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Abstract

Abstract argumentation offers an appealing way of representing and evaluating argu-
ments and counterarguments. This approach can be enhanced by considering probability
assignments on arguments, allowing for a quantitative treatment of formal argumentation.
In this paper, we regard the assignment as denoting the degree of belief that an agent
has in an argument being acceptable. While there are various interpretations of this, an
example is how it could be applied to a deductive argument. Here, the degree of belief that
an agent has in an argument being acceptable is a combination of the degree to which it
believes the premises, the claim, and the derivation of the claim from the premises. We
consider constraints on these probability assignments, inspired by crisp notions from clas-
sical abstract argumentation frameworks and discuss the issue of probabilistic reasoning
with abstract argumentation frameworks. Moreover, we consider the scenario when assess-
ments on the probabilities of a subset of the arguments are given and the probabilities of
the remaining arguments have to be derived, taking both the topology of the argumen-
tation framework and principles of probabilistic reasoning into account. We generalize
this scenario by also considering inconsistent assessments, i. e., assessments that contradict
the topology of the argumentation framework. Building on approaches to inconsistency
measurement, we present a general framework to measure the amount of conflict of these
assessments and provide a method for inconsistency-tolerant reasoning.

1. Introduction

Uncertain reasoning usually differentiates between qualitative and quantitative uncertainty.
Approaches to qualitative uncertain reasoning focus on issues such as defeasibility, default-
assumptions, and contradictions. These include approaches such as defeasible logics (Nute,
1994), default logics (Reiter, 1980), logic programming (Gelfond & Leone, 2002), and com-
putational models of argumentation (Rahwan & Simari, 2009). One central feature of these
approaches is that they provide inferences in a qualitative manner, that is, some statement
is either acceptable or not acceptable (in some approaches there is also a third option of “do
not know”). We can see this even in abstract argumentation where we can associate each
abstract argument with a statement describing the argument. Approaches to quantitative
uncertain reasoning, on the other hand, focus on the problem of quantifying the acceptance
status of statements and include approaches such as probabilistic reasoning (Pearl, 1988;
Paris, 1994), Dempster-Shafer theory (Shafer, 1976), and fuzzy logics (Cintula, Hájek, &
Noguera, 2011). As truth and correct decisions are noisy concepts in real-world scenarios
these approaches aim at modelling and reasoning with those in a more appropriate manner.

Combining approaches to qualitative and quantitative uncertain reasoning is a natural
way to benefit from the advantages of both areas. In this paper, we address the challenge
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of combining abstract argumentation frameworks (Dung, 1995) with probabilistic reasoning
capabilities, which has recently gained some attention in the community of formal argu-
mentation, see e. g. (Hunter, 2016a; Sun & Liao, 2016; Fazzinga, Flesca, & Furfaro, 2016;
Bex & Renooij, 2016; Riveret & Governatori, 2016; Hunter & Thimm, 2016b; Hunter,
2016b; Thimm & Gabbay, 2016) for some recent works and Section 8.1 for a thorough dis-
cussion. An abstract argumentation framework is a directed graph with the nodes being
the arguments and edges indicating attack between arguments. Work in this field w. r. t.
probabilistic reasoning can be divided (Hunter, 2013) into the constellations approach (see
e. g. (Li, Oren, & Norman, 2011)) and the epistemic approach (see e. g. (Thimm, 2012)).

In the constellations approach, uncertainty in the topology of the graph (probabilities
on arguments and attacks) is used to make probabilistic assessments on the acceptance of
arguments. In the epistemic approach, the topology of the graph is fixed but probabilistic
assessments on the acceptance of arguments are evaluated w. r. t. the relations of the argu-
ments in the graph. The core idea of the epistemic approach is that the more likely one
is to believe in an argument, the less likely one is to believe in an argument attacking it.
The epistemic approach is useful for modelling the beliefs that an opponent might have in
the arguments that could be presented, which is useful for example when deciding on the
best arguments to present in order to persuade that opponent, see e. g. (Hunter, 2015). The
approach is also useful for modelling agents who are unable to directly add or change the
argument graph, for instance when considering the beliefs of the audience of a debate.

Here we follow the epistemic approach to probabilistic argumentation and provide a
comprehensive account of our framework developed in previous works (Hunter & Thimm,
2014c, 2014b, 2014d, 2016a). To give an overview, our approach to probabilistic reasoning in
abstract argumentation frameworks is as follows. We regard assignments of probabilities to
arguments as denoting the belief that an agent has that an argument is acceptable. Often,
we will just abbreviate our phraseology so that for example instead of talking about belief in
an argument being acceptable, we will just refer belief in an argument. So for a probability
function P , and an argument A, P (A) > 0.5 denotes that the argument is believed (to
the degree given by P (A)), P (A) < 0.5 denotes that the argument is disbelieved (to the
degree given by P (A)), and P (A) = 0.5 denotes that the argument is neither believed
or disbelieved. This approach leads to the notion of an epistemic extension: This is the
subset of the arguments in the graph that are believed to be acceptable to some degree (i. e.
the arguments such that P (A) > 0.5). Since this is a very general idea, our aim in this
paper is to consider various properties (i. e. constraints) that hold for classes of probability
functions, and for the resulting epistemic extensions. We structure our presentation on two
views as follows:

Standard view on using probability of arguments. In this view, we provide properties
for the probability function that ensure that the epistemic extensions coincide with
Dung’s definitions for extensions. Key properties include coherence (if A attacks B,
then P (A) ≤ 1− P (B)) and foundation (if A has no attackers, then P (A) = 1). The
advantage of using a probability function instead of Dung’s definitions is that we can
also specify the degree to which each argument is believed.
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Non-standard view on using probability of arguments. In this view, we consider alterna-
tive properties for the probability function. This means that the resulting epistemic
extensions may not coincide with Dung’s definitions for extensions.

The epistemic approach extends abstract argumentation. The notion of an abstract
argument graph is very general in that there is no formal restriction on what constitutes
an argument or what constitutes an attack. This generality is an advantage in that very
diverse kinds of argumentative situations can be modelled using abstract argumentation.
At the core of abstract argumentation is the idea that acceptable sets of arguments can be
drawn from an argument graph. Various kinds of semantics, starting with Dung’s proposals
for grounded, preferred, stable, and complete semantics, provide options for determining
what constitutes an acceptable set of arguments. Various proposals for extending abstract
argumentation, such as value-based argumentation, ranking-based semantics, and weighted
argumentation frameworks, introduce extra information to enable the selection of acceptable
sets of arguments, and the epistemic approach to argumentation is another proposal in this
vein.

As we stated above, for an argument A, P(A) represents the degree of belief that A is
acceptable. How we might determine whether an argument is acceptable depends on the
kinds of arguments we are dealing with and the kind of application. However, to give an
indication, if we are dealing with deductive arguments (i. e. structured arguments where each
argument has a set of logical formulae as premises and a logical formula as a claim), then
we could specify that a deductive argument is acceptable when its premises are believed, its
claim is believed, and the derivation of the claim from the premises is believed. So if there
is uncertainty in any of those three dimensions, then this is reflected in the degree of belief
that the argument is acceptable. In (Hunter, 2013), the epistemic approach is applied to
classical logic arguments. Each argument has a set of classical logic formulae as premises
and a classical logic formula as claim, and the claim is derived from the premises using the
classical consequence relation. Uncertainty was captured by a probability distribution over
the models of the language, and the probability of an argument was defined as the sum of
the probability of the models that satisfy the premises. So the probability of the claim is
never less than the probability of the premises, and there is no uncertainty in the derivation
of the claim from the premises. In contrast, if we were to use a non-monotonic logic in
structured argumentation, then we may have uncertainty in all three dimensions.

To give another example of defining acceptability, we could consider inductive argu-
ments. Here, an inductive argument is a set of examples (as premises) from which a general
statement is obtained (as a claim) by a process of induction (i. e. generalisation). Then we
could specify that an inductive argument is acceptable when its premises are believed, its
claim is believed, and the inductive process by which the claim is obtained from its premises
is believed. As there is uncertainty in one or more of these three dimensions, this is reflected
in the degree of belief that the argument is acceptable being less than one.

As a third example of defining acceptability, we could consider analogical arguments. In
an analogical argument, perceived similarity between two situations is used to claim that
some feature of the first situation will hold for the second situation. So we could specify
that an analogical argument is acceptable when the first situation does indeed exist and
that it has the feature, the two situations are indeed similar, and as a result that the second
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situation also has the feature. Again there is uncertainty in one or more of these dimensions,
and this is reflected in the degree of belief that the argument is acceptable being less than
one.

The framework that we present in this paper is appealing theoretically as it provides
further insights into semantics for abstract argumentation, and it offers a finer-grained
representation of uncertainty in arguments. Perhaps more importantly, our framework for
probability functions is appealing practically because we can better handle the following
situations.

Modelling an audience judging arguments Consider how a member of the audience
of a discussion hears arguments and counterarguments, but is unable (or does not
want) to express arguments. Here it is natural to consider how that member of the
audience considers which arguments she believes, thereby constructing an epistemic
extension. For example, suppose we hear one of our friends saying argument A =
“John suffers from hay fever, and so a picnic in the hay field will be unpleasant for
him” and we hear another of our friends saying argument B = “John has taken a
homeopathic medicine for hay fever and therefore he won’t suffer from hay fever.”
We are the audience of this discussion, and perhaps for diplomatic motives, we do
not want to add any counterarguments. Yet we may wish to judge the arguments
that have been presented by our friends. If we regard homeopathic medicine as just
water, then we will have high belief in argument A and low belief in argument B (e. g.
P (A) = 0.9 and P (B) = 0), leading to an epistemic extension containing just A. In
practice, we can make these judgments when hearing arguments presented in natural
language. We can assess the degree to which we believe the premises, the claim, and
the derivation of the claim from the premises, and we can then use those evaluations
to obtain an overall value for the belief we have in an argument being acceptable.
Furthermore, we may choose to adjust this overall value when taking into account
other arguments. For instance, if we learn of a counterargument that we assign a
high degree of belief in it being acceptable, we may wish to decrease the belief in the
original argument being acceptable. We give a larger example in Figure 1.

Modelling an opponent in a dialogue Consider how one agent in an argumentation
dialogue will have a model of the other agents in the dialogue. This modelling may
include what arguments the other agents believe, and this may be used for a better
choice of move in the dialogue. For example, politicians at election time often select
arguments to present to a specific group of voters depending on the type of voters. If
the voters are business people, then arguments concerning increased expenditure on
infrastructure and skills training might be presented since it may be more likely that
these would be believed by this audience, whereas if the voters are retired people,
then arguments concerning increased expenditure on healthcare might be presented.
Furthermore, the politician may take care to not present arguments for which the
group of voters might believe counterarguments. So, modelling the beliefs of an op-
ponent in the arguments that could arise in a dialogue may be used by the proponent
in a strategy for winning the dialogue. See (Hunter, 2015) for an application of the
epistemic approach to modelling a persuadee in persuasion dialogues.
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The foreign takeover of

an oil company in a small

country by large multina-
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(0.8)
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(0.9)
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the world. (0.5)
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and as such should

be exempt from

world trade consid-

erations. (0.1)

World trade con-
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be unfavourable for
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countries. (0.6)
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economic control

over its oil fields

if taken over by a

foreign company.

(0.1)

A small developing

country lacks the

expertise to extract

its oil without some

foreign assistance.

(0.9)

A country can in-

vest in its national

oil companies in

order to develop ex-

pertise to extract

its oil, and thereby

generate revenues

for its country. (0.5)

A small devel-

oping country

lacks the finan-

cial resources to

invest in any-

thing without

the revenues it

gets from oil.

(0.5)

Figure 1: Consider a member of the audience listening to a radio documentary about the
takeover of oil production companies in small developing countries by large multi-
nationals. The documentary may be exploring the question of whether such small
countries should permit these foreign takeovers. To explore the question, the
documentary includes a number of interviews with experts from small develop-
ing countries, from multinational oil companies, and from financial institutes.
Suppose the member of the audience records ten arguments, and puts them into
the argument graph shown. For someone who is reasonably optimistic about
multinational oil companies playing a beneficial role in developing countries, the
probability value given for each argument (given in brackets in each box) may
reflect their belief in the acceptability of each argument.
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We extend our framework by also considering the case when probability assessments
are either incomplete or contradictory (or both) and the challenge of completing and con-
solidating them (Hunter & Thimm, 2016a). The central challenge in this investigation
is, given probabilistic assessments on arguments that are not meaningful w. r. t. the con-
straints established in the first part of this paper, how can these probabilities be modified
to comply with these conditions? For this purpose and motivated by similar approaches to
inconsistency measurement for classical and probabilistic logics (Hunter & Konieczny, 2010;
Thimm, 2013; De Bona & Finger, 2015), we present inconsistency measures for evaluating
the appropriateness of (partial) probability assessments and a general approach to use those
measures to consolidate these assessments.

In summary, the contributions of our work are as follows:

1. We lay out the building blocks for our basic probabilistic framework and investigate
the notion of epistemic extensions (Section 3).

2. We discuss several properties for standard epistemic extensions and show that these
probabilistic concepts coincide with their corresponding concepts from abstract argu-
mentation (Section 4).

3. We introduce non-standard epistemic extensions and a corresponding set of proper-
ties as a means to extend the standard view and provide a complete picture of the
relationships between our different probabilistic properties (Section 5).

4. We present the concept of partial probability assessments and an approach to complete
them by using the principle of maximum entropy (Section 6).

5. We investigate the case of contradictory probability assessments (Section 7), in par-
ticular:

(a) We introduce inconsistency measures for evaluating the significance of a partial
probability assessment violating the rationality conditions (Section 7.1).

(b) We use the inconsistency measures to define consolidation operators for partial
probability assessments (Sections 7.2 and 7.3).

Furthermore, we provide some necessary preliminaries in Section 2, discuss related works
in Section 8, and conclude with a discussion in Section 9.

This paper builds on previous works (Hunter & Thimm, 2014c, 2014b, 2014d, 2016a)
but extends it in several ways and provides a coherent view on the issue of probabilistic
reasoning in abstract argumentation. More precisely, the short paper (Hunter & Thimm,
2014d) provides a general overview on the ideas of this paper and preliminary versions of
the material in Sections 3–5 are available as a technical report (Hunter & Thimm, 2014c)
and a workshop paper (Hunter & Thimm, 2014b). Sections 6 and 7 contains material from
(Hunter & Thimm, 2016a), extended with formal proofs and more discussion.

2. Preliminaries

Abstract argumentation frameworks (Dung, 1995) take a very simple view on argumentation
as they do not presuppose any internal structure of an argument. Abstract argumentation
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A1 A2 A3

A4

A5

Figure 2: The argumentation framework AF from Example 4

frameworks only consider the interactions of arguments by means of an attack relation
between arguments.

Definition 1. An abstract argumentation framework AF is a tuple AF = (Arg,→) where
Arg is a set of arguments and → is a relation → ⊆ Arg × Arg.

Let A denote the set of all abstract argumentation frameworks. For two arguments
A,B ∈ Arg the relation A → B means that argument A attacks argument B. For A ∈ Arg
define AttAF(A) = {B | B → A}. Abstract argumentation frameworks can be concisely
represented by directed graphs, where arguments are represented as nodes and edges model
the attack relation. Note that we only consider finite argumentation frameworks here, i. e.,
argumentation frameworks with a finite number of arguments.

Example 1. Consider the abstract argumentation framework AF = (Arg,→) depicted in
Figure 4. Here it is Arg = {A1,A2,A3,A4,A5} and → = {(A2,A1), (A2,A3), (A3,A4),
(A4,A5), (A5,A4), A5,A3)}

Semantics are given to abstract argumentation frameworks by means of extensions
(Dung, 1995) or labellings (Wu & Caminada, 2010). In this work, we use the latter.

Definition 2. Let AF = (Arg,→) be an abstract argumentation framework. A labelling L
for AF is a function L : Arg→ {in, out, undec}.

A labeling L assigns to each argument A ∈ Arg either the value in, meaning that the
argument is accepted, out, meaning that the argument is not accepted, or undec, meaning
that the status of the argument is undecided. Let in(L) = {A | L(A) = in} and out(L) resp.
undec(L) be defined analogously. The set in(L) for a labelling L is also called extension
(Dung, 1995). A labelling L is called conflict-free if for no A,B ∈ in(L) we have that
A → B.

Arguably, the most important property of a semantics is its admissibility. A conflict-free
labelling L is called admissible if and only if for all arguments A ∈ Arg

1. if L(A) = out then there is B ∈ Arg with L(B) = in and B → A, and

2. if L(A) = in then L(B) = out for all B ∈ Arg with B → A,

and it is called complete if, additionally, it satisfies

3. if L(A) = undec then there is no B ∈ Arg with B → A and L(B) = in and there is a
B′ ∈ Arg with B′ → A and L(B′) 6= out.
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The intuition behind admissibility is that an argument can only be accepted if there are no
attackers that are accepted and if an argument is not accepted then there has to be some
reasonable grounds. The idea behind the completeness property is that the status of an
argument is only undec if it cannot be classified as in or out. Different types of classical
semantics (Dung, 1995; Caminada, 2006; Baroni, Caminada, & Giacomin, 2011) can be
phrased by imposing further constraints. Let AF = (Arg,→) be an abstract argumentation
framework and L : Arg→ {in, out, undec} a complete labelling. Then

• L is grounded if and only if in(L) is minimal,

• L is preferred if and only if in(L) is maximal,

• L is stable if and only if undec(L) = ∅, and

• L is semi-stable if and only if undec(L) is minimal.

All statements on minimality/maximality are meant to be with respect to set inclusion.
Note that a grounded labelling is uniquely determined and always exists (Dung, 1995).

Example 2. Consider again the argumentation framework AF in Figure 4. The labeling
L1 defined via

L1(A1) = out L1(A2) = in L1(A3) = out L1(A4) = undec L1(A5) = undec

is complete and grounded. The labeling L2 defined via

L2(A1) = out L2(A2) = in L2(A3) = out L2(A4) = in L2(A5) = out

is complete, preferred, stable, and semi-stable.

Abstract argumentation frameworks are arguably the most investigated formalism for
formal argumentation. However, there are also formalisms for structured argumentation,
such as deductive argumentation (Besnard & Hunter, 2008), ASPIC+ (Modgil & Prakken,
2014), ABA (Toni, 2014), and defeasible logic programming (Garcia & Simari, 2004). In
structured argumentation, arguments are a set of (e. g. propositional) formulas (the support
of an argument) that derive a certain conclusion (the claim of an argument). The attack
relation between arguments is then derived from logical inconsistency.

3. A Probabilistic Framework for Abstract Argumentation

We now go beyond classical three-valued semantics of abstract argumentation and turn to
probabilistic interpretations of the status of arguments. Let 2X denote the power set of a
set X . For our purposes we define a probability function as follows.

Definition 3. Let X be some finite set. A probability function P on X is a function
P : 2X → [0, 1] that satisfies ∑

X⊆X
P (X) = 1
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Here, a probability function is a function on the set of subsets of some (finite) set which
is normalized, i. e., the sum of the probabilities of all subsets is one. Let P be the set of all
probability functions.

We use the concept of subjective probability (Paris, 1994) for interpreting probabilities.
There, a probability P (X) for some X ⊆ X denotes the degree of belief we put into X.
Then a probability function P can be seen as an epistemic state of some agent that has
uncertain beliefs with respect to X . In probabilistic reasoning (Pearl, 1988; Paris, 1994),
this interpretation of probability is widely used to model uncertain knowledge representation
and reasoning.

In the following, we consider probability functions on sets of arguments of an abstract
argumentation framework. Let AF = (Arg,→) be some fixed abstract argumentation frame-
work and let P(AF) be the set of probability functions of the form P : 2Arg → [0, 1]. For
P ∈ P(AF) and A ∈ Arg we abbreviate

P (A) =
∑

A∈E⊆Arg
P (E) .

Given some probability function P , the probability P (A) represents the degree of belief
that A is acceptable wrt. P . In order to bridge the gap between probability functions and
labelings, consider the following definition, cf. (Hunter, 2013).

Definition 4. Let AF = (Arg,→) be an abstract argumentation framework and P : 2Arg →
[0, 1] a probability function on Arg. The labelling LP : Arg→ {in, out, undec} defined via the
following constraints is called the epistemic labelling of P :

• LP (A) = in iff P (A) > 0.5

• LP (A) = out iff P (A) < 0.5

• LP (A) = undec iff P (A) = 0.5

In other words, an argument A is labelled in in LP when it is believed to some degree
(which we identify as P (A) > 0.5), it is labelled out when it is disbelieved to some degree
(which we identify as P (A) < 0.5), and it is labelled undec when it is neither believed
nor disbelieved (which we identify as P (A) = 0.5). Furthermore, the epistemic extension
of P is the set of arguments that are labelled in by the epistemic labelling, i. e. X is an
epistemic extension iff X = in(LP ). We say that a labelling L and a probability function
P are congruent, denoted by L ∼ P , if for all A ∈ Arg we have L(A) = in ⇔ P (A) = 1,
L(A) = out ⇔ P (A) = 0, and L(A) = undec ⇔ P (A) = 0.5. Note that if L ∼ P then
L = LP , i. e., if a labelling L and a probability function P are congruent then L is also the
epistemic labelling of P .

An epistemic labelling can be used to give either a standard semantics (as we will
investigate in Section 4) or a non-standard semantics (as we will investigate in Section 5).

Example 3. To further illustrate epistemic labelings and extensions, consider the graph
given in Figure 3. Here, we may believe that, say, A is valid and that B and C are not valid.
In which case, with this extra epistemic information about the arguments, we can resolve
the conflict and so take the set {A} as the “epistemic” extension. In contrast, there is only
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A = Ann will go to
the party and this

means that Bob will
not go to the party

B = Bob will go to
the party and this

means that Chris will
not go to the party

C = Chris will go to
the party and this

means that Ann will
not go to the party

Figure 3: Example of three arguments in a simple cycle.

one admissible set which is the empty set. So by having this extra epistemic information,
we get a more informed extension (in the sense that it has harnessed the extra information
in a sensible way).

In general, we want epistemic extensions to allow us to better model the audience of
argumentation. Consider, for example, when a member of the audience of a TV debate
listens to the debate at home, she can produce the abstract argument graph based on the
arguments and counterarguments exchanged. Then she can identify a probability function
to represent the belief she has in each of the arguments. So she may disbelieve some of
the arguments based on what she knows about the topic. Furthermore, she may disbelieve
some of the arguments that are unattacked. As an extreme, she is at liberty of completely
disbelieving all of the arguments (so to assign probability 0 to all of them). If we want to
model audiences, where the audience either does not want to or is unable to add counterar-
guments to an argument graph being constructed in some form of argumentation, we need
to take the beliefs of the audience into account, and we need to consider which arguments
they believe or disbelieve.

4. Standard Epistemic Extensions

We now consider some constraints on the probability function which may take different
aspects of the structure of the argument graph into account. We will show how these
constraints are consistent with Dung’s notions of admissibility.

For the remainder of this paper let AF = (Arg,→) be an abstract argumentation frame-
work and P : 2Arg → [0, 1] a probability function. Consider the following properties (note
that COH is from (Hunter, 2013) and JUS is from (Thimm, 2012)):

COH P is coherent wrt. AF if for every A,B ∈ Arg, if A → B then P (A) ≤ 1− P (B).

SFOU P is semi-founded wrt. AF if P (A) ≥ 0.5 for every A ∈ Arg with AttAF(A) = ∅.

FOU P is founded wrt. AF if P (A) = 1 for every A ∈ Arg with AttAF(A) = ∅.

SOPT P is semi-optimistic wrt. AF if P (A) ≥ 1 −
∑
B∈AttAF(A) P (B) for every A ∈ Arg

with AttAF(A) 6= ∅.
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OPT P is optimistic wrt. AF if P (A) ≥ 1−
∑
B∈AttAF(A) P (B) for every A ∈ Arg.

JUS P is justifiable wrt. AF if P is coherent and optimistic.

TER P is ternary wrt. AF if P (A) ∈ {0, 0.5, 1} for every A ∈ Arg.

The intuition behind these properties is as follows. COH ensures that if argument A attacks
argument B, then the degree to which A is believed caps the degree to which B can be
believed. SFOU ensures that if an argument is not attacked, then the argument is not
disbelieved (i. e. P (A) ≥ 0.5). FOU ensures that if an argument is not attacked, then the
argument is believed without doubt (i. e. P (A) = 1). SOPT ensures that the belief in A is
bounded from below if the belief in its attackers is not high. OPT ensures that if an argument
is not attacked, then the argument is believed without doubt (i. e. P (A) = 1) and that the
belief in A is bounded from below if the belief in its attackers is not high. In particular,
the term

∑
B∈AttAF(A) P (B) can be interpreted as the upper bound on the probability that

some attacker of A is acceptable. Note that this condition enforces P (A) = 1 if P (B) = 0
for all attackers B of A and thus models a probabilistic version of (part of) the admissibility
condition for ordinary abstract argumentation frameworks. JUS combines COH and OPT
to provide bounds on the belief in an argument based on the belief in its attackers and
attackees, and TER ensures that the probability assignment is a three-valued assignment.

Example 4. Consider the abstract argumentation framework AF = (Arg,→) depicted in
Fig. 4 and the probability functions depicted in Table 1 (note that these functions are only
partially defined by giving the probabilities of arguments). The following observations can
be made:

• P1 is semi-founded, founded, but neither coherent, optimistic, semi-optimistic, ternary,
nor justifiable,

• P2 is coherent and semi-optimistic, but neither semi-founded, founded, optimistic,
ternary, nor justifiable,

• P3 is coherent, semi-optimistic, semi-founded, founded, optimistic, and justifiable, but
not ternary,

• P4 is semi-founded, founded, optimistic, and semi-optimistic, but neither coherent,
justifiable, nor ternary, and

• P5 is coherent, semi-founded, semi-optimistic, and ternary but neither optimistic,
justifiable, nor founded.

Example 5. Consider the graph given in Figure 3. Suppose, we have an assignment P (A) =
0.5, P (B) = 0.5, and P (C) = 0.5. This assignment, which makes no commitment to believe
or disbelieve any of the arguments, satisfies the coherent, semi-founded, founded, semi-
optimistic, optimistic, justifiable, and ternary properties. Now consider the assignment
P ′(A) = 0.8, P ′(B) = 0.2, and P ′(C) = 0.2. This assignment satisfies the coherent, semi-
founded, and founded properties, but it does not satisfy the semi-optimistic, optimistic,
justifiable, or ternary properties. Failure of the semi-optimistic, optimistic, and justifiable
properties comes from the P ′(C) being too low given P ′(B) being so low.
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A1 A2 A3 A4 A5 A6

P1 0.2 0.7 0.6 0.3 0.6 1

P2 0.7 0.3 0.5 0.5 0.2 0.4

P3 0.7 0.3 0.7 0.3 0 1

P4 0.7 0.8 0.9 0.8 0.7 1

P5 0.5 0.5 0.5 0.5 0.5 0.5

Table 1: Some probability functions for Example 4

A1 A2 A3

A4

A5 A6

Figure 4: A simple argumentation framework

Example 6. Consider Figure 1. Here, there is the unattacked argument “Oil companies
are a special case in national economies and as such should be exempt from world trade
considerations” with a probability assignment of 0.1. So the member of the audience has
not believed this argument. Possibly they may have an argument against it or they may
simply disbelieve it without having a reason against. In any case, this assignment violates
the founded and semi-founded properties. So even though these are important properties
for reflecting abstract argumentation theory, it may also be appropriate to suspend them in
practice for applications such as this.

Recall that P(AF) is the set of all probability functions on Arg. Let Pt(AF) be the
set of all t-probability functions with t ∈ {COH,SFOU,FOU,OPT,SOPT,JUS,TER}. For
T ⊆ {COH, SFOU,FOU,OPT,SOPT, JUS,TER} we abbreviate

PT (AF) =
⋂
t∈T
Pt(AF)

We obtain the following relationships between the different classes of probability functions.

Proposition 1. Let AF = (Arg,→) be an abstract argumentation framework.

1. ∅ ( PJUS(AF) ( PCOH(AF) ( P(AF)

2. POPT(AF) = P{SOPT,FOU}(AF).

3. PFOU(AF) ( PSFOU(AF).

4. ∅ ( PTER(AF) ( P(AF).

For the proof of item 1.) of the above proposition see (Thimm, 2012) and (Hunter,
2013). The remaining relationships follow directly from these definitions.
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For all probability functions P such that LP is admissible in the classical sense, we have
that P assigns some degree of belief to each argument that is unattacked, thereby P satisfies
the SFOU constraint.

Proposition 2. For all probability functions P , if LP is admissible then P ∈ PSFOU(AF).

Proof. Assume LP is admissible. Therefore, if LP (A) = out, then there is an argument
B such that B → A and LP (B) = in. Therefore, if AttAF(A) = ∅, then LP (A) 6= out.
Therefore, if AttAF(A) = ∅, then P (A) ≥ 0.5. Therefore, P ∈ PSFOU(AF).

We can further constrain a probability assignment so that the epistemic labelling straight-
forwardly captures the standard semantics (i. e. Dung’s semantics). By setting the prob-
ability function appropriately, its epistemic labelling corresponds to grounded, complete,
stable, preferred, or semi-stable labellings. All we require is a three-valued probability
function that simulates each complete labelling function. For this, we provide the following
definition that provides the counter-part in our framework for a complete labelling.

Definition 5. Let AF = (Arg,→) be an argumentation framework. Then a complete prob-
ability function P ∈ P(AF) for AF is a probability function P such that for every A ∈ Arg
the following conditions hold:

1. P ∈ PTER(AF);

2. if P (A) = 1 then P (B) = 0 for all B ∈ Arg with B → A;

3. if P (B) = 0 for all B with B → A then P (A) = 1;

4. if P (A) = 0 then there is B ∈ Arg with P (B) = 1 and B → A;

5. if P (B) = 1 for some B with B → A then P (A) = 0.

Note that the above definition straightforwardly follows the definition of completeness
for classical semantics. Therefore, we have that P is a complete probability function if and
only if there is a complete labeling L and P ∼ L.

In the same way that Caminada and Gabbay (2009) showed that different semantics
can be obtained by imposing further restrictions on the choice of labelling, we can obtain
the different semantics by imposing further restrictions on the choice of complete proba-
bility function. These constraints, as shown in the following result, involve minimizing or
maximizing particular assignments. So for instance, if the assignment of 1 to arguments is
maximized, then a preferred labelling is obtained.

Proposition 3. Let AF = (Arg,→) be an abstract argumentation framework and P ∈
P(AF). If P is a complete probability function for AF and the restriction specified in Table 2
holds for P , then the corresponding type of epistemic labelling is obtained.

Proof. Let L and P be congruent, i. e., L ∼ P . So L is a complete labelling iff P is a
complete probability assignment. Therefore, each restriction in Section 2 holds for L iff
the corresponding restriction in Table 2 holds for P . For instance, “Maximal number of
arguments A such that L(A) = undec” holds iff “Maximal number of arguments A such

13



Restriction on a complete probability function P Classical semantics

No restriction complete extensions
No arguments A such that P (A) = 0.5 stable
Maximal no. of A such that P (A) = 1 preferred
Maximal no. of A such that P (A) = 0 preferred

Maximal no. of A such that P (A) = 0.5 grounded
Minimal no. of A such that P (A) = 1 grounded
Minimal no. of A such that P (A) = 0 grounded

Minimal no. of A such that P (A) = 0.5 semi-stable

Table 2: Correspondences between probabilistic and classical semantics

that P (A) = 0.5” holds. Therefore, the corresponding type of extension for the restriction
on L (as listed in Section 2 and proven to hold by Caminada and Gabbay (2009)), also hold
for the equivalent restriction on P in Table 2.

For an argumentation framework AF we can identify specific probability functions in
P ∈ PJUS(AF) that are congruent with admissible labellings, grounded labellings, or stable
labellings, for AF as follows.

Proposition 4. (From (Thimm, 2012)) Let AF = (Arg,→) be an abstract argumentation
framework.

1. For every admissible L there is P ∈ PJUS(AF) with L ∼ P .

2. Let L be the grounded labelling and let1 P = arg maxQ∈PJUS(Arg)H(Q). Then L ∼ P .

3. Let stable labellings exist for AF and let L be a stable labelling. Then there is P ∈
arg minQ∈PJUS(Arg)H(Q) with L ∼ P .

So Proposition 3 and Proposition 4 provide two ways to identify probability functions
that capture specific types of labellings. Each of these results show that standard notions of
classical semantics (i. e. admissibility and the definitions for different kinds of labelling such
as grounded labellings, stable labellings, etc.) can be captured using probability functions.

The next result shows that using probability functions to capture labellings gives a
finer-grained formalization of classical semantics.

Proposition 5. For each complete labelling L, if there is an argument A such that L(A) 6=
undec, then there are infinitely many probability functions P such that LP = L.

Proof. Let L be a complete labeling such that there is an argument A with L(A) 6= undec.
Without loss of generality assume that L(A) = in. Then every probability function with
P (B) = 0.5 iff L(B) = undec, P (B) = 0 iff L(B) = out, P (B) = 1 iff L(B) = in and B 6= A,
and P (A) ∈ (0.5, 1] yields LP = L.

1. Define the entropy H(P ) of P as H(P ) = −
∑
E⊆Arg P (E) logP (E)

14



Obviously, for every probability function P , there is by definition exactly one epistemic
labelling LP . This means that using a probability function to identify which arguments are
in, undec, or out, subsumes using labels. Furthermore, the probability function captures
more information about the arguments. The granularity can differentiate between for ex-
ample a situation where A is believed (i. e. it is in) with certainty by P (A) = 1 from a
situation where A is only just believed (i. e. it is only just in) for example by P (A) = 0.51.
Similarly, we can differentiate a situation where an attack by B on A is undoubted when
P (B) = 1 and P (A) = 0 from a situation where an attack by B on A is very much doubted
when for example P (B) = 0.55 and P (A) = 0.45.

In conclusion, we have shown how axioms can be used to constrain the probability
function, and thereby constrain the epistemic labelings and the epistemic extensions. This
allows us to subsume Dung’s notions of extensions as epistemic extensions. Furthermore,
we get a finer-grained representation of the labelling of arguments by representing the belief
in each of the arguments.

5. Non-standard Epistemic Extensions

Before exploring the notion of non-standard epistemic extensions, we will augment the
set of properties we introduced in the previous section with the following properties. Let
AF = (Arg,→) be an abstract argumentation framework and P : 2Arg → [0, 1].

RAT P is rational wrt. AF if for every A,B ∈ Arg, if A → B then P (A) > 0.5 implies
P (B) ≤ 0.5.

NEU P is neutral wrt. AF if P (A) = 0.5 for every A ∈ Arg.

INV P is involutary wrt. AF if for every A,B ∈ Arg, if A → B, then P (A) = 1− P (B).

MAX P is maximal wrt. AF if P (A) = 1 for every A ∈ Arg.

MIN P is minimal wrt. AF if P (A) = 0 for every A ∈ Arg.

The intuition behind these properties is as follows. RAT ensures that if argument A attacks
argument B, and A is believed (i. e. P (A) > 0.5), then B is not believed (i. e. P (B) ≤ 0.5);
NEU ensures that all arguments are neither believed nor disbelieved (i. e. P (A) = 0.5 for
all arguments); INV ensures that if argument A attacks argument B, then the belief in A is
the inverse of the belief in B; MAX ensures that all arguments are completely believed; and
MIN ensures that all arguments are completely disbelieved.

Example 7. We continue Example 4, the abstract argumentation framework AF = (Arg,→)
depicted in Fig. 4, and the probability functions depicted in Table 1. The following obser-
vations can be made:

1. P2 and P3 are rational but neither neutral, involutary, maximal, nor minimal,

2. P1 and P4 are neither rational, neutral, involutary, maximal, nor minimal, and

3. P5 is rational, neutral, and involutary but neither maximal nor minimal.
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Example 8. We return to Figure 1 to illustrate the applicability of the rationality postu-
late. In all cases, whenever an attacker is believed, the attackee is disbelieved. Hence, the
structure of the graph has been taken into account when assigning the probability value for
each argument. However, the neutral, involutary, maximal and minimal postulates do not
hold for this example. We justify this as follows: satisfaction of the neutral postulate would
show that the audience neither believed nor disbelieved any of the arguments; satisfaction
of involutary would force the audience to have the same value for all attackers of an argu-
ment; satisfaction of maximal postulate would force the audience to completely believe all
arguments, and satisfaction of the minimal postulate would force the audience to completely
disbelieve all arguments.

As before let Pt(AF) be the set of all t-probability functions with t ∈ {COH,SFOU,FOU,
SOPT,OPT,JUS,TER,RAT,NEU,INV,MAX,MIN} and let PT (AF) for a set T of conditions be
defined as before. We extend the classification from Proposition 1 as follows.

Proposition 6. Let AF = (Arg,→) be an abstract argumentation framework.

1. ∅ ( PJUS(AF) ( PCOH(AF) ( PRAT(AF) ( P(AF)

2. ∅ ( PNEU(AF) ⊆ PINV(AF) ( PCOH(AF)

3. ∅ ( PINV(AF) ( PSOPT(AF)

4. ∅ ( PMIN(AF) ( PCOH(AF)

5. ∅ ( PMAX(AF) ( POPT(AF)

Proof. We only give the proof for 2.). The proofs for 1.) can be found in (Thimm, 2012)
and (Hunter, 2013), the remaining proofs are straightforward.

The probability function P with P (E) = 1/|2Arg| for all E ⊆ Arg has P (A) = 0.5
for all A ∈ Arg and is therefore neutral. It follows that PNEU(AF) 6= ∅ for every AF.
Furthermore, if P ∈ PNEU(AF) then for every A,B ∈ Arg, if A → B we have trivially
P (A) = 1 − P (B), so P ∈ PINV(AF) and then also P (A) ≤ 1 − P (B), i. .e, P ∈ PCOH(AF).
Finally, for AF = (Arg,→) with Arg = {A,B} and →= {(A,B)} any probability function P
with P (A) = 0.4 and P (B) = 0.4 is coherent but not involutary.

Together with Examples 4 and 7 we obtain the strict classification of classes of proba-
bility functions as depicted in Figure 5.

The RAT constraint is a weaker version of the COH constraint, and it can be used to
capture each admissible labelling as a probability function.

Proposition 7. If L is an admissible labelling, then there is a P ∈ PRAT(AF) such that
L ∼ P .

Proof. Let L be an admissible labelling and let P be such that L ∼ P . Let A,B ∈ Arg with
A → B and assume P (A) > 0.5. As L ∼ P it follows P (A) = 1 and L(A) = in. As A → B
it follows L(B) = out and therefore P (B) = 0 ≤ 0.5, showing that P satisfies RAT.

Furthermore, the epistemic labelling corresponding to each probability function that
satisfies the RAT property is conflict-free, which has already been shown in (Hunter, 2013).
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P(AF)

PSFOU(AF)

PRAT(AF)

PSOPT(AF)

PFOU(AF)

PCOH(AF) POPT(AF)

PJUS(AF)PINV(AF)

PNEU(AF)

PTER(AF)

PMIN(AF)

PMAX(AF)

∅

Figure 5: Classes of probability functions (a normal arrow → indicates a strict subset rela-
tion, a dashed arrow 99K indicates a subset relation)

Proposition 8. Let AF = (Arg,→) be an abstract argumentation framework. For each
P ∈ PRAT(AF ), in(LP ) is a conflict-free set of arguments in AF.

When the argument graph has odd cycles, there is no probability function that is invo-
lutary, apart from a neutral probability function.

Proposition 9. Let AF = (Arg,→) be an abstract argumentation framework. If AF contains
an odd cycle (i. e. there is a sequence of attacks A1 → A2 → ......→ Ak where A1 = Ak and
k is an even number), and P ∈ PINV(AF) then P ∈ PNEU(AF).

Proof. Assume that there is a sequence of attacks A1 → A2 → ...... → Ak where A1 = Ak
and k is an even number. Let P (A1) = α. Hence, P (A2) = 1 − α, P (A3) = α, . . . ,
P (Ak−1) = α, P (Ak) = 1 − α. Therefore, P (A1) = α and P (Ak) = 1 − α. Yet A1 = Ak.
This is only possible if α = 0.5. Hence, P ∈ PNEU(AF).

Even when the graph is acyclic, it may be the case that there is no involutary probability
function (apart from the neutral probability function). Consider for example an argument
graph containing three arguments A, B and C, with A attacking both B and C, and B
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attacking C. For this, there is no involutary probability function (apart from the neutral
probability function). If we restrict consideration to trees, then we are guaranteed to have
a probability function that is involutary and not neutral. But even in this case there are
constraints such as “siblings must have the same assignment” as captured in the next result.

Proposition 10. If P ∈ PINV(AF), then for all Bi,Bj ∈ AttAF(A) we have P (Bi) = P (Bj).

Proof. Let Bi → A and Bj → A be attacks. Assume P ∈ PINV(AF). Therefore, P (A) =
1− P (Bi) and P (A) = 1− P (Bj). Hence, P (Bi) = P (Bj).

When P ∈ PMAX(AF), the probability function does not take the structure of the graph
into account. Hence, there is an incompatibility between a probability function being maxi-
mal and a probability function being either rational or coherent (as shown in the proposition
below). However, there is compatibility between a probability function being maximal and
a probability function being founded since each P ∈ PMAX(AF) is in PFOU(AF).

Proposition 11. Let AF = (Arg,→) be an abstract argumentation framework. If there are
A,B ∈ Arg such that A → B, then PRAT(AF ) ∩ PMAX(AF ) = ∅.

Proof. Assume there is an attack A → B. So for all P ∈ PRAT(AF ), if P (A) = 1, then
P (B) ≤ 0.5, and P (B) = 1, then P (A) ≤ 0.5. And for all P ∈ PMAX(AF ), P (A) = 1 and
P (B) = 1. So PRAT(AF ) ∩ PMAX(AF ) = ∅.

In conclusion, we have identified epistemic extensions that are obtained from rational
probability functions as being an alternative to extensions obtained by Dung’s definitions.
Rational probability functions are more general than coherent probability functions, and
allow the audience more flexibility in expressing their beliefs in the arguments whilst taking
the structure of the argument graph into account. We have also considered alternatives
such as the involutary probability functions but these are over-constrained. By means of
Example 5, Example 6, and Example 8 we showed scenarios where we might want certain
standard or non-standard properties to hold or to not hold. So in general, we believe that it
depends on the applications as to whether one would expect particular postulates to hold.

6. Partial Probability Assessments

The framework outlined so far allows us to assess whether probability functions reflect the
topology of an argumentation framework and can be used for uncertain reasoning based
on argumentation. In the following, we will investigate the case when we already have
probabilistic information on some arguments and need to infer meaningful probabilities for
the remaining arguments.

Example 9. Consider a court case where the defendant John is either innocent or guilty to
have committed the murder of Frank. Footage from a surveillance camera at the crime scene
gives evidence that a person looking like John was present at the time of the crime, giving
a reason that John is not innocent. However, footage from another surveillance camera far
away from the crime scene gives evidence that a person looking like John was not present at
the time of the crime, giving a reason that John is not guilty. This scenario can be modelled
with the argumentation framework depicted in Figure 6 where the arguments I, G, S1, and
S2 are given as
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S1 S2

I G

Figure 6: The argumentation framework from Example 9

I: A person accused of murder is presumed innocent unless guilt is proven beyond reasonable
doubt, so John is innocent.

G: John is guilty because he had a motive.

S1: John is guilty because surveillance footage proves that he was at the crime scene, which
proves murder beyond reasonable doubt.

S2: John is innocent because surveillance footage proves that he was not at the crime scene.

Note that there is no attack from G to I in Figure 6 as G does not provide a proof beyond
reasonable doubt that John is guilty.

Now the footage from the camera S1 is examined by a lab which assesses that the prob-
ability of the person in the pictures is indeed John is 0.7. So given P (S1) = 0.7 what are
now adequate probabilities for the remaining arguments?

A partial function β : Arg→ [0, 1] on Arg is called a partial probability assignment. Let
Π denote the set of all partial probability assignments. Let domβ ⊆ Arg be the domain of β,
i. e., the arguments for which a probabilistic assessment is available. We are now interested
in deriving probabilities for the remaining arguments Arg \ domβ, taking the information
we already have in β and the argumentation framework AF into account.

A probability function P ∈ P(AF) is β-compliant if for every A ∈ domβ we have
β(A) = P (A). Let Pβ(AF) ⊆ P(AF) be the set of all β-compliant probability functions.
Observe that Pβ(AF) is always non-empty.

Proposition 12. For all partial β : Arg→ [0, 1], Pβ(AF) 6= ∅.

Proof. Let β : Arg → [0, 1] with domβ = {A1, . . . ,An} and assume β(A1) < . . . < β(An).
Define P : 2Arg → [0, 1] via (let i = 1, . . . , n)

P ({A1, . . . ,Ai}) = β(Ai)−
i−1∑
j=1

β(Aj) (1)

P (∅) = 1− β(An)

P (X) = 0 for all remaining sets X

It can be easily verified that P is a β-compliant probability function, hence P ∈ Pβ(AF).
If domβ = {A1, . . . ,An,B} with β(A1) < . . . < β(An) and β(B) = β(Ak) for some k ∈
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{1, . . . , n}, replace the left side of (1) for i = k with P ({A1, . . . ,Ai,B})). The general case
follows by induction.

Of course, not all probability functions in Pβ(AF) are adequate for reasoning as they
may not take the actual argumentation framework into account. Recall that for T ⊆
{RAT,COH,SFOU,FOU,OPT,SOPT,JUS}, the set PT (AF) contains all probability functions
which comply with all considered rationality conditions. Given a partial probability as-
sessment β and some rationality conditions T , for the remainder of this section we assume
PT (AF)∩Pβ(AF) 6= ∅, i. e., there is at least one probability function that is both β-compliant
and adheres to the set of rationality conditions (we address the case PT (AF) ∩ Pβ(AF) = ∅
in the next section).

Define PβT (AF) = PT (AF) ∩ Pβ(AF).

Definition 6. Let β be a partial probability assignment and T a set of rationality conditions.
Then the possible probabilities of A ∈ Arg \ domβ, denoted as pβT,AF(A), is defined as

pβT,AF(A) = {P (A) | P ∈ PβT (AF)}.

Under the assumption PβT (AF) 6= ∅, it is clear that pβT,AF(A) 6= ∅ as well.

Example 10. We continue Example 9 with β1(S1) = 0.7 and assume T1 = {COH}.
Then for the arguments S2, I,G we obtain pβ1T1,AF(S2) = [0, 0.3], pβ1T1,AF(I) = [0, 0.3], and

pβ1T1,AF(G) = [0, 0.7].

We need some set theoretical notions before we can state our next result. A subset X
of a topological space is (path-)connected , if for every two elements x, y ∈ X there is a
continuous function f : [0, 1]→ X with f(0) = x and f(1) = y.2 A set X is called convex,
if for every two elements x, y ∈ X and δ ∈ [0, 1] we also have δx + (1 − δ)y ∈ X. A set X
is closed if for every sequence x1, x2, . . . ∈ X, if limn→∞ xi exists then limn→∞ xi ∈ X.

Proposition 13. Let AF be an abstract argumentation framework and β a partial probability
assignment.

1. The set Pβ(AF) is connected, convex, and closed.

2. The sets P(AF), PCOH(AF), PSFOU(AF), PFOU(AF), POPT(AF), PSOPT(AF), PJUS(AF)
are connected, convex, and closed.

3. The set PRAT(AF) is connected and closed, but not convex in general.

4. For every T ⊆ {COH,SFOU,FOU,OPT,SOPT,JUS} the sets PT (AF) and PβT (AF) are
connected, convex, and closed.

5. For every T ⊆ {COH,SFOU,FOU,OPT,SOPT,JUS} and A ∈ Arg the set pβT,AF(A) is
connected, convex, and closed.

Proof.

2. Note that P(AF) is a topological space as it can be identified with a subspace of [0, 1]n with n = |2Arg|.
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1. Let P1, P2 ∈ Pβ(AF) and consider the convex combination P = δP1 + (1 − δ)P2 for
some δ ∈ [0, 1]. For every A ∈ domβ we have P (A) = δP1(A) + (1 − δ)P2(A) =
δβ(A) + (1 − δ)β(A) = β(A) and therefore P ∈ Pβ(AF). Closure of Pπ(AF) is
straightforward and connectedness follows from convexity.

2. Analogous to 1.).

3. Let AF = (Arg,→) be given by Arg = {A,B} and →= (A,B). Consider P1, P2 ∈
PRAT(AF) with

P1(A) = 1 P1(B) = 0.4

P2(A) = 0.4 P2(B) = 0.8

For the convex combination P = 0.5P1 +0.5P2 we obtain P (A) = 0.7 and P (B) = 0.6,
i. e. P /∈ PRAT(AF). However, PRAT(AF) is closed as for every converging sequence
P1, P2, . . . with Pi ∈ PRAT(AF) for all i ∈ N there is N ∈ N such that for all A → B
either

• Pj(A) ≤ 0.5 for all j > N ; then limi→∞ Pj(A) ≤ 0.5 as well and the condition of
coherence is trivially satisfied, or

• Pj(A) > 0.5 and consequently Pj(B) ≤ 0.5 for all j > N ; then limi→∞ Pj(B) ≤
0.5 as well and the condition of coherence is satisfied in any case.

Consider now P0 ∈ P(AF) defined via P (∅) = 1 and P (E) = 0 for all E ⊆ Arg
with E 6= ∅. Then P0(A) = 0 for all A ∈ Arg and therefore P0 ∈ PRAT(AF). Let
P ∈ PRAT(AF) and Pδ = δP0 + (1− δ)P be a convex combination of P0 and P for any
δ ∈ [0, 1]. Let A → B and assume Pδ(A) ≥ 0.5. As P0(A) = 0 it follows P (A) ≥ 0.5
as well. Then P (B) < 0.5 as P is rational. As both P0(B) = 0 < 0.5 and P (B) < 0.5
it follows Pδ(B) < 0.5 as well as Pδ is a convex combination. It follows Pδ ∈ PRAT(AF)
for all δ ∈ [0, 1]. Therefore, there is a path from P0 to every other P ∈ PRAT(AF)
which implies that PRAT(AF) is connected.

4. This follows directly from the fact that the finite intersection of convex sets is convex
and that the finite intersection of closed sets is closed.

5. This follows from the fact that the projection of a connected, convex, and closed set
is again connected, convex, and closed.

The final statement above is equivalent to saying that pβT,AF(A) is an interval. Note also,
that if RAT ∈ T the set PT (AF) is closed, but not necessarily connected or convex. In the
following, we focus on the cases where T ⊆ {COH,SFOU,FOU,OPT,SOPT,JUS}.

Proposition 13 implies that the problem of determining pβT,AF(A) is equivalent to the
classical probabilistic entailment problem (Jaumard, Hansen, & Poggi, 1991; Hansen &
Jaumard, 2000; Lukasiewicz, 2000). We can directly exploit this relationship to make some

observations on the computational complexity of some problems related to pβT,AF(A).

Proposition 14. Let AF be an abstract argumentation framework, β a partial probability
assignment, and T ⊆ {COH,SFOU,FOU, OPT,SOPT,JUS}.
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1. Deciding p ∈ pβT,AF(A) for some p ∈ [0, 1] is NP-complete.

2. Deciding [l, u] = pβT,AF(A) for some l, u ∈ [0, 1] is DP-complete.

3. Computing l, u ∈ [0, 1] such that [l, u] = pβT,AF(A) is FPNP-complete.

Proof. The conditions imposed by β on the probabilities of arguments can be represented
as linear constraints on P . Furthermore, the conditions of the properties in T can also be
represented as linear constraints. Then we can represent these problems as probabilistic
knowledge bases in the sense of (Lukasiewicz, 2000) and the results follow directly from
results in (Lukasiewicz, 2000).

Besides using pβT,AF(A) to obtain bounds on the probabilities of the remaining arguments,
we might also be interested in obtaining point probabilities for the remaining arguments
that are as unbiased as possible, giving the probabilistic information of β. One can use the
principle of maximum entropy (see also Proposition 4) for this purpose, which is thanks to
Proposition 13 also applicable in our context.

Definition 7. Let AF be an abstract argumentation framework, β a partial probability as-
signment, and T ⊆ {COH,SFOU,FOU,OPT,SOPT,JUS}. Define the set Pβ,AF,TME via

Pβ,AF,TME = arg max
Q∈PβT (AF)

H(Q)

Proposition 15. The set Pβ,AF,TME contains exactly one uniquely defined probability function.

Proof. Due to Proposition 13 the set PT (AF) ∩ Pβ(AF) is convex and closed. Maximizing
entropy over a convex and closed set has a unique solution, cf. (Paris, 1994).

Due to the above proposition we identify the singleton set Pβ,AF,TME with its only element,

e. g., we write Pβ,AF,TME (A) to denote the probability P (A) with {P} = Pβ,AF,TME .

Example 11. We continue Examples 9 and 10 with β1(S1) = 0.7 and assume T1 = {COH}.
Then we have Pβ1,AF,T1ME (S2) = 0.3, Pβ1,AF,T1ME (I) = 0.3, and Pβ1,AF,T1ME (G) = 0.5. Recall that

pβ1T1,AF(I) = [0, 0.3] (Example 10) and observe that Pβ1,AF,T1ME (I) = 0.3 which is the maximal
probability that can be assigned to I. However, note also that this value is closest to 0.5
which is the probability value with the least amount of information (in the information-
theoretic sense). Indeed, it can be observed that all probabilities assigned above are those
closest to 0.5 which is a general feature of reasoning based on the principle of maximum
entropy (note, however, that in more complex settings involving other rationality conditions

the function Pβ,AF,TME is not always characterized as easily as that).

Proposition 4 already pointed out the relationship of the principle of maximum entropy
to grounded semantics. Note also that for β with domβ = ∅ and T = {JUS} we have

that Pβ,AF,TME corresponds to the grounded labelling of AF. Taking into account partial
probabilistic information we therefore extended the notion of a grounded labelling and
obtain a probability function that is “as grounded as possible”. Similarly, if we exchange
the maximum in Definition 7 by a minimum, we obtain a generalization of the notion of
stable labelings, cf. Proposition 4 item 3.
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7. Contradictory Probability Assessments

So far we assumed PβT (AF) 6= ∅. In this section, we investigate the general scenario without
this assumption. Consider the following example.

Example 12. We continue Example 9. New evidence obtained by analyzing the footage
from camera S2 suggests that the probability of the person in those pictures is indeed John
is 0.4. Therefore, the partial probability assessment β′1 is defined by β′1(S1) = 0.7 and
β′1(S2) = 0.4. Considering the set of rationality conditions T = {COH} one can see that

Pβ
′
1

T (AF) = PT (AF) ∩ Pβ′1(AF) = ∅ as the condition

P (S1) ≤ 1− P (S2), (2)

which is necessary for having P ∈ PT (AF), cannot be satisfied for any β′1-compliant P . In
this case, one would still be interested in obtaining a “reasonable” probability for example
for I.

We address the issue outlined in the example above by, first, analyzing in a quantitative
manner how much a partial probability assessment deviates from satisfying a given set of
rationality conditions, and afterwards using this analysis to provide reasonable probabilities
for the remaining arguments.

7.1 Inconsistency Measures for Contradictory Probability Assessments

We first address the question of how to measure the distance (or inconsistency) of a given
partial probability assignment β : Arg → [0, 1] to the set PT (AF) of probability functions.
As before we restrict our attention to T ⊆ {COH, SFOU,FOU,OPT, SOPT, JUS}). Recall
that Π denotes the set of all partial probability assignments and A denotes the set of all
abstract argumentation frameworks.

Definition 8. An inconsistency measure IT is a function IT : Π× A→ [0,∞).

The intuition behind an inconsistency measure IT is that for a partial probability assess-
ment β and an argumentation framework AF, the value IT (β,AF) quantitatively assesses
the severity of β violating the rationality conditions imposed by T in AF. In particular,
larger values indicate greater violation while attaining the minimum IT (β,AF) suggests
that β does not violate the rationality conditions imposed by T in AF at all. Note that
inconsistency measures have been investigated before mostly in the context of classical logic,
see for example (Hunter & Konieczny, 2010).

Before formalizing the intuition behind an inconsistency measure, we need some further
notation. Let β, β′ be partial probability assignments. We say that β′ is an expansion of
β if domβ ⊆ domβ′ and β(A) = β′(A) for all A ∈ domβ. If domβ ∩ domβ′ = ∅ then
define (β ◦ β′) with domβ ◦ β′ = domβ ∪ domβ′ via (β ◦ β′)(A) = β(A) for A ∈ domβ and
(β ◦β′)(A) = β′(A) for A ∈ domβ′. Two arguments A,B ∈ Arg are simply connected in AF
if there is a path between them in the undirected version of AF. Let CC(AF) be the set of
all connected components of AF w. r. t. simple connectedness.

Now, some desirable properties for an inconsistency measure in our context—motivated
by similar properties for inconsistency measures in classical logics (Hunter & Konieczny,
2010)—are as follows.
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Consistency IT (β,AF) = 0 iff PT (AF) ∩ Pβ(AF) 6= ∅.

Monotonicity If β′ is an expansion of β then IT (β,AF) ≤ IT (β′,AF).

Super-additivity If domβ ∩ domβ′ = ∅ then IT (β ◦ β′,AF) ≥ IT (β,AF) + IT (β′,AF).

Separability IT (β,AF) =
∑

AF′∈CC(AF) IT (β,AF′).

The property consistency states that an inconsistency measure must attain its minimal
value if and only if there is at least one β-compliant probability function P that satisfies all
conditions T w. r. t. AF. The property monotonicity states that the inconsistency cannot
decrease when adding further constraints to a partial probability assessment. The prop-
erty super-additivity means that the sum of the inconsistency values of two independent
probability assessments cannot be larger than the inconsistency value of the joint proba-
bility assessment. Finally, the property separability demands that the inconsistency value
decomposes on the connected components of an argumentation framework.

In order to implement inconsistency measures for our setting of probabilistic abstract
argumentation, we base our measures on metrics on probability functions, cf. (Thimm,
2013; De Bona & Finger, 2015; Grant & Hunter, 2013).

Definition 9. A function d : P × P → [0,∞) is called a pre-metrical distance measure if
it satisfies d(P, P ′) = 0 if and only if P = P ′.

In the following, we refer to pre-metrical distance measures simply by distance measures
(note that we do not impose the properties symmetry and triangle equality of full distance
measures). Examples of such distance measures are (let p ≥ 1)

dKL(P, P ′) =
∑

x∈domP∩domP ′

P (x) log
P (x)

P ′(x)

dp(P, P
′) = p

√ ∑
x∈domP∩domP ′

|P (x)− P ′(x)|p

In the definition of dKL, if x = 0 we assume x log x/y = 0 and if x 6= 0 but y = 0 we
assume x log x/y = x. The measure dKL is also called the Kullback-Leibler divergence (or
relative entropy). The measure dp is called the p-norm distance. In the following, we will
use these two distance measures as examples to illustrate our approach. Note that any
other pre-metrical distance measure can be used instead.

Note that both measures dKL and dp are defined over the set domP ∩ domP ′. This is
only a technical necessity in order to have well-defined measures for all pairs of probability
functions. In the following, distance measures are only applied on pairs of probability
functions P and P ′ such that P, P ′ ∈ P(AF) for some AF, i. e., domP = domP ′.

For a distance measure d, a probability function P ∈ P and closed sets Q,Q′ ⊆ P we
abbreviate

d(P,Q) = min
P ′∈Q

d(P, P ′)

d(Q, P ) = min
P ′∈Q

d(P ′, P )

d(Q,Q′) = min
P ′∈Q

d(P ′,Q′)
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Using a distance measure d on probability functions we define a general inconsistency
measure as follows.

Definition 10. Let d be a distance measure and T ⊆ {COH,SFOU,FOU,OPT,SOPT, JUS}.
The distance-based inconsistency measure IdT : Π× A→ [0,∞) for T and d is defined via

IdT (β,AF) = d(Pβ(AF),PT (AF))

In other words, IdT (β,AF) is the minimal distance w. r. t. d of a β-compliant probability
function P1 and a probability function P2 that satisfies the rationality conditions of T w. r. t.
AF.

Example 13. We continue Example 12 with T1 = {COH} and β′1 defined by β′1(S1) = 0.7
and β′1(S2) = 0.4. For d1 (the Manhattan distance) it can be easily seen that Id1T1(β′1,AF) =
0.1 as this amounts to the absolute amount Equation (2) is violated. For d2 (the Euclidean
distance) we obtain Id2T1(β′1,AF) ≈ 0.0373. For dKL (the Kullback-Leibler divergence) we

obtain IdKL
T1

(β′1,AF) ≈ 0.625. A geometrical interpretation for both d2 and dKL is hard to
provide but compare those values to the values obtained for β2 defined by β2(S1) = 0.8 and
β2(S2) = 0.9: Id1T1(β2,AF) = 0.7, Id2T1(β2,AF) ≈ 0.403, and IdKL

T1
(β2,AF) ≈ 0.312. From an

intuitive point of view β2 seems more inconsistent than β′1 (the constraint (2) is violated
to a larger extent) and both Id1T1(β2,AF) and Id2T1(β2,AF) comply with this intuition as they

assign larger inconsistency values to β2 than to β′1. For IdKL
T1

(β2,AF) we obtain the opposite
result, due to the fact that dKL does not measure distance of probabilities but distance of
information content.

As can be seen by the following results, the family of inconsistency measures IdT complies
with our formalization of a meaningful inconsistency measure.

Proposition 16. If d is a pre-metrical distance measure then IdT satisfies consistency.

Proof. If IdT (β,AF) = 0 then d(Pβ(AF),PT (AF)) = 0 and there are P ∈ Pβ(AF) and P ′ ∈
PT (AF) with d(P, P ′) = 0. As d is pre-metrical it follows P = P ′ and PT (AF)∩Pβ(AF) 6= ∅.
The other direction is analogous.

Proposition 17. The function IdKL
T satisfies consistency and monotonicity.

Proof. Consistency follows from Proposition 16 as dKL is pre-metrical for discrete proba-
bility functions. Let β′ be an expansion of β. Then Pβ′(AF) ⊆ Pβ(AF) and

dKL(Pβ(AF),PT (AF)) ≤ dKL(Pβ′(AF),PT (AF))

as minQ∈Pβ(AF) dKL(Q,PT (AF)) ≤ minQ∈Pβ′ (AF) dKL(Q,PT (AF)).

In (Hunter & Thimm, 2016a) we conjectured that IdKL
T also satisfies super-additivity

and separability. This is not the case in general as the following example shows.

3. Values of inconsistency measures were determined by using the OpenOpt optimization package http:

//openopt.blogspot.de
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Example 14. Consider an argumentation framework AF1 consisting only of a self-attacking
argument A, i. e., AF1 = (Arg1,→1) with Arg1 = {A} and →1= {(A,A)}. We consider
T = {JUS}. Observe that PJUS(AF1) = {P0} with P0(∅) = 0.5 and P0({A}) = 0.5. Consider
a partial probability assessment β1 with β1(A) = 1 and observe Pβ1(AF1) = {P1} with
P1(∅) = 0 and P1({A}) = 1. Using the binary logarithm in dKL it follows

IdKL
JUS (β1,AF1) = dKL(Pβ1(AF1),PJUS(AF1))

= dKL(P1, P0)

= P1(∅) log
P1(∅)
P0(∅)

+ P1({A}) log
P1({A})
P0({A})

= 0 log
0

0.5
+ 1 log

1

0.5
= 1

Now consider AF2 = (Arg2,→2) with Arg2 = {B} and →2= {(B,B)} and β2 with β2(B) = 1.
Analogously, we obtain IdKL

JUS (β2,AF2) = 1 as well.
Define AF = (Arg,→) to be the union of AF1 and AF2, i. e., Arg = Arg1 ∪ Arg2 and

→=→1 ∪ →2. Observe that AF decomposes into the two components AF1 and AF2 and that

PJUS(AF) = {P ∈ P(AF) | P ({A}) = P ({B}), P ({A}) + P ({A,B}) = 0.5}
= {P ∈ P(AF) | P (∅) = P ({A,B}) = 0.5− x, P ({A}) = P ({B}) = x, x ∈ [0, 0.5]}

For x ∈ [0, 1], let Px be defined via Px(∅) = Px({A,B}) = 0.5−x, Px({A}) = Px({B}) = x.
So PJUS(AF) = {Px | x ∈ [0, 0.5]}. Consider now a partial probability assessment β with
β(A) = β(B) = 1 (observe that β = β1◦β2) and observe Pβ(AF) = {P̂1} with P̂1({A,B}) = 1
and P̂1(∅) = P̂1({A}) = P̂1({B}) = 0. It follows

IdKL
JUS (β,AF) = dKL(Pβ(AF),PJUS(AF))

= dKL(P̂1, {Px | x ∈ [0, 0.5]})
= min

x∈[0,0.5]
dKL(P̂1, Px)

= min
x∈[0,0.5]

P̂1(∅) log
P̂1(∅)
Px(∅)

+ P̂1({A}) log
P̂1({A})
Px({A})

+ P̂1({B}) log
P̂1({B})
Px({B})

+ P̂1({A,B}) log
P̂1({A,B})
Px({A,B})

= min
x∈[0,0.5]

P̂1({A,B}) log
P̂1({A,B})
Px({A,B})

= min
x∈[0,0.5]

1 log
1

1− x
= 1

disproving both super-additivity and separability.

For IdpT we have a stronger result as follows.

Proposition 18. For p ≥ 1 the function IdpT satisfies consistency and monotonicity. For

p = 1 the function IdpT also satisfies separability and super-additivity.
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Proof. Consistency follows from Proposition 16 and the proof of monotonicity is the same
as in Proposition 17.

The proof of super-additivity for p = 1 is analogous to a similar result in (Thimm, 2013),
Theorem 3.

For p = 1 and separability, let CC(AF) = {AF1, . . . ,AFn} and consider probability
functions P1 ∈ Pβ(AF1), . . . , Pn ∈ Pβ(AFn) with d1(Pi,PT (AFi)) = Id1T (β,AFi) for i =
1, . . . , n. Construct a probability function P with P (A) = Pi(A) for all A ∈ Arg and for
A appearing in AFi (as the AFi are (maximal) connected components the i is uniquely
defined). Observe that d1(P,PT (AFi)) = d1(Pi,PT (AFi)) = Id1T (β,AFi) as only the values
on A appearing in AFi are taken into account. For p = 1 also observe that, given P1, P2, P3

with domP1 = domP2 ∪ domP3, and domP2 ∩ domP3 = ∅ we have (◦ is again functional
composition)

d1(P1, P2 ◦ P3) =
∑

x∈domP1

|P1(x)− (P2 ◦ P3)(x)|

=
∑

x∈domP2

|P1(x)− P2(x)|+
∑

x∈domP3

|P1(x)− P3(x)|

= d1(P1, P2) + d1(P1, P3)

It follows

d1(P,PT (AF)) =
n∑
i=1

d1(P,PT (AFi))

=
n∑
i=1

Id1T (β,AFi)

yielding IT (β,AF) ≤
∑

AF′∈CC(AF) IT (β,AF′).

It remains to show IT (β,AF) ≥
∑

AF′∈CC(AF) IT (β,AF′). For that let P ∈ Pβ(AF) with

d1(P,PT (AF)) = Id1T (β,AF). Define Pi ∈ P(AFi) to be the projection of P onto AFi, in
particular Pi(A) = P (A) for all A ∈ domPi, for all i = 1, . . . , n. It follows Pi ∈ Pβ(AFi)
and therefore d1(P,PT (AFi)) = d1(Pi,PT (AFi)) as before. Observe that d1(Pi,PT (AFi)) ≥
IT (β,AFi) and due to P = P1 ◦ . . . ◦ Pn we have

d1(P, P ′) =
n∑
i=1

d1(Pi, P
′)

for every probability function P ′. It follows IT (β,AF) ≥
∑

AF′∈CC(AF) IT (β,AF′).

For p > 1 a relaxed version of separability holds.

Proposition 19. For p > 1 the function IdpT satisfies

IdpT (β,AF) ≤
∑

AF′∈CC(AF)

IdpT (β,AF′)
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Proof. We use the same notation as in the proof of Proposition 18. Given P1, P2, P3 with
domP1 = domP2 ∪ domP3, and domP2 ∩ domP3 = ∅ observe for p > 1:

dp(P1, P2 ◦ P3) = p

√ ∑
x∈domP1

|P1(x)− (P2 ◦ P3)(x)|p

= p

√ ∑
x∈domP2

|P1(x)− P2(x)|p +
∑

x∈domP3

|P1(x)− P3(x)|p

≤ p

√ ∑
x∈domP2

|P1(x)− P2(x)|p + p

√ ∑
x∈domP3

|P1(x)− P3(x)|p

= dp(P1, P2) + dp(P1, P3)

which generalizes inductively to IT (β,AF) ≤
∑

AF′∈CC(AF) IT (β,AF′).

Inconsistency measures allow us to evaluate the degree to which a probability assessment
deviates from rationality postulates. Determining this degree is important if we are to have
systematic mechanisms for handling contradictory probability assessments. The proposals
and results in this subsection, show that we have options for measuring inconsistency that
have desirable properties.

7.2 Distance-based Consolidation

The measure IdT allows us to quantitatively assess the violation of a partial probability
assignment in the light of a given set of rationality conditions. However, Example 12
suggests that even in the presence of contradictory information, we want to be able to
provide reasonable inference results. Following the idea of IdT we define the set of reasonable
probability functions as those probability functions in Pβ(AF) that are closest to satisfying
the rationality conditions T .

Definition 11. Define the set ΠT,d,AF(β) ⊆ Pβ(AF) via

ΠT,d,AF(β) = {P ∈ Pβ(AF) | d(P,PT (AF)) is minimal}

In other words, the set ΠT,d,AF(β) is the set of “witnesses” of the inconsistency value
IdT (β,AF), i. e., those probability functions P with d(P,PT (AF)) = IdT (β,AF) (we will also
explore an alternative way of defining this set later in Section 7.3).

Our idea is now to use ΠT,d,AF(β) in the same way for reasoning as we used PβT (AF) in

Section 6. In fact, it can be easily seen that under the assumption PβT (AF) 6= ∅ reasoning
with ΠT,d,AF(β) coincides with our previous approach.

Proposition 20. If PβT (AF) 6= ∅ then ΠT,d,AF(β) = PβT (AF) for every pre-metrical distance
measure d.

Proof. If PβT (AF) = PT (AF)∩Pβ(AF) 6= ∅ then for all P ∈ PβT (AF) we have that d(P,PT (AF)) =
0. This is the minimal value d can attain so P ∈ ΠT,d,AF(β). Furthermore, for every P ′ ∈
ΠT,d,AF(β) it must then hold d(P ′,PT (AF)) = 0 and therefore P ′ ∈ PT (AF) ∩ Pβ(AF).
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Moreover, ΠT,d,AF(β) is a strict generalization of PβT (AF) as it always contains probability

functions, even if PβT (AF) = ∅. Furthermore, ΠT,d,AF(β) features the same topological

properties as PβT (AF) if the distance measure d is reasonably chosen, see below.

Proposition 21. ΠT,d,AF(β) 6= ∅.

Proof. Let L be the grounded labeling and consider PL with PL ∼ L. Then PL complies
with all rationality postulates in {RAT,COH,SFOU,FOU,OPT,SOPT,JUS}. Therefore, the
set PT (AF) is non-empty. The set Pβ(AF) is also non-empty, cf. Proposition 12. Therefore,
there are probability functions P1 ∈ PT (AF) and P2 ∈ Pβ(AF) such that d(P1, P2) is finite.
It follows ΠT,d,AF(β) 6= ∅.

Proposition 22. For strictly convex d and T ⊆ {COH,SFOU,FOU,OPT,SOPT,JUS} the
set ΠT,d,AF(β) is connected, convex, and closed.

Proof. This follows from the connectedness, convexity, and closure of PT (AF) and Pβ(AF)
(see Proposition 13) and the fact that minimizing a strictly convex function over convex
and closed sets yields again a convex and closed set (Boyd & Vandenberghe, 2004).

The above statement is true for our examples of distance measures, except for d1 (the
Manhattan distance) which is not strictly convex.

Corollary 1. For T ⊆ {COH,SFOU,FOU,OPT,SOPT,JUS} and d ∈ {dKL, dp} (for p > 1)
we have that Πt,d,AF(β) is a connected, convex, and closed set.

The above results show that ΠT,d,AF(β) behaves exactly like PβT (AF) (in the topological
sense) and is a strict generalization. We therefore extend the notion of possible probabilities

pβT,AF(A) to the general case.

Definition 12. Let d be strictly convex and T ⊆ {COH,SFOU,FOU,OPT,SOPT,JUS}. De-
fine

πβ,dT,AF(A) = {P (A) | P ∈ ΠT,d,AF(β)}

Observe that by Proposition 20 we have πβ,dT,AF(A) = pβT,AF(A) if PβT (AF) 6= ∅ (for every
pre-metrical distance measure d).

Example 15. We continue Example 12 with T1 = {COH} and β′1 defined by β′1(S1) = 0.7
and β′1(S2) = 0.4. For the Euclidean distance d2 we obtain

π
β′1,d2
T1,AF

(I) ≈ [0.0284, 0.383] π
β′1,d2
T1,AF

(G) ≈ [0.0270, 0.682]

which shows that beliefs in both I and G can be quite low (due to the conflict in the evidence)
but that the belief in G can be up to 0.682 due to the stronger evidence in S1 and weaker
evidence in S2.

Similarly as for PβT (AF) we can define reasoning based on maximum entropy on ΠT,d,AF(β)
as follows.
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Definition 13. Let d be strictly convex and T ⊆ {COH,SFOU,FOU,OPT,SOPT,JUS}. De-
fine

Pβ,AF,T,dME = arg max
Q∈ΠT,d,AF(β)

H(Q)

The validity of the following proposition follows also straightforwardly from our previous
results.

Proposition 23. Let AF be an abstract argumentation framework, β a partial probability
assignment, d be strictly convex, and T ⊆ {COH,SFOU,FOU,OPT,SOPT,JUS}. The set

Pβ,AF,T,dME contains exactly one uniquely defined probability function.

We also write Pβ,AF,T,dME (A) to denote the probability P (A) with {P} = Pβ,AF,T,dME .

Example 16. We continue Example 15 with T1 = {COH} and β′1 defined by β′1(S1) = 0.7
and β′1(S2) = 0.4. For the Euclidean distance d2 we obtain

Pβ
′
1,AF,T1,d2

ME (I) ≈ 0.3788 Pβ
′
1,AF,T1,d2

ME (G) ≈ 0.4959

which gives an ambiguous picture on the innocence or guilt of John (due to the contradictory
information), with a slight tendency towards guilt due to the slightly higher belief in S1.

Distance-based consolidation ensures that we get a probability function that is consis-
tent with our partial probability assessment, and is as near as possible to being consistent
with the selected rationality postulates. The results in this subsection ensure that this
consolidation is well-behaved and viable.

7.3 An Alternative Point of View

In Definition 11 we defined ΠT,d,AF(β) to be a subset of probability functions of Pβ(AF)
that are closest to the set PT (AF). The decision of defining ΠT,d,AF(β) like this was based
on the need to consider only probability functions that are compliant with our observations
but as rational as possible w. r. t. T . Consider now

Π∗T,d,AF(β) = {P ∈ PT (AF) | d(Pβ(AF), P ) is minimal}

The set Π∗T,d,AF(β) contains those probability functions in PT (AF) that are closest to the set

Pβ(AF), i. e., probability functions that are fully rational w. r. t. T and maximally compliant
with our observations. It can be easily seen that Π∗T,d,AF(β) behaves exactly like ΠT,d,AF(β)
w. r. t. its topological properties.

Proposition 24.

1. If PβT (AF) 6= ∅ then Π∗T,d,AF(β) = ΠT,d,AF(β) = PβT (AF) for every pre-metrical distance
measure d.

2. Π∗T,d,AF(β) 6= ∅

3. For strictly convex d and T ⊆ {COH,SFOU,FOU,OPT,SOPT,JUS} the set Π∗T,d,AF(β)
is connected, convex, and closed.
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Consequently, we can define reasoning based on Π∗T,d,AF(β) in the same way as we did
on ΠT,d,AF(β).

If we view the ΠT,d,AF(β) and Π∗T,d,AF(β) operators as repair operators, then they offer
us two options:

1. ΠT,d,AF(β) is used when we want to preserve the prior information we have in β but
want to get as close as possible to satisfying the rationality constraints in T ; and

2. Π∗T,d,AF(β) is used when we want to impose the rationality constraints we have in T
but want to keep as much as possible from the prior information we have in β.

We can regard ΠT,d,AF(β) as a soft repair as it does not satisfy T but gets closer to it,
and we can regard Π∗T,d,AF(β) as hard repair as it does satisfy T . So hard repairs ensure
conformity with T but at the loss of some of the original information in β, whereas soft
repairs ensure no loss of the original information in β, but at the loss of some conformity
with T .

The difference between reasoning with ΠT,d,AF(β) and Π∗T,d,AF(β) is similar to the dif-
ference between revision and update in belief dynamics (Katsuno & Mendelzon, 1991). Let
us recall a simple example from (Katsuno & Mendelzon, 1991) to illustrate the difference
between revision and update.

Example 17. There are two objects in a closed room, a magazine and a book, which can
be either on the floor or on the table. Let m (b) denote the fact that the magazine (book)
is on the floor and ¬m (¬b) that it is on the table. We know that one of the two objects is
on the floor and the other on the table, but not which one (m⇔ ¬b). Now we send a robot
into the room to observe the situation and tell us whether the book is on the floor or on the
table. The robot tells us b and accordingly we revise our beliefs to b∧¬m (as one object had
to be on the table we can infer that it must be the magazine). In an alternative scenario,
we send the robot into the room and order it to put the book on the floor, no matter where it
was before. After the successful mission the robot informs us of b and we update our beliefs
to b (our initial constraint that exactly one object is on the floor may not be true any more
and we do not know the location of the magazine).

In (Kern-Isberner & Rödder, 2004) a similar distinction has been made to differentiate
revision and update in a probabilistic setting, also under maximum entropy reasoning. More
specifically, let P0 be a uniform probability function, modelling a completely ignorant prior
belief state, and let R be the set of initial probabilistic beliefs (formulas or rules quantified
by probabilities). In (Kern-Isberner & Rödder, 2004), the initial epistemic state of the agent
is then defined as P1 = P0 ∗R, which amounts to completing the incomplete beliefs in R by
selecting the probability function P1 with maximum entropy (in the case that P0 is a uniform
distribution). Revision by a set S of new beliefs is then defined via P2 = P0 ∗ (R∪S), under
the assumption that S is consistent with R (as both refer to the same world and model
uncertain information to begin with). So revision amounts to completing the initial beliefs
with the help of the new information S. Note that the initial beliefs R are not given up,
but extended by the new information S. Furthermore, in (Kern-Isberner & Rödder, 2004)
update by new information S is defined via P ′2 = (P0 ∗R)∗S, which amounts to completing
the beliefs in S in such a way that the resulting probability function P ′2 is as closest as
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a b c

Figure 7: The argumentation framework from Example 18

possible to the initial epistemic state P1 = P0 ∗R (using, essentially, also dKL for measuring
distances). In particular, it may be the case that P ′2 is no longer compatible with the initial
beliefs R.

Let us come back to our scenario of probabilistic abstract argumentation. The partial
probability assignment β can be regarded as our initial beliefs. Reasoning with ΠT,d,AF(β)
then resembles revising those beliefs with the topological information of the argument graph,
while retaining the original beliefs. Furthermore, reasoning with Π∗T,d,AF(β) resembles updat-
ing those beliefs with the topological information of the argument graph. This amounts to
interpreting the observation of the argumentation graph as an action, the arguments, which
might be unrelated before, are now put into the context of an argumentation framework.
Let us consider an example to illustrate this.

Example 18. In analogy to Example 17 consider a room with three objects a, b, c which
can be either on the floor or on the table. Due to previous observations delivered to us by
a robot we assess β(a) = 0.7 and β(c) = 0.1, meaning that a is likely on the floor and c
is likely on the table. We send the robot again into the room to provide more information
and it gives us the following two observations: if a is on the floor then b is not on the floor,
if b is on the floor then c is not on the floor. These observations can be modelled as the
argumentation framework depicted in Figure 7. We revise our beliefs accordingly and derive
that the probability of b being on the floor is 0.64, assuming that our previous information is
valid. In another scenario, we send the robot into the room and order it to arrange through
a minimal number of moves a scenario, where both statements “if a is on the floor then b is
not on the floor’ and “if b is on the floor then c is not on the floor” are true. Accordingly,
we update our beliefs to this new information. In particular, it is now impossible that a is
on the floor and c is on the table (which was deemed quite likely in our initial beliefs). It
can be seen that the assignment of 0.4 to both a and c, and 0.6 to b minimizes the distance
to our previous beliefs, while satisfying both conditions COH and SOPT.

So both distance-based consolidation or the alternative presented in this subsection are
well-behaved and viable proposals. Which we choose to use depends on the priorities of
the application. We leave a deeper investigation of the relationships to belief dynamics for
future work.

8. Related Works

In the following, we discuss some works addressing similar topics as our work. In particular,
we review other approaches to probabilistic (abstract) argumentation in Section 8.1, similar

4. We use the Euclidean distance d2 and set T = {COH, SOPT}; it can be seen that for the attack (a, b) the
value 0.3 would be derived for b and for the attack (b, c) the value 0.9 would be derived for b; roughly,
the Euclidean distance is minimal for the value (0.9 + 0.3)/2 = 0.6.
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frameworks for quantitative uncertainty in Section 8.2, and ranking-based semantics for
argumentation in 8.3.

8.1 Probabilistic Argumentation

The two main approaches to probabilistic (abstract) argumentation are the constellations
and the epistemic approaches (Hunter, 2013).

• In the constellations approach, the uncertainty is in the topology of the graph, see
for example (Dung & Thang, 2010; Li et al., 2011; Hunter, 2012; Fazzinga, Flesca,
& Parisi, 2013; Li, Oren, & Norman, 2013; Hunter & Thimm, 2014a; Dondio, 2014;
Polberg & Doder, 2014; Doder & Woltran, 2014; Fazzinga, Flesca, & Parisi, 2015;
Liao & Huang, 2015; Hadoux, Beynier, Maudet, Weng, & Hunter, 2015; Sun & Liao,
2016; Fazzinga et al., 2016). As an example, this approach is useful when one agent
is not sure what arguments and attacks another agent is aware of, and so this can be
captured by a probability distribution over the space of possible argument graphs.

• In the epistemic approach, the topology of the argument graph is fixed, but there
is uncertainty about whether an argument is believed (Thimm, 2012; Hunter, 2013;
Baroni, Giacomin, & Vicig, 2014; Hunter, 2014b, 2014a; Hunter & Thimm, 2014d,
2014c, 2014b; Hunter, 2015; Gabbay & Rodrigues, 2015; Hunter, 2016a, 2016b). A
core idea of the epistemic approach is that the more likely an agent is to believe in an
argument, the less likely it is to believe in an argument attacking it.

This paper provides a comprehensive account of the epistemic approach and we addi-
tionally considered the case of incomplete and inconsistent probability distributions. These
problems were first raised in (Hunter, 2013; Hunter & Thimm, 2014d), but no systematic
solutions to the problems were presented. In contrast in this paper, we have provided
solutions based on well-justified notions of distance between probability distributions.

In quantifying disagreement between argument graphs, the distance between labellings
has been considered in terms of the weighted sum of the number of labellings that differ
(Booth, Caminada, Podlaszewski, & Rahwan, 2012). Various kinds of distance have also
been considered in methods for epistemic enforcement in abstract argumentation (Bau-
mann & Brewka, 2010; Baumann, 2012; Coste-Marquis, Konieczny, Maily, & Marquis,
2014c), for revising argument graphs (Coste-Marquis, Konieczny, & Maily, 2014a, 2014b),
and for merging argument graphs (Coste-Marquis, Devred, Konieczny, Lagasquie-Schiex, &
Marquis, 2007; Delobelle, Konieczny, & Vesic, 2015). There are related proposals for belief
revision in argumentation such as (Cayrol, de Saint-Cyr, & Lagasquie-Schiex, 2010; Gabbay
& Rodrigues, 2012; Bisquert, Cayrol, de Saint-Cyr, & Lagasquie-Schiex, 2013; Diller, Haret,
Linsbichler, Rümmele, & Woltran, 2015) but they do not use distance measures.

Dung and Thang (Dung & Thang, 2010) provided the first proposal to extend abstract
argumentation with a probability distribution over sets of arguments which they use with a
version of assumption-based argumentation in which a subset of the rules are probabilistic
rules. Another approach to augmenting abstract argumentation with probabilities has used
equations based on the structure of the graph to constrain the probability assignments,
and these can be solved to calculate probabilities (Gabbay & Rodrigues, 2015). In another
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rule-based system for argumentation, the belief in the premises of an argument is used
to calculate the belief in the argument (Riveret, Rotolo, Sartor, Prakken, & Roth, 2007).
However, the proposal does not investigate further the nature of this assignment, for example
with respect to abstract argumentation, but rather its use in dialogue is explored. In a logic-
based approach, Verheij combines qualitative reasoning in terms of reasons and defeaters,
with quantitative reasoning using argument strength which is modelled as the conditional
probability of the conclusions given the premises (Verheij, 2014).

The epistemic approach to probabilistic argumentation has been used for logical argu-
ments (Hunter, 2013). Each argument is a pair 〈Φ, α〉 where Φ entails α using classical
logic. Uncertainty over the arguments is represented by a probability distribution over the
models of the logical language. Then the probability of an argument is the probability of
the premises being satisfied which is calculated as the sum of the probability of the models
satisfying the premises. This can then be treated as an instantiation of the framework
presented in this paper.

Another approach for probabilistic argumentation for logical arguments is the ABEL
framework where reasoning with propositional information is augmented with probabilis-
tic information so that individual arguments are qualified by a probability value (Haenni,
1998; Haenni, Kohlas, & Lehmann, 2000). The emphasis is on generating pros and cons
for diagnosis. However, there is no consideration in ABEL of how this probabilistic infor-
mation relates to Dung’s proposals, or how it could be used to decide which arguments are
acceptable according to Dung’s dialectical semantics.

Probabilistic reasoning with logical statements has also been considered by Pollock
[Pol95]. However, the approach taken is to assign probabilities to formulae without con-
sidering the meaning of this in terms of models. Various issues arising from an assignment
based on the frequency that a consequent holds when the antecedent holds are considered,
as well as how such an assignment could be used for statistical syllogism. The emphasis of
the work is therefore different as it does not consider what would be acceptable probability
assignments for a language, and it does not consider how a probabilistic perspective relates
to abstract argumentation.

In (Pollock, 2001), Pollock has also expounded a non-probabilistic account (i. e. not
conforming to probability calculus) of degrees of justification in argument-based defeasible
reasoning. This is in part intended to account for attacking arguments that are too weak to
defeat an inference but may nevertheless diminish the degree of justification of its conclusion,
and for the way attacking arguments can be aggregated so that together they are stronger
enough to defeat an inference.

There are other approaches to bringing probability theory into systems for dialogical
argumentation. A probabilistic model of the opponent has been used in a dialogue strategy
allowing the selection of moves for an agent based on what it believes the other agent
is aware of and the moves it might take (Rienstra, Thimm, & Oren, 2013). In another
approach to probabilistic opponent modelling, the history of previous dialogues is used to
predict the arguments that an opponent might put forward (Hadjinikolis, Siantos, Modgil,
Black, & McBurney, 2013). For modelling the possible dialogues that might be generated
by a pair of agents, a probabilistic finite state machine can represent the possible moves
that each agent can make in each state of the dialogue assuming a set of arguments that
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each agent is aware of (Hunter, 2014b). This has been generalised to POMDPs when there
is uncertainty about what an opponent is aware of (Hadoux et al., 2015).

Some research has investigated relationships between Bayesian networks and argumen-
tation. Bayesian networks can be used to model argumentative reasoning with arguments
and counterarguments (Vreeswijk, 2004). In a similar vein, Bayesian networks can be used
to capture aspects of argumentation in the Carneades model where the propagation of
argument applicability and statement acceptability can be expressed through conditional
probability tables (Grabmair, Gordon, & Walton, 2010). Going the other way, arguments
can be generated from a Bayesian network, and this can be used to explain the Bayesian
network (Timmer, Meyer, Prakken, Renooij, & Verheij, 2015), and argumentation can be
used to combine multiple Bayesian networks (Nielsen & Parsons, 2007).

8.2 Other Quantitative Approaches for Argumentation

There are works incorporating other frameworks of quantitative uncertainty into argumen-
tation. For example, the work (Janssen, Cock, & Vermeir, 2008) extends abstract argumen-
tation by allowing the attack relation to be a fuzzy relation. In another fuzzy approach to
argumentation (da Costa Pereira, Tettamanzi, & Villata, 2011), each argument is assigned
a fuzzy value (i. e. a value in the unit interval) R to denote the reliability of the source of
the argument and a fuzzy label L (i. e. a value in the unit interval) to denote the degree of
acceptability of the argument. Two constraints are assumed on the fuzzy labelling for an
argument A with the latter constraint being a fuzzy reformulation of Caminada’s definition
for labelling.

There is also a correspondence between our definition of the probability of an argument
and the notion of plausibility in Dempster-Shafer theory (Shafer, 1976). Dempster-Shafer
theory assumes a frame of discernment Ω that is a set of atoms (e. g. a set of hypotheses
for a diagnosis). Each subset of Ω is regarded as a proposition. A mass distribution m
is a function from 2Ω into [0, 1] such that m(∅) = 0 and

∑
A⊆Ωm(A) = 1. To obtain

the total belief in a set A ⊆ Ω (i. e. the extent to which all available evidence supports
A) we need to sum all the mass for all subsets of A (i. e. propositions that imply A).
Hence, a belief function Bel : 2Ω → [0, 1] is defined via Bel(A) =

∑
B⊆Am(B). Note the

remaining evidence need not refute A (i. e., support the complement Ac = Ω \ A) since
the above does not imply Bel(A) + Bel(Ac) = 1. So some of the remaining evidence may
be assigned to propositions not disjoint from A, and hence could plausibly be transferred
directly to A in the light of further evidence. This then leads to the following notion of
the plausibility of a proposition. A plausibility function Pl : 2Ω → [0, 1] is then defined via
Pl(A) = 1− Bel(Ac) =

∑
B∩A 6=∅ m(B). So the plausibility of a proposition A is the sum of

the mass assigned to propositions that are consistent with A. The constraint B ∩ A 6= ∅ is
weaker than B ⊆ A, so Bel(A) ≤ Pl(A).

Let AF = (Arg,→) be an abstract argumentation framework. Now if we consider Ω =
Arg, then we have the following for each A ∈ Arg, where Pl({A}) is known as the contour
function.

Bel({A}) = P ({A}) Pl({A}) =
∑

X⊆Arg s.t. A∈X

P (X) = P (A)
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But a better alternative is to regard the power set of Arg as the frame of discernment since
we regard each element of the power set to be disjoint from the other elements of the power
set. Then for an argument A ∈ Args, we can define a proposition αA to be the maximal
subset of the frame of discernment such that each element in that subset entails A. So αA
is the proposition denoting that argument A is accepted.

For example, suppose we have Arg = {A,B}, and suppose we represent each subset of
Arg by a two digit binary number where 11 denotes {A,B}, 10 denotes {A}, 01 denotes
{B}, and 00 denotes ∅. Then the frame of discernment is Ω = {11, 10, 01, 00} and the
maximal subset of Ω that entails A is {11, 10}. So we define αA to be {11, 10}. Assuming
a mass distribution over Ω, the belief in the proposition αA is obtained as usual (using
Bel(αA) = ΣB⊆αAm(B)) as follows.

Bel(αA) = m({11}) +m({10}) +m({11, 10})

And the plausibility in proposition αA is obtained as usual (using Pl(αA) = ΣB∩αA 6=∅ m(B)))
to give Pl(αA) as the following summation.

Pl(αA) = m({11}) +m({11, 01}) +m({11, 00}) +m({11, 01, 00})
+m({10}) +m({10, 01}) +m({10, 00}) +m({10, 01, 00})
+m({11, 10}) +m({11, 10, 01}) +m({11, 10, 00}) +m({11, 10, 01, 00})

Then if we use our probability function P over the subsets of Arg that we have used in
the rest of this paper, we can see that it defines the mass distribution over singleton sets.
For the above example, it means that we would have m({11}) = P (11), m({10}) = P (10),
m({01}) = P (01), and m({00}) = P (00). Furthermore, for all non singleton sets the
assignment given by our probability function is zero (e.g. m({11, 10}) = 0). So m({11}) +
m({10}) +m({01}) +m({00}) = 1.

These encodings in Dempster-Shafer theory of our epistemic approach to probabilistic
abstract argumentation point to further ways that the idea of epistemic extensions can be
developed. As the above example shows, we could consider the benefits of having a mass
distribution over non-singleton sets. These benefits could include the suspension of the
excluded middle which may be useful for representing ignorance. We could also consider
the use of Dempster’s rule of combination for combining mass from multiple sources.

8.3 Ranking-based Argumentation

Recently, there has been some attention to qualitative approaches of ranking arguments,
see (Bonzon, Delobelle, Konieczny, & Maudet, 2016b) for a recent survey and (Amgoud &
Ben-Naim, 2013, 2015, 2016; Amgoud, Ben-Naim, Doder, & Vesic, 2016; Grossi & Modgil,
2015; Matt & Toni, 2008; Cayrol & Lagasquie-Schiex, 2005; Thimm & Kern-Isberner, 2014;
Bonzon, Delobelle, Konieczny, & Maudet, 2016a) for some concrete approaches. These
approaches aim at deriving a preference relation �AF among arguments of a framework AF
by exploiting the topology of the argumentation graph in a particular way. Here, A �AF B
means that A is as least as preferred as B. Many of these approaches rely on numerical
evaluations, e. g., the score SAF(A) of an argument A in the approach of (Amgoud et al.,
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2016) is given by the unique solution to the system of equations given via

SAF(A) = 1 + α

√∑
B→A

1

S(B)α

with some fixed parameter α ∈ (0,∞) for all argumentsA ∈ Arg. The intuition implemented
in the above equation is that the lower (stronger) the score of the attackers of A the larger
(weaker) the score of A. The obtained values do not usually have a specific meaning such
as probabilities or fuzzy values but are used to specify a ranking �AF via A �AF B iff
SAF(A) ≤ SAF(B) (let �AF and ∼=AF be defined accordingly). In general, approaches to
ranking-based argumentation determine the strength of an argument by aggregating the
strengths of its attackers, and possibly its defenders and their attackers, and so on.

Research in ranking-based semantics is also driven by postulates, see (Bonzon et al.,
2016b) for an overview. We recall some of these now and consider them in our context of
probabilistic abstract argumentation. As we will see, our approach is, in general compatible
with the general view on ranking-based semantics but is based on different foundations.
Let �AF be a preorder on the set Arg of an argumentation framework AF = (Arg,→) and
A,B ∈ Arg.

Abstraction If AF = (Arg,→) and AF′ = (Arg′,→′) are isomorphic and γ : Arg→ Arg′ be
an isomorphism then A �AF B iff γ(A) �AF′ γ(B).

The above postulate demands that only the topology of a graph and not the names of
arguments should influence the ranking. Our approach satisfies this general principle as
well. However, we need to rephrase this property slightly in order to be applicable. For
argumentation frameworks AF = (Arg,→) and AF′ = (Arg′,→′), a bijective function γ :
Arg → Arg′, and a probability function P ∈ P(AF) define γ(P ) ∈ P(AF′) via γ(P )(A) =
P (γ−1(A)) for all A ∈ Arg′. For a set P ⊆ P(AF) abbreviate γ(P) = {γ(P ) | P ∈ P}.

Proposition 25. Let AF = (Arg,→) and AF′ = (Arg′,→′) be isomorphic and γ : Arg→ Arg′

be an isomorphism. For every T ⊆ {COH,SFOU, FOU, SOPT, OPT, JUS, TER, RAT, NEU,
INV, MAX, MIN}, γ(PT (AF)) = PT (AF′).

Proof. We only consider T = {COH}, all other properties and combinations thereof work
analogously. Let P ∈ PT (AF). Recall that for A,B ∈ Arg we have A → B iff γ(A)→′ γ(B).
Then for all A,B ∈ Arg′ with A → B,

γ(P )(A) = P (γ−1(A)) ≤ 1− P (γ−1(B)) = 1− γ(P )(B)

Note that the inequality holds as P is coherent and γ−1(A)→ γ−1(B). So γ(P ) ∈ PT (AF′)
and therefore γ(PT (AF)) ⊆ PT (AF′). The other direction is analogous.

Another property for ranking-based semantics is the following. Recall that for an argu-
mentation framework AF we denote by CC(AF) the set of simply connected components of
AF.

Independence For all AF′ = (Arg′,→′) ∈ CC(AF), for all A,B ∈ Arg′, A �AF′ B implies
A �AF B.
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Independence demands that the ranking between two arguments should not be influenced
by arguments disconnected from these two. In our context we can phrase this property as
follows. Let AF = (Arg,→) and AF′ = (Arg′,→′) with Arg′ ⊆ Arg and→′=→ ∩(Arg′×Arg′).
For a probability function P ∈ P(AF) define P |AF′ ∈ P(AF′) via

P |AF′(E) =
∑

E′⊆Arg\Arg′
P (E ∪ E′)

for all E ⊆ Arg. Observe that P |AF′(A) = P (A) for all A ∈ Arg′, so P |AF′ is the projection
of P on AF′. For a set P ⊆ P(AF) let P|AF′ = {P |AF′ | P ∈ P}.

Proposition 26. For all AF′ = (Arg′,→′) ∈ CC(AF), for all T ⊆ {COH,SFOU, FOU,
SOPT, OPT, JUS, TER, RAT, NEU, INV, MAX, MIN}, PT (AF)|AF′ = PT (AF′).

Proof. Again, we will only consider T = {COH}, all other properties and combinations
thereof work analogously. Let P ∈ PT (AF) and A,B ∈ Arg′ with A → B, then

P |AF′(A) = P (A) ≤ 1− P (B) = 1− P |AF′(B)

So P |AF′ ∈ PT (AF′) and PT (AF)|AF′ ⊆ PT (AF′). For the other direction note that every
coherent probability function on AF′ can be extended to a coherent probability function on
AF by assigning probability 0.5 all arguments in Arg \ Arg′.

The above result implies that if P ′(A) > P ′(B) for all P ′ ∈ PT (AF′) then P (A) > P (B)
for all P ∈ PT (AF) as well. Some postulates for ranking-based semantics have direct
counterparts in our scenario. For example, consider

Void Precedence If AttAF(A) = ∅ and AttAF(B) 6= ∅ then A �AF B.

This postulate corresponds in its non-strict version to our FOU property.

Proposition 27. If AttAF(A) = ∅ and AttAF(B) 6= ∅ and P ∈ PFOU(AF) then P (A) ≥ P (B).

Proof. From AttAF(A) = ∅ and P ∈ PFOU(AF) it follows P (A) = 1.

Note, however, that we do not obtain P (A) > P (B) in general. However, our ap-
proach obviously satisfies Non-attacked Equivalence which demands that all non-attacked
arguments have the same rank.

Non-attacked Equivalence If AttAF(A) = ∅ and AttAF(B) = ∅ then A ∼=AF B.

Proposition 28. If AttAF(A) = ∅ and AttAF(B) = ∅ and P ∈ PFOU(AF) then P (A) = P (B).

Another postulate is concerned with attack branches. An attack branch for A is a sequence
of arguments B1, . . . ,Bn with AttAF(B1) = ∅, Bi → Bi+1 for i = 1, . . . , n− 1, Bn → A, and
n is odd.

Attack vs. Full Defense If A has no attack branch, AttAF(C) = ∅, and AttAF(B) = {C},
then A �AF B.
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This property is satisfied in its non-strict version as well, if we consider at least the properties
FOU and COH.

Proposition 29. If A has no attack branch, AttAF(C) = ∅, and AttAF(B) = {C}, then for
all P ∈ P{FOU,COH}(AF), P (A) ≥ P (B).

Proof. For P ∈ P{FOU,COH}(AF) we have P (C) = 1 due to FOU and then P (B) = 0 due to
COH.

Bonzon et al. (Bonzon et al., 2016b) discuss a series of further postulates which are,
in general, not satisfied by epistemic probabilistic abstract argumentation. The main dif-
ference between these two families of approach is that ranking-based approaches aim at
incorporating some form of accrual (Prakken, 2005) into the evaluation process while epis-
temic probabilistic abstract argumentation aims at being as close as possible to classical
abstract argumentation in this regard. To be more precise, one postulate that is satisfied
by all ranking-based approaches considered in (Bonzon et al., 2016b) is “Addition of Attack
Branch”, which states that adding an attack branch to an argument decreases its ranking.
For example, an argument attacked by n unattacked arguments should be ranked higher
than an argument attacked by n + 1 unattacked arguments. Classical abstract argumen-
tation (Dung, 1995) does not distinguish these two cases, both arguments will be labeled
“out” in any reasonable labelling. Furthermore, any probability function P which satisfies
at least FOU and COH will assign probability zero to both arguments as well. So, although
similar in spirit, these two families of approaches rely on different foundational assumptions.

9. Summary

The epistemic approach provides a finer grained assessment of an argument graph than
given by the basic notions of extensions. With labellings, arguments are labelled as in,
out, or undec, whereas with the epistemic approach an argument can take any value in
[0, 1]. By adopting constraints on the probability distribution, we have shown how the
epistemic approach subsumes Dung’s approach. However, we have also argued that there
is a need for a view where we adopt weaker constraints on the probability distribution. For
instance, an important aspect of the epistemic approach is the representation of disbelief in
arguments even when they are unattacked. It is not always possible or practical to identify
a counterargument to reject in argumentation, and often it is quite natural to directly
represent the disbelief in an argument without consideration of the counterargument.

The epistemic approach is also useful for modelling the belief that an opponent might
have in the arguments that could be presented, which is useful for example when deciding on
the best arguments to present in order to persuade that opponent. Strategies in dialogical
argumentation are an important research issue (Thimm, 2014). By harnessing a model of
the beliefs of opponent, better choices can be made by an agent (see for example (Hunter,
2015)).

We also considered incomplete probability distributions and probability distributions
that are inconsistent with a set of constraints. These issues commonly arise when considering
multiple agents. For instance, when using a probability distribution to represent the beliefs
of an opponent, the opponent may have made explicit its beliefs in specific arguments
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(perhaps by positing them, or by answering queries regarding them). Normally, what
is known about the beliefs of the opponent will be incomplete. To give an example of
dealing with inconsistency, we can use the probability distribution to represent the feedback
obtained from an audience of a television debate. Here, the probability distribution might
be inconsistent with the chosen constraints. If we assume that the audience does conform
to the constraints, and that probability distribution fails to satisfy the constraints, then we
can “repair” the probability distribution, using our approaches of “soft” and “hard repair”.
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