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The formation of significant quantities of solid CO2 as a result of surpassing its triple point 

during rapid decompression of CO2 pipelines employed as part of the Carbon Capture and 

Sequestration (CCS) chain can present serious operational and safety challenges. In this paper, 

the development, testing and validation of a rigorous Computational Fluid Dynamics (CFD) flow 

model for predicting solid CO2 formation during decompression is presented. Multiphase flow is 

modelled by assuming homogeneous equilibrium, and the pertinent thermodynamic data are 

computed using real-fluid equations of state. The flow model is validated against pressure and 

temperature data recorded during the decompression of an extensively instrumented 144 m long, 

150 mm i.d. CO2 pipe initially at 5.25 
o
C and 153.3 bar. For the conditions tested, the simulated 

results indicate CO2 solid mass fractions as high as 35% at the rupture plane, whose magnitude 

gradually decreases with distance towards the pipe’s intact end. 

Keywords: CO2; dry ice; triple point; CCS; anomalous waves; pipeline decompression 

 



 2 

1. INTRODUCTION  

CO2 is widely recognised as the major contributor to global warming due to its widespread 

emissions primarily from industrial sources and coal-fired power plants 
1
. Carbon Capture and 

Sequestration (CCS) aimed at the capture of anthropogenic CO2 and its long-term storage in 

geological formations has been identified as a key player in effectively mitigating such 

emissions. Given that capture locations are often not collocated with the storage sites, the 

transportation of captured CO2 using high-pressure pipelines offer the best practical solution for 

on-shore CO2 transport. 

During the course of the CO2PipeHaz European Commission FP7 project 
2
, a series of 

experimental investigations involving the release of compressed CO2 from a fully instrumented 

256 m long, 233 mm i.d. pipeline were conducted. This work was initiated in the first instance in 

view of the significant amounts of CO2 involved during its pipeline transportation (several 

hundred tonnes per year). CO2 at concentrations greater than 7% v/v is toxic 
3
. As such, reliable 

and validated mathematical models for predicting the transient outflow into the environment and 

mapping the dispersion behaviour of the escaping CO2 cloud in the event of accidental pipeline 

failures are essential components of the risk management. Such data form the basis of 

determining the minimum safety distances to populated areas and emergency response planning. 

An interesting and important observation made from the CO2PipeHaz FP7 pipeline rupture 

tests 
2
 was that the rapid expansion-induced cooling of the CO2 often resulted in surpassing its 

triple point temperature 216 K 
4
, leading to solid CO2 (commonly known as ‘dry ice’) formed 

inside the pipeline as can be observed in the photographs (figure 1) taken in the CO2PipeHaz 

Full-Bore Rupture (FBR) test performed using pure CO2 initially at 53 bar and 2 
o
C.  
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(a) (b) 

Figure 1: Photographs of the release end of the CO2PipeHaz blowdown test pipeline (a) and 

lumps of solid CO2 formed within the pipe in the FBR test (b). Photographs courtesy of 

Dalian University of Technology. 

This observation has significant operational and safety implications. In practice, CO2 pipelines 

will require depressurisation following emergencies or for routine maintenance purposes. The 

formation of any significant amounts of solids within the pipeline may result either in its 

blockage (especially along restrictions such as bends) or, more likely, the blockage of the 

emergency pressure relief valves, leading to an over-pressurisation and possible pipeline rupture 

5,6
. Indeed, Huang et al. 

7
 reported pressure relief valve blockage during the throttling of CO2. 

Similar concerns are also relevant in hydrocarbon transportation pipelines, albeit as a result of 

solid hydrate formation along the pipe 
8
. Hydrate formation is not considered as an issue in the 

case of CO2 pipelines given the amount of water permitted must be restricted to no more than 

500 ppm 
9
 to avoid the risk of pipeline corrosion due to the formation of carbonic acid.  

Additionally, the accumulation of solid CO2 near the release point and its subsequent 

protracted sublimation will have a profound impact on the risk profile of the migrating CO2 

cloud, ultimately dictating the minimum safety distance to populated areas 
10

. Finally, any 

undiscovered solid CO2 accumulated along the depressurised pipeline may expose personnel to 

dangerously high concentrations of the subliming CO2 during maintenance inspection.  
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As such the ability to reliably predict depressurisation conditions leading to the risk of solid 

CO2 formation, and if relevant its quantity, is highly desirable.  

To date, although some work has been reported for modelling the depressurisation of CO2 

pipelines, including multiphase flow behaviour (see for example 
11–14

), such studies have been 

mainly limited to depressurisation up to the CO2 triple point.  

In a recent study 
15

, as part of the CO2PipeHaz project 
2
, we developed a vessel blowdown 

model based on the Homogeneous Equilibrium Mixture (HEM) assumption accounting for CO2 

liquid, vapour and solid phases. Incorporating the extended Peng-Robinson Equation of State 

(ePR EoS) 
16

 to deal with solid phase CO2, we successfully simulated the depressurisation 

trajectory of 256 m long, 233 mm i.d. CO2 pipe, including the observed temporal pressure 

stabilisation when crossing the triple point. However, given that our vessel blowdown model did 

not account for spatial pressure variation in the containment, its application is restricted to 

relatively small-puncture releases in sufficiently short pipelines where the variations in the flow 

properties along the pipeline are insignificant.  

Hammer et al. 
17

 presented a CFD pipeline flow model where the CO2 vapour-liquid-solid 

mixture was also assumed to be at thermal and mechanical equilibrium (i.e. HEM). As part of the 

model verification, a Riemann problem test was performed to predict the wave structure (e.g. the 

evolution of an initial pressure profile with a step change) in the three-phase flow, and 

anomalous waves were observed at the CO2 triple point. Given that fluid flow (e.g. pipe flow) 

may be viewed as a non-linear superposition of local Riemann problem solutions 
18

, such waves 

can be expected to greatly affect the pipe flow during decompression.  

Hammer et al. 
17

 also presented simulation data relating to a hypothetical full-bore pipeline 

rupture decompression scenario using their CFD model. Much the same as Martynov et al. 
15

, a 
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pressure plateau at the triple point was reported. In their later publication 
19

, a comparison 

between the model predictions and the measured pressure and temperature data during a CO2 

pipeline decompression test was presented.  

In conclusion, despite the significant potential risks associated with solid CO2 formation 

following the rupture or controlled blowdown of high-pressure CO2 transportation pipelines, 

there are no reliable and validated decompression flow models available for predicting the 

likelihood or the extent of CO2 solid formation.  

This paper details the development, verification and validation of a CO2 pipeline 

decompression model for predicting CO2 solid formation at any time and distance along the 

depressurising pipeline. The paper is organised as follows. In Section 2, the flow model 

equations are summarised, including the conservation laws and closure models for fluid/wall 

heat transfer and friction. In addition, a general discussion of the elementary wave solution of the 

governing hyperbolic conservation equations is provided to aid the analysis of the simulated 

results. Also, the boundary conditions and the pertinent fluid physical properties prediction 

methods such as the speed of sound for two-phase (liquid-vapour and solid-vapour) and three-

phase (vapour-liquid-solid) CO2 mixtures are presented. The numerical technique for solving the 

conservation equations and their enclosure is given next in Section 3. In Section 4, the 

verification of the flow model is carried out by performing a Riemann problem test to predict the 

wave propagation in a vapour-liquid-solid CO2 flow. The resulting wave structure is discussed in 

detail with a particular focus on the impact of solid CO2 formation. This is followed by model 

validation against experimental data obtained from a large-scale CO2 pipeline depressurisation 

test. Conclusions are drawn in Section 5 along with proposals for future work.  
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2. THEORY  

2.1 Flow model. In order to describe the depressurisation of CO2 in a pipeline upon failure, the 

following set of conservation equations is applied based on the HEM assumption 
11,20

:  

ΨUFU 








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t x  

(1) 

where U is the vector of the conservative variables, F is the vector of the corresponding flux 

functions, and Ψ is vector of source terms, defined as: 
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Here p is the pressure, u is the velocity, f is the Fanning friction factor which in the present 

study is calculated using Chen’s correlation 
21

. D, is the pipeline diameter, and q  is the heat flux 

from the pipe wall to the in-pipe fluid. ρ and e are respectively the mixture density and specific 

internal energy in turn defined as: 
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where 
ky  is the mass fraction of phase k (k = v, l and s).  

For rapid depressurisation-induced liquid flashing, nucleate boiling is assumed to be the 

dominating heat transfer mechanism 
22,23

. As such, q  is estimated following Rohsenow’s 

correlation 
24

:  
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where µ, σ, 
lgh , 

lpC ,
and 

lPr  are respectively the viscosity, the surface tension, the latent heat of 

vaporisation, the heat capacity and the Prandtl number of the liquid phase, which are calculated 
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using NIST models 
25

. 
wT  is the wall temperature governed by the lumped thermal capacity 

model 
15

: 

t

T
Cq w
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(5) 

where ρw, Cw and δw are the density, heat capacity and thickness of the pipe wall respectively. 

2.2 Hyperbolicity and wave structure of the solution. Assuming the source term in Eq. (1) 

does not interfere the wave structure 
20

, the system reduces to the Euler equations of gas 

dynamics: 
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The three eigenvalues of the Jacobian matrix of F are 
26

: cu 1 , u2 , cu 3 , where 

c is the sound speed in the fluid. When the eigenvalues are real the system described by Eq. (6) is 

hyperbolic and exhibits wave behaviour. In this case, the eigenvalues are the wave speeds of the 

three characteristic waves which form the classical wave structure of the solution, as 

schematically shown in figure 2. 

 

Figure 2: Schematic representation of the classical wave structure from solving the Euler 

equation of gas dynamics. 

 

x 

t 



 8 

As may be observed in figure 2, a left-going expansion wave and a right-going shock are 

separated by a contact wave. It should be noted that the classical wave structure in figure 2 

applies only to the case when isentropes in the pressure-specific volume (p-v) thermodynamic 

plane,  
s

vp  remain convex and smooth 
18

. Since isentropes are directly related to speed of 

sound through: 
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(7) 

the speed of sound as a result must be continuous. 

As shown by Menikoff and Plohr 
18

, isentropes are smooth and convex if and only if the 

fundamental derivative, defined below remains positive everywhere in the p-v plane: 
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(8) 

On the other hand, non-classical wave structure, also known as anomalous wave structure, 

arises when ς becomes zero or undefined (often referred as ‘vanish’). This typically happens at 

phase transition boundaries where isentropes (in p-v plane) exhibit a discontinuous change in the 

slopes (and hence the speed of sound). The resulting anomalous waves can be further categorised 

into a split rarefaction, if upon crossing the phase boundary the relevant isentrope remains 

convex (ς > 0) and a composite wave comprised of a shock attaching to a rarefaction wave, if the 

isentrope becomes concave.  

For example, Menikoff and Plohr 
18

 showed that in real fluids, where isentropes convexity is 

preserved upon crossing the phase transition boundary in p-v plane, the liquid evaporation 

induced by decompression would produce a pair of rarefaction waves splitting at the saturation 

pressure.  
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2.3 Boundary conditions. In order to close Eq. (1) to enable their numerical solution, 

appropriate boundary conditions at the closed end of the pipeline, and the multi-phase outflow at 

the rupture end need to be specified. In particular, at the closed end, the velocity is set to zero, 

while for scalar variables (e.g., pressure and density), zero-gradient extrapolation is applied. 

Turning to the rupture end, where the flow is expected to be choked (sonic) during the most 

part of the decompression process, the boundary condition is determined from analysis of local 

waves of the governing equations 
27

. In the case of sonic flow, the local left-running pressure 

wave (see figure 2) is stationary. By integrating the corresponding Riemann invariant, the 

following relation can be derived 
27

: 


bc

mx

p

p
mxbc

c

dp
uu

  

(9) 

where the subscript, mx represents the last numerical cell at the pipeline release end. By 

assuming isentropic flow condition (i.e. sbc = smx), ρ and c can be computed at a given pressure 

and entropy (using the pressure-entropy flash calculations). Knowing the outflow is sonic (i.e. 

ubc = c), Eq. (9) is thus closed (the only remaining unknown is pbc). The corresponding discharge 

mass flowrate can be calculated as  42Dum bcbc  . 

2.4 Physical properties. In order to predict the thermodynamic properties of CO2 required for 

the HEM flow model, dedicated correlations are employed based on the GERG 2004 EoS 
28

 and 

ePR EoS 
16

. The former EoS is applied for the prediction of CO2 liquid-vapour mixture owning 

to its much higher accuracy over the cubic EoS 
28

. Below the triple point, the ePR EoS is 

employed which has been shown to produce good accuracy in handling solid phase CO2 
16

.  

The HEM speed of sound of a compressible single-phase or multiphase fluid is defined in Eq. 

(7). In the case of two-phase mixture, substitution of Eq. (3) into Eq. (7) gives the following 

expression for the speed of sound 
20

:  
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where pC is the average mixture heat capacity; while γ and β are respectively the isentropic 

compressibility and thermal expansion factor of each phase: 
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(12) 

With regards to a HEM vapour-liquid-solid mixture at the triple point, following Eq. (7), the 

speed of sound is zero (as the pressure stays constant at the triple point). This implies that waves 

cannot propagate upstream of the triple-point region of the flow and hence, leading to unrealistic 

scenario of permanent pressure stabilisation at the triple point pressure (5.18 bar for CO2).  

In order to deal with the above limitation, a suitable estimate for non-zero speed of sound at 

the triple point is required. Accordingly, the Homogeneous Frozen Mixture (HFM) 
11,29

 

assumption for speed of sound is adapted for three-phase mixture at the triple point as given by: 
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(13) 

During numerical simulations, the fluid phase composition is determined at each time step as 

an outcome of density-energy (ρ-e) flash calculations. If the results show that the fluid is two-

phase then its speed of sound is calculated using HEM approach, while if the fluid is three-phase 

(i.e. vapour-liquid-solid mixture at the triple point), then the HFM model is applied. As such, Eq. 

(13) effectively removes the singularity introduced by the HEM speed of sound prediction. The 

impact of this approximation on the predictions of the wave structure and furthermore, on the 

depressurisation of high-pressure CO2 pipelines are presented and discussed in Section 4.  
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3. NUMERICAL METHOD  

The above flow model is solved numerically using the finite volume Godunov’s method 
26,30

, 

with an appropriate Riemann solver to approximate the required interfacial fluxes 
26

. In this 

method, the Euler Eq. (6) are integrated over a control volume [xi-1/2, xi+1/2] and the time interval 

[tn, tn+1] as depicted figure 3: 
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where 
21 /ix  and 

21 /ix  are the coordinates of two adjacent cell interfaces,  21 /i  and  21 /i  

respectively. 

 

Figure 3: Schematic representation of a wave configuration emerging in the ith cell of the 

discretised computational domain over the time interval [tn, tn+1]. Indices L and R refer 

respectively to the states on the left and on the right of the domain affected by wave 

propagation, while * corresponds to a “star region” bounded by the left- and right-going 

waves. 

If the time step, Δt = tn+1 - tn satisfies the CFL condition: 
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after some algebraic manipulation, Eq. (14) can be recast into: 
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where 
iU  is the vector of averaged conservative variables in  2121 // ,  ii xx  and 

21iF  is the so-

called Godunov’s fluxes evaluated at the cell interfaces (indexed as 21i ).  

In the current work, the HLLC approximate Riemann solver 
31

 is used to compute the required 

Godunov’s fluxes in order to advance the solution in time and space: 
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where 
*U  is the vector of conservative variables in the ‘star region’ bounded by the fastest 

left-going (L) and right-going (R) waves (see figure 3) and 
*S  is the speed of contact 

discontinuity, which are respectively defined as 
31

: 
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In presence of heat transfer and friction, when the source term vector, Ψ, in Eq. (1) is non-

zero, its presence is accounted for in the numerical integration method using the fractional 

splitting technique 
26

. 

4. RESULTS AND DISSCUSSIONS 

4.1 Model verification. In order to verify the computational flow model developed above, a 

Riemann problem test is performed, where Eq. (6) is solved to obtain the flow profiles, 

numerically approximating the exact wave structure of the solution.  
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The simulation is performed for a 100 m long horizontal flow domain, initially filled with CO2. 

The left half of the domain is set to be liquid at 30 bar, whilst the right half is set as vapour at 1 

bar for the prevailing conditions as summarised in Table 1.  

The flow domain is discretised uniformly into 2000 cells, and the CFL number is set at 0.5, 

found to be sufficient to guarantee convergence (see the gird convergence study results in figure 

4). 

  

(a) (b) 

Figure 4: The pressure (a) and temperature (b) profiles predicted at 0.06 s using various 

numbers of cells for the Riemann problem test (Table 1).  

Figure 5 depicts the flow pressure (figure 5a) and temperature (figure 5b) profiles at 0.06 s 

predicted using both Eq. (7) and (13) for predicting the fluid speed of sound at the triple point. 

Also included in figure 5a is a magnified plot for the dash-line boxed region of the pressure 

profile.  

  

(a) (b) 

Figure 5: Variation of pressure (a) and temperature (b) along the flow domain in the Riemann 

problem test at 0.06 s.  
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Referring to figure 5, as it may be expected according to the classical solution (see figure 2), 

three simple waves emerge, including a rarefaction wave at ca. 5 m, a contact wave at ca. 65 m 

and a shock at ca. 75 m. The main features of these three classical waves are predicted 

consistently with the previous studies in gas dynamics 
26

. In particular, across the rarefaction 

wave, all the flow properties change continuously and smoothly. Across the contact wave, there 

is a discontinuous change in the temperature (and other related thermal properties such as density 

and entropy) while the pressure and velocity remain constant. Across the shock wave, all the 

flow properties change discontinuously.  

Interestingly, apart from these three waves, two additional waves respectively at ca. 50 m and 

55 m can be observed in the left part of the domain (as marked by dashed-line box). They are 

separated from the most left rarefaction wave by two plateaux, respectively at ca. 17 bar 

(saturated vapour-liquid) and 5.18 bar (the triple point) pressures.  

In order to verify the flow model predictions and relate these waves to the physical nature of 

the fluid (e.g. phase transitions), the prediction is then compared to the wave structure obtained 

from an analytical analysis of the isentrope (at the entropy value corresponding to the left part of 

the domain) in p-v plane following Menikoff and Plohr 
18

 (see Section 2.2).  

Figure 6 shows p-v phase diagram for CO2 with several isentropes crossing the two-phase 

equilibrium region and the triple point. 
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Figure 6: CO2 p-v phase diagram, showing the phase boundaries and isentropes crossing the 

phase equilibria regions; following Test 1 isentrope, the points where phase transition occurs 

are sequentially marked as point 1, 2 and 3 and circled in red.  

Focusing on the isentrope presented by the dashed line in figure 6, three points exist at which 

its slope changes discontinuously. In the order of appearance these include at the phase transition 

boundaries of liquid-vapour (point 1), the triple point (point 2), and solid-vapour (point 3).  

Figure 7 shows the calculated fundamental derivative, ς along this isentrope. It can be seen that 

ς vanishes at point 1, 2 and 3, indicating formation of anomalous waves. 

To determine the type of the anomalous waves emerging at these three points, the convexity of 

the isentrope across these points is examined. Referring to figure 7, on both sides of point 1 (e.g. 
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pure liquid and vapour-liquid phases), ς remains positive, and the convexity of the isentrope is 

preserved. As such, at this phase transition boundary, the emerging wave can be classified as a 

split rarefaction wave from the rarefaction wave at ca. 5 m (see figure 5). 

As also can be seen in figure 7, in contrast to point 1, ς vanishes both at and between points 2 

and 3 where the fluid remains at the triple point. As such, the analysis applied above to reveal the 

type of anomalous wave at point 1 cannot be directly extended to the phase transition boundaries 

at points 2 and 3. Alternatively, the nature of these waves may be interpreted by looking at the 

variation of the wave propagation speeds near the triple point. 

Figure 8 shows the wave speed profiles corresponding to figure 5 in the proximity of the triple 

point. As can be seen in figure 8 for both speed of sound models, the predicted wave speeds only 

differ within the triple pint region (as expected). The predicted wave speed beyond phase 

transition boundary at point 3 (in the solid-vapour mixture) increases rapidly and becomes 

significantly larger than that at point 2. This gives rise to the second rarefaction wave split at ca. 

55 m, as can be observed in figure 5. Returning to figure 8, given that at the triple point the 

pressure and temperature remain constant (as the fluid has zero thermodynamic degree of 

freedom), the different wave speeds predicted by the two models can be expected to have no 

 

Figure 8: Variation of the wave speed in the flow near the triple point (conditions of figure 5) 

obtained by both speed of sound approaches. 
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impact on the solution of the Riemann problem. This is supported by a comparison between the 

predicted pressure and temperature profiles presented in figure 5, showing overlapped results.  

The wave structure resulting from the above analysis is summarised in figure 9, where the 

contact and shock waves are also included for completeness. 

It is also worth noting that the isentropes originating either in the liquid (dense) or supercritical 

phases all exhibit discontinuous changes at the previously discussed phase transition boundaries 

(see figure 6). Given that CO2 is normally transported in the dense or supercritical phases (i.e 

above 73 bar) due to economic considerations, the numerically discovered anomalous waves 

associated with solid CO2 formation is thus expected during complete decompression of CO2 

transportation pipelines. 

4.2 Model Experimental Validation. In the following, the flow model presented above is 

validated against measurements taken from a large-scale pipeline decompression experiment 

performed as part of the COOLTRANS UK National Grid project 
32

. The test involved the Full 

Bore Rupture (FBR) of a thermally insulated 144 m long, 150 mm i.d. and 11 mm wall thickness 

steel pipe containing dense-phase CO2 initially at 5.25 
o
C (278.38 K) and 153.3 bar. The pipe 

 

Figure 9: Wave structure of the hyperbolic system with fluid phase transition across the 

vapour-liquid region and the triple point.   

 t 

x 
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was instrumented with fast response pressure and temperature transducers strategically placed 

along its length. The full details of the test set-up can be found in reference 
33

.  

Simulations are performed based on a computational domain of 500 discretised cells (further 

grid refinement produces little variance in the results) and using a CFL number of 0.5. 

Figure 10 shows the predicted and measured variations of pressure with time at the intact end 

of the test pipe following its FBR using an explosive charge. 

 

Figure 10: The variation of CO2 intact end pressure with time following FBR The shaded 

area shows the triple point location.  

As it may be observed, theory and experiment are in excellent agreement. The initial rapid 

drop in pressure from 153.3 to 30 bar synonymous with FBR is followed by temporarily pressure 

stabilisation at ca. 30 bar lasting for ca. 4.5 s. The latter corresponds to the split of the rarefaction 

wave at the vapour-liquid phase transition boundary (see Section 4.1).  

Following this temporary stabilisation, the pressure gradually decreases until ca. 18 s, where a 

second pressure plateau is observed at the CO2 triple point (5.18 bar). This is attributed to the 

additional split of the rarefaction wave at the triple point phase transition boundary. As can be 

further observed from figure 10, after ca 18 s, the depressurisation of two-phase solid-vapour 

mixture proceeds until reaching the ambient pressure.  
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Figure 11: The variation of CO2 intact end temperature with time following FBR. The shaded 

area shows the triple point location.  

Figure 11 shows the corresponding variations of intact end temperature with time following 

FBR based on measurements and model predictions. As it may be observed, the temperature 

profiles follow very similar trends as with the pressure profiles presented and discussed in figure 

10. However, although theory and experiment are in good accord up to the triple point region, 

the degree of agreement decreases beyond this point where the flow model under-predicts the 

CO2 temperature by as much as ca. 12 K.  

We postulate that the observed discrepancy is mainly a consequence of the extent of the 

validity of the HEM assumption embedded in the flow governing Eq. (1) in which the constituent 

fluid phases are assumed to be at thermal equilibrium and travel at the same velocity. Prior to 

crossing the CO2 triple point, the observed reasonably good agreement between theory and 

experiment indicates that such an assumption holds in this region. This is most likely due to the 

relatively high momentum and thus good mixing of the liquid and vapour phases such that 

inhomogeneity would be expected to be insignificant, i.e. the flow is fully dispersed.  

However, the passing of the triple point marks the formation of much denser solid CO2 which 

separates and settles out of the vapour/solid mixture due the gravitational field effect thus 

invalidating the HEM assumption. Additionally, due to the low heat capacity of the separated 
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vapour phase, the fluid/wall heat transfer may result in superheated vapour (instead of saturated 

vapour predicted by the present model). Given that in the current study the fluid phase separation 

is not accounted in the heat transfer model, this may also contribute to the discrepancy observed 

between the present model temperature predictions and the measured data. 

Figure 12 shows the variation of solid mass fraction along the pipe at different times of 15.6, 

17.4 and 19.2 s following FBR. The data indicate that by 15.6 s following rupture, approximately 

35% of the total mass of the remaining CO2 at the rupture plane (140 m) is in solid phase with 

the rest of the content upstream remaining in vapour phase. By 17.4 s following rupture (i.e. 2.4 s 

later), the solid front has propagated by approximately 30 m, reaching the pipe intact end at 19.2 

s following rupture, where the percentage solid along the entire pipe length is approximately 

30%.  

As mentioned earlier, the solid-vapour phase separation is not accounted for in the current 

HEM flow model and, thus, the predicted distribution of the solid CO2 along the length of the 

pipe may be inaccurate. However, we may expect the HEM approximation to be applicable at the 

point of phase transition from liquid-vapour to vapour-liquid-solid at the triple point (i.e. at the 

‘solid front’), providing valid estimates for the solid front propagation and the amount of solid 

CO2 formed behind. Such information is vitally important as it directly governs the likelihood of 

pipeline or emergency blowdown valve blockage. 
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Figure 12: Variation of predicted solid phase CO2 mass fraction along the pipeline at different 

times during the depressurisation. 

 

 

Figure 13: Variation of predicted pressure along the pipeline at different times during the 

depressurisation.  

Figure 13 shows the corresponding variation of the predicted pressure profiles along the 

pipeline following FBR at the same times as those in figure 12. The data based on the speed of 

sound calculated using the Eq. (7) (as opposed to Eq. (13)) at 19.2 s following FBR is also 

included indicating an unrealistic constant pressure throughout the entire pipeline length at the 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 20 40 60 80 100 120 140

So
lid

 C
O

2
m

as
s 

fr
ac

ti
o

n

Distance from the intact end (m)

15.6 s 17.4 s 19.2 s

0

3

6

9

12

0 20 40 60 80 100 120 140

P
re

ss
u

re
 (

b
ar

)

Distance from the intact end  (m)

15.6 s 17.4 s 19.2 s 19.2 s (HEM)

Direction of 
increasing time



 22 

triple point pressure (5.17 bar). In contrast the proposed model produces the expected rapid drop 

in pressure at the rupture plane which gradually stabilises with distance towards the pipe intact 

end. The rapid drop in pressure which can be observed in the profiles at 15.6 s and 17.4 s in 

figure 13, again correspond to the phase transition from the triple point state to the solid-vapour 

two-phase equilibrium. 

5. CONCLUSIONS AND FUTURE WORK 

It is widely recognised that as part of the CCS chain, high-pressure transmission pipelines 

represent the most practical and economic way of transporting the captured CO2 from coal fired 

power plants and other CO2 intensive industries for subsequent sequestration. Given the 

hazardous nature of CO2, the significant quantities transported and the inevitable likelihood of 

such pipelines passing near or through populated areas, their safe operation is of paramount 

importance.   

This paper for the first time presented the development, testing and validation of a rigorous 

decompression flow model for predicting the quantity of solid CO2 formed as a function of time 

and distance along high-pressure pipelines during decompression. In practice, such predictive 

capability is important for a number of safety and operational reasons. These include pressure 

relief valve sizing, appropriate pipeline design in order to avoid blockage and minimising the 

risk of exposure of personnel to high doses of undiscovered accumulated sublimating solid CO2 

following pipeline depressurisation for maintenance purposes.  

The flow model developed was based on the solution of the mass, energy and momentum 

conservation equations, accounting for fluid/wall heat transfer and frictional effects. The 

pertinent thermodynamic and phase equilibrium data for CO2 above and below its triple point 

were computed using the GERG 2004 EoS and the ePR EoS respectively. A Homogenous 
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Frozen Model was implemented for predicting the speed of sound of the multiphase mixture at 

and below the CO2 triple point.  

For model verification, a numerical approximation of the wave structure in the vapour-liquid-

solid flow was demonstrated by performing a Riemann problem test. Anomalous waves were 

predicted by the flow model, consisting of two split rarefaction wave splits at the vapour-liquid 

and the triple point phase transition boundaries.  

The flow model was next validated against the pressure and temperature measurements 

obtained from a large-scale CO2 pipeline FBR decompression test performed during the course 

of the COOLTRANS project 
32

.  

Indicating generally good agreement with the measured data, the model successfully 

reproduced the observed temporal pressure plateau at the triple point. Typical data generated 

using the model included the variations of pressure, temperature and solid mass fraction along 

the pipe as a function of time during its decompression. As to be expected, the amount of solids 

increased with distance towards the rupture plane; picking at a maximum value of 35% for the 

conditions tested.   

It should be noted that the flow model presented in this study is based on the HEM assumption 

where the constituent fluid phases are assumed to be at thermal and mechanical equilibrium; the 

latter implying no phase slip. In practice, the marked differences between the densities of solid 

and vapour CO2 means that this assumption will become less valid below the CO2 triple point 

particularly when the depressurisation rate decreases. Here, the inertia of the flowing fluid may 

not overcome the gravitation field effect ultimately resulting in the disengagement and eventual 

settling of the accompanying solid CO2. The subsequent impact was clearly demonstrated in the 
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present study in the form of the observed finite disagreement between the recorded and predicted 

fluid temperatures below the CO2triple point. 

Additionally, in practice, depending on the capture technology employed, CO2 streams may 

contain different types and amounts of impurities. Some of these have already been shown to 

have a marked impact to CO2 phase equilibrium behaviour above its triple point even when 

present in small quantities 
13

.  

Future work will involve the extension of the present work to account for phase slip and the 

impact of CO2 impurities on the extent of solid formation during the decompression of CO2 

pipelines.  
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Table 1: Initial conditions of CO2 in left and right part of the computational domain in the 

Riemann problem test. 

Fluid property Left state (x<50 m) Right state (x>50m) 

Pressure, bar 30 1 

Temperature, K 250 250 

Fluid phase Liquid Vapour 
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LIST OF FIGURE CAPTIONS 

Figure 1: Photographs of the release end of the CO2PipeHaz blowdown test pipeline (a) and 

lumps of solid CO2 formed within the pipe in the FBR test (b). Photographs courtesy of Dalian 

University of Technology. 

Figure 2: Schematic representation of the classical wave structure from solving the Euler 

equation of gas dynamics. 

Figure 3: Schematic representation of a wave configuration emerging in the ith cell of the 

discretised computational domain over the time interval [tn, tn+1]. Indices L and R refer 

respectively to the states on the left and on the right of the domain affected by wave propagation, 

while * corresponds to a “star region” bounded by the left- and right-going waves. 

Figure 4: The pressure (a) and temperature (b) profiles predicted at 0.06 s using various numbers 

of cells for the Riemann problem test (Table 1).  

Figure 5: Variation of pressure (a) and temperature (b) along the flow domain in the Riemann 

problem test at 0.06 s. 

Figure 6: CO2 p-v phase diagram, showing the phase boundaries and isentropes crossing the 

phase equilibria regions; following Test 1 isentrope, the points where phase transition occurs are 

sequentially marked as point 1, 2 and 3 and circled in red. 

Figure 7: Fundamental derivative, ς along the isentrope of Test 1; phase transition boundaries are 

marked and circled in red. 
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Figure 8: Variation of the wave speed in the flow near the triple point (conditions of figure 5) 

obtained by both speed of sound approaches. 

Figure 9: Wave structure of the hyperbolic system with fluid phase transition across the vapour-

liquid region and the triple point.   

Figure 10: The variation of CO2 intact end pressure with time following FBR The shaded area 

shows the triple point location. 

Figure 11: The variation of CO2 intact end temperature with time following FBR. The shaded 

area shows the triple point location. 

Figure 12: Variation of predicted solid phase CO2 mass fraction along the pipeline at different 

times during the depressurisation. 

Figure 13: Variation of predicted pressure along the pipeline at different times during the 

depressurisation. 
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