
Please cite the following paper at: 

Sharifzadeh M, Thornhill NF, (2013). Integrated design and control using a dynamic inversely 

controlled process model. Computers & Chemical Engineering, 48, 121–134. (Link).  

1 | P a g e  

 

  

 

 

Integrated design and control using a dynamic inversely 
controlled process model 

 

 

Mahdi Sharifzadeha,*, Nina F. Thornhilla 

aCentre for Process System Engineering (CPSE), Department of Chemical Engineering, Imperial College London, 

*Email: mahdi@imperial.ac.uk. Address: Department of Chemical Engineering, Imperial College London, South 
Kensington Campus, London SW7 2AZ. 

 

 

 

 

 

 

Abstract  

The profitability of chemical processes depends on their design and control. If the process 
design is fixed, there is little room left to improve control performance. Many commentators 
suggest design and control should be integrated. Nevertheless, the integrated problem is highly 
complex and intractable. This article proposes an optimization framework using a dynamic 
inversely controlled process model. The combinatorial complexities associated with the 
controllers are disentangled from the formulation, but the process and its control structure are 
still designed simultaneously. The new framework utilizes a multi-objective function to explore 
the trade-off between process and control objectives. The proposed optimization framework is 
demonstrated on a case study from the literature. Two parallel solving strategies are applied, 
and their implementations are explained. They are dynamic optimization based on i) sequential 
integration and ii) full discretization. The proposed integrated design and control optimization 
framework successfully captured the trade-off between control and process objectives.  
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1. Introduction  

The current industrial practice for the design of chemical processes and their control systems is 
sequential in that control design is deferred until the process design is decided (Sakizlis, et al. 
2010, Downs and Skogestad 2011). However, design and control share important decisions. 
When the process design is fixed, there is little room left for the control engineer to improve 
control performance. Furthermore, there are conflicts and competitions between control and 
process objectives, (Luyben 2004). Therefore, many commentators suggest that design and 
control must be integrated, (Seferlis and Georgiadis 2004).  

1.1. A controller-independent framework based on perfect control 

Unfortunately, addressing the integrated design and control problem using optimization poses a 
tough challenge for current optimization technology. Some aspects of this challenge should be 
attributed to controllers. Design of controllers needs decisions regarding the type of controllers 
(e.g. feedback, feed-forward, or model-based), pairing/partitioning of manipulated and 
controlled variables (i.e. the degree of centralization), and the controller parameters. In 
addition, including the controller model makes the mathematical model unstable and adds 
severe nonconvexities to the objective function and constraints, (Malcolm, et al. 2007). 

Morari (1983) was among the first researchers who recognised the conceptual complexities 
posed by the modelling of controllers in a dynamic simulation:  

 “…It is generally necessary that controllers are included in the model. This often leads to arbitrary 
decisions about the control structure and also requires the engineer to tune these controllers 
interactively during the simulation, a very time consuming task. The modelled control systems are 
only those which are based on the experience (or ingenuity!) of the engineer doing the work. It is 
then impossible to distinguish if an observed poor performance is caused by some inherent plant 
characteristic or rather by the unfortunate choice of the control system by the engineer.” 

The difficulties associated with controllers have been the concerns of other researchers too. 
Perkins and his students (Narraway and Perkins 1993; Heath, et al. 2000; Kookos and Perkins 
2004) introduced the idea of minimizing economic losses associated with back-off from active 
constraints. The early versions of their methodology were based on frequency domain analysis 
and perfect control. Later, they extended their methodology by including a generalized 
formulation for the controller. However, the proposed formulation was limited to linear time 
invariant output feedback controllers and did not include the majority of the important classes 
of nonlinear and model-based controllers. 

Other researchers also encountered similar difficulties. For example, since static relative gain 
array (RGA, introduced by Bristol, 1966) does not consider transient conditions, dynamic 
relative gain array (DRGA) was proposed (Tung and Edgar, 1981). However, calculating the 
DRGA’s denominator requires detailed design of controllers and “since the DRGA is most valuable 
for screening alternate control system designs, the requirement of an extensive controller design 
tends to defeat the utility of these methods.”, (McAvoy, et al. 2003). 

Furthermore, there is no general agreement between researchers on the criteria for the 
selection of the controller type. Some researchers (Luyben 2004; Skogestad 2009) emphasize 
the simplicity and robustness of the conventional multi-loop control systems and criticize the 
reliability and costs of modern types. On the other side of this discussion, other researchers 
(Stephanopoulos, and Ng 2000; Rawlings and Stewart 2008) argue the economic advantages of 
model-based control systems due to their systematic approach for handling constraint 
violations. In addition, they criticize the economic disadvantages of the constant-setpoint policy 
in decentralized control systems. Finally, the design of controllers at the process design stage is 
of limited practicality. This is because in practice, advanced controllers (e.g. MPCs) are designed 
using commercial packages often during process commissioning stages (Sakizlis, et al. 2010; Qin 
and Badgwell 2003).  
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To cut through these arguments, this article proposes a new optimization framework for 
integrated design and control, based on the notion of perfect control. The implication of perfect 
control assumption is that the best performance specification of a controller can be determined 
by the inverse solution of the process model, (Garcia and Morari1982; Morari and Zafiriou 
1989). This is a well-known concept that resulted in development of a class of controllers which 
use the inverse of the process model as an internal element of the controller, (Skogestad and 
Postlethwaite 2005). Furthermore, based on this concept, a variety of controllability indices 
have been developed in order to quantify the causes of control imperfection, (Yuan 2011). 
However, no attempt has been made to incorporate the concept of perfect control into 
integrated design and control framework using first principle modelling and nonlinear mixed 
integer dynamic optimization. This paper addresses this opportunity. 

1.2. Inversely controlled process models 

The first step was taken in the previous publication (Sharifzadeh and Thornhill 2012), which 
presented a steady-state nonlinear optimization framework based on the assumption of perfect 
control. In that framework, a steady-state inversely controlled process model replaces the 
combined model of the process and its controllers. A steady-state inversely controlled process 
model consists of a set of nonlinear algebraic equations in which process inversion is made by 
fixing the controlled variables as the degrees of freedom rather than manipulated variables. The 
present paper develops that methodology by introducing a new modelling approach termed 
dynamic inversely controlled process model. The proposed methodology in this paper 
incorporates functional controllability into the optimization framework. A process is 
functionally controllable if for a desired vector of controlled variables, 𝒚(𝑡), defined for 𝑡 > 0, 
there exists a vector of manipulated variables, 𝒖(𝑡), defined for 𝑡 > 0, which generates the 
desired controlled variables from the initial states. In summary, while the focus of a steady-state 
inversely controlled process model is feasibility of initial and final states, a dynamic inversely 
controlled process model ensures also functional controllability, in the sense that at least one 
feasible control trajectory exists to take the system from the initial to the final state. 

The paper is organized as follows. A novel optimization framework for integrated design and 
control is developed in Section 2 by modifying the conventional optimization formulation. 
Section 3 presents two solving strategies. They are 1) dynamic optimization based on sequential 
integration, and 2) dynamic optimization based on full discretization. The proposed integrated 
design and control framework is demonstrated on a process previously studied by Flores-
Tlacuahuac and Biegler (2007). The mathematical formulation of the original case study is 
presented in Section 4 and is adapted to the new optimization framework in Section 5. Section 6 
presents the results of the proposed optimization framework while Section 7 discusses the 
results. The paper ends with the conclusions in Section 8. 

2. Methodology  

In the subsequent sections, firstly the conventional framework for integrated design and control 
is presented and then modified in order to develop a new optimization framework based on 
perfect control.  

2.1. Conventional optimization framework for integrated design and 
control of chemical processes 

The conventional approach to integrated design and control of chemical processes can be 
formulated as a stochastic mixed-integer dynamic optimization (sMIDO) problem: 
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 𝑚𝑖𝑛 𝐸{ 𝐽𝑠[𝒛(𝑡), 𝒙(𝑡), 𝒖(𝑡), 𝒚(𝑡), (𝑡), 𝜸(𝑡), 𝒀𝒑, 𝒀𝒄𝒗, 𝒀𝒎𝒗, 𝒑, 𝝑]}                          𝐏𝐫𝐨𝐛𝐥𝐞𝐦 𝐈 

Subject to:                             

𝒇[�̇�(𝑡), 𝒛(𝑡), 𝒙(𝑡), 𝒖(𝑡), 𝒚(𝑡), 𝒀𝒑, 𝒑, 𝝁𝒔(𝑡)] = 0 

𝒉[𝒛(𝑡), 𝒙(𝑡), 𝒖(𝑡), 𝒚(𝑡), 𝒀𝒑, 𝒑, 𝝁𝒔(𝑡)] = 0 

𝒈[𝒛(𝑡), 𝒙(𝑡), 𝒖(𝑡), 𝒚(𝑡), 𝒀𝒑, 𝒑, 𝝁𝒔(𝑡)] ≤ 0 

𝜽[̇(𝑡), (𝑡), 𝜸(𝑡), 𝒙(𝑡), 𝒛(𝑡), 𝒚(𝑡), 𝒖(𝑡), 𝒀𝒄𝒗, 𝒀𝒎𝒗, 𝝑] = 0 

𝝋[𝒙(𝑡), 𝒖(𝑡), 𝒚(𝑡), (𝑡), 𝜸(𝑡), 𝒀𝒄𝒗, 𝒀𝒎𝒗, 𝝑] = 0 

Ω[𝝁𝒔(𝑡)] = 0 

In the above, 𝒛(𝑡) is the vector of process differential variables, 𝒙(𝑡) is the vector of process 
algebraic variables, 𝒖(𝑡) is the vector of candidate manipulated variables, 𝒚(𝑡) is the vector of 
candidate controlled variables, 𝒑 is the vector of process parameters, (𝑡) is the vector of 
control differential variables, 𝜸(𝑡) is the vector of control algebraic variables, 𝝑 is the vector of 
control parameters, 𝝁𝒔(𝑡) is the vector of disturbance parameters. 𝑠 is the index of disturbance 
scenario. 𝒀𝒑 is the vector of structural process variables. 𝒀𝒄𝒗 and 𝒀𝒎𝒗 are the vectors of 

structural variables for selection of controlled and manipulated respectively. While 𝒀𝒑, 𝒀𝒄𝒗 and 

𝒀𝒄𝒗 are vectors of integer variables, the rest of the variables are continuous.  

In addition, 𝒇[ ] = 0 is the vector of process differential equations, 𝒉[ ] = 0 is the vector of 
process algebraic equations, 𝒈[ ] ≤ 0 is the vector inequality constraints, 𝜽[ ] = 0 is the vector 
of control differential equations, 𝝋[ ] = 0 is the vector of control algebraic equations, Ω[ ] = 0 is 
the vector of equations for disturbances. The objective function 𝐽𝑠[] is calculated for different 
disturbance scenarios 𝑠, and its expected value 𝐸{} is minimized. The case study in Section 4 and 
Table 2 give physical examples of each of these categories of variables and equations. 

The above mathematical formulation applies a combined modelling approach in which the 
models of the process and its controllers are included and linked together. The concept is shown 
in Fig. 1 that shows candidate optimization variables being exported by the optimization 
algorithm to the combined model which is shown by the dotted envelope. Then, the combined 
model is fixed and its performance is tested under different disturbances and reported to the 
optimization algorithm. The optimization algorithm evaluates the termination criteria and 
decides on improvement of the optimization variables. 

 

 

Fig. 1. The conventional optimization framework for integrated design and control of chemical processes. 
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2.2. A novel optimization framework using inversely controlled process 
model 

The aim of the analysis in this section is to disentangle the complexities associated with 
controllers from the conventional optimization framework.  

2.2.1. Perfect control and the inversely controlled process model 

One way of incorporating perfect control into the integrated design and control framework is to 
embed an inverse-based controller. For example, the methods of nonlinear feedback linearizing 
controller enable analytical synthesis of the controller by identifying an invertible mapping 
which transforms the nonlinear formulation into a linear and controllable formulation, 
(Daoutidis and Kravaris 1991, 1992a, 1994; Hangos, et al., 2004). Such a transformation may 
guarantee some desirable properties (e.g. minimum-phase behaviour) of the system.  

However, these methods might not be appropriate for integrated design and control because 
they are based on the assumption that manipulated variables (MVs) and controlled variables 
(CVs) are known in advance. As a result, for each combination of MVs, and CVs, a set of 
nonlinear feedback linearizing controllers needs to be synthesized analytically, which if not 
infeasible, would be a very tedious task. Furthermore, including these controllers in the 
mathematical superstructure would increase the size of the optimization problem to be even 
larger than the conventional framework including decentralized controllers. 

Therefore, in this research instead of using any inverse-based controller (e.g., IMCs, nonlinear 
feedback linearizing controllers), the model of controllers is replaced by perfect control 
equations which invert the process model, and then the resulted inversely controlled process 
model (including structural variables for selecting MVs and CVs) is optimized using mixed 
integer dynamic programming.   

In order to disentangle the design of controllers, their algebraic and differential equations           
(𝜽[] = 0 and 𝝋[] = 0 ) must be replaced by perfect control equations which ensure that the 
selected controlled variables are constant at their desired values:  

𝑦𝑖(𝑡) = 𝑦𝑖,𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡                                                                                                                     (1) 

where 𝑦𝑖(𝑡) is the selected controlled variable and 𝑦𝑖,𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 is the corresponding desired 

setpoint. In principle, 𝑦𝑖,𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 can be time-dependent. However, in optimization of a 

continuous process it would normally be constant, equivalent to disturbance rejection, which is 
the focus of this research. These considerations can be formulated using mixed-integer 
programming:  

𝑚𝑖𝑛 ∑ 𝐿𝑠 ×  𝐽𝑠(𝒛(𝑡), 𝒙(𝑡), 𝒖(𝑡), 𝒚(𝑡), 𝜇𝑠(𝑡), 𝒀𝒑, 𝒀𝒄𝒗, 𝒀𝒎𝒗, 𝒑, 𝒚𝒊,𝒔𝒆𝒕𝒑𝒐𝒊𝒏𝒕)

𝑛𝑠

𝑠=1

       𝐏𝐫𝐨𝐛𝐥𝐞𝐦 𝐈𝐈 

subject to:                                

 𝒇[�̇�(𝑡), 𝒛(𝑡), 𝒙(𝑡), 𝒖(𝑡), 𝒚(𝑡), 𝒀𝒑, 𝒑, 𝝁𝒔(𝑡)] = 0 

𝒉[𝒛(𝑡), 𝒙(𝑡) , 𝒖(𝑡), 𝒚(𝑡), 𝒀𝒑, 𝒑, 𝝁𝒔(𝑡)] = 0 

𝒈[𝒛(𝑡), 𝒙(𝑡), 𝒖(𝑡), 𝒚(𝑡), 𝒀𝒑, 𝒑, 𝝁𝒔(𝑡)] ≤ 0 

Ω[𝝁𝒔(𝑡)] = 0 

𝒀𝒄𝒗,𝒊 × (𝒚𝒊(𝑡) − 𝒚𝒊,𝒔𝒆𝒕𝒑𝒐𝒊𝒏𝒕) = 0 

(𝟏 − 𝒀𝒎𝒗,𝒋) × (𝒖𝒋(𝑡) − 𝒖𝒋,𝒏𝒐𝒎𝒊𝒏𝒂𝒍) = 0 

∑ 𝒀𝒄𝒗,𝒊

𝐼𝑘𝑐𝑣

𝑖=0

= 𝑑𝑜𝑓,               𝒀𝒄𝒗,𝒊 ∈ {0, 1} 
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∑ 𝒀𝒎𝒗,𝒋

𝐼𝑘𝑚𝑣

𝑗=0

= 𝑑𝑜𝑓 ,           𝒀𝒎𝒗,𝒋 ∈ {0, 1} 

In Problem II, the expected value of the objective function is represented using the likelihood 
𝐿𝑠 of the individual objective values, 𝐽𝑠, calculated for each disturbance scenario, 𝑠. 𝑛𝑠 is the total 
number of disturbance scenarios. 𝒀𝒄𝒗,𝒊 and 𝒀𝒎𝒗,𝒋 are  binary variables, which denote whether a 

controlled variable or a manipulated variable is selected, respectively. Notice that for the 
manipulated variable, the multiplier encloses the complement of the corresponding binary 
variable, i.e. (𝟏 − 𝒀𝒎𝒗,𝒋). The implication is that if a manipulated variable is not selected, it 

remains at its nominal value, while the required value of the selected manipulated variable is 
calculated using the inversely controlled process model. The last two constraints ensure that the 
selected control structure is consistent according to the available degrees of freedom, 𝑑𝑜𝑓. For 
each available degree of freedom, the optimizer may choose from a set of candidate controlled 
and manipulated variables. The numbers of options for a controlled variable or a manipulated 
variable are represented by 𝐼𝑘𝑐𝑣 and 𝐼𝑘𝑚𝑣, respectively.   

The value of the objective function depends on the disturbances (Halvorsen, et al. 2003). In this 
research, the stochastic optimization Problem I is addressed using a multi-period optimization. 
The value of the objective function is constructed by adding individual objective functions for 
different disturbance scenarios weighted by the likelihood of each disturbance scenario.   

Fig. 2 shows the concept. The models of the controllers have been replaced with equations 
representing perfect control, which enable the directions of the information flows to be 
reversed from the controlled variables to the manipulated variables. The values of the 
controlled variables are maintained constant by perfect control equations while the time 
trajectories of the manipulated variables are adjusted in order to reject the disturbances. Then, 
the values of the objective function and constraints can be evaluated and reported to the 
optimization algorithm. The optimization algorithm evaluates the termination criteria and 
decides on improvement of the optimization variables. 

 

 

Fig. 2. The proposed integrated design and control framework using the inversely controlled process 
model. 
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3. Solving strategies and implementation techniques 

This section presents two solving strategies for Problem II. The first solving strategy is the 
classical dynamic optimization method based on sequential integration over time. The second 
solving strategy is based on full discretization of time-dependent variables. Both solving 
strategies are applied to the case study of Section 4. More detail about these solving strategies 
can be found in literature, (Biegler 2010; Avraam, et al. 1998, 1999; Sharif, et al. 1998 ; 
Mohideen, et al. 1997, Schweiger and Floudas, 1997; Bansal, et al. 2000, 2003).  

3.1. Dynamic optimization based on sequential integration strategy 

In the sequential strategy of a conventional integrated design and control framework (Problem 
I), input variables, 𝒖(𝑡), are parameterized in order to determine the optimal trajectory. 
However, in the inversely controlled process model (Fig. 2), the controlled variables 𝒚(𝑡) 
(outputs of the conventional problem) represent the input variables of the dynamic 
optimization problem and are parameterized by the desired setpoints, i.e., 𝒚𝒊,𝒔𝒆𝒕𝒑𝒐𝒊𝒏𝒕 using 

perfect equation (1). By the parameterization of the controlled variables, Problem II can be 
summarized as the following nonlinear program: 

𝑚𝑖𝑛 ∑ 𝐿𝑠 ×  𝐽𝑠(𝝁𝒔(𝑡), 𝒀𝒑, 𝒀𝒄𝒗,, 𝒀𝒎𝒗,, 𝒑, 𝒚𝒊,𝒔𝒆𝒕𝒑𝒐𝒊𝒏𝒕)

𝑛𝑠

𝑠=1

                                 𝐏𝐫𝐨𝐛𝐥𝐞𝐦 𝐈𝐈𝐈 − 𝐀 

subject to:                                      

𝒇[�̇�(𝑡), 𝒛(𝑡), 𝒙(𝑡), 𝒖(𝑡), 𝒚(𝑡), 𝒀𝒑, 𝒑, 𝝁𝒔(𝑡)] = 0 

𝒉[𝒛(𝑡), 𝒙(𝑡) , 𝒖(𝑡), 𝒚(𝑡), 𝒀𝒑, 𝒑, 𝝁𝒔(𝑡)] = 0 

𝒈[𝒛(𝑡), 𝒙(𝑡), 𝒖(𝑡), 𝒚(𝑡), 𝒀𝒑, 𝒑, 𝝁𝒔(𝑡)] ≤ 0 

Ω[𝝁𝒔(𝑡)] = 0 

𝒀𝒄𝒗,𝒊 × (𝒚𝒊(𝑡) − 𝒚𝒊,𝒔𝒆𝒕𝒑𝒐𝒊𝒏𝒕) = 0 

(𝟏 − 𝒀𝒎𝒗,𝒋) × (𝒖𝒋(𝑡) − 𝒖𝒋,𝒏𝒐𝒎𝒊𝒏𝒂𝒍) = 0 

∑ 𝒀𝒄𝒗,𝒊

𝐼𝑘𝑐𝑣

𝑖=0

= 𝑑𝑜𝑓,                  𝒀𝒄𝒗,𝒊 ∈ {0, 1} 

∑ 𝒀𝒎𝒗,𝒋

𝐼𝑘𝑚𝑣

𝑗=0

= 𝑑𝑜𝑓 ,              𝒀𝒎𝒗,𝒋 ∈ {0, 1} 

The information flow in the sequential solving strategy is presented in Fig. 3 and explained as 
follows. In a sequential dynamic optimization strategy, an embedded DAE solver provides 
objective function information to a nonlinear optimization solver.  

At a given iteration of the optimization cycle,  

Step 1. The nonlinear optimization algorithm specifies the values of the optimization variables.  

Step 2. The steady-state inversely controlled process model (the lower left-hand block in Fig. 3) 
evaluates the feasibility of steady-state process inversion for the disturbance scenarios. 
This is because the integration of DAE system must be initialized from a feasible steady-
state condition.  

Step 3. In the case that feasible steady states cannot be found, the algebraic equation (AE) solver 
reports a failure to the nonlinear optimization algorithm to change the values of 
optimization variables, either by reducing the step size of the nonlinear optimizer or by 
adding an incremental random number to the current solution. Return to Step 1. 
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Step 4. For the fixed values of these variables, the Problems III-A is an initial value problem and 
the DAE system can be solved by numerical integration. The controlled variables are 
parameterized by equation (1) and the sequential integration gives the time trajectory for 
the manipulated variables and the remaining state variables.  

Step 5. Based on the values of the objective function and the constraints, the optimization 
algorithm makes decisions regarding the termination of the optimization cycle or 
improving the values of the optimization variables by returning to Step 1.  

 

 

Fig. 3. The sequential solving strategy for the proposed integrated design and control framework. 

 

3.2. Dynamic optimization based on full discretization strategy 

The second solving strategy was based on full discretization of differential and algebraic 
variables using the Radau collocation method. The use of Radau polynomials ensures that the 
collocation variables have the same bounds as the corresponding differential and algebraic 
variables, (Biegler 2010). After full discretization, the mixed-integer nonlinear dynamic 
optimization problem is translated into a large mixed-integer nonlinear optimization problem, 
which can be solved using conventional MINLP methods. The equivalent discretized version of 
Problem III-A is as follows: 

𝑚𝑖𝑛 ∑ 𝐿𝑠 ×  𝐽𝑠(𝒛𝒊𝒋, 𝒙𝒊𝒋, 𝒖𝒊𝒋, 𝒚𝒊𝒋, 𝝁𝒊𝒋,𝒔, 𝒀𝒑, 𝒀𝒄𝒗, 𝒀𝒎𝒗, 𝒑, 𝒚𝒊,𝒔𝒆𝒕𝒑𝒐𝒊𝒏𝒕)

𝑛𝑠

𝑠=1

                       𝐏𝐫𝐨𝐛𝐥𝐞𝐦 𝐈𝐈𝐈 − 𝐁 

Subject to:                                         

𝒇[𝒛𝒊𝒋, 𝒙𝒊𝒋, 𝒖𝒊𝒋, 𝒚𝒊𝒋, 𝒀𝒑, 𝒑, 𝝁𝒊𝒋,𝒔] = 0 

𝒉[𝒛𝒊𝒋, 𝒙𝒊𝒋 , 𝒖𝒊𝒋, 𝒚𝒊𝒋, 𝒀𝒑, 𝒑, 𝝁𝒊𝒋,𝒔] = 0 

𝒈[𝒛𝒊𝒋, 𝒙𝒊𝒋, 𝒖𝒊𝒋, 𝒚𝒊𝒋, 𝒀𝒑, 𝒑, 𝝁𝒊𝒋,𝒔] ≤ 0 
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Ω[𝝁𝒊𝒋,𝒔] = 0 

𝒀𝒄𝒗,𝒊 × (𝒚𝒊𝒋 − 𝒚𝒔𝒆𝒕𝒑𝒐𝒊𝒏𝒕) = 0 

(𝟏 − 𝒀𝒎𝒗,𝒋) × (𝒖𝒊𝒋 − 𝒖𝒏𝒐𝒎𝒊𝒏𝒂𝒍) = 0 

∑ 𝒀𝒄𝒗,𝒊

𝐼𝑘𝑐𝑣

𝑖=0

= 𝑑𝑜𝑓,               𝒀𝒄𝒗,𝒊 ∈ {0, 1} 

∑ 𝒀𝒎𝒗,𝒋

𝐼𝑘𝑚𝑣

𝑗=0

= 𝑑𝑜𝑓 ,           𝒀𝒎𝒗,𝒋 ∈ {0, 1} 

where 𝒛𝒊𝒋, 𝒙𝒊𝒋, 𝒖𝒊𝒋, and  𝒚𝒊𝒋 are collocation optimization variables. In this solving strategy, the 

continuity equations in addition to the differential and algebraic equations at the initial point 
ensure consistent initialization of the integrated design and control framework. The model 
inversion is performed by including perfect control equations in the optimization constraints.  

4. Case study for the conventional integrated design and control 
optimization framework  

Flores-Tlacuahuac and Biegler (2007) studied a process comprising two series heat-integrated 
reactors in order to benchmark the performance of different solving strategies for mixed-
integer dynamic optimization. The cooling system of the process may have either co-current or 
counter-current heat exchangers which are shown in Figs. 4a and b, respectively. The 
mathematical formulation of their study is presented in this section and matches the 
optimization framework of Fig. 1. In Section 5, this mathematical formulation will be modified 
and adapted to the new optimization framework using an inversely controlled process model. 

 

 

 

Figs. 4. Different process structures: a) the co-current structure b) the counter-current structure. 

The justification for the choice of the case study in the present research was to be illustrative 
and reproducible. For this reason, comprehensive details of the case study and implementation 
techniques are presented. The case of two heat-integrated series reactors however, is a highly 
nonlinear process as discussed by Flores-Tlacuahuac and Biegler (2007). 

It is notable that as discussed by other researchers, “Simultaneous optimization of design and 
control structure along with control tuning in an infinite uncertain space poses a tough challenge 
for current optimization technology”, (Malcolm, et al. 2007). Therefore, the effectiveness of the 
proposed optimization framework should be measured and compared to the conventional 
optimization framework. As will be seen, the advantages of the proposed optimization 
framework include reducing the size of the optimization problem and ensuring the 
independency of the results from a specific controller type, which suggest a lower level of 
numerical and conceptual complexities compared to the conventional optimization framework 
for integrated design and control. 
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The mass and energy balances of the first and the second reactors are presented by equations 
(2) to (9). The definitions of the variables and the value of the design parameters are reported 
in Table 1.  

The mass and energy balances for the first reactor are: 

𝑑𝐶1

𝑑𝑡
=

𝐶𝑓 − 𝐶1

𝜃1
+ 𝑟𝐴1                                                                                                                                  (2) 

𝑑𝑇1

𝑑𝑡
=

𝑇𝑓 − 𝑇1

𝜃1
+ 𝛽 × 𝑟𝐴1 − 𝛼1 × (𝑇1 − 𝑇𝑐1)                                                                                        (3) 

The energy balance for the cooling jacket of the first reactor is:  

𝑑𝑇𝑐1

𝑑𝑡
=

𝑇𝐶1
𝑖𝑛 − 𝑇𝐶1

𝜃𝑐1
+ 𝛼𝑐1 × (𝑇1 − 𝑇𝑐1)                                                                                                   (4) 

The mass and energy balances for the second reactor are:  

𝑑𝐶2

𝑑𝑡
=

𝐶1 − 𝐶2

𝜃2
+ 𝑟𝐴2                                                                                                                                  (5) 

𝑑𝑇2

𝑑𝑡
=

𝑇1 − 𝑇2

𝜃2
+ 𝛽 × 𝑟𝐴2 − 𝛼2 × (𝑇2 − 𝑇𝑐2)                                                                                        (6) 

The energy balance for the cooling jacket of the second reactor is:  

𝑑𝑇𝑐2

𝑑𝑡
=

𝑇𝑐2
𝑖𝑛 − 𝑇𝑐2

𝜃𝑐2
+ 𝛼𝑐2 × (𝑇2 − 𝑇𝑐2)                                                                                                    (7) 

The parameters in equations (13)-(18) are: 

𝜃1 =
𝑉1

𝑄
,     𝜃2 =

𝑉2

𝑄
, 𝛼1 =

𝑈 × 𝐴1

𝜌 × 𝑉1 × 𝐶𝑝
 , 𝛼2 =

𝑈 × 𝐴2

𝜌 × 𝑉2 × 𝐶𝑝
    

𝜃𝑐1 =
𝑉𝑐1

𝑄𝑐
,     𝜃𝑐2 =

𝑉𝑐2

𝑄𝑐
, 𝛼𝑐1 =

𝑈 × 𝐴1

𝜌𝑐 × 𝑉𝑐1 × 𝐶𝑝𝑐
  , 𝛼𝑐2 =

𝑈 × 𝐴2

𝜌𝑐 × 𝑉𝑐2 × 𝐶𝑝𝑐
, 𝛽 =

∆𝐻𝑟

𝜌 × 𝐶𝑝
    

The following kinetic relations represent the reaction rates: 

𝑟𝐴1 = −𝐾0 × 𝑒
−𝐸

𝑅×𝑇1
⁄ × 𝐶1                                                                                                                     (8) 

𝑟𝐴2 = −𝐾0 × 𝑒
−𝐸

𝑅×𝑇2
⁄ × 𝐶2                                                                                                                     (9) 

The decisions regarding the process structure is represented by the binary variable 𝑌𝑝 in the 

equations (10) and (11):  

𝑇𝑐1
𝑖𝑛 = 𝑌𝑝 × 𝑇𝑓c + (1 − 𝑌𝑝) × 𝑇𝑐2                                                                                                          (10) 

𝑇𝑐2
𝑖𝑛 = 𝑌𝑝 × 𝑇𝑐1 + (1 − 𝑌𝑝) × 𝑇𝑓c                                                                                                          (11) 

{
𝑌𝑝 = 1                                co − current configuration      

𝑌𝑝 = 0                                countercurrent configuration
 

The equations for the controller model are: 

𝑇𝑓 = 𝑇𝑓,𝑛𝑜𝑚𝑖𝑛𝑖𝑎𝑙 + (1 − 𝑌𝑚𝑣) × (𝐾𝑃 × 𝑃(𝑡) + 𝐾𝑖 × 𝐼(𝑡))                                                             (12) 

𝑄𝑐 = 𝑄𝑐,𝑛𝑜𝑚𝑖𝑛𝑖𝑎𝑙 − 𝑌𝑚𝑣 × (𝐾𝑃 × 𝑃(𝑡) + 𝐾𝑖 × 𝐼(𝑡))                                                                        (13) 

𝑃(𝑡) = 𝑌𝑐𝑣 × (𝑇1,𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 − 𝑇1) + (1 − 𝑌𝑐𝑣) × (𝑇2,𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 − 𝑇2)                                                (14) 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝑃(𝑡),         𝐼(0) = 0                                                                                                                   (15) 
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{
𝑌𝑚𝑣 = 1                      𝑄𝑐  is selected as the mnaipulated variable
𝑌𝑚𝑣 = 0                       𝑇𝑓 is selected as the mnaipulated variable 

{
𝑌𝑐𝑣 = 1                        𝑇1 is selected as the mnaipulated variable
𝑌𝑐𝑣 = 0                        𝑇2 is selected as the mnaipulated variable

 

In the original case study presented by Flores-Tlacuahuac and Biegler (2007), the following 
objective function was introduced:  

𝑚𝑖𝑛
1

𝑡𝑓𝑖𝑛𝑎𝑙
 ∫ (𝑇𝑖,𝑠𝑒𝑡𝑝𝑖𝑜𝑛𝑡 − 𝑇𝑖)

2
𝑑𝑡 

𝑡𝑓𝑖𝑛𝑎𝑙

0

                            𝑖 ∈ {1,2}                                                   (16) 

 

Table 1  
The parameters and the values of the variables at the base case scenario 

Parameter Description Value* Unit * Value SI Unit 

𝑄 Volumetric feed flow rate 2.5 L.s-1 2.5 × 10−3 m3.s-1 

𝑇𝑓  Feed stream temperature 29 oC 302 K 

𝐶𝑓 
Feed Stream 
concentration 

0.6 mol.L-1 0.6 kmol.m-3 

𝑉1 Volume of the first reactor 900 L 0.9 m3 

𝑉2 
Volume of the second 
reactor 

900 L 0.9 m3 

𝑄𝑐  Cooling water flow rate 2 L.s-1 2 × 10−3 m3.s-1 

𝑇𝑓c 
Cooling water feed stream 
temperature 

25 oC 298 K 

𝑉𝑐1 
Volume of the cooling 
jacket of the first reactor 

100 L 0.1 m3 

𝑉𝑐2 
Volume of the cooling 
jacket of the second 
reactor 

100 L 0.1 m3 

𝐸 Activation energy 10.1 kcal.mol-1 4.2 × 107 J.kmol-1 

𝐾0 Pre-exponential factor 2000 s-1 2000 s-1 

𝑅 Ideal gas constant 0.00198 kcal.mol-1.K-1 8.32 × 103 J.kmol-1.K-1 

𝜌 Products density 850 g.L-1 850 kg.m-3 

𝐶𝑝 Product heat capacity 0.000135 kcal.g-1.C-1 564.84 J.kg-1.C-1 

∆𝐻𝑟  Heat of reaction −35 kcal.mol-1 −1.46 × 108 J.kmol-1 

𝜌𝑐  Cooling water density 1000 g.L-1 1000 kg.m-3 

𝐶𝑝𝑐 
Cooling water heat 
capacity 

0.001 kcal.g-1.C-1 4.2 × 103 J.kg-1.K-1 

𝐴 Heat transfer area 900 cm2 0.09 m2 

𝑈 Heat transfer coefficient 0.00004 kcal.s-1.cm-2.C-1 1.7 × 103 J.s-1.m-2.K-1 

* Values by Flores-Tlacuahuac and Biegler (2007). 

 

5. Application of integrated design and control framework using a 
dynamic inversely controlled process model 

This section gives some necessary extensions to the case study and develops the dynamic 
inversely controlled process model for this process. Other topics include explaining 
controllability constraints, a method for comparison of a combined process-controller model 
with the inversely controlled process model, a discussion about the objective function of the 
integrated design and control framework and explanation of the implementation techniques.  
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5.1. Amendments to the original case study 

Flores-Tlacuahuac and Biegler (2007) considered a fixed value for the heat transfer area 𝐴𝑖  ,
𝑖 = 1,2  of each cooling jacket. However, it is usual to scale the heat transfer area of a cooling 
jacket with reactor volume by: 

𝐴𝑖 = 𝑐𝑜𝑒𝑓 × (𝑉𝑖)2/3                                                                                                                                (17)  

Therefore, equation (17) is added to the original case study and its coefficient is calculated from 
the base-case design shown in Table 1, resulting in 𝑐𝑜𝑒𝑓 = 9.655 cm2.L(-2/3). The base case 
design requires a heat transfer area that is much smaller than the surface area of the reactor. 
Such a configuration would have to be realized in practice by a jacket that makes only partial 
contact with the reactor walls. 

Flores-Tlacuahuac and Biegler (2007) suggested 50% and 200% as the lower and upper bounds 
for the optimization values. The upper and lower bounds for the optimization variables used 
instead in this research are 50% and 300%. The reason is that for some specific structures the 
heat transfer is thermodynamically limited by the maximum allowable temperature of the 
cooling water exiting the process, which is 80oC. 

Flores-Tlacuahuac and Biegler (2007) assumed that the two reactors and their cooling jackets 
are identical. This restrictive assumption is relaxed in the present research in order to provide 
extra degrees of freedom for the integrated design and control optimization. 

Flores-Tlacuahuac and Biegler (2007) assumed the disturbance to be the feed composition. 
They evaluated several disturbances in the range 𝐶𝑓 = 0.55 kmol.m-3 to 𝐶𝑓 = 0.65 kmol.m-3 with 

different time constants. In this research a step disturbance from 𝐶𝑓 = 0.55 kmol.m-3 to 𝐶𝑓 =

0.65 kmol.m-3 is considered a likely operational condition. This disturbance covers all the 
operational regions explored by the disturbances in the original case study (Flores-Tlacuahuac 
and Biegler 2007). However, due to nonlinearity of the process the direction of the disturbance 
may be important. Therefore, this paper also considers another disturbance with the same 
magnitude but the reverse direction from 𝐶𝑓 = 0.65 kmol.m-3 to 𝐶𝑓 = 0.55 kmol.m-3. It is 

assumed that these disturbances have the same likelihood.  

5.2. Inversely controlled process model for the case of two series reactors 

This section discusses replacement of the controller model with the perfect control equations 
and inverting the process model. The structural control decision regarding the selection of 
controlled variables is represented by the binary variable 𝑌𝑐𝑣 as follows: 

𝑌𝑐𝑣 × 𝑇1 = 𝑌𝑐𝑣 × 𝑇1,𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡                                                                                                                 (18𝑎) 

(1 − 𝑌𝑐𝑣) × 𝑇2 = (1 − 𝑌𝑐𝑣) × 𝑇2,𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡                                                                                         (18𝑏) 

{
𝑌𝑐𝑣 = 1                        𝑇1 is selected as controlled variable
𝑌𝑐𝑣 = 0                        𝑇2 is selected as controlled variable

                                              

The perfect control equations (18) represent a high index formulation, which after index 
reduction are: 

𝑌𝑐𝑣 ×
𝜕𝑇1

𝜕𝑡
= 0                                                                                                                                         (19𝑎) 

(1 − 𝑌𝑐𝑣) ×
𝜕𝑇2

𝜕𝑡
= 0                                                                                                                              (19𝑏) 

{
𝑇1(𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙) = 𝑇1,𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 

𝑇2(𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙) = 𝑇2,𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 
                                                                                                             

{
𝑌𝑐𝑣 = 1               𝑇1 is selected as controlled variable
𝑌𝑐𝑣 = 0               𝑇2 is selected as controlled variable
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More discussion on index reduction is presented in Section 7.2.1.The structural control decision 
regarding the selection of manipulated variables is represented by binary variable 𝑌𝑚𝑣 as 
follows: 

𝑌𝑚𝑣 × 𝑇𝑓 = 𝑌𝑚𝑣 × 𝑇𝑓,𝑛𝑜𝑚𝑖𝑛𝑖𝑎𝑙                                                                                                             (20𝑎) 

(1 − 𝑌𝑚𝑣) × 𝑄𝑐 = (1 − 𝑌𝑚𝑣) × 𝑄𝑐,𝑛𝑜𝑚𝑖𝑛𝑖𝑎𝑙                                                                                    (20𝑏) 

{
𝑌𝑚𝑣 = 1                        𝑄𝑐  is selected as manipulated variable
𝑌𝑚𝑣 = 0                        𝑇𝑓 is selected as manipulated variable  

These equations ensure that the manipulated variable which is not selected will be maintained 
constant at its nominal value, but the selected manipulated variable is free and available to the 
optimizer.  

In conclusion, the mathematical formulation used for integrated design and control of the case 
study consists of equations (2-11, 19, 20). Table 2 matches the case study formulation with the 
problem formulations III-A & B. The other terms of equations (2-11, 19, 20) not shown in this 
table are variables which are combination of other variables.  

 

Table 2. 
The correspondence of the two solving strategies with the case study formulation.  
Solving strategy Sequential integration Full discretization 
Enumeration variables 𝑌𝑝, 𝑌𝑐𝑣 , 𝑌𝑚𝑣  none 

Time-independent 
optimization variables 

𝑉1, 𝑉2, 𝑉𝑐1, 𝑉𝑐2, 𝑇𝑖,𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡  𝑌𝑝, 𝑌𝑐𝑣 , 𝑌𝑚𝑣 , 𝑉1, 𝑉2, 𝑉𝑐1, 𝑉𝑐2, 𝑇𝑖,𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡  

Time-dependent 
optimization variables 

DAE solver variables: 
𝐶1, 𝐶2, 𝐶𝑓 

𝑇1, 𝑇2, 𝑇𝑓 , 

𝑇𝑐1, 𝑇𝑐2 , 𝑇𝑐1
𝑖𝑛, 𝑇𝑐2

𝑖𝑛 , 
𝑟𝐴1, 𝑟𝐴2 , 𝑄𝑐  

Discretization variables: 
1) differential collocation variables:  
𝐶1,𝑖𝑗 , 𝐶2,𝑖𝑗 , 𝑇1,𝑖𝑗 , 𝑇2,𝑖𝑗 , 𝑇𝑐1,𝑖𝑗 , 𝑇𝑐2,𝑖𝑗 , 

2) algebraic collocation variables: 
𝐶𝑓,𝑖𝑗 , 𝑇𝑓,𝑖𝑗 , 𝑇𝑐1,𝑖𝑗 , 𝑇𝑐2,𝑖𝑗 , 𝑇𝑐1,𝑖𝑗

𝑖𝑛 , 𝑇𝑐2,𝑖𝑗
𝑖𝑛 , 

𝑟𝐴1,𝑖𝑗 , 𝑟𝐴2,𝑖𝑗 , 𝑄𝑐,𝑖𝑗  

Differential constraints: 𝒇[]  Equations (2-7) Equations (2-7) 
Algebraic constraints: 𝒉[]    Equations (8-11, 19, 20) Equations (8-11, 19, 20) 
Note: The multi-objective function of the case study in the new framework is explained in Section 5.3. 

 

5.3. Multi-objective function  

In the original case study by Flores-Tlacuahuac and Biegler (2007), the objective function was 
equation (16). This objective function is not appropriate for the new integrated design and 
control framework for two reasons. Firstly, it does not include any term for process objectives 
(e.g., required capital investment). Therefore, this objective function contradicts with the aim of 
integrated design and control framework to establish a trade-off between control and process 
objectives. Secondly, minimizing the controller error (i.e., difference in the actual and desired 
values of controlled variables) is not the concern of perfect control because due to satisfaction 
of equation (1), the integral of the square of controller error (ISE) is already equal to zero: 

𝐼𝑆𝐸𝑖 = ∫(𝑻𝒊 − 𝑻𝒊,𝒔𝒆𝒕𝒑𝒐𝒊𝒏𝒕)𝟐𝑑𝑡 = 0                                                                                                     (21) 

However, in the case study, the temperature is being controlled to inferentially control the 
composition of the second reactor. The difference between the actual and desired compositions 
of the second reactor gives a rigorous measure of the success of inferential control. This 
measure was included in the new multi-objective function for the integrated design and control 
framework, and is discussed in the following along with other competing objectives.  
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Luyben (2004) recognized conflicts and competitions between process and control objectives. 
He gave a list of examples where improving a process objective degrades a competing control 
objective. In this research, the following multi-objective function is considered in order to 
capture the trade-off between control and process objectives: 

𝑚𝑖𝑛 ∑  𝐿𝑠 ×
𝑠=1,2

  𝐽𝑠[ ]                                                                                                                       (22) 

 𝐽𝑠[ ]  =  𝑤′
1 × 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠 + 𝑤′

2 × 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠 = 𝑤1 × 𝑜𝑏𝑗1 + 𝑤2 × 𝑜𝑏𝑗2     

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠 = 1 × 𝑜𝑏𝑗3 + 1.5 × 𝑜𝑏𝑗4     

𝑜𝑏𝑗1 = ∫ |𝐶2 − 𝐶2,𝑑𝑒𝑠𝑖𝑟𝑒𝑑| 𝑑𝑡,
𝑡𝑓𝑖𝑛𝑎𝑙

𝑡0

                             [𝑜𝑏𝑗1] = kmol. m−3. s 

𝑜𝑏𝑗2 = ∫  (
|𝑀𝑉 − 𝑀𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙|

𝑀𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙
) 𝑑𝑡,                  [𝑜𝑏𝑗2] = s    

𝑡𝑓𝑖𝑛𝑎𝑙

𝑡0

 

𝑜𝑏𝑗3 = ∑ 𝑉𝑖,

2

𝑖=1

                                                                    [𝑜𝑏𝑗3] = m3 

𝑜𝑏𝑗4 = ∑ 𝑉𝑐,𝑖,

2

𝑖=1

                                                                  [𝑜𝑏𝑗4] = m3 

The terms of the multi-objective function (22) represent two different categories of objectives 
for integrated design and control; the first category concerns control objectives and the second 
category concerns process objectives. In the first category, there are two control objectives. The 
first one, 𝑜𝑏𝑗1, measures the success of the control structure in controlling the concentration of 
the second reactor inferentially by controlling the temperature of either the first or the second 
reactors. In the original case study (Flores-Tlacuahuac and Biegler 2007), the aim of integrated 
design and control was to maximize the conversion. Therefore, 𝐶2,𝑑𝑒𝑠𝑖𝑟𝑒𝑑  is set equal to zero in 
this research to minimize the loss of the reactant. The weighting factor of the first objective, 𝑤1, 
can be interpreted as the costs of the lost reactant over the simulation time. The second 
objective,𝑜𝑏𝑗2, measures the costs of the control action. This variable is scaled by its nominal 
value because different manipulated variables may have different dimensions. The physical 
implication of this objective is that when disturbances are imposed, maintaining the controlled 
variable at its setpoint should requires minimum changes in the manipulated variable (Qin and 
Badgwell 2003; McAvoy 1999). Excessive changes in the manipulated variables are undesirable 
as they may invoke interactions with other control loops. In addition, aggressive application of 
the control action lead to earlier equipment failure, and would increase maintenance costs. The 
weighting factor of the second objective, 𝑤2, can be interpreted as the costs of changing the 
manipulated variable over the simulation time. The third and the fourth objective functions 𝑜𝑏𝑗3 
and 𝑜𝑏𝑗4 are objectives for process design, and represent the required investment capital for 
purchasing the reactors and their cooling jackets. Their weighting factors have the dimension of 
cost per unit of volume. 

In the absence of any data for the case study, in order to explore the trade-off between the 
process objectives and the control objectives some simplifying assumptions are made and the 
weighting factor 𝑤𝑖 are fixed and then the trade-off between the control objectives and the 
process objectives are explored by changing the ratio of 𝑤′1 and 𝑤′2.  

In this research, 𝑤1 = 1 and 𝑤2 = 0.01 give an estimate of the relative importance of first and 
second control objectives. In the process objective, it is assumed that the cooling jackets are 
50% more expensive than the reactors, because they are more prone to thermal shocks, and 
have higher manufacturing costs due to their shape, size and hydraulic considerations. In order 
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to explore the trade-off between the control objectives and the process objectives the ratio 
between their weighting factors, 𝑤′1 and 𝑤′2 , needs to be changed. In this research, the 
optimization is performed for a variety of weighting factors 𝑤′

1 ∈ {1}, and 𝑤′
1 ∈

{10−6, 10−3, 3 × 10−3, 5 × 10−3, 10−2 }. These values correspond to a domain where the control 
objectives and the process objectives compete with each other.  

In this research, the value of  𝑡𝑓𝑖𝑛𝑎𝑙 = 1000 s is considered, which was large enough that most of 

intermediate solutions reached their final steady states. The choice of the number of time-
intervals determines the precision of the simulation and was specified using pre-optimization 
analysis. For sequential solving strategy, the integration step size was 10s and for the full 
discretization strategy, the length of the finite elements was 25s. It is assumed that the 
disturbances have equal likelihood ( 𝐿1 =  𝐿2 = 0.5). Both solving strategies were initialized 
from different starting points in order to avoid local minimums.  

5.4. Post-optimization analyses: Designing actual controller 

In this research, two post-optimization analyses were performed. In these analyses, given the 
optimized process and its control structure, a PI controller was modelled and its tuning 
parameters were optimized. Such an optimization task has a significantly reduced size because 
the optimization variables only consist of continuous tuning parameters of the controller. The 
objective function of this optimization was equation (16) which concerns only the controller 
error.  

In these analyses, the disturbance scenarios described in the fifth and sixth parts of the results 
of Flores-Tlacuahuac and Biegler (2007) were considered. In addition, similar bounds on the 
optimization variables were imposed (i.e., 0 < 𝐾𝑝 < 500 and 0 < 𝐾𝑖 < 500). The aim was to 

provide the opportunity to compare the results of the proposed optimization framework using a 
dynamic inversely controlled process model and the conventional optimization framework 
using a combined process-controller model. 

5.5. Implementation considerations  

As explained in Section 3, two solving strategies were implemented in the present research. The 
first solving strategy was a sequential dynamic optimization. The embedded algebraic equation 
(AE) solver and the embedded differential algebraic equation (DAE) solver in Fig. 3 were both 
implemented in Aspen Custom Modeller (ACM®), which was invoked in steady-state and 
dynamic modes, respectively. The optimization algorithm was a nonlinear gradient-based solver 
which was coded in the Visual Basic Application (VBA) environment. The two software tools 
were linked using Microsoft COM interface. The required programming techniques can be found 
in the software documentation, (Aspen Custom Modeler documentation 2004). The number of 
the optimization variables was five in addition to three enumeration variables. The execution 
time of each optimization iteration was about 30s and the execution time was in the order of 
several hours for each enumeration. The sequential strategy was applied to the objective 
function (22) only for the weighting factors 𝑤′1 = 1 , 𝑤′2 = 10−3  due to long execution time. 

The second solving strategy was a large MINLP optimization implemented in General Algebraic 
Modeling System (GAMS®). The total number of optimization variables for the two disturbance 
scenarios was 7673 of which only three variables are binary and the rest are continuous. A 
comparison between different MINLP solvers is not the focus of this research but was presented 
by Flores-Tlacuahuac and Biegler (2007). In this research, the MINLP solvers were DICOPT and 
SBB (similar to Flores-Tlacuahuac and Biegler 2007). For each combination of weighting factors, 
the optimization was initialized from several different starting points to avoid local optimums. 

The execution time of the full discretization strategy is significantly lower compared to the 
sequential strategy for two reasons. Firstly, the optimization solver and dynamic model are 
implemented in the same software. Secondly, while the full discretization strategy traverses an 
infeasible optimization path, the sequential optimization strategy only examines feasible 
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solutions. The shorter execution time of full discretization provides the opportunity to examine 
the objective function (22) for a variety of weighting factors, 𝑤′1 and 𝑤′2, as shown in Table 4 
and discussed in Section 7.1.3. 

The post-optimization analyses (described in Section 5.4) were performed using the built-in 
optimizer of gPROMS. Here, there are only two optimization variables (i.e., the parameters of 
the PI controller) and the execution time was less than few minutes.  

6. Results  

This section presents the results. Table 3 reports the enumeration results of the sequential 
integration strategy. Each column represents a process and its control structure. All results are 
reported for the weighting factors 𝑤′1 = 1 , 𝑤′2 = 10−3 in the objective function. However, each 
column in Table 4 represents the results for different combination of weighting factors, 
𝑤′1 and 𝑤′2. Table 5, presents the results of the post-optimization analyses. As discussed in 
Section 5.4, firstly, a PI controller was designed for the optimal process and control structure 
(Structure 6 in Table 3), and then its control performance is compared to the results of the 
conventional optimization framework by Flores-Tlacuahuac and Biegler (2007).  

Figs. 5-9 present the graphical results. They are: 

 Figs. 5a-c are the time trajectories of the optimal design using the sequential integration 
strategy, corresponding to Structure 6 in Table 3. 

 Figs. 6a-b explain the uncontrollable structures in Table 3. These are the structures where 
the flowrate of the cooling water was selected as the manipulated variable and the 
temperature of the first reactor was selected as the controlled variable.  

 Fig. 7 shows the effects of the feed temperature on the product composition for two feed 
compositions.  

 Fig. 8 shows the Pareto front for the multi-objective function (22). 

 Figs. 9a-c presents the results of the post-optimization analyses as described in Section 5.4. 
These results correspond to the second and fourth rows in Table 5.  
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Table 3.   
The results of optimization for different process and control structures 

 

Structure 
1: 
Counter-
current 
𝑇2 − 𝑇𝑓  

Structure 
2: 
Counter-
current 

𝑇1 − 𝑇𝑓  

Structure 
3: 
Counter-
current 
𝑇2 − 𝑄𝑐  

Structure 
4: 
Counter-
current 

𝑇1 − 𝑄𝑐  

Structure 
5: 
Co-
current 

𝑇2 − 𝑇𝑓  

Structure 
6: 
Co- 
current 
𝑻𝟏 − 𝑻𝒇 

Structure 
7: 
Co-
current  

𝑇2 − 𝑄𝑐  

Structure 
8: 
Co- 
current  

𝑇1 − 𝑄𝑐  

Objective 
value 

3.9402 3.8650 24.2837 - 5.3060 3.855 20.305 - 

𝑤′1 1 1 1 1 1 1 1 1 

𝑤′2 10-3 10-3 10-3 10-3 10-3 10-3 10-3 10-3 

Constraint 
violation 

No No Yes(2) Yes(1) No No Yes(2) Yes(1) 

𝑌𝑝 0 0 0 0 1 1 1 1 

𝑌𝑐𝑣  0 1 0 1 0 1 0 1 

𝑌𝑚𝑣  0 0 1 1 0 0 1 1 

𝑉1(m3) 2.283 0.971 2.555 - 2.297 0.968 2.700 - 

𝑉2(m3) 1.206 0.782 2.455 - 1.686 0.780 2.700 - 

𝑉c1(m3) 0.050 0.050 0.050 - 0.050 0.050 0.050 - 

𝑉𝑐2 (m3) 0.050 0.050 0.0556 - 0.050 0.050 0.050 - 

𝐶𝑉𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡  

(𝐾) 
474.9 500 440 - 470.2 500 439.8 - 

𝑌𝑝 represents the structural decision for the cooling system: 𝑌𝑝 = 0 counter-current and 𝑌𝑝 = 1 co-

current. 𝑌𝑐𝑣  represents the structural decision for the controlled variables: 𝑌𝑐𝑣 = 0, i.e., 𝑇2 is CV and 𝑌𝑐𝑣 =
1 , i.e.,  𝑇1 is CV. 𝑌𝑚𝑣  represents the structural decision for the manipulated variables: 𝑌𝑚𝑣 = 0, i.e., 𝑇𝑓 is MV 

and 𝑌𝑚𝑣 = 1, i.e., 𝑄𝑐  is MV. (1) Inversion of the process is not possible (See Figs. 6a-b.). (2) The maximum 
allowable temperature of the cooling water leaving the process is violated. 

 

 

Table 4.  
The results of optimization for different weighting factors (𝑤′1, 𝑤′2) in the objective function  (22) 

 
Structure: Co-
current 𝑇1 −
𝑇𝑓  

Structure: 
Co-current 
𝑻𝟏 − 𝑻𝒇 

Structure: Co-
current 𝑇1 −
𝑇𝑓  

Structure: Co-
current 𝑇1 −
𝑇𝑓  

Structure: Co-
current 𝑇1 −
𝑇𝑓  

Objective value 1.0147 3.8553 6.8721 9.1727 14.4241 

Control objectives 1.00915 1.9527 3.0588 3.8637 3.9241 

Process objectives 5550 1902.6 1271.1 1061.8 1050 

𝑤′1 1 1 1 1 1 

𝑤′2 10-6 10-3 3×10-3 5×10-3 10-2 
Constraints 
violation 

No No No No No 

𝑌𝑝 1 1 1 1 1 

𝑌𝑐𝑣  1 1 1 1 1 

𝑌𝑚𝑣  0 0 0 0 0 

𝑉1(m3) 2.700 0.970 0.571 0.450 0.450 

𝑉2(m3) 2.700 0.783 0.551 0.462 0.450 

𝑉c1(m3) 0.050 0.050 0.050 0.050 0.050 

𝑉𝑐2(m3) 0.050 0.050 0.050 0.050 0.050 
𝐶𝑉𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡(𝐾) 500 500 500 500 500 
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Table 5.  
The results of post-optimization: designing a PI controller for the best solution and comparison with the 
results of Flores-Tlacuahuac and Biegler (2007) 

Disturbance Process and control structure 𝐾𝑝 𝐾𝑖  
Objective function of 
Equation (16) 

𝐶𝑓=0.6-0.55 Structure 6 in Table 3 500 500 3.2489 × 10−8 

𝐶𝑓=0.6-0.55 
Case 5 in Table 5 of (Flores-Tlacuahuac and 
Biegler 2007) 

500 500 0.0009 

𝐶𝑓=0.6-0.65 Structure 6 in Table 3 500 500 3.2491 × 10−8 

𝐶𝑓=0.6-0.65 
Case 6 in Table 5 of (Flores-Tlacuahuac and 
Biegler 2007) 

356 500 0.0025 

 

 
Figs. 5. Results for two disturbances (𝑤′1 = 1, 𝑤′2 = 10−3). Trajectories of a) the feed temperature as the manipulated variable, b) the temperature of 

the first reactor as the controlled variable (overlaid on each other), c) the composition in the second reactor, using a dynamic inversely controlled 
process model. Disturbances are a step function from 𝐶𝑓 = 0.55 to 0.65 (solid line) and 𝐶𝑓 = 0.65 to 0.55 (dotted line).  

 

 
Figs. 6. The variation of the temperature of the first reactor with the flowrate of the cooling water, for a) 

the co-current structure, b) the counter-current structure. 

 

 
Fig. 7. The variation of the composition of the 

second reactor with the feed temperature for the 
co-current structure. 

 
Figs. 9. Results of post-optimization analyses. Trajectories of a) the feed temperature as the manipulated variable, b) the temperature of the first 

reactor as the controlled variable, c) the composition in the second reactor, using an optimized PI controller. Disturbances are step functions from 𝐶𝑓 =

0.6 to 0.55 (dotted line) and 𝐶𝑓 = 0.6 to 0.65 (solid line) corresponding to case 5 and case 6 of (Flores-Tlacuahuac and Biegler 2007) respectively. 
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Fig. 8. The Pareto front for the multi-objective function (22) corresponding to the results in Table 4. 

 

7. Discussion 

The discussion is presented is two parts. The first part (Section 7.1) discusses the results of the 
new optimization framework for integrated design and control. The second part (Section 7.2) 
discusses the physical implication of a dynamic inversely controlled process model by 
investigating the implication of high index inversed DAEs and the potential causes of imperfect 
control.   

7.1. Discussions of the case study results 

In the subsequent sub-sections, firstly the results of the proposed integrated design and control 
framework are discussed and then the trade-off between the competing and conflicting process 
and control objectives are explored. The last sub-section also presents a post-optimization 
analyses and the comparisons between the proposed and the conventional optimization 
frameworks.   

7.1.1. The results of the proposed optimization framework 

Table 3 and Table 4 show the results of the sequential integration and full discretization solving 
strategies, respectively. The third column of Table 4 has the same combination of weighting 
factors and is equivalent to the seventh column of Table 3. The results of the two solving 
strategies are in good agreement within the error tolerance of two solving strategies. Table 4 is 
used for illustrating the relative importance of the control objectives and the process objectives 
and is discussed later in Section 7.1.3. Table 3 shows the enumeration results of the sequential 
strategy. The best process and control structure is the structure 6 in which the temperature of 
the first reactor, 𝑇1 , is the controlled variable and the feed temperature, 𝑇𝑓 , is the manipulated 

variable. The process structure is co-current. A close objective value is also achieved by the 
structure 2 which has similar control structure but counter-current process structure. In 
general, counter-current heat exchangers are preferred to co-current heat exchangers. This is 
because in a counter-current structure, the temperature difference which is the driving force for 
heat transfer, is kept alive. However, in the case of two series reactors, heat generated by the 
reaction enhances the temperature difference and maintains the driving force. Therefore, the 
counter-current structure is not necessarily dominant. The co-current structure has the 
desirable feature that the effects of the disturbances in the process side (reactor) and the utility 
side (cooling jacket) move in the same direction and leave the system together, while in the 
counter current structure, disturbances in process and utility sides move in the opposite 
directions and remain in the process for a longer period.  

The optimal trajectories of the feed temperature as the manipulated variable are shown in Fig. 
5a. They show a fast and smooth response. The optimal trajectories of the temperature of the 
first reactor as the controlled variable are shown in Fig. 5b. These temperature trajectories are 
two straight lines which are overlaid on each other and imply perfect control. The optimal 
trajectories of the composition of the second reactor are shown in Fig. 5c. Features of interest 
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are high conversion and very small changes caused by the disturbances, as shown by the small 
scale of the vertical axis in Fig. 5c. 

7.1.2. Uncontrollable process structures  

During solving of the optimization, two uncontrollable structures were detected. In those 
structures, the flow rate of the cooling water was the manipulated variable and the temperature 
of the first reactor was the controlled variable. These uncontrollability issues manifested 
themselves as the failure of the integrator of the DAE solver. Fig. 6a gives the explanation. It 
shows two steady-state analyses which illustrate the variations of the temperature of the first 
reactor with the flowrate of the cooling water. The cooling water flows in a co-current structure. 
One profile is calculated for 𝐶𝑓 = 0.55 kmol.m-3 (before disturbance), and the other profile is for 

𝐶𝑓 = 0.65 kmol.m-3 (after disturbance). Other process variables are at their nominal values 

(Table 1). If the initial and final steady states are feasible then a horizontal line must exists that 
connects the two profiles. Unfortunately, such a horizontal tie-line does not exist and the 
process inversion is not possible. Similar results are shown in Fig. 6b for the counter-current 
process structure and the same control structure.   

7.1.3. The implications of competing process and control objectives 

Table 5 reports optimal solutions for a variety of combinations of the weighting factors in the 
multi-objective functions (22). The aim was to study the relative importance of the control and 
process objectives. For simplicity, the first weighting factor was maintained constant at 𝑤′1 = 1, 
while the second weighting factor, 𝑤2, was changed from 10−6 to 10−2 which are the two 
extremes where the control and process objectives are dominant, respectively. For 𝑤′2 = 10−6 
the upper bounds of the reactor volumes are active and the optimizer chose to use the largest 
possible reactor size, as a large reactor is less sensible to the disturbances in the feed 
composition. On the other extreme, for 𝑤′2 = 10−2,  the lower bounds of  reactor volumes are 
active and the control objectives are sacrificed in order to minimize the required capital 
investment. The optimal solutions for larger values of 𝑤′2 are not shown because the multi-
objective function becomes severely insensitive to control objectives and multiple solutions 
with a similar objective value were detected. The concept is shown in Fig. 8. The horizontal axis 
and the vertical axis show the control and process objectives, respectively. The points below the 
Pareto front are infeasible designs. The designs corresponding to the points above the Pareto 
front are not optimal. The Pareto front illustrates the trade-off between two objectives as 
improving control objectives requires degrading process objectives, and vice versa, which 
correspond to moving to left and right on the Pareto front, respectively.  

Table 5 also reveals that the process and the control objectives did not compete for the volume 
of the cooling jackets and the setpoint for the selected controlled variable. The lower bounds are 
active, because for smaller cooling jackets less investment capital is required and at the same 
time, the response time of a  cooling jacket with smaller hold-up is shorter, hence the process 
and control objectives point to the same directions. In addition as shown in Fig. 7 and discussed 
later, a high temperature setpoint for the controlled variables makes the process insensitive to 
disturbances, while this does not imply any burden for the process objective (as it is defined in 
this research) and therefore its upper bound is  active in all optimal solutions.  

7.1.4. Comparison with the results of the conventional optimization framework 

As explained in Section 5.4, in order to provide the opportunity for comparing the proposed 
optimization framework and the conventional framework studied by Flores-Tlacuahuac and 
Biegler (2007), a set of post-optimization analyses was performed, in which an actual controller 
was designed for the best solution (Structure 6 in Table 3). Table 5 shows the results of post-
optimization. These are equivalent to the fifth and sixth cases studied by Flores-Tlacuahuac and 
Biegler (2007). The results are also shown graphically in Figs. 9. The small value of the objective 
function suggests that perfect control is closely pursued by the PI controller. Similar 
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observations can be made from Fig. 9b which shows that the value of the controlled variable is 
maintained almost constant, (notice the very small scale of the vertical axis).  

Another comparison can be made, based on the criteria of inferential control. Controlling the 
first reactor temperature inferentially aims at controlling the composition of the unconverted 
reactant in the second reactor and must indirectly attenuate its variations under disturbed 
conditions. In the conventional optimization framework, for a change of 0.05 kmol.m-3 in the 
feed composition, the composition of the second reactor varies in the range of 0.002 kmol.m-3 
(Fig. 10 of Flores-Tlacuahuac and Biegler 2007). The variation in the product composition is 4% 
of the variation in the feed composition. However, using the proposed integrated design and 
control framework, for the same changes in the feed composition, the composition of the second 
reactor varies by 0.0001 kmol.m-3 (shown in Fig. 9c). Here, the attenuation of the disturbances is 
about twenty times greater than the conventional method. However, the superior performance 
of the new integrated design and control framework should be attributed to the term, 𝑜𝑏𝑗1, in 
the objective function (22) which explicitly considers the task of inferential control. Fig. 7 
provides the explanation. This figure shows the variations of the second reactor composition 
with the feed temperature. The top profile is when the feed composition is 𝐶𝑓 = 0.55 kmol.m-3 

and the bottom profile is when the feed composition is 𝐶𝑓 = 0.65 kmol.m-3. Other process 

variables are at their nominal values (Table 1). The area between these two profiles is the 
operating region. This figure reveals that by increasing the feed temperature, the composition of 
the second reactor becomes insensitive to the disturbances in the feed composition, resulting in 
tighter control and greater attenuation. Since the new framework was successful in recognizing 
the effects of the feed temperature (manipulated variable), it chose a higher feed temperature 
(about 30𝐾 higher than the results of Flores-Tlacuahuac and Biegler 2007). These observations 
suggest that the control error (equation 16 considered by Flores-Tlacuahuac and Biegler 2007) 
may have misled the conventional optimization framework to a local solution.  

Finally, as well as producing a well-optimized process and control structure, the new integrated 
design and control framework has achieved a reduction in the complexity of the problem 
because the differential and algebraic equations of the controller model are replaced by a set of 
explicit algebraic perfect control equations. Thus, equations (12-15) are replaced by equations 
(19, 20) which reduces the number of equations. In addition, due to absence of the controller 
tuning parameters, the number of the optimization variables is less in the proposed framework 
(e.g., from 10 to 8 in the small example of this article), which in large-scale industrial problems 
can be an important advantage.  

7.2. Physical implications of a dynamic inversely controlled process model  

This section investigates physical implications of a dynamic inversely controlled process model. 
The features of interest are the implications of high index inversed DAEs and limiting factors of 
functional controllability.  

7.2.1. Index reduction  

Inversion of a dynamic model may result in high index differential algebraic equations (DAEs). 
Therefore, it is pertinent to enquire the physical implication of the high index formulation, 
which is discussed in the following.  

McLellan (1994) showed that the index of a nonlinear inversion problem is equal to 𝑛 + 1 
where 𝑛 is the relative order of the process. The relative order is define as the minimum 
number of times that a controlled variable should be differentiated in order to generate an 
explicit relationship between that controlled variable and a manipulated variable. It is notable 
that relative order has been also applied for control structure selection and as a measure of 
sluggishness of initial response and influence of manipulated variables on controlled variables, 
(Daoutidis and Kravaris, 1992b). Nonetheless, the relative order has physical implications 
which are the hidden constraints that impose additional requirements for consist initialization. 
McLellan (1994) showed that for a consistent initialization of a nonlinear inverse process with 

http://dx.doi.org/10.1016/j.compchemeng.2012.08.009


Please cite the following paper at: 

Sharifzadeh M, Thornhill NF, (2013). Integrated design and control using a dynamic inversely 

controlled process model. Computers & Chemical Engineering, 48, 121–134. (Link).  

22 | P a g e  

 

relative order of 𝑛, the actual and desired values of the controlled variable and its first 𝑛 − 1 
time derivatives must be equal at the initial point. The physical implication is that there must be 
no jump in the process behaviour in order to match the perfect control trajectories. Explaining 
the implication of these requirements for a consistent initialization benefits from differentiating 
between setpoint tracking and disturbance rejection. In the case of setpoint tracking, the value of 
a controlled variable is going to change from an initial state to a final state. For a consistent 
initialization, the actual and desired values of the first 𝑛 − 1 time derivatives have to be equal to 
some non-zero values. In practice, it is very difficult to measure the time derivative of a 
controlled variable accurately. Therefore, perfect setpoint tracking is of limited application. 
However, for disturbance rejection, the time derivatives of controlled variables are all zero 
because the controlled variables are maintained constant, and index reduction poses no 
limitation on perfect disturbance rejection. The present paper focused on the disturbance 
rejection in which the index of the inverse model does not limit the application.  

7.2.2. Functional controllability  

As explained in the introduction, process inversion guarantees functional controllability. Russell 
and Perkins (1987) summarized the scenarios in which the inversion of a process model is 
limited. These are manipulated variables constraints, model uncertainties, time delays, and 
right-half-plane zeros, which are discussed in the following.  

Manipulated variables and their constraints are explicitly included in the optimization 
formulation and its objective function (Equation 22) and should not be of concern. In addition, a 
variety of methods for steady-state (Swaney and Grossmann 1985) and dynamic (Dimitriadis 
and Pistikopoulos 1995; Bansal, et al. 2000) flexibility analysis are available to explore the 
effects of uncertain parameters, which can be combined with the proposed modelling approach 
in this paper.  

Application of perfect control to processes with time delays needs more care, because handling 
time delays using process inversion requires prediction. For instance, Perkins and Wong (1985) 
showed that for a multi-variable linear system the period that must be waited before the 
controlled variable trajectories can be specified independently, is bounded by the smallest and 
largest time delays in the process transfer function. The advantage of the proposed 
methodology is that it does not make any pre-assumption regarding the controller type and 
predictive (i.e., feedforward) elements can be included in the control law to approach perfect 
control.  

Right half plane zeros in process inversion become poles. Unstable zero dynamics are nonlinear 
analogue of right half plane zeros, and imply instability of the process inversion, called non-
minimum phase behaviour (Slotine and Li 1991). The advantage of incorporating inversion of 
the process model in the optimization framework is that if a candidate solution is not minimum 
phase, instability of that solution would result in violation of the constraints and/or an increase 
in the value of the objective function, which redirects the optimization algorithm towards other 
candidates that are minimum phase. However, this is only true for the considered disturbances 
and the solution may or may not be controllable outside of the range of these disturbances. This 
is because unlike linear systems, the invertibility of nonlinear systems also depends on the 
initial states which in the context of the proposed optimization framework depend on the 
considered disturbances. More discussions about invertibility of nonlinear dynamic systems 
and its relation to the concept of functional controllability can be found in (Hirschorn, 1979). 

In addition to above, active constraints may influence controllability in a profound way. The 
reason is that in the presence of fast-acting disturbances the operating point has to back-off 
from active constraints in order to ensure feasible operation. The required retreat from the 
active constraints imposes economic penalties and depends on the design of the process and its 
control structure, as discussed by Kookos and Perkins (2004). Therefore, in the case of 
processes that are prone to fast-acting disturbances, the uncertain parameters representing 
these disturbances need to be included in the problem formulation and the extent of retreat 
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from active constraints should be optimized in order to minimize the associated economic 
losses.  

8. Conclusion   

In this paper, a novel optimization framework for integrated design and control is presented 
which disentangles the complexities associated with controllers by using the assumption of 
perfect control. In this framework, instead of a combined model of the process and its 
controller, an inversely controlled process model is used. The treatment is based on the notion 
of functional controllability in which the process inputs (the required values of the manipulated 
variables) are generated from the process outputs (the desired value of the controlled 
variables) by inversion of the dynamic process model. The use of an inversely controlled 
process model instead of using a particular parameterization, leads to a better conditioned 
optimization problem and in principle, reduces the combinatorial complexity of the 
optimization problem that is trying to arrive at a process design optimal both in terms of 
economics and controllability. 

The proposed methodology was benchmarked on a case study of two heat-integrated series 
reactors, which was previously studies by Flores-Tlacuahuac and Biegler (2007). Two solving 
strategies were implemented for dynamic optimization of the new integrated design and control 
framework. The first solving strategy was based on sequential integration. In this strategy, all 
process and control structures were enumerated. Each enumeration was posed as a nonlinear 
optimization problem and a differential algebraic equation (DAE) solver provided objective 
function information to an NLP optimizer. The model inversion was implemented by 
parameterizing the controlled variable rather than the manipulated variable. Initial states were 
calculated using a steady-state inversely controlled process model. The second solving strategy 
was based on full discretization of time-dependent variables. In this solving strategy, the 
problem was posed as a large-scale MINLP problem and was solved using conventional MINLP 
optimization methods. The model inversion was implemented by including perfect control 
equations in the optimization constraints. The initialization issues were systematically 
addressed by the continuity equations. Since the second strategy allowed the violation of 
constraints in the intermediate solutions, it was not limited to a feasible optimization path and 
its execution time was significantly shorter. The new framework utilized a multi-objective 
function and explored the trade-off between the process objectives and the control objectives. 
The results demonstrated the advantage of the proposed framework over the conventional one 
due to disentangling the complexities of the controllers from the problem.  
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