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Abstract

Ultra-dense cloud radio access networks (C-RANs) is one of the well-acknowledged promising

architectures in next generation wireless systems. A novel signal processing framework is desirable

in response to the new architecture, which could be established based on user-centric manner.

Amorphous cellular is a promising framework, in which each user connects a few neighboring

remote radio heads (RRHs) to form its own cell. This paper studies the capacity of amorphous

cellular in dense C-RANs at high-SNR, where the RRHs are distributed as Poisson Point Process.

We derive tight upper bounds with arbitrary antenna configurations, and the exact expression of

ergodic capacity when antenna numbers are the same at both ends of the link at high SNR. In

contrast to prior works on distributed antenna systems, our results are derived based on random

matrix theory and involve only standard functions which can be easily evaluated. The impact of

the associate RRHs number on ergodic capacity is evaluated, and the results, for links with equal

number of antennas at both ends, show that the capacity increase logarithmically with increasing

intensity of RRH. Further on the basis of our results, we propose two efficient scheduling algorithms

for RRH selection for the multiuser frequency-division duplex system to achieve energy efficient

transmission.
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radio access network (C-RAN).

I. INTRODUCTION

The property of mobile Internet calls for new topology to meet the increasing demand for

data traffic, numerically, a thousand times in the coming decade [1]. The conventional idea

of cellular network is already overstretched to face the situation. In 5G, to face the challenge,

ultra-dense network (UDN) has become an attractive focus thanks to its considerable potential

on capacity enhancement [2–4].

The typical cellular network topology has been well-suited for providing wide-area cover-

age in the past, but not handling the exponential increasing requirement of data. Dense cloud

radio access network (C-RAN) is an emerging network architecture which is recognized as the

enabling technologies to meet such demands of emerging mobile traffics, due to the enhanced

received signal strength because of the reduced distance between user and remote radio head

(RRH) [5]. In C-RANs, RRHs operate as soft relays receiving signals from mobile users to a

centralized base band unit (BBU) [6]. The performance of distributed antenna array and best

base station selection schemes in C-RANs were presented in [7], in which both user and RRH

equipped a single antenna. In [8], authors studied the sum-rate maximization problem under

BS backhaul constraint in a downlink C-RAN for both dynamic and static BS clustering over

different time-frequency slots. However, single access point scheme is incapable of supporting

enough mobile traffic due to the low power of deployed RRH. Intuitively, if we intend to catch

up with the traffic demand, multi-access point scheme is inevitable in C-RANs because of

the substantial improvement in spectral efficiency of multiple-input multiple-output (MIMO)

technology.

With dense RRH deployment, the BS-centric structure MIMO system cannot be justified

when both users and BSs are scattered around due to the poor support for cell-edge users [9].

Instead, the user-centric structure, namely, amorphous cellular, would be more appropriate,

and the interference coordination is much more feasible [10–12]. The user in C-RAN chooses

its own serving RRH set as its amorphous cellular while BBU schedules time-frequency

recourse centrally. The authors of [13] investigated the optimal sizes of amorphous cellular

for single-user transmission, where locations of RRHs were distributed according to poisson

point process (PPP) which is an effective mathematical model that can capture the irregularity

of BSs [14, 15]. The authors of [16] presented closed-form ergodic capacity expressions for



3

N -nearest PPP distributed RRH association strategies when the path loss exponent was four.

The uplink ergodic sum capacity of amorphous cellular systems was presented in [17], where

RRHs were either co-located at cell center or uniformly distributed within each cell. As an

extension of this work, the authors further studied the downlink amorphous cellular with a

large number of users randomly distributed in the system and derived the effect of cellular

size on the average user rate [9]. Note that the above results are obtained by assuming

single-antenna users, and can hardly provide closed-formed achievable rate expression. This

is mainly because of the intractable of the effect of large scale fading (LSF), especially when

users equip multiple antennas. However, multi-antenna has been the standard configuration of

present devices, which forces us to form a more accurate result in characterizing the capacity

performance of MIMO system.

In order to measure the system behavior over amorphous cellular in ultra-dense C-RANs,

we tend to evaluate the capacity by utilizing an efficient mathematic tool, namely, random

matrix theory. A large amount of prior works applied random matrix theory to obtain an-

alytical characterization of MIMO systems, and insightful results were also derived under

semi-correlated channel. The authors of [18] considered the capacity outage performance

of a MIMO system in correlated environments and derived exact distribution functions for

the capacity with a small number of antennas. In [19], a closed-form expression for the

characteristic function of MIMO system capacity with arbitrary correlation among transmit

(receive) antennas was derived. The authors of [20] analyzed the capacity and corresponding

optimal input density of a correlated MIMO channel, where the channel was assumed to

have a (Kronecker) correlated normal distribution. All the above studies provided closed-

form expressions of capacity for the cases where channel correlations present at one of the

two ends of the link. However, we note that most of the researches assume MIMO links

between user and one multi-antenna BS, rather than multi-BS. A crucial difference between

the two assumptions is whether taking LSF into account in terms of capacity analysis, which

is, however, considered as an important factor of capacity performance in distributed MIMO

systems [21]. Dense C-RAN, equivalently a kind of distributed MIMO system, belongs to

the latter one. Utilizing random matrix theory, we note that the effect of LSF on capacity

can be formulated by regarding the LSF matrix as a correlation matrix at the end of link.

To the best of our knowledge, there appears no analytical expression available for ergodic

capacity which applies for distributed MIMO systems with both arbitrary path loss exponent

and number of antennas, especially when locations of RRHs are deployed randomly, e.g., as
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PPP instead of some predetermined regular topology.

In this paper, the uplink capacity of amorphous cellular in ultra-dense C-RAN at high-

SNR is investigated, where locations of RRHs obey the PPP distribution. We derive the upper

bounds of the capacity with an arbitrary number of antennas at high SNR when LSF is taken

into account. Moreover, the exact expression of capacity is derived when the antenna numbers

are the same at both ends of the link. Based on the proposed upper bounds, the impact of

the number of antennas is characterized. The expressions, in contrast to prior results, involve

only standard functions which can be easily and efficiently evaluated, and they illustrate

the effects of path loss exponent and the RRH density on ergodic capacity. On the premise

of guaranteeing the Quality of Service (QoS), two RRH scheduling algorithms on forming

the amorphous cellular are proposed, namely, user-optimal scheme (UOS) and RRH-optimal

scheme (ROS), to achieve energy efficient transmission for multiuser frequency division

duplex (FDD) systems when both transmission and reception power are considered. Both

algorithms are heavily on the basis of our capacity analysis results, and maintain excellent

performance in arbitrary QoS requirements.

The remainder of this paper is organized as follow. Section II presents the system model of

an amorphous cellular in dense C-RAN under consideration. Section III presents the results

of capacity analysis at high SNRs. In Section IV, two scheduling algorithms are proposed

to achieve energy efficient transmission. Section V summarizes the main observations and

proofs are relegated to appendices.

Throughout the paper, vectors and metrics are denoted in bold lowercase a and bold

uppercase A, respectively. The notation det (A) stands for the determinant, and the (i, j)th

entry of A is denoted as {A}i,j . The complex and real number fields are represented by C

and R, respectively. The superscripts (·)† denotes conjugate-transpose opeartion, and E [·]

evaluates the expectation of the input random entity. Additionally, Γ(·) and Γ(·, ·) are the

gamma function and incomplete gamma function [22, Eq. (6.1.5), Eq. (6.5.3)] respectively,

and ψ (·) is the digamma function [23, Eq. (8.360.1)].

II. SYSTEM MODEL

Consider a dense C-RAN, sketched in Fig. 1, in which each RRH has a single antenna,

helping the signals of a user who has m antennas to be processed in the BBU, which

constitutes a distributed MIMO system. The user connects n nearest RRHs to form its own

cell. The locations of RRHs are assumed to be modeled as a two-dimensional PPP having
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Fig. 1. System model of amorphous cellular in ultra-dense C-RANs uplink, where user connects with the n-nearest RRHs
to form its own cell. All RRHs belong to one BBU.

intensity λ in a plane whose radius is R. As it is an user-centric cell, the desired user is

located at the origin of the plane. Thus, the number of serving RRHs, n, in this plane is a

random variable with probability distribution [24]

fn (n) =
(λπR2)

n

n!
e−λπR

2

. (1)

We consider uplinks from the user to RRHs. The m-dimensional coordinated received signal

in BBU can be written as [25, 26]

r = Gs + n, (2)

where s is n-dimensional transmitted signal vector and the total transmission power is

E
[
s†s
]

= Pt. The entries of the additive noise n are modeled as zero-mean circular symmetric

complex Gaussian with variance σ2. In this paper, we ignore the shadowing effect, and the

channel is mathematically written by the m× n random matrix G, defined by

G = HD
1
2 , (3)

where H ∈ Cm×n is small-scale fast fading with complex elements {hi,j} ∼ CN (0, 1), and

D ∈ Rn×n accounts for the LSF which is given by

D = diag
{
d−αi
}n
i=1

, (4)
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where di is the distance between the user and the ith nearest RRH, and α stands for the path

loss exponent with typical values α ∈ [2, 6] [21].

In this paper, we consider the scenario in which the user has no channel statement

information (CSI) while BBU has perfect CSI. In what follows, the transmitter applies a

uniform power allocation scheme across all spatial subchannels, and therefore, the ergodic

capacity (in bits/s/Hz) is written as

Cm,n = E
[
log2 det

(
I +

ρ

m
W
)]
, (5)

where ρ = Pt/σ
2 is the average signal-to-noise ratio (SNR)1, and

W =

 DH†H, n 6 m,

HDH†, n > m.
(6)

Equivalently, the capacity can be written in term of nonzero eigenvalues of W. Let
⇀

λ
∣∣∣D =

[λ1|D, . . . , λq|D]T denote the nonzero eigenvalues of the matrix W, conditioned on D, with

q = min {n,m}. Then, the ergodic capacity in (5) can alternatively be written as [25]

Cm,n =

∫
D

∫
λ

q∑
i=1

log2

(
1 +

ρ

m
λi

)
fλi|DfD (d1 < · · · < dn) d

⇀

λdD, (7)

where fλi|D is the marginal probability distribution function (pdf) of ordered eigenvalue λi

conditioned on D, fD (d1 < · · · < dn) represents the ordered joint pdf of D. We note that

the conditional unordered eigenvalue pdf has been investigated in [27, Eq. (95)]. The ordered

eigenvalue pdf can be easily derived by considering all the possible matrix patterns of D

which consists of the same entries but in different orders, as given in

fλi|D (λi) =
Γ (q)∏p

i<j

(
d−αj − d−αi

) p∑
s=p−q+1

λs+q−p−1
i

Γ (s+ q − p)
det
(
Ξ̃s

)
. (8)

where Ξ̃s is a p× p matrix whose entries are

{
Ξ̃s

}
i,j

=

 d
−α(j−1)
i , i = 1, . . . , n, j 6= s,

d
−α(p−q+1)
i e

− λi
d−αi , i = 1, . . . , n, j = s

(9)

with p = max {n,m}. To remove the condition on D, we need to integrate di=1,...,n term-

1Throughout the paper, we use ρ to represent the ratio of the signal power at transmitter to the noise power at receiver.
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by-term. This yields

f (λi) = Γ (q)

p∑
s=p−q+1

λs+q−p−1
i

Γ (s+ q − p)

∫
D

det
(
Ξ̃s

)
fD (d1 < · · · < dn)∏p

i<j

(
d−αj − d−αi

) dD. (10)

This integration is really too complicated, if not impossible, to be evaluated due to the fact

that each entry of D has its own pdf, and with a Vandermonde in the integrand. Thus, we

try to analyze the capacity in the high-SNR regime, and provide some useful insights into

implications of system behavior.

III. HIGH SNR ANALYSIS

In this section, we derive tight upper bounds of ergodic capacity for amorphous cellular at

high SNRs, and characterize the impact of antenna number on the capacity performance. We

also provide exact closed-form expressions of the capacity when both ends of the link have the

same number of antennas. According to our results, we reveal some insightful observations

on the system parameters, such as the intensity of RRH, etc.

We first establish the pdf of di which is useful in deriving the expression of capacity.

Lemma 1: For a two-dimensional PPP of particles in the plane with intensity λ, the pdf

of di, which is the distance between the origin to the ith nearest particle, is given by

fdi = 2λπdie
−λπd2i

(λπd2
i )
i−1

(i− 1)!
. (11)

Proof: See Appendix A.

In contrast to prior works [28], this lemma presents the pdf of the distance between the

origin to an arbitrary particle instead of the nearest one. Taking the derivative with the respect

to λ in (11), we note the result indicates that, for a certain intensity of RRH, there is most

likely 〈λπd2
i 〉2 RRHs in the area of πd2

i . Having established Lemma 1, we are now ready to

derive the upper bounds of the capacity at high-SNR.

A. High-SNR Upper Bound

In the high-SNR regime, without loss any of generality, we evaluate the upper bounds of

capacity with an arbitrary number of antennas. Utilizing the Jensen’s inequality, the capacity

2The operation 〈·〉 is the rounding function.
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with n associated RRHs in (5) is upper bounded by

CU
m,n = log2

(
E
[
det
(
I +

ρ

m
W
)])

. (12)

In what follows, the Cm,n further upper bounded as

CU
m,n = log2

(
E
[
det
( ρ
m

W
)])

. (13)

We investigate the expected determinant of W in the first place, given in following Lemma.

Lemma 2: The expected determinant of W, where entries of D follow the distribution

given in Lemma 1, is given by

E [det (W)] =


Γ(m+1)

Γ(m−n+1)

n∏
i=1

ξλ (i), n 6 m,

Γ (m+ 1)
∑
Bm,n

∏
i∈Bm,n

ξλ (i), n > m,
(14)

where Bm,n is length-m subset of {1, 2, . . . , n}, and

ξλ (i) =
(λπ)

α
2

Γ (i)
Γ
′ (
i− α

2

)
. (15)

where

Γ
′
(t) =

 Γ (t, dth), t 6 0,

Γ (t), t > 0.
(16)

Proof: See Appendix B.

Note that the results are valid for arbitrary antenna configurations. We find that the

expression is easy to evaluate for the case of n 6 m, while the complexity of which can be

rather high when n is large for the case of n > m, since the number of the combinations of

Bm,n depends on m and n. It has to be noted that the value of Γ (a) is infinite (positive or

negative) if a is a non-positive integer. Thus, we set a protect distance dth for feasibility of

the integration. Having established Lemma 2, we are ready to derive the upper bound of the

ergodic capacity.

Theorem 1: For dense C-RAN systems where RRHs are stationary point process following

PPP, the capacity with n nearest RRHs can be upper bounded at high SNRs by

CU
m,n =


log2

Γ(m+1)
mnΓ(m−n+1)

+
n∑
i=1

log2 (ρξλ (i)), n 6 m,

log2
Γ(m+1)
mm

+ log2

( ∑
Bm,n

∏
i∈Bm,n

ρξλ (i)

)
, n > m.

(17)
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Moreover, ρ must satisfy the SNR constraint

ρ� 1

ξλ (n)
. (18)

Proof: The result in (17) directly follows by applying Lemma 2 to the upper bound in

(13). However, being conscious that the result only holds for the high-SNR cases, i.e., the

SNR of signals at receiver should be considerably larger than 1 under the effect of LSF. For

which reason, we evaluate the ρ from the weakest subchannel under LSF, given by [30]

min
i

{
E
[ ρ
m
d−αi h†ihi

]}
= min

i

{
ρE
[
d−αi
]}
� 1, (19)

where hi is ith column of H. The expected value of d−αi can be evaluated as the same as in

(15). Noting that ξλ (i) is a decreasing function against i, we prove the relationship between

ρ and the number of associated RRH by using min
i

{
E
[
d−αi
]}

= ξλ (n).

It is important to note that the result in (17) holds for arbitrary numbers of antennas. The

result implies the joint impact of various factors on the capacity upper bound, e.g. intensity

λ, path loss exponent α and number of associated RRHs n. By establishing the constraint of

signal SNR, we note that more transmission power is needed for (17) to hold with increasing

ρ
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Fig. 2. Comparison of Monte Carlo simulation with upper bounds on ergodic capacity against the ρ. The different antenna
configurations are denoted as m× n. Results are shown for α = 2, λ = 10−3 and σ2 = −70dBm [29].
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Fig. 3. Comparison of Monte Carlo simulation with upper bounds of the ergodic capacity against m. Results are shown
for n = 2, 3, 4 with α = 2, λ = 10−3, ρ = 85dB and σ2 = −70dBm.

n, and it grows non-linearly with joint effects of λ, α and n. Fig. 2 compares the upper bounds

CU
m,n with the Monte Carlo simulations versus ρ. The curves are shown under five different

antenna configurations, and all the dotted curves are generated using (17). We confirm that the

results are rather tight for both cases where transmit antennas number is larger or smaller than

the number of associated RRHs. Moreover, we note the very limited capacity enhancement

with adding antennas at the maximum number of antenna side, which indicates the capacity

performance is mainly subjected to the minimum number of antennas. Additionally, we see

that the tightness of bounds looses as minimum number of antennas grows while tightens

when maximum number of antennas grows, which is mainly because of the property of the

Jensen’s inequality.

To gain more insights, we further investigate the upper bounds by examining the following

cases.

• For n < m, adding one additional RRH, while not altering m, would reduce the

expression as

CU
m,n+1 = CU

m,n +
m− n
m

log2 (ρξλ (n+ 1)) , (20)

yielding a steady improvement with growing n because of the additional power captured
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by every new RRH.

• For n 6 m, as m→∞, the capacity upper bound reduces to the expression as

lim
m→∞

CU
m,n ≈

n∑
i=1

log2 (ρξλ (i)). (21)

The result is obtained by using the Stirling formula approximation, and the proof is

presented in Appendix C. The expression shows the upper limit of the capacity with fix

n RRHs, which implies the impact of each associated RRH on the capacity.

Fig. 3 compares the analytical upper bounds based on (17) with Monte-Carlo results for the

cases of n = 2, 3, 4 against m. We note the fact that the tightness of upper bounds performs

worse with more antennas which is confirmed in Fig. 2. Moreover, we note that the lines

of upper bounds rise sharply with increasing m when m < n, while keep constant when

m > n. Noting the fact that ergodic capacity is mainly subjected to min {n,m}, which can

also be recognized by being aware of a slight offset between the upper bound with m→∞

and m = n in the figure.

Fig. 4 gives the analytical upper bounds based on (17) and Monte-Carlo results for the

cases of m = 2, 3, 4 against n, in which locations of RRHs are modeled as PPP. We note

n
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Fig. 4. Comparison of Monte Carlo simulation with upper bounds of ergodic capacity against n. Results are shown for
m = 2, 3, 4 with α = 2, λ = 10−3, ρ = 85dB and σ2 = −70dBm.
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that the upper bound curves show similar trend as in Fig. 3. Moreover, simulation results

show that associating one more RRH gains more but still limited capacity enhancement.

Since the number of transmit antenna is generally constant, the result indicates that it is not

cost-effective to associate more RRHs, i,e., enhance cellular, when the number of them is

already larger than the number of transmit antennas.

B. High-SNR Capacity with m = n

We firstly write the conditional ergodic capacity expression in the high-SNR regime as

below

E
[
CH
m,n

∣∣D] = E
[
log2 det

( ρ
m

W|D
)]
. (22)

To derive the expression of the capacity, it is necessary to obtain the expected log-determinant

of a matrix as W. Note that the conditional expected log-determinant has been investigated

in [27, Lemma 4]. Utilizing this result, (22) can be rewritten as

E
[
CH
m,n

∣∣D] = mlog2

ρ

m
+

1

ln 2

 q∑
k=1

ψ (m− q + k) +

n∑
k=n−q+1

det
(
Ξ̃k

)
∏n

i<j

(
d−αj − d−αi

)
 , (23)

where Ξ̃k is a n× n matrix with entries

{
Ξ̃k

}
i,j

=

 d
−α(j−1)
i , j 6= k,

d
−α(j−1)
i ln di, j = k.

(24)

Then, by using (11) and (25), the high-SNR capacity can be obtained by integrating with

respect to di, as given below

CH
m,n = mlog2

ρ

m
+

∑q
k=1 ψ (m− q + k)

ln 2

+

(
2(λπ)(n+1)/2

)n
ln 2

∫ ∞
0

· · ·
∫ ∞

0

n∑
k=n−q+1

det
(
Ξ̃k

)
∏n

i<j

(
d−αj − d−αi

) ∏n

i=1

d2i+1
i e−λπd

2
i

(i− 1)!
dd1 · · · ddn.

(25)

The integrand above is extremely difficult due to a Vandermonde involved. In order to

obtain more insights, we derive the capacity for the special case of m = n, i.e., the number

of RRHs equal to number of transmit antennas, and investigate the impact of path loss

exponent α on the capacity.

Theorem 2: For dense C-RAN systems where RRHs are stationary point process following
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PPP with intensity λ, the capacity at high SNR with m = n is given by

CH
m,m = mlog2

ρ

m
(πλ)

α
2 +

(
1− α

2

)
ln 2

m∑
k=1

ψ (k) (26)

with power constraint given in (18).

Proof: See Appendix D.

Our result in Theorem 2 gives a mathematical conclusion for the capacity in the regime

of high SNR, which is valid for arbitrary antenna as long as n = m. By noting the power

constraint, more transmission power is needed for the result to hold with more antennas.

More importantly, the result shows that the capacity increases logarithmically with intensity

of RRH λ with taking LSF into account, and the scaling law of which is proportional to the

pass loss exponent α.

Corollary 1: Let m = n, the approximate expression of capacity at high SNR is given as

CH
m,m ≈ mlog2

ρ

m
(πλ)

α
2 +

(
1− α

2

)
log2Γ (m+ 1) . (27)

Proof: Utilizing ψ (m) = lnm + O
(

1
m

)
in (26) and after some basic operations yields

the result.

ρ
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Note that the approximation applied in proof can be really tight when m grows large. The

result involves only standard function which can be easily evaluated. Moreover, we note that

the capacity decreases with increasing α by taking the partial derivative of α on (27). In

order to get more computational insights, we further investigate the approximate expression

of capacity for following cases:

• Let m = n. Adding 1 antenna at both ends of link, while not altering other parameters,

would reduce the expression of capacity to

CH
m+1,m+1 ≈ CH

m,m +mlog2

m

m+ 1
− α

2
log2

(
πλ

m+ 1

)
+ log2ρ. (28)

The result indicates that the capacity enhancement is a decreasing function of m. Besides,

we note that, for a certain ρ and m, the enhancement of capacity grows faster with higher

pass loss exponent.

• Let α = 2, (26) can be reduced to

CH
m,m ≈ mlog2

ρπλ

m
. (29)

We note that the expression is really simple in the case of α = 2, which happens in a
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scenario produced by little blockage and clear ground [31]. It intuitively shows the joint

impacts of m, ρ, and λ on the capacity, specifically, non-linearly increases with growing

λ and the number of associated RRHs.

Fig. 5 compares the analytical capacity in (26), approximate expression in (27), and Monte

Carlo simulated curves with four different antenna configurations. As shown in Fig. 5, we

note the approximate expression is rather close to the exact expression, which indicates that

the analysis on the approximate expression in (27) are highly solid. Due to the restriction

on (18), the analytical formula holds for the cases of high SNR, and more power is needed

with increasing number of antennas, as expected.

The joint impact of intensity λ and path loss exponent α on ergodic capacity is illustrated

in Fig. 6. We note that the lines representing for the analytical expressions converge to the

simulation results in the cases of α = 2, 3, while perform tight only in the regime of high λ

in the cases of α = 4, 5. The reason is, with high α in the low λ cases, which means farther

RRHs and more intense signal attenuation, the analytical expression can hardly characterize

the capacity due to the SNR constraint. Moreover, we find that the offsets between different

α decrease with increasing λ, and the capacity grows logarithmically with increasing λ when

signal power satisfies with (13), as expected in (27).

IV. RRH SELECTION AND POWER ALLOCATION

In this section, the optimal number of associated RRHs is derived for the single-user energy

efficient transmission in the amorphous cellular. We subsequently propose two scheduling al-

gorithms, namely, UOS and ROS, for multiuser scenarios in the FDD system. Both algorithms

are on the basis of our results on capacity. With the help of our analytical upper bound, an

amount of calculations have been omitted and replaced by searching in the index derived

from offline simulations. Note that the power consumed by signal transmission and reception

are taken into account.

A. Energy Efficiency

We consider a FDD dense C-RAN system where each single-antenna RRH is scheduled a

single user3 with a diverse frequency band in a time resource. User establishes its own cell

3Actually, the assumption can be generalized to the multiuser scenarios when orthogonal multiple access approach. For
convenience, we simplify the assumption to show the efficiency of our scheme and left the joint frequency and RRH
scheduling to future work.
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by connecting to neighboring RRHs, and we assume fully coordination among them in the

cell. Without loss of generality, we suppose that the locations of users are also deployed as

a two-dimensional PPP having intensity λu with λu � λ.

In order to reveal the optimal number of associated RRHs, it is necessary to investigate

the energy efficiency (EE) for efficient transmission. We consider the power consumption for

a signal transmission and reception, and the EE can be defined as the ratio of the sum rate

to the sum of the consumed power, described as

ηmu =

∑
k Cmk,nk∑

k nkPr +
∑

k Ptk
, (30)

where Cmk,nk represents the uplink achievable rate for the kth user; Ptk denotes the signal

transmission power consumed by the user k; mk and nk are the number of antennas of the

user k and the number of RRHs which are associated to user k respectively; and Pr represents

the power for reception consumed by each RRH.

In contract to prior works, nk varies according to user requirements. In general, exhaustive

search for the optimal result requires extremely high complexity, which could be impossible

for practical applications. Thus, to reduce the complexity, we choose to evaluate the optimal

numbers of associated RRHs for a single user according to different demands, and save the

results for future search.

It is straightforward to see that the expression of EE for a single user ought to be described

TABLE I
SYSTEM PARAMETERS.

Path loss exponent α 2

User antenna m 4

Maximum number of RRH nmax 10

RRH intensity λ 10−3

User intensity λu 10−4

Protect distance dth 1m

Signal processing power Pr 0.1W

Minimum transmit power Pmin 5dBm

Maximum transmit power Pmax 33dBm

Thermal noise −70dBm

Capacity margin ∆r 3bit/s/Hz
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TABLE II
JOINT OPTIMAL CONFIGURATION OF (n, Pt)

r m = 2 m = 4 r m = 2 m = 4 r m = 2 m = 4 r m = 2 m = 4

25 (2, 9) (2, 7) 34 (3, 20) (3, 6) 43 (7, 31) (4, 7) 52 (4, 14)

26 (2, 10) (2, 8) 35 (3, 22) (3, 7) 44 (7, 33) (4, 8) 54 (4, 16)

27 (2, 12) (2, 10) 36 (3, 23) (3, 8) 45 (4, 9) 56 (4, 17)

28 (2, 13) (2, 11) 37 (4, 24) (3, 9) 46 (4, 10) 58 (4, 17)

29 (2, 15) (3, 5) 38 (4, 25) (3, 10) 47 (4, 11) 60 (4, 20)

30 (2, 16) (3, 5) 39 (4, 26) (3, 11) 48 (4, 11) 62 (4, 20)

31 (2, 18) (3, 5) 40 (5, 28) (3, 12) 49 (4, 12) 64 (5, 21)

32 (2, 19) (3, 5) 41 (5, 29) (3, 13) 50 (4, 13) 66 (5, 23)

33 (2, 21) (3, 5) 42 (7, 30) (3, 14) 51 (4, 14) 68 (5, 23)

as

ηsu =
Cm,n

nPr + Pt
. (31)

We here use CU
m,n in (17) to replace Cm,n in (31) for our offline simulations. In what follows,

the approximate EE can be expressed as

η̂su =
CU
m,n

nPr + Pt
. (32)

We are interested in finding the optimal n and Pt that maximize η̂su, i.e.,

max
n,Pt

η̂su (33)

where 1 6 n 6 nmax and Pmin 6 Pt 6 Pmax. The optimal solution of n for the above problem

can be intuitively solved by exhaustive search. The parameters of simulations can be found

in Table I, and the results of joint configurations of n and Pt (in dBm) for a single user is

shown in Table II. Based on Table II, the optimal size of single-user cell can be intuitively

determined by the number of associated RRHs according to user’s demand.

B. UOS and ROS

We propose two effective schemes, namely, UOS and ROS, to form user’s amorphous

cell on the basis of offline EE results. In UOS, we choose user to be our optimized object,

specifically, the algorithm selects the required number of RRH with the strongest link for
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each user from all the remaining candidates. In ROS, the scheme establishes the cell by

optimizing the RRH in the system, which is arranged to the corresponding user who has the

strongest link with. Note that both algorithms contain three steps and both of Step 1 and

Step 3 in two algorithms are identical.

We first introduce into detail to cover the steps in UOS, and then provide the differences

of ROS compared with UPS thoroughly.

In Step 1 of UOS, we identify the number of users N in the system and the optimal

number of associated RRH nk for the kth user. We use rkth (in bps/Hz) to represent the QoS

of user k, and add a margin of the spectral efficiency ∆r to each rkth to ensure the algorithm

can meet the user’s demand. Note that nk can be determined by offline simulation since

the density of the RRHs λ is determined. Thus, the optimal associate number of antennas

of users can be obtained by indexing Table II according to their demands while avoiding a

significant amount of computing to release the complexity.

In Step 2 of UOS, we use M to represent the set of the whole RRHs in the area; N

denotes the set of users in the system; Rk is the RRHs set selected for the kth user; d−αik
is the LSF between the ith RRH and the kth user; the variable lk is used as a counter to

Algorithm 1 UOS
Initialization:

Set N = {1, . . . , N}, M, rk=1,...,N
th , mk=1,...,N , nk=1,...,N = 0,

Rk=1,...,N = ∅, Fk = 0, lk = 0
Step 1: Determining the nk=1,...,N and Ptk=1,...,N

.
for k = 1 to N
rk = rkth + ∆r,
Search nk=1,...,N and Ptk=1,...,N

in Table II with known rk and mk.
end for

Step 2: Select first nk RRHs with strong uplinks for each user.
while if Fk=1,...,N = 0 do

for k = 1 to N
if Fk = 0 then
n∗ = arg max

i∈M

{
d−αik
}

, Rk = Rk ∪ n∗, M =M/ {n∗}, lk = lk + 1

if lk = nk then
Fk = 1

end if
end if

end for
end while

Step 3: Power control for achieving the optimal EE.
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Algorithm 2 ROS
Step 1: Same as Step 1 in UPS
Step 2: Select first nk RRHs with strong uplinks for each user.

while if Fk=1,...,N = 0 do
n∗ = arg max

i∈M,k∈N

{
d−αik
}

, Rk = Rk ∪ n∗, M =M/ {n∗},

lk = lk + 1
if lk = nk then
N / {k} ,Fk = 1

end if
end while

Step 3: Same as Step 1 in UPS.

determine if nk RRHs have been selected for the kth user; the variable Fk is a flag and

Fk = 1 in Step 2 means that RRH selection for kth user is completed. In the algorithm, for

each round of selection, each user is scheduled one RRH with the strongest link from all

the remaining candidates. The algorithm ends till all nk is satisfied. This step ensures that

the each selected RRH is the optimal choice for its corresponding user from the remaining

candidates, which guarantees the fairness of the scheme.

In Step 3 of UOS, we adjust the transmit power to achieve optimized transmission, which is

simple and straightforward; Cmk,nk (Rk, Ptk) represents the capacity of kth user with associate

RRHs Rk and transmission power Ptk .

Here, we provide one alternative scheme, ROS, as a control group, and introduce the

difference between the two schemes in Step 2.

In Step 2 of ROS, instead of searching RRH for user, we search for the strongest link

from all the possible links of the remaining user and the remaining RRH, and then schedule

the RRH to its corresponding user till all the users meet nk. In contrast to UOS, RRH is

regarded as our optimized object, specifically, the selected RRHs in ROS are guaranteed to

serve their optimal users. We note that Step 1 and Step 3 are extremely convenient, thus,

the complexity of both algorithms is dominated by Step 2. As N and M grow large, the

TABLE III
WORST-CASE COMPLEXITY COMPARISON.

Proposed Algorithms UOS ROS

Worst Case Complexity O (M
∑

k nk) O (MN
∑

k nk)
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Fig. 7. Energy efficiency for UPS and RPS versus the different QoS with consideration of both power consumption by
signal transmission and reception. We choose α = 2, λR = 10−3 and λu = 10−4.

worst-case complexity of Step 2 in UOS and ROS are compared in Table III. As seen, the

complexity of ROS is higher than RPS, because searching for the strongest link from all

possible links requires more calculations than just searching the strongest link for each user.

The EE against the user requirement with simulation parameters shown in Table I is illus-

trated in Fig. 7. We here, for convenience, set mk=1,...,N = 4 and identical user requirement.

We also provide the results of fixed number of associated RRHs with nk=1,...,N = 2, 3, 4 as

control groups. We first note that the EE with fewer number of RRHs performs better in

low user requirements (i.e., n = 2 below 30bit/s/Hz and n = 3 below 45bit/s/Hz) since the

less consumption of transmission power and fewer associated RRHs. Furthermore, the lines

representing the results for the fixed nk decrease sharply with r growing large due to the

exponential increase of transmission power. In contrast to them, UOS and ROS, applying

the results of our capacity analysis in Section III, show the significant advantages in EE

performance, i.e., both of which remain the best average EE among all lines. There is no

significant difference between UOS and ROS in the regime of low user requirement. However,

when rth grows large, the line of UOS wins by a narrow margin over ROS, which implies

that selecting the optimal RRHs for user is the better strategy compared with selecting the
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optimal users for RRH for user-centric system when take the complexity into account.

V. CONCLUSION

In this paper, we investigate amorphous cellular which is based on user-centric manner

for ultra-dense C-RANs. The upper bound expression of uplink capacity at high SNR has

been presented, as well as exact expression when the number of user’s antennas equal to

the number of associated RRHs. Based on the analytical results, we have characterized the

impact of path loss exponent, RRH intensity and antenna configuration on ergodic capacity

respectively. Moreover, the optimal number of associate RRHs for single user is offline

derived when transmission and reception power are taken into account. These results are

subsequently used in two scheduling algorithms, namely UOS and ROS, to approach energy

efficient transmission for multiuser FDD systems, which shows the significant advantage

compared with the fixed number of associate RRHs strategy.

APPENDIX A

PROOF OF LEMMA 1

As shown in (4), di represents the distance between the user and the ith nearest RRH. The

cumulative distribution function of di is described as

Fdi (d) = Pr (di ≤ d) = 1− Pr (di > d) . (34)

Since there exists exactly (i− 1) RRHs in the circle plane whose radius is di, utilizing (1),

(34) can be derived as

Fdi (d) = 1− (λπd2
i )
i−1

(i− 1)!
e−λπd

2
i . (35)

The pdf of di can be directly obtained by taking the derivative of Fdi .

APPENDIX B

PROOF OF LEMMA 2

To proof this lemma, it is convenient to give separate treatments for two cases: n ≤ m

and n > m.

1) n ≤ m Case: For this case, the expected determinant of W, conditioned on D, is given
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by

E [det (W)|D] = E
[
det
(
DH†H

)∣∣D]
= E

[
det (D) det

(
H†H

)∣∣D]
(a)
= det (D)E

[
det
(
H†H

)] (36)

where (a) is obtained due to the independence of D and H. Applying the result in [32, Eq.

(A.7.1)], (37) can be further represented as

E [det (W)|D] = det (D)
Γ (m+ 1)

Γ (m− n+ 1)
. (37)

Evaluate the integral of D utilizing Lemma 1, and the closed-form expression of expected

determinant of W can be further simplified as

E [det (W)]
(b)
=

Γ (m+ 1)

Γ (m− n+ 1)

∫
D

n∏
i=1

difDdD

(c)
=

Γ (m+ 1)

Γ (m− n+ 1)

n∏
i=1

(λπ)
α
2

Γ (i)
Γ
(
i− α

2

)
,

(38)

where (b) is derived by noting that D is diagonal matrix whose entries are independent to

each other, and (c) is obtained from [22, Eq. (6.1.5)].

2) n > m Case: For this case, utilizing Cauchy-Binet formulation, the expected determinant

of W, conditioned on D, is given by

E [det (W)|D] = E

∑
Bm,n

det (HD)Bm,n det
(
H†
)
Bm,n

∣∣∣∣∣∣D
 . (39)

Note that (·)Bm,n is a n× n matrix. Thus, utilize the commutativity of matrix multiplication

and change the order of the matrices in (39), we can further obtain

E [det (W)|D] = E
[
det
(
HBm,nH

†
Bm,n

)]∑
Bm,n

det (D)Bm,n

= Γ (m+ 1)
∑
Bm,n

det (D)Bm,n ,
(40)

We then evaluate the integral of (40) as in (38) to yield the result.
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APPENDIX C

PROOF OF (21)

Utilizing the Stirling formula

Γ (k + 1) ≈
√

2kπ

(
k

e

)k
, (41)

the upper bound in (17) with n 6 m can be approximately rewritten as

CU
m,k ≈ log2

√
2mπ

(
m
e

)m
mk
√

2 (m− k)π
(
m−k
e

)m−k +
k∑
i=1

log2 (ρξλ (i))

= log2

1

ek

(
m

m− k

)m−k+
1
2

+
k∑
i=1

log2 (ρξλ (i)).

(42)

According to the definition of natural constant e, we have

lim
m→∞

(
m

m− k

)m−k+
1
2

= ek. (43)

Substituting (43) into (42) and after some basic operations, we conclude the proof.

APPENDIX D

PROOF OF THEOREM 2

We firstly rewrite the conditional ergodic capacity expression in the high-SNR regime

E
[
CH
m,n

∣∣D] = mlog2

ρ

m
+

1

ln 2

 q∑
k=1

ψ (m− q + k) +

n∑
k=n−q+1

det
(
Ξ̃k

)
∏n

i<j

(
d−αj − d−αi

)
 . (44)

When m = n, the sum of the determinant is reduced to

p∑
k=1

det
(
Ξ̃k

)
(d)
=

p∑
k=1

∑
σ

sgn (σ)

p∏
i=1

d
−α(i−1)
σ(i) ln d−ασ(k)

=
∑
σ

sgn (σ)

p∏
i=1

d
−α(i−1)
σ(i)

p∑
k=1

ln d−ασ(k)

= −α
p∑
i=1

ln di
∏p

i<j

(
d−αj − d−αi

)
.

(45)

where (d) is derived by the Leibniz formula [33], and the second summation is over all

permutations σ = {σ (1) , . . . , σ (p)} of the set {1, . . . , p}, with sgn (σ) representing the sign
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of the permutation. By substituting (45) into (44), we can rewrite the expression as

E
[
CH
m,n

∣∣D] = mlog2

ρ

m
+

1

ln 2

(
m∑
k=1

ψ (k)− α
m∑
i=1

ln di

)
. (46)

Using Lemma 1 and (46), the ergodic capacity in high SNR regime can be simplified as

CH
m,m =

∫
D

E
[

log2 det
( ρ
m

W
)∣∣∣D] fDdD

= mlog2

ρ

m
+

∑m
k=1 ψ (k)

ln 2
− α

ln 2

∫
D

m∑
i=1

ln difDdD.

(47)

The integral in (47) can be further evaluated as∫
D

m∑
i=1

ln difDdD =
m∑
i=1

∫ ∞
0

ln difD(di)ddi

=
m∑
i=1

2(πλ)i

Γ (i)

∫ ∞
0

d2i−1
i e−λπd

2
i ln diddi

(e)
=

1

2
(κ (m)−mc−m ln πλ) ,

(48)

where (e) is obtained from [23, Eq. (4.331.1)] and [23, Eq. (4.352.2)], c is the Euler constant,

and

κ (m) =


0, m = 1,
m∑
i=2

i−1∑
j=1

j−1, m > 1.
(49)

Thus, by substituting (49) into (48), the expression can be rewritten as

CH
m,m = mlog2

ρ

m
+

∑m
k=1 ψ (k)

ln 2
+

αm

2 ln 2
(c+ ln πλ− κ (m)) . (50)

Note that a property of digamma function is presented as [30, Eq. (2.14)]

ψ (k) = ψ (1) +
k−1∑
j=1

j−1. (51)

Substituting (51) into (50) and after some basic operations, we complete the proof.
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