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ABSTRACT: Because of a number of technological advancements, unconventional hydrocarbons, and in particular shale gas,
have transformed the US economy. Much is being learned, as demonstrated by the reduced cost of extracting shale gas in the US
over the past five years. However, a number of challenges still need to be addressed. Many of these challenges represent grand
scientific and technological tasks, overcoming which will have a number of positive impacts, ranging from the reduction of the
environmental footprint of shale gas production to improvements and leaps forward in diverse sectors, including chemical
manufacturing and catalytic transformations. This review addresses recent advancements in computational and experimental
approaches, which led to improved understanding of, in particular, structure and transport of fluids, including hydrocarbons,
electrolytes, water, and CO2 in heterogeneous subsurface rocks such as those typically found in shale formations. The narrative is
concluded with a suggestion of a few research directions that, by synergistically combining computational and experimental
advances, could allow us to overcome some of the hurdles that currently hinder the production of hydrocarbons from shale
formations.

■ INTRODUCTION

Unconventional hydrocarbons attract attention because con-
ventional resources are dwindling, and because several scientific
and technological challenges need to be addressed to achieve
high production with minimal environmental impact. Shale gas
generated a renaissance in the whole US industrial sector, from
the substitution of coal power plants,1,2 to large investments in
the chemical industry.2 The rest of the world is watching, as
shale formations are ubiquitous, even in regions not blessed by
large conventional reserves. The naiv̈e course of action was first
to correlate a local shale formation with one US play, followed
by transfering the successful US technologies to the shale play
overseas. This strategy is defective (e.g., in Poland industry
stopped investments due to less-than-spectacular productiv-
ity).3 The community learned that unless complex physical
phenomena occurring in the subsurface are understood,
production of shale oil and gas requires expensive and
unattractive trial-and-error processes. Although important
technological advancements led to impressive production
improvements,4,5 some major limitations remain: (a) the well
productivity decreases rapidly6 and (b) a large amount of gas
remains unproduced despite multiple fracturing stages7 and the
use of advanced hydraulic fracturing fluids.8

Below we summarize progress made to understand the
molecular phenomena responsible for these observations This
progress has been made possible by leveraging innovative
approaches from various research communities, which led to
better understanding of how confinement affects fluid proper-
ties, and to a more detailed characterization of heterogeneous
porous materials. This review focuses on recent advances in
these areas, with relevance to shale rocks, in the development of
models for describing shale pores, in advancements on
mesoscale simulations suitable for predicting fluid transport,
and in atomistic simulations for fluid mixtures at interfaces.

Building on this, we argue that measuring the pore network
at the nanoscale and quantifying the fluid behavior at the
interface between kerogen and the surrounding matrix,
especially for mixtures where one component dictates the
behavior of the others, are crucial to understand the rate-
limiting steps in shale gas production, and to leap forward the
related technologies. Securing progress in these areas is
expected to yield important positive implications not only for
developing shale gas, but also in catalysis, fine chemicals, and
controlled drug delivery. This review is focused particularly on
the kerogen−clay interface, but it should be pointed out, for
completeness, that organic-rich and nonclay dominated shale
formations do exist as well.9 Other important aspects related to
unconventional oil and gas operations, including the possibility
of inducing microseismic events, treatment of the produced
fluids, prevention of fugitive emissions, identification of
biogenic vs thermo-genic hydrocarbons, local impacts on traffic
and competition for land usage, the risk of spills, and other
environmental contaminations are not considered in this
review.

■ RECENT ADVANCES

Confined Fluids Behavior. Several groups employed
molecular simulations to investigate fluids in a variety of
pores of relevance for shale (porous carbons representative of
kerogen, clay pores, carbonates, alumino-silicate, and other
porous materials).10−14 For example, Mosher et al.15 showed
that excess methane adsorption in carbon-slit pores decreases as
the pore width increases from 0.4 to 9 nm. Liu and Wilcox
quantified the preferential adsorption of CO2 vs methane in

Received: April 10, 2017
Revised: August 3, 2017
Published: August 27, 2017

Review

pubs.acs.org/EF

© XXXX American Chemical Society A DOI: 10.1021/acs.energyfuels.7b01023
Energy Fuels XXXX, XXX, XXX−XXX

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

pubs.acs.org/EF
http://dx.doi.org/10.1021/acs.energyfuels.7b01023
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


oxygenated carbon-slit pores,16 which is important because
kerogen contains both carbon and oxygen and because CO2

could be used to stimulate production. Oxygenated groups also
favor water adsorption. Many simulated water adsorption in
carbons,17−24 including the work of Striolo et al.,25,26 who
considered a variety of carbon pores, sometimes with
oxygenated groups,27 and investigated the effect of temperature,
achieving reasonable agreement against experiments.28 By
considering carbon slit pores of different widths, connected
via apertures and defects, it was possible to recover
experimental features, including smooth adsorption−desorp-
tion hysteresis loops.29 These, and other studies, confirm that a
detailed knowledge of the pore network is needed to
understand confined fluids using molecular simulations.
Szczerba et al.30 used molecular simulations to explain

experimental spectroscopic observations for water in smectite
clays. Szczerba and Kalinichev ranked various force fields based

on their ability to appropriately reproduce experimental XRD
measurements in organoclay systems.31 Jeanmairet et al.32

discussed how various simulation approaches can be
implemented to describe, with atomistic precision, the
hydration structure of clays.
Franco et al.33 simulated methane and CO2 in calcite pores

and showed that strong solid−fluid interactions can yield
anisotropic diffusion near the surface. Papavasileiou et al.34

simulated water and one long hydrocarbon in titania pores.
Water accumulated on the pore surface, where it formed
hydrogen bonds with surface groups, while the hydrocarbon
accumulated in the pore center. Phan et al.35 showed that water
from water−ethanol mixtures also accumulates on alumina
surfaces, but also that when the pores are ∼1 nm in width, the
water surface diffusion can be faster than that of ethanol,
accumulated near the pore center. It has been shown that CO2,
adsorbed on a silica-based pore surface, lubricates the transport

Figure 1. Ensemble of multiscale images of Bowland shale rock samples. Images in columns R1, R2, and R3 are X-ray CT scan reconstructions, while
R4 and R5 are 3D-EM reconstructions. Row A reports 2D slices from the material, each enlarged from left to right. Row B highlights the nonclay
minerals (e.g., dolomite, calcite, quartz, and pyrite), and their segmentation within the material. For R4 and R5 the authors managed to report the
clay minerals (I), the organic matter (II), and the pores (III), which are shown in row C. For R1, R2, and R3 clay minerals, organic matter and pores
are shown together (Reproduced with permission from ref 56. Copyright 2016 the authors of the original work).
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of hydrocarbons within the pore.36 Bui et al.37 recently reported
that methane, adsorbed at low concentration within hydrated
pores, can show anisotropic diffusion depending on the
chemistry of the confining material (i.e., anisotropic diffusion
along the two directions parallel to the pore surface was
reported for calcite, but not for muscovite, silica, or alumina
pores).
Confinement is known to affect many thermodynamic

properties of fluids.38 Of particular importance to this review
are the simulations of Luzar and Bratko,39,40 who predicted the
enhanced solubility of gases in confined fluids. Those initial
predictions were later confirmed experimentally.41,42 More
recently, Gubbins and co-workers43 studied the solubility of
supercritical gases in liquids confined in narrow slit-shaped
carbon pores. The solubility strongly depends on pore width
and on packing densities and it decreases as temperature
increases, but faster in confinement than in bulk systems.
Although conducted for simple Lennard-Jones models, the
results of Hu et al.43 are consistent with those of Phan et
al.,44,45 who reported enhanced methane solubility in water
confined in narrow slit-shaped pores. It remains to be
completely understood how the structure of confined water
can in some cases enhance and in some cases depress the
solubility of guest gases. As an example of a study in which
confinement reduces the solubility in water, we refer to Lisal
and co-workers,46 who used Monte Carlo simulations to
quantify the solubility of NaCl in water confined in slit-shaped
pores of width 0.7 to 2.8 nm carved out of pyrophyllite and Na-
montmorillonite. The results show that the NaCl solubility
decreases with pore size, and also revealed a significantly
different behavior of the electrolytes depending on their
preferential adsorption within the pore. In fact, Moucka et
al.,47 also using simulations, reported that salt uptake in
aqueous pores is modulated by pore width. These results are
probably related to both the structure of confined water and to
the effect of confinement on the dielectric constant. Indeed, it is
expected that confinement strongly affect the dielectric profile
of water, depending on the confining material, pore width and
shape, and also on the direction of interest (e.g., parallel vs
perpendicular to the pore surface).48−52

This body of work demonstrates that depending on pore
size, chemistry and composition, fluids behave differently under
confinement compared to what we expect from bulk
observations. While neutron scattering confirms some of
these predictions,53 one should question whether these
molecular-level observations yield noticeable macroscopic
effects. For example, how are the confinement effects on fluid
solubility and diffusion determining natural gas transport across
complex subsurface porous networks and, ultimately, the
production of shale gas? Identif ying the connection between
molecular features and macroscopic observables remains a grand
scientif ic challenge.
Characterization of Pore Networks. As discussed above,

simulating confined fluids requires the definition of the solid
substrate, if possible with atomic precision. Because shale
samples are extremely diverse, this task is prohibitive. Based on
a combination of experimental tools including small angle
neutron scattering and backscattered electron microscopy, it
has been found that 50% of the pores in shale samples can have
size of less than 20 nm,54 which makes the characterization
harder. However, progress is tangible.55 Ma et al.56 used X-ray
computed tomography and SEM to produce 3D images of shale
samples. The resolution achieved spans 3 orders of magnitude,

from 7 nm to ∼7.7 μm. The data showed a variety of pore
scales and detected no visible connected porosity of size >20
nm. This clearly indicates the importance of small pores for
understanding shale fluids. The data, reproduced in Figure 1,
suggest that organic matter could provide connected pathways,
although the resolution was not sufficient for detecting them.
Other cutting-edge tools include FIB-SEM, used by Chen et
al.57 to obtain the 3D internal structure of kerogen. The
analysis resolved kerogen, clay minerals, and pyrite, and
individual pores were reconstructed with a 12 nm resolution
(731 pores were identified within a kerogen specimen of size
3360 nm × 1440 nm × 1200 nm). The kerogen pores were
roughly spherical, isolated from each other, and the
surrounding rock, yielding ∼30% porosity.
Focused ion beam (FIB) SEM is finding a growing number

of applications in the earth sciences particularly in the study of
submicron pore network in shale.58 This method uses serial
sectioning and imaging in order to produce sets of sequential
SEM images (generally several hundred) that permit a three-
dimensional (3D) visualization of minerals, organics, and pores.
From these 3D images, one can calculate porosity, pore-size
distribution, kerogen volume percentage, and permeabil-
ity.59−63 Silin and Kneafsey discuss some of the issues
encountered with FIB/SEM applications.64 One of the major
limitations of FIB/SEM is the extremely small size of the
sample area. Therefore, when performing nanometer-scale
interrogations of fine-grained, low porosity materials like shale,
it is important to consider the scale of the observation in the
context of the scale of interest. Volumes of 20 μm × 10 μm × 5
μm are typically imaged. Hence the sample may be 20 to nearly
30 orders of magnitude smaller than the lithologic unit it is
meant to represent. A case in point is illustrated in images
shown in Figure 2. This FIB/SEM sample comes from the
Utica formation, Wood County, West Virginia, at a depth of
9502.7 feet.65 In this deep part of the Appalachian Basin the
Utica is roughly 300 feet thick; and the formation extends

Figure 2. (A) Dual beam FIB/SEM reconstructed block volume of a
deep Utica shale sample. (B) 3D “fence” image. (C) 3D reconstructed
images of kerogen (red) distributions. (D) 3D reconstructed images of
pores (blue) distributions. The 3D reconstructed volumes have
dimensions of 20 μm × 17 μm × 6.5 μm. Panel A is reproduced with
permission from ref 65. Copyright 2014 Mineralogical Society of
America.
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north, northwest, and northeast for several hundred kilometers.
The pores (Figure 2C) within this sample occur primarily
within the kerogen (Figure 2B) and exhibit a fair degree of
connectivity, but the image is only ∼20 μm across.
A second issue impacting pore assessment is that sampling

bias must be taken into account. Most geologic materials
exhibit some form of heterogeneity that may cross a variety of
length scales. For example, in the case of shales they are usually
anisotropic in the form of thin laminae and contain pores
ranging in scale from tens of micrometers down to below 10
nm (e.g., see Figure 1). The porosity may vary within a given
layer and between layers, as might permeability both of which
are also typically anisotropic. Despite these and other
limitations (e.g., rheologic integrity, sample preparation, sample
deterioration during the experiment), nanoscale imaging via
FIB/SEM has a number of advantages. As noted above, from
the images one can obtain a fundamental understanding of the
3D nature of pore space, pore connectivity, and the location
and distribution of mineral and organic phases. The images
provide a foundation for conceptual model building that leads
to quantification of permeability and fluid flow. Recently this
approach has been used to estimate the accessible surface area
in the Lower Tuscaloosa sandstone.62 Mineral distributions
mapped in 2D by SEM/EDX were coupled with dual-beam
FIB/SEM and X-ray-based micro tomographs of select regions
within the samples to quantify the connected pore network.
We point out that the visualization of pore networks is

essential for interpreting additional experiments, e.g., adsorp-
tion isotherms, used to estimate the gas in place, and

permeability. Heller and Zoback66 recently measured the
adsorption of methane and CO2 on shale samples from the
Barnett, Eagle Ford, Marcellus, and Montney plays. The
measurements, performed at 40 °C and up to ∼100 bar,
showed that “CO2 has ∼2−3 times the adsorptive capacity of
methane”, suggesting that CO2 could be used to stimulate shale
formations, enhance methane recovery, and perhaps be
permanently sequestered. The authors also suggested that
“water adsorption plays an important role in regulating surface
area availability for other molecules to adsorb”. Based on the
literature on activated carbons, this seems a distinct possibility.
Brennan et al.,67 e.g., already in 2002 reported that water
adsorption in carbons can block access to methane, reducing
adsorption capacity.
Although laboratory permeability measurements on shale

samples are notoriously difficult because of the low signal-to-
noise ratio, a number of data are appearing. Bhandari et al.68

reported measurements for Barnett samples and provided a
complete overview: permeability values in shale samples vary by
several orders of magnitude. The data depend on the applied
effective stress, on the orientation of bedding relative to the
flow direction, and on many other factors, including the
presence of water. Bhandari et al.68 report permeability as low
as 2 nanodarcy, and anisotropy of ∼40 (ratio between
permeability measured in two directions) for their samples,
which had 4% total organic content and were composed
predominantly of quartz, calcite, and clay. Data measured for a
variety of samples show permeability in the range 0.1 to 1000
nanodarcy.69−71 Permeability decreases by up to several orders

Figure 3. (top left) Van Krevelen diagram,88 which indicates the three main types of kerogen, and their chemical composition, as a function of
thermal maturity. (bottom) Three molecular units of kerogen developed by Ungerer et al.87 From left to right, three models referred to as type I-A,
type II-A, and type III-A, with chemical formulas C251H385O13N7S3, C252H294O24N6S3, and C233H204O27N4, respectively. (color code): C (black), H
(gray), O (red), N (blue), S (yellow). (top right) Final configuration of a system containing 12 model type II-D units, whose chemical formula is
C175H102O9N4S2, simulated at 300 K and 1 bar. This snapshot provides a model for the kerogen inclusion in a shale rock (Adapted with permission
from ref 87. Copyright 2015 American Chemical Society).
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of magnitude upon increasing the effective stress by 20−30
MPa.72−74 Reported permeability anisotropy ranges from as
little as ∼5, to 10,000 or more.75,76 These limited data confirm
what has become the mantra in shale rocks characterization:
every shale rock is uniquely different. What needs to be
identified, completely understood, and possibly quantified are
the unique descriptors that could lead to the prediction of fluid
behavior within a unique rock formation. In other words, what
measurements need to be done to design and optimize the
stimulation strategy for a given subsurface formation?
Models for Shale Pores. As discussed above, shale

includes diverse rock types, with kerogen dispersed in matrixes,
sometimes crystalline. Molecular models for crystalline rocks
are available in the literature. CLAY-FF, e.g., was derived for
describing clays,77 yielding excellent results for clay−water
interfaces.78−83 The model is being improved to include
edges,84,85 which is needed to investigate the entry of fluids in
pores, and polarizability.86 Calcite, quartz, and other relevant
minerals can be described using their crystalline structure.37

Models for kerogen are more difficult to derive. Many build
on the models developed by Ungerer et al.,87 whose kerogen
units reproduce experimental elemental composition and
functional groups.88 Atomistic and first-principles simulations
using these models (Figure 3) yield density and heat capacity in
good agreement with experiments. Other models can be
derived, but they should identify narrow pores and a density of
oxygenated groups consistent with the Van Krevelen diagram.88

Orendt et al.,89 e.g., proposed both a general approach and a
3D model for the Siskin Green River oil shale kerogen.
Alternative approaches to generate nanoporous models for
carbons include hybrid reverse Monte Carlo and quenched
molecular dynamics approaches, sometimes implementing
reactive force fields.90−92 Recently, for example, Economou
and his group developed and tested a family of kerogen
models.93 They quantified the porosity of their kerogen models,
which was controlled by depositing “dummy” Lennard-Jones
spheres within the system as it was being prepared. These
dummy spheres were then removed once the material was
prepared, and then, the pore space was quantified using both
conventional and newly developed computational approaches.
The approach allowed them to prepare models with percolated
porosity, which could be useful for better understanding the
behavior of confined fluids using molecular simulations. They
tested these models against the predicted adsorption of pure
methane as well as that of a mixture containing methane,
ethane, and propane, and also in terms of density of the
kerogen structure. Economou and co-workers were able to
identify systems that reproduce some of the porosity features
that are expected to be present in kerogen samples.
Mesoscale Simulations. Ultimately, studying fluids in

pores and nanopores should lead to large-scale simulations that
estimate the productivity of a formation depending on wells
geometry, fracturing stages, stimulation strategy, etc. Ross et
al.94 provided an example of such an application to determine
whether CO2 could be deployed to both enhance methane
recovery and achieve long-term storage in the Powder River
basin. The critical question is: how can we assess whether
molecular-scale details such as those discussed above have practical
implications? Answering this question is a current grand
challenge.95

To tackle this grand challenge, one could implement
multiscale approaches,96 using the atomistic/molecular-level
results as input. Chen et al., e.g., used Lattice Boltzmann

computational fluid dynamics98 to study the permeability
through the shale rock sample characterized using FIB-SEM.
While the results were encouraging, the authors conclude that
“more work is needed to better describe the adsorption and
dissolution of gas molecules in intrakerogen pores and upscale them
to the larger scale”. Other groups also used Lattice Boltzmann.97

An alternative approach uses analytical theories, building on the
effective medium theory, EMT, as proposed by Bonilla et al.99

This approach is successful when the pore network is truly
isotropic and disordered for all pore types.100−103 However,
when applied to hierarchical porous materials in which some of
the pores are not homogeneously distributed, the EMT
replicates experimental data with unreasonable values for its
parameters, including the network connectivity.104 Perhaps one
intermediate step is required to up-scale molecular insights to f luid
dynamics and/or theoretical approaches.
One methodology that could provide this intermediate step

is kinetic Monte Carlo, KMC,105−111 widely used in catalysis.106

To study transport in porous networks, one KMC approach
could identify the probability with which molecules occupy
sites/regions within the material, the differences in free energy
between the preferential adsorption sites/regions, and the
energy barriers between consecutive adsorption sites.112

Alternatively, one could subdivide the pore network in voxels
(volume elements), describe the probability of observing
molecules within each voxel, the ease of transport from one
voxel to another, eventual barriers encountered in so doing, and
changes in these characteristics due to molecule−molecule
interactions.113 The latter approach allows one to describe
various parts of a pore, including regions filled with water
through which molecules of interest adsorb and diffuse, etc.

Fluid Mixtures at Interfaces. The KMC approach could
describe the different interfaces encountered by the fluid as it is
transported from kerogen to the larger fractures. It is then
crucial to better understand how the fluid properties change
along this path.
Our survey must start inside kerogen, where important insights

can be borrowed from the zeolite literature,114 which provides
diffusion coefficients as a function of cage size and coverage,
and activation energies.115,116 For mixtures in zeolites, it has
been observed that the diffusion of the more mobile
component can be blocked by another, less mobile compound
(i.e., benzene can block methane).117,118 These insights might
have relevance for shale rocks, because the size of the pores in
kerogen can be comparable to those found in zeolites. One
clear difference is that pores are crystalline in zeolites and
disordered in kerogen (see Figure 3). It is widely anticipated
that as the pore size decreases, pore surface effects become
dominant, and surface diffusion can become more important
than “pore” diffusion (pore diffusion refers here to that of fluids
not in contact with the surface), and preferential adsorption
sites could affect both structure and dynamics of confined
fluids. Indeed, Falk et al.119 simulated hydrocarbons in a
kerogen model considered realistic because it is disordered and
because its pores have nanometer dimensions. The results
unequivocally show that continuum hydrodynamics breaks
down at the conditions considered (hence classic approaches
such as Darcy’s law fail), although the permeability could be
described knowing each hydrocarbon’s length and density.
Building on these observations, Obliger et al.120 simulated
hydrocarbon mixtures in kerogen. The results suggest that
“owing to strong adsorption effects, velocity cross correlations
between the mixture components and between molecules of
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the same species are [...] negligible”. This suggests that the
behavior of one fluid does not affect the behavior of another,
which seems at odds with observations in zeolites and could be
a consequence of the fact that Obliger et al. only considered
simple alkanes.
The next family of simulation studies of interest to this

overview concerns the mechanisms by which methane escapes
kerogen: Ho et al.121 found that (a) 30−47% of the gas recovery
is due to the fast release of pressurized free gas, present within
the nanopores; (b) this is followed by the slow desorption of
adsorbed gas, which diffuses out of the pores; (c) 3−35% of the
gas remains trapped in isolated nanopores, and therefore
nonrecoverable. Lee et al.122 studied the escape of methane
from a kerogen model when water provides a barrier (see
Figure 4). The results showed that methane desorption is an
activated process, in which the activation energy (barrier)
increases as the pressure drop across the material decreases.
These interesting results depend on the nature of the interface
between kerogen and the surrounding clay-rich rock, as well as
on the fluid mixture present at that interface. Lee et al.
suggested that “replacing water by CO2 or propane eliminates
the barriers, therefore raising hopes for clean/efficient
recovery”, and showed that the barrier strongly depends on
the fraction of the solid surface that is hydrophilic, because of
the work that needs to be done to remove interfacial water.
These observations demonstrate that atomistic models can help
identify strategies for optimizing the recovery of hydrocarbons.
For example, based on the work of Heller and Zoback:66 could
CO2 stimulation extract the ∼35% of natural gas trapped in
kerogen? Could methane be permanently trapped in kerogen
by using the wrong fluids?
The next stage investigates hydrocarbon transport through

the surrounding clay-rich rock. Ho and Striolo123 simulated
water and methane in muscovite, a proxy for nonswelling clays.
Depending on the amount of water present, and on the
pressure applied perpendicularly to the pore surfaces, water
could form a capillary bridge across the pore. This capillary
bridge can block methane transport when it is oriented
perpendicularly to flow. When the pressure drop in the
direction parallel to the pore surface is large, the bridge
becomes parallel to flow, restoring fast transport. Because the
water bridges depend on water−methane interfacial tension,
adding compounds such as CO2 or surfactants could favor the
dissolution of such bridges, thus enhancing hydrocarbon
transport, perhaps explaining recent field observations.8

■ POSSIBLE WAYS FORWARD
While the research summarized above requires further progress
to secure large positive impacts toward the sustainable
production of shale gas, we argue that three main areas require
immediate attention: (1) determine experimentally the
structure of the interface between kerogen and the surrounding
clay-rich matrix in representative shale samples, enhancing the
resolution and possibly visualizing fluid transport through the
pore network to interpret macroscopic permeability measure-
ments and to provide validation for computational efforts; (2)
continue the simulations of confined fluids, but focus on
complex mixtures at interfaces between different porous media;
and (3) develop mesoscale computational approaches that lead
to sensible integration of the experimental characterization
results with new and existing molecular simulation data to
predict fluid transport in complex pore networks, therefore
identifying the rate-limiting steps in shale gas production.

Direct Imaging the Kerogen−Clay Interface. Important
properties of shale samples depend on their 3D pore network at
the atomic-, nano-, and mesoscales. As demonstrated in Figure
1, much progress has been made in characterizing shale rocks.
Ellis and Peters,124 e.g., combined X-ray computed tomography
with scanning electron microscopy and X-ray spectroscopy to
monitor changes in permeability due to the evolution of
reactive fractures. However, the resolution is still not suf f icient to
identif y individual nanometer-sized pores. Further, the interface
between kerogen inclusions and the surrounding matrix has

Figure 4. (A) Schematic of the system considered by Lee et al.122 The
hydraulically fractured shale formation brings water into contact with
kerogen, within which methane is stored. (B) Three models
considered methane desorption: (I) an array of carbon nanotubes,
(II) a disordered carbon material, and (III) an array of carbon
nanotubes surrounded by hydrophilic rock. (C) Process during which
methane (gray spheres) moves from left to right and displaces the
water film (red and white spheres). The “adhesion” of water to the
solid substrate is responsible for the large energy barrier, quantified in
panel D as a function of the applied pressure. When the pressure is
high, the barrier is relatively small and methane can desorb, but when
the pressure is low, the barrier is so large that methane may not be able
to desorb from kerogen (Adapted with permission from ref 122.
Copyright 2016 Nature Publishing Group).
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remained elusive because of the different contrast between the
two materials. The X-ray tomography data shown in Figure 1
cannot identify pore networks below 20 nm, while the FIB-
SEM data from Chen et al.57 were obtained at the resolution of
12 nm. The pores in kerogen (see Figure 3) are of the order of
1 nm in size. This resolution can be achieved using
transmission electron microscopy (TEM). TEM instruments
capable of imaging materials with atomic resolution are now
ubiquitous, but they only produce 2D projection images,
averaging the structure along the viewing direction. To retrieve
information regarding features and the 3D structure along the
viewing direction, it is possible to use many 2D projections
acquired at different viewing angles−i.e., electron tomogra-
phy.125 This requires a TEM capable of rotating a sample to
different viewing directions while keeping it stable. Electron
tomography then reconstructs the 3D morphology by aligning
all projection images and combining them digitally to produce a
faithful representation of the original object density distribu-
tion. The resulting reconstruction consists of 3D distribution of
the electron scattering power of the sample materials. TEM and
scanning TEM (STEM) images provide monotonic projections
of density for specimens under certain imaging conditions and
are most often used to reconstruct 3D density.126 Typically, an
electron tomography experiment requires that an image be
taken every 1−2 degrees over a range of ±70 degrees of tilt
limited by the physical limitations of the TEM sample chamber,
holder, and specimen geometry. This can be done over
micrometer-sized fields of view with nanometer scale resolution
for samples up to about 300 nm in thickness, yielding a
quantitative measurement of the 3D density distribution within
the sample.
Electron tomography has been applied to porous materials

such as calcite,127 bone,128 organosilicates,129 silicon dioxide,130

and concrete.131 It appears an important step forward to
attempt to integrate X-ray tomography with electron
tomography. The X-ray tomography can provide information
on the pore network at relatively large scales, while the electron
tomography could provide pore-level details. Of course,
significant hurdles need to be overcome, including the
possibility that both X-rays and electron beams damage the
samples and that the interface between kerogen and clay (or
other matrix materials) could show different contrast, and
therefore could be difficult to visualize. As an example of this
possible development, in Figure 5 we report 3D electron
tomography data of a cement-based system, in which pores of
approximately nanometer size spaced ∼5−8 nm apart are
visualized.131 These pore sizes are comparable to what we
expect to observe in shale samples. It appears that the
challenges already addressed for materials other than shale
samples are similar to those faced by the desire to further
characterize rock samples. For completeness, it should be
mentioned that Helium ion microscopy has been used to
observe ore features of the order of ∼1 nm in size. King et al.132

reported images of the organic porosity from shale samples that
could be helpful in validating the pore models discussed above
Simulating Fluid Mixtures at Interfaces. Additional

molecular simulations should be conducted for systems that
reproduce the experimentally determined features of the
kerogen−clay interface, to achieve results that are directly
applicable to quantify hydrocarbon desorption from shale
formations and to complement the large body of literature
available regarding the simulation of fluids confined in narrow
pores (see the brief discussion above). The first step in these

studies would be the reconstruction of the confining material,
based on experimental data. Two alternative approaches are
possible for this: (a) idealization of system features toward
reproducing some properties common to many shale plays or
(b) use experimental details for deriving models as accurate as
possible. In the context of shale gas, the former approach might
yield results too general to be useful, while the latter could yield
results so spatially restrictive as to not be representative even of
a single formation. Keeping these limitations in mind, one
should attempt to identify those features that are peculiar to the
samples for which data are available, yet characteristic enough
to yield generalizable observations. While the results will be
strictly applicable to the model developed, it is possible that the
approach will be generalizable, via the identification of
appropriate descriptors and the implementation of appropriate
coarse-grained approaches.
Using standard equilibrium and nonequilibrium simulation

approaches one could select simulation systems to address
fundamental questions such as How do fluids partition and
adsorb when CO2 or water are present at the kerogen−clay
interface? How does the transport change when branched
alkanes are present together with methane and propane within
kerogen? Under what circumstances does the transport of the
slowest compound dominate that of the other compounds at a
kerogen−clay interface?

Multiscale Analysis of Fluid Transport. To attempt to
quantify the mesoscale effects of the molecular-level details
provided by the molecular simulations, one could implement a
kinetic Monte Carlo model, KMC. Although several approaches

Figure 5. Experimental characterization data obtained using TEM for a
cement-based paste. The paste was calcium silicate hydrate, and the
sample was taken from the center of the paste. The high-resolution
cryo-TEM (panel A) shows that the material is primarily amorphous,
although some crystalline regions are observed. High-resolution details
obtained from the crystalline region (panel B) illustrate the fine lattice
fringes. The crystalline nature of this region is confirmed by selected
area diffraction data (panel C). Using Xplore3D tomography software
it was possible to reconstruct the 3D networks of the pores present in
this material (panel D). Note that the pores are of size ∼1.7−2.4 nm
and are separated by ∼5−8 nm. Reproduced with permission from ref
131. Copyright 2015 John Wiley and Sons.
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are possible, a voxel-based KMC model seems attractive. This
approach requires a lattice model on which to run the
simulations. The development of the lattice model requires
experimental visualization of the sample of interest, as well as
detailed information regarding the fluid properties in various
pores. These could be obtained from characterization experi-
ments. Using the KMC method one could then quantify how
microscopic details (e.g., the presence of a water film at the
interface between kerogen and clay, the presence of natural
microfractures connecting several kerogen inclusions in a clay
matrix,133,134 fluid mixtures composed by large compounds that
block the transport of small compounds) result in mesoscale
observables such as the permeability of a rock fragment and its
fracture network. Moreover, the characterization and the
location of mesoscale interfaces such as kerogen/matrix, coarse
grain/matrix, cluster of grains/matrix and interfaces between
laminae are important to consider, in order to understand and
predict fluid and fracture behaviors in such multiscale
systems.135,136 This information can be included in macro-
scopic simulators such as the one presented by Ross et al.,94 or
commercial ones.137,138 One possible realization of a voxel-
based KMC algorithm has been recently proposed by
Apostolopoulou et al.113 This approach has been validated in
1D and 2D against analytical descriptions of diffusion in
homogeneous media, has reproduced molecular dynamics
simulations for fluxes of various gases through nanopores filled
with water,45 reproduced expected trends for the fluid fluxes
along 1D pores as a function of the pore length, and has been
used to study gas transport in 1D models of pore networks.
This model should now be extended to 3D pore networks and
implemented to address critical questions that could help
identify the rate-limiting steps in shale gas production.

■ CONCLUSIONS
Producing shale gas remains a challenge, both technological and
scientific. However, much has been achieved in the past few
years regarding improvements in both the characterization of
subsurface formations and our understanding of fluids
migration within them. Further progress seems achievable
when state of the art approaches from diverse disciplines are
synergistically combined. The importance of shale gas to both
macro-scale economies and environmental concerns justifies
significant investments on this topic even in a period when the
oil price is far from its all-time highs. Some possible research
directions are suggested in this review, which reflect the
authors’ opinions. These possible research adventures include:
further simulations at the molecular level for realistic systems of
technological importance, combined applications of advanced
experimental characterization tools, including electron and X-
ray tomography, and novel approaches to propagate microscale
observations such as those attainable with molecular
simulations toward predicting meso- and macroscopic observ-
ables. While the discussion is here focused on shale gas
production, it is expected that the methods, once derived and
optimized, could be applicable to a variety of sectors, ranging
from construction to catalysis.
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