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Abstract

Hospitals often hold historical MR image data printed on films without being able to make it accessible
to modern image processing techniques. Having the possibility to recover geometrically consistent, vol-
umetric images from scans acquired decades ago will enable more comprehensive, longitudinal studies to
understand disease progressions. In this paper, we propose a consistent framework to reconstruct a volu-
metric representation from printed films holding thick single-slice brain MR, image acquisitions dating back
to the 1980’s. We introduce a flexible framework based on semi-automatic slice extraction, followed by
automated slice-to-volume registration with inter-slice transformation regularisation and slice intensity cor-
rection. Our algorithm is robust against numerous detrimental effects being present in archaic films. A
subsequent, isotropic total variation deconvolution technique revitalises the visual appearance of the ob-
tained volumes. We assess the accuracy and perform the validation of our reconstruction framework on a
uniquely long-term MRI dataset where a ground-truth is available. This method will be used to facilitate a
robust longitudinal analysis spanning 30 years of MRI scans.

Keywords: Historical MR Film Data, Brain MRI, Regularized Image Registration, Total Variation
Reconstruction, Longitudinal Analysis

1. Introduction

Since the early 1980’s, when it first became available for clinical use, Magnetic Resonance Imaging (MRI)
has been recognised as a powerful, non-invasive and non-ionising medical imaging technique (Damadian,
1971). The earliest, longitudinal brain studies were performed based on thick contiguous slices acquired in
the axial direction to cover the entire volume, e.g. (Miller et al., 1988, 1989). In absence of modern standards
for digital archives and visualisation, the acquired scans were placed side-by-side and printed sequentially on
multiple films, for further, visual analysis, as shown in Fig. 1. The analysis was typically limited to measures
such as lesion count and location in multiple sclerosis (MS) studies (Miller et al., 1989; Morrissey et al.,
1993; O’Riordan et al., 1998). With the introduction of the PACS (Picture Archiving and Communications
System) and DICOM (Digital Imaging and COmmunication in Medicine) standards in the beginning of
the 90’s, the basis was created to digitally store medical imaging information including essential meta-data
on spatial information and acquisition details. This allowed further development of clinically important
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Figure 1: Scanned MR Films of MS/Clinically Isolated Syndrome (CIS) subjects from 1985 to 1991. The top row (a) illustrates
a typical proton density-like sequence of printed 5 mm thick slice acquisitions side-by-side, acquired at 1.5T in 1991. The left
bottom column (b) illustrates a scan acquired at 0.5 T in 1986 with lesions encircled directly on the film. The middle bottom
column (c) depicts a scratched, visibly rotated and deformed film from 1985 with unknown slice-thickness. The bottom right
column (d) shows handwritten annotations on a scan from 1990. The skulls and also a part of the brain is merged into each
other to save film space. Overall, it is worth noting the different types of MR films, their illumination differences and different
visible distortions affecting even the same film belonging to the same acquisition.

biomarkers such as brain and lesion volume for longitudinal MS studies (Brex et al., 2002; De Stefano et al.,
2014; Sailer et al., 1999) — information which, currently, cannot be readily extracted from scans dating back
to the 80’s and early 90’s if they are only available as printed films. The original, digital data is often lost
or cannot be recovered due to hardware and software obsolescence issues which has also been shown in more
recent studies on brain morphometry where original MR films were digitised anew and manually processed
to allow for further quantification (Ekert et al., 2016). In other words, especially for longitudinal studies
dating back to the 80’s, a decade or more of valuable image data information may not be readily accessible
to modern image processing techniques which could add to the understanding of long-term pathological or
morphological evolution.

In order to re-establish a consistent, volumetric representation from printed, historical films several
challenges need to be overcome: Patient-specific anatomy is only sparsely captured on printed films corre-
sponding to a single acquisition of axially acquired thick slices only. Each 2D slice needs to be extracted
from the MR film and correctly aligned in the 3D space. Slice-based motion correction techniques have been
successfully applied in various fields of medical imaging (Ferrante and Paragios, 2017) and can estimate
the correct inter-spatial relationship of multiple slices to reconstruct a consistent volumetric representation.
Applications of slice-based motion correction and reconstruction methods in MRI include the challenging
problems of fetal MRI (Kainz et al., 2015a; Kim et al., 2010b; Rousseau et al., 2006; Tourbier et al., 2015)
or abdominal MRI (Ebner et al., 2017) in structural imaging but also functional MRI (Kim et al., 1999;
Seshamani et al., 2016) and diffusion tensor imaging (DTI) (Jiang et al., 2009; Fogtmann et al., 2014;



Marami et al., 2016, 2017). In general, the lower the slice resolution, the more ill-posed the registration and
reconstruction problems become. Therefore, multiple stacks of slices in single (Jiang et al., 2009; Kim et al.,
1999; Seshamani et al., 2016) or multiple (Ebner et al., 2017; Fogtmann et al., 2012, 2014; Marami et al.,
2017; Kainz et al., 2015a; Kim et al., 2010b; Rousseau et al., 2006; Tourbier et al., 2015) imaging planes
are typically acquired in order to obtain a sufficiently dense data sampling to better constrain the motion
correction and reconstruction problems. In particular, Fogtmann et al. (2012, 2014) and, more recently,
Marami et al. (2017) have proposed regularised slice-to-volume registration approaches to better address
the ill-posed nature of independent slice-to-volume registrations in order to achieve more robust motion
correction frameworks for multi-plane multi-slice Diffusion MRI. In the case of reconstructing volumetric
representations from printed MR films, however, only one single stack of past thick-slice acquisitions in a
single, axial plane is captured. The slice thickness of past acquisitions can range from 5mm like in Brex
et al. (2002); Ekert et al. (2016); Miller et al. (1989); Sailer et al. (1999) to 10mm as in Brex et al. (2002);
Miller et al. (1989); Sailer et al. (1999) to even encountered 12mm. Hence, even in the 5 mm slice thickness
case, which is the focus of this work, neighbouring slices correspond to relatively distant anatomical posi-
tions which renders purely intra-stack alignment-based motion correction approaches particularly difficult
S0 as to recover the correct inter-slice relationship and, thus, the patient-specific anatomy. An appropriate
single slice-based motion correction approach will be key but needs to deal with the very sparse information
given the thick, contiguous slices. Additionally, the geometrical properties and dimensions of printed slices
are lost and need to be recovered. The top part of the brain is often missing due to a reduced field of
view (FOV) in past acquisitions complicating accurate registrations. The arguably higher magnetic field
inhomogeneities of past MR image acquisitions and the further processing associated with film printing,
storage and subsequent scanning lead to different types of illumination differences which are present across,
but also within, MR films belonging to the same acquisition in addition to other types of degradations as
shown in Fig. 1. Storage of the films over decades may have further degraded the data whereby individual
films belonging to the same acquisition may have been affected differently resulting in stark differences in
image intensities across slices of different films. Moreover, historical films are likely to carry a substantial
amount of background noise and may well come with low image contrast. Additional distortion has been
introduced due to the performed manual scanning, manifested in rotated, sheared and possibly, otherwise
deformed images, as visible in Fig. 1. Due to advances in MR, increased field strengths, higher spatial
resolution, changes in imaging protocols and image contrast preferences for diagnostic purposes in addition
to changes in MR scanner manufacturers and printers, the appearance and also the layout of MR films can
change substantially in the course of a longitudinal study spanning several decades.

In this paper, we propose a novel reconstruction framework, able to address the challenges discussed
above. More specifically, our contributions are:

1. A semi-automatic slice extraction tool to create a digital image stack from historical slices selected
from the scanned brain MR films. It provides an initial digital 3D representation of acquired slices
printed on a 2D film where the correct spatial position and dimension of each single slice needs to be
recovered.

2. A fully automatic volumetric reconstruction framework to estimate the lost meta-data information of
each slice in the 3D space. It is based on a joint slice-to-volume affine registration with inter-slice 2D
transformation regularisation and affine slice-intensity correction. Missing meta-data information is
contributed by a longitudinal scan of the same subject. A final isotropic total variation in-plane de-
convolution technique serves to revitalise the visual appearance of the reconstructed stack of historical
slices.

3. A validation of our slice-extraction tool and volumetric reconstruction framework on clinical, historical
ground-truth data to show the potential of our proposed framework to enable a more robust analysis
of long-term datasets:

e We apply our proposed method to a uniquely long-term, longitudinal dataset of patients first
recruited with clinically isolated syndrome (CIS) dating back to the 1980’s (Miller et al., 1988,
1989; Morrissey et al., 1993; O’Riordan et al., 1998; Brex et al., 2002; Fisniku et al., 2008).



e We validate our framework on a subset of this cohort where also the original, digital stack of the
same acquisition has been preserved in addition to the printed MR films. In this rare situation,
we can validate against historical ground-truth data.

— We perform a quantitative comparison and assess the accuracy of our obtained volumetric
reconstructions in terms of mean squared error, normalised cross correlation, structural sim-
ilarity, peak signal-to-noise ratio and Structural Image Evaluation, using Normalization, of
Atrophy (SIENA) (Smith et al., 2002) analysis.

— We undertake a qualitative assessment relying on expert neurologist ratings both in terms of
clinical usefulness and ground-truth comparison of our recovered volumetric representations
of historical film data.

— We provide a qualitative comparison of longitudinal data to assess ground-truth similarity
over time.

The framework is made open source and available on github!.

Compared to regularised slice-to-volume motion-correction and MR reconstruction methods proposed in
the literature such as (Fogtmann et al., 2012, 2014) or (Marami et al., 2017) the proposed reconstruction
pipeline differs significantly in a number of aspects as it is designed particularly to deal with the specific
challenges associated with the volumetric reconstruction from historical MR films.

Fogtmann et al. (2014) propose reconstructing 3D DTT from multiple multi-slice diffusion weighted (DW)
images by using a framework for unified motion-estimation and image reconstruction as an extension of their
previous work (Fogtmann et al., 2012) introduced for structural multi-plane MRI. Despite the formulation
as a unified approach, the volumetric reconstruction of the unknown image is performed by alternating
between the two problems of estimating the motion parameters of a 3D rigid and scale-skewness transform
for all slices followed by estimating the weight parameters which define the diffusion volume. Instead, we
propose a method which corrects at once for affine in-plane 2D motion of each single slice and estimates its
missing physical dimensions by the guidance of a reference volume acquired many years later which usually
exists in longitudinal studies. In particular, this approach avoids out-of-plane resampling of the very sparse
anatomical data given by only one single stack of the thick axial slices. Moreover, Fogtmann et al. (2014) use
a regularisation prior based on the Huber norm for motion correction to favour similarity between motion
correction parameters of consecutive slices. We propose a robust smooth ¢!-approximation-based inter-slice
affine 2D transform regularisation and affine intensity correction framework in addition to the use of a prior
on optimisation parameters based on a smooth ¢!'-approximation. This drives the physical dimension and 2D
position estimates directly by the similarity between slice neighbours guided by the anatomical shape prior
provided by the reference volume.

Marami et al. (2017) build on their work presented in (Marami et al., 2016) and explicitly model the
dynamics of rigid motion with a state space model where they estimate the temporal motion trajectories
with a Kalman filter for a more robust reconstruction of DWI. They automatically detect and reject motion-
corrupted DWTI slices to enhance motion tracking and reconstruction. In our setting of volumetrically
reconstructing 3D volumes from sparse historical 2D slices printed on films, the motion captured in the
obtained stack of slices after the semi-automatic slice extraction cannot be assumed to follow a physiological
model. Each individual slice will have different motion shifts with respect to each other given that each slice
is extracted according to a landmark which is placed manually on the film. Therefore, we propose a motion
correction framework based on an inter-slice regularisation which leverages the 2D image similarity between
two neighbour slices and the respective (oblique) reference slice instead. Moreover, we do not perform
outlier rejection as we need to recover the physical position and dimension for each single slice reliably in
order to form a consistent volumetric representation of the subject-specific anatomy as captured by the
single acquisition in the past. Importantly, however, they use the method presented in (Kainz et al., 2015b)
for the required structural image reconstruction of the high-resolution T2-weighted volume from multiple
motion corrupted slices, which uses independent rigid slice-to-volume registration without regularisation.

Thttps://github.com/gift-surg (available upon publication of the paper)
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In addition, the mentioned approaches rely on Super-Resolution techniques (Park et al., 2003; Gholipour
et al., 2010) for the image reconstruction steps to reconstruct a single, higher-resolution, isotropic 3D volume
from multiple scattered low-resolution 2D slices. In our approach, a final isotropic total variation in-plane
deconvolution step is added after performed in-plane motion correction of each single slice for improved
visual appearance only.

The remaining part of this paper is organised as follows. Section 2 motivates and presents the design
choice and the details of our proposed volumetric reconstruction framework. In Section 3 the results of the
validation of our proposed volumetric reconstruction framework are presented using a uniquely long-term
historical dataset spanning 30 years of MRI scans. Finally, Section 4 concludes with a discussion.

2. Volumetric Reconstruction from Printed MR Films
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Figure 2: Overview of volumetric reconstruction framework for historical MR film data. Provided the scans of the MR films
acquired at time Tp and a more recent, digital 3D scan of the same patient acquired X years later, the proposed algorithm
reconstructs the volumetric representation of the original MR image acquisition at Ty. Further details on the semi-automatic
slice extraction, initialisation and refinement steps are visualised in the Figs. 3 to 5, respectively.

The first step of the volumetric reconstruction method is dedicated to the slice extraction and stacking
of all slices of the same historical axial acquisition in order to create an initial, digital 3D image. A
semi-automatic slice extraction framework is chosen to deal with the wide variety of existing films, data
characteristics, and styles as pointed out in Fig. 1. This enables flexible processing even for complex cases
where slices are merged on a printout and brain images need to be carefully delineated, as, e.g., shown in
Fig. 1la. A manual interaction can additionally ensure that only correct slices and films belonging to the
same acquisition are extracted. This is particularly relevant since multiple films, or slices printed on films,
encountered in the database of historical films are duplicated whereas other ones are missing or not ordered
in the right sequence and inevitably require manual intervention.

The imperfect slice extraction of rotated, sheared and possibly otherwise deformed images due to printing
and manual scanning gives rise to a naively stacked 3D data with visibly in-plane motion affected slices.
Therefore, the volumetric reconstruction framework needs to recover the correct inter-spatial position of all
slices in addition to their physical dimensions. After printing and scanning, the only spatial information
available from the MR films is the slice thickness which is generally printed on the films as indicated in
Fig. 1. All other meta-data typically stored in DICOM headers, such as exact spatial position relative to the
neighbouring slice, in-plane spacing, and image orientation, is lost and needs to be recovered for each single
slice. The aim of our algorithm is to infer the missing information from a more recent, digital 3D scan of
the same patient which holds the required meta-data information and is of similar intensity contrast; a scan
which generally exists in longitudinal studies. For instance, early and current studies for MS use proton
density (PD)-like image contrast (Gracien et al., 2016; Miller et al., 1988) despite the advances and changes
in imaging protocols over several decades. However, this reference image is likely to be acquired many years



later and the patient may have undergone substantial morphological changes including atrophy. It will be
dissimilar to the brain captured by the historical MR films.

By neglecting subject motion during acquisition time, slice motion correction can be reduced to in-plane
motion correction only. This assumption addresses both the need of balancing the complexity versus robust-
ness of the method and avoids out-of-plane resampling for the final volumetric reconstruction of the sparse,
historical, thick-sliced data. The primary goal of our obtained volumetric reconstructions from printed
films is to gain clinical trust by performing a sufficiently accurate motion correction without introducing
implausible deformations. Hence, a gradual increase of transformation complexity shall be performed up to
in-plane 2D affine transformation which is believed to be capable of dealing with the encountered distortions
in the films. Intra-stack slice registration is highly ill-posed due to the thick slice thickness and its associ-
ated sparse anatomical sampling of the patient-specific brain anatomy. This inhibits a potential approach
of performing first an intra-stack slice alignment followed by a subsequent volume-to-volume registration
to the reference image. Taking advantage of the valuable information on the skull geometry captured by
the later reference image with similar appearance, we propose leveraging the combined information of both
reference and historical slice neighbour data by deploying a slice-to-volume registration framework based on
regularised motion and affine intensity correction. The regularised slice-based intensity correction is meant
to deal with the intensity variations across slices and films and to balance existing intensity discrepancies
to the reference image. A previous global intensity correction step will be vital to eliminate background
noise of the historical slices and to scale the scanned image intensities accordingly. Finally, we make use of
a well-established, isotropic total variation deconvolution step (Beck and Teboulle, 2009; Rudin et al., 1992)
to alleviate the blurring of the historical slices resulting from both printing and scanning steps and to reduce
the impact of the original point-spread-function (PSF) from the MR scanner during acquisition time.

Based on those assumptions, the proposed algorithm, illustrated in Fig. 2, reconstructs the 3D geometry
of the original shape as captured by the MR films such as shown in Fig. 1.

2.1. Semi-Automatic Slice Extraction

e ' N
1. Individual Selection of a 2. Joint FOV Selection for
Common Landmark All Individual Slices

LED

Naively Stacked Data

Historical MRI Films (Ty)

Figure 3: Semi-Automatic Slice Extraction. By providing the scanned MR films associated with the same acquisition a semi-
automatic slice extraction step is deployed to naively stack each extracted 2D slice into a 3D stack. No meta-data information
is assigned at this stage.

A flexible semi-automatic procedure is proposed to extract each individual slice-acquisition from every
MR film associated with the same acquisition to address the variety of existing films and styles as pointed
out in Fig. 1. As shown in Fig. 3, the first MR film is read and a common landmark is selected manually
with one click per slice on the film. The selection order of the landmarks defines the slice extraction order
for the later slice stacking. This ensures that the proposed slice extraction tool can deal with historical
MR films where consecutive acquisitions are not necessarily printed sequentially and in the same manner
across different film types. We emphasise that the manual landmark selection does not need to be very
precise and is used for initialisation purposes of the motion correction algorithm only. After landmark
selection, a selection window is automatically overlaid, based on default values relative to each landmark,
indicating the FOV for slice extraction. The window size and respective offset are then adjusted manually,
in a uniform manner, so that changes applied to one window are automatically adjusted to the rest. A
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more precise extraction window is then achieved, comprising the region of interest for all slices on the film.
This adjustment also allows to easily extract slices even in cases where skulls are overlapping as shown in
Fig. 1la. The final FOV windowing is stored and used for the subsequent films. After having marked the
same common landmark on all slices on all remaining films sequentially, the selected 2D slices are extracted
and stacked automatically to form a naively stacked 3D data.

2.2. Joint Regularised Motion and Intensity Correction Model

We propose using an in-plane, affine spatial transformation model to strike a balance between fully
compensating the distortions of each slice while preventing the introduction of additional image artefacts.
However, due to the sparse, thick slice anatomical sampling, additional information is required to estimate
the true, original, anatomical shape. The missing information can be contributed by the reference image.
Due to the mentioned morphological changes of this later scan, we will use only the information around the
skull; the structure which is believed to change the least over time. Hence, a good estimate of the correct slice
position and geometry is likely to be found if each historical slice y; matches both a corresponding reference
(oblique) slice 7 around the skull and its immediate neighbouring slices over the FOV to achieve a good
geometric consistency driven by the original MR film data. Thus, the idea is to find the slice transformation
parameters 0, € RS to an in-plane 2D affine spatial transformation T(0y,-) : Q@ C R? — R? which jointly
minimises the costs

51 (us (T(01,€)), 74(8)) V€ € Qe € (1
59 (yk (T(0,€)), ka(T(GkH,é))) V€ € Q, (2)

for adequate similarity measures s, so for all K slices. To compensate intensity variations across historical
slices and between historical and reference slice, a global intensity correction step, as shown in Fig. 2, and
a local affine intensity compensation model during registration will be deployed. By defining the joint
motion and intensity correction parameter Oy := (0, oy, Si) the cost (2), measuring the dissimilarity of
neighbouring, historical slices, is defined as

Ni(®k, Op 1) := Z 0y (ak Uk (T(Ok, €)) + Br — art1 yrr1 (T(Or11,€)) — 5k+1) (3)
£eQ

with a loss function g, : R — RT, e — p,(e) := /72 + €2 — 7, as a smooth £'-approximation with scaling
factor v > 0, similar to the Huber function, to allow for a more robust optimisation. Similarly, the cost (1)
between historical and corresponding reference slices is defined as

Ri(Ok) == Z O~ (ak Yk (T(Ok, €)) + Br — Tk(ﬁ)) (4)

£€Qun

whereby only a neighbourhood around the skull Qg C € is considered. With © := (@1, ..., @) denoting
the joint set of optimisation parameters and P(®) := >, _g 0,(f), the motion correction problem for one
stack of semi-automatically extracted slices can subsequently be written as a joint, regularised minimisation
problem

K K-—1
min ()‘R D> Ri(Ok) + A D> Ni(Ok, O 1) + Ap P(O — @0)) (5)
k=1 k=1

with weights Az, Ax > 0, regularisation parameter Ap > 0 and prior @ on the parameters which need to be
defined accordingly. The critical point is to get the corresponding reference (oblique) slices ri, k=1, ..., K,
to initialise (5).
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Figure 4: Initialisation of volumetric reconstruction algorithm: Global rescaling and positioning of the historical slices to
initialise the regularised optimisation models.

2.8. Initialisation of Volumetric Reconstruction Algorithm

As mentioned earlier, the slice thickness is the only preserved meta-data information of the slice ac-
quisitions stated on the MR films. After the scanning, the image data is only given in pixel dimensions.
Hence, the semi-automatically extracted and naively stacked slices need to be re-scaled and aligned with the
reference 3D volume in order to extract the respective reference (oblique) slices . Our proposed approach
is shown in Fig. 4. The slice-thickness is updated according to the information from the MR film and the
in-plane scaling is initialised by a uniform value manually fixed. A subsequent rigid in-plane registration step
with inter-slice regularisation is performed using the sum of the slice neighbour-terms (3) to obtain a more
consistent brain geometry and to correct for possible inaccuracies of the semi-automatic slice extraction.
More information on the parametrisation of the registration parameters is provided in Section 3.2. By using
the Brain Extraction Tool (BET) (Smith, 2002) a mask surrounding the skull of both the in-plane registered
stack and the reference image is created. A subsequent in-plane 3D similarity registration based on nor-
malised cross-correlation aligns the entire stack with the reference and estimates a uniform in-plane scaling
factor for all slices to match their skull masks. The additionally resampled reference image to the 3D scaled
stack space both provides the oblique slices 7, and serves for the subsequent global intensity correction step.

2.4. Global Intensity Correction

Due to the printing, storage over years and scanning, the historical slices may carry a substantial amount
of background noise and have low image contrast. A global intensity correction step aims to improve the
intensity contrast by using the resampled 3D reference image intensity information and to keep the slice
intensities as close as possible to the original ones’ at the same time. With ¢oq9, being the global 20 %-
intensity percentile of all historical slices, all slice intensities 7 are capped via ¢ < max(i — go9%,0) to
eliminate background noise whereby the 20 %-threshold was found experimentally by visual analysis. We
then apply a uniform-across-slices linear intensity correction step.

2.5. Refinement of Volumetric Reconstruction

In order to increase the convergence basin of the joint-regularised registration model (5), a step-wise
increase in transformation complexity is chosen for the slice-based motion correction step to correct for
individual geometric distortions, illustrated in Fig. 5. A similarity 2D transformation is used first in (5) to
correct for rigid motion and uniform in-plane scaling for each slice separately. This is performed twice with
different spatial initialisation transformations, i.e. using the identity transformation and the initialisation
transformation based on the moments of the skull-masked historical and the reference slice whereby the
result with overall lower cost is selected. The prior term in (5) is chosen to penalise in-plane scaling and
intensity coefficients. Since all slices have been uniformly scaled previously, the prior value for in-plane
scaling is set to 1. Similarly, due to the global intensity scaling, the coefficients oy and Sy are expected
to be close to 1 and 0, respectively. Regularisation parameters are found experimentally and described in
Section 3.2. Afterwards, the full, 2D affine transformation model is chosen for (5) so that the historical slice
can match the skull as accurately as possible.
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Figure 5: Refinement of volumetric reconstruction algorithm: Application of joint, regularised motion and intensity correc-
tion (5) in addition to the TVL2-deconvolution (6).

After having estimated the positions and geometrical properties of the slices a subsequent image decon-
volution step is performed for each slice separately in order to restore each individual slice without mixing
neighbouring slice information. For this purpose, we rely on a 2D isotropic total variation (TVL2)
deconvolution step (Beck and Teboulle, 2009; Rudin et al., 1992)

HllIl ( ||y Ao X||€z + ATVigo(x )> st. x>0 (6)

for each individual slice y € {y1, ...,yx} with yx = (yk(s))geg representing the vectorised slice, x its

deblurred version, A the blurring operator with covariance o2 to jointly describe the in-plane blurring
of the image acquisition, printing and scanning and A > 0 the regularisation parameter. A matriz-free
implementation is chosen in order to avoid the storage of large matrices (Diamond and Boyd, 2015). The
optimisation problem (6) is solved via Alternating Direction Method of Multipliers (ADMM) described
in Boyd et al. (2011). The implemented, scaled, explicit form of ADMM iterations reads

x*1 .= arg min (; ly — AX||?2 + g [Vx—v'+ Wi”i) st.x>0 (7
vith=8,,,(Vx*! +w') (8)
withi=w! + (Vx't —vith) 9)

with the auxiliary variable v, the scaled dual variable w, the Lagrange multiplier p and the vectorial soft
threshold operator S/, (Boyd et al., 2011). Given that the standard Lawson & Hanson algorithm (Lawson
and Hanson, 1974) cannot cope with large-scale non-negative least-squares problems several specialised meth-
ods have been proposed in the literature to solve minimisation problems like (7) such as presented in Becker
and Fadili (2012); Kim et al. (2010a, 2013). In this work, we used the L-BFGS-B v3.0 solver (Byrd et al.,
1995; Morales and Nocedal, 2011) which, although not specifically designed for non-negative least squares,
generally shows good performance for such problems and, especially for large-scale problems, regularly
outperforms other modern methods (Kim et al., 2010a).

3. Data, Evaluation Methodology and Results

3.1. Data

A cohort of people recruited soon after a CIS was first assessed at the National Hospital for Neurology
and Neurosurgery, Queen Square, London, between 1984-1987 and followed up at regular time points until
present (Miller et al., 1988, 1989; Morrissey et al., 1993; O’Riordan et al., 1998; Brex et al., 2002; Fisniku
et al., 2008); a 30-year longitudinal follow-up, clinical study is currently underway including more than 100
image acquisitions captured on historical films. The preserved MR films were scanned using the Vidar
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DiagnosticPRO Advantage film digitizer, processed with the Hipax Diagnostic Workstation medical image
viewer software and exported to DICOM files. For the current study, a subset of 20 MR film sets (18
acquisitions at 5-year follow-up acquired at 0.5 T and two at 10-year follow-up acquired at 1.5 T') was available
where both the original MR films and the stacked, digital scans of the exact same 5 mm thick PD-like slice
acquisitions were available. This is a rare situation and allows to validate the volumetric reconstruction
pipeline against ground-truth data. In 18 out of those 20 subjects, the acquisitions were captured on films
where two consecutive slices showed overlapping skull and brain structures similar to Fig. 1la and Fig. 1d.
To recover the spatial correspondences for each slice a later PD-scan of the same subject was used as the
reference which is typically available in longitudinal studies. The reference scan was acquired as stacks
of 5 mm thick slices and, depending on the subject-specific follow-ups and availability, either was a 10-, 14-
or 20-year time point after the baseline scan of the same subject. This reference was also used to correct
for existing left-right flipping of the brain we encountered in the scans.

3.2. Parametrisation of Volumetric Reconstruction Pipeline

The entire, regularised volumetric reconstruction framework was implemented in PYTHON while taking
advantage of ITK for the individual registration steps. The joint regularised registration problem (5) was
implemented via the least_squares algorithm of SCIPY where the exact Jacobian was provided for both
accelerated and more accurate computational results. The framework is made open source and available on
github?.

The semi-automatic slice extraction tool stores the naively stacked 3D data as a NIfTT image for further
processing. The rigid in-plane registration step with inter-slice regularisation using slice neighbour-terms (3)
was initialised based on the slice moments and used least-squares differences as similarity metric whereby 10
iterations were performed in the least_squares algorithm. By considering this stack of neighbour-aligned
slices as a 3D volume BET was applied to extract its brain mask. The skull mask was then defined as its
negated mask followed by a subsequent dilation step to account for geometric discontinuities across slices.
The skull mask for the more recent 3D reference image was obtained analogously but without the dilation
step. Constrained by the skull masks, the in-plane 3D similarity registration step was performed using cross-
correlation as the similarity measure, linear interpolation resampling, regular step gradient descent optimiser
with physical shift scales estimation and a three level multi-resolution framework which was initialised by a
previously performed rigid registration based on the respective 3D image moments.

The global intensity correction was performed as described in Section 2.4 by using the global 20 %-
intensity percentile for the lower threshold. This threshold was found experimentally by visual comparisons.

The motion correction method with inter-slice regularisation and reference image information transfer
in combination with the affine intensity correction model (5) described in Section 2.5 was implemented
via the least_squares optimiser. The prior term P was set up to regularize the in-plane scaling and
the affine intensity correction parameters only so as to extend the inter-slice regularisation of the motion
correction framework. Due to the global scaling and intensity correction performed during the initialisation
steps, the associated prior values are set to 1 for the in-plane scaling and aig = 0 and fSio = 1 for the
intensity correction parameters, respectively. By using the solver-specific soft_11 for the respective A-
weighted residuals in (5), the applied smooth ¢!-approximation corresponds to o1/a(e) = /1/A2+e2—1/A
for A € {Ag, A, Ap}. The weights and the regularisation parameter were found experimentally and set
to Ay = 1, Ag = 10 and Ap = 10° in (5) for the 2D similarity registration step, respectively, whereby 10
iterations were performed. For the subsequent 2D affine registration, the regularisation parameter was
reduced to Ap = 10% and 20 iterations were performed which was sufficient to achieve overall convergence.
During experiments we found that omitting the inter-slice regularisation term in (5) can lead to severe
misregistrations during motion correction. We, therefore, conclude that the proposed motion correction
framework based on inter-slice regularisation is key in order to reliably achieve volumetric reconstructions
of high anatomical accuracy. Associated comparisons are provided in the supplementary material. For the
TV reconstruction step (6), the regularisation parameter A = 5, the Lagrange multiplier p = 0.5 and the

?https://github.com/gift-surg (available upon publication of the paper)
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covariance o2 = 0.25 for the blurring operator A were found via L-curve studies. The first-order Tikhonov
problem (7) in the corresponding TVL2 deconvolution step with its positivity constraints was solved via the
L-BFGS-B algorithm of SCIPY to iteratively solve for the unique minimizer whereby 10 ADMM iterations
were performed.

3.3. Ewvaluation Methodology

Reference (T+ X years)

Historical MRI Films (T) l

Volumetric Reconstruction Algorithm
Relevant information of performed volumetric reconstruction including scaling, motion correction and intensity correction is stored

\ <
e A N N A N N [ <
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Correction based on Correction for Correction based on Correction for Correction for
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Naively Scaled Motion Corrected Naively Scaled + IC Recon prior to TVL2 Recon after TVL2
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Validation against Ground-Truth
MSE, NCC, SSIM, PSNR, SIENA
Qualitative Assessment and Longitudinal Comparison

Figure 6: Summary of the pipeline used to validate the volumetric reconstruction framework. Each image shows a typical
volumetric output obtained after the respective steps of processing.

Several similarity measures like mean squared error (MSE), peak signal-to-noise ratio (PSNR), structural
similarity index measure (SSIM)(Wang et al., 2004) and normalised cross-correlation (NCC), were used
to assess the similarity between ground-truth and different intermediate results until the final volumetric
reconstruction with the TVL2 step. We considered the reconstruction prior to the TVL2 step (full 2D affine
correction including intensity correction but no TVL2 step), the motion corrected (MC) data (full 2D affine
correction but no intensity correction), the naively scaled data (naively stacked data scaled based on the
final 2D affine transformation belonging to the mid-slice of the stack but no intensity correction), the naively
scaled and intensity corrected (IC) data (same intensity correction applied to the naively scaled data), and
the reference used for motion and intensity correction. A visual summary of the used validation pipeline
including the respective short-hands is shown in Fig. 6. The similarity measures were only evaluated at the
masked brain region obtained via BET (Smith, 2002) applied on the ground-truth. The required alignment
of stacks prior to the evaluation was obtained by using the rigid registration algorithm reg_aladin within
NIFTYREG? which is based on block-matching (Modat et al., 2014).

3https://sourceforge.net/projects/niftyreg
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In addition, we evaluated the absolute mean surface motion in linear voxel units of the reconstruction
after TVL2 step and the naively scaled and intensity corrected data compared to the ground-truth which
reflects the sum of all edge motions between two segmentations (Smith et al., 2002). This measure was
computed via Structural Image Evaluation, using Normalization, of Atrophy (SIENA) (Smith et al., 2002),
where we only measured in-plane edge motion because of the missing top brain on the historical data, as
visible in Fig. 2.

Following this, a subjective quality assessment in a clinical context was performed where two blinded
neurologists assessed the naively scaled and intensity corrected data, the reconstruction prior to TVL2 and
the reconstruction after TVL2 step side-by-side and in comparison with the naively scaled data, the ground-
truth data and the reference image used for motion and intensity correction. After performing a contrast
auto-adjustment in the image viewer for more comparable visualisation, scores were given for:

1. Clinical usefulness ranking based on lesions’ conspicuity and geometric plausibility /skull continuity
essential for volumetric measurements in addition to a final score on overall preference.
2. Ground-truth comparison in terms of interpretability based on image quality and anatomical similarity.

3.4. Results
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Figure 7: Similarity measures evaluated at the ground-truth brain for each subject separately. The black curve shows the error
bar given by mean and standard deviation. A * indicates that the reconstructions are statistically significantly different from
the reconstruction prior to TVL2 (MC + IC, marked with a °) based on a paired ¢-test (p < 0.05) and Bonferroni-correction.

Table 1: Summary of similarity measures evaluated at the ground-truth brain stated as mean and standard deviation for all 20
subjects. The MSE was omitted in favour of less absolute intensity value sensitive measures. The symbol #* indicates a
statistically significant difference between the left and right hand-side with respect to the statistics shown in the sub-index
based on a paired t-test (p < 0.05) and Bonferroni correction.
| NCC SSIM PSNR | Notes

a) Naively Scaled 0.985£0.005 0.519+0.056  2.505 £ 1.159

b) Motion Corr. (MC) | 0.985+0.005 0.523+0.056  2.503 £ 1.160 b 7éItICC/SSlM a

c) Naively Scaled + IC | 0.993£0.002 0.745+£0.085 10.671+3.250 | ¢ #Xco/ssni/psnr &b

d) MC + IC 0.995+0.002 0.776 +£0.099 10.876 +3.589 | d 7é1tICC/SSIM a—c & d #pgnr a,b

e) MC + IC + TVL2 0.995+£0.002 0.770 £0.097 11.426 +3.639 | e 75§CC/SS]M/]>SNR a—d

Fig. 7 illustrates that the biggest improvement in measured similarity is achieved by the intensity cor-
rection step. Importantly, however, motion correction is shown to significantly increase the similarity to
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the ground-truth. A further, significant improvement in PSNR is achieved by the TVL2 deconvolution step
at the expense of measured similarity with the ground-truth. This can be explained by the fact that the
considered ground-truth stack is affected by blurring and noise due to the acquisition performed decades
ago. Therefore, deblurring can counteract the PSF during acquisition time and have a positive impact on the
image quality (Beck and Teboulle, 2009; Rudin et al., 1992; Buades et al., 2005). The evaluation in Table 1
allows a more detailed assessment of the contribution of each individual step as outlined in Fig. 6. It clearly
shows that motion correction applied on both intensity and non-intensity corrected data leads to significant
improvements in measured image similarities. It also illustrates the high intensity contrast dependency of all
involved measures which explains the visually striking impact of the performed non-linear intensity correc-
tion observed in Fig. 7. However, by considering the same starting point of either non-intensity or intensity
corrected data, the significant similarity improvements by the performed motion correction underline its
importance and effectiveness to obtain high-quality volumetric reconstructions.
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Figure 8: Similarity measures evaluated at the ground-truth brain for each individual subject. The subjects on the horizontal
axis are ranked according to the MSE of the reference image, shown for comparison purposes.

Fig. 8 provides a per-subject comparison and shows the impact of each performed step in the volumetric
reconstruction pipeline for each individual case. The high figures in NCC and SSIM of the naively scaled
and intensity corrected data reveal that the semi-automatic slice-extraction is able to achieve an overall high
accuracy of initial slice alignment which is further, significantly, improved by the volumetric reconstruction
pipeline. The MSE suggests that the performed intensity correction is very effective for all subjects and
yields slice intensities similar to their respective references. The figures of NCC and SSIM confirm that
the motion correction had a significant impact and led to substantial improvements in image similarity for
almost all subjects. Both NCC and SSIM also show that our volumetric reconstructions achieve higher
similarity than the reference images illustrating the morphological changes the brain has undergone over
time and differences owed to the different contrast.

SIENA measured the absolute mean surface motion between ground-truth and naively scaled image as
0.80 % 0.20 linear voxel units with 95 %-confidence interval (CI) from 0.71 to 0.88. The reconstruction after
TVL2 step achieved a mean figure of 0.61 + 0.13 with 95 %-CI from 0.56 to 0.67 which corresponds to a
significant improvement based on paired ¢-test (p < 0.05) of about 25%. Therefore, detected edge-motion
was significantly reduced which underlines the capability of the performed motion correction framework to
significantly increase the accuracy of the obtained volumetric reconstructions.

To further investigate the impact of the performed motion correction and denoising steps we analysed
the reconstruction quality of the associated volumes and in direct comparison with the naively scaled and
intensity corrected data by performing a qualitative assessment by expert neurologists. The neurologist’s
evaluation, shown in Table 2, indicates that the blinded neurologists had a clear preference for our volumetric
reconstructions over the naively scaled data given their higher geometric plausibility and improved lesions’
conspicuity. Adding the TVL2 deconvolution step yields even further improvement. Particularly, the score
on geometric plausibility states that the performed motion correction always yielded an improved outcome.
In direct comparison, we almost always achieve results which are visually indistinguishable from the ground-
truth data. In addition, it was felt that especially the reconstruction after TVL2 step gives rise to improved
interpretation; better than the original, non-processed ground-truth data which itself is affected by its
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Table 2: Summary of blinded, clinical evaluation averaged over all 20 subjects. Lesions conspicuity and geometric plausibil-
ity /skull continuity subjectively rank preferred reconstruction from 1 (least preferred) to 3 (most preferred). Preferred image
score indicates the number of times the respective reconstruction was the preferred choice. Ties were allowed for the geometric
plausibility and preference ranking in case images were visually indistinguishable. The anatomical similarity to the ground-
truth is rated O (distinguishable) or 1 (not distinguishable). Image quality similarity to ground-truth scores are 0 (worse, but
interpretable), 1 (same as ground-truth) and 2 (improved interpretation).

Clinical Usefulness Ranking Ground-Truth Comparison
Lesions’ Geometric Pref. Anatomical Image
Conspicuity Plausibility  Image Similarity Quality
Naively Scaled + IC | 1.454+0.69 2.00 £ 0.00 0 0.10 +0.31 0.70 £ 0.73
MC + IC 2.40 £ 0.50 3.00 £ 0.00 8 0.80 +0.41 1.35£0.59
MC + IC + TVL2 2.85£0.37 3.00 £ 0.00 15 0.95 + 0.22 1.50 £0.51

PSF-affected physical acquisition from the past.

In Fig. 9 the naively scaled stack and the reconstruction results before and after the TVL2 step are
provided for one of the cases along with the ground-truth data and the reference image used for motion and
intensity correction. This example was selected to showcase the result for one of the visually most motion
corrupted stacks after the semi-automatic slice extraction step which served as initialisation of the volumetric
reconstruction framework. The overlaid brain mask of the ground-truth illustrates the discrepancy of the
naively scaled data which becomes almost invisible in the obtained volumetric reconstruction results. Only
at the neck, slight inaccuracies of the reconstructions become apparent in the sagittal view which can be
explained by the high intensities at this region on the reference image. The bottom row of Fig. 9 shows
a zoomed-in comparison highlighting the high accuracy of the motion correction in combination with the
image quality improvements due to intensity correction and deconvolution steps.

Fig. 10 provides a qualitative comparison of three longitudinal scans used in this study associated with
a subject where the baseline scan was acquired in 1986. The visualised subject represents the only available
case in this study where both a 5-year and 10-year digital stack, i.e. a ”ground-truth”, were available.
One can observe the highly consistent reconstructions obtained by the proposed volumetric reconstruction
framework with closely matching contours of skull and brain for both 5- and 10-year follow-up scans.

Using our non-optimised implementation, the typical processing time to restore one single subject from
printed MR films was measured to be approximately 1h 20 min on a single computer. This includes about
2min to 5min of user interaction to operate the semi-automatic slice extraction tool. The remaining pro-
cesses are fully automated whereby the volumetric reconstruction steps, including motion and intensity
correction, were measured to take about 45 min and the final TVL2 deconvolution step about 30 min.

4. Discussion

In this work, we present, and to the best of our knowledge for the first time, a framework which recon-
structs the volumetric stack from printed, historical, limited FOV MR films being acquired decades earlier.
The proposed semi-automatic slice-extraction algorithm is capable of dealing with different MR films of
many kinds, formats and appearances including films where parts of the brain and skull are overlapping on
consecutively printed slices. Its particular design choice ensures the robustness to any acquisition set-up
with respect to slice-ordering or single/multi-slice acquisition in the sense that printed slices which capture
adjacent anatomy are reliably combined to form a first naively stacked 3D data for further processing re-
gardless the encountered type of historical MR film. We introduce a joint slice-to-volume registration with
inter-slice transformation regularisation and slice intensity correction based on a smooth ¢! approximation
as loss functional for a more robust registration framework. We put a particular focus on using methods
which are able to restore the original image quality and geometry of the historical scans without introducing
additional image artefacts. We emphasise on numerical accuracy and computational efficiency by providing
the exact Jacobian for all cost functions and use a matrix-free implementation during the TVL2 deconvolu-
tion step. We test our reconstruction results against ground-truth data both quantitatively and in a clinical
context and demonstrate the high reconstruction quality and suitability of the proposed framework.
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Figure 9: Visual comparison between reconstruction results and original data. The automatically segmented ground-truth
brain is shown as a red overlay in each of the images and illustrates the reconstruction accuracy of the obtained volumetric
reconstruction from limited FOV data. At the bottom, a zoomed window highlights the improvement and reconstruction
quality. There, also a stroke of dirt is visible on the historical data.
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5-year PD 10-year PD 20-year PD
5mm slice thickness, 0.5T 5mm slice thickness, 1.5T 5mm slice thickness, 1.5T

Ground-Truth MC + IC + TVL2 Ground-Truth MC + IC + TVL2 Reference
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Figure 10: Qualitative comparison of three longitudinal scans used in this study associated with a subject where the baseline
scan was acquired in 1986. The comparison shows the 20-year scan used as reference image for the volumetric reconstruction
pipeline along with the linearly resampled digital, ground-truth, data, and the obtained volumetric reconstructions from the
historical films of the respective 5-year and 10-year follow-up time points. Visually, differences between the reconstructions and
the ground-truth are hardly detectable. The measured ground-truth-similarities for the reconstructed 5-year scan are 0.992,
0.787, 10.294, for NCC, SSIM and PSNR, respectively. Similarly, the respective figures for the 10-year scan are 0.993, 0.844,
and 16.167. Note that due to overlapping skulls on the historical MR films, see Fig. la, only the part visible on the films could
be recovered during the semi-automatic slice extraction step for the 10-year scan.
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The performed validation proves the used global intensity correction step sufficient to deal with the
existing intensity differences and illustrates its substantial contribution to an overall improved similarity to
the ground-truth data. It demonstrates that the motion correction algorithm yields a further, statistically
significant, improvement towards overall similarity in both the measures of structural similarity and nor-
malised cross-correlation. It underlines that the proposed motion correction is vital to eliminate implausible
discontinuities across slices existing after the semi-automatic slice extraction and yields reconstructions with
highly plausible brain geometries which accurately reflect the patient-specific anatomy. It illustrates that
the volumetric reconstruction framework and its design is capable of robustly reconstructing accurate volu-
metric reconstructions from historic MR films even when skulls are merged and, consequently, information
on the skull is compromised. It shows that the additional TVL2 deconvolution step gives rise to volumetric
reconstructions which are visually almost indistinguishable from the ground-truth data and may even lead
to an improved interpretation over the original, digital volumes.

The volumetric reconstruction algorithm with its joint, in-plane 2D affine motion and intensity correction
model in addition to the in-plane 2D deconvolution step is designed as a framework to carefully balance
the desire of fully recovering the original 3D image anatomy without mixing slice neighbour information
or introducing image artefacts. However, this approach can account for axial motion only and may well
be insufficient in cases where subject motion occurred during acquisition time or more complex motion is
present in the historical MR films. The consistently high reconstruction quality shown in the course of the
validation supports the argument that inter-slice subject motion was not an issue for the data in our study.
Our proposed pipeline is not designed to reconstruct parts of the brain which are not visible in the original
MR films. This includes anatomical information hidden by partial voluming effects due to the thick slice
acquisitions or parts of the brain which are entirely missing due to a reduced FOV. Hence, a truncation at
the vertex will prevent whole brain volumes from being estimated. Furthermore, the anatomical accuracy of
the volumetric reconstruction depends on the estimate of the respective, oblique reference slices obtained by
resampling of the reference stack. Thus, a higher resolution of the reference image would provide more scope
of accurate registrations. Minor issues we encountered with our method were associated with subjects where
either the top or the bottom slices of the historical stack did not have a sufficient overlap with the FOV of the
reference image. For such slices only the slice neighbour-term (3) contributes to the cost function (5). This
situation effectively simplifies to an intra-stack in-plane registration problem and tends to align bordering
slices so that they fit their proximal neighbour. Consequently, minor inaccuracies for these slices are visible
which may slightly differ from the correct anatomical shape.

This volumetric reconstruction pipeline was developed based on the assumption that a reference 3D
digital image exists with similar intensity appearance in order to extract both its meta-data and intensity
contrast information. However, in cases where no such reference is available the proposed volumetric re-
construction pipeline could still be applied in various ways. In case a naive digital 3D representation is
sufficient for the problem at hand the naively stacked data after semi-automatic slice extraction can be used
whereby the imaging meta-data could be updated with manual values. Additional motion correction could
be performed by using intra-stack regularisation (3) only. However, this is likely to lead to non-physiological
slice-alignments like a straight skull delineation. Alternatively, an atlas could be used to apply the entire
volumetric reconstruction method as outlined in Section 2. Nevertheless, a high reconstruction accuracy
depends on the possibility to realign all slices so that they match the patient-specific anatomy as closely
as possible. For this step, a reference image which accurately reflects the subject anatomy is key and the
higher the slice thickness becomes the more important such a similarity will be for our proposed framework.

Overall, our framework has shown its capability to accurately reconstruct 3D volumes from printed MR,
films of MS subjects and will help in the robust analysis of a uniquely long-term study spanning 30 years of
MRI scans of people followed up after a CIS. This study includes more than 100 subject scans captured on
historical films which can be reconstructed with our proposed technique for further image processing and
analysis. However, applications of the proposed method are not confined to CIS and MS studies, and it
may prove useful for the longitudinal assessment of lesions and anatomical structures in a variety of other
conditions that affect the brain. Our framework may also be useful in current clinical practice, where not
uncommonly, patients have had MR imaging performed previously on different scanners, and the only format
available is in film format. The volumetric reconstruction of these images would allow the digital storage of
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the data, and also a longitudinal comparison with an up-to-date scan. Moreover, despite being tested on
only PD-like images where ground-truth data was available, the proposed framework may be used for other
MR image contrasts as well.

Acknowledgements

The authors thank the patients and volunteers who took part in this study. This work is partially funded
by the UCL EPSRC Centre for Doctoral Training in Medical Imaging (EP/L016478/1), the Innovative
Engineering for Health award (Wellcome Trust [WT101957] and EPSRC [NS/A000027/1]), the Multiple
Sclerosis Society of Great Britain and Northern Ireland (grant references 20 and 984) and supported by the
National Institute for Health Research University College London Hospitals Biomedical Research Centre.
FP is supported by the Guarantors of Brain.

Bibliography

Beck, A., Teboulle, M., 2009. Fast gradient-based algorithms for constrained total variation image denoising and deblurring
problems. IEEE Transactions on Image Processing 18 (11), 2419-2434.

Becker, S., Fadili, M. J., 2012. A quasi-Newton proximal splitting method. In: Pereira, F., Burges, C. J. C., Bottou, L.,
Weinberger, K. Q. (Eds.), Advances in Neural Information Processing Systems. Vol. 25. Curran Associates, Inc., pp. 2618—
2626.

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., 2011. Distributed Optimization and Statistical Learning via the
Alternating Direction Method of Multipliers. Foundations and Trends in Machine Learning 3 (1), 1-122.

Brex, P. A., Ciccarelli, O., O’Riordan, J. 1., Sailer, M., Thompson, A. J., Miller, D. H., 2002. A Longitudinal Study of
Abnormalities on MRI and Disability from Multiple Sclerosis. New England Journal of Medicine 346 (3), 158-164.

Buades, A., Coll, B., Morel, J. M., 2005. A Review of Image Denoising Algorithms, with a New One. Multiscale Modeling &
Simulation 4 (2), 490-530.

Byrd, R. H., Lu, P., Nocedal, J., Zhu, C., 1995. A Limited Memory Algorithm for Bound Constrained Optimization. SIAM
Journal on Scientific Computing 16 (5), 1190-1208.

Damadian, R., 1971. Tumor Detection by Nuclear Magnetic Resonance. Science 171 (3976), 1151-1153.

De Stefano, N., Airas, L., Grigoriadis, N., Mattle, H. P., O’Riordan, J., Oreja-Guevara, C., Sellebjerg, F., Stankoff, B., Walczak,
A., Wiendl, H., Kieseier, B. C., 2014. Clinical Relevance of Brain Volume Measures in Multiple Sclerosis. CNS Drugs 28 (2),
147-156.

Diamond, S., Boyd, S., 2015. Convex Optimization with Abstract Linear Operators. In: IEEE International Conference on
Computer Vision (ICCV). No. 1. pp. 675-683.

Ebner, M., Chouhan, M., Patel, P. A., Atkinson, D., Amin, Z., Read, S., Punwani, S., Taylor, S., Vercauteren, T., Ourselin, S.,
2017. Point-Spread-Function-Aware Slice-to-Volume Registration: Application to Upper Abdominal MRI Super-Resolution.
In: Zuluaga, M. A., Bhatia, K., Kainz, B., Moghari, M. H., Pace, D. F. (Eds.), Reconstruction, Segmentation, and Analysis
of Medical Images. RAMBO 2016. Vol. 10129 of Lecture Notes in Computer Science. Springer International Publishing, pp.
3-13.

Ekert, K., Groeschel, S., Sanchez-Albisua, I., Frolich, S., Dieckmann, A., Engel, C., Krégeloh-Mann, I., 2016. Brain morphom-
etry in Pontocerebellar Hypoplasia type 2. Orphanet Journal of Rare Diseases 11 (1), 100.

Ferrante, E., Paragios, N., 2017. Slice-to-volume medical image registration: A survey. Medical Image Analysis 39, 101-123.

Fisniku, L. K., Brex, P. A., Altmann, D. R., Miszkiel, K. A., Benton, C. E., Lanyon, R., Thompson, A. J., Miller, D. H.,
2008. Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain 131 (3),
808-817.

Fogtmann, M., Seshamani, S., Kim, K., Chapman, T., Studholme, C., 2012. A unified approach for motion estimation and
super resolution reconstruction from structural Magnetic Resonance imaging on moving subjects. In: MICCAI Workshop
on Perinatal and Paediatric Imaging. pp. 9-16.

Fogtmann, M., Seshamani, S., Kroenke, C., Cheng, X., Chapman, T., Wilm, J., Rousseau, F., Studholme, C., 2014. A Unified
Approach to Diffusion Direction Sensitive Slice Registration and 3-D DTI Reconstruction From Moving Fetal Brain Anatomy.
IEEE Transactions on Medical Imaging 33 (2), 272-289.

Gholipour, A., Estroff, J. A., Warfield, S. K., 2010. Robust Super-Resolution Volume Reconstruction From Slice Acquisitions:
Application to Fetal Brain MRI. IEEE Transactions on Medical Imaging 29 (10), 1739-1758.

Gracien, R.-M., Reitz, S. C., Hof, S. M., Fleischer, V., Zimmermann, H., Droby, A., Steinmetz, H., Zipp, F., Deichmann,
R., Klein, J. C., 2016. Changes and variability of proton density and T1 relaxation times in early multiple sclerosis: MRI
markers of neuronal damage in the cerebral cortex. European Radiology 26 (8), 2578—2586.

Jiang, S., Xue, H., Counsell, S., Anjari, M., Allsop, J., Rutherford, M., Rueckert, D., Hajnal, J. V., 2009. Diffusion Tensor
Imaging (DTI) of the Brain in Moving Subjects: Application to In-Utero Fetal and Ex-Utero Studies. Magnetic Resonance
in Medicine 62 (3), 645-655.

Kainz, B., Alansary, A., Malamateniou, C., Keraudren, K., Rutherford, M., Hajnal, J. V., Rueckert, D., 2015a. Flexible
Reconstruction and Correction of Unpredictable Motion from Stacks of 2D Images. In: Medical Image Computing and
Computer-Assisted Intervention — MICCAI 2015. Springer International Publishing, pp. 555-562.

18



Kainz, B., Steinberger, M., Wein, W., Kuklisova-Murgasova, M., Malamateniou, C., Keraudren, K., Torsney-Weir, T., Ruther-
ford, M., Aljabar, P., Hajnal, J. V., Rueckert, D., 2015b. Fast Volume Reconstruction From Motion Corrupted Stacks of 2D
Slices. IEEE Transactions on Medical Imaging 34 (9), 1901-1913.

Kim, B., Boes, J. L., Bland, P. H., Chenevert, T. L., Meyer, C. R., 1999. Motion Correction in fMRI via Registration of
Individual Slices Into an Anatomical Volume. Magnetic Resonance in Medicine 41 (5), 964-972.

Kim, D., Sra, S., Dhillon, I. S., 2010a. Tackling Box-Constrained Optimization via a New Projected Quasi-Newton Approach.
SIAM Journal on Scientific Computing 32 (6), 3548-3563.

Kim, D., Sra, S., Dhillon, I. S.; 2013. A non-monotonic method for large-scale non-negative least squares. Optimization Methods
and Software 28 (5), 1012-1039.

Kim, K., Habas, P., Rousseau, F., Glenn, O., Barkovich, A., Studholme, C., 2010b. Intersection Based Motion Correction of
Multislice MRI for 3-D in Utero Fetal Brain Image Formation. IEEE Transactions on Medical Imaging 29 (1), 146-158.
Lawson, C. L., Hanson, R. J., 1974. Linear least squares with linear inequality constraints. Englewood Cliffs (NJ): Prentice-Hall

161.

Marami, B., Mohseni Salehi, S. S., Afacan, O., Scherrer, B., Rollins, C. K., Yang, E., Estroff, J. A., Warfield, S. K., Gholipour,
A., 2017. Temporal slice registration and robust diffusion-tensor reconstruction for improved fetal brain structural connec-
tivity analysis. Neurolmage.

Marami, B., Scherrer, B., Afacan, O., Erem, B., Warfield, S. K., Gholipour, A., 2016. Motion-Robust Diffusion-Weighted Brain
MRI Reconstruction Through Slice-Level Registration-Based Motion Tracking. IEEE Transactions on Medical Imaging
35 (10), 2258-22609.

Miller, D. H., Ormerod, I. E.;, McDonald, W. 1., MacManus, D. G., Kendall, B. E., Kingsley, D. P., Moseley, 1. F., 1988. The
early risk of multiple sclerosis after optic neuritis. Journal of Neurology, Neurosurgery & Psychiatry 51 (12), 1569-1571.
Miller, D. H., Ormerod, I. E. C., Rudge, P., Kendall, B. E., Moseley, I. F., McDonald, W. 1., 1989. The early risk of multiple

sclerosis following isolated acute syndromes of the brainstem and spinal cord. Annals of Neurology 26 (5), 635-639.

Modat, M., Cash, D. M., Daga, P., Winston, G. P., Duncan, J. S., Ourselin, S., 2014. Global image registration using a
symmetric block-matching approach. Journal of Medical Imaging 1 (2), 024003-5.

Morales, J. L., Nocedal, J., 2011. Remark on ” Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained
optimization”. ACM Transactions on Mathematical Software 38 (1), 1-4.

Morrissey, S. P., Miller, D. H., Kendall, B. E., Kingsley, D. P. E., Kelly, M. A., Francis, D. A., MacManus, D. G., McDonald,
W. 1., 1993. The significance of brain magnetic resonance imaging abnormalities at presentation with clinically isolated
syndromes suggestive of multiple sclerosis. Brain 116 (1), 135-146.

O’Riordan, J. I., Thompson, A. J., Kingsley, D. P. E., MacManus, D. G., Kendall, B. E., Rudge, P., McDonald, W. 1., Miller,
D. H., 1998. The prognostic value of brain MRI in clinically isolated syndromes of the CNS. A 10-year follow-up. Brain
121 (3), 495-503.

Park, S. C., Park, M. K., Kang, M. G., 2003. Super-resolution image reconstruction: A technical overview. IEEE Signal
Processing Magazine 20 (3), 21-36.

Rousseau, F., Glenn, O. A., Iordanova, B., Rodriguez-Carranza, C., Vigneron, D. B., Barkovich, J. A.; Studholme, C., 2006.
Registration-Based Approach for Reconstruction of High-Resolution In Utero Fetal MR Brain Images. Academic Radiology
13 (9), 1072-1081.

Rudin, L. I.,; Osher, S., Fatemi, E., 1992. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear
Phenomena 60 (1-4), 259-268.

Sailer, M., O’Riordan, J. I., Thompson, A. J., Kingsley, D. P., MacManus, D. G., McDonald, W. 1., Miller, D. H., 1999.
Quantitative MRI in patients with clinically isolated syndromes suggestive of demyelination. Neurology 52 (3), 599-599.
Seshamani, S., Blazejewska, A. I., Mckown, S., Caucutt, J., Dighe, M., Gatenby, C., Studholme, C., 2016. Detecting Default

Mode Networks In Utero by Integrated 4D fMRI Reconstruction and Analysis. Human Brain Mapping 37 (11), 4158-4178.

Smith, S. M., 2002. Fast Robust Automated Brain Extraction. Human Brain Mapping 17 (3), 143-155.

Smith, S. M., Zhang, Y., Jenkinson, M., Chen, J., Matthews, P., Federico, A., De Stefano, N., 2002. Accurate, Robust, and
Automated Longitudinal and Cross-Sectional Brain Change Analysis. Neurolmage 17 (1), 479-489.

Tourbier, S., Bresson, X., Hagmann, P., Thiran, J.-P., Meuli, R., Cuadra, M. B., 2015. An efficient total variation algorithm
for super-resolution in fetal brain MRI with adaptive regularization. Neurolmage 118, 1-14.

Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E., 2004. Image Quality Assessment: From Error Visibility to Structural Similarity.
IEEE Transactions on Image Processing 13 (4), 600-612.

19



