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Abstract

In recent years, quantum phenomena have been experimentally demonstrated on variety of
optomechanical systems ranging from micro-oscillators to photonic crystals. Since single photon
couplings are quite small, most experimental approaches rely on the realization of high finesse Fabry—
Perot cavities in order to enhance the effective coupling. Here we show that by exploiting a, long path,
low finesse fiber Fabry—Perot interferometer ground state cooling can be achieved. We model a 100 m
long cavity with a finesse of 10 and analyze the impact of additional noise sources arising from the
fiber. As a mechanical oscillator we consider a levitated microdisk but the same approach could be
applied to other optomechanical systems.

Cavity optomechanics [1] has achieved several long-awaited experimental results highlighting the quantum
nature of the interaction. From the generation of ponderomotive squeezing [2—4] and field quadrature QND
measurement [5] to the cooling of the mechanical motion to a thermal occupation number below unity [6-9].
These results, obtained in a variety of systems, have increased the interest in the generation of other non-classical
states and in the investigation of the quantum to classical transition. In recent years, optical cooling of levitated
dielectric nanoparticles [10] has been receiving a lot of attention. These unclamped oscillators offer the
possibility to be operated in a regime where thermal noise, due to the residual background gas, is not the main
contribution to the overall decoherence rate. Typically, the nanoparticle is trapped by optical tweezers [11] or an
electro-dynamic [12] trap and cooled by an optical cavity field. In these configurations random momentum
kicks to the nanoparticle associated with radiation pressure shot noise represent a major limitation toward
ground state cooling, as has been recently reported [13].

An intriguing possibility towards the suppression of recoil heating is to levitate an apodized microdisk. If its
radius is significantly bigger than the optical waist a microdisk behaves as a thin dielectric slab for which
scattering occurs only due to surface roughness. This is in stark contrast to a sub-wavelength nanosphere that
scatters light in a dipole field pattern. A similar system was initially proposed in [ 14], where a tethered microdisk
was considered. They showed that by apodizing the edges of the microdisk even for a radius comparable to the
waist, the scattering limited finesse is > 10%

Most optomechanical systems require a high finesse optical cavity in order to enhance the light-matter
interaction. Here, we propose a levitated microdisk trapped in the standing wave of a long low finesse extrinsic
fiber Fabry—Perot (FFP) interferometer. This scheme is shown in figure 1. The input field is injected into the
cavity via an input coupler with a small radius of curvature, the field is propagated in free space for a few
millimeters and then coupled into a single mode fiber. At the far end of the fiber a high reflectivity mirror or a
distributed Bragg reflector provides the end mirror for the FFP.

There are three critical aspects that need to be addressed. These include the optical losses that are introduced
at the fiber/free space interface, the cavity mode volume that will determine the microdisk coupling to the
optical fields and the additional noise sources and nonlinear effects introduced by the fiber that could hinder the
overall performance of the system.

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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Figure 1. Scheme of the FFP interferometer. The optical cavity is divided in two parts: a free space region, L., where the microdisk is
trapped and an optical fiber, of length L. The optical mode transitions from a guided HE11 mode to a Gaussian mode. A dielectric
microdisk, marked as dark thick line, is optically trapped in an antinode of the cavity standing wave close to the fiber output.
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Figure 2. Intensity distribution of the initial HE11 mode as it propagates in free space.

Optical losses and move volume

Optical losses have been evaluated with numerical methods aimed at calculating the cavity reflection coefficient
(considering ideal input and output couplers). The beam propagates from the fiber tip into free space usinga
finite difference beam propagation method [15]. The initial field profile is assumed to be the fundamental HE11
guided mode of the fiber. After alength Lg.. the beam is reflected by a mirror and propagates back to the fiber.
The beam is propagated through 1 mm of fiber via the propagation method [ 16] after which the field is very well
approximated by the HE11 mode. The total round trip power loss is obtained by comparing the initial and final
power. The parameters considered are Lge. = 4 mm, a field of wavelength of A = 1550 nm propagating
through a Corning SMF-28 optical fiber. With these values an overall power loss of 4.13% was calculated,
corresponding to an interface limited cavity finesse of 7 =~ 150. An example of the intensity profile obtained
before reflection in shown in figure 2.

The cavity mode volume is defined as

V.= [IE®Pav, M

where E(r) is the normalized cavity field. We divide the integral in two domains, fiber and free space. In the
former E(r) = cos(kz)Exp(—r?/w?), where k = 27t/ Xand w, is the fiber mode-field radius (mfr), while in the
trapping region

Exp(—r2/w?(z))
V1 + (z/zR)?

with w(z) = w,+/1 + (z/zr)?, and zg is the Rayleigh range. Equation (2) neglects the curvature of the
wavefronts and the details of the mirror geometry. However, for the parameters considered in the following the
para axial approximation holds [17] and the contribution to the total mode volume coming from the free space
region is only of the order of a few % and thus equation (2) provides a good estimate. By evaluating the integral in
equation (1) we find

E(r) = cos(kz) 2)
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v, = el (1 + Lfr“), 3)
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where Lg.. is the length of the free space region, L is the fiber length and #; its refractive index. A fiber cavity allow
us a cavity waist of the order of the wavelength without the need to work with a near concentric configuration
which is close to instability [18].

Fiber noises and nonlinear effects

We are going to assume that the environmental, electronic and classical laser noises can be controlled toa
negligible level, such that, the fundamental noise introduced by the fiber is thermoptic induced phase noise. This
is usually referred to as thermal phase noise in the fiber community. Since the intensities required for trapping
the microdisk are typically rather high, nonlinear effects like Brillouin and Raman scattering must be
considered.

Fiber thermal noise
Fiber interferometers, in various configurations (such as Mach—Zehnder and Michelson), constitute an active
field of research especially for sensing applications [19]. The current generation of devices are approaching the
fundamental thermal noise limit. This has been measured with high accuracy in a Mach—Zehnder
interferometer [20] and compared to a model initially proposed by Wanser [21]. In his theory, the power spectral
density (PSD) of phase noise for a fiber of length L can be estimated to be [22]

Lk T? ( nsq

2
S¢¢(w) =T _) F(w), 4
Kt A

1dn,
whereq = af + n—dr;

is the thermoptic coefficient, a; the linear expansion coefficient, x, is the thermal
conductivity of the fiber medium and F(w) is a term that characterizes a frequency cut-off dependent on fiber

geometry. This is given by:

)

4
F(w) = 1n(kmax+—(“’/D)2}

krﬁlin + (w/D)Z

In this expression kinax = 2/Wp, kmin = 2.405/ay, where agis the fiber outer radius, and D is the thermal
diffusivity. Equation (4) describes the variance of the phase after the light field as passed through the fiber once.
In the FFP the light bounces multiple times between the cavity mirrors so that the final total phase noise grows
with an increasing finesse. In order to include thermal phase noise in the cavity dynamical equations it is simple
to consider it as a detuning noise, that is S5, (w) = (¢/2n;L)*S,4(w), where cis the speed of light.

Raman and Brillouin Scattering

For an optical field propagating in a molecular medium a fraction of the total power can be transferred to a
frequency downshifted field through the interaction with the vibrational modes of the medium. Acoustic
phonons are involved in Brillouin scattering while optical phonons participate in Raman scattering. For both
processes the nonlinear dynamics becomes exponentially more relevant after a critical threshold is surpassed. In
~ 16441 \where Lis the fiber length,

&KL
Aegr = 7w isthe effective modeareaand g, ~ 6.4 x 107'*m W™ is the peak Raman gain. A typical value for
the mode-field radius at 1550 nm is 5.25 pm and considering a 100 m long fiber, then P., = 216 W. A similar
2;:;“ ,and gg ~ 5 x 107!

m W™ is the typical peak brillouin gain for step index silica fibers. For the parameters considered before we
obtain P, ~ 350 mW. As for the case of phase noise, these values correspond to a single pass through the fiber.
For a FFP the thresholds can be significantly reduced [24, 25]. However, lower values for g have been reported
in the literature [26]. Furthermore, stimulated Brillouin scattering is one of the most important limiting factors
in high power fiber lasers and, as such, increasing its threshold is a highly researched topic. The mainstream
approach relies on the introduction of non-uniformities in the fiber to achieve spectral broadening of the
Brillouin gain spectrum, thus reducing the peak value gg. These non-uniformities ranges from temperature
gradients [27] to modifications of fiber composition or geometry [28, 29].

the case of Raman scattering the critical power can be estimated as [23] B

expression can be exploited for the case of Brillouin scattering [23] where P, ~

Description of the model

We consider an apodized microdisk, of radius a and thickness #, trapped in the standing wave of the FFP within
1-2 Rayleigh ranges from the fiber/free-space interface. This correspond to a distance between 60 and 120 pm.

3
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We assume a high aspect ratio a/t > w, /) in order to minimize both modifications of the Gaussian profile and
scattering of the intra-cavity field. More details on the effects of the apodization and of the aspect ratio can be
found in [14]. We focus on the center-of-mass degree of freedom of the microdisk along the cavity axis. The
transverse confinement is typically weaker giving much lower dynamical timescales while the lowest flexural
mode typically has a frequency >>1 MHz. Three beams drive the cavity: a high power trapping beam at A, and
two low power beams at Acpy 2 Ayap = A to cool and detect the microdisk motion. The model we are
considering is, thus, an extension of that presented in [30]. We add to that description an additional field and
include the fiber phase noise contribution. It must be pointed out that this treatment is based on the high finesse
approximation, that s, describing the optical resonance as a Lorentzian. For the finesse values that we are going
to consider the difference with the Airy peak and a Lorentzian can be significant amounting to a 30% increase in
linewidth and a decrease of intra-cavity power by a similar amount. The equation of motions are:

a;=—[k — i(Af, + qbi)] a; + ig a; cos’(kx — ¢,)
+ V2Kin Qin, i + Vis

$= i _ ,ygx _ %Z afa,- sin[Z(kx - ¢i)]’ (6)
m m.

where i = t, ¢, m meaning trap, cooling and meter fields which is a weak resonant field that is exploited for
measurement purposes. In equations (6) g, = %(6 — 1)wyis the coupling strength, wyis the field frequency,

Al is the empty cavity detuning, k = Kin + Kout + Kioss is the total cavity half-linewidth, Qin,; 1s the driving

amplitude, v; = \/2Kin @in,i + 2Kout dout,i T « 2Kloss Gloss,i 1S @ weighted sum of all vacuum operators and (jﬁi
is a detuning noise term that accounts for the fiber phase noise. This is considered to provide an uncorrelated
contribution to all cavity fields, that is (¢, (t) d)] (t")) = 0. The field fluctuations are uncorrelated and have the
following correlation functions [31]

(ai(t)a;(t)) = (af ()al(t)) = (af (D a;(t)) =0
(ai()al(t)) = 6@t — ). 7

Finally, ¢ is a Brownian stochastic force with zero mean value that arises from the background gas and obeying
the correlation function [31, 32]:

Ny = E d_w —iw(t—t) fiw
(EME) = fzﬂe w| coth T + 1 (8)

Wr

where kg is the Boltzman constant and v, is the viscous damping rate.
We consider ay, . = Ry iy and oy = Ry vy, with 0 < R}, Ry < 1. The steady state is readily obtained
tobe

= Kk —1iA Ginyi
Csin2tke —6)1 A+ &)
sin[2(keo — @)1 (1 + 62)(1 + 62)
X [RE(1 + 6) + R7(1 + 6))], ©)

where A, is the hot cavity detuning and ¢; = A;/k. Upon displacement of the operators in equations (6) and
subsequent linearization the dynamical equations become

a;=—(rk — iA) a; — ig ka; sin[2(kx, — ¢)] x — iaid + v;,
7ik,
¥=—wix — iZ(alT a; + a; o) sin[2(kx, — ¢,)]
m

— Yk + &§/m, (10)

where w? = 2'Iﬂ(zg"zi(|ai|2 cos[2(kx, + ¢,)]) is the optical trap frequency. In the following we will assume

m
¢, =0, ¢, =7/4, R, R < land A, = A, = 0sothat x, = 0 represents a good approximation consider-
ably simplifying the model since the effective optomechanical parameters are purely determined by the cooling
field. Thus, by moving into Fourier space and defining
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A (W) = g, ol il (11)
b mw K2+ (wF A))?

with which the effective mechanical parameters can be expressed as v, = 7, + Yopt = Y T Aem — Acs and’
Wi = w? + 7[(A + w) A~ + (A, — w) A, 4], the mechanical susceptibility is
Xege (W) = [m (weff — w? — iwy,] . The symmetrized displacement PSD, then, is given by

Sx
i)z =S + Z[ﬁmw (Ai+ + A0
|Xeff(w)| i
+Z4A2 n21 L; 55 Ait Ai- Spp(W). (12)

Equation (12) accounts for all force noises acting on the microdisk except for recoil heating due to the trapping
potential. This can be included through the substitution Sy, — Sy, (1 4 7. / ﬁ'yg), where i = kg T/ 71w, is the
Vi A wy

Vi 4L (e~ 1) P

cavity finesse [14]. By assuming w; > My & and k > Yo g»>whereand g; = g ki\/7i /mw; || is the effective
coupling strength, the final phonon occupation number is given by [33]

A+ e + 2 1A+ + 2875555 AiAi-Sap (Wi

ng = . (13)
Vet
Itis possible to exploit equation (13) to estimate a maximum injected cooling power before the fiber phase noise
starts contributing significantly.

Phase noise introduced by the fiber can have a significant impact on detection sensitivity since it could
increase the detection noise floor. This can be evaluated by looking at the homodyne PSD of the resonant meter
field. By using equation (10) and by defining K;(w) = [k — i(w + A)] 'and G(w) = iﬁgg2 k2K (W) X o (W) we
can express the intra-cavity meter field as

initial phonon number and 7, = is the recoil heating rate in which Fy;g >~ 107 is the disk-limited

A = Vi Kp(W)[1 + |amPG(W)] + v, [02, KX (—w) G (w)]
+ v [ma K (W) G ()] + V) [ama KX (—w)G(w)]
+ Gy O {iKin (W) — G (W) |l [Kin(w) — Ki(—w)]}
+ A —iG W) amlaP[K (w) — KX (—w)]}
+ ig, ko Ky (W) X e (W) €. (14)

By using standard input—output formalism the reflected meter field is given by bout = —@inm + /2Kin ams than
as usual the homodyne observable is defined as (1 = boy e + b, e’

Results

We consider a FFP whose input coupler is held at L. = 4 mm from the fiber input face and a 100 m long fiber
at the end of which an ideal mirror is assumed. The fiber has a core (cladding) diameter of 8.7 (125) pm and a
mfr = 5.25 pm. The system is considered to be held ina UHV environment at a pressure P = 10~° mbar which
corresponds to a gas-damping coefficient Y, = 32P /mipt. The cavity finesse is 7 = 10, which gives a

FSR = 1 MHz and a cavity half-linewidth /27 = 51 kHz, optical losses introduced by the fiber-free space
interface contribute to the overall decay channel by ~7%. The apodized microdisk has a radius of 8 ymand a
thickness t = 0.5 um. With these values the coupling parameter is g,/27 = 3 MHz. The trapping frequency is
chosen to be w, /27 = 10° Hz which is achieved with a trapping beam power of P, = 60 mW. The trapping
depth for the parameters chosen is approximately 2 x 10° K. An estimate of the optimal cooling beam power
can be obtained using equation (13) by requiring that the phase noise contribution equals the cooling beam

back-action. That is, we impose 2A? /,mz 17 Ac—So(wr) = 1. Assuminga detuning of A, = —w; andaratio
r = w;/k wefind P >~ /i 1; 4’ Sfd(‘w) = 12 pW for our parameters. With these parameters the optical
oo (W

cooling rate Vopt /271' = 300 Hz (Q.g == 330). We consider a meter beam power of B, = 4.3 uW which
provides a good compromise between final phonon number occupation and peak-to-noise ratio (PNR) in the
homodyne detection. Despite the extremely low finesse a final thermal occupation number smaller than one can
be obtained. This is shown in figure 3 where we plot the final effective phonon number 74 as a function of cooling
field detuning .. As imposed, fiber phase noise gives an equal contribution to the cooling field back-action. This
occurs witha S, =~ 107" rad* Hz ! at the trap frequency. The limiting contribution comes from the back-

3 . . .
To simplify the notationwe use A; 1 = A; +(wy).
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Figure 3. Expected final phonon number as function of the cooling field normalized detuning. All contributions are shown: total
(black), thermal noise (red), cooling field back-action (blue), meter field back-action (green) and fiber phase noise contribution
(dashed-blue). The vertical dashed-gray line indicates the detuning A, = w; that maximizes the cooling rate in the resolved sideband
regime.
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Figure 4. Phase quadrature homodyne spectra of the meter field normalize to shot noise. All contributions are shown: total (black),

thermal noise (red), cooling field back-action (blue), meter field back-action (green), fiber phase noise contribution for the meter field
(dashed-green) and fiber phase noise contribution for the cooling field (dashed-blue).

action of the meter. A direct consequence is that the minimal 71is no longer obtained for the typical optimal
detuning in the resolved sideband regime but at a slightly lower value. This is found tobe §. = —0.87 w, for
which any = 0.5 is obtained. Interestingly, without the meter field back-action the final phonon number would
be ny = 0.17 despite the contribution from the fiber phase noise.

To verify the detectability of the microdisk motion we evaluated the homodyne spectra of the phase
quadrature for the resonant meter field. This is show in figure 4 where we plot the total quadrature PSD
normalized to shot noise along with all contributions. The dominant noise floor is given by the meter field shot
noise with a non-negligible contribution due to fiber phase noise. We point out that this is the case since the
trapping frequency for the microdisk is significantly higher than the frequency cut-off described by equation (5).
Indeed, phase noise contribution is orders of magnitude higher at low frequency.

In order to emphasize the tradeoff between detectability and final occupation number, we show in figure 5 a
contour plot of n7as function of cooling beam detuning A and achievable PNR. A final 11 = 1 can be obtained
with ahigh PNR = 25 with an input power of P,,, = 12.3 uW. Interestingly, ;has a smooth dependance on A,
since the system is not deeply into the resolved sideband regime.

In conclusion, we have shown that an apodized microdisk trapped in an extrinsic FFP interferometer could
be cooled down to the quantum ground state despite the extremely low finesse of the system. Thermoptic phase
noise introduced by random temperature fluctuations along the fiber has been taken into account and has been
shown not to constitute an intrinsic limit toward ground state cooling. Further analysis is however required. The
intra-cavity power of the trapping beam is ~360 mW, this value coincides with the threshold for Brillouin
scattering for a single pass in the 100 m long fiber considered here. This implies that additional measures to

6
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Figure 5. Contour plot of the achievable final thermal occupation number as a function of cooling beam detuning and achievable
PNR.

significantly increase the Brillouin threshold need to be put in place. An intriguing possibility is the use of
photonic crystal hollow-core fibers (HCF) which have an increased power handling capability thanks to a
reduced interaction with silica [34]. At the same time, a lower thermal phase noise level has been measured for
HCFs [35] allowing more flexibility in the parameters choice. Optical losses at the interface have already been
estimated and found of the same order as for a standard single mode fiber, however, HCFs have significantly
higher losses and coupling to higher modes could impact the system performance [35].

It has been recently proposed that a levitated sensor could be exploited to detect high frequency gravitational
waves [36]. It has been shown that, under the right conditions, the attainable sensitivity could be more than an
order of magnitude better than current interferometers like LIGO and VIRGO in the frequency range of
50-300 kHz. The configuration considered here could represent a viable alternative to implement such a
proposal, and will be studied in future work, with the fiber-based cavity potentially eliminating the demand for
large optical mirrors. A variety of sources could produce gravitational waves at such frequencies, including
signals from black hole superradiance [37]. For example such signals can be associated with the QCD axion, a
notable dark matter candidate [38]. Such sources can also be sought after in current advanced gravitational wave
interferometer observatories [39], and the more compact levitated-sensor approach could significantly expand
the search capabilities in the higher frequency band [36].
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