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Abstract - This study investigated the reactivity of the (104) dolomite surface in the system 

MgCO3-CaCO3-NaCl-H2O via a suite of aqueous solution-dolomite hydrothermal atomic 

force microscopy interaction experiments at temperatures from 40 to 120 °C, pH ranging from 

4 to 8, pressures up to 5 bars, and over a wide range of aqueous fluid saturation state.  

Dolomite dissolution was observed in the presence of undersaturated aqueous fluids.  

Dissolution produced crystallographically well defined etch pits, consistent with the 

stoichiometric release of ordered lattice cations. In low to moderately saturated fluids, 

dolomite growth began by the growth of one or two layers of carbonate (layer height < 3 Å) 

which morphologically reproduced the initial surface features, resembling the template effect 

as previously described by Astilleros et al. (2003, 2006) and Freij et al. (2004). Further 

growth was strongly inhibited and did not show any systematic crystallographically orientated 

growth morphologies. At aqueous fluid saturation states exceeding 500, nucleation and 

growth was observed on the dolomite surfaces at moderate rates, but these did not exhibit the 

characteristic dolomite crystallographic orientation after the growth of several layers.  Taken 
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together these observations suggest that the direct precipitation of dolomite from aqueous 

solution is unflavored at temperatures to at least 120 oC due to the poisioning of the dolomite 

surface for further growth by the precipitation one to four Ca-Mg carbonate layers on these 

surfaces.   

 

1 Introduction 

Dolomite [CaMg(CO3)2] is the second most abundant carbonate mineral in the Earth’s 

crust (e.g., Warren, 2000). Knowledge of dolomite precipitation and dissolution rates is 

essential for modeling major natural and industrial processes including the formation of 

sedimentary carbonates (Baker and Kastner, 1981), carbon capture and storage (Xu et al., 

2003; Moore et al., 2005; Oelkers et al., 2008; Wang et al., 2013; Tutolo et al., 2014), the 

preservation of paleoenvironmental signatures in carbonate rocks (Fantle and DePaolo, 2007; 

Fantle and Higgins, 2014; Fantle, 2015), secondary oil recovery (Wang et al., 2013), and 

ocean chemistry (Mackenzie and Morse, 1992; Mackenzie and Andersson, 2013). 

The formation of dolomite in natural and laboratory systems is, however, confounding 

(Arvidson and Mackenzie, 1999). Seawater is strongly supersaturated with respect to 

dolomite but there is no evidence of abiotic dolomite precipitation in modern marine 

depositional environments; in contrast, the ancient sedimentary record often contains 

dolomite (Tribble et al., 1995; Hardie, 1996; Berner and Berner, 1996; Stanley and Hardie, 

1999; Lowenstein et al., 2001; Berner, 2004; Holland, 2005). Abiotic laboratory synthesis of 

dolomite generally requires hydrothermal conditions (Graf and Goldschmidt, 1956; Katz and 

Matthews, 1977; Kessels et al., 2000). The lack of abiotic low temperature (< 100 °C) 

dolomite formation has been interpreted as a kinetic limitation potentially due to the slow 

dehydration rates of the aqueous Mg2+ cation (Lippmann, 1973; Higgins and Hu, 2005; Saldi 
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et al., 2009, 2012; Berninger et al. 2014, 2016).Alternatively, Roberts et al. (2013) reported 

the nucleation of ordered dolomite nanocrystals at 30 °C in association with high density 

carboxylated surfaces, and sugested that the presence of Mg bound carboxylic groups can 

reduce the energy required for carbonation and attachement of Ca2+.    

Numerous laboratory studies suggested that microorganisms facilitate the formation of 

dolomite at low temperatures. Microbes that have been implicated in low temperature 

dolomite formation include sulfate-reducing bacteria (Vasconcelos et al., 1995; Vasconcelos 

and McKenzie, 1997; Warthmann et al., 2000; van Lith et al., 2003; Wright and Wacey, 

2005), sulfide oxidizers (Moreira et al., 2004), and moderately halophilic aerobic heterotrophs 

(Sánchez-Román et al., 2008). Many of these studies observe disordered or iron-rich dolomite 

forming on cell surfaces, raising the possibility that dolomite nucleation is surface-mediated 

rather than driven by metabolic processes. 

This study was initiated to further illuminate the processes and mechanisms responsible 

for the inhibition of abiotic dolomite precipitation at ambient conditions. Towards this goal 

the dissolution or growth of dolomite from aqueous solution was monitored on its surface 

using hydrothermal atomic force microscopy (HAFM) at temperatures from 40 to 120 °C. 

This temperature range was chosen for two reasons. First, dolomite is reported to precipitate 

from aqueous solutions at temperatures in excess of 140 °C (Rodriguez-Blanco et al., 2015). 

Second, recent work on the anhydrous carbonate mineral magnesite shows that this mineral 

precipitates sufficiently fast at 80 to 120 °C to be measured directly using HAFM (Saldi et al., 

2009, 2012; Gautier et al., 2015; Berninger et al., 2016). This latter observation suggests that 

this method may also be applicable to quantify dolomite growth at these conditions. The 

purpose of this manuscript is to present the results of this HAFM study of dolomite growth 

and to use these results to improve our understanding of dolomite reactivity in natural 

systems. 
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2 Materials, chemical analysis, and experimental methods 

2.1 Geochemical calculations 

The standard state adopted in this study is that of unit activity for pure minerals and H2O 

at any temperature and pressure. For aqueous species other than H2O, the standard state is unit 

activity of the species in a hypothetical 1 molal solution referenced to infinite dilution at any 

temperature and pressure.  Dolomite precipitation or dissolution can be described using  

CaMg(CO3)2 = Ca2+ + Mg2+ + 2CO3
2-       (1) 

In accord with the standard state, the law of mass action for reaction (1) can be written 

Ksp(Dol ) = a
eq,Ca2+aeq,Mg2+aeq,CO3

2-

2

        (2) 

where aeq,i refers to the activity of the subscripted aqueous species at equilibrium and Ksp(Dol) 

designates the equilibrium constant for reaction (1). The saturation state of the aqueous fluid 

with respect to dolomite, ΩDol, can then be written 

Ω𝐷𝑜𝑙 =
𝑎
𝐶𝑎2+

𝑎
𝑀𝑔2+

𝑎
𝐶𝑂3

2−
2

𝐾𝑠𝑝(𝐷𝑜𝑙)
         (3) 

where ai refers to the activity of the subscripted aqueous species. All thermodynamic 

calculations reported in the present study were performed using PHREEQC (Parkhurst and 

Appelo, 1999).  Aqueous activity coefficients in this model were generated using the ‘b-dot’ 

activity model (Helgeson, 1969). The thermodynamic database used in these calcualtions was 

a slightly modified version of the llnl database. Much of data present in the llnl database of 

PHREEQC originates from SUPCRT92 (Johnson et al., 1992). The llnl database was 

modified to include the equilibrium constants for Mg2+ hydrolysis and the carbonic acid 

dissociation reported by Brown et al. (1996) and Millero et al. (2007), respectively.  
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2.2 Hydrothermal atomic force microscopy (HAFM) experiments 

Hydrothermal atomic force microscopy dolomite growth experiments were performed 

using in-house constructed continuous-flow HAFM operating in contact mode fitted with 

uncoated silicon cantilevers purchased from Nanosensors. The system allows for in-situ 

visualization of relatively flat mineral surfaces at temperatures up to 150 °C and pressures up 

to 50 bars (cf., Higgins et al., 1998; Jordan et al., 1999; Aldushin et al., 2004; Jordan and 

Astilleros, 2006). The experiments in this study were performed at temperatures up to 120 °C 

with confining pressures of no more than 5 bars. Experiments were not performed at higher 

temperature because preliminary tests showed that it was not possible to obtain high quality 

images at such conditions due primarily to the rapid degradation of the cantilever tip in 

contact with the reactive aqueous solution compositions. Each experiment lasted from 2 to 7 

hours total. Experiments were performed by passing a reactive fluid over a cleaved dolomite 

grain orientated to expose its (104) surface. Inlet fluids were placed in either Viton containers 

above the HAFM cell allowing gravitational fluid feed or a flexible pressurized container 

promoting flow through the HAFM cell. Fluid flow rates were approximately 10 μg/s 

allowing the rapid renewal of the fluid within the ~500 μL reaction cell. Due to the rapid fluid 

renewal and a mineral surface area of only a few mm2, the chemical composition of the inlet 

fluid was negligibly affected by fluid-mineral reactions occurring in the reaction cell.  

Experiments were performed on natural transparent dolomite single crystals from 1) 

Eugui, Spain (purchased from Fabre Minerals) and 2) Sunk, Austria (obtained from the 

Museum Reich der Kristalle in Munich, Germany). The composition of these dolomites were 

determined using a Cameca SX 100 electron microprobe; the results of these analyses are 

provided in Table 1. These dolomites contain slightly more calcium than magnesium due to 
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the presence of ~ 2 % Fe, which is most likely located in the magnesium site. The mineralogy 

of these solids were determined using an INEL CPS-120 diffractometer with Co Kα-radiation, 

λ = 1.78897 Å, and a graphite monochromator. X-ray diffraction was performed from 1 to 

110º 2θ at 0.09º/min and at a step size of 0.029º. These diffractograms, provided in the 

electronic supplement, show the initial solids to be pure dolomite. They also show strong 

superstructure reflections (e.g., Lippmann, 1973) indicating that these dolomites are highly 

ordered. The crystals were cleaved with a scalpel immediately before being fixed in the 

HAFM cell orienting the (104) surface perpendicular to the tip of the cantilever. The (104) 

dolomite cleavage surface was chosen for this growth study 1) due to ease of preparation, and 

2) because this surface contains equal amounts of calcium and magnesium. The HAFM flow 

system was then pressurized and the cell heated to the desired temperature at the start of each 

experiment. 

2.3 Reactive fluids and their analysis 

The inlet fluids of all experiments consisted of high purity deionized water (resistivity 

18.2 MΩ cm), and reagent grade NaCl, 1N HCl, NaHCO3, MgCl2∙6H2O, and CaCl2∙2H2O as 

well as dry ice purchased from Linde. The inlet fluid compositions for all experiments are 

summarized in Table 2. 

Aqueous magnesium and calcium concentrations were measured by flame atomic ab-

sorption spectroscopy using a Perkin Elmer AAnalyst 400 Atomic Absorption Spectrometer 

with an uncertainty of ± 2 % and detection limits of 1 x 10-7 and 2 x 10-7 mol/kg, respectively. 

Alkalinity was determined by standard HCl titration using Schott TA 10plus with an 

uncertainty of ± 1 % and a detection limit of 2 x 10-5 eq/L. Reactive fluid pH measurements 

were performed at room temperature immediately before and after the performed experiments 

using a standard glass electrode, previously calibrated with 4.01, 6.86, and 9.18 NIST pH 
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buffers. The uncertainty of these measurements is estimated to be ± 0.05 pH units. Fluid pH, 

speciation, and saturation state with respect to dolomite at the temperature of each experiment 

were calculated by PHREEQC (Parkhurst and Appelo, 1999) using pH values and fluid 

compositions measured at 25 °C. 

3 Results 

In total of 71 HAFM experiments were performed in this study at temperatures ranging 

from 40 to 100 °C. Eleven of these experiments were performed using Eugui dolomite and 60 

using Sunk dolomite. A summary of the experimental conditions, measured reactive fluid 

chemistry, the saturation state of the fluid phase with respect to dolomite, and observed 

dolomite growth behavior is presented in Table 3. Several distinct behaviors were observed as 

described below. 

In 15 experiments, the reactive fluid was undersaturated with respect to dolomite as 

indicated by a saturation state of < 1 in Table 3. Dolomite dissolution was also observed in 

experiment Sunk-23; the reactive fluid in this experiment was calculated to be slightly super-

saturated with respect to dolomite. This ambiguity may be due to the uncertainties in the 

thermodynamic database at the conditions of this 40 °C experiment. A representative example 

of observed dolomite dissolution behavior at 100 °C is shown in Figure 1. Well defined etch 

pits that follow the crystallographic directions [ 4 41] and [481] of the dolomite substrate are 

observed to form. Dolomite step retreat velocities in this experiment were too rapid to obtain 

unambiguous retreat rates. Another example of etch-pits forming during the dissolution of 

dolomite cleavage surface is provided in Fig. 2, where dolomite was dissolved at 80 °C under 

more basic conditions (pH = 8.14). Because of its lower symmetry, the observed etch pits 

exhibit a shape that deviates from the rhombic form typically observed in calcite group 

minerals (cf. Higgins and Hu, 2005; Xu et al., 2013). The relatively slow dissolution rates 
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observed at these conditions allowed determination of the the corresponding etch pit 

spreading rates: the steps moved apart from each other at the distinct rates of 0.81 ±0.21 nm/s 

and 0.66 ±0.28 nm/s, for the obtuse and acute [ 4 41] and [481] steps, respectively.  

In 10 experiments no dolomite dissolution or precipitation was observed. The reactive 

fluid saturation state in these experiments ranged from 2.8 to 13.6, other than one experiment 

with a saturation index of 28.1 (experiment Sunk-18).  This latter experiment was that having 

the lowest reactive fluid divalent cation concentrations; aqueous Ca2+ and Mg2+ activities 

were calculated to be ~ 9 x 10-7 and ~ 1 x 10-6, respectively, in this experiment. The relatively 

high degree of saturation state of this experiment is due to the high reactive fluid alkalinity 

and comparatively high pH. A representative example of an unreacting dolomite surface 

during a representative experiment is shown in Fig. 3. 

In 33 experiments a single dolomite growth layer was observed to form. The saturation 

states of the reactive fluids with respect to dolomite in these experiments ranged from 7.3 to 

336. The height of the observed growth layers is observed to be < 3.0 Å, consistent with the 

formation of a monolayer of carbonate. A representative example of such observations is 

shown in Fig. 4. It can be seen in this figure that the first layer grows via step advancement to 

the point at which a full monolayer is completed after which growth is significantly inhibited. 

The first growth layer was typically complete within the first hour of each experiment; a 

second layer was not observed despite allowing the experiment to continue for an additional 2 

to 6 hours.  Thus, the step morphology of the starting surface is reproduced once the first 

layer is complete, similar to the results observed by Higgins and Hu (2005) for dolomite 

growth at 27 °C. 

In 13 experiments multiple layers of dolomite growth was observed. The saturation states 

of the reactive fluids with respect to dolomite in these experiments ranged from 16.6 to 1514. 
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A representative example of these observations can be seen in Fig. 5. The growth of the first 

layer in these experiments is similar to that of the experiments exhibiting the growth of only a 

single layer. After this first layer forms, subsequent layers grow at a slower rate. For instance, 

during the experiment Eugui-10 (Fig. 5), the measured etch pit closing rate due to growth 

decreased by 30 %, changing in one direction from 1.04 to 0.70 nm/s, when the second layer 

started to grow.  It was also observed that, whereas the first growth layer follows the 

morphology of the dolomite substrate, the subsequent growth layers form more rounded 

‘growth island morphologies’, each subsequent layer following less the original 

morphological form of the starting dolomite substrate. In each case the growth of dolomite 

continued through the end of the experiment.  

The formation of 2 or more layers was observed for ΩDol as low as 16 at 100 °C, whereas 

it was necessary to increase significantly the degree of supersaturation of the reacting fluids to 

provoke the formation of a second layer at lower temperatures. An increase of the saturation 

ratio to above 300 was insufficient to promote the formation of multiple layers at 60 °C (e.g. 

Eugui-03-B) but, as shown in Fig. 5, a relatively rapid formation of three consecutive layers 

was observed at 80 °C for ΩDol = 478. The growth of multiple layers was appreciably 

accelerated at 90 and 100 °C in the presence of fluids with ΩDol > 650 (Fig. 6 and 7). At these 

conditions, however, the step growth mechanism became very chaotic: the rates of 

advancement of the steps parallel to [ 4 41]  and [481] was outpaced by the irregular growth of 

layers displaying a faster reaction front along a direction sub-parallel to the steps originated 

by dissolution. In particular, this irregular growth mode (Fig. 7) hampered the development of 

the typical straight morphology of [441] acute steps by the formation of elongated lozenge-

shaped layers following the [481] direction.  The growth of these layers was coupled to the 

formation of non-oriented two-dimensional nuclei, which occurred during the experiments 

conducted at 90 and 100 °C (experiments Eugui-11A and 11B, Fig.6) with the highest values 
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of fluid supersaturation (ΩDol = 933 and 1514, respectively).  

 

4 Discussion 

4.1 Comparison with past results 

A number of past studies have attempted to precipitate dolomite abiotically at tem-

peratures less than 200 °C. Most, and perhaps all of these past attempts failed to precipitate 

stoichiometric, well crystallized dolomite. For example, Land (1998) failed to precipitate 

dolomite from supersaturated aqueous solutions at 25 °C despite a 32-year long experiment. 

Higgins and Hu (2005) and Hu et al. (2005) attempted to precipitate dolomite at 27 °C by 

monitoring the reaction progress using atomic force microscopy on the (104) dolomite 

surface. As was observed in the present study, a single layer of dolomite was rapidly formed 

on the existing dolomite surface but additional layers were strongly inhibited from growing.  

Arvidson and Mackenzie (1999) attempted to measure the precipitation rates of dolomite at 

temperatures of 100 to 200 °C in mixed-flow reactors but rather succeeded in measuring the 

steady-state precipitation rates of a calcium-rich protodolomite on the surface of dolomite 

seeds. These authors provided a rate equation to describe their protodolomite precipitation 

rates as a function of temperature and saturation state. Our results are largely consistent with 

these past observations, as we observed the precipitation of a single dolomite layer on the 

original dolomite surface followed by a far slower growth of a poorly defined Mg-Ca-

carbonate. As suggested by Higgins and Hu (2005) and later confirmed by the observations of 

Fenter et al. (2007), the formation of a self-limited layer on dolomite surface can be attributed 

to the lattice strain associated with the different composition of a Ca-rich overgrown layer and 

the dolomite substrate. These authors also observed that the composition of the growth layers 

is sensitive to the Mg/Ca ratio of the reactive aqueous solution (see next section) and 
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suggested that an appropriate solution composition might lead to the growth of an unstrained 

1:1 Mg/Ca ratio layer. However, the need to order Ca and Mg into the dolomite structure 

makes the formation of stoichiometric and ordered epitaxial layers unlikely at room 

temperature, because of the slow H2O exchange rates in the hydration shell of Mg ions. The 

results of the present study indicate that neither increasing temperature nor high Mg2/Ca2+ 

activity ratios promote the direct formation of dolomite monolayers, as the growth of 

disordered/hydrated protodolomite-type layers are kinetically favored at the conditions 

considered in this study. In contrast, Rodriguez-Blanco et al. (2015) argued that they 

crystallized dolomite from aqueous solutions at temperatures from 60 to 220 °C via a 

mechanism that transforms an originally precipitated amorphous calcium carbonate into 

crystalline stoichiometric dolomite via a protodolomite precursor. Only at temperatures 

> 140 ºC they did no longer observe the formation of protodolomite as an intermediate step. It 

should be emphasized however that the evidence presented by these authors for the presence 

of an ordered dolomite in their experiments is based on the observations of superstructural 

reflections that may not have been significant considering their signal intensity compared with 

that of the background signal, indicating a very low degree of ordering. It should also be 

noted that although numerous studies have argued that dolomite is readily formed biotically 

(e.g., Warthman et al., 2000), such conclusions have been questioned by Gregg et al. (2015) 

who reexamined published X-ray diffraction data, concluding that dolomite synthesis in the 

laboratory under near-ambient conditions by microbial mediation are unsubstantiated. 

4.2 What inhibits dolomite precipitation at temperatures ≤ 120 ºC? 

The results described above show that a single layer of carbonate is readily precipitated 

on the surface of dolomite. This first layer closely mimics the surface of the original dolomite 

consistent with epitaxial growth. Subsequent layers, however, are more sluggish to form and 

do not follow the original surface structure. These subsequent layers tend also to form as 
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distinct growth islands on the surface of the first epitaxial growth layer if sufficient 

temperature and solution supersaturation are present in the system. As mentioned above, such 

observations are consistent with the results reported by Higgins and Hu (2005). These authors 

suggested that this behavior stemmed from the likelihood that the first layer precipitated on 

the dolomite surface was non-stoichiometric and non-ordered due to the high affinity of 

calcium compared to magnesium for the dolomite surface. This non-stoichiometric, non-

ordered layer then serves as a poor template for further growth because of its increased 

surface free energy. Lateral force frictional data obtained across the boundaries between the 

first grown layer and the dolomite substrate supports this conclusion, showing a Ca-

enrichment of the overgrowth. X-ray photoelectron spectroscopy (XPS) analyses of the 

dolomite surface exposed to supersaturated solutions having equal Ca2+ and Mg2+ activities 

(Hu et al., 2006) as well as X-ray reflectivity data (Fenter et al., 2007) also evidences the 

formation of a disordered Ca-rich self-limiting layer with a Ca/Mg ratio varying between 2 

and 6. Nevertheless, a recent XPS study of the products of dolomite growth experiments 

described by Berninger (2016), performed in bulk chemical reactors at 150-175 °C, show that 

the composition of the precipitated surface layers is mildly enriched in magnesium at the 

outermost surface. In addition, scanning electron microscope analysis of the grains collected 

from the Berninger (2016) experiments shows the development of distinct growth islands on 

the surface of the original seed crystals. These observations seem to be in agreement with our 

results. At the temperatures and aqueous Mg/Ca ratios considered in this study  (see Tables 2 

and 3), the formation of growth layers somewhat enriched in Mg should be favored. The 

observed more rapid layer growth velocities in the direction of the acute steps movement (Fig. 

6) is also in agreement with this hypothesis, since Mg was observed to be preferentially 

adsorbed at the acute steps terminations of calcite and Mg-calcite (Paquette and Reeder, 1995; 

Davis et al., 2000).  
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 Taken together, these observations suggest that dolomite growth starting from ambient 

temperature up to 120 ºC is self-inhibited by the initial precipitation of a non-stoichiometric 

disordered Mg-Ca-carbonate which then disfavors the further epitaxial growth on this surface. 

Subsequent growth requires nucleation at new growth sites on the substrate. This is supported 

by the relatively slow formation of growth islands, which likely occur at defects generated 

during the growth the first layer (cf. Higgins and Hu, 2005). Due to the lack of surface 

templating, these growth islands are likely poorly ordered and non-stoichiometric, consistent 

with our observations.  

4.3 Consequences for mineral carbonation 

The possibility of storing carbon in the subsurface as dolomite is particularly attractive as 

it is highly stable and its formation can take advantage of large quantities of magnesium 

present in basalts and ultramafic rocks (cf., Oelkers et al., 2008; Kaszuba et al., 2011; 

Gislason and Oelkers, 2014; Matter et al., 2016). Moreover a number of geochemical 

modeling studies have suggested that dolomite is thermodynamically favored to precipitate 

during the injection of CO2 into the subsurface as part of carbon capture and storage efforts 

(e.g., Xu et al., 2003; Gysi and Stefánsson, 2008). The results of this study illustrate that the 

precipitation of dolomite via abiotic processes is sluggish and/or not possible at temperatures 

up to 120 ºC. As such it seems unlikely that dolomite would be an effective mineralogical 

carbon storage host in in-situ mineral carbonation systems at least at temperatures < 120 °C. It 

should be noted, however, that the results of Gysi and Stefánsson (2012) suggest that 

dolomite-ankerite solid solutions might readily form at these conditions providing the means 

to carbonate magnesium during subsurface carbon storage efforts.  
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5 Conclusion 

The results summarized above provide further insight into the inhibition of abiotic 

dolomite growth in low temperature systems. Most notably these results support the 

hypothesis that the first dolomite growth layer formed on dolomite substrate poisons this 

surface, inhibiting further growth. The results show that this behavior is not just limited to 

ambient temperature, but well extends to the mildly hydrothermal temperatures. Additional 

growth appears to require surface nucleation and results in the formation of a somewhat non-

stoichiometric and/or poorly ordered dolomite-like phase. As such it seems that the most 

likely route for the formation of dolomite in natural systems may be via the recrystallization 

of a poorly crystalline and/or non-stoichiometric and disordered protodolomite such as 

suggested by Kaczmarek and Sibley (2007, 2014) and Montes-Hernandez et al. (2014). 
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Figure Captions 

Figure 1: HAFM deflection image showing the development of etch pits after the first 3 

minutes of dissolution at 100 °C (From experiment Sunk-19). 

Figure 2: Sequence of HAFM deflection images showing the formation and spreading of 

etch-pits on the (104) surface of dolomite at 80 °C during experiment Eugui-09 at pH = 

8.14.   

Figure 3: HAFM deflection images showing an inert (104) dolomite surface during growth 

experiment Sunk-48-A (T= 40 °C; ΩDol= 2.9). The left image (A) was recorded more 

than 1 h and the right image more than 2 h 20 min after the start of the experiment; 

during this time the surface showed no morphological change; the large cleavage step 

(white/rose diagonal feature) can serve as reference. Note that the scanning area is 

drifting to the upper right due to piezo creep. 

Figure 4: The development of a single layer template growth on a (104) surface of dolomite 

as recorded by HAFM deflection images (Sunk-09). Precipitation starts on a surface 

which had been pre-cleaned in-situ via dissolution in MQ-water at 100 °C and 

monitored by HAFM (A). Pre-dissolution of some dolomite layers stopped just after 

developing a small etch pit in the lower left area of image A. As precipitation begins 

the surface is rapidly covered by a ~ 3 Å thick layer (B and C) which expands in obtuse 

step directions. Note steps are not propagating perpendicular to the initial step front but 

are rather curving forward (B) and do not close the small etch pit (which is atypical for 

layer-wise growth of carbonates) but grow around it (C). The precipitation apparently 

stopped after the formation of one layer of carbonate was complet and the initial 

surface was reproduced (D). 

Figure 5: Growth of monolayer steps on a dolomite cleavage surface at 80 °C (ΩDol = 479,  

Eugui-10) after an initial period of dissolution at pH 4.0 and ambient temperature. 

Three layers were observed to grow during the experiment inside the main etch pit. 

After that the first layer was completed (a, b), the growth of the second layer (c) 

proceeded slower while the advancing steps developed a rough morphology and 

irregular shape.  

Figure 6: Growth of single carbonate layers on dolomite (104) surface during experiment 

Eugui-11A, at 90 °C and ΩDol = 933 (a) and experiment 11B at 100 °C and ΩDol = 1513 

(b). The growth of pre-existing layer was accompanied and followed by the 2D-

nucleation of rounded growth-islands at both experimental conditions. The black 

arrows indicate the growth direction of pre-existing steps and the main growth 

orientation of nucleated layers advancing in the acute step direction.  

Figure 7: Sequence of HAFM defelction images illustrating the irregular growth of carbonate 

monolayers at the dolomite (104) cleavage surface at 100 °C during experiment Eugui-

12. 
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Table 1:  Electron microprobe analyses of both dolomite single crystals used in 

this study. 

 

Eugui (single xtl) Sunk (single xtl) 

CaO 29.89 29.18 

MgO 20.89 20.39 

FeO 0.5568 0.9701 

MnO 0.0807 0.1613 

ZnO 0.0387 0.0346 

CuO 0.0183 0.0238 

calc. CO2 48.53 49.24 

measured 

points 94 98 

chem. formula 

based on six 

oxygens 

Ca1.005Mg0.977Fe0.015Mn0.002Zn0.001 

(CO3)2 

Ca0.998Mg0.971Fe0.026Mn0.004Zn0.001 

(CO3)2 
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Table 2:  Summary of inlet solution compositions for hydrothermal atomic force 

microscopy (HAFM) experiments on dolomite. 

Experiment pH cCaCl2*2H2O cMgCl2*6H20 Alkalinity NaCl 

1N 

HCl 

NaOH 

0.1 M CO2 saturation 

  

(mmol/kg) (mmol/kg) (mmol/kg) (g/kg) (mL/L) (mL/L) (1 bar ) 

Eugui-01 6.59 0.606 57.4 45.9 0.2003 15.6 - - 

Eugui-02 6.32 0.535 48.5 30.0 0.0266 19.8 - - 

Eugui-03-A 6.59 0.286 54.9 45.9 0.1895 15.8 - - 

Eugui-03-B 6.59 0.286 54.9 45.9 0.1895 15.8 - - 

Eugui-04 7.86 0.501 0.502 0.986 5.6678 - - - 

Eugui-06 7.86 0.590 0.555 0.987 5.6678 - - - 

Eugui-08 8.30 0.0092 0.0101 100 0.0529 - - - 

Egui-09 9.45 0.180 0 n.d. 5.844 - 0.44 - 

Eugui-10 8.21 0.040 0.344 22.14 5.844 - - - 

Eugui-11A 8.18 0.052 0.3397 22.75 5.844 - - - 

Eugui-11B 8.18 0.052 0.3397 22.75 5.844 - - - 

Eugui-12 8.16 0.027 0.3237 21.14 5.844 - - - 

Sunk-01 6.53 4.68 5.21 1.98 4.0930 1.0 - - 

Sunk-02 6.43 10.4 16.0 1.63 0.8780 1.0 - - 

Sunk-03 6.13 8.20 10.4 1.49 1.9971 1.8 - - 

Sunk-04 5.95 9.73 12.3 1.57 1.2623 2.9 - - 

Sunk-05 6.15 8.29 10.5 1.57 1.9961 1.8 - - 

Sunk-06 6.12 9.52 12.2 1.58 1.3162 2.0 - - 

Sunk-07 6.10 6.34 24.6 2.60 0.2765 3.3 - - 

Sunk-08 6.15 24.2 6.06 0.763 0.4171 0.9 - - 

Sunk-09 6.19 5.94 25.3 2.17 0.3379 2.2 - - 

Sunk-10 6.18 24.4 6.02 0.947 0.4092 1.0 - - 

Sunk-11 5.67 50.0 50.5 2.01 - 5.0 - - 

Sunk-12 6.23 0.323 38.3 10.1 0.4198 8.8 - - 

Sunk-13 6.19 0.509 24.5 7.05 0.5052 7.4 - - 

Sunk-14 6.36 0.117 26.8 10.1 0.5236 7.0 - - 

Sunk-15 6.16 0.122 26.7 10.1 0.2828 11.2 - - 

Sunk-16 6.30 0.495 27.1 11.1 0.4212 8.8 - - 

Sunk-17 6.18 0.643 25.2 7.73 0.4559 8.2 - - 

Sunk-18 8.45 0.0088 0.0058 52.4 0.0445 - - - 

Sunk-19 4.84 10.6 10.1 1.62 0.0952 38.4 - - 

Sunk-21 8.36 0.0198 0.102 5.59 - - - - 

Sunk-23 6.23 1.03 12.4 7.52 - 8.0 - - 

Sunk-24 5.51 48.5 56.9 9.99 - - - saturated 

Sunk-25 5.71 48.1 55.5 9.98 - - - saturated 

Sunk-26 5.77 52.4 58.0 4.98 - - - saturated 

Sunk-27 5.57 50.7 56.2 4.99 - - - saturated 

Sunk-28 5.66 49.4 55.9 7.49 - - - saturated 
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Table 2: Continued    

Experiment pH cCaCl2*2H2O cMgCl2*6H20 Alkalinity NaCl 

1N 

HCl 

NaOH 

0.1 M CO2 saturation 

  
(mmol/kg) (mmol/kg) (mmol/kg) (g/kg) (mL/L) (mL/L) (1 bar ) 

Sunk-31 7.10 0.178 34.0 2.71 - 0.3 - - 

Sunk-32 6.39 105 112 2.62 - 0.9 - - 

Sunk-33 6.42 10.6 10.1 1.32 - 0.9 - - 

Sunk-34 6.71 10.6 10.3 1.64 0.0265 0.5 - - 

Sunk-35 6.39 57.6 61.3 1.97 - 0.9 - - 

Sunk-36 6.41 0.0055 32.2 1.86 0.0209 1.1 - - 

Sunk-38 6.41 32.8 0.0010 1.86 0.0209 1.1 - - 

Sunk-39 6.55 32.4 0.0093 2.08 0.0337 0.9 - - 

Sunk-40 6.41 16.4 16.1 1.86 0.0209 1.1 - - 

Sunk-41 3.93 10.7 1.12 0.0048 - 30.0 - - 

Sunk-42 6.28 5.78 1.10 15.3 0.3113 14.7 - - 

Sunk-43 5.79 8.22 1.11 7.68 0.1108 22.3 - - 

Sunk-44 5.58 0.0071 51.8 10.0 - - - saturated 

Sunk-45 5.58 0.0099 51.8 10.0 - - - saturated 

Sunk-46 5.59 48.6 0.0022 10.1 - - - saturated 

Sunk-47 5.60 47.9 0.0044 10.1 - - - saturated 

Sunk-48-A 5.59 19.2 31.1 10.0 - - - saturated 

Sunk-48-B 5.59 19.2 31.1 10.0 - - - saturated 

Sunk-49-A 5.59 17.6 29.4 10.1 - - - saturated 

Sunk-49-B 5.59 17.6 29.4 10.1 - - - saturated 

Sunk-50-A 5.38 22.1 27.0 6.24 - - - saturated 

Sunk-50-B 5.38 22.1 27.0 6.22 - - - saturated 

Sunk-51 7.08 0.0435 7.35 5.23 0.5370 0.8 - - 

Sunk-52 7.02 4.91 0.0007 0.796 0.5757 0.1 - - 

Sunk-53 6.76 10.8 0.0276 2.66 0.5350 0.8 - - 

Sunk-54 6.94 5.43 3.69 3.95 0.5360 0.8 - - 

Sunk-55 4.12 0.0137 521 0.673 - - - saturated 

Sunk-56 4.94 5.42 260 1.67 0.2922 5.0 - saturated 

Sunk-57 6.38 2.81 30.3 7.65 - 5.0 - - 

Sunk-59-A 6.38 1.08 32.5 7.71 - 5.0 - - 

Sunk-59-B 6.38 1.08 32.5 7.71 - 5.0 - - 

Sunk-61 6.38 1.93 29.8 7.68 - 5.0 - - 
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Table 3:  Summary of the results of hydrothermal atomic force microscopy (HAFM) 

experiments on dolomite (104) surfaces. 

Experiment 

Temp 

pHcalc 

Ionic 

strength ΩDol 

aCa+2 aMg+2 aCO3-2 

Observation (°C) (x 10-4) (x 10-4) (x 10-7) 

Eugui-01 40 6.50 0.217 220 1.65 176 48.6 1 layer 

Eugui-02 40 6.23 0.183 26.4 1.60 162 17.9 1 layer 

Eugui-03-A 40 6.50 0.209 103 0.787 170 49.2 1 layer 

Eugui-03-B 60 6.47 0.207 336 0.746 161 54.5 1 layer 

Eugui-04 100 7.50 0.099 10.7 1.71 1.86 16.3 no reaction 

Eugui-06 100 7.49 0.100 13.6 2.01 2.05 16.1 no reaction 

Eugui-08 100 8.10 0.101 49.6 0.0064 0.014 6667 1 layer 

Eugui-09 80 8.14 0.099 << 1 0.651 0.005 4.40 dissolution 

Eugui-10 80 7.99 0.100 467.7 0.098 1.079 1242 3 layers 

Eugui-11A 90 7.96 0.100 933.3 0.1171 1.011 1220 multi-layer 

Eugui-11B 100 7.95 0.100 1513.6 0.1062 0.954 1218 multi-layer 

Eugui-12 100 7.94 0.099 660.7 0.057 0.928 1102 multi-layer 

Sunk-01 100 6.51 0.101 41.6 15.9 19.3 3.26 1 layer* 

Sunk-02 100 6.37 0.095 80.6 36.3 61.2 1.69 1 layer* 

Sunk-03 100 6.09 0.091 11.5 28.9 40.1 0.883 1 layer 

Sunk-04 100 5.91 0.090 7.4 34.5 47.5 0.594 1 layer 

Sunk-05 100 6.11 0.092 14.3 29.1 40.4 0.976 1 layer 

Sunk-06 100 6.08 0.089 15.7 33.8 47.1 0.880 1 layer 

Sunk-07 100 6.04 0.100 38.5 21.6 92.1 1.23 1 layer 

Sunk-08 100 6.09 0.098 4.2 84.1 23.1 0.410 no reaction 

Sunk-09 100 6.13 0.101 38.4 20.3 94.7 1.25 1 layer 

Sunk-10 100 6.12 0.099 7.3 84.5 22.9 0.544 1 layer 

Sunk-11 100 5.57 0.297 11.1 121 142 0.224 1 layer 

Sunk-12 100 6.17 0.133 57.3 0.962 126 6.07 3 layers* 

Sunk-13 100 6.14 0.093 39.3 1.72 89.9 4.47 3 layers* 

Sunk-14 100 6.31 0.101 39.4 0.377 94.4 9.31 5 layers* 

Sunk-15 100 6.11 0.100 16.6 0.394 94.1 5.92 3 layers* 

Sunk-16 100 6.25 0.103 148 1.58 94.3 8.84 1 layer* 

Sunk-17 100 6.13 0.096 56.2 2.14 91.5 4.75 2 layers* 

Sunk-18 100 8.21 0.053 28.1 0.0086 0.011 4783 no reaction 

Sunk-19 100 4.81 0.102 0.0 36.2 37.7 0.050 dissolution 

Sunk-21 100 8.01 0.006 103 0.094 0.586 383 1 layer 

Sunk-23 40 6.14 0.054 1.7 4.59 58.8 4.49 dissolution 

Sunk-24 100 5.40 0.307 129 113 154 0.762 3 layers* 

Sunk-25 100 5.61 0.302 324 113 151 1.22 3 layers* 

Sunk-26 100 5.66 0.320 111 123 158 0.669 1 layer* 

Sunk-27 100 5.46 0.310 44.1 120 155 0.432 1 layer* 

Sunk-28 100 5.55 0.306 146 116 153 0.802 1 layer* 

Sunk-29 100 6.94 0.102 157 1.09 126 9.46 1 layer 
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Table 3. Continued 

      

Experiment Temp pHcalc 

Ionic 

strength ΩDol aCa+2 aMg+2 aCO3-2 Observation 

Sunk-31 100 6.91 0.102 76.7 0.601 127 8.89 1 layer 

Sunk-32 100 6.22 0.614 575 203 262 0.920 1 layer* 

Sunk-33 100 6.36 0.063 47.6 41.8 43.1 1.44 1 layer* 

Sunk-34 100 6.63 0.064 243 41.7 43.6 3.24 1 layer* 

Sunk-35 100 6.25 0.344 261 133 166 0.962 1 layer* 

Sunk-36 100 6.33 0.097 0.1 0.019 122 1.69 dissolution 

Sunk-38 100 6.34 0.100 0.0 112 0.0038 1.72 dissolution 

Sunk-39 100 6.46 0.099 0.3 111 0.035 2.57 dissolution 

Sunk-40 100 6.33 0.098 128 56.5 60.8 1.71 2 layers* 

Sunk-41 100 3.93 0.065 0.0 42.2 4.75 0.00066 dissolution 

Sunk-42 100 6.27 0.054 287 20.9 4.25 15.9 1 layer 

Sunk-43 100 5.78 0.058 11.1 31.4 4.52 2.48 1 layer 

Sunk-44 100 5.51 0.154 0.1 0.020 166 1.22 dissolution 

Sunk-45 100 5.50 0.154 0.1 0.028 166 1.21 dissolution 

Sunk-46 100 5.53 0.149 0.0 140 0.0071 1.36 dissolution 

Sunk-47 100 5.53 0.147 0.0 139 0.014 1.37 dissolution 

Sunk-48-A 40 5.49 0.155 2.9 63.9 116 1.11 no reaction 

Sunk-48-B 70 5.46 0.154 17.3 59.9 109 1.24 1 layer 

Sunk-49-A 40 5.50 0.145 2.8 59.8 111 1.14 no reaction 

Sunk-49-B 70 5.47 0.144 16.7 56.1 104 1.29 1 layer 

Sunk-50-A 50 5.27 0.149 0.8 74.1 101 0.46 dissolution 

Sunk-50-B 100 5.31 0.147 18.3 65.6 89.6 0.494 1 layer* 

Sunk-51 70 6.97 0.036 9.9 0.204 36.4 27.9 no reaction 

Sunk-52 70 6.90 0.025 0.0 26.1 0.0039 3.76 dissolution 

Sunk-53 70 6.64 0.045 0.5 49.4 0.134 6.49 dissolution 

Sunk-54 70 6.82 0.040 171 25.1 18.1 14.8 1 layer 

Sunk-55 120 4.01 1.275 0.0 0.020 874 0.0008 dissolution 

Sunk-56 120 4.81 0.705 0.1 9.24 522 0.015 dissolution 

Sunk-57 40 6.28 0.108 13.0 10.4 123 5.63 no reaction 

Sunk-59-A 40 6.29 0.110 5.4 4.00 132 5.67 no reaction 

Sunk-59-B 100 6.31 0.107 234 3.49 115 6.75 2 layers* 

Sunk-61 40 6.29 0.104 9.3 7.21 122 5.76 no reaction 

* Growth seemed to continue but extremely slow. 
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Figure 1:  HAFM deflection image showing the development of etch pits after the first 3 

minutes of dissolution at 100 °C (From experiment Sunk-19). 
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Figure 2:  Sequence of HAFM deflection images showing the formation and spreading of 

etch-pits on the (104) surface of dolomite at 80 °C during experiment Eugui-09 at 

pH = 8.14.   
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Figure 3:  HAFM deflection images showing an inert (104) dolomite surface during growth 

experiment Sunk-48-A (T= 40 °C; ΩDol= 2.9). The left image (A) was recorded 

more than 1 h and the right image more than 2 h 20 min after the start of the 

experiment; during this time the surface showed no morphological change; the 

large cleavage step (white/rose diagonal feature) can serve as reference. Note that 

the scanning area is drifting to the upper right due to piezo creep. 
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Figure 4  The development of a single layer template growth on a (104) surface of dolomite 

as recorded by HAFM deflection images (Sunk-09). Precipitation starts on a 

surface which had been pre-cleaned in-situ via dissolution in MQ-water at 100 °C 

and monitored by HAFM (A). Pre-dissolution of some dolomite layers stopped 

just after developing a small etch pit in the lower left area of image A. As 

precipitation begins the surface is rapidly covered by a ~ 3 Å thick layer (B and 

C) which expands in obtuse step directions. Note steps are not propagating 

perpendicular to the initial step front but are rather curving forward (B) and do not 

close the small etch pit (which is atypical for layer-wise growth of carbonates) but 

grow around it (C). The precipitation apparently stopped after the formation of 

one layer of carbonate was complet and the initial surface was reproduced (D). 
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Figure 5  Growth of monolayer steps on a dolomite cleavage surface at 80 °C (ΩDol = 479,  

Eugui-10) after an initial period of dissolution at pH 4.0 and ambient temperature. 

Three layers were observed to grow during the experiment inside the main etch 

pit. After that the first layer was completed (a, b), the growth of the second layer 

(c) proceeded slower while the advancing steps developed a rough morphology 

and irregular shape.  
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Figure 6  Growth of single carbonate layers on dolomite (104) surface during experiment 

Eugui-11A, at 90 °C and ΩDol = 933 (a) and experiment 11B at 100 °C and ΩDol = 1513 

(b). The growth of pre-existing layer was accompanied and followed by the 2D-nucleation 

of rounded growth-islands at both experimental conditions. The black arrows indicate the 

growth direction of pre-existing steps and the main growth orientation of nucleated layers 

advancing in the acute step direction.  
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Figure 7  Sequence of HAFM defelction images illustrating the irregular growth of carbonate 

monolayers at the dolomite (104) cleavage surface at 100 °C during experiment Eugui-12. 
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Figure:  Powder x-ray diffractogram of dolomite from Eugui, Spain, and Sunk, Austria. 

 


