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Abstract 

Objective: Posttraumatic stress disorder (PTSD) is associated with decreased top-down emotion 

modulation from medial prefrontal cortex (mPFC) regions, a pathophysiology accompanied by 

hyperarousal and hyperactivation of the amygdala. By contrast, PTSD patients with the 

dissociative subtype (PTSD+DS) often exhibit increased mPFC top-down modulation and 

decreased amygdala activation associated with emotional detachment and hypoarousal. 

Crucially, PTSD and PTSD+DS display distinct functional connectivity within the PFC, 

amygdala complexes, and the periaqueductal gray (PAG), a region related to defensive 

responses/emotional coping. However, differences in directed connectivity between these 

regions have not been established in PTSD, PTSD+DS or controls. Methods: To examine 

directed (effective) connectivity among these nodes, as well as group differences, we conducted 

resting-state stochastic dynamic causal modelling (sDCM) pairwise analyses of coupling 

between the ventromedial (vm)PFC, the bilateral basolateral (BLA) and centromedial (CMA) 

amygdala complexes, and the PAG, in 155 participants [PTSD (n=62); PTSD+DS (n=41); age-

matched healthy trauma-unexposed controls (n=52)]. Results: PTSD was characterized by a 

pattern of predominant bottom-up connectivity from the amygdala to the vmPFC and from the 

PAG to the vmPFC and amygdala. Conversely, PTSD+DS exhibited predominant top-down 

connectivity between all node pairs (from the vmPFC to the amygdala and PAG, and from the 

amygdala to the PAG). Additionally, the PTSD+DS group displayed the strongest intrinsic 

inhibitory connections within the vmPFC. Conclusions: These results suggest the contrasting 

symptom profiles of PTSD and its dissociative subtype (hyper- vs. hypo-emotionality, 

respectively) may be driven by complementary changes in directed connectivity corresponding 

to bottom-up defensive fear processing vs. enhanced top-down regulation. 
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Introduction 

Posttraumatic stress disorder (PTSD) is a debilitating psychiatric illness, characterized by 

symptoms of vivid re-experiencing of traumatic events, avoidance, alterations in cognitions and 

mood, as well as hyperarousal [APA, 2013]. Dissociation involves detachment from immediate 

somatic or environmental experience, and often occurs during trauma, modulating its immediate 

psychophysiological impact [Spiegel, 2012]. Recently, a dissociative subtype of PTSD 

(PTSD+DS) has been recognized, characterizing individuals experiencing significant emotional 

detachment and hypoemotionality, including symptoms of depersonalization and derealization 

(albeit PTSD+DS can oscillate between symptoms of hyper- and hypo-emotionality) [APA, 

2013]. Typically, individuals with PTSD+DS have a history of more severe early-life trauma 

[Stein et al., 2013], higher PTSD severity scores [Wolf et al., 2012], and single-nucleotide 

polymorphisms associated with dissociation [Wolf et al., 2014]. Neurobiologically, among PTSD 

as compared to PTSD+DS, differential patterns of neural activation have been documented 

within the amygdala and prefrontal cortex (PFC) [Felmingham et al., 2008; Hopper et al., 2007; 

Lanius et al., 2010; Mickleborough et al., 2011]. Specifically, PTSD is characterized by emotion 

undermodulation, associated with decreased regulatory activation from the medial (mPFC), 

hyperactivation of the amygdala, and hyper-arousal/emotionality [Hayes et al., 2012; Hopper et 

al., 2007; Lanius et al., 2010; Sadeh et al., 2014; Stevens et al., 2013]. By contrast, PTSD+DS is 

characterized neurobiologically by emotion overmodulation and is associated with increased 

regulatory activation of the mPFC, resulting in hypoactivation of the amygdala during symptom 

provocation with concomitant emotional detachment and autonomic blunting [Hopper et al., 

2007; Lanius et al., 2010; Mickleborough et al., 2011], a pattern supported by trans-diagnostic 
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evidence from other dissociative disorders and healthy individuals [for review see [Brand, 

2012]]. 

In the absence of external stimuli, differential patterns of resting-state functional 

connectivity between the amygdala and PFC [Nicholson et al., 2015], as well as of the 

periaqueductal gray (PAG) [Harricharan et al., 2016; Thome et al., 2016], a midbrain region 

involved in defense (fight-or-flight) and emotional coping responses [Bandler et al., 2000; 

Linnman et al., 2012], are also apparent in PTSD, PTSD+DS, and healthy controls. Specifically, 

PTSD+DS is associated with increased amygdala subregion resting-state functional connectivity 

with PFC emotion regulation regions, which may parallel increased top-down inhibition in this 

group [Nicholson et al., 2015]. Moreover, as compared to controls, PTSD patients display 

widespread PAG connectivity with regions involved in defensive responses and emotional 

reactivity, suggesting exacerbated defensive reactions at rest likely reflective of instinctual 

hypervigilant tendencies in preparation for threat [Harricharan et al., 2016; Thome et al., 2016]. 

Critically, in healthy individuals, as threat approaches and is perceived as more imminent, 

defense processing shifts from higher-order vmPFC fear regulation sites towards more primitive 

automatic emotion/defensive regions, such as the PAG and amygdala [Mobbs et al., 2009b; 

Mobbs et al., 2010].  

A deeper understanding of the directed connectivity among the vmPFC, amygdala, and 

PAG is required given their aforementioned functioning in fear/defense circuits [Mobbs et al., 

2009b; Mobbs et al., 2010] in PTSD. Here, the basolateral (BLA) and centromedial (CMA) 

amygdala complexes are thought to mediate cortical integration of fear and the execution of 

behavioural fear responses, respectively [Duvarci and Pare, 2014; LeDoux, 2007], and display 

differential patterns of connectivity in PTSD, PTSD+DS, and controls [Brown et al., 2014; 
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Nicholson et al., 2015]. Here, related PAG signaling drives learned and innate fear responses in 

the amygdala [Johansen et al., 2010; Kim et al., 2013], where the PAG modulates BLA synaptic 

plasticity [Kim et al., 2013]. Crucially, the vmPFC, amygdala complexes, and the PAG have rich 

structural and functional connections with each other [Bandler et al., 2000; Etkin et al., 2015; 

LeDoux, 2007; Linnman et al., 2012]; however, the directionality of these complex connections 

has yet to be elucidated in PTSD, PTSD+DS, and healthy controls. 

Stochastic dynamic causal modeling (sDCM) [Friston et al., 2003; Li et al., 2011] is a 

procedure for estimating directed or effective connectivity from resting-state fMRI data, which 

allows for the comparison of different functional architectures [Penny et al., 2004]. Importantly, 

DCM estimates directed connections at the level of neuronal coupling – as opposed to 

(undirected) functional connectivity based upon hemodynamic fluctuations. Furthermore, DCM 

estimates regional variations in hemodynamic parameters, mitigating the uncertainty attending 

measures of functional connectivity [Friston, 2009]. 

The purpose of the current study was to uncover foundational markers of effective 

resting-state connectivity between the vmPFC, amygdala subregions, and the PAG, among 

PTSD, PTSD+DS, and healthy controls using separate sDCM analyses for each node pair. Our 

motivation for this approach was to focus on the hierarchical coupling between pairs of nodes, 

while allowing for any top-down or bottom-up effective connectivity to be mediated directly or 

indirectly via nodes not included in the DCM. Hence, our aim was to inform future, more 

complex/elaborate models of fear and emotion circuitry related to PTSD. Within the PTSD 

group, we predicted predominant ascending or bottom-up connectivity from the PAG to the 

amygdala and vmPFC – and from the amygdala to the vmPFC. Ascending connections are 

responsible for conveying fear inputs and driving defensive responses and thus may mediate 
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chronic hyperarousal in this group. By contrast, we predicted predominantly descending or top-

down connectivity from the vmPFC to the amygdala and PAG – and from the amygdala to PAG 

– among PTSD+DS, a pattern corresponding to increased top-down inhibition/modulation of 

limbic and defense regions [Lanius et al., 2010].  

Methods 

Participants 

Our sample consisted of 155 participants [PTSD (n=62); PTSD+DS (n=41); age-matched healthy 

trauma-unexposed controls (n=52); Table 1]. Most PTSD patients (90%) had early aversive 

experiences such as early childhood physical and or sexual abuse. Exclusion criteria for patients 

included: alcohol or substance abuse/dependence not in sustained full remission, and diagnosis 

of bipolar disorder or schizophrenia. Exclusion criteria for the control group included lifetime 

Axis-I or Axis-II disorders (see Supplemental Material). 

All participants were evaluated using the Clinician Administered PTSD Scale (CAPS; IV 

and 5)[Blake et al., 1995] and the DSM-IV Structured Clinical Interview (SCID)[First et al., 

2002]. Dissociative subtype patients were identified by scoring ≥ 2 for both frequency and 

intensity on either depersonalization or derealization CAPS symptoms as per standard methods 

[Harricharan et al., 2016; Nicholson et al., 2015]. A battery of questionnaires was also 

administered [Childhood Trauma Questionnaire (CTQ), Beck's Depression Inventory (BDI), and 

Multiscale Dissociation Inventory (MDI); see Table 1 and Supplemental Material for group 

comparisons on clinical variables]. Participants took part in a 6-minute eyes-closed resting-state 

scan following standard methods [Harricharan et al., 2016; Nicholson et al., 2015]. 

Image Acquisition 
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We utilized a 3 Tesla MRI Scanner (Trio, Siemens Medical Solutions, Germany) with a 32-

channel head coil for brain imaging. During the resting-state scan, 120-volumes were collected 

(see Supplemental Material for details). 

fMRI Preprocessing 

Standard preprocessing of the functional images was performed with SPM12 and consisted of 

spatial re-alignment, reslicing, coregistration, segmentation and normalization to MNI standard 

template (see Supplemental Material). We smoothed the data with a 4mm kernel FWHM [see 

[Harricharan et al., 2016]] and bandpass filtered (0.012 - 0.1 Hz). We used ART software to 

calculate extra regressors for motion outliers and movement, which were included in each 

participant’s first-level GLM (see Supplemental Material). 

Dynamic Causal Modelling 

VOI Extraction 

The 6 nodes of interest comprised the vmPFC, bilateral basolateral (BLA) and centromedial 

(CMA) amygdala complexes, and the PAG. Amygdala complexes were delineated using 

anatomical masks via SPM Anatomy Toolbox. We defined 6mm spheres based on coordinates 

from the literature for the vmPFC and PAG [Thome et al., 2016], where this vmPFC regions was 

found to display increased functional connectivity in PTSD to areas involved in emotional 

reactivity and motor readiness. This sphere size was chosen based on previous PAG, amygdala, 

and PFC connectivity manuscripts [see [Thome et al., 2016]]. All nodes of interest have been 

shown to be structurally and functionally connected [Bandler et al., 2000; Etkin et al., 2015; 

LeDoux, 2007; Linnman et al., 2012], are highly implicated in fear, emotion and defense 

processing [Mobbs et al., 2009a; Mobbs et al., 2009b; Mobbs et al., 2010], and display altered 
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connectivity among PTSD, PTSD+DS, and controls [Harricharan et al., 2016; Nicholson et al., 

2015]. We generated a first-level GLM to model each participant’s resting-state data, adjusting 

for signal from white matter and cerebrospinal fluid, and correcting for motion by including 

ART regressors as covariates-of-no-interest. We extracted the principal eigenvariate from each 

node (volume) of interest from the first-level GLM of each participant to summarize regional 

activity at each node.  

Bayesian Model Selection 

Regional activities of patients and controls were modeled using stochastic DCM in SPM12 

[Bastos-Leite et al., 2014; Friston et al., 2003; Li et al., 2011]; where stochastic DCM is a 

conventional method for estimating directed resting state connectivity in patient groups, albeit a 

more conservative method as compared to deterministic spectral DCM [Razi et al., 2015]. We 

first defined 3 models of directed hierarchical connectivity (bidirectional, bottom-up, top-down) 

between each of the amygdala complexes, the PAG and the vmPFC, and between the PAG and 

vmPFC (Figure 1). Following the construction and inversion of the 3 models (for each pair of 

regions), we performed random-effects Bayesian Model Selection (BMS) [Bastos-Leite et al., 

2014; Stephan et al., 2009]. The superior model was identified in terms of its exceedance 

probability (xp), which denotes the probability a given model is more likely to have generated 

the observed data than any other model considered. For clarity, we will focus on models with 

exceedance probabilities of greater than 0.8 (see Supplemental Material). In other words, models 

we can be 80% sure were more likely than any other model to have generated the data. 

Notably, we compared models of hierarchical reciprocal connectivity using separate 

DCMs for each pair of nodes. Our motivation for this approach was to focus on the hierarchical 

coupling between pairs of nodes, while allowing for any top-down or bottom-up effective 
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connectivity to be mediated directly or indirectly via nodes not included in the DCM. The aim 

was to assess direct (monosynaptic) and vicarious (polysynaptic) extrinsic or between region 

connectivity contributing to hierarchical coupling between regions of interest. This provides an 

inclusive measure of directed coupling that speaks to our hypothesis about bottom-up 

fear/defense driving inputs and top-down emotional regulation. This use of Bayesian model 

comparison was restricted to comparing different models within each group.  

Bayesian Model Averaging and Correlations with Psychopathology  

To supplement the Bayesian model comparison above, we performed quantitative analyses of the 

underlying parameter estimates using the Bayesian Model Average of each connectivity 

parameter over the 3 models for each pair of nodes, within each group. Estimates of connection 

strengths were used as summary statistics for: a) classical inference delineating group differences 

in the strength of connections; and b) correlations with PTSD psychopathology (CAPS IV-total 

and depersonalization/derealization MDI average scores) using Pearson bivariate correlations. 

Notably, whereas directed (extrinsic) connections between nodes can be positive or negative 

(i.e., excitatory or inhibitory), inhibitory intrinsic self-connections are inhibitory. We conducted 

a MANOVA to first observe any significant relationships between BMA parameters denoting 

node connectivity and group, with each BMA parameter treated as a dependent variable. Upon 

significance, this would justify examining separate univariate ANOVAS for each BMA 

parameter with three levels of group (PTSD, PTSD+DS and controls). However, if 

inhomogeneity of variance was detected via Levene’s test, we conducted Welch’s ANOVA and 

Games-Howell post-hoc analyses. In order to control for depression symptoms that may be 

driving differences in directed connectivity, we also computed separately correlations between 

estimates of connection strengths between nodes and BDI scores. 
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Results 

Bayesian Model Selection 

 PTSD Patient Group. Clear model superiority was identified for node pairs, denoted by 

high exceedance probabilities (>.80) for one particular model (see Figure 2a, c, and Table 2). 

Specifically, PTSD patients displayed bilateral BLA top-down coupling to the PAG, in contrast 

to bottom-up connectivity from the PAG to the bilateral CMA. Whereas the bilateral BLA 

complexes showed bottom-up coupling to the vmPFC, the vmPFC displayed top-down 

connectivity to the right CMA. Finally, the PAG evidenced bottom-up connectivity to the 

vmPFC. 

 PTSD Dissociative Subtype Group (PTSD+DS). We found clear top-down model 

superiority between all pairs of nodes in the PTSD+DS group (see Figure 2b, d, and Table 2). 

Specifically, all amygdala complexes (bilateral BLA and CMA) exerted top-down influences on 

the PAG. Similarly, the vmPFC evidenced top-down connectivity to the bilateral BLA, right 

CMA, and PAG. 

 Controls. The controls exhibited unique directed connectivity profiles as compared to 

both PTSD groups (see Figure 3a, b, and Table 2). Specifically, the bilateral CMA evidenced 

bottom-up connectivity from the PAG to the amygdala. Moreover, the bilateral BLA and right 

CMA evidenced bottom-up connectivity from the amygdala to the vmPFC. Finally, the PAG also 

exerted bottom-up influences on the vmPFC.   

Bayesian Model Averaging  

We detected significant multivariate effects via a MANOVA when examining the relationship 

between BMA parameters and group (Pillai’s Trace = .699, F(70, 234) = 1.797, p <.001; see 
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Table s2 for descriptive statistics). When examining univariate effects, we found significant main 

effects only for intrinsic inhibitory connections spanning the left CMA (when averaging over the 

left CMA-PAG models), left BLA (left BLA-vmPFC models), right CMA (right CMA-vmPFC 

models), and PAG (PAG-vmPFC models; see Table 3). Here, the PTSD+DS group repeatedly 

demonstrated the strongest intrinsic inhibitory self-connection of the vmPFC (within bilateral 

CMA-vmPFC, right BLA-vmPFC, and PAG-vmPFC models). 

Correlations with PTSD Psychopathology  

After correcting for multiple comparisons for our a-priori hypothesized clinical variables, we 

found a significant negative correlation between CAPS total scores and the strength of 

connectivity between the left BLA to the vmPFC (r = -.259, p = .015). Analysis further revealed 

a positive correlation between depersonalization/derealization average scores and the strength of 

connectivity from the right CMA to the PAG (r = .363, p < .001). These correlations lend 

construct validity to the effective connectivity estimates, given that the psychopathology scores 

were completely independent of the DCM estimates. Control analyses examining BDI scores 

were found to be non-significant.  

Discussion 

This is the first study to report unique patterns of directed connectivity within fear/defense and 

emotion regulation circuitry among PTSD, PTSD+DS, and healthy controls. Our results suggest 

PTSD is characterized by predominately bottom-up connections from the PAG to the amygdala 

and vmPFC, and from the amygdala to the vmPFC. By contrast, PTSD+DS is characterized by 

predominately top-down connections from the vmPFC to the amygdala and PAG, and from the 

amygdala to PAG.  
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Amygdala Connections with the PAG  

Amygdala complexes evidenced unique patterns of directed connectivity with the PAG among 

all three groups. The PTSD group was characterized by bottom-up connections from the PAG to 

the bilateral CMA and with top-down connections from the bilateral BLA to the PAG. By 

contrast, PTSD+DS was best characterized by top-down connections from both the bilateral 

BLA and bilateral CMA to the PAG. This pattern of inverse directional connectivity suggests 

exacerbated fear and defense-related driving inputs from the PAG to the amygdala in PTSD 

patients, which may lead to hyperarousal/hypervigilance [Lanius et al., 2010]. By contrast, top-

down connectivity in the PTSD+DS group may be related to overmodulation of PAG 

defense/fear processing (shut down of fight-or-flight responses) and associated emotional 

detachment [Hopper et al., 2007; Lanius et al., 2010]. The control group showed a pattern of 

connectivity more similar to the PTSD group; however, exceedance probabilities for the BLA-

PAG connection were considerably lower. Here, we hypothesize that this amygdala-PAG 

fear/defense circuit may not be as active at rest in controls, corresponding to the lower 

exceedance probabilities observed in our control group Bayesian model selection analysis. 

From a neurophysiological perspective, the BLA mediates cortical integration of fear and 

emotions and is regulated by feedforward inhibition from the mPFC, with outputs to the PFC and 

PAG [Duvarci and Pare, 2014; LeDoux, 2007]. The CMA is more involved in 

execution/expression of fear responses, with GABAergic outputs to the PAG (22,23). The CMA 

complex provides the majority of projections to the brainstem and PAG [Duvarci and Pare, 

2014], which may explain why we only observed an inverse pattern of directed connectivity 

between the CMA and PAG in PTSD and PTSD+DS. Critically, the PAG is involved in 

coordinating instinctual defensive reactions (i.e., fight or flight response), emotional coping, and 
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responding to threatening stimuli [Bandler et al., 2000; Linnman et al., 2012]. PAG signaling 

drives learned and innate fear responses in the amygdala [Johansen et al., 2010; Kim et al., 

2013], where the PAG can modulate BLA synapses [Kim et al., 2013]. Hence, whereas bottom-

up connections from the PAG to the amygdala in PTSD may indicate central inputs signaling 

chronic fear responses, top-down connections from the amygdala to the PAG in PTSD+DS may 

indicate overmodulation of defensive reactions and emotion related responses. In support of this, 

pharmacological inactivation of the PAG attenuates fear-evoked responses in the amygdala, 

indicating that the PAG may relay instructive fear signals to the amygdala [Johansen et al., 

2010]. Accordingly, it is probable that top-down connectivity from the BLA and CMA to the 

PAG in PTSD+DS represents an inhibitory pathway involved in shutting down active defensive 

responses related to hyperarousal flight-or-flight, thus enabling passive defensive responses, 

including dissociative states and emotional detachment in PTSD+DS. This in line with defense 

cascade models of PTSD [Harricharan et al., 2016; Kozlowska et al., 2015; McKinnon et al., 

2016] where fight or flight sympathetic nervous system activation is associated with increased 

processing in the amygdala via the lateral PAG, resulting in the downstream activation of 

skeletal muscles via premotor centres in the pons and medulla. Inversely, dissociative responses 

(i.e., compromised consciousness, depersonalization, derealization and tonic collapsed 

immobility) are associated with opioid-mediated analgesia and concomitant attenuation of lateral 

PAG fight or flight sympathetic responses [Kozlowska et al., 2015; McKinnon et al., 2016]. 

Amygdala Connections with the vmPFC 

Supporting unique biomarkers of PTSD, PTSD+DS, and controls, we observed differences in the 

pattern of amygdala and vmPFC effective connectivity between these groups. Specifically, 

PTSD was characterized by bottom-up connections from bilateral BLA to the vmPFC. Only the 
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right CMA evidenced top-down connections from the vmPFC to the CMA. By contrast, 

PTSD+DS was characterized by top-down connections from the vmPFC to bilateral BLA and 

right CMA. The control group displayed similar BLA connectivity to the vmPFC as the PTSD 

group, albeit the right CMA showed bottom-up connectivity to the vmPFC. In keeping with 

previous emotion modulation models of PTSD [Lanius et al., 2010; Nicholson et al., 2015], our 

findings support the notion that the vmPFC is most dominant over the amygdala in PTSD+DS. 

Here, the vmPFC may exert top-down inhibition on amygdala emotional processing leading to 

emotional detachment, hypoarousal, and depersonalization/derealization. On balance, we found 

that PTSD+DS demonstrated the strongest intrinsic inhibitory self-connections of the vmPFC, as 

compared to the PTSD and controls.  

Broadly, the vmPFC is involved heavily in implicit regulation of fear and emotions 

[Etkin et al., 2015]. Given this role, the amygdala may serve as an emotion processing region 

resulting from the integration of top-down emotion regulation from the vmPFC (cognitive 

circuit) and bottom-up defense/fear generation from the PAG/midbrain (defensive survival 

circuit) [Åhs et al., 2015; Etkin et al., 2015; Ledoux, 2016; Panksepp, 2003; Panksepp et al., 

2011]. Interestingly, recent studies have shown more emotional dysregulation and numbing, as 

well as self-blame, detachment, and an inability to feel positive emotions among PTSD+DS 

patients [Bennett et al., 2015; Hansen et al., 2017]. Our results suggest that emotional processing 

in the amygdala may be blunted as a result of increased top-down connectivity from the vmPFC 

in PTSD+DS. This conclusion is in line with our previous work demonstrating increased resting-

state functional connectivity of the PFC with the BLA and CMA among PTSD+DS as compared 

to PTSD, which was correlated to dissociative symptoms [Nicholson et al., 2015]. It is 

interesting to note from a treatment perspective that down-regulating amygdala activation during 
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emotional processing via real-time fMRI neurofeedback has been shown to increase PFC-

amygdala connectivity in PTSD patients [Nicholson et al., 2016].  

PAG and vmPFC Connections 

Whereas in PTSD the PAG displayed bottom-up directional connectivity to the vmPFC, 

PTSD+DS was characterized by top-down directional connectivity. The control group also 

displayed bottom-up directional connectivity from the PAG to the vmPFC. In the PTSD group, 

we predicted the direction of information flow would go from the PAG to the vmPFC, 

corresponding to increased fear/defense processing inputs from the PAG related to chronic 

hyperarousal. Furthermore, in PTSD+DS, we predicted top-down connectivity from the vmPFC 

to the PAG; here, the vmPFC may over-regulate limbic reactivity corresponding to hypoarousal 

in PTSD+DS.  

Critically, the vmPFC has direct connections with the PAG [Bandler et al., 2000; 

Linnman et al., 2012], where it has been established that as threat comes closer or is perceived as 

more imminent, processing shifts from higher-order vmPFC and orbital frontal regions towards 

more primitive emotion/defense regions, such as the PAG and amygdala [Mobbs et al., 2009b; 

Mobbs et al., 2010]. Mobbs et al. (2009) suggest that whereas higher-order forebrain areas 

(vmPFC) are involved in the regulation of fear, imminent danger results in automatic and “hard-

wired” defensive reactions mediated by the PAG. Hence, the PTSD group may perceive threats 

as more chronically imminent, thus displaying bottom-up driving inputs form the PAG to the 

vmPFC [Panksepp, 2003; Panksepp et al., 2011]. Inversely, the PTSD+DS group may display 

over-regulation from the vmPFC on defensive fear processing within the PAG. Notably, we 

found that PTSD+DS demonstrated the strongest intrinsic inhibitory self-connections of the 

vmPFC. In controls, by contrast, top-down emotion regulation from the vmPFC on the PAG may 
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not be needed during resting state, given that this group does not possess pathological activation 

of fear and defense circuits due to trauma exposure. Accordingly, we hypothesize that whereas 

bottom-up directional connectivity in the control group may be related to normal 

interoceptive/limbic ascending sensory signal transfer [Harricharan et al., 2016; Nicholson et al., 

2015], in the PTSD group, this may instead relate to pathological bottom-up limbic activation 

related to hyperarousal [Hopper et al., 2007; Stevens et al., 2013].  

Associations Between sDCM Findings and Psychopathology  

Among patients, we found a significant negative correlation between CAPS total scores and 

strength of connectivity from the left BLA to the vmPFC. Notably, higher CAPS scores are 

reported by PTSD+DS patients [Wolf et al., 2012]. This negative correlation between CAPS and 

connectivity from the left BLA to the vmPFC may be related to enhanced prefrontal top-down 

modulation among PTSD+DS. Indeed, the vmPFC may adapt, through necessity, to shut down 

and contain activations that repeatedly threaten to overwhelm the functioning of basic 

physiological systems. In support of increased top-down connectivity among PTSD+DS, we also 

found a significant positive correlation between depersonalization/derealization average scores 

and the strength of connectivity from the right CMA to the PAG.  

Limitations and Future Directions 

The current approach needs to be applied longitudinally, in larger samples. It would also be of 

interest to conduct a separate examination in complex PTSD, and with a resting-state protocol 

that obtains more functional volumes. The majority of our sample was also female. Hence, sex 

differences will need to be examined in future studies. In addition to implementing the new 

parametric empirical Bayes (PEB) framework, examining node connectivity during trauma 
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provocation and elucidating inhibitory/excitatory connections, future studies should also examine 

PAG subregions separately, as well as other areas of the PFC, insula and cingulate cortex. 

Interestingly, we found that the PTSD+DS group exhibited significantly higher levels of 

childhood trauma severity as assessed by the CTQ. This was expected as more severe childhood 

trauma exposure has been identified as a risk factor for developing the dissociative subtype of 

PTSD [Wolf et al., 2012]. Future studies are needed to assess the role of childhood trauma 

exposure and severity on directional connectivity in PTSD neural architecture. Furthermore, it 

should be noted that slightly different results of effective connectivity within neural architectures 

have been reported when using stochastic versus spectral DCM model inversions [Razi et al., 

2015]. Lastly, the results of this study can only be generalized to the specified regions of interest 

in each Bayesian model selection analysis; hence, additional DCM analyses of more elaborate 

circuits will need to be conducted.  

Conclusion 

Here, we describe the first study to examine cortical and subcortical biomarkers of directed 

connectivity in PTSD and its dissociative subtype, as well as in healthy controls. We found that 

PTSD patients were characterized predominately by bottom-up connections from the PAG to the 

vmPFC and amygdala, and from the amygdala to vmPFC. By contrast, PTSD+DS was 

characterized predominately by top-down connections from the vmPFC to amygdala and PAG, 

and from the amygdala to PAG. These results suggest that the contrasting symptom profiles of 

PTSD and its dissociative subtype (hyper- vs. hypo- emotionality, respectively) may be related to 

their opposing patterns of directional connectivity.  
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Figure 1: Each black line represents a separate pairwise stochastic DCM analysis, and 

corresponds to connections between nodes for which we modeled bi-directional, top-down and 

bottom-up directed connectivity. We subsequently identified superior models using Bayesian 

model selection.  
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Figure 2: Arrows correspond to the superior model delineating directional connectivity between 

nodes (brain regions) as identified via Bayesian model selection in each PTSD group. Each line 

represents a separate pairwise stochastic DCM analysis. Red arrows indicate unique directed 

connectivity in the dissociative subtype of PTSD as compared to PTSD patients without the 

subtype. Arrows that appear smaller and dashed represent directed connectivity approaching 

model superiority. Individual graphs display the exceedance probabilities for each model of 

directed connectivity between node pairs. Here, superior models were identified by using the 

exceedance probability as criterion, which denotes the probability that a given model was more 

likely to have generated the observed data than any other model considered. Model 1 refers to bi-

directional connectivity between nodes, Model 2 refers to connectivity from node 2 to node 1, 

and Model 3 refers to connectivity from node 1 to node 2. Node 1 and node 2 are denoted by the 

order in which they appear in the title of each graph. 2a) Figure displaying directed connectivity 

within PTSD for the left BLA and CMA complexes as well as for the PAG and vmPFC. 2b) 

Directed connectivity within the dissociative subtype of PTSD for the left BLA and CMA 

complexes as well as for the PAG and vmPFC. 2c) Directed connectivity within PTSD for the 

right BLA and CMA complexes as well as for the PAG and vmPFC. 2d) Directed connectivity 

within the dissociative subtype of PTSD for the right BLA and CMA complexes as well as for 

the PAG and vmPFC. 

Abbreviations: BLA=basolateral amygdala, CMA=centromedial amygdala, PAG=periaqueductal 

gray, vmPFC=ventromedial prefrontal cortex, PTSD=posttraumatic stress disorder. 
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Figure 3: Arrows corresponds to the superior model delineating the direction of connectivity 

between nodes as identified via Bayesian model selection in healthy trauma-unexposed controls. 

Each line represents a separate pairwise stochastic DCM analysis in controls. Arrows that appear 

smaller and dashed represent directed connectivity approaching model superiority. Graphs 

represent the exceedance probability for each model of directed connectivity between node pairs. 

Exceedance probabilities were used as criterion to identify superior models. Model 1 refers to bi-

directional connectivity between nodes, Model 2 refers to connectivity from node 2 to node 1, 

and Model 3 refers to connectivity from node 1 to node 2. Node 1 and node 2 are denoted by the 

order in which they appear in the title of each graph. 3a) Figure displaying directed connectivity 

within healthy controls for the left BLA and CMA complexes as well as for the PAG and 

vmPFC. 3b) Directed connectivity within healthy controls for the right BLA and CMA 

complexes as well as for the PAG and vmPFC. 

Abbreviations: BLA=basolateral amygdala, CMA=centromedial amygdala, PAG=periaqueductal 

gray, vmPFC=ventromedial prefrontal cortex. 

 

 


