD and ALS (Fig 1) [21, 22]. The incidence of ALS 

increases dramatically with age [23] [21] and, of the 5% of patients who develop ALS under 

the age of 30 [23], most carry specific mutations such as FUS and SOD1 [23]. Similarly, the 

age of onset of FTD is usually above 35, with incidence increasing considerably with age 

[22, 24]. In this review, we explore the links between the ageing process and the 

development of FTD/ALS. We discuss how the pathogenic mechanisms of ALS and FTD are 

closely related to pathways affecting the ageing process itself. We exemplify this with some 

key molecular mechanisms underlying ALS and FTD, uncovered by the expanding list of 

genes associated with these diseases, and discuss the roles of these pathways in the 

ageing process. The overlap between the molecular mechanisms leading to both ageing and 

FTD/ALS may well explain why advancing age has such an important function in disease 

development.  

 

Overlapping mechanisms in ageing and FTD/ALS 

The ageing process was once thought to result from random accumulation of insults to 

molecules, cells, tissues and the systemic environment due to the passage of time, and 

therefore intractable for both experimental analysis and medical intervention, However, in 

the last 30 years, a number of conserved mechanisms have been shown to modulate 

ageing, with single genetic mutations and dietary or pharmacological interventions able to 

extend the lifespan across a variety of species [25]. We discuss four key process which 

become dysregulated during ageing and have also been implicated in the aetiology 

of FTD/ALS by genetic studies: autophagy, inflammation, nuclear-cytoplasmic 

transport and splicing of RNA (Table 1). 

 



4 

 

Autophagy 

Autophagy plays an important role in the ageing process [26]. Mitotic cells can dilute out 

defective proteins and organelles by cell division and biosynthesis. However, as neurons are 

mostly post-mitotic cells, efficient mechanisms for clearing proteins and organelles are 

critical to maintain neuronal homeostasis [27]. Protein homeostasis is maintained by the 

ubiquitin (Ub)-proteasome system (UPS) and autophagy, both of which clear defective 

cytoplasmic components. The UPS targets mis-folded proteins tagged with ubiquitin to the 

proteasome, while autophagy delivers cytoplasmic components to lysosomes. There are 

three types of autophagy: macro, micro and chaperone-mediated autophagy. 

Macroautophagy (hereafter referred to as autophagy), is the process by which 

autophagosomes engulf proteins or organelles and eventually fuse with lysosomes, leading 

to degradation of their cargoes [27] (Fig 2). Specific adaptors, such as sequestosome-1 

(p62/SQSTM-1), sequester poly-ubiquitinated aggregates into autophagosomes. Over the 

past decade, growing evidence has revealed an important relationship between autophagy 

and lifespan. Advancing age causes a progressive impairment of the UPS and autophagy, 

particularly in neurons [27]. These age-related defects may be due to impaired activity of key 

components of these pathways, because experimentally restored activity of these can lead 

to improved cellular homeostasis and organ function [28]. Moreover, lifespan-extending 

interventions often induce and require autophagy [26], and over-expression of autophagy 

pathway components, such as Atg8 [29], in Drosophila brains, or Atg5 in mice [30], is 

sufficient to extend lifespan. Autophagy is therefore a conserved pathway which modulates 

the ageing process. It is also a highly relevant pathway in the development of a number of 

neurodegenerative diseases, including FTD/ALS [31].  

 

Several mutations associated with ALS and FTD are in genes involved in autophagy, 

including Ubiquilin 2 (UBQLN2), p62/SQSTM1, optineurin (OPTN) and valosin-containing 

protein (VCP) (see Fig 2). p62/SQSTM1, OPTN and UBQLN2 are adaptor proteins that 

target poly-ubiquitinated substrates for degradation by delivering them to the 
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autophagosomal membrane protein LC3 [32]. ALS/FTD causing mutations occur throughout 

the coding regions of p62/SQSTM1 [33, 34] and reduce p62/SQSTM1 binding to LC3 [35]. 

Risk mutations in UBQLN2 [36, 37] most commonly alter a conserved proline residue, 

affecting its co-localisation with OPTN on endosomal vesicles [38] and impair both 

autophagic and proteasomal mediated degradation of mis-folded and aggregated proteins  

[36, 39, 40]. An OPTN E478G mutation disrupts the delivery of damaged substrates, such as 

mitochondria, to autophagosomes [41]. Further cementing the link between this pathway and 

FTD/ALS was the discovery of mutations in Tank Binding Kinase 1 (TBK1) [42]. TBK1 

directly phosphorylates and binds to p62 and OPTN [42-44], and loss of these interactions 

also impairs delivery of damaged mitochondria to autophagosomes [44, 45]. Moreover, most 

TBK1 mutations associated to ALS and FTD are missense [46] or abolish binding to OPTN 

[42][47], indicating these are loss of function mutations that would impair this pathway. 

Intriguingly, disease-linked mutations in VCP, an AAA(+)-ATPase chaperone-like protein can 

affect both autophagosome maturation [48, 49] and induce mitochondrial defects [50, 51]. 

 

 Interestingly, genes that are solely associated to FTD, rather than to both FTD and ALS 

appear to affect lysosomal function directly. FTD-linked mutations in Charged Multivesicular 

Body Protein 2B (CHMP2B) and progranulin (GRN), a secretory lysosomal protein that 

regulates lysosomal function and biogenesis [52], cause defects in lysosomal storage [53, 

54]. Moreover, two FTD risk loci, Transmembrane Protein 106B (TMEM106B) and cathepsin 

D, are also involved in modulating lysosomal function [54][55]. Thus, while genes associated 

with both ALS and FTD seem to be involved in the early steps of autophagy, during poly-

ubiquitinated protein delivery to the autophagosome, those genes linked exclusively to FTD 

appear to function at later steps in the autophagy process, during lysosomal maturation 

and/or function [56].  

 

Therefore several lines of evidence link both aging and FTD/ALS to autophagy and 

lysosomal degradation. One inference from this is that interventions which promote 
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autophagy and extend lifespan may also be beneficial for FTD/ALS. Notably, increasing 

autophagy can indeed alleviate symptoms in ALS/FTD models. For instance, feeding 

rapamycin, an autophagy enhancer which also extends lifespan in flies and mice [57, 58], to 

a TDP-43 mouse or fly model ameliorated symptoms and reduced TDP-43 aggregation [59, 

60]. 

 

Inflammation 

A major feature of advancing age is a gradual, chronic increase in pro-inflammatory status, a 

phenomenon named “inflamm-aging” [61]. How and why this increase happens is still a 

matter of debate [62]. In the brain, age-related inflammation is mostly driven by an increase 

in inflammatory microglia, the resident immune cells for the brain [63]. Reducing IKKß, a key 

mediator of the immunity pathway, in hypothalamic microglia in mice can improve health and 

extend lifespan [64], suggesting that brain inflammation is a key driver of the ageing 

process. An almost ubiquitous feature of neurodegenerative diseases is neuroinflammation: 

in response to damage in neurons, microglia are activated to clear cellular debris and help 

neuronal repair, but prolonged activation can also contribute to neuronal damage [65]. 

 

Several genes associated with ALS/FTD are directly linked to inflammatory pathways, 

suggesting that neuroinflammation is not merely a defensive physiological response in 

neurons already damaged by disease, but rather that inflammation can also directly 

contribute to pathogenesis. Mice carrying mutations in SOD1, the first gene to be associated 

with ALS, show astrogliosis and microglial activation [66]. Moreover, mutant SOD1 

expression in astrocytes and microglia accelerate disease development [67, 68]. 

Conversely, pharmacological or genetic reduction of inflammation in SOD1 mutant animals 

ameliorates pathology [69, 70]. Mice expressing mutant CHMP2B or deficient for GRN have 

pro-inflammatory phenotypes accompanied by microglial proliferation [71-73] and FTD 

patients carrying GRN mutations display a distinctive pro-inflammatory CSF profile [74]. 
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Interestingly, a recent GWAS study investigating the genetic basis for the rate of aging in the 

cerebral cortex, identified FTD related alleles of GRN and TMEM106B as responsible for 

higher rates of age-related changes in transcription [75]. In particular, the TMEM106B FTD 

risk allele is associated with an increased age-related, microglia-specific, inflammatory 

profile, even in a healthy brain [75]. Another autophagy-related gene, TBK1, is activated by 

several immune effectors, such as Toll-like receptors, thereby inducing the release of type I 

interferon (IFN) and proinflammatory cytokines [47]. Moreover, TBK1 alleles linked to 

FTD/ALS can display reduced IFN induction [47]. However, whether they affect immune 

function in neurodegenerative disease context remains to be seen. That these 

autophagy/lysosomal degradation genes are also implicated in microglial function raises the 

possibility that microglial-mediated protein or aggregate degradation plays a role in disease 

pathogenesis. 

 

 An innate immune receptor recently implicated in FTD/ALS, TREM2, is expressed by 

microglia and plays a key role in inflammation and phagocytosis. TREM2 mutations have 

been linked to a number of neurodegenerative diseases, including FTD and ALS. TREM2 

missense mutations linked to FTD reduce protein shedding causing a reduction in soluble 

TREM2, (sTREM2) inflammatory CSF profiles and impaired phagocytosis [76]. However, a 

decrease in sTREM2 is also found in FTD patients who do not carry this mutation, 

suggesting that TREM2 may play a broader role in FTD [76]. Overall therefore, inflammation 

is part of disease progression in ALS and FTD. A number of causal genes are involved in 

inflammatory response and, in the case of GRN and TMEM106B, also in ageing related 

inflammatory increase, suggesting again a link between the ageing process and disease 

development. 

 

Nuclear-cytoplasmic transport 

Proteins and RNA transcripts shuttle between the nucleus and the cytoplasm via the nuclear 

pore complex (NPC). Transport across this large, multi-protein channel is achieved by 
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nuclear transport receptors (NTR) powered by a RanGTP gradient [77]. The NPC is a highly 

stable structure, with very low turnover of scaffold proteins [78] [79]. NPC proteins are 

therefore extremely vulnerable to age-related damage, particularly in post-mitotic cells such 

as neurons. Moreover, the expression of some essential NPC components, such as Nup93 

[80], decreases during ageing, resulting in leakage of cytoplasmic contents into the nucleus 

[78]. Notably, in yeast modulation of NPC proteins or NTRs can increase lifespan, 

suggesting that the NPC plays a direct role in ageing [81, 82].  

 

Recent evidence suggests that nuclear transport defects may promote FTD/ALS 

development [83]. C9orf72 hexanucleotide expansion (C9) is the most common genetic 

cause of ALS and FTD, accounting for 30-40% and 10% of familial and sporadic disease, 

respectively [84]. ALS/FTD patients can carry thousands of copies of this GGGGCC stretch 

in the first intron of C9orf72, whereas healthy individuals carry fewer than 30 copies [85, 86]. 

C9 is transcribed into a repetitive and stable RNA structure that produces highly toxic 

dipeptide-repeat proteins [87]. Four independent studies using C9orf72 hexanucleotide 

expansion (C9) models demonstrated that nucleocytoplasmic defects were key mediators of 

the pathology [88-91]. Furthermore, in yeast and Drosophila, modulating the expression 

levels of NPC or export components rescues C9 toxicity [88-91], highlighting the importance 

of impaired nuclear-cytoplasmic transport as a toxic mechanism. Defects in nuclear-

cytoplasmic transport can lead to TDP-43 mis-localisation from the nucleus to the cytoplasm 

[92], a typical feature of C9 patients but also of ALS/FTD more generally, since the 

accumulation of insoluble cytoplasmic TDP-43 or FUS aggregates is concomitant with 

nuclear depletion of these proteins. TDP-43 and FUS are predominantly nuclear RNA-

binding proteins involved in transcription, translation and splicing. Mutations in the nuclear 

localization signal (NLS) of FUS cause the most aggressive phenotypes and a mutation 

totally truncating the NLS of FUS leads to juvenile disease onset [93], indicating that mis-

localization is critical for disease development. Mutations in the NLS of TDP-43 have not 

been identified. However, nuclear depletion of this protein is observed in FTD/ALS patients, 
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suggesting an impairment in nuclear-cytoplasmic transport. Impairments in nuclear-

cytoplasmic transport due to imbalance in levels of importins are also seen in FTD-TDP-43, 

ALS-SOD1 and sporadic ALS patients [92] [94]. TDP-43 nuclear depletion in patient cells 

likely causes down-regulation of TDP-43 target mRNAs [95, 96].  

 

Similarly to TDP-43 in FTD/ALS, several proteins specifically associated with ALS, such as 

EWS [97, 98], TAF15 [97] hnRNPA2B1 and hnRNPA1 [99], are predominantly nuclear RNA-

binding proteins and components of stress granules that are depleted from the nucleus in 

patient cells. Moreover, mutations in GLE1, a direct regulator of nuclear-cytoplasmic 

transport that is also implicated in stress granule formation, can cause ALS [100]. 

Interestingly, these disease causing mutations also seem to lead to cytoplasmic localisation 

[101], suggesting  a general mechanism of toxicity whereby proteins with mostly nuclear 

functions are relocalised to the cytoplasm, possibly altering stress granule formation and 

mRNA metabolism. Therefore altered nucleocytoplasmic transport may contribute towards 

the mis-localisation of nuclear proteins observed in FTD/ALS and this could be exacerbated 

by age-related decline in NPC function. 

 

Splicing 

Correct splicing of RNA is impaired during normal ageing. An increase in the expression of 

genes involved in RNA processing increases alternative splicing in ageing mice [102]. In 

human brains, the expression levels of several splicing regulators change with age, and an 

age-dependent increase in splicing has been associated with augmented activity of 

Polypyrimidine tract-binding protein 1 (PTBP1) [103], these aberrant splicing events could 

lead to the production of non-functional proteins, and are associated with disease-linked 

genes or genes involved in DNA repair. Recent reports also suggest that splicing plays an 

active role in ageing. For instance, a study on mice with accelerated ageing due to progeria 

mutations showed that the number of alternatively spliced genes increases with age [102]. In 

C. elegans, splicing factor 1 (SPA1) is required for lifespan extension by several 
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interventions [104] and, more importantly, SPA1 up-regulation was sufficient to extend 

lifespan.  

 

A direct consequence of the relocation of nuclear factors to the cytoplasm is loss of nuclear 

function. Depletion of TDP-43 causes splicing changes, including increased cryptic exon 

incorporation into transcripts, which are also detected in brain tissue from ALS/FTD patients 

[95] [105, 106]. Other genes implicated in ALS also appear to cause mis-splicing, for 

instance, depletion of FUS in mice causes splicing defects [96, 107], which is consistent with 

the RNA-binding function of FUS near repressed exons during spicing. Similarly, ALS-linked 

hnRNPA2B1 deletions have been associated with splicing defects in patient cells [108]. 

Therefore increasing evidence indicates that splicing is a modulator of ageing and is directly 

associated to ALS and FTD development. These findings further support the tight 

relationship between the ageing process and ALS/FTD disease progression. 

 

 

Conclusions 

A number of FTD/ALS genes are implicated in ageing pathways (Table 1). This substantial 

overlap could explain why ageing is the main risk factor for these diseases. Recent models 

propose that ALS is a multi-step process [109] and ageing may facilitate some aspects of 

the development of this disease. For instance, sub-threshold defects in these pathways may 

be pushed into overt dysfunction during aging. As familial forms of the disease develop 10 

years earlier than sporadic forms [110], it is plausible that genetic mutations further lower the 

threshold by which  the ALS pathogenic process can be driven by ageing. This opens the 

possibility of re-purposing drugs known to affect lifespan as possible therapeutic avenues. 
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Gene Symbol Name Pathway 
ALS or 

FTD 

OPTN Optineurin Autophagy ALS/FTD 

VCP 
Valosin Containing 

Protein 
Autophagy/Mitochondrial 

function 
ALS/FTD 

UBQLN2 Ubiquilin 2 Autophagy/Proteasome ALS/FTD 

SQSTM1 Sequestosome 1 Autophagy ALS/FTD 

TBK1 TANK Binding Kinase 1 Autophagy/Inflammation ALS 

GRN Progranulin 
Lysosomal degradation 

/inflammation 
FTD 

CHMP2B 
Charged Multivesicular 

Body Protein 2B 
Lysosomal 

degradation/inflammation 
FTD 

SOD1 Superoxide dismutase Inflammation ALS 

TREM2 
Triggering Receptor 

Expressed On Myeloid 
Cells 2 

Inflammation FTD 

FUS 
FUS RNA binding 

protein 
Nucleocytoplasmic 
transport/splicing 

ALS 

TARDBP 
TAR DNA Binding 

Protein 
Nucleocytoplasmic transport/ 

splicing 
ALS 

TAF15 
TATA-Box Binding 
Protein Associated 

Factor 15 

Nucleocytoplasmic 
transport/RNA metabolism 

ALS 

C9orf72 
C9orf72 hexanucleotide 

repeat expansion  
Nucleocytoplasmic 
transport/splicing 

ALS/FTD 

HNRNPA2B1 
Heterogeneous Nuclear 
Ribonucleoprotein A2/B1 

Nucleocytoplasmic 
transport/splicing 

ALS/FTD 

HNRNPA1 
Heterogeneous Nuclear 
Ribonucleoprotein A1 

Nucleocytoplasmic transport/ 
splicing 

ALS/FTD 

GLE1 
GLE1, RNA Export 

Mediator 
Nucleocytoplasmic transport ALS 

TMEM106B 
Transmembrane Protein 

106B 
Autophagy/Inflammation FTD 

 

Table 1. Genetic causes and risk factors for ALS/FTD implicated in ageing pathways 
List of genes discussed in the main text implicated in the development of ALS/FTD and 
associated ageing pathways they appear to be involved in. 
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Figure1. Incidence of FTD and ALS increase with age. A. Incidence of ALS in the UK, 
according to the 1990-2005 in the General Practice Research Database (Data kindly 
supplied by Alvaro Alonso) [21]. B. Incidence of FTD in Sweden according to the Swedish 
Dementia Registry [22].   
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Figure 2. The autophagy pathway and ALS/FTD genes. The autophagy process is 

initiated by the phosphorylation of ULK1, this activates the pre-initiation complex which in 

turn phosophorylates the PI3K CII complex allowing it to catalyse the first steps required to 

generate an elongating double membrane. A number of components participate in the 

elongation reaction, leading to the binding of Atg12/Atg5/Atg16L complex and LC3 II to the 

membrane, which leads to the membrane enclosing a portion of the cytosol. As the 

membrane is closing misfolded proteins and damaged organelles are targeted to the 

autophagosome, which then fuses with a late endosome or lysosome generating an 

autolysosome where the organelles are digested. Autophagic receptors (p62, OPTN) and 

adaptor proteins confer selectivity by tethering specific cargoes, such as poly-ubiquitinated 

proteins or mitochondria to LC3 in forming phagophores, thus targeting them for 

degradation. Several FTD/ALS linked genes are implicated at different stages of this 

pathway. 

 

 


