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Abstract

When making decisions under uncertainty, one common view is that people rely

on simple heuristics that deliberately ignore information. One of the greatest puz-

zles in cognitive science concerns why heuristics can sometimes outperform full-

information models, such as linear regression, which make full use of the available

information. In this thesis, I will contribute the novel idea that heuristics can be

thought of as embodying extreme Bayesian priors. Thereby, an explanation for

less-is-more is that the heuristics’ relative simplicity and inflexibility amounts to a

strong inductive bias, that is suitable for some learning and decision problems. I

will formalize this idea by introducing Bayesian models within which heuristics are

an extreme case along a continuum of model flexibility defined by the strength and

nature of the prior. Crucially, the Bayesian models include heuristics at one of the

Bayesian prior strength and classic full-information models at the other end of the

Bayesian prior. This allows for a comparative test between the intermediate mod-

els along the continuum and the extremes of heuristics and full regression model.

Indeed, I will show that intermediate models perform best across simulations, sug-

gesting that down-weighting information is preferable to entirely ignoring it. These

results refute an absolute version of less-is-more, demonstrating that heuristics will

usually be outperformed by a model that takes into account the full information but

weighs it appropriately.

Thereby, the thesis provides a novel explanation for less-is-more: Heuristics work

well because they embody a Bayesian prior that approximates the optimal prior.

While the main contribution is formal, the final Chapter will explore whether less is

more at the psychological level, and finds that people do not use heuristics, but rely
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on the full information instead. A consistent perspective will emerge throughout the

whole thesis, which is that less is not more.
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Chapter 1

Introduction

For every complex problem there is an answer that is clear, simple,

and wrong.

- H. L. MENCKEN

Making decisions under uncertainty is central to everyday life. Every time we buy

a cup of coffee, decide what turn to take at the next intersection when driving, or

where to submit a paper, there are potentially thousands of cues that could play

into the decision, but we do not usually have time nor cognitive resources to use

them all. Hence, when making decisions under uncertainty, such as choosing which

apartment to rent, one common view is that people rely on heuristic algorithms,

which deliberately ignore parts of the available information. For example, instead

of considering all available information sources such as proximity to work, prox-

imity to schools, crime rates, neighbourhood sport facilities or market trends, the

Take-The-Best heuristic (Gigerenzer & Goldstein, 1996) would just rely on the first

most important cue that is able to discriminates among the flats, and ignore all other

cues. For example, if the most important cue was the proximity to work, the Take-

The-Best heuristic would decide for the flat that is closer to work. Or else, the

tallying heuristic would simply tally which flat is better on each cue and choose the

flat that has more cues in its favour. Heuristics are often regarded as plausible deci-

sion strategies because they do not make full use of the input data and rely on a set

of simple rules. In contrast, full-information decision models make full use of the

available information, taking into account things like covariance among information
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sources and differential weighting. One of the main unanswered questions is still

why heuristics can sometimes outperform full-information models, such as linear

regression. These paradoxical findings are called less-is-more effects in the litera-

ture, and have been repeatedly demonstrated in both artificial and real-world predic-

tion tasks (Chater, Oaksford, Nakisa, & Redington, 2003; Gigerenzer & Brighton,

2009; Gigerenzer, Todd, & Group, 1999).

The existence of less-is-more represents one of the most central debates in the his-

tory of judgement and decision making, such as indicated by the debate between

the heuristics-and-biases program (Tversky & Kahneman, 1974), and the fast-and-

frugal heuristics program (Gigerenzer et al., 1999). The state-of-the-art explanation

for less-is-more effects in the field relies on the statistical bias-variance concept

(which will be explained in detail in the next Chapter), and proposes that heuristics

can excel as a result of lower overfitting rates due to smaller number of parameters

(Gigerenzer & Brighton, 2009), i.e., overfitting happens when models are too sen-

sitive to variability in the samples and capture noise, which hurts at generalizing

to new data. However, the bias-variance concept alone does not provide a formal

computational model which is able to make testable predictions about when and

why heuristics or full-information algorithms will perform best. Furthermore, less-

is-more effects are very volatile to environmental conditions, and even sometimes

reversible as will be seen in Chapter 3. Secondly, the bias-variance concept lacks

any formal link between full-information models and heuristics.

In this thesis, I will contribute the idea that heuristics can be thought of as embody-

ing extreme Bayesian priors. Thereby, an explanation for less-is-more is that the

heuristics’ relative simplicity and inflexibility amounts to a strong inductive bias,

that is suitable for some learning and decision problems. In the main body of the

thesis I will formalize this idea by introducing Bayesian models wherein heuristics

are an extreme case along a continuum of model flexibility defined by the strength

of the prior. Crucially, the Bayesian models include heuristics at one extreme end of

the Bayesian prior’s strength and classic full-information models (such as linear re-

gression) at the other end of the Bayesian prior. This is achieved with regularization
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methods that are conceptually related to ridge regression from machine learning

(Hoerl & Kennard, 1970). Our models’ regularization methods contain a penalty

term that adjusts model flexibility with a single parameter. Importantly, this penalty

term is equivalent to a Bayesian prior on the weights, and the parametric variation of

the penalty parameter corresponds to a parametric variation of the Bayesian prior’s

strength. In the limit of an extremely strong prior, the Bayesian models are equiva-

lent to the heuristics. Thus, this framework provides a formal characterization of the

link between traditional statistical models (OLS) and heuristics, which are usually

only contrasted. The formal continuum allows for a comparative test including the

intermediate prior settings which lie along the continuum between the extremes of

heuristics (which entirely ignore some information) and the full regression model

(which differentially weights and includes all cues). A crucial difference between

the heuristics (in the limit) and the intermediate prior settings along the continuum is

that the intermediate models are fully sensitive to the input data such as covariance

or cue weight magnitudes. Indeed, I will show that intermediate parametrisations

perform best across all simulations in this thesis, suggesting that down-weighting

information is preferable to entirely ignoring it. These results refute an absolute

version of less-is-more, demonstrating that heuristics will usually be outperformed

by an intermediate model that takes into account the full information but weighs it

appropriately. Thereby, a novel explanation for less-is-more emerges, suggesting

heuristics may perform well because they approximate intermediate models with

the optimal prior. This suggests the optimal setting for many familiar situations is

often close to the heuristic end of the continuum.

In parallel to the insights into statistical less-is-more effects, the thesis will sug-

gest a new perspective on how Bayesian models relate to heuristics. In contrast to

the opposing relationship between Bayesian models and heuristics in cognitive sci-

ence and behavioural economics - where probabilistic inference models and heuris-

tic models are seen as competitors and pitted against each other (Katsikopoulos,

Schooler, & Hertwig, 2010; Martignon & Hoffrage, 2002; Tversky & Kahneman,

1974) - the thesis shows that heuristics are part of Bayesian inference (for an ex-



18

tremely strong prior). Since the nineties, scientists have argued that the impressive

less-is-more findings were in dire need of a rational explanation (Chater et al., 2003;

Gigerenzer & Goldstein, 1996) - however instead, the fast-and-frugal heuristics ap-

proach relied on ecological rationality to explain their findings, and is largely yet

to address where this fits into a broader framework of rational decision making.

Instead, this thesis provides a Bayesian explanation for less-is-more, suggesting a

unification for Bayesian inference models and heuristics. The probabilistic formal-

ization puts heuristics on the same playing field as other full-information models.

Over the course of the thesis, a consistent perspective will emerge. Each Chap-

ter will contribute to the perspective that less is not more. Importantly, the main

contribution of the thesis is formal, relying on a series of derivations and compu-

tational studies. However, the final Chapter will use behavioural experimentation

combined with modelling to explore what the information-gathering behaviour of

people can tell us about their use and representation of information for decision-

making. The question in the final Chapter will be: Do people use a fast-and-frugal

heuristic (Take-The-Best) or a full-information model (logistic regression)? In that

way, the psychological Chapter will look at a different kind of less-is-more effect,

i.e., whether people fully and systematically ignore information in the input data

as proposed by the fast-and-frugal heuristics (Gigerenzer & Brighton, 2009) (i.e., a

descriptive psychological less-is-more effect). While the Bayesian inference Chap-

ters 4 and 5 come to the conclusion that less is not more in the sense that heuristics

can always be outperformed with a model that uses all information (i.e., refuting

absolute less-is-more), the psychological Chapter 6 concludes that people do not

fully ignore presented information but are much more adaptive to the full informa-

tion presented, along the lines of full-information models. In that way, all Chapters

conclude on a similar note regarding less-is-more, however on different levels of

analysis. Chapter 3 will clarify the differences among less-is-more definitions.

The structure of the thesis is as follows: In Chapter 2, I will introduce heuristics,

and contrast probabilistic approaches with heuristic approaches to cognition. I will

develop the two most prominent approaches to heuristics in decision making, i.e.,
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the heuristics-and-biases account (Tversky & Kahneman, 1974), and the fast-and-

frugal heuristics account (Gigerenzer et al., 1999), and provide definitions and ter-

minologies. Most importantly, less-is-more effects will be introduced and the most

common explanation in the literature will be given. I will point out its short-comings

that the thesis will advance.

Chapter 3 will critically analyse previous less-is-more effects in the literature. I will

identify three factors in the statistical method and the statistical environment that

lead to less-is-more, however I find that these same factors can also be used to make

them disappear. In 4 computational studies, I will show that when these factors

are reversed, often the less-is-more effects disappear. The Chapter will highlight

the volatility of less-is-more and the limitations of the bias-variance concept as an

explanation. The chapter will end by highlighting the need for a formal model that

can account for why less is more.

Chapter 4 will formalize the idea that heuristics represent extreme Bayesian priors

and provide a novel explanation for less-is-more. I will develop the first compu-

tational Bayesian inference model for the tallying heuristic (Dawes, 1979). In this

model, parametric variation of a prior’s strength generates a continuum of models,

with a variant of linear regression at one extreme and the tallying heuristic at the

other extreme. Although the Bayesian model can mimic tallying perfectly, a cru-

cial difference is that the Bayesian account regulates weights, but never discards

any information. In a computational study of real-world prediction tasks, I will

show that novel intermediate models usually perform best across a wide range of

real-world environments. A novel interpretation of why heuristics work will be dis-

cussed: Heuristics may excel because they approximate the intermediate models,

which have the optimal prior for the environment. Finally, this Chapter will attempt

to derive the TTB heuristic as an extreme Bayesian prior from a different kind of

regularization method in machine learning, i.e., lasso regression (Ripley, 2007).

Lastly, psychological implications of the model findings will be discussed.

Chapter 5 will develop the second Bayesian account that formally relates both the

tallying and Take-The-Best heuristic to ordinary linear regression, by relying on
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a prior that focuses on sensitivity to covariation among predictors (Rieskamp &

Dieckmann, 2012). This relates to the fact that linear regression is fully sensitive

to covariance whereas heuristics completely ignore it. Parametric variation of the

covariance prior’s strength results in a continuum that contains, as limiting cases,

both heuristics (TTB and tallying heuristic) as well as (ordinary least-squares) lin-

ear regression. In a computational study of real-world environments, I will show

that, along the continuum, the best-performing models for the real-world datasets

tested are novel intermediate models that do not entirely ignore covariance among

predictors, but that nonetheless down-weight this information via the influence of

their priors. Again, Chapter 5 will conclude that less is not more. The theoretical

and psychological implications will be discussed, as well as the model’s limitations.

Finally, Chapter 6 will look at people’s representations and decision making pro-

cesses, asking the question: To what extent do people fully ignore information

(i.e., such as the weights by the TTB heuristic) or try to incorporate it into their

decision? It does so by looking at people’s behaviour in an active learning task as a

window on their decision models. Thereby I propose a new model selection method

for psychological models based on active learning. The active learning method is

based on the assumption that an agent’s information gathering behaviour reflects

how they represent and go on to use that information in decisions. Chapter 6 will

contrast computational active learning algorithms for two model classes that differ

in how they represent the decision process and value the information: One is based

on a heuristic (Take-The-Best), and the other one is based on a full-information

model (logistic regression). In one active learning experiment with both a learning

and a test phase, I will ask the question whether people’s active learning behaviour

is better described by the goal of learning the cue weights, or the goal of identifying

a cue rank order among cues for usage with Take-the-best. Interestingly, I find

that both while gathering information and while using it to make decisions, people

are more consistent with the full-information representation. These findings are

consistent with the hypotheses arising from Chapter 5 and Chapter 4, proposing

that potentially people’s psychological processing may represent multi-attribute
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decision problems in a much more ’weighted additive’ way than the heuristics lit-

erature would have us believe. Interestingly, I also find that people who appeared

to use a Take-The-Best heuristic when making decisions often behaved as if they

were learning cue weights while gathering information. Thereby, the final Chapter

concludes on the same note as previous Chapters - less is not more - however, on a

psychological processing level. This final Chapter brings together learning theories

and decision making theories.

In Chapter 7, I bring all these chapters together and construct a cohesive picture

of less-is-more. I will propose that a revised understanding of heuristics may be

required, and discuss the implications for other disciplines such as neuroscience,

psychology, behavioural economics, computer science and machine learning.

The following describes the core contribution of the thesis in an umbrella statement

for the entire document: Less-is-more is observed for comparing simple and com-

plex models (e.g., Take-The-Best and regression), but less-is-more is not true in that

one can always do better by including all information rather than throwing it out.

That is, one can always do better by including the information and down-weighting

it instead. This is established in a Bayesian framework. Heuristics work not because

they throw out information, but because they embody a prior that approximates the

optimal prior. Although this statement does not address psychological processing,

it is relevant to directing research on what people may actually do.
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Chapter 2

Heuristics and Less-is-More

”Less is more.”

- ROBERT BROWNING

”Less is more.”

-LUDWIG MIES VAN DER ROHE

2.1 A brief history of heuristics
Heuristics are simple decision algorithms that deliberately ignore information. The

origin of the word heuristic is Greek and means ”serving to find out or discover”.

Mathematicians such as George Polya saw heuristics as separate from analytical

methods. Heuristics were used to find a proof, whereas analysis was used for check-

ing a proof (Groner, Groner, & Bischof, 1983). Einstein included the term heuristic

in the title of his Nobel prize-winning paper from 1905 on quantum physics, indicat-

ing that the heuristic view he presented was incomplete but highly useful (Holton,

1988, pp. 360 361). Around the same time, Gestalt psychologists including Max

Wertheimer saw heuristics as methods for looking around and guiding search for

information.

In the field of artificial intelligence (AI), the notion of heuristics as indispensable

search strategies emerged. For example, Pearl’s book titled Heuristics: Intelligent

search strategies for computer problem solving (Pearl, 1984) discussed many AI

problems that involve such large search spaces that heuristics are required to re-

duce them to a manageable size given the system’s limited resources of time and
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space (Groner et al., 1983). Similarly, in computer science, until today heuris-

tics are used to solve NP-complete, i.e., computationally intractable, problems by

finding approximate solutions when classic methods such as logic and probability

theory fail to find exact solutions. Yet, this does not suggest heuristics are similar to

other approximate solutions such as Gibbs sampling or particle filters (i.e., Monte

Carlo algorithms that approximate a probability distribution by sampling a set of

samples from that distribution) (Doucet, De Freitas, & Gordon, 2001; Geman &

Geman, 1984; Gilks, Richardson, & Spiegelhalter, 1996). In comparison to these

approximate methods, heuristics are assumed to be much simpler, taking into ac-

count limited processing resources. Recent work in cognitive science suggests a

heuristic-like strategy is more akin to a single-particle particle filter (Sanborn, Grif-

fiths, & Navarro, 2010) relying on fewer samples. Furthermore, it is important to

note that despite some viewing heuristics as approximate solutions, heuristics are

not necessarily suboptimal or incorrect, and one can also find situations where more

complex models, such as those using more samples, produce inferior solutions to

the heuristics.

A BHeuristic Search Angle gaze heuristic C

D Poker AI heuristic

Investment heuristic

Figure 2.1: Image: Areas where heuristics are applied. (A): Heuristic tree search: Heuris-
tics are a common type of metric in AI that estimate how far away from the
goal state a particular state is, without guaranteeing to be perfect. (B): The
angle gaze heuristic is used for catching a ball in the air, based solely on the
optical angle between the ball and the catcher. (C): The simple 1/N rule allo-
cates financial resources equally and could outperform portfolio optimization
models. (D): AI poker agents rely on the same simple heuristic strategies as
expert human poker players, and could not improve upon these heuristics.
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Heuristics play an integral role in psychology and particularly decision making.

Consider the following example: Imagine you were playing baseball and a friend

prompts you to catch a ball that is already high up in the air (Fig. 2.1B). You might

immediately start running towards the ball to make sure you arrive in the right spot

for a catch. How are people able to solve this complex problem? Underlying it are

several complex differential equations to predict the trajectory of the ball, as well as

a multitude of additional physical variables such as wind resistance. Psychologists

suggest people rely on a simple heuristic instead (Gigerenzer, 2007). McLead and

Dienes (1996) let baseball fielders catch balls projected towards them from a blow-

ing machine at 45 m distance. They noticed that the fielders were running back and

forth at a speed that kept the optical angle between the ball and themselves constant.

Paying attention to only this one piece of information (i.e., the constant angle) re-

sults in a very simple algorithm which does not tell the fielders where or when the

ball will land, however, it ensures that they run through the place where the ball

drops at the precise moment that the ball arrives there. This simple strategy also

automatically results in interception of the ball irrespective of the effect of wind re-

sistance on the trajectory. McLeod and Dienes (1996) called this simple algorithm

the gaze heuristic.

The above research presents a classic example where scientists proposed that, in-

stead of solving a set of differential equations, people rely on a set of simple heuris-

tics which follow simple rules and which only pay attention to few pieces of infor-

mation while deliberately ignoring the rest (Gigerenzer, 2007). Hence, in psychol-

ogy, a common view is that people use heuristics because our cognitive capacities do

not allow for complex strategies that take into account all possible variates and opti-

mal probabilistic computations, as people usually do not have the time, knowledge,

or capacity (Simon, 1990). In contrast, a heuristic ignoring data makes the calcu-

lation easier and thus may be more compatible with inherent cognitive limitations

(Gigerenzer et al., 1999; Tversky & Kahneman, 1974). The appeal of heuristics as

theories of human cognition stems from their simplicity, being easy to grasp and

easy to model, as they do not have any parameters that need to be optimized.
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One influential school of thought on heuristics interprets people’s use of heuristics

as suboptimal and flawed. The heuristics and biases program identified multiple

situations in which people’s reliance on a heuristic lead to reasoning biases - that

is, systematic violations of the probabilistic axioms and a set of logical axioms

(Tversky & Kahneman, 1974). For example, they found that people ignore the base

rates in making probability judgements (Tversky & Kahneman, 1983). Tversky and

Kahneman (1974) interpreted these deviations as irrational behaviour and conse-

quentially heuristics became predominantly associated with suboptimal cognitive

algorithms in psychology, behavioural economics and related fields since the 1970s.

In contrast, the bounded rationality approach looked at how people reason when

the conditions for rationality as postulated by neoclassical economics were not met

(Simon, 1990; Simon et al., 1989). Instead, heuristics were defined as cognitive

satisficing mechanisms that allow people to make reasonably accurate predictions

despite the limitations of the human mind, while taking into account the structure of

the environment. The second main influential approach to heuristics that developed

out of this perspective is the fast and frugal heuristics program (Gigerenzer et al.,

1999), which posits ecological rationality instead. In this ecological rationality

framework, the success of cognitive algorithms is always judged in conjunction

with the environments in which they succeed. Rather than focus on human fail-

ings, this program catalogs various cases in which humans excel by using simple

heuristics. Yet, the most important contribution of this program were statistical

less-is-more effects (Czerlinski et al., 1999; Dawes, 1979; Gigerenzer & Brighton,

2009), whereby heuristics are able to outperform complex full-information models

in real-world prediction tasks and simulations. For example, the famous city size

task involved a heuristic matching multiple linear regression in performance at pre-

dicting which of two German cities has the larger population size based on a set of

cues (Gigerenzer & Goldstein, 1996). This finding became very influential in the

scientific community as it was not expected that a simpler algorithm could match

or outperform a more complex one. However, despite this approach receiving great

popularity, it also received criticism for not being compatible with rational analysis
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and other forms of rationality such as Bayesian rationality (Anderson, 1990; Chater

et al., 2003). For example, the city size task was taken as evidence by the fast-

and-frugal proponents that classical rational norms such as probability theory could

be replaced with ecological rationality. However, instead of the fast-and-frugal

approach entirely dispensing with rational explanation of the less-is-more effect, a

search for a rational explanation could have been launched. Yet, this unification of

rational models and heuristics never happened, and it appears that the ecological

rationality program could still be developed further with Bayesian rationality.

Understanding why less can be more still represents an unsolved question in cog-

nitive science: How can a simple heuristic that relies on less complex calculations

and less information outperform a more complex model that takes into account the

full information?

Examples of these less-is-more effects in the real world are given next. For exam-

ple, considering the immense uncertainty in financial markets, how do people de-

cide where to invest their financial resources? Bernatzi and Thaler (2001) noticed

that some individuals, when deciding how to allocate financial resources among N

options, relied on a simple rule of 1/N. The 1/N rule (Benartzi & Thaler, 2001)

allocates financial resources equally across all alternatives (sometimes called naive

diversification heuristic (Benartzi & Thaler, 2001)). Interestingly, when the 1/N rule

was compared to 14 optimizing models in predicting stock performance across mul-

tiple investment problems, including the Nobel Prizewinning Markowitz’s mean-

variance portfolio model, the 1/N rule’s prediction performance was surprisingly

high compared to all 14 optimization models (DeMiguel, Garlappi, & Uppal, 2009).

All strategies had to iteratively make predictions for the next month’s stock perfor-

mance. While the optimization models were trained on data of 10 years of stock

data to estimate the models’ parameters, the 1/N rule does not learn anything from

the data as it does not have any free parameters. The authors found that, surpris-

ingly none of the optimization models were consistently better than the 1/N rule

in terms of Sharpe ratio, certainty-equivalent return, or turnover. They concluded
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that in order for the classic Markowitz’s mean-variance model to beat the simple

1/N heuristic, it would need access to data of around 6000 months for a portfolio

with 50 assets. These results suggest that the heuristic could reach an equivalent

performance level to more complex models with much less data and shorter time.

The question that evolves from this research is why was less more?

Consider another example. Recent research shows remarkable results in the area of

poker AI. Bowling, Burch, Johanson, and Tammelin (2015) recently solved heads-

up limit hold’em poker which is the simplest form of poker, however it is still part

of a family of games that exhibit imperfect information where players do not have

full knowledge of past events. A novel insight is that both skilled poker players

and optimal AI agents are in agreement on a set of very simple opening heuris-

tics. Research already established that skilled poker players use strategic heuristics

(Newall, 2011, 2013), but interestingly, so do unboundedly optimal AI poker agents

(Bowling et al., 2015) and they seem to not be able to improve upon these simple

heuristics. It is remarkable that an AI poker agent, capable of maximizing a strategy

of arbitrary complexity, could not improve upon a heuristic strategy (Bowling et al.,

2015). Again, the question that this research raises is Why could a simple heuristic

not be improved upon?

In sum, why less is sometimes more still represents one of the greatest puzzles in

judgement and decision making. The fast-and-frugal heuristics program provided

one possible explanation based on the statistical bias-variance concept, which will

be introduced below. While this approach is invaluable for our understanding, it

is only limited as it does not formalize the problem: When and why do heuristics

succeed? Furthermore, less-is-more effects can be very volatile (Chapter 3) and can

easily be made disappear with changing conditions in the environment, emphasizing

yet again the need for a formal model.
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2.2 Heuristic versus Probabilistic Approaches to

Cognition
This thesis will develop a formal explanation for why less is more. The approach

taken to achieve this goal is a Bayesian approach to heuristics. Hence, the current

section will firstly outline why an integration between Bayesian approaches and

heuristics is needed, and crucially, why it has not happened yet.

Homo economicus is a rational decision-making creature with the ability to fully

maximize its utility. Unfortunately, Homo economicus sightings are as rare and

difficult to verify as Bigfoot sightings. In fact, early proponents of the probabilis-

tic approach to cognition assumed humans act in line with Homo economicus, i.e.,

assuming unbounded rationality Gigerenzer et al. (1999). In contrast to the prob-

abilistic approach, heuristics are commonly viewed as more psychologically plau-

sible than models that take into account all available information (Czerlinski et al.,

1999; Simon, 1990). To illustrate, consider choosing which of two opponents, Eng-

land versus Germany, will win a football match (Fig. 2.2). The available informa-

tion, usually termed cues, might include the official league position, the result of

the last game, whether the match is home or away, and which team has scored more

goals during a recent competition. One popular heuristic is to first order the cues

by their cue validity v (i.e., predictive value), then to proceed from the most valid

to least valid until a cue is found that favors one team over the other (Gigerenzer

& Goldstein, 1996). What makes this decision heuristic, known as Take-The-Best,

frugal is that it terminates at the first discriminative cue, discarding all remaining

information. In the example (Fig. 2.2), only the first cue, league position, would be

used by Take-The-Best to predict Germany as the winner.

Why were heuristics and probabilistic models never integrated? The un-

bounded rationality view proposed that the human mind relies on probability calcu-

lus and is equipped with unlimited reasoning capacity. For example, early economic

models such as rational choice theory (Friedman, 1953; Scott, 2000) and expected
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(1) .90   +1

(2) .81   0

(3) .73   -1

(4) .54   -1

 League pos.

Home vs. away

No. of goals

Last game result

v
cue 
coding

Figure 2.2: Illustrative binary prediction task where a heuristic can be used. Predicting
whether Team Germany or England will win is based on four cues: league
position, last game result, home vs. away match, and recent goal scoring. Cue
validities (v) reflect the relative frequency with which each cue makes correct
inferences across many team comparisons. Smiley and frowning faces indicate
which team is superior on each cue, whereas a grey face indicates the two
teams are equal on that cue. A cue is coded +1 when it favors the team on the
left (Germany), -1 when it favors the team on the right (England), and 0 when
the teams are equal along that cue.

utility theory (Von Neumann & Morgenstern, 1944,1947,1953,2007) portrayed hu-

mans as always acting rationally with complete knowledge, out of self-interest and

with the desire to maximize wealth. Despite acknowledging that Homo economicus

assumes unrealistic mental abilities, proponents of the unbounded rationality argued

that people act as if they were unboundedly rational. Where did this confidence

come from? To understand their positioning, one needs to take into account the

probabilistic revolution (Gigerenzer & Murray, 1987). After two millennia follow-

ing Aristotle, who saw logic as the theory for ideal human reasoning and inference,

probability theory emerged in the mid-17th century and replaced logical certainty

with a more modest theory of rationality, acknowledging the fundamental uncer-

tainty of human nature (Daston, 1980). Probability theory became the new calculus

of uncertainty (Laplace 1814/1951) and some even saw probability as equivalent to

human thought, as exemplified in the famous treatise An Investigation of The Laws

of Thought (Boole, 1854). This probabilistic revolution has shaped and continues

to influence our understanding of the mind across cognitive science, economics,

and animal behaviour until today. In psychology, in the 1940s, inferential statis-
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tics started dominating as the method to draw inferences from data to hypotheses

(Gigerenzer & Murray, 1987). The second probabilistic revolution in psychology

happened around 1955 on the level of theory construction, and together these de-

velopments resulted in an increasing understanding of cognitive processes as sta-

tistical inference (Gigerenzer & Murray, 1987). The impact of the probabilistic

revolution on nowadays cognitive science can be seen in the number of Bayesian

frameworks that exist for modelling various higher-level and lower-level cognitive

phenomena. For example, memory systems, perception, motor control and vision

systems have been shown to be consistent with optimal Bayesian inference, as they

accurately reflect the statistics of the world (e.g., Anderson (1990); Anderson and

Schooler (1991); Jacobs (2002); Kersten, Mamassian, and Yuille (2004); Körding

and Wolpert (2004); Ma, Beck, Latham, and Pouget (2006); Weiss, Simoncelli, and

Adelson (2002); Yuille and Kersten (2006)). Higher-level cognitive phenomena

that have been successfully modelled with Bayesian inference include everything

from learning (Tenenbaum, 1999), human reasoning under uncertainty (Oaksford

& Chater, 1994), categorisation (Tenenbaum & Griffiths, 2001), counterfactual in-

ference and causal representation (Pearl, 2000; Sloman & Lagnado, 2005), causal

learning and theory change (Bramley, Dayan, Griffiths, & Lagnado, 2017), to lan-

guage acquisition (Hsu & Chater, 2010).

However, importantly, many Bayesian inference models of higher-level cognition

are not proposed as psychological process models, but rather as computational-

level theories (Jones & Love, 2011). Cognitive scientists make a clear distinc-

tion between Bayesian inference models at the computational or functional level

of analysis, the algorithmic level of analysis (corresponding to psychological pro-

cesses, e.g., heuristic decision making processes), the implementational level of

analysis (corresponding to the information integration at the neuronal level (Marr,

1982b) (see Marr’s levels in Table 2.1). In that way, many probabilistic models

were formulated as descriptive rational models of cognition rather than rational pro-

cess models. For example, Oaksford and Chater (2007) introduced a rich general

probabilistic framework for inference which sees probability theory as a normative
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Level Definition

Computational
What problem is the brain solving?
What is the input and output?
What is the structure of the environment?

Algorithmic
What processes does the mind execute to pro-
duce the solution?
What algorithms are computed?

Implementational
Hardware: How are those algorithms imple-
mented in the brain?

Table 2.1: Marr’s levels of analysis still continue to influence cognitive science (Marr,
1982b).

theory of how people should reason about uncertainty, and as a descriptive theory

of how good reasoners actually reason, but makes no assumptions about how cog-

nitive processes solve the probabilistic problems they face. In fact, Oaksfoard and

Chater consider explicit probabilistic calculation at the processing level to be highly

unlikely given how hopelessly poor people are at explicit mathematical reasoning

about probability. On the other hand, there is a multitude of evidence at the neuronal

level suggesting the brain represents probability distributions and performs proba-

bilistic inference, i.e., at Marr’s implementational level (Ma et al., 2006; Pouget,

Beck, Ma, & Latham, 2013).

In contrast, heuristics were formulated as algorithmic process models (Table 2.1),

proposed as possible algorithms the mind relies on to arrive at a solution (Gigeren-

zer & Brighton, 2009). Instead of integrating these heuristic process models with

probabilistic approaches at the computational level, and trying to understand how

heuristic processes may give rise to optimal Bayesian inference at the computational

level, research on heuristics and rational probabilistic models of cognition diverged

into two different research paradigms with little communication between them. For

example, proponents of fast-and-frugal heuristics focused on the successes of their

heuristics at capturing people’s behaviour, or their success in statistical competitions

(Gigerenzer et al., 1999). At the same time, they strongly argued against any prob-

abilistic implications for the processing level, arguing that the computational-level

approaches to cognition have the problem of apparent intractability of rational prob-
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abilistic calculation (Brighton & Gigerenzer, 2008, p. 189), (Chater, Tenenbaum,

& Yuille, 2006, p. 293). Despite many of the computational-level theories not be-

ing meant to capture algorithmic processes, proponents of the heuristics paradigm

expected that this would make them useless as models of human cognition, and the

only way this could be overcome would be by formulating a computational-level

theory that can also take into account process level models (such as heuristics),

assessing their compatibility (Brighton & Gigerenzer, 2008). While many have

proposed this as a solution, no such framework was provided. Only in recent years,

some computational level theorists, mostly coming from the rational probabilistic

paradigm, have attempted to bridge the gap with the algorithmic processing level

(Griffiths, Lieder, & Goodman, 2015; Lieder, Griffiths, Huys, & Goodman, 2017;

Sanborn et al., 2010). Nevertheless, none of these recent approaches have attempted

to extent the probabilistic inference models to understand why heuristics work.

Despite the success of simple heuristics at competing with more complex models,

such as in the famous city size task and other real-world environments (Czerlinski

et al., 1999; Gigerenzer & Goldstein, 1996), proponents of the heuristics believed

a rational explanation was no longer necessary. Their line of reasoning was that

because a simple heuristic is able to match performance with a more traditionally

rational strategy, this was enough evidence to dispense with any rational explana-

tion based on probability theory. However, just because a simpler model could

outperform a traditionally rational model does not mean that refuting a rational

explanation of these impressive results is the way forward, and instead a rational

explanation should be found (Chater et al., 2003). Yet, this integration of rational

inference models and heuristics did not happen. Lastly, the two most prominent

accounts of heuristics in psychology both in fact regard heuristics as incompatible

with Bayesian inference for different reasons which are outline below (next Sec-

tion).

In sum, an integration between heuristic and probabilistic approaches has been dif-

ficult in the past, and has not happened yet for the historic reasons outlined. Despite

the success of Bayesian inference models at capturing human behaviour both on
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the neuronal and the computational level, the heuristic proponents refused to as-

sess whether an integration with computational Bayesian inference models would

be possible. However, I argue that real progress can only be made by integrating the

the Bayesian inference models with heuristics, which will advance our understand-

ing of heuristics.

2.3 Prominent Accounts of Heuristics
I will now introduce the two most prominent approaches to heuristics, before dis-

cussing less-is-more effects and explanations thereof below. The two most promi-

nent heuristic accounts are Kahneman and Tversky’s heuristics-and-biases pro-

gram (Tversky & Kahneman, 1974), and the fast-and-frugal heuristics program by

Gigerenzer and the ABC research group. I will evaluate both heuristic programs

with regard to central aspects of the thesis: 1) To what extent has the program con-

tributed to our understanding of why heuristics work? 2) To what extent has the

heuristic program aided an integration of probabilistic rational models and heuris-

tics?

2.3.1 The Heuristics-and-Biases Program

The heuristics-and-biases program emphasizes heuristics’ deviations from Bayesian

rationality, interpreting their suboptimal performance as a consequence of their

computational efficiency (Kahneman, 2003; Tversky & Kahneman, 1974). That is,

it assumes that heuristics are subject to the accuracy-effort trade-off, which posits

that heuristics require lower cognitive effort, but necessarily pay with lower accu-

racy levels. Note that this means in the heuristics-and-biases account less-is-more

cannot exist. Instead, the heuristics-and-biases account focuses on heuristics as

biases. Importantly, the reason for classifying heuristics as irrational lies in the

rational norms applied as normative standards, derived from Bayesian rationality

and traditional economic theories. Hence, Kahneman and Tversky interpreted any

deviance in people’s behaviour from the axioms of probability theory and logic as

irrational behaviour. For example, consider the representativeness heuristic which

results in the conjunction fallacy (Tversky & Kahneman, 1983). When asked to
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judge the probability of two events (”Linda is a bank teller and is active in the

feminist movement.” and ”Linda is a bank teller.”) after seeing a personality de-

scription of Linda that matches a feminist profile very well, people give a higher

probability judgement to the conjunctive event than to the single event of Linda

being a bank teller. This clearly violates probability theory as the probability of

two events occuring in conjunction is always less than or equal to the probability of

either one occurring alone. Tversky and Kahneman (1983) explained this bias with

people relying on a representativeness heuristic, which judges the probability of an

event by how representative and similar it is in essential characteristics to its parent

population.

To what extent has the heuristics-and-biases program contributed to our un-

derstanding of why heuristics work? The heuristics-and-biases program did not

claim that heuristics work well (although leaving the option for good and bad de-

pending on situation), and less-is-more effects do not exist. Instead, every heuristic

in this program is tied to a reasoning bias that violates the laws of probability theory.

Biases are assumed to be the result of people’s insensitivity to prior probability of

outcomes for example (Tversky & Kahneman, 1974). However, no formal expla-

nation for why and when heuristics perform well was provided.

To what extent has the heuristics-and-biases program aided an integration of

probabilistic rational models and heuristics? The heuristics-and-biases program

has not aided an integration of probabilistic models with heuristics, as it focused on

their divide instead, moving them further away from each other. Furthermore, due

to the lack of formalization of these heuristics (such as representativeness), it be-

comes more difficult to place them into a rational probabilistic framework, or make

any meaningful predictions about when and why heuristics perform well. For exam-

ple, one main criticism of the heuristics-and-biases account has been that heuristics

are vague labels rather than theories and explanations that make testable predic-

tions (Gigerenzer & Goldstein, 1996; Gigerenzer, Hertwig, Hoffrage, & Sedlmeier,
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2008). In sum, the heuristics-and-biases account sees the relationship between

heuristics and Bayesian models is one where heuristics are regarded as biased ap-

proximations to the optimal benchmark of Bayesian inference (Table 2.2).

Heuristics-and-Biases
Account

Fast-and-Frugal Heuristics
Account

Compatibility?

Heuristics are conceived
as deviating from rational
Bayesian inference, because
they often do not conform to
probability theory.

Heuristics and rational
Bayesian approaches are seen
as opponents and are often
pitted against each other
in modelling competitions
(Katsikopoulos et al., 2010;
Martignon & Hoffrage,
2002).

Rationality of
Heuristics?

Heuristics are irrational.

A heuristic is ecologically ra-
tional to the degree that it
is adapted to the structure of
the environment (Gigerenzer
et al., 1999).

Rational Norms?
Axioms of Logic & Probabil-
ity Theory.

Ecological Rationality (no
more logic and probability
theory)

Relationship be-
tween heuristics
and Bayesian
models?

Heuristics are considered
as biased approximations to
optimal Bayesian inference
(Kahneman & Tversky, 1972;
Tversky & Kahneman, 1974)

Heuristics are considered
psychologically plausible
algorithms, while Bayesian
inference models are con-
sidered too computationally
heavy. The models are per-
ceived as mutually exclusive.

Table 2.2: Compatibility with Bayesian models. The relationship between the two most
prominent heuristic programs and optimal Bayesian inference.

2.3.2 The Fast-and-Frugal Heuristics Program

In contrast, two decades later, Gigerenzer and the ABC research group introduced

a novel account wherein heuristics are defined as computational models with a set

of rules, that specify precise steps of information gathering and processing involved

in generating a decision (Gigerenzer et al., 1999). In contrast to the heuristics-and-

biases account, the fast-and-frugal heuristics account does not rely on Bayesian

rationality as normative standards any longer, but instead introduced a different
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form of rationality, ecological rationality, which emphasizes how well heuristics are

adapted to the structure of the environment (Gigerenzer et al., 1999). The authors

proposed that people rely in an adaptive toolbox, containing a collection of fast-and-

frugal heuristics, from which they select heuristics in an adaptive manner depending

on the surrounding task environment (Payne, Bettman, & Johnson, 1993; Todd &

Gigerenzer, 2000) (A list of heuristics in the adaptive toolbox is in Appendix A).

Rather than focusing on human failings and biases, this program catalogues various

cases in which humans excel by using simple heuristics in everyday decisions. The

fast-and-frugal program does not assume an accuracy-effort trade-off any longer,

as heuristics are shown to excel despite using less information and computation

(Czerlinski et al., 1999). This is shown with impressive less-is-more effects, which

the fast-and-frugal approach became famous for, where a heuristic can sometimes

outperform a more complex model that uses more information. Less-is-more effects

and the fast-and-frugal’s approach to why heuristics work are discussed in more

detail below in Section 2.4.

To what extent has the fast-and-frugal heuristics program aided an integration

of probabilistic rational models and heuristics? In fact, ecological rationality en-

tirely dispenses with probability theory and logic as normative standards. Instead,

Gigerenzer and colleagues argue that human behaviour should never be measured

against probability theory, and instead posits that the fit between heuristic strategy

and environment should determine the rationality of a strategy. The ecological ra-

tionality approach originates in the bounded rationality approach (Simon, 1990).

Simon rejected the notion of human rationality as optimization under constraints,

which still underlies Kahneman and Tversky’s work and most work in behavioural

economics and psychology, suggesting if people behaved optimal they would be

consistent with the axioms of probability, however often fail to do so due to ca-

pacity constraints. Instead, according to the ecological rationality approach, people

behave optimal when they rely on the strategy which matches the environment they

are in. That is, this programs’s answer to the question of when and why a heuristic

performs well is if the structure of the heuristic matches that of the environment
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(Gigerenzer et al., 1999). The main reason that Bayesian rationality was rejected

by the fast-and-frugal heuristics account is that Bayesian probabilistic integration

was assumed to be computationally too heavy for the human mind, addressing the

compatibility only on the psychological processing level. Furthermore, an interpre-

tation of optimal Bayesian inference models as opponents to heuristics in statistical

simulations did not aid an integration (Martignon & Laskey, 1999). In sum, the fast-

and-frugal account saw the relationship between heuristics and Bayesian models as

mutually exclusive models (Table 2.2). Nevertheless, despite the seeming incom-

patibilities between the ecological and Bayesian rationality approach, I conjecture

that these two accounts are in fact more compatible than they first appear, and the

idea of a strategy being optimal when it matches the structure of the environment

need not be opposing the idea of strategy as optimal when it matches probabilistic

inference. As will be seen in this thesis, the Bayesian frameworks developed here

show that both interpretations are compatible.

2.3.3 Heuristic Definitions and Terminology

This section will introduce important definitions and terminology from the fast-and-

frugal heuristics program which are central to the Bayesian frameworks developed

in Chapters 4 and 5. These include formal definitions of the two most prominent

fast-and-frugal heuristics, i.e., the tallying and Take-The-Best heuristic (TTB), and

full-information models on the other hand. Also, a formal definition of heuristic cue

validities will be given.

First, I will define the tallying and TTB heuristic. With respect to the binary football

prediction task (Fig. 2.3), the tallying heuristic would tally which team is better on

each cue and chooses the team that has more cues in its favor. In the scenario

depicted in Fig. 2.3A, this algorithm would choose England. That is, the tallying

heuristic simply tallies the valences of all cues, ignoring any possible differences in

weight magnitudes (Czerlinski et al., 1999; Dawes, 1979). Notice, that in contrast,

the TTB heuristic ignores cues instead, e.g., in the football example TTB would

have chosen Germany as the winner instead, as the highest ranked cue was able

to discriminate among alternatives. Hence, TTB relies on cue validity (i.e., v in
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Figure 2.3: Illustrative example of a binary prediction task. (A) Predicting whether Team
Germany or England will win is based on four cues: league position, last game
result, home vs. away match, and recent goal scoring. Cue validities (v) reflect
the relative frequency with which each cue makes correct inferences across
many team comparisons (Equation 2.1). Smiley and frowning faces indicate
which team is superior on each cue, whereas a grey face indicates the two
teams are equal on that cue. A cue is coded +1 when it favors the team on the
left (Germany), -1 when it favors the team on the right (England), and 0 when
the teams are equal along that cue. (B) Irrespective of cue validity, cues can
co-vary (illustrated by overlap) with the criterion variable but also with each
other. The heuristics considered here ignore this covariance among cues.

Fig. 2.3A) to create a ranking order of cues and to be able to sequentially search

through cues (Gigerenzer & Goldstein, 1996). The tallying heuristic also relies on

cue validities, however only for extracting the cue valences. Both the tallying and

the TTB heuristic can also be defined in terms of a search rule, stopping rule, and

decision rule (Gigerenzer et al., 1999) as laid out in Box 2.3.2 and 2.3.3: 1. Search

rules specify in what direction the search extends in the search space. 2. Stopping

rules specify when the search is stopped. 3. Decision rules specify how the final

decision is reached.

In contrast to the above heuristic algorithms, a full-information model such as a

full regression model would make greater use of the available information: cue

weight magnitudes, predictive values, and covariation among the cues. For exam-

ple, league position and number of goals scored are highly correlated (Fig. 2.3B).

Although such covariances naturally arise and can be meaningful, the cue validities

used by the tallying and TTB heuristics completely ignore them (Martignon &

Hoffrage, 1999). Instead, cue validities assess only the probability with which a



2.3. Prominent Accounts of Heuristics 40

single cue can identify the correct alternative (e.g., which team won the football

match in Fig. 2.3), derived as the proportion of correct inferences made by each cue

alone across the set of binary object comparisons (Martignon & Hoffrage, 1999).

Thus, cue validities reflect how predictive each cue is in isolation of other cues.

When two cues co-vary highly, they essentially provide the same information, but

heuristics ignore this redundancy and treat the related cues as independent infor-

mation sources. In contrast, regression weights as estimated by multiple regression

would always naturally consider covariation among cues as part of the parameter

estimation (Box 2.3.4). Cue validity is formally defined as:

Box 2.3.1: Cue validity

v =
R

R+W
, (2.1)

R = number of correct predictions

W = number of incorrect predictions, and it follows that 0≤ v≤ 1.

The learner is usually assumed to learn cue validities from past experiences

(Gigerenzer & Goldstein, 1996; Gigerenzer et al., 1999; Martignon & Hoffrage,

1999). Hence, in applying heuristics to datasets, the cue validities are often learned

from the training data.

Lastly, one other feature of heuristics to consider that will be relevant for Chapter

6, is compensatoriness. The tallying heuristic is a compensatory strategy, whereas

TTB is a non-compensatory strategy. Compensatory strategies have the property

that a cue can be compensated for by combinations of subsequent cues and tally-

ing is a typical example thereof: It integrates all available cues (however it equally

weighs them) and later cues can compensate for earlier cues (Fig. 2.4B). In con-

trast, the non-compensatory TTB heuristic ignores most cues to make decisions, as

the most powerful cue Ck can outweigh any combination of the subsequent cues

Ck+1, . . . ,Ck+n (Gigerenzer & Goldstein, 1999) (Fig. 2.4A). Not surprisingly, both
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heuristics perform better in environments that match their weighting structure, i.e.,

tallying performs best in compensatory environments, while TTB performs best in

non-compensatory environments (Martignon & Hoffrage, 1999, 2002). Note that

multiple regression is also a compensatory strategy, as weaker cues can be compen-

sated for by stronger cues.
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Figure 2.4: Non-compensatory and compensatory environmental structures with five cues.
A: A perfectly non-compensatory environment has cue weights of 1, 1/2, 1/4,
1/8 and 1/16. In this environment, TTB is as accurate as any linear weighted
combination of cues. B: A compensatory environmental structure where cue
weights are all 0.5. In this environment, the tallying heuristic is as accurate as
any linear weighted combination. Taken from Martignon and Hoffrage (2002).
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Box 2.3.2: Take-The-Best Heuristic (TTB)

Mechanism:

1. Search through cues in order of their (absolute) validity.

2. Stop on finding the first cue that discriminates between the alternatives.

3. Infer from this cue that the alternative with the higher cue value has the

higher criterion value.

The TTB heuristic uses sequential search, meaning when a cue does not

discriminate between alternatives (e.g., a value of 0 in Fig. 2.3), the search

moves onto the next valid cue until a cue is found that discriminates. The

TTB heuristic ignores all remaining cues to make a decision, so sometimes

it will rely only on a single cue, if the highest ranked cue discriminates

(Gigerenzer & Goldstein, 1996; Martignon & Hoffrage, 1999).

Take-The-Best is a called a noncompensatory strategy as the more powerful

cue Ck can outweigh any combination of the subsequent cues Ck+1, . . . ,Ck+n,

i.e., no combination of subsequent cues can compensate for the weight of

the more valid cue (as defined by the cue rank order).
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Box 2.3.3: Tallying Heuristic

Mechanism:

1. Search through cues in any order.

2. Stop search after m out of a total of M cues (with 1 < m ≤ M). If the

number of positive cues is the same for both alternatives, search for another

cue. If no more cues are found, guess.

3. Decision rule: Decide for the alternative that is favoured by more cues.

The tallying heuristic entirely ignores cue weight magnitudes and weighs all

cues equally (unit-weight) (Dawes, 1979; Gigerenzer et al., 1999).

As cue weights, tallying relies only on the cue directionalities. In one

definition, the cue directionalities are assumed to be known in advance

(Dawes, 1979), and in another definition they are learned from the data

(Gigerenzer et al., 1999).

Tallying is a compensatory strategy because a cue can be compensated for by

combinations of subsequent cues, i.e., the negative and positive cue valences

tradeoff.
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Box 2.3.4: Full-information models

Full-information models make full use of all available information in the

input data such as cue weight magnitudes, predictive values, and covariation

among the cues. These algorithms embody principles of classical rationality:

• Complete search - they use all cue values

• Complete integration - they combine all cues into a single value.

• Optimal weighting - they optimally weight the cues

Examples of full-information models:

• Multiple linear regression / Logistic Regression

• Optimal Bayesian models: integrate observed data with prior informa-

tion.

• Exemplar models for categorization and memory such as

Nearest-neighbour classifier (Cover & Hart, 1967)

Nosofsky’s generalized context model (Nosofsky, 1990)

• Prospect Theory

• Neural networks

• Regularized regressions (e.g., ridge or lasso regression)

2.4 Less-Is-More Effects
Yet, the most central phenomenon to heuristics that this thesis will address are

less-is-more effects. These effects were originally defined by the fast-and-frugal

program (Gigerenzer & Brighton, 2009), wherein heuristic algorithms surprisingly

outperformed full-information models in real-world prediction tasks.
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In the 1970s, Dawes made the surprising discovery that a unit-weight strategy, i.e.,

the tallying heuristic can predict as accurate as and sometimes even better than mul-

tiple linear regression (Dawes, 1979; Dawes & Corrigan, 1974; Einhorn & Hogarth,

1975). How could using less information, i.e., disregarding any differential weight-

ing, perform better than relying on more information? These results came as a

surprise to the scientific community. When Robin Dawes presented the results at

professional conferences, distinguished attendees told him that they were ”impos-

sible”. However the results were correct and spoke for themselves. There was a

small difference in how Dawes’ applied tallying and multiple regression to the data.

According to Dawes’ original definition of tallying, people already know the cue di-

rections in advance from past experience and these do not need to be learned from

data (Dawes, 1979). In contrast, in 1999, Gigerenzer and the ABC research group

conducted a more comprehensive test in 20 real-world environments (Czerlinski et

al., 1999), in which both tallying and TTB, and multiple regression were cross-

validated and learned weights from the data. That is, all algorithms were trained on

50% of the dataset and made predictions for the other 50% of the dataset. The real-

world datasets ranged across various domains from predicting high school dropout

rates, to predicting mammals’ average sleep time, to predicting the attractiveness

ratings of famous women and men (Czerlinski et al., 1999). The task was to predict

the outcome of binary comparisons, for instance, estimating which of two Chicago

high schools has a higher dropout rate, based on cues such as writing score and

proportion of Hispanic students.

Results showed that, averaged across all datasets, multiple regression outper-

formed the heuristics at fitting, however the TTB heuristic and the tallying heuristic

achieved higher predictive accuracy than multiple regression at generalization (Fig.

2.5). At fitting, multiple regression performed best with 77% correct inferences

(i.e., fitting parameters to data which is already known), but then dropped in perfor-

mance to 68% at predicting novel data which has not been encountered before (i.e.,

the test sample). In contrast, the heuristics’ relative drop in performance was not as

steep dropping only 4 percentage points on average. Particularly the TTB heuristic,
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Figure 2.5: Famous less-is-more finding by the fast-and-frugal heuristics program across
20 real-world environments (Czerlinski et al., 1999). Both tallying and TTB
predict more accurately than multiple regression during prediction (general-
ization), despite using less information. Note that multiple regression excels
in data fitting, but performs poorly at prediction during cross-validation. The
cross-validation method split the datasets in half, i.e., the training sample con-
tained 50% and the test set contained the other 50% of the dataset. Figure is a
replica of the graph in the original publication by Czerlinski et al. (1999).

which often relies only on one good reason, excelled at prediction, outperforming

both tallying and multiple regression.

These findings had a huge impact, as hitherto, the wide-spread assumption was

that more information is always better (Gigerenzer & Brighton, 2009). These find-

ings also undermined the widespread accuracy-effort trade-off assumption, because

heuristics were able to exhibit higher accuracy without loosing to higher computa-

tional effort. Three years before, Gigerenzer and Goldstein (1996) had stirred up

the scientific community with the famous city size task (i.e., predicting which of

two German cities has the larger population size), which for the first time showed

that a TTB heuristic could match the performance of a multiple regression model.
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The above shows a classical example of a less-is-more effect. However, how is

less-is-more defined? The term less-is-more is used to label a number of different

effects and different people use it to mean different things. Hence, it is particularly

important to clarify what definition one refers to. In their original less-is-more

discussion, the ABC research group says:

Less-is-more effects: More information or computation can decrease accuracy;

therefore, minds rely on simple heuristics in order to be more accurate than strate-

gies that use more information and time. (Gigerenzer & Brighton, 2009, p. 110)

Note that this definition already contains two definitions of less-is-more in one, the

classical relative definition of less-is-more and a psychological one. The relative

definition of less-is-more is the most prevalent in the literature. It is for example

described by Gigerenzer and Brighton (2009) in reference to the findings in Fig.

2.5: Heuristics can lead to more accurate inferences than strategies that use more

information and computation. Thus, the accuracy-effort trade-off does not gener-

ally hold; there are situations where one attains higher accuracy with less effort.

At a different point in the article, the authors later clarify that more information

refers to things such as cues, weights, or dependencies. Hence, we define the first,

relative less-is-more effect as:

Box 2.4.1: Relative Less-is-more

Simple heuristics, that ignore information, can lead to more accurate

inferences than strategies that use more information.

However, importantly, the fast-and-frugal program went beyond in their definition

of less-is-more surpassing the more trivial relative definition of less-is-more. In

the same article, they argued that there is a point where throwing out information

actually leads to better performance, and where including it would be detrimental.
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This is evident in multiple occasions such as,

Note that the term less-is-more does not mean that the less information one uses, the

better the performance. Rather, it refers to the existence of a point at which more in-

formation or computation becomes detrimental, independent of costs. (Gigerenzer

& Brighton, 2009, p. 111),

and similarly:

A less-is-more effect, however, means that minds would not gain anything from

relying on complex strategies, even if direct costs and opportunity costs were zero.

(Gigerenzer & Brighton, 2009, p. 111)

Hence, we define the second less-is-more effect as:

Box 2.4.2: Absolute Less-is-more

There is a point where more information becomes detrimental and less infor-

mation (as used by heuristics) leads to higher accuracy.

Hence, this absolute definition implies that there is actually a point where the sim-

pler model cannot be improved upon with strategies that rely on more information.

Note that neither the first nor the second definition of less-is-more have said any-

thing about psychology yet. However, ABC’s understanding as indicated by the

first quote above also clearly state the assumption that the mind relies on simple

heuristics - in fact, all statistical less-is-more findings in Gigerenzer and Brighton

(2009) (such as Fig. 2.5) are directly used as implying that people rely on heuristics.

This kind of less-is-more effect could be called a descriptive psychological effect,

as it expects people to rely on heuristics rather than full-information models, as

indicated by behavioural data:
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Box 2.4.3: Psychological Less-is-more

1) Descriptive: People rely on simple heuristics rather than full-information

models.

2) Capacity: There is a point where information gets too much, and process-

ing less information results in better performance.

However, there is also another psychological definition: If one thinks of people as

systems with capacity limitations, one may expect that less is more for humans,

such that when information gets too much, processing less information becomes

advantageous (e.g., by closing one’s eyes, or turning to a simpler strategy under

high cognitive load (Hoffmann, von Helversen, & Rieskamp, 2013)). However,

even if less is more for humans at the capacity level, it does not invalidate any of

the other less-is-more effects.

The fact that the central less-is-more definition given by the fast-and-frugal heuris-

tics is a relative claim is evident in some studies showing that heuristics are not

always performing best, but can also be outperformed by other full-information

models. For example, Martignon and Hoffrage (Martignon & Laskey, 1999) com-

pared heuristics to two Bayesian models across the same 20 datasets as above (Fig.

2.5). The authors compared the TTB heuristic against a naive Bayes classifier which

assumes that cues are conditionally independent, and a Bayesian network which as-

sumes that cues are interdependent. On average, the Bayesian network performed

four percentage points better than TTB at fitting, and three percentage points better

at generalization. While the predictive accuracy of TTB was 71%, the predictive

accuracy of the Bayesian network was 74% and that of naive Bayes 73%.

In sum, the above clarifies that there are many definition of less-is-more. By giving

the precise definitions, it will be possible to clarify what version of less-is-more

each Chapter refers to. While the thesis will address most less-is-more definitions,

the main advance will be the Bayesian inference frameworks in Chapter 4 and 5

tackling the absolute less-is-more effect.
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Figure 2.6: Results by Chater et al (2003) in the city size task. Generalization performance
of the TTB heuristic in comparison to a Nearest Neighbour classifier, the Gen-
eralized Context Model (Nosofsky, 1986), a C4.5 decision tree model (Quinlan,
1993), and a neural network using the backpropagation algorithm (Rumelhart
et al., 1986). The ordinate represents the percentage of correct inferences made
in predicting the outcome of city comparisons during cross-validation. The
training sample size was varied from 10% to 90% of all city comparisons.

2.4.1 When is less more?

Soon after the initial less-is-more demonstration (Fig. 2.5), other cognitive scien-

tists critical of less-is-more effects (relative less-is-more claim), put it to a more dif-

ficult test. For example, sceptical about the robustness of less-is-more, Chater et al.

(2003) used the city size task to test TTB against more powerful machine learning

models, such as a nonlinear strategy, i.e., a three-layer feedforward connectionist

neural network trained using the backpropagation algorithm (Rumelhart, McClel-

land, Group, et al., 1986). These multi-layer neural networks are very robust with

respect to domain and data structures and are used across psychological and applied

research (Russell & Norvig, 2002). The authors also tested two exemplar-based

models, a nearest-neighbour classifier (Cover & Hart, 1967) and Nosofsky’s gener-

alized context model (Nosofsky, 1986, 1990), a popular model for inductive cate-

gorization inferences. The third type of algorithm was the C4.5 decision tree model

(Quinlan, 1993), a standard classification learning algorithm in machine learning.

Results (Fig. 2.6) showed an impressive performance for the TTB heuristic again

compared to the complex machine learning models.

However, crucially, TTB outperformed other algorithms when training data was
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small, i.e., up to 40% of all pairwise comparisons, however when the sample size

was larger, models that utilized more information performed better. This study

represents one of the many important studies identifying a factor of when less is

more. Chater et al. (2003) not only showed that less is not more with larger training

sample sizes (i.e., relative less-is-more), but also that simple heuristics seem to have

a competitive advantage with smaller training samples. Other studies replicate this

finding. Brighton (2006) extended the study by Chater et al. (2003) into a larger

study with 25 environments based on widely available regression problems, relying

on the same machine learning models. In the paper, Brighton (2006) finds that for

half of the environments, TTB clearly outperforms the competitors, and for the other

half, TTB performs less well, however it still performs relatively well for smaller

training sample sizes (e.g., up to 20 objects). What’s more, Katsikopoulos et al.

(2010) showed that both TTB and tallying have a performance advantage over more

complex models with very small, minute-size training samples. In comparing the

predictive accuracy of the heuristics against that of naive Bayes across 19 of the

original datasets by (Czerlinski et al., 1999), they find that with training samples

of only 2 objects, tallying had the highest predictive accuracy and TTB was more

accurate than naive Bayes; and for 3-10 objects, TTB had the highest accuracy,

with naive Bayes being more accurate than tallying. However, with training sizes

of 50% and larger, the model performances reverse again, and the full-information

models outperform the heuristics. In conclusion, a key insight from these less-

is-more studies is that heuristics have a competitive advantage over more complex

models when observations are sparse. Other factors play a role in when less is more,

which will be identified and critically evaluated in Chapter 3.

I now turn to why less can be more, the topic central to the thesis. The next section

will introduce the existing explanation of less-is-more based on bias-variance. I

will focus on what it can provide and where its limitations lie.

2.4.2 Current Explanations of Less-is-more

The less-is-more effects pose a paradox: How can heuristics, which ignore informa-

tion, outperform full-information models? Gigerenzer and Brighton (2009) offered
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an explanation based on the statistical concept of the bias-variance tradeoff. This

thesis will extent the frequentist bias-variance idea (Gigerenzer & Brighton, 2009)

into a Bayesian framework that can formally link heuristics and full-information

models.

From a statistical perspective, every model, including heuristics, has an induc-

tive bias, which makes it best-suited to certain learning problems (Gigerenzer &

Brighton, 2009). A model’s bias and the training data are responsible for what a

model learns. Subsequently, a model can apply what it has learned from past expe-

riences (i.e., the training data) to novel test cases in cross-validation, the core tool

for evaluating the performance of learning models in machine learning and psychol-

ogy (Kohavi, 1995). From a psychological standpoint, a model’s cross-validation

performance can be understood as its ability to generalize from past experience to

guide future behaviour. Thus we are typically interested in the models’ generaliza-

tion performance (J. Friedman, Hastie, & Tibshirani, 2001). In addition to differing

in bias, models can also differ in how sensitive they are to sampling variability in

the training data, which is reflected in the variance of the model’s parameters after

training (i.e., variance in their estimates over different training samples). The induc-

tive bias and the parameters’ variance jointly determine how well a model classifies

novel test cases, as can be seen in the equation for prediction error:

Total error = bias2 +variance+noise. (2.2)

Higher flexibility can in fact hurt a model’s performance because it makes the model

more sensitive to the idiosyncrasies of the training sample. This phenomenon,

commonly referred to as overfitting, is characterized by high performance on expe-

rienced cases from the training sample but poor performance on novel test items.

Overfitted models have high goodness of fit but low generalization performance

(Pitt & Myung, 2002), see Fig. 2.7A. For example, the right-most model in the

bottom panel of Fig. 2.7A attempts to capture the pattern underlying the data with

a higher-degree polynomial model. While it fits the data points better than the
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Figure 2.7: The concept of overfitting. (A) More flexible models can fit the training sample
better (goodness of fit), accounting for most of the variability. However, these
models can fare poorly in generalization tasks that test on novel samples (gen-
eralizability) Pitt and Myung (2002). (B) Our re-analysis of a dataset Czerlinski
et al. (1999) used to evaluate heuristics (predicting house prices) finds that TTB
outperforms ordinary linear regression at generalization when the training sam-
ple is small (20 training cases). However, the pattern reverses when the training
sample is enlarged (100 training cases). Error bars represent ± SEM. Details
are in the Appendix C.

lower-degree polynomials in the middle and left-most graph, the model’s flexibility

also results in larger prediction errors due to suffering from increased variance, i.e.,

resulting in overall lower generalizability.

Bias and variance tend to trade off with one another such that models with low

bias suffer from high variance and vice versa (Geman, Bienenstock, & Doursat,

1992), which implies that more flexible (i.e., less biased) models will overfit small

training samples and can be bested by simpler (i.e., more biased) models that overfit

less, such as heuristics. Hence, this explains why sometimes heuristics, which have

a larger bias but low variance, can be more successful than more complex (i.e.,

less biased, high variance) models. However, as the size of the training sample

increases, more complex models should fare better (Chater et al., 2003). Indeed, in

a reanalysis of a dataset used to evaluate heuristics (Czerlinski et al., 1999), we find
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that the advantage for the heuristic over linear regression disappears when training

sample size is increased (Fig. 2.7B). This reversal with training sample size was

also found by Chater et al. (2003) above (Fig. 2.6) and by Davis-Stober, Dana, and

Budescu (2010); Einhorn and Hogarth (1975); Katsikopoulos et al. (2010).

In conclusion, the bias-variance tradeoff can explain why sometimes simpler, more

biased heuristics can generalize better than more complex, less biased, models. The

same bias-variance concept can also account for why, when the amount of data is

increased, the disadvantage of more complex models fades (i.e., the problem of

overfitting is overcome with more data). Thus, the bias-variance explanation is very

useful by giving existing findings, such as the reversal of less-is-more above, a sta-

tistical interpretation which had been previously lacking (Brighton & Gigerenzer,

2008). However, what the bias-variance concept is still lacking is a formal computa-

tional model which can make testable predictions about when and why heuristics or

full-information models will outperform. As could be seen above, frequentist less-

is-more effects are often volatile, i.e., the optimal model may be the full-information

model in one instance and the heuristic in the next, and it is not always clear why

that is the case. Chapter 3 will show several of these reversals depending on en-

vironmental conditions. However, in contrast, in a Bayesian account (to the extent

that the model is correctly specified), the optimal model is not expected to change

with these environmental conditions (such as training sample size), as the optimal

Bayesian model automatically weighs prior against data always. In addition, the

bias-variance account also does not formally link those models that take into ac-

count all or most information when making decisions (e.g., full regression models)

to those that focus on very little of the available information (i.e., heuristics). By

not attempting to understand the formal relationship between heuristics and full-

information models, a full understanding of why less is sometimes more is impos-

sible. Why this is the case will become clear in the Bayesian frameworks developed

in Chapters 4 and 5.

To refer back to the definitions of less-is-more in the preceding Section: While bias-
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variance provides a post-doc statistical explanation of the first less-is-more effect

(relative less-is-more), it cannot provide insight into the second definition (absolute

less-is-more), nor provide a formal explanation for relative less-is-more. In contrast,

the Bayesian account developed in this thesis (Chapters 4 and 5) aims to provide

formal explanations for both the relative and the absolute less-is-more effects.

2.5 Summary
In this chapter, I introduced heuristics, and contrasted heuristics with probabilistic

approaches to cognition. I first set out the background for why an integration be-

tween probabilistic approaches and heuristics approaches has not happened yet in

the past. Next I introduced the most prominent approaches to heuristic, i.e., the

heuristics-and-biases account, and the fast-and-frugal heuristics account, and eval-

uated both accounts with respect to their explanations of why heuristics work, and

their positioning on an integration between heuristic and probabilistic approaches.

I then defined two fast-and-frugal heuristics more carefully, tallying and TTB, and

gave definitions and terminologies relevant to the thesis. Finally, I introduced less-

is-more effects providing the different definitions that exist in the literature. I gave

the most common explanation of less-is-more effects based on bias-variance, and

discussed its short-comings, which the thesis will advance.
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Chapter 3

When (and why) is less more?

Things aren’t always what they seem.

-SHAKESPEARE, Macbeth Act II

This Chapter will look at less-is-more effects and investigate what factors lead to

less-is-more. That is, this Chapter addresses the relative less-is-more effect (Box

2.4.1) and will identify several environmental and statistical factors that influenced

less-is-more effects, which include 1) the type of data the algorithms are trained

on, 2) training sample sizes and 3) the sampling method used for cross-validation.

Interestingly, I find that these same factors can also be used to make the less-is-more

effects disappear. In 4 computational studies, I show that when each of these factors

is reversed, a previous less-is-more effect can be reversed. This demonstrates the

volatility of relative less-is-more effects and the necessity of a formal framework

for heuristics.

The city size task (Gigerenzer & Goldstein, 1996) represents one of the landmarks

of less-is-more effects in the history of decision making research. I will show that

in the original city size task by Gigerenzer and Goldstein (1996), these effects stem

from the fact that the models were not trained on the same dependent variable, and

hence the model comparison was not done properly. Furthermore, I will show the

effect of using the appropriate method in training both models on the same data, and

will apply both Gigerenzer and Goldstein’s and my approach to the 20 datasets in

Czerlinski et al. (1999) historically used for evaluating heuristics. When the mod-
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els are trained correctly, the average less-is-more effect disappears across all 20

datasets. In another computational study, I will show that some of the individual

datasets still exhibit less-is-more findings provided a small enough training sample

is used, in line with previous literature (Chater et al., 2003; Katsikopoulos et al.,

2010). However, when the training sample size is increased, the less-is-more ef-

fects disappear. Lastly, I will look at the effect of cross-validation method on the

relative performance of algorithms, and show that the initial less-is-more effect in

the original 20 datasets disappears when training cases are sampled by comparisons

instead of objects. This study demonstrates that heuristics and regression models

may benefit from different sampling techniques.

Crucially, at the end of each computational study I will assess whether it is clear

why less was more in the first place. Especially given that each less-is-more effect

was shown to be reversible, in the Discussion I will critically ask what bias-variance

can provide as an explanation and what it can not provide. I will come to the over-

all conclusion that bias-variance is insufficient as an explanation as it cannot fully

account for why relative less-is-more (Box 2.4.1) was true in these instances in the

first place, except for the trivial fact that the heuristics bet on lower overfitting than

complex models. It also appears as if the conditions in some studies by the fast-and-

frugal heuristics program were particularly advantageous for heuristics in terms of

an overfitting advantage. What was missing from these past studies is a formal

explanation for relative less-is-more. Moreover, the frequentist bias-variance expla-

nation does not assess whether there is a point where more information becomes

detrimental and less information (as used by heuristics) leads to higher accuracy,

i.e., the absolute less-is-more effect (Box 2.4.2).

3.1 What environmental factors aid heuristics?

Before analysing what led to less-is-more effects in past studies, an obvious ques-

tion to ask is: What other factors are known to help produce less-is-more effects,

i.e., when is less more? Various environmental aspects have been identified such as

the degree of compensatoriness (Section 2.3.3)(Martignon & Hoffrage, 1999). Both
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TTB and tallying perform best in environments that match their non-compensatory

and compensatory nature. Other factors that have been identified are small train-

ing sample sizes (Chater et al., 2003; Davis-Stober et al., 2010; Einhorn & Hoga-

rth, 1975; Katsikopoulos et al., 2010) (Section 2.4), moderate to high redundancy

among cues in the environment for aiding the TTB heuristic, as well as moderate

to high variability in cue weights (Brighton, 2006; Dieckmann & Rieskamp, 2007;

Gigerenzer & Brighton, 2009; Hogarth & Karelaia, 2007; Martignon & Hoffrage,

2002) for aiding the TTB heuristic. In contrast, tallying seems to do well with

lower variability in cue validities and with low redundancy among cues (Hogarth

& Karelaia, 2005, 2006). For example, Dieckmann and Rieskamp (2007, 2012)

showed that in a simulation study TTB benefited over logistic regression from envi-

ronments with high covariance levels among cues and higher cue validity dispersion

(i.e., more non-comepensatory). However, it was not clear from this study which

of these two aspects was more important for TTB’s success. The relationship with

covariance in the environment makes intuitive sense, as relying only on the most

important piece of information is sensible when covariance levels are high, while

integrating all information (such as tallying) is more beneficial when covariance lev-

els are low. Crucially, in much of this research, despite advancing our understanding

of when less is more, it does not clarify why less was more even in those instances

such as under high covariance or high cue dispersion. While there is evidence that

heuristics can excel under these conditions more than others, there exists no formal

theory explaining why a heuristic should be able to perform better than the more

complex model. For example, do heuristics usually excel due to their ignorance of

information, as suggested by the fast-and-frugal program?

3.2 Less is not always more (1): Discovery of an

asymmetry in the original city size task
The city size task (Gigerenzer & Goldstein, 1996) was the first time that the TTB

heuristic was defined and the first time a relative less-is-more effect was demon-

strated by the fast-and-frugal heuristics program. Since the nineties, the city size
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task has become a popular dataset which has been used many times to demonstrate

less-is-more effects (e.g., Chater et al. (2003); Gigerenzer and Brighton (2009);

Goldstein and Gigerenzer (2002); Katsikopoulos et al. (2010)). In contrast to the

principles of Bayesian rationality, the TTB heuristic was proposed as a satisficing

algorithm (Simon, 1990) that purposefully violates the fundamental tenets of ratio-

nal full-information models: It neither looks up nor integrates all information (Box

2.3.2 and 2.3.4). However, Gigerenzer and Goldstein (1996) claimed that despite

it being fast and frugal, it would not show a significant loss of inferential accu-

racy. A second novelty that Gigerenzer and Goldstein introduced was comparing

the performance of a satisficing algorithm against what they considered a classically

”rational” algorithm, i.e., multiple regression, in a real-world environment. The ar-

gument was that a real test of the validity of cognitive algorithms would have to

be in a complex natural environment resembling the problems our cognitive system

faces. They chose the city size task:

City Size Task

The task is to make a choice between two alternatives on a quantitative dimension

(Gigerenzer & Goldstein, 1996):

Which city has a larger population? (a) Hamburg (b) Cologne.

The city size task consists of many of the above binary comparisons. In total, the

dataset includes all German cities with more than 100,000 inhabitants (83 cities

after German reunification). The dataset has the estimated population size of each

of these cities as the dependent variable (Appendix D), and cities are described on a

set of 9 binary cues, which are visible in Table 3.1. Each cue has an associated cue

validity, indicative of how well a cue predicts correctly with respect to the city com-

parisons (i.e., which city has the larger population?). The full environment with all

9 x 83 cue values is provided in Appendix D. All pairwise comparisons between

the 83 cities are created, and the task for both the TTB and multiple regression

algorithm is make predictions with respect to which city had the larger population

on each comparison.
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What did Gigerenzer and Goldstein (1996) find? The authors found that TTB was

able to match multiple regression in accuracy in making binary city size predictions.

The heuristic also outperformed multiple regression in terms of inference speed due

to being more frugal, i.e., relying on fewer cues than multiple regression. Hence,

TTB was declared the overall winner of the competition taking into account both

predictive accuracy and frugality. These results were interpreted as revolutionary

because an algorithm that purposefully violates the fundamental tenets of classical

rationality (i.e., does not use complete search and complete integration, Box 2.3.4),

was able to match or outperform a classically ”rational” algorithm (full-information

algorithm). Hence, Gigerenzer and Goldstein (1996) declared the result ”an exis-

tence proof that cognitive mechanisms capable of successful performance in the real

world do not need to satisfy the classical norms of rational inference. (Gigerenzer &

Goldstein, 1996, p. 23). This paper went on to spawn hundreds if not thousands of

follow up papers with the perspective that heuristics can outperform rational models

(e.g., see Gigerenzer and Gaissmaier (2011) for a review of a decade).

This was the first time a less-is-more effect of this type was demonstrated. How-

ever, the critical question one needs to ask is: Why was the heuristic able to match

performance with multiple regression? To answer this question, we need to take a

closer look at the methods used in the original simulation.

3.2.1 Computational methods in the original city size task

To train and test TTB and multiple regression, all possible pairwise comparisons

between the 83 German cities were created, resulting in 3,403 total comparisons.

Both models were fit to these 3,403 comparisons but also made predictions for the

exhaustive set of 3,403 city pairs. That is, the algorithms were trained and tested on

the same data, essentially measuring within-sample fitting performance.

At training, both algorithms estimate weights from the training sample. The TTB

heuristic estimates cue validities for each of the 9 cues (Table 3.1), assessing the

frequency with which a single cue can identify the correct alternative (e.g., which

city had the larger population size). Cue validity is derived as the proportion of

correct inferences made by each cue alone across the set of binary object com-
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parisons (Equation 2.1) (Martignon & Hoffrage, 1999). That is, the calculation of

cue validities relies on both the binary outcome variable (i.e., which city actually

had the higher population size on each comparison) and the cue differences vectors

from each city comparison (i.e., an example for a cue difference vector for a sin-

gle comparison is in the cue coding column of Fig. 2.3). Importantly, the actual

city populations in Appendix D do not enter the equation for heuristics’ parameter

estimation.

Cue
Ecological
cue validity

National capital (Is the city the national capital?) 1.00
Exposition site (Was the city once an exposition site?) .91
Soccer team (Does the city have a team in the major league?) .87
Intercity train (Is the city on the Intercity line?) .78
State capital (Is the city a state capital?) .77
License plate (Is the abbreviation only one letter long?) .75
University (Is the city home to a university?) .71
Industrial belt (Is the city in the industrial belt?) .56
East Germany (Was the city formerly in East Germany?) .51

Table 3.1: Cue validities in the city size task.

On top of the regular training process, Gigerenzer and Goldstein also simulated

people with partial knowledge about the cities to imitate inference from memory.

Limited knowledge took two forms: One was limited recognition of objects (cities),

and the other was limited knowledge about the cue values of recognised objects. To

model limited recognition knowledge, they simulated people who recognized be-

tween 0 and 83 German cities, with the recognition rate proportional to the city

size. To model limited knowledge of cue values, they simulated 6 classes of people,

who knew 0%, 10%, 20%, 50%, 75%, or 100% of the cue values associated with

the objects they recognized. Combining the two sources of limited knowledge re-

sulted in 6 x 84 types of people, each having different degrees and kinds of limited

knowledge. Within each type, they created 500 simulated individuals. That is, in-

stead of performing cross-validation splits on the full dataset of 3,403 comparisons,

the authors trained and tested the models with each of the 500 x 6 x 84 simulated

profiles on the full dataset.
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Multiple linear regression was trained to estimate weights in a different way to TTB:

Concretely, instead of training on the cue differences vectors and binary outcomes

like TTB, multiple regression estimated its weights by accessing the actual popula-

tion sizes of the German cities (e.g., such as Berlin having 3,433,695 citizens and

Hamburg having 1,652,363 citizens from the Appendix D). Specifically, weights

were learned from the original dataset containing 83 cities (in the Appendix D)

and the the nine cues were regressed onto the continuous population variable. That

means the weights were not derived from the city comparisons and the binary de-

pendent variable, such as in the case of heuristics. The multiple regression weights

were then used to predict continuous population sizes of all cities in the test set

comparisons, before thresholding them into binary predictions. In sum, the multiple

regression and TTB were trained on different dependent variables. It is explicitly

stated in the original article that ”Unlike any of the other algorithms, regression

had access to the actual city populations (even for those cities not recognized by

the hypothetical person) in the calculations of the weights.” (Gigerenzer & Gold-

stein, 1996, p. 15/16). In addition, multiple regression was made to include an

additional simulated cue: whether the city was recognized. Hence while multiple

regression trained on 10 cues, the TTB heuristic trained on 9 cues. Presumably, and

as stated in their manuscript, the authors did not consider the asymmetries in the

procedure for training TTB and multiple regression incorrect, as they assumed they

were strengthening multiple regression by giving it more information than any of

the simpler algorithms 1.

Results of the competition are in Table 3.2 for different levels of cue knowledge,

averaged across all levels of recognition knowledge. The bar graph in Fig. 3.1

also visualizes results for 100% cue knowledge. Both the Table and the Figure

show there were almost no differences in predictive accuracies of TTB and multiple

regression. Despite these results showing only marginal differences, they were in-

terpreted as a less-is-more effect because, for the first time, a more frugal algorithm

1While Gigerenzer and Goldstein (1996) applied an asymmetric way of training and testing mod-
els in the city size task, later papers by the fast-and-frugal heuristics program often trained regression
on the same binary dependent variable as the heuristics such as in Czerlinski et al. (1999)
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was able to match accuracy of a more complex algorithm (Gigerenzer & Goldstein,

1996).

Percentage of cue values known
Algorithm 10 20 50 75 100
Take The Best .621 .635 .663 .678 .691
Multiple Regression .625 .635 .657 .674 .694

Table 3.2: Results of the competition in the city size task: Average proportion of correct
inferences by cue knowledge levels, averaged across all levels of recognition
knowledge. Table is adapted from (Gigerenzer & Goldstein, 1996).
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Figure 3.1: City Size Task: Average proportion of correct inferences for the TTB heuristic
and multiple regression for cue level knowledge of 100%. Note that this rep-
resents an unfair model comparison because it is comparing TTB to the inap-
propriate regression which trains on population data, while TTB trains on the
binary outcome data (adopted from Gigerenzer and Goldstein (1996)). Stan-
dard errors were not reported in Gigerenzer and Goldstein (1996).

3.2.2 Summary

In sum, the heuristic and regression model were not trained on equal data in the

original city size demonstration. This means the model comparison in Gigerenzer

and Goldstein (1996) was not appropriate, as two models should not be compared
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on the grounds of training on different data, as well as different number of cues.

A true test of less-is-more is only impossible when no additional asymmetries are

added.

Hence, it is possible that less was more due to the fact that linear regression had

additional access to population sizes, resulting in higher overfitting. Regression

represents the more flexible model compared to TTB and suffers from higher vari-

ance than TTB (which has a larger bias), and its sensitivity to sampling variability

can hurt its performance (Section 2.4.2). It is possible that learning the idiosyn-

crasies of the population sizes in the city size task may have have not helped but

harmed regression’s performance at making binary predictions for city pairs. If this

was the case, one would expect that the less-is-more effect should disappear when

both models are trained on the same data. The next computational study will test

this hypothesis by comparing both TTB and multiple regression while training on

the same binary dependent variable.

3.3 Computational Study 1

This computational study re-models the original city size simulation, with the small

change that both the heuristic and multiple regression are trained on the same depen-

dent variable. The goal is to test whether a less-is-more effect (i.e., matching perfor-

mance of TTB and regression, Fig. 3.1) in the city size task disappears when multi-

ple regression learns weights from the same binary dependent as the TTB heuristic.

This comparison does not introduce any additional asymmetries, i.e., the number of

cues is kept constant between models and no additional factors are introduced such

as varying cue knowledge or recognition of the cities. Instead, 100% cue knowl-

edge is assumed for all models. While not introducing limited recognition or cue

knowledge means the comparison of our simulation and the original findings in Fig.

3.1 will not be perfectly possible, it is not the primary goal of this study to replicate

all statistical asymmetries of Gigerenzer and Goldstein (1996) — instead, the goal

is to test whether there is a less-is-more effect in the city size task when models are

compared appropriately and no other factors are introduced. TTB will be compared
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to both the linear regression model that trains on the same binary dependent variable

(referred to as appropriate regression), and the linear regression model which addi-

tionally trains on population size (referred to as inappropriate regression). Note that

linear regression is used here instead of logistic regression merely to be consistent

with the previous work (Czerlinski et al., 1999; Gigerenzer & Goldstein, 1996).

3.3.1 Methods

As in Gigerenzer and Goldstein (1996), all possible pairwise comparisons between

the 83 German cities were created, resulting in 3,403 possible comparisons. The

criterion variable encodes which of two cities has the higher population size (coded

as +1 when the first city is larger and -1 when the second city is larger, i.e., the order

coding is consistent and cities are randomly selected). As cue values, cue (trinary)

differences vectors resulting from the comparisons were used (coded as 1, -1 or 0

such as cue differences values in Fig. 2.3). All algorithms trained on the set of all

comparisons and also made predictions for the exhaustive set of city pairs. The sim-

ulation was repeated 100 times and the variation between simulation iterations lies

only in the way the comparisons are sampled, i.e., one can sample the comparison

between a first and a second city either as city1 - city2 or city2 - city1, where the

order results in different differences vectors. The order of sampling was randomly

determined for each comparison on each simulation run. During training, the TTB

heuristic learned weights by computing cue validities on the differences data and

binary criterion variable, and appropriate regression also learned weights from the

same differences data and binary criterion variable. In contrast, the inappropriate re-

gression, to replicate the method by Gigerenzer and Goldstein (1996) from above,

first learns weights by regressing the population size onto all 83 cities’ nine cues

(data in Appendix D), which are then used to make continuous population size pre-

dictions for each city of the exhaustive set of city comparisons. These continuous

predictions are then thresholded to binary predictions for the test comparisons.



3.3. Computational Study 1 67

Statistical Parameters in the Simulation
Number of objects 83
Number of pairwise comparisons N = 3403
Number of cues m = 9

Class variable
Binary, ±1 (Which city has the larger
population size?)

Absolute correlation between cues
(averaged over cue pairs)

mean = 0.19

Training sample size 100% of all pairwise comparisons

Test sample size
100% of all pairwise comparisons (equiv-
alent to training sample)

Number of repetitions 100

Table 3.3: Statistical parameters in the simulation on the city size task (Gigerenzer & Gold-
stein, 1996) as presented in Fig. 3.2.

3.3.2 Results

Fig. 3.2 shows that the appropriate linear regression models outperformed TTB,

suggesting there is no less-is-more effect in the city size task, when fitting perfor-

mance is assessed, and both models are trained equally. The performance of the ap-

propriate regression was significantly greater than TTB (t(99) = 55.84, p < 0.001),

and so was the performance of the inappropriate regression (t(99) = 29.38, p <

0.001). The performance of the inappropriate regression was no longer matched to

the performance of TTB (Fig. 3.1, however study results cannot be directly com-

pared as noted). Interestingly, the inappropriate regression which trains on different

data was able to outperform TTB in the current study, suggesting it does not overfit

so much that it looses in performance to the TTB heuristic in this dataset. However,

the best performance is still achieved by the appropriate regression which trains

on the same binary outcome variable as TTB. Appropriate regression outperformed

the inappropriate regression (t(99) = 24.06, p < 0.001) suggesting inappropriate

regression overfit more than the appropriate regression.
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Figure 3.2: City Size Task: Fair model comparison comparing TTB to the appropriate re-
gression model which trains on the same binary outcome data as TTB, as well
as the inappropriate regression model for comparison. The ordinate axis rep-
resents the average proportion of correct inferences made in the test set. Error
bars represent ± SEM across simulation runs.

3.3.3 Discussion

In sum, results show that less is not more in the city size task, when models are

trained equally. The success of TTB in the original city size task may stem from in-

appropriate regression overfitting due to training on different data (or due to access-

ing additional recognition knowledge). However, in contrast, this study performed a

clean model comparison between TTB and appropriate regression keeping the train-

ing method constant, and finds no less-is-more effect. Overall, the finding demon-

strates how volatile the relative less-is-more effect was in the hallmark dataset for

less-is-more effects.
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3.3.3.1 Extension

To further understand the effect of training on different data, the next computational

study will assess the size of the effect in the original 20 environments frequently

used to assess less-is-more effects (Czerlinski et al., 1999) (Fig. 2.5). The goal

is to investigate whether a less-is-more effect exists across the original 20 datasets

when inappropriate regression is used, and whether an initial less-is-more effect

can be reversed with appropriate regression. Thereby, the study will be able to shed

more light on why less was more when applying the approach by Gigerenzer and

Goldstein (1996). It will help understand whether the less-is-more effect was due

to the inappropriate regression model overfitting, in line with the frequentist bias-

variance idea. Furthermore, it is not clear how representative the findings in the city

size task were, as it could also be that the city size task represents a special case with

respect to the effect, which can only be assessed by looking at a more diverse set

of datasets. Another extension is that computational study 1 only looked at fitting

performance, as the models trained and tested on essentially the same data. Instead,

the next computational study will use cross-validation and compare the model’s

generalization performance.

3.4 Computational Study 2
Computational study 2 will assess the effect of training on different data (Gigerenzer

& Goldstein, 1996) in the original 20 real-world datasets (Czerlinski et al., 1999).

These popular real-world datasets range across various domains from psychology to

biology, health to environmental science. Tasks range from predicting house prices

to predicting mammals sleep time to predicting the attractiveness of famous men

and women (Czerlinski et al., 1999) (listed in Appendix B). The city size task is

among them.

3.4.1 Methods

The summary statistics of the 20 datasets are in Table 3.4 and a description of each

dataset is in Appendix B. The task is to make binary predictions for object compar-

isons as in the city size task, such as predicting ”Which house has the higher sales
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price?” or ”Which fish has the larger number of eggs?”. The dependent variable

in each of the datasets is continuous (e.g., the amount of eggs in fish as indicator

of fish fertility, or the house prices in dollars). As in the city size task, the cue

values are binary, after being binarized at their median from originally continuous

data by Czerlinski et al. (1999). The number of cues ranged from 3 (fish fertility)

to 18 (high school dropout). For each dataset, all possible pairwise comparisons

of the objects were created to generate the cue differences vectors and the binary

criterion variable encoding which of two objects is superior on a comparison (e.g.,

which of two fish has more eggs?). Both the TTB and the regression models were

cross-validated on each dataset by splitting the total set of pairwise comparisons

randomly into training and test sets. The size of the training set was 50% of all

comparisons, and the test set represented the complementary set of comparisons

always. The rationale for choosing 50% as training sample size was to reflect the

original cross-validation procedure by Czerlinski et al. (1999). For each training set

size, the cross-validation split into training and test set was repeated 1000 times and

performance was averaged across all.

As in Computational Study 1, the appropriate regression and TTB learn weights

from the cue differences vectors and the binary dependent variable. In contrast, the

inappropriate regression derives weights by regressing the continuous dependent

variable onto the binary cue values. To give an example, in the house dataset, the

selling prices of 22 houses are predicted based on current property taxes, number of

bathrooms, number of bedrooms, lot size, total living space etc.. The inappropriate

regression learns weights by regression the actual house prices onto all cues for

those objects (houses) that are part of the training set. That also means, while the

appropriate regression’s predictions are binary, the predictions of the inappropriate

regression are initially continuous and are thresholded into binary predictions for

the comparisons (i.e., Did house 1 or house 5 have a higher sales price?).
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Statistical parameters in the 20 datasets
Number of objects 11 to 395
Number of pairwise comparisons N = 55 to N = 77815
Number of cues m = 3 to m = 18

Class variable

Binary, ±1 (e.g., Which house
has the higher actual sales price?
Which professor has the higher salary?
Which child is more obese?
Which Arctic charr fish has
the larger number of eggs?
Which city has the larger population
size?)

Absolute correlation between cues
(averaged over cue pairs)

range = 0.12 to 0.63,
mean = 0.31,

median = 0.28, sd = 0.14
Training sample size 50% of all pairwise comparisons

Test sample size
N - training sample

(complementary set of comparisons)
Number of cross-validation repeti-
tions

1000

Table 3.4: Statistical parameters in the 20 datasets by Czerlinski et al. (1999) as presented
in Fig. 3.3. A full description of the 20 datasets is in Appendix B.

3.4.2 Results

Fig. 3.3 demonstrates the models’ generalization performance averaged across the

20 datasets (Czerlinski et al., 1999). As can be seen, TTB outperforms inappropri-

ate regression which trains on the population size data (t(19) = 1.96, p < 0.05).

However, a cross-over in performance can be observed when regression trains on

the same data as TTB, i.e., appropriate regression. The performance of the appropri-

ate regression was significantly greater than inappropriate regression, with a mean

change in performance of 5.5% (t(19) = 3.19, p < 0.01,(d = 1.46) indicating a

large effect size when averaged across all 20 datasets (Cohen, 1988)). Appropriate

regression also outperformed the TTB heuristic (t(19) = 2.54, p < 0.05). Table 3.5

displays results for each of the 20 datasets.
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Figure 3.3: Generalization performance across all 20 environments (Czerlinski et al.,
1999). Superiority of the TTB heuristic over linear regression disappears when
regression is trained appropriately, i.e., on the same data as the TTB heuristic.
Inappropriate Regression: Regression trains on different dependent variable
than TTB, i.e., the continuous criterion (Gigerenzer & Goldstein, 1996). Ap-
propriate Regression: Regression trains on the same binary dependent variable
as TTB. Training sample size was 50% of object comparisons in each dataset.
Error bars represent ± SEM.
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Environment N LR inapp LR app TTB ∆ (LR app - LR inapp) Cohen’s d (∆) SD inapp SD app
1 City Size 3403 75.12 75.35 73.98 0.23 0.29 0.74 0.84
2 Professors’ Salaries 1275 78.96 82.46 79.93 3.50 3.03 1.12 1.20
3 Body Fat 23653 46.14 61.47 58.79 15.33 46.41 0.32 0.34
4 Car Accidents 666 74.24 78.51 70.54 4.28 2.45 1.77 1.73
5 Cloud Rainfall 276 71.09 67.81 64.39 -3.28 -1.16 2.64 3.02
6 High School Dropouts 1596 68.52 73.22 64.37 4.70 3.97 1.17 1.20
7 Obesity 1035 62.94 73.45 74.12 10.51 7.40 1.42 1.42
8 Fuel Consumption 1128 51.07 79.61 76.94 28.54 20.89 1.46 1.27
9 Biodiversity 325 79.68 80.56 82.07 0.89 0.35 2.31 2.77

10 Homelessness 1225 58.59 65.03 63.85 6.44 4.54 1.40 1.44
11 House Prices 231 80.84 86.25 85.07 5.41 2.18 2.45 2.52
12 Land Rent 1653 79.85 81.06 79.56 1.21 1.19 1.00 1.03
13 Mammals’ Sleep 595 76.39 79.45 77.82 3.06 1.68 1.75 1.89
14 Mortality Rates 190 67.28 77.69 75.73 10.41 3.03 3.26 3.61
15 Oxidants in L.A. 136 67.61 81.95 68.39 14.33 3.72 3.99 3.72
16 Oxygen 91 81.40 74.21 77.33 -7.19 -1.65 4.07 4.61
17 Ozone in S.F. 55 72.76 76.78 79.07 4.02 0.63 5.92 6.83
18 Attractiveness Men 496 66.70 72.74 72.62 6.04 2.70 2.21 2.26
19 Attractiveness Women 435 68.33 69.74 70.19 1.41 0.59 2.24 2.53
20 Fish Fertility 77815 75.35 75.30 73.19 -0.05 -0.31 0.16 0.17

Table 3.5: Mean performance per dataset: LR inapp = inappropriate regression, LR app = appropriate regression. Mean performance (% correct)
of inappropriate, appropriate linear regression, and TTB. The difference in performance between inappropriate and appropriate regression
is shown with ∆, and Cohen’s d shows effect size of the change in performance. Training sample size is 50% of all pairwise comparisons
(Table 3.4).
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Individual datasets differed in the size of the effect of training on different data

(Table 3.5). As can be seen, the change in performance (i.e., the difference of ap-

propriate regression - inappropriate regression as indicated by ∆) was positive for

17 out of 20 datasets, and negative only for 3 datasets. These positive differences

ranged from 0.23% (city size) to 28.54% (fuel consumption). The respective effect

sizes were large for most datasets (Cohen, 1988) with Cohen’s d as large as 46.42

for the bodyfat dataset. It can also be seen that the city size had the smallest effect

size out of all datasets (Cohen’s d of 0.29). Interestingly, for many of the datasets,

the TTB heuristic performed better than the inappropriate regression but worse than

the appropriate regression, being located in between the two regression models. In

conclusion, the size of the effect of training on different data was large for most

datasets, and the city size task had the smallest effect out of all datasets. Results

demonstrate that the effect of training on different data is greater overall when as-

sessing generalization performance, i.e., out-of-sample performance, as opposed to

fitting performance as in the city size task above (Fig. 3.2). Many of the datasets

exhibited an initial relative less-is-more effect under the inappropriate regression,

which disappeared when regression trained on the same data as TTB.

3.4.3 Discussion

Fig. 3.3 shows that across all 20 datasets by Czerlinski et al. (1999), an initial rela-

tive less-is-more effect with the inappropriate regression could be eliminated when

regression trained on the same dependent variable as TTB. These findings suggest

that the cause of TTB’s success was the inappropriate regression overfitting. Hence,

despite having access to more information (i.e., the continuous measures in each

dataset), this in fact hurt the more complex model (i.e., due to fitting additional

noise) in comparison to the simpler TTB heuristic which deliberately ignores infor-

mation (e.g., cue weights). The current results lend further support to the hypothesis

that in the initial city size task, the TTB had an unfair advantage over the regression

model due to the way the model comparison was set up (Gigerenzer & Goldstein,

1996). Yet, while the bias-variance concept is useful for understanding less-is-more

due to overfitting, it does not address whether less was more in an absolute sense
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in this study, i.e., could TTB have been improved upon when less was more in Fig.

3.3 (see Discussion)?

Next, I will show that in the same 20 datasets, using a smaller training sample

often gives rise to less-is-more effects. As introduced in Chapter 2, the size of the

training sample can have a big influence on less-is-more effects (Chater et al., 2003;

Katsikopoulos et al., 2010).

3.5 Computational Study 3
The goal of this computational study is to demonstrate how the relative performance

of TTB and regression changes as a function of training sample size.

3.5.1 Methods

The datasets and simulation methods were the same as in Computational Study 2.

However, this time we only considered a linear regression model training on the

same binary outcome data as TTB, consistent with Czerlinski et al. (1999). Af-

ter creating all possible comparisons, the datasets were randomly split into training

and test samples 1000 times. Concretely, the size of the training sample was varied

between small training samples, i.e., 10 and 20 pairwise comparisons, and larger

training samples, i.e., 50% of all pairwise comparisons. 50% of all pairwise com-

parisons corresponds to M = 2907 (SD = 8857) comparisons on average across

datasets. The test set represented the complementary set of comparisons always.

All parameters are also listed in Table 3.6. Hence, the models are compared on

their ability to generalize predictions to out-of-sample comparisons they have not

seen before. In line with previous research, the hypothesis was that TTB would be

more likely to outperform regression with small training sample sizes. However,

we expected that the with larger training sample size, the effect could be reversed.
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Statistical Parameters in the Simulation
Number of objects 11 to 395
Number of pairwise comparisons N = 55 to N = 77815
Number of cues m = 3 to m = 18
Class variable (e.g., which house
had the higher actual sales price?)

Binary, ±1

Absolute correlation between cues
(averaged over cue pairs)

range = 0.12 to 0.63, mean = 0.31, median
= 0.28, sd = 0.14

Training sample size 10, 20 & 50% of all pairwise comparisons
Test sample size N−10, N−20, N−50%
Number of cross-validation repeti-
tions

1000

Table 3.6: Statistical parameters in simulation as presented in Fig. 3.4. A full description
of the 20 datasets is in Appendix B.

3.5.2 Results

Fig. 3.4 shows results for each of the 20 datasets as a function of training sam-

ple size. It can be seen that for 18 of the 20 datasets, when training samples were

small (10 or 20 training cases), the TTB heuristic outperformed multiple regres-

sion (t(19) = 4.28, p < 0.001 for 10 and t(19) = 3.84, p = 0.001 for 20 training

cases). However, a reversal of performances could be observed when training sam-

ple size was enlarged (50% of the training comparisons) for 15 out of the 20 datasets

(t(19) = 2.74, p < 0.05). For example, in the House Prices, Mortality, Professor

Salaries, Car Accidents, or High School Dropouts datasets, with 10 and 20 training

cases, the TTB heuristic was superior to regression.
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House Prices Mortality Rates City Size Professors' Salaries

Body Fat Car Accidents Cloud Rainfall High School Dropouts

Obesity Fuel Consumption Biodiversity Homelessness

Land Rent Mammals' Sleep Oxidants in L.A. Attractiveness Men

Attractiveness Women Fish Fertility Oxygen Ozone in S.F.
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Figure 3.4: Generalization performance of the TTB heuristic and linear regression by train-
ing sample size in the 20 heuristic datasets (Czerlinski et al., 1999). The
ordinate represents predictive accuracy in predicting test comparisons. With
smaller training sample size, i.e., 10 or 20 training cases, the TTB heuristic
performed better than the linear regression model in 18 out of the 20 datasets.
However, this performance effect was typically reversed when training sample
size is large, i.e., 50% of all object comparisons. The average performance of
the regression model at 50% training reflects the performance of the appropri-
ate regression model in Fig. 3.3. Error bars represent± SEM across simulation
runs.

3.5.3 Results: As a function of all training sizes

Next, I will demonstrate performance of linear regression and TTB in the 20 datasets

(Czerlinski et al., 1999) as a function of a larger range of training sample sizes,

ranging from 10% to 100% of all pairwise comparisons (Fig. 3.5). The simulation

methods used here are otherwise unchanged from above. As can be seen on the

far left of the abscissa (Fig. 3.5), data points for the small training sample sizes of



3.5. Computational Study 3 78

10 and 20 training comparisons are also included from above (Fig. 3.4). Fig. 3.5

demonstrates the full extent of the superiority of the more complex linear regression

model over the simple heuristic: For the vast range of training sample sizes, the

predictive accuracy of linear regression (training on binary outcome) exceeds that

of TTB. In comparison, only for the small training samples of 10 and 20 training

cases, the TTB heuristic outperforms regression, displaying a less-is-more effect.
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Figure 3.5: Generalization performance of the TTB heuristic and linear regression as a
function of training sample sizes across all 20 datasets (Czerlinski et al., 1999).
The ordinate represents the predictive accuracy at test during cross-validation.
Training sample sizes were varied between 10% to 100% of all pairwise object
comparisons, as well as 10 and 20 training comparisons (far left). The two far
left data points for 10 and 20 training comparisons map onto results in Fig.
3.4 above. Linear Regression outperformed TTB for almost all training sample
sizes. Only with very small training sizes (10 or 20 training comparisons), TTB
had a performance advantage. Error bars represent ± SEM.

3.5.4 Discussion

Results in this study showed that less-is-more effects often occur with small train-

ing samples and can often be made disappear when the amount of data is increased,

leading to a reversal of performances. This finding is in line with previous re-
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search insights that simpler algorithms can sometimes be more robust at generaliz-

ing to new data than more flexible algorithms (e.g., regression models), when data

is sparse (Brighton, 2006; Chater et al., 2003; Katsikopoulos et al., 2010) (as dis-

cussed in Section 2.4.2). According to bias-variance, this makes sense: As bias

and variance trade off with one another, more flexible models (i.e., less biased and

high variance) overfit small training samples and can be beat by simpler (i.e., more

biased) models that overfit less, such as heuristics. Yet, as the size of the training

sample increases the complex model fares better again usually (Chater et al., 2003).

Bias-variance is a useful concept to understand results in terms of overfitting again,

yet again, we do not know whether less was more in an absolute sense, i.e., if there

could have been a third model that outperforms both regression and TTB (more in

Discussion).

An obvious question arising at this point is, how did the fast-and-frugal heuristics

program rely on these 20 datasets to demonstrate less-is-more effects, if Fig. 3.5

barely displays any less-is-more effects? How did Czerlinski et al. (1999) analyse

the data in Fig. 2.5 where TTB was supposedly able to outperform the appropriate

linear regression with 50% training sample size? In short, it needs to be investigated

where the discrepancy to our work (Fig. 3.5) stems from. At a closer inspection of

the original methods in Czerlinski et al. (1999), it becomes clear that the difference

lies in how the training cases were sampled. While the ABC research group sam-

pled objects rather than comparisons among objects, the computational studies in

this Chapter sampled comparisons between objects. The final study of this chap-

ter will explain and demonstrate the impact of the sampling method on the relative

performance of models.

3.6 Less is not always more (2): Sampling objects

versus sampling comparisons
In all computational studies so far, training samples were defined by sampling a

subset of all possible comparisons (i.e., object pairs) in a dataset. However, in some

other past work including that of Czerlinski et al. (1999) training samples were de-
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fined by sampling a subset of the objects first and then training on all pairs within

the sampled subset. Both methods can be equally found in the literature and utilized

by the fast-and-frugal heuristics program, e.g., sampling objects (Brighton, 2006;

Czerlinski et al., 1999) and sampling comparisons (Chater et al., 2003; Rieskamp

& Dieckmann, 2012). A systematic study of the impact of the sampling methods

on relative model performance has not been done before. To determine whether the

classic less-is-more finding would be dependent on this sampling decision, I sys-

tematically compared both sampling methods in the original 20 datasets (Czerlinski

et al., 1999).

3.7 Computational Study 4
This study compares simulations on the original 20 datasets by (Czerlinski et al.,

1999) with both sampling methods for a training sample size of 50% of all compar-

isons or objects, respectively. When cross-validation is performed such that objects

are sampled for both the training and testing sample, this means that that predictive

accuracy refers to comparisons between novel, unseen objects. In contrast, when

comparisons are sampled, some comparisons in the testing sample will contain ob-

jects that have already been encountered in the training sample. For running the

simulation with sampling by objects, the method used in (Czerlinski et al., 1999)

was applied: For each of the 20 datasets, objects were split in half, assigning 50%

of objects to the training sample and 50% of objects to the test sample. Then all

possible comparisons between objects were created for both the training and the

test sample. Except for the sampling methods, all other factors were kept constant

between simulations.

3.7.1 Results

Fig 3.6 shows both sampling methods side-by-side. As expected, the overall gen-

eralization of models was lower with sampling by objects. The pattern of re-

sults also suggests a reversal of performances with different sampling methods:

While sampling by comparisons results in linear regression outperforming TTB

(t(19) = 2.54, p < 0.05) by 2%, sampling by objects results in TTB outperforming



3.8. Discussion 81

regression (t(19) = 2.14, p < 0.05) with a mean difference of 1.8%. This suggests

that sampling by objects gave the heuristic a small advantage over ordinary linear

regression.
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Figure 3.6: Generalization performance of TTB and Linear Regression by cross-validation
sampling methods, i.e., sampling by objects and sampling by comparisons,
across all 20 datasets by (Czerlinski et al., 1999). Training sample size was
50% of the training cases. Sampling by objects gives the TTB heuristic a small
advantage, while sampling by comparisons gives regression a small advantage.
Error bars represent ± SEM per dataset.

In conclusion, the cross-validation sampling method impacts the existence of a less-

is-more effect (Fig. 3.5), such that changing the sampling method could make the

less-is-more effect disappear in the original 20 datasets (Czerlinski et al., 1999).

3.8 Discussion
This Chapter explored several existing demonstrations of less-is-more effects and

showed that they are reversible by varying factors in the procedure for training and

testing the models. These factors included training algorithms on the same depen-
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dent measure, varying training sample size, and whether models were trained on

samples of comparisons, or on sub-samples of the objects themselves.

The fact that less-is-more effects were so easily reversible strengthens the need to

understand why less was more and why it could be reversed. Next I will evaluate

what aspects of less-is-more in the computational studies could be accounted for

by the frequentist bias-variance concept. Linking back to the findings in compu-

tational study 2, where a reversal of less-is-more could be observed with training

both TTB and regression on the same dependent measure, the bias-variance concept

can account for the fact that the inappropriate regression overfit due to relying on

continuous dependent data which hurts at generalization. However, can it tell us

anything about whether an absolute less-is-more effect applied in Fig. 3.3? Next,

in computational study 3 a reversal of less-is-more was observed with an increase

from small to large training sample size. Why was less more under small training

sample size (Fig. 3.4)? The bias-variance concept would suggest that less was more

because heuristics are relatively more robust when there are fewer observations:

With very little data, the more complex algorithms are more likely to overfit than

the simpler model. Simpler heuristics bet on lower overfitting (large bias, low vari-

ance) which becomes particularly advantageous compared to complex models when

data is sparse. But does this tell us whether TTB outperformed due to the heuristic

dropping information such as cues, cue weights and cue covariance (simplicity),

or because of its large inductive bias compared to regression? Note that these two

factors are confounded in the frequentist bias-variance explanation. Only a model

that allows for a continuum of different degrees of bias, and controls both simplicity

and bias, can answer this question. In a Bayesian framework, it becomes possible to

control for bias and simplicity with a Bayesian prior, as will be presented in the fol-

lowing Chapters. Secondly, another aspect that is not clear from looking at Fig. 3.4,

is whether there could not be another, third model that performs better than either

TTB and multiple regression. That is, was there really a point where more informa-

tion was detrimental and less information (as used by heuristics) resulted in higher
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accuracy, suggesting TTB was the optimal model? It is not clear whether the sim-

pler model could not have been improved upon by including more information (e.g.,

cues, weights, covariance) with a different strategy. This can only be answered with

a formal continuum among models, which will be given in the following Bayesian

Chapters. In sum, while the bias-variance gives a powerful statistical interpretation

of the relative reversal of less-is-more with an increase in training data, it does not

account for a possible absolute less-is-more effect (Box 2.4.2).

With respect to computational study 4’s findings, the question that follows is why

was less more with sampling by objects, but not with sampling comparisons? An

obvious explanation is that when sampling subsets of objects, models have to gen-

eralize to subsets of comparisons among novel objects only. This means multiple

regression overfits with less experienced data. When sampling comparisons, the

more complex model has an advantage relatively, as the amount of experienced

data increases. Specifically, this bias-variance explanation is based on the same ex-

planation for why less can be more with small training sample sizes. For now I

point out that the less-is-more effect that is induced by sampling objects can also be

reproduced by selecting fewer training comparisons to train on in the sampling-by-

comparisons approach. Hence, the choice of training method does not matter that

much, as long as the differences are clearly pointed out and tested. We could find no

compelling reason to prefer either method for the studies here, as both are equally

present in the literature. However, there may be a small psychological argument for

modelling cognitive strategies with sampling-by-comparison (Pachur and Olsson

(2012) showed that humans learn better by comparison than direct object learning,

and are able to better generalize to new un-encountered objects as well as providing

more accurate continuous estimates after learning from comparisons). In the Chap-

ters to follow, we will compare both methods and acknowledge the differences, such

as the fact that heuristics seem to benefit slightly from sampling by objects, while

full-information models benefit slightly from sampling by comparisons.

In conclusion, bias-variance is insufficient as an explanation for less-is-more as it

cannot fully account for why relative less-is-more (Box 2.4.1) was true in many of
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these instance, except for the trivial fact that the heuristics bet on lower overfitting,

and it cannot provide insight into the second definition of less-is-more (absolute

less-is-more, Box 2.4.2). Importantly, bias-variance does not provide a formal com-

putational model which is able to make testable predictions about when and why

heuristics or full-information algorithms perform best. Note that in contrast, in a

Bayesian framework, if the model is correctly specified, less-is-more is not volatile

anymore, as the optimal model is expected to necessarily be the same regardless

of training sample size, because the optimal model optimally weighs prior against

likelihood. Furthermore, to fully understand why relative less-is-more can occur,

we argue that one needs to understand the formal link between full-information

models and heuristics, and the continuum of decision strategies between them.

The frequentist bias-variance explanation fails to provide such a formal continuum.

These short-comings of existing less-is-more explanations will be addressed in the

Bayesian framework for heuristics developed in the next Chapters 4 and 5.

3.9 Summary

In this chapter, I identified three important factors that can induce and reverse less-

is-more effects, i.e., training algorithms on the same data, training sample size, and

the sampling method in cross-validation. I found that in the original city size task,

the regression model was not trained on the same dependent variable as the heuris-

tic, and when both models were trained on the same outcome data, the less-is-more

effect disappeared. The full size of this effect was then observed in modelling all

original datasets used to evaluate heuristics (Czerlinski et al., 1999). Next, this

chapter demonstrated the impact of training sample size on less-is-more effects in

computational study 3. I showed that an initial less-is-more effects under small

training sample sizes could often be reversed with larger training sample sizes in

the original 20 datasets (Czerlinski et al., 1999). Finally, this chapter found that

the sampling method for training models can reverse less-is-more effects. This

insight could explain the contrast between findings in the computational studies

here and past results established by the fast-and-frugal heuristics researchers. All
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less-is-more findings were evaluated with respect of the explanatory power of bias-

variance, concluding that bias-variance only has limited explanatory power and in-

sight into why less was more.
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Chapter 4

Heuristics as Bayesian Inference -

The half-ridge model

Golden Middle.

Aurea mediocritas.

- HORAZ, 65 BC - 8 BC

The golden middle.

- GERMAN IDIOM suggesting an ”ideal middle way between two extremes”

4.1 A Bayesian explanation for why less is more
Less is more, because a simpler model can outperform a more complex model. This

is the definition of the relative less-is-more effect. On various occasions less-is-

more is observed for comparing simple and complex models (e.g., Take-The-Best

and regression). For example, the ABC research group is famous for their less-

is-more presentations, showing that a TTB and a tallying heuristic could beat the

more complex multiple regression at generalization performance (Fig. 2.5). Or

else, Chater et al. (2003) and Katsikopoulos et al. (2010) established that heuristics

perform well under small training samples sizes compared to complex machine

learning models such as neural networks, decision trees, nearest neighbour or naive

Bayes classifiers. In addition, our simulation in Chapter 3 demonstrated that TTB

was able to outperform regression in nearly all of the original 20 datasets when

training samples were small (Fig. 3.4). All of this evidence seems to culminate
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in the fact that less can be more. However, importantly these studies all target the

relative less-is-more definition (Gigerenzer & Brighton, 2009), which states that

simple heuristics can lead to more accurate inferences than strategies that use more

information (Box 2.4.1), e.g., such as exemplified in a definition by Gigerenzer

and Brighton (2009) as: Less-is-more effects: More information or computation

can decrease accuracy; therefore, minds rely on simple heuristics in order to be

more accurate than strategies that use more information and time. (Gigerenzer &

Brighton, 2009, p. 110).

In response to these statements, other scientists such as Chater et al. (2003) made

the point that the effect could actually be reversed by increasing training sample

size. However, importantly, this reversal does not really disprove a relative less-is-

more effect in any way by showing that under other circumstances heuristics are

no longer superior to the complex model. That is because the relative less-is-more

effect merely states that heuristics can lead to higher accuracy, meaning the rel-

ative less-is-more definition allows for the effect to go both ways (and therefore

also difficult to falsify). This is quite different from an absolute less-is-more effect

where such a reversal would not be possible. That is, crucially, none of the studies

discussed in the thesis so far were able to address whether less is more in the sense

that one could not improve upon the heuristic theoretically by incorporating more

information. The absolute less-is-more effect states that there is a point where more

information becomes detrimental and less information (as used by heuristics) leads

to higher accuracy (Box 2.4.2) (Gigerenzer & Brighton, 2009). The fast-and-frugal

heuristics program advocated absolute less-is-more, as evident in various places

such as the following quote: Note that the term less-is-more does not mean that the

less information one uses, the better the performance. Rather, it refers to the exis-

tence of a point at which more information or computation becomes detrimental,

independent of costs. (Gigerenzer & Brighton, 2009, p. 111).

This Chapter will investigate whether absolute less-is-more holds. Interestingly,

we find that less is not more in the sense that one could always perform equally
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well or better than a heuristic by incorporating more information sources, however

appropriately down-weighted. This is established in a Bayesian framework. Two

separate Bayesian frameworks are developed in the thesis, a Bayesian inference

model for the tallying heuristic (this Chapter), and a Bayesian model for both the

TTB and the tallying heuristic (next Chapter 5).

Thereby, the thesis will contribute the novel idea that heuristics embody strong

Bayesian priors. In the Bayesian frameworks, a formal continuum between sim-

ple heuristics and full-information models is created based on a single Bayesian

prior. Crucially, heuristics represent an extreme case on the Bayesian continuum of

decision strategies, corresponding to entirely ignoring information rather than in-

cluding all available information (and down-weighting) such as strategies along the

continuum do. In the Bayesian model for tallying, the parametric variation of the

prior’s strength generates a continuum of model flexibility, with a variant of linear

regression at one extreme (most flexible and least biased) and the tallying heuristic

(least flexible and most biased) at the other extreme. Although the Bayesian model

can mimic tallying in the limit perfectly, a crucial difference is that the Bayesian

account always regulates weights, but never discards any information. This con-

tinuum of models allows for a comparative analysis: I discover that intermediate

models, which do not throw out information, perform best across all simulations.

Indeed, this suggests that down-weighting but using all of the information is prefer-

able to entirely ignoring it. These results refute the absolute version of less-is-more

claims whereby entirely discarding some information sources (as heuristics do) can

be optimal.

Resulting from this Bayesian framework is a novel explanation for less-is-more: An

explanation for the success of heuristics is that their relative simplicity and inflexi-

bility amounts to a strong inductive bias, which is close to the optimal prior for many

learning and decision problems. That is, we find evidence across both Bayesian

models that heuristics work not because they throw out information, but because

they embody a prior that approximates the optimal prior. The heuristics approxi-

mate the intermediate models which are actually optimal and rely on the full infor-
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mation but down-weight the information via the influence of their priors. Thereby,

this work extends the frequentist bias-variance idea (Gigerenzer & Brighton, 2009)

into a Bayesian explanation for why less is more. The Bayesian explanation moves

beyond the bias-variance by providing a formal link between heuristics and full-

information models. As a consequence, the Bayesian explanation can address both

the relative and the absolute less-is-more phenomena, which was previously impos-

sible in the frequentist bias-variance interpretation. Furthermore, the continuum of

decision strategies allows the Bayesian framework to control for simplicity and bias

in heuristics, as previously it was not clear in the frequentist bias-variance expla-

nation whether heuristics succeed due their large bias or simplicity (ignorance of

information). In the Bayesian account, it becomes possible to disentangle the two

factors as potential explanations. Another advance of the Bayesian model derives

from the fact that the optimal model should not be as volatile as it was in the fre-

quentist case. While Chapter 3 demonstrated that the optimal model could be easily

reversed in relative less-is-more effects, in the Bayesian framework the optimum

model is expected to be in the same place as to the extent that the model is correctly

specified.

Notice that the above less-is-more definitions have not addressed psychological pro-

cessing. The computational Bayesian frameworks’ core contribution is formal and

not psychological, however they have strong implications for directing research into

human cognition and decision making. Both the Bayesian model in this Chapter and

the next investigate the relative and the absolute less-is-more effects, but are not able

to address either a descriptive or capacity-based psychological less-is-more effect

(Box 2.4.3). However, implications of the formal framework for psychology will

be discussed at the end of each Chapter. In contrast, Chapter 6 will directly explore

people’s use of decision strategies with the goal of better understanding people’s

representations.

This Chapter is structured as follows: First, I will briefly review how the tallying

heuristic works. Next I will demonstrate how the tallying heuristic can be mathe-

matically derived as an extreme Bayesian prior in what we call the Bayesian half-
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ridge model, which is conceptually related to ridge regression, a regularized re-

gression method from machine learning. The generalization performance of the

Bayesian half-ridge model will be assessed in a simulation study on the original 20

real-world environments used to evaluate heuristics (Czerlinski et al., 1999). Fi-

nally, Chapter 4 will attempt to derive the TTB heuristic as an extreme case of lasso

regression, a different kind of regularized regression from machine learning. The

theoretical and psychological implications of this work will be discussed. The half-

ridge model and the derivations in this Chapter were developed in collaboration

with Matt Jones (University of Colorado, Boulder) and Brad Love (UCL).

4.2 Linking tallying and regression through Bayesian

inference
The tallying heuristic ignores information in the input data by dropping cue weight

magnitudes. Thus, in contrast to the frugal TTB heuristic, it includes all available

cues but weighs them equally. For example, in Fig. 4.1, tallying would simply

add up the positive and negative cues values for each alternative, weighted by their

respective cue directionality. In the example, all cue directionalities are positive

(column ”tallying weights”) and hence team England would be predicted to be the

winner in this football prediction task (A full definition of the tallying heuristic is

in Box 2.3.3).

This Chapter will contribute the idea that the tallying heuristic represents a strong

Bayesian prior. In this approach, the heuristic succeeds because of its relative in-

flexibility which is equivalent to a strong inductive bias, suitable for various deci-

sion problems. This approach will be formalized by proposing a Bayesian model

wherein the tallying heuristic is an extreme case along a continuum of model flexi-

bility defined by the strength of the prior. The Bayesian inference model for tallying

generates a continuum of models, with a variant of linear regression at one extreme

(most flexible and least biased) and the tallying heuristic (least flexible and most

biased) at the other extreme.
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(1) +1   .90 +1

(2) 0   .81 +1

(3) -1   .73 +1

(4) -1   .54 +1

 League pos.

Home vs. away

No. of goals

Last game result

v
cue 
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Figure 4.1: Binary prediction task. Predicting whether Team Germany or England will win
is based on four cues: league position, last game result, home vs. away match,
and recent goal scoring. Smiley and frowning faces indicate which team is
superior on each cue, whereas a grey face indicates the two teams are equal
on that cue. A cue is coded +1 when it favors the team on the left (Germany),
-1 when it favors the team on the right (England), and 0 when the teams are
equal along that cue. Heuristic cue validities (v) reflect the relative frequency
with which each cue makes correct inferences across many team comparisons
(Equation 2.1). Tallying ignores the cue-outcome magnitudes and instead relies
on cue directionalities only, as indicated in the tallying weights column.

4.3 Tallying as a limiting case of ridge regression

The Bayesian model we develop for tallying is conceptually related to ridge re-

gression (Hoerl & Kennard, 1970), a successful regularized regression approach in

machine learning. Ridge regression extends ordinary linear regression by incor-

porating a penalty term that adjusts model flexibility to improve weight estimates

and avoid overfitting (Fig. 2.7). The types of tasks we model in this chapter are

binary comparisons of the type in Fig. 4.1, where each input represents compar-

isons between two alternatives on a set of cues, and the output represents which

alternative has the greater value on some outcome variable. Consider a training set

of input-output pairs (x1,y1) , ...,(xn,yn) with xi ∈ Rm and yi ∈ R. An example is

Fig. 4.1, where the explanatory variables (x) encode which soccer team is superior

on each cue, and the outcome variable (y) indicates which team won each compar-

ison (match). The aim in any linear regression problem is to estimate the weights,
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i.e., a vector of regression coefficients w = [w1, ...,wm]
T , such that prediction error

between y and Xw is minimized. The weights estimated by ridge regression are

defined by

ŵridge = argmin
w

 ‖y−Xw‖2︸ ︷︷ ︸
Goodness-of-Fit

+ θ‖w‖2︸ ︷︷ ︸
Penalty Term

 , (4.1)

where the penalty parameter θ is nonnegative. ‖.‖2 denotes the square of the Eu-

clidean norm, y = [y1, ...,yn]
T ∈Rn is the outcome variable defined over all n binary

comparisons in the training sample, and X is an n×m matrix with one column for

each of the m predictor variables x j. When the penalty parameter equals zero, ridge

regression is concerned only with goodness of fit (i.e., minimizing squared error on

the training set). For this special case, ridge regression is equivalent to ordinary lin-

ear regression, which is highly sensitive to sampling variability in the training set.

As the penalty parameter increases, the pressure to shrink the weights increases,

reducing them to zero as θ → ∞. Thus larger values of θ lead to stronger inductive

bias, which can reduce overfitting by reducing sensitivity to noise in the training

sample. However, the optimal setting of θ will always depend on the environment

from which the weights, cues, and outcomes were sampled.

Importantly, the ridge penalty term is mathematically equivalent to a Gaussian

Bayesian prior on the weights, where θ is inversely proportional to the prior vari-

ance η2 of each wi, that is, θ = σ2/η2 (where σ2 is the error variance in y, also

assumed to be Gaussian). In the Bayesian interpretation, the strength of the prior

is thus reflected by 1/η2, growing stronger as η2 → 0. This prior distribution is

combined with current observations (i.e., the training sample) to form a posterior

distribution (also Gaussian) over the weights. Like ordinary linear regression, ridge

regression provides a point estimate for the weights, equal to the mean (and also the

mode) of the full Bayesian posterior distribution (Marquaridt, 1970; Ripley, 2007).

The conceptual relationships among ridge regression, ordinary linear regression,

and the Bayesian model are illustrated on the left-hand side of Fig. 4.2.
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Full Bayesian with Gaussian prior

Ridge Regression

Ordinary Linear Regression

Half-ridge Model

Directed Tallying

Ridge Regression

Directed TallyingOrdinary Linear Regression

Mode/mean of full posterior Predetermined cue directionalities 
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strength to 0

Figure 4.2: Formal relationships among full Bayesian regression, ridge regression, ordi-
nary least-squares linear regression, the Bayesian half-ridge model, and the
directed tallying heuristic. The lower-right arrow represents the main contribu-
tion of this Chapter: The directed tallying heuristic (explained below) is a lim-
iting case of Bayesian inference (here, the half-ridge model) with an infinitely
strong prior.

4.3.1 Half-ridge model and tallying

Our Bayesian derivation of the tallying heuristic extends ridge regression by assum-

ing the directionalities of the cues (i.e., the signs of the true weights) are known in

advance. For example, being higher in the league standings will, if anything, make

a team more likely (not less) to win a given match. This assumption is concordant

with how the tallying heuristic was originally proposed in the literature (Dawes,

1979) (Box 2.3.3). We refer to this definition of the tallying heuristic as directed

tallying in order to differentiate it from the version of the tallying heuristic that

learns cue directionalities from the training data (Czerlinski et al., 1999). Thus, we

define the prior for each weight as half-Gaussian, truncated at zero (right-hand side

in Fig. 4.2), and we refer to this Bayesian model as the half-ridge model. Formally,

the joint prior is defined by

w∼N (0,ΣΣΣ)|w∈O

ΣΣΣ = η
2I,

(4.2)
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where ΣΣΣ is the covariance matrix among the weights (prior to truncation)

and η2 determines the variance for each weight. The restriction nota-

tion, |w ∈ O , indicates we truncate the distribution to one orthant O ⊂

Rm, defined by the predetermined directionalities of the cues, and renor-

malize. For example, if the cues were assumed all to have positive (or

null) effects on the outcome, then O would equal [w ∈ Rm|∀i,wi ≥ 0].

Linear regression with an untruncated Gaussian prior (L2 regularization) yields

a Gaussian posterior for the weights, having mean

(
XT X+σ

2
ΣΣΣ
−1)−1 XT y (4.3)

and variance

σ
2 (XT X+σ

2
ΣΣΣ
−1)−1

. (4.4)

The posterior for the half-ridge model inherits the same truncation from the prior

above (Eq. 4.2) and is otherwise unchanged except for renormalization:

w|X,y∼N
((

XT X+σ
2
ΣΣΣ
−1)−1 XT y,

σ
2 (XT X+σ

2
ΣΣΣ
−1)−1

)
|w∈O

.
(4.5)

The important question is what happens to this posterior as the prior becomes ar-

bitrarily strong, that is, as η → 0. To understand how the posterior behaves as the

prior becomes arbitrarily strong, we can rescale the weights by 1/η and substitute

Eq. 4.5 to rewrite the posterior as

w
η

∣∣∣∣X,y∼N
(

η
(
η

2XT X+σ
2I
)−1 XT y,(

η2

σ2 XT X+ I
)−1)

|w∈O
.

(4.6)

Rescaling the weights has no impact in a binary comparison task, so we can work

with the distribution of w/η in place of that of w. The convenience of this rescaling
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is that the resulting distribution obeys a simple convergence:

w
η

d→N (0, I)|w∈O as η → 0 (4.7)

conditional on X and y (where d→ indicates convergence in distribution). Conse-

quently, the rescaled weights all converge to the same value in the limit, namely

lim
η→0

E
[

wi

η

∣∣∣∣X,y
]
=±

√
2
π
, (4.8)

with signs determined by each cue’s assumed directionality. In particular, for any

two weights j and k, their ratio converges to unity:

lim
η→0

E
[
w j|X,y

]
E [wk|X,y]

= 1. (4.9)

Hence, just as with increasing the penalty parameter in regular ridge regression,

strengthening the prior in the half-ridge model shrinks the weights toward zero

(Equation 4.7). However, the ratios of the weights — that is, the relative inferred

strengths of the cuesall converge to unity (Equation 4.9). Therefore, the optimal

decision-making strategy under the Bayesian half-ridge model converges to a sim-

ple summation of the predictors – that is, a tallying strategy. To understand this

result intuitively, refer to Eq. 4.3 and Eq. 4.4 and note that the posterior mean and

posterior variance both scale with the priors covariance matrix ΣΣΣ as ΣΣΣ approaches

0 (i.e., as the precision of the prior approaches ∞). Thus, the mean of each weight

goes to 0 faster than its standard deviation, or in other words the coefficient of vari-

ation goes to 0. That fact is not consequential when the directions of the cues are

unknown, but it is significant when the cue directions are known. In the latter case,

the signs of w become the most important information the learner has.

Note that, under this limit, the model becomes completely invariant to the training

data. In particular, it ignores how strongly each cue is associated with the out-

come in the training set (i.e., magnitudes of cue validities) as weights reduce to zero

(Equation 4.7). At the other extreme, as the prior becomes extremely weak, i.e.,
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η→∞ and 1/η2→ 0, the Bayesian half-ridge model converges to a full regression

model akin to ordinary linear regression in that it differentially weighs cues, e.g.,

more predictive cues receive higher weights than less predictive cues, however, this

will be less and less the case as the prior’s strength approximates the directed tal-

lying heuristic. In conclusion, the half-ridge model demonstrates how the directed

tallying heuristic can be derived as an extreme case of a Bayesian prior, due to

assumptions about the distributions of the weights in the environment.

4.4 Computational Study 5: Heuristics vs. Interme-

diate Models

From a Bayesian perspective, the model that fares best on a given decision task

should be the one with a prior most closely matching the data’s generative pro-

cess. In many decision environments, cues differ in their predictiveness, but these

differences are not arbitrarily large (i.e., the cue weights are not drawn uniformly

from all real numbers). An advantage of the Bayesian half-ridge framework is that

it specifies a continuum of models between the extremes of linear regression and

the directed tallying heuristic. Thus, we expect that for many environments, the

best-performing model should lie somewhere between these two extremes. We also

expect that the best-performing model should not change with different training set

sizes (cf. Fig. 3.4), because - unlike the frequentist phenomenon of bias-variance

tradeoff - in a Bayesian setting, the optimal model is guaranteed to find the opti-

mal tradeoff between prior and likelihood, for any sample size. We simulated the

Bayesian half-ridge model on the original 20 datasets that have been used to com-

pare heuristic and regression approaches (Czerlinski et al., 1999).

4.4.1 Methods

The goal of this simulation was to assess the generalization performance of the

Bayesian half-ridge model as a function of its prior’s strength, and as a function of

training sample size. A full list of the 20 datasets is in Appendix B, and the key

parameters in the simulation are listed in Table 4.1 below. For each dataset, we
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created all possible pairwise comparisons of the objects to generate the cue differ-

ences vectors and the binary criterion variable, encoding which of two objects is

superior on a comparison (e.g., which of two houses has a higher sales price?). The

Bayesian half-ridge model was cross-validated on each dataset by splitting the total

set of pairwise comparisons randomly into training and test sets. The size of the

training sample was varied between 10, 20 comparisons (small) and 115 compar-

isons (large), and the test set represented the complementary set of comparisons. As

two of the datasets, Oxygen and Ozone, only have 91 and 55 object pairs in total

respectively, the large training sample size of 115 was excluded for those datasets.

For each training sample size, the cross-validation split into training and test set

was repeated 1000 times and performance was averaged across all. Model weights

were derived by fitting the posterior distribution in Eq. 4.5 to the training sample.

The posterior samples were drawn from a truncated multivariate Normal distribu-

tion, and the truncation in Eq. 4.5 (the choice of orthant O) depended on the actual

cue directions in the full dataset, following the assumption that the cue directions

are known in advance. We derived mean posterior weights under different values

of the Bayesian prior’s strength (1/η2), as reported in Table 4.1. Next, the mean

posterior weights were used to make predictions for the novel test sets. To compute

predictive accuracy, we compared the model predictions to the actual outcomes on

the criterion variable in each dataset.
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Statistical Parameters in the Simulation
Number of objects 11 to 395
Number of pairwise comparisons N = 55 to N = 77815
Number of cues m = 3 to m = 18
Class variable (e.g., which house
had the higher actual sales price?)

Binary, ±1

Absolute correlation between cues
(averaged over cue pairs)

range = 0.12 to 0.63, mean = 0.31, median
= 0.28, sd = 0.14

Training sample size 10, 20, 115
Test sample size N−10, N−20, N−115
Number of cross-validation repeti-
tions

1000

Error variance σ2
ε = 1

Strength of prior

1/η2 = [1000000, 100000, 1000, 700,
330.08, 156.81, 74.50, 35.39, 16.81, 7.99,
3.80, 1.80,0.86, 0.41, 0.19, 0.09, 0.03,
0.01, 0.001, 0.0001, 0.00001]

Table 4.1: Parameters in the simulation of the 20 datasets as presented in Fig. 4.3. A full
description of the 20 datasets is in Appendix B.

4.4.2 Results

Our main prediction held across simulations. With small and large training sample

sizes, the performance peak could be found for an intermediate model, i.e., with

medium-strength prior (Fig. 4.3). Note that an approximately infinitely strong prior

on the far right of each graph (small values of η) corresponds to the directed tally-

ing heuristic, and a prior strength of zero (in the limit of η→∞) corresponds to the

regression model. Interestingly, we find that the regression model outperforms the

directed tallying heuristic in all cases. This difference to past less-is-more results

arises because cue directions are not learned in these simulations with the directed

tallying heuristic, and therefore there is no opportunity for the more flexible regres-

sion model to misestimate the cue directions from the data. However, we replicate

previous less-is-more results (Czerlinski et al., 1999) when comparing models that

estimate cue directions from the training set (next Chapter 5). The key finding re-

ported in Fig. 4.3 is that intermediate half-ridge models outperformed tallying in

all 20 datasets, independent of training sample size. This suggests that ignoring
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Figure 4.3: Generalization performance of the Bayesian half-ridge model by training sam-
ple size and as a function of the strength of the prior for 20 datasets for which
heuristics have been previously evaluated (Czerlinski et al., 1999). The abscissa
represents the strength of the prior on a logarithmic scale, and the ordinate rep-
resents the predictive accuracy of the model on test comparisons. Note that an
approximately infinitely strong prior on the far right of each graph (small val-
ues of η) corresponds to the directed tallying heuristic. Intermediate models,
i.e., with a medium-strength prior, performed best in all datasets regardless of
training sample size. Error bars represent ± SEM. Because the Oxygen and
Ozone data sets contain less than 115 object pairs in total, the 115 cases sample
is not included (see Methods for details).

information was never the best solution in these simulations. Instead, the best per-

forming model used all the information in the training data, but down-weighting it

via the influence of the prior.

Note that in contrast to the performance reversal with training sample size observed

in the frequentist case (Fig. 3.4), in this case the most flexible model is no longer

guaranteed to perform best when training sample size is large, as intermediate priors
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performed best regardless of training sample size. To assess whether the accuracy

maximizing prior did not change as a function of the sample size, we performed a

statistical test. We regressed the maximum prior strength onto datasets and training

sample size and find that the slope for training sample size is not significant (i.e.,

beta = -0.009, p = 0.977), suggesting the best performing model stays approximately

in the same location across training sample sizes. For 7 out of the 20 datasets, the

difference in peak prior strength between training sample sizes was exactly zero,

meaning the location of the accuracy maximizing prior did not change.

4.5 TTB as a limiting case of lasso regression?
Given that ridge regression (L2 regularization) yields tallying, one might wonder

whether a strong prior of a different functional form might yield the TTB heuristic.

In particular, lasso regression (L1 regularization) (Ripley, 2007) is known to pro-

duce sparsity in cue selection (i.e., many weights are estimated as zero), and thus

might be expected to yield TTB in the limit. Just as ridge regression’s penalty term

can be interpreted as a Gaussian Bayesian prior on the weights, lasso’s penalty term

can be interpreted as a Laplacian Bayesian prior on the weights.

However, instead, we find that lasso regression also converges to tallying in the

limit when the cue directionalities are known a priori (mathematical derivation is

in Appendix E). Thus, L1-regularized truncated regression converges to tallying,

just like in the ridge regression case (L2 regularization). This result highlights the

robustness of tallying arising as a limiting case of Bayesian inference under a variety

of different priors and norms (L1 norm and L2 norm). Given this formal result, we

motivate the TTB heuristic as an extreme Bayesian prior with a different approach

in the next Chapter via the COR model, which is able to capture the sequential

nature of the TTB heuristic.

4.6 Discussion
We find that a tallying heuristic and a full-information model can be linked through

Bayesian inference, in which tallying, that deliberately ignores information, is

equivalent to the limit of an infinitely strong prior. We showed that by relying
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on a prior that biases all weights toward zero as in ridge regression, we could derive

the tallying heuristic in the limit. This work also demonstrates limitations of the

absolute less-is-more assumptions: models with intermediate priors, which use all

available information in the training data, always performed better than heuristics,

and full regression models.

A central message of this work is that ignoring information is never more.

This stands in stark contrast to the (absolute) less-is-more claims (Gigerenzer &

Brighton, 2009; Gigerenzer et al., 1999; Tsetsos et al., 2016) which argue that

when heuristics outperform, they cannot be improved upon with a strategy that

relies on more information. Our findings of intermediate models always outper-

forming heuristics shows that including the information while down-weighting is

optimal. This argument will become even clearer in the next Bayesian framework

(Chapter 5), where less-is-more effects can be observed but intermediate models

still perform best throughout. Heuristics may work well in practice because they

correspond to an infinitely strong prior that is oblivious to the training data, but they

will usually be outperformed by a prior of finite strength that leaves room for learn-

ing from experience. That is, the claim that one can do better with heuristics by

throwing out information entirely (corresponding to a strong prior, e.g., 1/η2 = ∞

in the half-ridge model) rather than using it, is false. That is because the optimal

solution always uses all of the information (e.g., a finite value of 1/η2), but it com-

bines that information with the appropriate prior. In contrast, no amount of data can

overcome the heuristics’ inductive biases (as can be seen in Fig. 4.3). The tally-

ing heuristic is defined to entirely ignore relative cue weight magnitudes, unlike the

intermediate half-ridge models.

Another insight arising from this and the next Chapter is that heuristics do not work

well because of their simplicity but due to their bias. This represents a strong con-

trast to the less-is-more claims (Gigerenzer & Brighton, 2009; Gigerenzer et al.,

1999; Tsetsos et al., 2016) which argue that heuristics work well because of their ig-

norance of information. However, the evidence in this Chapter and the next suggest

differently: Heuristics may work well because they embody a prior that approxi-
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mates the optimal prior. The variation of bias along the continuum of the Bayesian

prior’s strength means our findings tell us that models which are highly biased (sim-

ilar to heuristics) but not as simple as heuristics (no ignorance of information) are

optimal. The Bayesian conceptualisation allows a de-confounding of simplicity

and inductive bias in heuristics, as only the extreme end case (i.e., prior strength of

1/η2 = ∞) on the Bayesian continuum is simple (due to its complete ignorance of

information information). The Bayesian approach offers the novel explanation that

heuristics do well because they approximate a strong inductive bias.

4.6.1 Psychological Implications

While the core intended contribution is formal, this work has implications for psy-

chology. In the psychological literature, heuristics have been repeatedly pitted

against full-information algorithms (Chater et al., 2003; Czerlinski et al., 1999; Kat-

sikopoulos et al., 2010) that differentially weight the available information. The

current work indicates that the best-performing model will usually lie between the

extremes of ordinary linear regression and fast-and-frugal heuristics, i.e., at a prior

of intermediate strength. Between these extremes lie a host of models with different

sensitivity to cue-outcome correlations in the environment. One question for future

research is whether heuristics give an accurate characterization of psychological

processing, or whether actual psychological processing is more akin to these more

complex intermediate models. On the one hand, it could be that implementing the

intermediate models is computationally intractable, and thus the brain uses heuris-

tics because they efficiently approximate these more optimal models. This case

would coincide with the view from the heuristics-and-biases tradition of heuristics

as a tradeoff of accuracy for efficiency. On the other hand, it could be that the

brain has tractable means for implementing the intermediate models (i.e., for us-

ing all available information but down-weighting it appropriately). This case would

be congruent with the view from ecological rationality where the brains inferential

mechanisms are adapted to the statistical structure of the environment. However,

this possibility would also suggest a reinterpretation of the empirical evidence used

to support heuristics is necessary: heuristics might fit behavioral data well in many
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instances because they closely mimic a more sophisticated strategy used by the

mind. This would indicate future research should identify these more sophisticated

intermediate strategies and investigate whether they are better at predicting people’s

behaviour than traditional heuristics. We believe that this endeavour will present a

natural next step for extending this work in the future.

Although speculative at this point, some recent research also points towards evi-

dence for strategies more akin to the intermediate models at the psychological level.

Bergert and Nosofsky (2007) showed that people’s pattern of behaviour matches a

probability mixture version of TTB rather than the strong version of TTB or a full-

information strategy (RAT). The authors hypothesized that the strong forms of TTB

and RAT (a weighted additive model similar to linear regression, Lee and Cummins

(2004)) would be psychologically implausible, and formulated generalizations of

these models which allowed for subjective cue weighting, probabilistic orders of

cue inspection, and noisy decision making. Under conditions in which the stan-

dard TTB and RAT strategies yielded equivalent decisions, reaction times and the

estimated cue weights suggest that most participants adopted a generalized TTB

strategy, in which cue weights deviate from the ones in the traditional heuristic.

These results suggest participant’s pattern of cue weighting challenges the strong

versions of both RAT and TTB and provides evidence for mixture models. There

is also various evidence showing people do not adhere to the strong from of TTB

which entirely ignores information, but instead rely on the full information with in-

dividual weighting structures (Newell & Shanks, 2003; Newell, Weston, & Shanks,

2003; van Ravenzwaaij, Moore, Lee, & Newell, 2014) (discussed further in Chap-

ter 5). However, it needs to be stressed that at this point these ideas are speculative

and it needs to be established empirically whether people choose to rely on the full

information and down-weighting it, rather than ignoring it.

Chapter 6 will in fact look at whether people rely on heuristics or a full-information

model in a decision making and active learning task, which will shed some light

onto what information people choose to include and drop during learning and deci-

sion making.
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4.6.2 Discovery of new heuristics?

The general framework for creating a model continua between prominent strategies

may apply more broadly than is presented in this thesis. Concretely, the frame-

work’s logic may itself be a good discovery heuristic for identifying novel heuristics

that work well, i.e., for different environmental structures and Bayesian priors. The

same approach could yield alternative heuristics that have value compared to the es-

tablished ones, by creating Bayesian prior continua between full-information mod-

els and heuristics, and taking a prior to extreme values (i.e., infinite prior strength

and zero prior strength). However, crucially the choice of prior needs to be informed

by the structure of the environment and the strategy. One possible example may be

the idea that a Gaussian process regression can result in a Nearest Neighbour heuris-

tic with a strong prior (Gramacy & Lee, 2008). When taking a Gaussian Kernel’s

lengthscale parameter to extremes (i.e., zero and approximating infinity), on the one

end the predictions of the Gaussian kernel would converge onto a strategy that only

relies on nearby observations such as in the nearest neighbour classification. On the

other end of the extreme (when the lengthscale parameter approximates infinity),

its results would become equivalent to those of linear regression. Hence, poten-

tially other interesting new heuristics that people might use could be uncovered in

the limit of strong Bayesian priors. Nevertheless, this is an idea that yet needs to

explored in the future.

4.6.3 Integration of Probabilistic and Heuristic Approaches

By taking a Bayesian inference perspective as a lens on heuristics, we could arrive

new insights about heuristics that were invisible before, e.g., highlighting the strate-

gies along the prior’s continuum which are usually ignored. However, by providing

a Bayesian explanation for heuristics, we also offer an integration of probabilis-

tic approaches with heuristics. For decades, probabilistic approaches to cognition

and heuristic approaches evolved in parallel due to historic developments in the field

(e.g., due to little integration between computational-level theories and algorithmic-

level theories, and due to both the heuristics-and-biases model and the fast-and-

frugal model perceiving heuristics as incompatible with Bayesian inference). The
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vast amount of previous literature pitted heuristics against rational Bayesian models

in modelling competitions, e.g., (Katsikopoulos et al., 2010; Martignon & Hoffrage,

2002), and the underlying implicit assumption was that heuristics are necessarily

competitors to Bayesian inference models. In contrast, we show that heuristics are

equivalent to Bayesian inference for extremely strong priors. Thereby the current

research helps to move closer the different levels of analysis in cognitive science,

in particular the computational level and the algorithmic or process level (Marr,

1982a).

There have been other more recent approaches looking at the compatibility be-

tween psychologically plausible processes and probabilistic models of cognition

(Brown & Steyvers, 2009; Daw & Courville, 2008; Griffiths et al., 2015; Jones

& Love, 2011; Lee & Cummins, 2004; Lieder et al., 2017; Sanborn et al., 2010;

Scheibehenne, Rieskamp, & Wagenmakers, 2013; van Ravenzwaaij et al., 2014).

While these investigations are interlinked with our own, most of that work has fo-

cused on finding algorithms that approximate Bayesian models, whereas we have

taken the opposite approach. The relationship between our work and some of these

recent formal approaches for heuristics will be discussed in the General Discussion.

4.6.4 Possible Extensions of the Model and Simulations

In the current half-ridge simulations, training sets were defined by sampling a sub-

set of all possible comparisons (i.e., object pairs). As discussed in Chapter 3, in

some past work training sets were defined by sampling a subset of objects instead

and then training on all pairs within the sampled subset (Czerlinski et al., 1999). For

our purposes, we could find no compelling reason to prefer either method. However,

as we have seen, this sampling method can make a difference in the relative perfor-

mance of heuristics and regression models (Fig. 3.6). To determine whether our

results reported here would be dependent on this sampling decision, we compared

both sampling methods. In short, the qualitative pattern of results is not depen-

dent on the sampling method. When sampling objects rather than comparisons, we

varied the training sample size between sampling 5, 7 and 16 objects, which cor-

respond to 10, 21 and 120 possible comparisons for the training sets, respectively.
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We chose these training sample sizes to roughly match the training sample sizes

used for the half-ridge simulations when sampling comparisons (i.e., 10, 20 and

115 training cases in Fig. 3). The qualitative pattern of results between the directed

tallying heuristic and regression was the same. Performance of all models was lower

overall by a few percent in accuracy when sampling objects, confirming the results

from Chapter 3. Additionally, models with weaker priors (i.e., closer to regression)

showed a slightly larger drop in performance under object sampling than did mod-

els with stronger priors (i.e., closer to the heuristics). Thus, sampling objects gives

the directed tallying heuristic a small advantage over ordinary regression for the

training sample sizes considered here. However, this performance advantage was

never enough to reverse the performance patterns in Fig. 4.3, and the location of

the performance peak was in approximately the same location under both sampling

methods.

Typically in past work, continuous cue values were discretized at the median in the

original 20 datasets to form binary variables with the cue value indicating which

object in the pair was superior along that dimension (e.g., Chater et al. (2003);

Czerlinski et al. (1999); Katsikopoulos et al. (2010)). The dependent variables were

also binary arising from the comparisons and detail which object has the higher

criterion value on each comparison. As such, logistic regression rather than least

squares regression would be more appropriate for binary outcome variables. How-

ever, we chose least squares regression to be consistent with past work on the 20

heuristic datasets (Czerlinski et al., 1999) in order to be able to replicated findings,

and build a continuum between these models traditionally used in the heuristic lit-

erature. To confirm that the choice of link function was not critical, we re-analysed

the data using logistic regression. We found no significant difference between the

two approaches on the datasets considered. In particular, we considered the 20

datasets across all training sample sizes (10, 20 and 115) to compare both regres-

sion approaches. Ordinary least squares regression had an average generalization

performance of 0.687 with sd = 0.08 (where 1 corresponds to 100% correct out-of-

sample inferences and 0 corresponds to 0% correct inferences), across all training
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sample sizes (10, 20 and 115 training cases) and across all 20 environments. Lo-

gistic regressio’s generalization performance was 0.682 with sd = 0.08, across all

training sample sizes (10, 20 and 115 training cases) and across all 20 environments

as used in Fig. 4.3. The mean difference in performance scores between least

squares and logistic regression, across all training sizes and datasets, was 0.0049

with sd = 0.008. A possible future model extension could be to build the model

continua within a (Bayesian) logistic regression framework rather than the linear

one used here. We believe this would be a useful avenue for further research, as

part of a general program to build on the theoretical ideas introduced here to de-

velop new, more powerful decision algorithms and to further link heuristics to other

modeling approaches. For now, we note that the linear models used here support

the main conclusions just as well although they are not ideally tailored to the task

being analysed (i.e., where criterion values are binarised).

4.6.4.1 Robustness of the intermediate peak?

The performance peak was found for intermediate prior strength in all 20 datasets.

As predicted, these findings are in contrast to the frequentist case (e.g., Fig. 3.4, Fig.

3.5), where the training sample size results in a cross-over of performances. We per-

formed a statistical sign test to ensure that the performance peak was not moving left

or right with a different training sample sizes, which revealed that best performing

prior strength stayed approximately constant across training sample sizes (Section

4.4.2). Despite these findings, we emphasize that the optimal prior is expected to

stay in the same location only to the extent that the model is correctly specified. The

fact that the performance peaks in our simulations were not significantly affected

by training sample size suggests that the degree of model misspecification was not

sufficient to reveal itself in this way. In contrast, the Bayesian model developed in

the next Chapter is more clearly misspecified, as will be seen. However, whether

the models are misspecified or not does not impact the mathematical fact that the

Bayesian model converge to the heuristics under strong priors, or the empirical fact

that intermediate models outperformed the heuristic on real datasets.
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4.6.5 Practical Implications

Knowing when heuristics can be superior (though not optimal) to more costly flex-

ible strategies has useful implications for various real-world domains where quick

actions are required. For example, soldiers at a checkpoint must quickly decide

whether an approaching car contains terrorists or civilians (Keller & Katsikopou-

los, 2016) and recent research suggests a simple heuristics can aid quick decision

making in these scenarios. Likewise, doctors need to decide whether to assign a

patient to a coronary care unit or a regular nursing bed (Marewski, Gaissmaier, &

Gigerenzer, 2010). The ability of the Bayesian approach to down-weight and up-

weight information (e.g., in estimating regression weights) means the model places

both costly flexible strategies and heuristic strategies on equal footing which allows

for an analysis of when one model will outperform the other and quantify by how

much. In that way, the Bayesian approach can be applied to real-world data from

different situations and through predictive modelling the performance of different

strategies can be determined a priori. These kinds of analyses could lead to devel-

opments of new decision tools that are helpful in medical contexts, legal contexts,

or military contexts to name a few. Our formulation places the heuristics within

the same framework as other Bayesian models with the same prior, varying only

in strength. The optimal prior strength (i.e., the best model within the continuum)

will vary from one domain to another, but other than this choice of free parame-

ter, the half-ridge model can be straightforwardly applied in any settings where the

heuristic can (in fact, the former models are not limited to binary comparison tasks,

whereas the heuristics are). Should a practicing researcher abandon heuristics such

as the tallying heuristic for the more complex intermediate framework? Whether

the intermediate models are enough better to merit use than the heuristics will de-

pend on the context and the situation a researcher tries to model. For example,

researchers in machine learning are always interested in gaining higher accuracy

with new regularization methods to avoid overfitting in generalizing to new data,

and hence an intermediate method that is able to improve upon existing simpler al-

gorithms would be regarded as essential. Or else, in applied contexts, in professions
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where accuracy is central as errors can have devastating consequences, such as the

astronautical engineering profession (where astronauts cannot make a mistake in

replacing machine parts on the international space station for example), the method

that results in higher accuracy would always be preferred over the method that is

quicker but less accurate (such as heuristics). To give another example, in the medi-

cal domain (where a patient’s life may be at stake), a machine learning method that

recognizes a cancer with higher accuracy but requires more computation should be

preferred to a quicker and less accurate method. However, in other contexts, when

there is no time for more computation and integrating the full information, a heuris-

tic that drops most information may be more useful under time pressure, such as

when making decisions at war in the example above.

4.6.6 Extending the half-ridge model to an encompassing

Bayesian framework

In this Chapter, we showed that the tallying heuristic could be derived as an extreme

Bayesian prior by placing a truncated Gaussian prior on the weights. This resulted

in a Bayesian continuum that is oblivious to the training data in the limit. We also

attempted to derive the TTB heuristic as the limit of an extreme Bayesian Laplacian

prior, i.e., lasso regression. The reasoning was that lasso regression (Ripley, 2007)

is known to produce sparsity in cue selection. However, instead, lasso regression

also converged to tallying in the limit when the cue directionalities are known a pri-

ori. Instead, in the following Chapter, we take a different approach to construct our

second Bayesian model which unifies both TTB and tallying with ordinary linear

regression. This Bayesian inference model (COR) is based on the key observation

that, unlike linear regression, both TTB and tallying rely on isolated cue-outcome

relationships (i.e., cue validity) that disregard covariance information among cues.

The COR model will extend the current Bayesian half-ridge model with an infer-

ence model that is not oblivious to the training data, but instead learns cue directions

and cue weights from the training data.
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Chapter 5

Heuristics as Bayesian inference -

The COR model

All models are wrong, but some are useful.

-GEORGE E. P. BOX

5.1 A Bayesian explanation for why less is more
Given the formal result of Chapter 4 that lasso regression also yields tallying, we

take a different approach to unify both TTB and tallying with ordinary linear regres-

sion. One key observation is that, unlike linear regression, both TTB and tallying

rely on isolated cue-outcome relationships (i.e., cue validity, Fig. 5.1B) that dis-

regard covariance information among cues. We use this insight to construct our

second Bayesian model, which contains a prior that at one extreme suppresses all

information about cue covariance but retains information about cue validity. We re-

fer to this model as Covariance Orthogonalizing Regularization (COR), because our

regularization method essentially behaves so as to make the cues appear orthogonal

to each other. The strength of the prior yields a continuum of models defined by

sensitivity to covariation among cues, which smoothly vary in their mean posterior

weight estimates from those of ordinary linear regression to weights that are linear

transforms of the heuristics cue validities (derivations below).

This Chapter extends the Bayesian half-ridge model with a second Bayesian model
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that learns cue directions and cue weights from the training samples, thereby being

able to exhibit less-is-more effects (in contrast to the previous Chapter), i.e., tallying

or TTB outperforming linear regression. Yet, crucially, we find again that even in

less-is-more situations, the strategies that perform best along the Bayesian contin-

uum are intermediate models. Hence, the goal of this Chapter is identical to the pre-

vious Chapter. We show that while relative less-is-more holds, the Bayesian frame-

work provides a different message for absolute less-is-more (Box 2.4.2): We find

heuristics can in fact be improved upon with strategies that rely on all information

but appropriately down-weight it. While no other previous study on heuristics has

addressed the absolute less-is-more meaning in the past (Gigerenzer & Brighton,

2009), the current Bayesian framework allows for a continuum between heuristics

and regression which makes this possible.

As with Chapter 4, this Chapter contributes to a novel Bayesian explanation of why

heuristics work. We do so by formulating heuristics as the limiting cases of strong

Bayesian priors. In the COR model, the prior varies sensitivity to covariation among

predictors (Rieskamp & Dieckmann, 2012). Crucially, the heuristics represent an

extreme case on this Bayesian prior, corresponding to entirely ignoring covariance

rather than including it and down-weighting it. Parametric variation of the covari-

ance prior’s strength results in a continuum that contains, as limiting cases, both

heuristics (TTB and tallying heuristic) as well as (ordinary least-squares) linear re-

gression. Although the Bayesian model contains tallying and TTB as special cases,

a crucial difference is that along the continuum the Bayesian account regulates co-

variance estimation, but never entirely dispenses with it. Similar to the half-ridge

model, we investigate the performance of the Bayesian COR model in real-world

environments and replicate previous less-is-more effects. Importantly, we find that

the best-performing models for the real-world problems tested were intermediate

models that do not entirely ignore covariance among predictors but that nonetheless

down-weight this information via the influence of their priors. Hence, the findings

in this Chapter add to the Bayesian explanation proposed in the preceding Chapter:

Heuristics may excel because they have a strong inductive bias which approximates
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the optimal prior for many environments. Again, it needs to be noted that while the

framework in this Chapter has interesting implications for psychological processes,

it does not aim to model less-is-more effects at the psychological level, and primar-

ily provides a formal computational account. Implications for psychology will be

discussed.

This Chapter is structured as follows: First, I discuss why covariance is a sensi-

ble factor to rely on for building a Bayesian model continuum between heuristics

and regression. Next, I introduce the Bayesian learning model based on covariance

sensitivity. A first computational study will assess the convergence of the Bayesian

model to the heuristics in the limit of a strong prior. A second computational study

will assess the generalization performance of the Bayesian model in the classic 20

real-world environments (Czerlinski et al., 1999). Finally, the theoretical and psy-

chological implications, and limitations of the model are discussed. All mathemati-

cal derivations for the COR model in this Chapter were derived in collaboration with

my collaborator Matt Jones (University of Colorado, Boulder) and my supervisor

Brad Love (UCL).

5.2 Linking heuristics and regression through a co-

variance prior
Why do we focus on covariance as a prior for linking heuristics and full-information

models? As explained at the beginning (Section 2.3.3), a central difference between

heuristics that rely on cue validity and full-information models, such as linear re-

gression, is that regression coefficients naturally take into account covariance as part

of the parameter estimation, however cue validity naturally ignores any covariance

among cues.

For example, in Fig. 5.1B, league position and number of goals scored are highly

correlated. Although such covariances naturally arise and can be meaningful, the

cue validities used by the tallying and TTB heuristics completely ignore them (Mar-

tignon & Hoffrage, 1999). Instead, cue validities assess only the probability with

which a single cue can identify the correct alternative (e.g., which team won the
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Figure 5.1: Illustrative example of a binary prediction task. (A) Predicting whether Team
Germany or England will win is based on four cues: league position, last game
result, home vs. away match, and recent goal scoring. Cue validities (v) reflect
the relative frequency with which each cue makes correct inferences across
many team comparisons (see definition in this section below). Smiley and
frowning faces indicate which team is superior on each cue, whereas a grey
face indicates the two teams are equal on that cue. A cue is coded +1 when it
favors the team on the left (Germany), -1 when it favors the team on the right
(England), and 0 when the teams are equal along that cue. (B) Irrespective of
cue validity, cues can co-vary (illustrated by overlap) with the criterion variable
but also with each other. The heuristics considered here ignore this covariance
among cues.

football match), derived as the proportion of correct inferences made by each cue

alone across the set of binary object comparisons (Equation 2.1). When two cues

co-vary highly, they essentially provide the same information, but heuristics ignore

this redundancy and treat them as independent information sources. An intuitive

example may be having two of copies of the same newspaper as input, where the

second newspaper does not really provide news anymore.

However, this simple difference with respect to covariance estimation between full-

information strategies and heuristics may play an important role for their differential

behaviour and success. For example, some recent evidence indicates that heuris-

tics can generalize well compared to complex models under conditions of high co-

variation among cues (Dieckmann & Rieskamp, 2007; Rieskamp & Dieckmann,

2012). One explanation for these findings is the heuristics complete ignorance of

co-variation among cues may function as a strong form of bias that can result in bet-

ter generalization to novel, unseen samples. Although the relationship between the

success of heuristics and external covariance in the environment is complex, the fact
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that heuristics deliberately ignore covariance in their cue weight estimates appears

to be an important factor that differentiates heuristics from full-information mod-

els. Evidence supporting this notion was developed by Gigerenzer and Brighton

(2009), where the authors compared regular TTB to a version of TTB that orders

cues by conditional validity, thereby taking into account covariance among cues.

They pitted both versions of TTB against classical full-information models that do

take into account covariance (Fig. 5.2). The authors claimed that the conditional

TTB’s cue weight estimation is closer to the more resource-intensive machine learn-

ing models, i.e., such as the C4.5 and CART model. Fig. 5.2 shows that, interest-

ingly, while TTB outperforms all other full-information models for training sizes

up to 50 objects, when the search rule of TTB is altered to conditional validity,

its performance drops to the level of the other full-information models (bottom left

panel). From these findings, the authors concluded that perhaps what helps the TTB

heuristic is a deliberate disregard of cue covariance which can be adaptive in some

environments. One possibility is that this disregard of covariance results in lower

overfitting compared to models that estimate covariance among cues. Gigerenzer

and Brighton (2009) say that the ignorance may be ”an adaptive processing policy

when observations are sparse”, i.e., with smaller training sample sizes. This is a

valuable insight, however, what they did not investigate is whether the heuristic was

the optimal model when training sample size was small, or whether it could not

have been improved upon by a model that does take into account the full informa-

tion (covariance) (i.e., absolute less-is-more claim). In this particular instance, we

do not know why ignoring covariance in the weight estimates was advantageous

for the TTB heuristic. Nevertheless, these results highlight the important role that

ignorance of covariance in cue validity estimates plays for heuristics. We make use

of this fact that heuristics and regression are differently sensitive to covariance to

create our Bayesian model continuum.
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Figure 5.2: In the city size task, generalization performance of the TTB heuristic was su-
perior to five full-information models as a function of the number of objects
included in the training sample. TTB was compared to: a linear perceptron,
i.e., similar to logistic regression (top left), the nearest neighbor classifier (top
right), two tree induction algorithms, C4.5 and CART (classification and re-
gression trees) (bottom right), a variant of TTB that orders cues by conditional
validity (bottom left). Error bars are standard errors of means. Results are taken
from Gigerenzer and Brighton (2009).

5.3 COR: A Bayesian framework relating regression

and heuristics

We use the this insights to construct our second Bayesian model, which contains

a prior that at one extreme suppresses all information about cue covariance but

retains information about cue validity. The strength of the prior yields a contin-

uum of models (Fig. 5.4) defined by sensitivity to covariation among cues, which

smoothly vary in their mean posterior weight estimates from those of ordinary lin-

ear regression to weights that are linear transforms of the heuristics’ cue validities.

That is, importantly, cue validities, which ignore cue covariance, are essentially
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like single regression coefficients, that result from regressing the outcome variable

onto a single cue alone (A proof of the linear relationship between cue validity and

single-predictor regression weights is in the Chapter’s Appendix 5.8). The mathe-

matical derivations for the posterior mean of COR are in the Chapter’s Appendix

5.9, however the essential model properties are explained next.

The COR framework also relies on a regularized regression method such as ridge

regression in the previous Chapter (Equation 4.1). But, in contrast to ridge regres-

sion, we express the regression problem in multivariate terms by multiplexing the

outcome m times (the number of predictors), which allows the model to capture the

sequential nature of TTB. As shown in Fig. 5.3, every copy of the output receives

input from every cue, and thus the weights can be represented as an m×m weight

matrix W. The model architecture of this matrix is illustrated in Fig. 5.3, were

 

Figure 5.3: COR model architecture with m = 3 cues as presented in Fig. 5.4. All y
variables are replicas of one another and contain the same outcome informa-
tion. Dashed arrows are called cross-weights, and solid arrows are called direct
weights. Weight indices refer to the weight matrix W.

the solid arrows represent the diagonal weights (direct weights) and the dashed ar-

rows represent the off-diagonal weights (cross-weights). Unlike in ridge regression,

where the Gaussian prior shrinks all model weights toward zero, only the cross-

weights (i.e., the off-diagonal elements) are penalized. Penalizing only the cross-

weights has the effect that the strength of the prior (1/η2) modulates the model’s

sensitivity to covariation among cues, leading to the continuum in Fig. 5.4. In the

limiting case, when the precision of the prior 1/η2 approaches infinity as η → 0,
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the cross-weights reduce to zero, visualized in the rightmost panel of Fig. 5.4 (see

mathematical derivations in Appendix 5.9). In this limit, the posterior estimates

for the direct weights are equivalent to cue validities as used by the heuristics, i.e.,

neglecting covariance information, up to a linear transformation (Equation 5.9).
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Figure 5.4: The prior of the COR model influences the posterior solution (i.e., the mean of
the posterior on w) such that the model can encompass linear regression and
the heuristics as extreme cases. In this example, there are m = 3 cues, i.e.,
x1,x2,x3 are vectors representing the explanatory variables containing infor-
mation on all binary comparisons, where one vector entry xi1,xi2,xi3 pertains to
the ith binary comparison. As in Fig. 5.1, cues can take values of [−1,+1,0],
depending on whether the left or right option has a greater value on each cue,
and likewise the criterion yi can take values of +1 or -1, depending on the out-
come of the comparison (e.g., which team won the match). In order to establish
a continuum of covariation sensitivity, the criterion variable is multiplexed as
many times as there are cues, i.e., m times. The result is a multivariate regres-
sion problem with a dependent matrix Y of m columns of identical criterion
variables. We refer to the dashed arrows as cross-weights, and the solid arrows
as direct weights, corresponding respectively to the off-diagonal and diago-
nal entries of the weight matrix W. In an ordinary linear regression model
with three predictors x1,x2,x3, the predictors’ weights are determined by tak-
ing into account their covariances. In contrast, a model structure without any
of the cross-weights would revert to three simple regressions with exactly one
predictor each (either x1 , x2, or x3). Therefore, when 1/η2 = 0, in analogy
to ridge regression, the prior does not penalize the cross-weights, and the set
of mean posterior weights to each copy of the criterion variable are equal to
those of the ordinary linear regression solution (leftmost network). At the other
extreme, when 1/η2→∞, the cross-weights are shrunk to zero, and the knowl-
edge captured in the direct weights becomes equivalent to that embodied by
cue validities in heuristics that ignore covariation information (rightmost net-
work). Between these two extreme values of 1/η2 lie models that are sensitive
to covariation to varying degrees (middle network).
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At the other extreme, when 1/η2 = 0, none of the cross-weights are penalized,

and all weights in the model architecture are unchanged (leftmost network in Fig.

5.4). When 1/η2 = 0, every copy of y has the same posterior for its set of weights,

and the mean (and mode) of this posterior is equal to the ordinary linear regression

solution. That is, the set of weights are identical for all copies of y, i.e., which

is like repeating ordinary linear regression m times and averaging across these. In

particular, the covariance information is reflected in the posterior weights as it is in

the ordinary regression solution.

The model weights are paired with a decision rule to classify a test item such as

xi = [xi1,xi2,xi3], with three cues such as in Fig. 5.4. The vector xi is multiplied by

the mean posterior weight matrix W∗ to generate an output vector ŷi = [ŷi1, ŷi2, ŷi3]:

ŷi = xiW ∗. (5.1)

Note that using the posterior mean is equivalent to integrating over the full posterior

distribution, due to the linearity of the prediction. The TTB decision rule is then

applied to the resulting ŷi as

zi = sgn
(

yi, j∗i

)
where j∗i = argmax

j

∣∣yi j

∣∣ (5.2)

and

choicei =


+1 (le f t), if zi = 1

−1 (right), if zi =−1

0 (guess), if zi = 0.

(5.3)

The TTB decision rule selects the maximum absolute output (Equation 5.2) and

takes the valence of that output as its choice (Equation 5.3). Notice that the deci-

sion rule is applied over a weighted combination across all cues (Equation 5.1) that

depends on the posterior weight matrix. When 1/η2 = ∞ (and the cross-weights are

thus zero), the decision rule exhibits the exact sequential nature of the TTB heuris-

tic, because then each output ŷi j in Equation 5.1 will equal the value of each cue x j
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times its cue validity. In other words, the cues will be perfectly ordered according

to their cue validity, e.g., where the largest output will correspond to the most valid

cue that is not indifferent, and so on. Importantly, those cases where the cue is in-

different between alternatives, the weighted combination output is ŷi j = 0 resulting

in the TTB rule to move onto the next most valid cue. Thus, when the TTB decision

rule is adopted, the COR model converges to the TTB heuristic as 1/η2→ ∞. This

convergence is shown in Computational Study 6 (Fig. 5.5) in an artificial binary

prediction task similar to Fig. 5.1, demonstrating that the COR model (with TTB

decision rule) and the TTB heuristic reach perfect agreement in their predictions as

the prior becomes strong enough.

Notably, the tallying heuristic can also be derived from the COR model, in its undi-

rected version that uses cue validities in the training data to infer cue directionalities.

The tallying decision rule is defined by

zi = ∑
j

sgn
(
yi j
)
. (5.4)

and

choicei =


+1 (le f t), if zi = 1

−1 (right), if zi =−1

0 (guess), if zi = 0.

(5.5)

The tallying decision rule chooses the alternative with a majority of outputs in its

favor (conveyed by their valences), irrespective of the magnitudes of the outputs.

The choice is determined by Equation 5.5), as in the TTB decision rule. When the

tallying decision rule is adopted by the COR model, the model converges to the

tallying heuristic in the limit as 1/η2→ ∞ (Fig. 5.6, computational study 6).

Lastly, in the limit of 1/η2 = 0, either decision rule will yield decisions equiva-

lent to ordinary linear regression as outlined above. That is because, in the limit

of 1/η2 = 0, the posterior weights are all equal to the ordinary linear regression

weights, and the outputs ŷi produced according to Equation 5.1 are all equal to the
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ordinary linear regression prediction. Applying either a TTB or tallying decision

rule to these equivalent outputs ŷi (Equation 5.1) will yield a choice equal to the

valence of that prediction.

Thus, we have demonstrated how ordinary linear regression and both TTB and the

tallying heuristic can be derived as extreme cases of a single Bayesian prior defined

by covariance expectation. Importantly, the element varying across the continuum

is the priors strength (as reflected in the posterior mean W∗, Equation 5.18), and

the prior is responsible for recovering the heuristics in the limit, rather than decision

rules or the choice of regularization type. The COR model converges to ordinary

regression as the strength of the prior goes to zero regardless of the decision rule,

and these model properties hold under other forms of regularization as well we find

(e.g., lasso regularization). That is, when the regularization in the posterior for COR

is replaced with an L1 regularization, the model properties in the limiting cases still

hold, emphasizing the robustness of the COR model.

Next, we demonstrate convergence of the COR model with heuristics and ordinary

linear regression in a simulation study (computational study 6). Then, as with the

half-ridge model in Chapter 4, we investigate how the COR model performs in real-

world environments (computational study 7).

5.4 Computational Study 6: Convergence of Bayesian

COR model and heuristics
In this computational study, our goal is to demonstrate that the COR model con-

verges to the heuristics (i.e., tallying and TTB) as the prior grows arbitrarily strong

(in the limit of 1/η2→ ∞) and to ordinary linear regression as the prior’s strength

approximates zero (in the limit of 1/η2 = 0).

5.4.1 Methods

For the purpose of this simulation, we created artificial binary prediction tasks of

the type in Fig. 5.1. Each artificial dataset was created as follows: We generated
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cue values for m = 3 cues on 20 objects by uniformly sampling cue values of 0 or

1. Cue values refer to the smiley and frowning faces in the illustrative example of

Fig. 5.1. An object refers to a single football team (e.g., Team England). We then

created all possible pairwise comparisons between the 20 objects which results in

190 possible comparisons. For each pair, we computed the cue difference vector by

subtracting the cue values of the second object from the first object. For example,

in Fig. 5.1, the cue coding column contains the cue differences values for compar-

ing Team England to Team Germany, which can take values of 1, -1 and 0. The

object comparisons represent a matrix of cue difference vectors with one row for

each object pair. Next, we sampled m = 3 weights from an exponential distribution

with rate parameter equal to 2 as generating weights. Finally, we calculated a crite-

rion variable by relying on the cue differences matrix, the generating weights, and

additional Gaussian noise. The criterion variable contains the outcome for each ob-

ject comparison, indicating which team won the comparison. In total, we simulated

1000 datasets in this way and results are averaged across them. All models were

fit to the artificial datasets, and subsequently made predictions for a novel test set

to assess convergence. The test set was constructed according to a complete sam-

pling approach where each possible combination of cue differences occurs once.

For three cues with possible cue difference values of {−1,+1,0}, there are 27 pos-

sible cue combinations. However, as one test item has all zeros as cue values, it was

eliminated for not providing any additional information, and hence, the test matrix

contained 26 test comparisons. Each test pair corresponds to a novel pairwise com-

parison, e.g., between two football teams. The predictions on the test set are used

to assess agreement among different models.

The COR model, TTB and tallying heuristic, and ordinary linear regression were

trained on each of the 1000 datasets to derive the weights for prediction. The COR

model weights were derived by fitting the exact posterior mean in Equation 5.18

to the data. As we were interested in the change of the posterior weight matrix

as a function of the strength of the prior, we derived a different posterior estimate

for each value of the strength of the prior. The range of the prior strengths tested
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is listed in Table 5.1. Next, the mean posterior weight matrix was used to make

predictions with respect to the test comparisons via matrix multiplication. If the cue

differences for the test set are represented by a matrix M containing m = 3 columns

and 26 rows, and the mean posterior weight matrix W∗ is a 3× 3 square matrix,

then by matrix multiplication, the output is also a matrix Y with dimensions 26×3,

Y = MW∗. (5.6)

Due to the multivariate representation of the problem, the output matrix Y contains

the continuous predictions of the Bayesian model with respect to the three copies

of y (Section 5.9). The output matrix is then paired with either a TTB or a tallying

decision rule according to Equation 5.2 and 5.4 to generate outcome predictions for

the test comparisons. Convergence results are presented next.

Statistical Parameters in the Simulation
Number of objects 20
Number of pairwise comparisons N = 190
Number of cues m = 3
Class variable Binary, ±1
Absolute correlation between cues
averaged over cue pairs

0.26

Generating weights
randomly sampled from an exponential
distribution with rate parameter equal to
2

Training Sample Size 190
Test Sample Size 26
Number of cross-validation repeti-
tions

1000

Error variance σ2
ε = 1

Strength of prior

1/η2 = [1E+06, 8E+05, 5E+05, 1E+05,
10000, 1000, 700, 600, 500, 400, 330.08,
200, 156.81, 74.50, 35.39, 16.81, 7.99,
3.80, 1.80, 0.86, 0.41, 0.19, 0.09, 0]

Table 5.1: Parameters in the simulation on artificial dataset as presented in Fig. 5.5 and
Fig. 5.6.
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5.4.2 Results

Fig. 5.5 demonstrates that the COR model with the TTB decision rule and the TTB

heuristic reach perfect agreement in their predictions as the prior becomes strong

enough. At the other extreme, the COR model reaches perfect agreement with

ordinary linear regression when the prior becomes weak enough (approaching zero).

Parallel results hold for the tallying decision rule (Fig. 5.6). The COR model with

the tallying decision rule and the tallying heuristic converge on perfect agreement as

the prior becomes arbitrarily strong, and when the prior strength approaches zero,

COR converges to ordinary linear regression. These convergence findings were also

verified by estimating the posterior mean of the COR model through Markov chain

Monte Carlo (MCMC) to sample from the true posterior probability distribution

over the weight matrix W∗.
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Figure 5.5: Agreement between the COR model (with TTB decision rule) and the TTB
heuristic, as well as ordinary linear regression, as a function of the strength
of the prior. As expected, agreement (i.e., proportion of equal predictions on
test items) between the Bayesian COR model and TTB heuristic increased with
a stronger prior, reaching an asymptote of perfect agreement as 1/η2 → ∞.
The opposite pattern held for ordinary linear regression, with agreement being
perfect at 1/η2 = 0 and declining as the prior strength increases. The ordi-
nate indicates the percentage agreement on test item choices in a simulated bi-
nary decision task (see Methods). Results are averaged across 1000 simulated
datasets. Error bars represent ± SEM.
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Figure 5.6: Agreement between the COR model (with tallying decision rule) and the tal-
lying heuristic, as well as ordinary linear regression, as a function of the prior
strength. As expected, agreement (i.e., proportion of equal predictions on test
items) between the Bayesian COR model and the tallying heuristic increased
with a stronger prior, reaching an asymptote of perfect agreement as 1/η2→∞.
The opposite pattern held for ordinary linear regression, with agreement being
perfect at 1/η2 = 0 and declining as the prior strength increases. The ordinate
reflects the percentage agreement on test item choices in simulated binary de-
cision task (see Methods). The datasets used for this simulation are equivalent
to the ones displayed in Fig. 5.5. Error bars represent ± SEM.

5.5 Computational Study 7: Performance in real-

world datasets

In parallel to the half-ridge simulations, we investigate how the COR model per-

forms in the 20 original real-world environments that have been frequently used

to demonstrate less-is-more effects (Czerlinski et al., 1999). We ask: In data

sets where heuristics can outperform ordinary linear regression, can intermediate

Bayesian models still outperform both?

One exciting aspect of our Bayesian COR approach is that it specifies a continuum

of models between the extremes of linear regression and the heuristics. For many

environments, the best- performing model should lie somewhere between these two

extremes of covariance expectation. That is because, from a Bayesian perspective,

the model that fares best on a given decision task should be the one with a prior
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most closely matching the data’s generative process. Decision environments may

vary in the amount of cue covariance, however these covariances between cues are

not arbitrarily large (i.e., the covariance levels are not drawn uniformly from all

real numbers). Thus, we expected that for many environments, the best-performing

model should lie somewhere between these two extremes of covariance estimation.

5.5.1 Methods

The parameters in the 20 datasets (Czerlinski et al., 1999) were equivalent to those

in Chapter 4 and are listed below in Table 5.2. We created all possible comparisons

between the objects in each dataset, resulting in a binary criterion variable encoding

which of two objects is superior on each comparison. The COR model was cross-

validated on each dataset by splitting the total number of pairwise comparisons into

training and test sample. The size of the training sample was varied between 10, 20

and 115 comparisons, and the test set represented the complementary set of com-

parisons. We repeated this cross-validation process 1000 times and performances

were averaged across all. As in the half-ridge simluations, two of the datasets, Oxy-

gen and Ozone, only have 91 and 55 object pairs in total respectively, so the large

training sample size of 115 was excluded for those datasets. COR model weights

were derived by fitting the exact Bayesian posterior (Equation 5.18) to the train-

ing data. As the posterior weight matrix depends on the strength of the Bayesian

prior (i.e., 1/η2 in the matrix of penalties Λ in Equation 5.18 and 5.19), we derived

posterior weight matrices for different values of the Bayesian prior’s strength (see

Table 5.2). Next, we used the mean posterior weight matrix to make predictions

with respect to the test set via matrix multiplication (Equation 5.6). Both decision

rules are then applied to the resulting output matrix to generate predictions for the

test comparisons according to Equation 5.2 and 5.4. We also validated all model

weights and results with Markov chain Monte Carlo (MCMC) sampling directly

from the Bayesian posterior over weight matrices.
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Statistical Parameters in the Simulation
Number of objects 11 to 395
Number of pairwise comparisons N = 55 to N = 77815
Number of cues m = 3 to m = 18
Class variable (e.g., which house
had the higher actual sales price?)

Binary, ±1

Absolute correlation between cues
(averaged over cue pairs)

range = 0.12 to 0.63, mean = 0.31, median
= 0.28, sd = 0.14

Training sample size 10, 20, 115
Test sample size N−10, N−20, N−115
Number of cross-validation repeti-
tions

1000

Error variance σ2
ε = 1

Strength of prior

1/η2 = [1000000, 100000, 1000, 700,
330.08, 156.81, 74.50, 35.39, 16.81, 7.99,
3.80, 1.80,0.86, 0.41, 0.19, 0.09, 0.03,
0.01, 0.001, 0.0001, 0.00001]

Table 5.2: Parameters in the simulation of the 20 datasets as presented in Fig.5.7 and Fig.
5.8. A full list and descriptions of the 20 datasets are in Appendix B.

5.5.2 Results

Fig. 5.7 shows generalization performance for the COR model with the tallying

decision rule, and Fig. 5.8 shows results for the TTB decision rule. Importantly, as

with the half-ridge model, we find that CORs performance peaks for intermediate

priors in all 20 datasets.

Note that an approximately infinitely strong prior on the far right of each graph

(small values of η) in Fig. 5.7 corresponds to the tallying heuristic which learns

cue directions from the data, and a prior strength of zero (in the limit of η → ∞)

corresponds to ordinary linear regression. As expected, we find that the results dif-

fer from those in the half-ridge model which assumed that tallying already knows

cue directions in advance. Allowing the tallying heuristic to learn from data (Fig.

5.7) results in better performance relative to ordinary linear regression (cf. Fig. 4.3).

We find that, in 11 out of 20 datasets, a less-is-more effect could be observed where

the heuristic model, e.g., the tallying heuristic (η→ 0) outperformed ordinary linear

regression (prior strength of zero), with 10 and 20 training cases. However, impor-
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tantly, in all of those less-is-more cases, the models with intermediate prior strength

still outperformed both models.

Similarly, Fig. 5.8 displays results of the COR model with a TTB decision rule. An

infinitely strong prior (as η → 0) on the far right corresponds to the TTB heuris-

tic which learns cue rank orders from the data. The TTB heuristic (η → 0) out-

performed ordinary linear regression (prior strength of zero), in 18 out of the 20

heuristic datasets with 10 and 20 training cases. However, the performance peak

could still be found in the middle, i.e., for medium-strength priors. The perfor-

mance peak was approximately in the same place across training sample sizes, to

the degree that the model is correctly specified, however overall the optimal perfor-

mance in the COR model was less stable than in the half-ridge simulation. This is

due to the COR model being more clearly mis-specified (discussed below in Section

5.9 and the Discussion).

The key finding reported in Fig. 5.8 and Fig. 5.7 is that intermediate COR models

outperformed tallying and TTB in all 20 datasets, independent of training sample

size. This suggests that that less was not more in these datasets as the heuristics were

outperformed by a prior of finite strength that learns covariance from the training

data but nonetheless down-weights that information. Interestingly, these findings

contrast with the frequentist findings of Fig. 3.4 in Chapter 3: While the frequentist

case suggested that less-is-more effects are typically reversed when training sample

sizes are increased (i.e., regression model performs best), this relative reversal of

less-is-more effects often still happens in the COR model (Fig. 5.7). However, it is

no longer true that the most flexible model performs best with large training sample

sizes, as the intermediate strategies perform best independent of training sample

size.
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Figure 5.7: Generalization performance of the Bayesian COR model with the tallying de-
cision rule by training sample size in all 20 datasets that heuristics have been
extensively tested on Czerlinski et al. (1999). The abscissa represents an in-
creasing prior strength from left to right, and the ordinate represents the predic-
tive accuracy of the model. Note that an approx. infinitely strong prior (e.g.,
1/η2 = 1e+06) corresponds to the tallying heuristic that learns cue directions
from the data. A prior strength of zero (1/η2 = 0) corresponds to ordinary
linear regression. In 11 out of the 20 datasets, a less-is-more effect can be ob-
served, where the tallying heuristic outperformed ordinary linear regression,
with 10 and 20 training cases. For example, in the City Size, Car Accidents,
and Mammals datasets, the tallying heuristic outperformed ordinary linear re-
gression for training samples sizes of 10 or 20 training cases. However, the
optimal performance could be found in the middle, i.e., for medium-strength
priors. In other datasets, such as Homelessness, Fish Fertility, and Womens
Attractiveness, ordinary linear regression outperformed tallying. However, the
optimal performance for all datasets was found for intermediate COR models,
i.e., for medium-strength priors. Error bars represent ± SEM.
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Figure 5.8: Generalization performance of the Bayesian COR model with the TTB decision
rule by training sample size in all 20 datasets that heuristics have been exten-
sively tested on Czerlinski et al. (1999). The abscissa represents an increasing
prior strength from left to right, and the ordinate represents the predictive ac-
curacy of the model. Note that an approx. infinitely strong prior (e.g., 1/η2

= 1e+06) corresponds to the TTB heuristic, and a prior strength of zero (1/η2

= 0) corresponds to ordinary linear regression. In 18 out of the 20 datasets,
a less-is-more effect can be observed, where the TTB heuristic outperformed
ordinary linear regression, with 10 and 20 training cases. For example, in the
House Prices, Mortality, City Size, and Professor Salaries datasets, the TTB
heuristic outperformed ordinary linear regression for training samples sizes of
10 or 20, but the optimal performance could be found in the middle, i.e., for
medium-strength priors. In other datasets, such as the Cloud Rainfall or the
Ozone levels dataset, ordinary linear regression outperformed the TTB heuris-
tic, but the optimal performance can still be found in the intermediate COR
models, i.e., for medium-strength priors. Error bars represent ± SEM.
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As with the half-ridge simulations, the COR simulations reported here defined train-

ing sets by directly sampling pairs of objects (i.e., comparisons). We compared this

approach to one of sampling objects (and training on all pairs in the sampled subset),

to determine whether our results would be dependent on this sampling decision. In

short, the qualitative pattern of results is not dependent on the sampling method.

When sampling objects rather than comparisons, we varied the training sample size

between sampling 5, 7 and 16 objects, which correspond to 10, 21 and 120 possible

comparisons, respectively. We chose these training sample sizes to approximate the

training sample sizes used for the COR simulations when sampling comparisons

(i.e., 10, 20 and 115 training cases in Figs. 5.7 and 5.8). For both the tallying and

the TTB decision rule, the pattern is almost the same under both sampling methods.

Performance of all models is lower overall by a few percent in accuracy when sam-

pling objects, which makes sense as the models do not encounter test objects in the

training set first. Additionally, models with weaker priors (i.e., closer to ordinary

regression) showed a larger drop in performance under object sampling (especially

for smaller training sizes) than did models with stronger priors (i.e., closer to the

heuristics). Thus, sampling objects gives the heuristics a small advantage over ordi-

nary regression for the training sample sizes considered here. However, the number

of less-is-more effects (i.e., datasets in which heuristics outperform ordinary re-

gression) is the same and they occur in the same environments for both sampling

methods. Also, the location of the performance peak is the same (with some small

error) under both sampling methods for both the TTB and tallying decision rules.

5.6 Discussion

We find that both tallying and the TTB heuristic can be formally linked to full

regression models through a Bayesian prior on covariance among cues. We show

that heuristics correspond to an extreme Bayesian prior that deliberately ignores in-

formation (i.e., covariance among cues). Interestingly, less-is-more is observed for

comparing simple and complex models (e.g., Take-The-Best and regression), but

less-is-more is not true in that one can always do better by including all information
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and down-weighting it rather than throwing it out. That is, we find that intermediate

models which are sensitive to the information in the training data, always performed

better than heuristics.

The COR model extends the Bayesian half-ridge model with a Bayesian inference

model that learns cue directions and cue weights from the training samples, thereby

exhibiting less-is-more effects (e.g., in 18 out of 20 datasets in Fig 5.8). However,

typically the best performance is achieved by intermediate models of intermediate

prior strength along the Bayesian continuum. It can be observed that the location

of the best-performing model was more volatile in the COR model demonstrations

than in the half-ridge model (Fig. 4.3). This is because the COR model is more

clearly misspecified (see discussion below). Similarly to the preceding Chapter, a

central message of this Chapter is that ignoring information is never more. Even

for those cases where less-is-more effects could be found with either the TTB or

the tallying heuristic, intermediate models that down-weight covariance sensitivity

rather than entirely ignoring it did best (in contrast to the absolute less-is-more

claim (Box 2.4.2) (Gigerenzer & Brighton, 2009; Gigerenzer et al., 1999; Tsetsos

et al., 2016)). The Chapter contributes to the thesis’ Bayesian explanation for why

(relative) less can be more: Heuristics may excel not because of their ignorance of

information, but because they embody a prior that approximates the optimal prior.

Furthermore, the de-confounding in the Bayesian prior’s continuum again provides

evidence that heuristics perform well due to their large bias and not their simplicity

(i.e., dropping cues or dropping weights). This is demonstrated in the performance

comparison between the intermediate models (peak performance) and the heuristics

which only represent the limiting cases of the Bayesian prior. The COR model also

provides a model for unifying TTB (and tallying) with regression models on a single

dimension, depending on the decision rule applied.

On top of these formal developments, we have gained new insights into the role that

covariance estimation plays in heuristics vs. full-information models. Heuristics

may sometimes work well in practice as they correspond to an infinitely strong
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prior that is completely oblivious to covariance in the training data, but they will

usually be outperformed by a prior of finite strength that leaves room for learning

covariance from experience. We expect that natural environments rarely correspond

to the extreme prior of a heuristic, assuming complete independence among cues,

however, potentially more often the environments match the intermediate prior’s

strength of some covariance among cues. That is, we believe that most real-world

environments probably exhibit some level of covariance between predictors in

the environment, as indicated by the average covariance levels in the 20 original

datasets for example (Table 5.2).

5.6.1 Psychological Implications

As stated in the half-ridge Chapter, the current work is formal and does not at-

tempt to provide a model of human performance. Nevertheless, it has implications

for psychological processes. In previous psychological studies, full-information

models that are fully sensitive to covariance in the environmental are usually only

contrasted with heuristics that ignore this covariance information (e.g., Chatper 3).

However, this Chapter provides evidence that the best-performing model uses a

prior that down-weights covariance sensitivity instead of entirely ignoring it or be-

ing completely sensitive to it (i.e., a prior of zero strength in the COR model).

To the extent that people are tuned to the structure of the environment, intermedi-

ate solutions might reflect the functioning of psychological processes. However,

tractable algorithms for these intermediate strategies have yet to be formulated. On

the other hand, it could be that the intermediate strategies are computationally in-

tractable. In that case, these intractable algorithms might embody the extant heuris-

tics, meaning that heuristics represent the correct psychological models and are suc-

cessful because they efficiently approximate the optimal solution (e.g., COR with a

finite prior strength). Alternatively, people might be doing something much more

sophisticated and sensitive to the data, along the lines of faithful implementation of

COR. As suggested in Chapter 4, under this theory, the empirical evidence taken to

support fast and frugal heuristics is mistaken: heuristics fit data well only because
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they closely mimic the much more sophisticated strategy the brain is carrying out.

Some empirical evidence that could potentially indicate intermediate strategies at

the psychological processing will be discussed, despite being merely speculative. If

people were relying on the TTB heuristic, search should stop after identifying the

most valid cue that discriminates among options. Hence, the TTB heuristic predicts

people rely on few cues and entirely ignore remaining cues (i.e., an infinitely strong

prior in the COR model with a TTB decision rule). However, a recent study by van

Ravenzwaaij et al. (2014) indicates that people integrate the full information relying

on all cues. van Ravenzwaaij et al. (2014) used a hierarchical Bayesian model (’stop

and search model’) to model people’s searching and stopping behaviour in looking

up cues in the German city size task. In one of the experiments, participants were

free to determine the number of cues they wish to examine. The author’s ”stop

and search model” was no better than TTB at predicting the specific cue at which

participants would stop their search. However, when it came to how many cues

people take into account overall, the stop and search model predicted that partici-

pants would include more cues than predicted by TTB. In fact, the authors found

that on at least half of the trials, participants relied on all of the available cues as

predicted by a the full-information model strategy. There are a multitude of studies

showing similar evidence - when participants are presented with multiple cues on

the screen, they seem to make use of all the information, going against the predic-

tions of the TTB heuristic (Newell & Shanks, 2003; Newell et al., 2003). These

results are relevant for our work, as they suggest that people might be using all of

the available information but down-weighting it, rather than entirely dropping cues

such as suggested by extreme TTB. Future research could potentially try to apply

the current Bayesian COR framework to data from studies such as in van Raven-

zwaaij et al. (2014), to uncover whether intermediate weighting strategies better

explain people’s inference from cues to prediction. However this is speculative at

this point and it needs to yet be investigated first whether, when people rely on the

full information, they down-weight this information.
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5.6.2 Limitations and Extensions of the COR model

Decision Rules

A potential limitation of the COR model are the decision rules which are applied

to COR’s posterior weight matrix. Yet, as noted above, importantly, the element

varying across the continuum is the priors strength (as reflected in the posterior

mean W∗, Equation 5.18), and the prior is responsible for recovering the heuristics

in the limit, rather than decision rules or the choice of regularization type (i.e., both

L2 and L1 regularization result in the heuristics in the limit). Nevertheless, we

point out the decision rules as a limitation of the model architecture. In response to

this potential criticism, we developed the half-ridge model which supports the same

conclusions but does not require downstream decision rules. The half-ridge model’s

decision rule is the Bayes-optimal one for the task: It integrates predictions over the

posterior distribution of weight estimates, which is equivalent to using the mean of

the posterior, by linearity of the mapping from weights to predictions.

Crucially, our argument is more general and goes beyond the model-specific details

of the COR model. Based on the different Bayesian frameworks developed in this

thesis, and the observation that different choices of regularization scheme (corre-

sponding to Gaussian vs. Laplacian priors) lead to the same heuristics in the limit,

we conjecture that heuristics can arise as limiting cases of many different Bayesian

models that assume different generative processes. We show that, for a variety of

formalisms, extreme priors lead to heuristic-like models.

Misspecification

As mentioned in Section 5.9, the COR model is more clearly misspecified than the

half-ridge model. We emphasize that, to a certain extent all models in this thesis are

misspecified (like all models are when it comes to real-world environments). The

fact that the performance peaks in the half-ridge simulations (Fig. 4.3) were not

significantly affected by training sample size suggests that the degree of model mis-

specification was not sufficient to reveal itself in this way. Importantly, in contrast

to the half-ridge model, the COR model is misspecified because of the multiplex-
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ing of the criterion variable and a model architecture that is artificially multivariate

despite the original prediction problem being univariate. The higher degree of mis-

specification is responsible for the optimal performance being less stable than in the

half-ridge model simulations (Fig. 5.7 and 5.8). To avoid confusion on this topic

and stick to the central point, we focus the main results of the Bayesian frame-

work on the Bayesian half-ridge model and rely on COR to demonstrate how TTB

can be accommodated within this larger theoretical framework. Crucially, whether

the models are misspecified or not does not impact the mathematical fact that the

Bayesian models converge to the heuristics under strong priors, or the empirical fact

that intermediate models outperform the heuristics on real datasets.

Logistic Regression

As in the half-ridge Chapter, we relied on least squares regression to be consis-

tent with past work on the 20 heuristic datasets (e.g., Czerlinski et al. (1999)) and

to replicate less-is-more effects with our Bayesian framework. However, as the

originally continuous criterion variables were discretized to form binary dependent

variables, a logistic regression would be more appropriate for the binary outcomes.

To confirm that the choice of link function was not critical, we re-analysed the data

using logistic regression as presented in the preceding half-ridge Chapter. We found

no significant difference between the two regression approaches on the datasets con-

sidered (See Section 4.6.4 for the statistics). A future extension could be to build

the COR model continua within a (Bayesian) logistic regression framework rather

than the linear one used here.

Why were the particular heuristics chosen?

We chose the two particular fast-and-frugal heuristics, i.e., tallying and TTB, for

our Bayesian frameworks as they are among the most well-known fast-and-frugal

heuristics, and because they are intuitive and arise in a number of contexts. Both

heuristics have been repeatedly contrasted with rational full-information linear re-

gression approaches (Czerlinski et al., 1999; Gigerenzer & Goldstein, 1996; Kat-

sikopoulos et al., 2010), which makes them very suitable for consideration as part
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of a Bayesian inference model for our purpose. However, including other heuristics

will provide a great extension of the current Bayesian program to better understand

heuristics and their relationship to full-information models and Bayesian inference

models. Fortunately, analyses with the initial two heuristics proved tractable, pro-

viding an opportunity to argue that less is not more when less involves ignoring

(rather than down-weighting) information. To justify the current focus on the fast-

and-frugal heuristics as a sub-problem for the Bayesian inference frameworks, refer

to Chapter 2, where I explained that heuristics in the heuristics-and-biases account

are not formalized and therefore more difficult to be included in any formal frame-

work, as they do not make falsifiable predictions and can be explained with multiple

theories (Gigerenzer & Goldstein, 1996) (Nevertheless, see recent work by Lieder

et al. (2017) for an example of a rational process model that tries to capture the

anchoring-and-adjustment heuristic).

5.6.3 A Novel Regularization Account

Our regularization approach (COR) is related to ridge regression, and although ridge

regression can reduce overfitting, many problems researchers face across fields such

as genetics, machine learning, neuroscience, or finance may be better addressed

by CORs regularization-by-co-variation approach. This may especially helpful

when datasets have high levels of redundancy. Applying COR allows a contin-

uum of covariance sensitivity where the optimal solution can lie anywhere along

that continuum. The Bayesian framework also reiterates the importance of apply-

ing fundamental machine learning concepts to psychological findings (Gigerenzer

& Brighton, 2009). In doing so, we provide a formal understanding of why heuris-

tics can outperform full-information models.

5.7 Summary
This Chapter provided a Bayesian model formally unifying both tallying and TTB

with regression based on a prior of covariance sensitivity. First I discussed the

existing literature on the role of covariance in heuristics and why it may be an im-

portant factors that differentiates heuristics from full-information models. Next, I
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introduced the Bayesian learning model based on covariance sensitivity. A first

computational study demonstrated convergence of the Bayesian model with either

heuristic in the limit with a strong prior. A second computational study assessed

the generalization performance of the COR model in the classic 20 real-world en-

vironments (Czerlinski et al., 1999) and found again that intermediate models per-

formed best independent of dataset. The Chapter concluded on the same note as the

Bayesian half-ridge Chapter 4: We find that while relative less-is-more is possible,

absolute less-is-more is not. Finally, the limitations of the COR model were dis-

cussed such as its misspefication, as well as the psychological implications. Next,

I will explore whether less-is-more at the psychological level, i.e., as none of the

previous Chapters have investigated what people do. I will lay out how the findings

in the psychological Chapter are connected to the current Bayesian framework, and

will come to conclude on a consistent note regarding less-is-more.
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5.8 Chapter Appendix: Cue validities as transforma-

tions of single regression weights
These derivations will show that heuristic cue validities are direct linear transfor-

mations of single-predictor regression weights.

Cue validities are defined for binary decision tasks, wherein two objects (e.g., two

soccer teams, Fig. 5.1) are compared on several cues and the inference is made

about which object has the higher criterion value (i.e., which team will win the

match). The criterion variable encodes the actual outcomes (e.g., which teams ac-

tually win the soccer matches), and can be coded as -1 and +1 as in Figure 5.1. Cue

validities, v, reflect the probability with which single cues can identify the correct

alternative, and can be derived as the proportion of correct inferences made by each

cue across a set binary comparisons Martignon and Hoffrage (1999):

v =
R

R+W
(5.7)

where R = number of correct predictions, W = number of incorrect predictions, and

consequently, 0≤ v≤ 1.

For example, Table 5.3 portrays a binary decision environment where five object

comparisons are made on the basis of three cues. Note that the computation of cue

validities ignores those cases where a cue predicts indifference between objects. A

fundamental difference between cue validities and the regression weights derived

by linear regression is that cue validities completely ignore covariance among cues.

In contrast, regression weights as estimated by a multiple linear regression model

always consider the covariation among cues, as seen in the expression for the pa-

rameter estimate,

ŵ = (XT X)
−1XT y, (5.8)

where XT X captures the covariances. In an ordinary linear regression analysis with

multiple cues, the covariance among cues has a direct influence on the regression
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weights ŵ. If the regression weights were instead derived by regressing the criterion

variable on each cue alone, i.e., eliminating all other cues from the model (single-

predictor regression analysis), the weight magnitudes, valences as well rank order

of weights would change (see for example Appendix B, Fig. ??). It can be shown

that cue validities are a linear transformation of single-predictor regression weights

(Martignon & Hoffrage, 1999), according to the following relationship:

ŵ = 2v−1. (5.9)

This relation holds because, when there is a single predictor (x), the XT X term in

Eq. 5.8 is equal to the number of cases where the predictor makes a prediction

(x = ±1), with cases where the predictor is indifferent (x = 0) excluded. This can

be seen from the computation in Table 5.3. That is,

XT X = R+W. (5.10)

At the same time, XT Y counts up all cases where a cue predicts the criterion (i.e.,

xi = xi) and subtracts those cases where the cue makes the opposite prediction (i.e.,

xi =−xi), while ignoring indifferent cases of xi = 0 (see Table 5.3). Thus

XT Y = R−W. (5.11)

Therefore, the single-predictor regression coefficient estimate ŵ can be reformu-

lated as

ŵ =
R−W
R+W

=
2R

R+W
− R+W

R+W

= 2v−1.

(5.12)

Note also that the expression R−W
R+W in the first line of Eq. 5.12 represents the

Goodman-Kruskal rank correlation as suggested by Martignon and Hoffrage
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Comp-
arison Cue x1 Cue x2 Cue x3 y r1 w1 x1

T y x1
T x1

1 -1 -1 0 -1 1 0 1 1
2 1 -1 1 -1 0 1 -1 1
3 0 -1 0 1 0 0 0 0
4 1 1 1 1 1 0 1 1
5 1 1 -1 1 1 0 1 1

v1 =
3
4 v2 =

4
5 v3 =

1
3 R1 = 3 W1 = 1 R1−W1 = 2 R1 +W1 = 4

Table 5.3: Computation of cue validities: A binary prediction task where five object
comparisons are made on the basis of three cues. The cue columns represent
cue difference values, x1,x2,x3 respectively, and are coded in the same way as
the coding column in Fig. 1 in the main text. The criterion variable y contains
the outcome of each comparison. r1 and w1 indicate whether cue x1 predicted
the outcome correctly or incorrectly (r = right, w = wrong) on each comparison,
and R1 and W1 are the sums across all comparisons, R1 = ∑r1 and W1 = ∑w1.
Then, the cue validity for cue x1is computed as v1 =

R1
W1+R1

. The validities for x2
and x3 are defined similarly.

(1999). The linear relationship in Eq. 5.9 reveals that cue validities are a posi-

tive linear rescaling of single-predictor regression weights. Therefore they yield

the same predictions in binary comparisons when used in the TTB heuristic for

example, due to returning the same cue rank orders. Note that this will no longer

be the case when regression weights are computed in the presence of multiple cues.

5.9 Chapter Appendix: Posterior Mean for COR

The COR model approach differs from standard regularized regression in that the

prior modulates sensitivity for covariation among cues. This is achieved by ex-

pressing the regression problem in multivariate terms, by replicating the criterion

variable y as many times as there are cues (i.e., m times). Due to this multiplex-

ing, the model architecture implements m regression problems at once, meaning the

criterion variable y is regressed onto all cues m times (Fig. 5.3). The weights con-

stitute an m×m matrix W, with each column, W· j, representing the weights for the
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jth copy of the outcome, y j:

W =


w11 · · · w1m

... . . . ...

wm1 · · · wmm

 . (5.13)

As in standard regression, the likelihood for each y j is given by a Gaussian with

error variance σ2:

p(y j|X,W) ∝ exp

(
−
(XW· j−y j)

T (XW· j−y j)

2σ2

)
(5.14)

where X is the matrix that contains the cue data and is indexed by trials and cues

(i.e., n×m).

In contrast to ridge regression, where all weights are penalized equally, in the COR

model only the off-diagonal elements of the weight matrix W are penalized, while

the diagonal weights are left unpenalized. This is implemented by assuming an im-

proper uniform prior on all Wii (1 ≤ i ≤ m) and a prior of N
(
0,η2) for all Wi j

(i 6= j). The joint distribution on W treats all weights as independent. The model

architecture is illustrated in Fig. 5.3, were the solid arrows represent the diagonal

weights (direct weights) and the dashed arrows represent the off-diagonal weights

(cross-weights). Penalizing only the cross-weights has the effect that the strength

of the prior (1/η2) modulates the model’s sensitivity to covariation among cues.

When 1/η2 = 0 (uniform prior on all weights), the posterior for the weights W· j is

identical for all y j, with mean (and mode) equal to the ordinary least squares linear

regression solution. As 1/η2 → ∞, the estimated cross-weights converge to zero,

while the direct weights stay un-penalized. Thus, in the limit, the direct weight w j j

is the only non-zero weight in each column W· j. This means that each cue effec-

tively has its own isolated regression (i.e., as if only direct weights were present in

Fig. 5.3, with no cross-weights). These single-predictor regression weights are lin-

ear transforms of the cue validities as used by the heuristics (see proof in Eq. 5.12).

Therefore, in the limit, when the COR model weights are paired with a decision rule



5.9. Chapter Appendix: Posterior Mean for COR 145

(Eq. 5.2 or 5.4), the model’s behaviour converges to that of the respective heuristic.

To derive the posterior distribution for COR’s weight matrix, we observe first that

the weights for the different copies of y are decoupled. More precisely, the prior,

likelihood, and hence posterior all factor into separate functions, one for each set

of weights W· j. Therefore we can derive the posterior separately for each set. The

prior for each set of weights is given by

p(W· j) ∝ exp
(
−1

2
WT
· jΣW· j

)
(5.15)

where Σ is the precision matrix, defined by Σ j j = 0, Σii =
1

η2 for i 6= j, and Σik = 0

for i 6= k. Combining this with the likelihood in Eq. 5.14 yields the posterior:

p(W· j|X,y) ∝ exp
(
−1

2
WT
· j

(
Σ+

1
σ2 XT X

)
W· j +

1
σ2 WT

· jX
T y
)

(5.16)

∝ exp

(
− 1

2σ2

(
W· j−

(
Λ+XT X

)−1XT y
)T

(
Λ+XT X

)(
W· j−

(
Λ+XT X

)−1XT y
))

.

(5.17)

That is, the posterior for W· j is a multivariate Gaussian with mean at

(
Λ+XT X

)−1XT y (5.18)

and covariance matrix equal to

σ
2(

Λ+XT X
)−1

. (5.19)

The matrix Λ is interpretable as a matrix of penalties on the components of W· j,

with Λ j j = 0, Λik = 0 for i 6= k, and Λii =
σ2

η2 for i 6= j.

The posterior weight matrix depends on the strength of the prior, as expressed by

1/η2 in Λ (Equation 5.18), resulting in different posterior weight estimates with

different η .
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It needs to be noted that, in contrast to the half-ridge model, the COR model is

misspecified, because of the multiplexing of the criterion variable. The resulting

model architecture is artificially multivariate despite the original prediction problem

being univariate. Nevertheless, the COR model opens up new insights into the role

of cue covariance in establishing a continuum between heuristics that rely on cue

validity and full-information models. Penalizing only the cross-weights in the COR

model architecture results in a regularization of covariance sensitivity in the model,

with a continuum ranging from ordinary linear regression (fully sensitive to the

covariance structure among cues) to heuristics that rely on cue validities (insensitive

to any cue covariance).
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Chapter 6

Do people learn weights or ranks?

Psychological evidence for

less-is-more

”Man is not what he thinks he is, he is what he hides.”

ANDRÉ MALRAUX

None of the previous Chapters addressed psychological processing yet. We devel-

oped a formal computational framework for why less can be more (or appear to be

more). In contrast, this Chapter explores to what extent less is more for humans,

i.e., to what extent people choose to ignore information via simple heuristics, or in-

clude the full information. Referring back to the original definitions of less-is-more

in Chapter 2, importantly, we address the descriptive psychological definition (Box

2.4.3) which asks: To what extent do people rely on simple heuristics rather than

full-information models? We do not address the capacity psychological definition

(Box 2.4.3) which states that when information gets too much, people may process

less information as it results in better performance. Hence, the less-is-more effect

at the capacity level may still hold, while it does not invalidate the other descriptive

psychological less-is-more effect. We are interested in whether people usually rely

on simple heuristics or full-information models. While the work in previous Chap-

ters looked at statistical less-is-more effects (relative and absolute), this Chapter

looks at a different kind of psychological less-is-more phenomena (see definitions
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in Section 2.4).

This Chapter compares people’s use of the TTB heuristic and logistic regression

by comparing the requisite representations for TTB heuristic and logistic regression

against people’s active information gathering behaviour using information theory.

The goal is to better understand what representations people choose to learn in or-

der to understand what information people have at their disposal for their decision

strategies: Do people use the full information and weight each piece of information

(regression)? Or do they use only the cue rank orders and ignore cues altogether

(TTB)?

We find evidence that people in fact use all available information and learn cue

weights rather than cue rank orders. That is, people do not exactly follow the extant

fast-and-frugal heuristics in our experiment which throw out information entirely,

but are more sensitive to learning the precise weights in the training data. This is

consistent with the Bayesian framework’s predictions in previous Chapters, propos-

ing that people may be following a more sophisticated strategy which is sensitive

to the full information, even while matching a heuristic strategy. We establish this

with an active learning paradigm, which focuses on people’s active information-

gathering behaviour. The reason we use an active learning paradigm to understand

people’s decision strategies is that it can move beyond traditional passive meth-

ods in decision making experiments: While typically decision making experiments

place participants into a passive, controlled experiment where stimuli have already

been carefully selected by the experimenter and participants make forced choices,

an active learning paradigm allows the experimenter to look at what stimuli people

choose to learn in the first place, and subsequently what they rely on for decision

making. That way, we are able to track both people’s active learning process but also

their passive decision making process in a test phase. Overall, the Chapter finds sup-

port for the same conclusion as previous Chapters, on a psychological level. Less is

not more in our experiment (descriptive less-is-more). Furthermore, the method of

using information gathering behaviour to separate behaviourally hard-to-distinguish

decision models is novel and we argue that it could become a promising new model
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selection method for psychology.

Next, we will motivate our active learning paradigm as a new method to look at

people’s decision making by first introducing limitations of existing evidence for

people’ use of heuristics compared to full-information models. We will conclude

that the existing evidence is sparse, inconclusive, or sometimes appears artificially

induced. That is because the methods currently in use for discriminating among

model classes are too homogeneous. What is missing is a way of moving beyond

the typical passive behavioural model fits, by finding a way of looking at people’s

decision making process earlier on, i.e., when gathering information relevant for the

decision. Then we will introduce active learning as a method in psychology. Sub-

sequently, the two active learning algorithms will be introduced: an active learn-

ing algorithm for both Take-The-Best and Logistic Regression, which assume that

people learn to establish cue rank orders or cue weights, respectively. Next, an

active learning experiment designed to distinguish between these models is intro-

duced. By letting both models and humans actively learn, we can compare their

active queries in the active learning task. The experiment also looks at people’s

behaviour in dependence of the compensatoriness (Fig.2.4) in the environment, as-

sessing whether TTB is be a better psychological model under non-compenstory

environments, while a full-information model may be more appropriate in compen-

satory environments (Martignon & Hoffrage, 1999). Finally, we will draw a link

between our findings and the Bayesian framework in this thesis.

6.1 Traditional model testing approaches

While the fast-and-frugal heuristics approach gained great popularity based on

showing statistical less-is-more effects as presented above in (Brighton, 2006;

Chater et al., 2003; Czerlinski et al., 1999), the empirical evidence for any spe-

cific use of heuristics remained relatively sparse. One of the core questions in this

debate concerns the way in which people look up and integrate information, and

whether this behaviour conforms to the search and stopping rules as predicted by

the heuristics or full-information models (Box 2.3.2, 2.3.4, 2.3.3). While some
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studies find that people’s search behaviour and response times conform to the TTB

heuristic at least sometimes, and in an adaptive manner (e.g., Bergert & Nosofsky,

2007; Bröder & Gaissmaier, 2007; Dieckmann & Rieskamp, 2007; Rieskamp &

Dieckmann, 2012), other studies find that people are better fit by TTB only in a

third of the cases while adopting other full-information strategies instead (Bröder,

2000; Glöckner & Betsch, 2008; Newell & Shanks, 2003; Newell et al., 2003).

One common method to disentangle people’s use of noncompensatory heuristics

(TTB) versus compensatory full-information models has been probing whether par-

ticipants look up additional information (Newell et al., 2003). However, this is only

a limited approach to the problem at hand since it is only ever possible to check for

k + 1 look-ups given Ck cues presented so far and it has been argued that people

look up additional information but do not use it (Marewski & Mehlhorn, 2011). If

people were using TTB, their information search of cues should stop in accordance

with its stopping rule. In contrast, if they were using a compensatory strategy, infor-

mation search should continue beyond that. Interestingly, as outlined above, a large

body of studies found the opposite to TTB - people were integrating the full infor-

mation available (Bröder, 2000; Glöckner & Betsch, 2008; Newell & Shanks, 2003;

Newell et al., 2003). Hence, fast-and-frugal heuristics proponents tested people’s

use of TTB when acquiring additional information was costly (Newell & Shanks,

2003; Newell et al., 2003). For example, Dieckmann and Rieskamp (2007, 2012)

first showed in computer simulations that in environments with high redundancy

among cues, TTB can be as accurate as naive Bayes, and then experimentally

tested whether people’s choice of strategies conforms to this pattern, such that in

high-redundancy environments, TTB would better predict participants’ judgments,

whereas in low-redundancy environments, full-information strategies would predict

best. In the learning phase, participants rarely stopped their information search af-

ter finding a first discriminating cue as predicted by TTB: Stopping consistent with

TTB was observed in 26% of decisions in the low-redundancy condition and 23%

in the high. This pattern changed dramatically when information search costs were

introduced in the test phase. In the low-redundancy environments, people stopped
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search in accordance with TTB for 44% of decisions, but in the high-redundancy

environments it became the predominant strategy, with 77% of all decisions. These

findings suggest the prevalence of TTB use can be increased by increasing cue in-

formation cost. Nevertheless, how surprising is this finding and how much does it

tell us about people’s actual use of heuristics? In order to elicit higher prevalence of

TTB use, the above studies introduced an external information cost (Dieckmann &

Rieskamp, 2007; Newell & Shanks, 2003). This suggests that the noncompensatory

search behaviour in line with TTB may have been partly artificially induced, as it is

sensible to use less information when it is costly, i.e., people did what any sensible

model would do. It would present much stronger evidence if people readily used

TTB without the additional search cost in the experiment.

What other model testing approaches have been used? The model dispute over

heuristics and full-information models has been about their psychological plausi-

bility. A repeated argument has been that non-compensatory strategies are sim-

pler and require less computational capacity and are therefore more plausible (Todd

& Gigerenzer, 2000). Yet, the most common method of pitting full-information

models and heuristics against each other have been statistical simulations, showing

that one outperforms the other (i.e., relative less-is-more, Box 2.4.1). For exam-

ple, as demonstrated in previous Chapters, sometimes heuristics outperform full-

information models (Czerlinski et al., 1999; Gigerenzer & Goldstein, 1996; Kat-

sikopoulos et al., 2010). In contrast, other studies show that there is no strong

reason to prefer TTB over other cognitive models as it does not perform noticeably

better (Chater et al., 2003; Schulz, Speekenbrink, & Shanks, 2014). While statisti-

cal simulations are appropriate for understanding relative and absolute less-is-more

effects, it is not sufficient to derive conclusions about people’s psychological repre-

sentation. We argue that the psychological and statistical less-is-more effects need

to be distinguished such as by definitions in Chapter 2. Unfortunately, in the litera-

ture, evidence for the relative less-is-more effect seems to often get used as evidence

for the psychological less-is-more effect, as evident in Gigerenzer and Brighton

(2009)’s following statement:
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Less-is-more effects: More information or computation can decrease accuracy;

therefore, minds rely on simple heuristics in order to be more accurate than strate-

gies that use more information and time. (Gigerenzer & Brighton, 2009, p. 110)

However, we argue, that just because one class of models can beat another with

better predictions, it does not follow that this class is necessarily a better psycho-

logical representation of what people actually do. We also conjecture that it is not

enough to assume people use heuristics because of their simplicity and accuracy.

Instead, psychological processing has to be investigated independently with appro-

priate methods that can elicit people’s representations. Although whole research

paradigms are dedicated to solving the question about whether people rely on sim-

pler heuristics or full-information mechanisms, different methodologies currently

in use to answer this question are scarce and homogeneous. Especially given the

current replication crisis discussion (Maxwell, Lau, & Howard, 2015; Stroebe &

Strack, 2014), psychology is in dire need of novel model selection methods.

We propose active learning as a novel method to solve the dilemma of discrimi-

nating among full-information and heuristic strategies as psychologically plausible

decision models. What most previous decision making studies have in common

is that they study peoples decision making in static, passive and highly controlled

experiments. Yet, in order to answer the crucial question about what information

people hold in memory and how they look up knowledge when making decisions,

we believe one has to look at an earlier stage in the process –at the stage of learn-

ing the relevant information in the first place. We argue that stronger evidence for

peoples use of either TTB or a full-information strategy comes from the way people

actively acquire information, i.e. cue weights or cue orders, in the respective envi-

ronments. If a cognitive agent has evolutionarily developed to prefer a certain class

of models as her means to learn a cognitive representation in a particular environ-

ment, then the way she sequentially selects information should (at least partially)

reflect this representation. For example, if an agent has come to apply TTB, then

-intuitively- she should try to gather information about the cue rank orders that will
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reduce her uncertainty maximally, and so forth. Using this way of re-creating the

structure of a cognitive mechanism, it becomes possible to set up active learning al-

gorithms for many different cognitive models over time. We firstly introduce active

learning as a method in psychology in general and then our novel active learning

algorithms for decision models of TTB and logistic regression (a full-information

model). We suggest that the active learning method can be used as a general new

method to perform model selection in psychology. Thereby, we rely on the active

learning method to answer the question: Do people use heuristics or full regression

models, i.e., is less more at the psychological (descriptive) level?

6.2 Active Learning: Do people learn with respect to

cue weights or cue orders?
The main idea behind psychological theories of active learning is to describe a learn-

ing agent as optimally designing experiments (Chaloner & Larntz, 1989). That is,

given that one wishes to find the true hypothesis out of many potential explanations

as fast as possible, an agent assigns prior probabilities to each hypothesis accord-

ing to some objective criterion such as available frequency data or according to the

subjectively judged plausibility of each hypothesis. Each possible outcome of each

possible experiment can thus be considered in a ”preposterior analysis” (Raiffa &

Schlaifer, 1961) assessing the ways in which each possible experimental outcome

could modify beliefs about the hypothesis. Optimal experimental design (OED) re-

lies on increasing information gain and maximizing an informational utility, which

is typically a measure of how much the beliefs about the hypotheses have changed

and the uncertainty has been reduced. A common measure of uncertainty reduction

is entropy reduction (Shannon, 1948). Shannon entropy expresses the prior uncer-

tainty about a hypothesis, while the reduction in entropy refers to the reduction in

uncertainty about the hypothesis after seeing some evidence. There has been a great

deal of interest in both normative and descriptive questions surrounding human in-

formation acquisition. In a probabilistic framework, many OED models have been

used to model human behavior on cognitive tasks such as feature learning (Griffiths
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& Austerweil, 2009), reward-specific information search (Meder & Nelson, 2012),

and to assess the trade-off between exploration and exploitation (Knox, Otto, Stone,

& Love, 2011). Oaksford and Chater (1994) were among the first researchers to de-

fine participants’ information query behaviour as active information selection. In

a series of experiments they showed that the way people select cards in the Wason

card selection task is in line with optimal experimental design, thereby re-redefining

what was thought of as irrational behaviour into a sensible strategy to test hypothe-

ses. Markant and Gureckis (2013) investigated if it is better to select or receive

information for testing hypothesis about categories and showed that participants ac-

tively selecting categories tend to search in high information regions more along

the category boundaries, resulting in a faster learning curve and lower classification

error after fewer learning trials (Markant & Gureckis, 2013).

In this current study, we want to assess to what extent different active learning mod-

els based on uncertainty reduction can match participants’ behaviour in an active

learning experiment, but with the goal of distinguishing among decision models.

Thereby we use the notion of efficient information gathering to assess what people

are trying to learn about Bramley et al. (2017). As there are no active learning coun-

terparts to these decision models yet, we developed two entropy-minimizing learn-

ing algorithms, one for a cue-ranking strategy and one for a cue-weighing strategy.

Next, we compare the models’ a priori search queries to the queries made by partici-

pants in an active learning task with pairwise comparisons. By letting people freely

choose among pairwise comparisons during learning, we can investigate whether

people pick information such that they learn about cue orders, or instead learn cue

weights directly as proposed by the active logistic regression strategy.

6.3 Active learning algorithms

Both active learning algorithms essentially rely on a one-step ahead greedy uncer-

tainty minimization of the uncertainty over possible input queries. Input queries

in the active learning context are all those observations that an active agent could

make next, e.g., choosing from different pairwise comparisons (such as cities in the
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city size task). Greedy algorithms always choose as the next observation that query

which currently promises to reduce the uncertainty about the learning model maxi-

mally. In that way, the active algorithms’ one-step ahead queries can be compared

with the queries made by participants.

6.3.1 TTB

The TTB heuristic assumes that people look up cues sequentially in the order of

their cue importance, and stop search as soon as a cue favours one option over the

other (Box 2.3.2). Hence, the active TTB algorithm learns with the goal of estab-

lishing the cue rank orders and not the precise weights. We implemented a Bayesian

version of TTB that estimates a distribution over cue weights via Metropolis-

Hastings sampling and then generates multiple realizations of the heuristic given its

current posterior’s cue rank orders. These multiple realizations of TTB are called

proposal TTBs and differ in their cue rank orders. The proposal TTBs can then be

used to create multiple realizations of model predictions over the input queries (i.e.,

possible next pairwise comparisons), and the predictive variances for input queries

can be assessed as the amount of disagreement over all proposal TTBs. Higher

disagreement means that the different proposal TTBs generated a higher predictive

variance for an input query. Queries with higher uncertainty lead to higher dis-

agreement and are therefore (in the long run) expected to reduce uncertainty most

in a one step ahead greedy search. The active TTB algorithm therefore chooses that

query as its next observation where the uncertainty is maximal, as this is the query

where uncertainty reduction is expected to be largest. In other words, the active

TTB algorithm makes choices that are expected to learn most about the underlying

cue rank orders.

6.3.2 Logistic Regression

Logistic regression is set up as the competing full-information model to the TTB

model. In contrast to the heuristic which relies on the cue rank order and ignores

cues, logistic regression optimally weighs each cue and integrates all of them (Box

2.3.4). The active logistic algorithm was set up to learn with the goal of establishing
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the cue weight magnitudes.

We implemented a Bayesian version of logistic regression based on a random walk

Metropolis algorithm. We use Gibbs sampling to draw posterior MCMC-samples

of the regression weights. These multiple realizations of posterior weights result in

multiple realizations of the model, i.e., it creates proposal logistic regressions esti-

mates. These proposal models can then be used to generate model predictions over

all input queries. As in the active TTB model, the predictive variance for each query

can finally be summarized by the disagreement among proposal models. Thereby

we built a logistic regression analogue to the active TTB that works in the same

way. The active logistic model hence chooses that input query next which has the

largest predictive variance, i.e., uncertainty, and is expected to reduce uncertainty

maximally. Instead of trying to drive down the uncertainty with respect to cue rank

orders, the logistic algorithm tries to drive down uncertainty with respect to the

regression weights.

6.4 Degrees of Compensatoriness

We are interested in the performance of the two proposed active learning models

in environments with different ”compensatoriness” (Martignon & Hoffrage, 1999)

(Fig. 2.4). Note that a non-compensatory environment can be defined as a logistic

regression environment in which the β weights are exponentially decreasing. In

order to create different degrees of ”compensatoriness”, we make use of a math-

ematical trick that allows us to rely on a single parameter to smoothly vary from

compensatory to non-compensatory environments through a ”stick breaking pro-

cess”. The generation would be of a set of 4 weights β 4
k=1 through:

β
′
k ∼ Beta(1,θ) (6.1)

Define {β ′k}4
k=1 as: (6.2)

βk = β
′
k

k−1

∏
i=1

(1−β
′
i ) (6.3)
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As the expectation of the Beta-distribution is defined as α

α+θ
, a perfect TTB envi-

ronment corresponds to setting θ to 1 or greater as this would lead to a perfectly

non-compensatory weight structure. Given the strict boarder of θ = 1 that separates

compensatory from non-compensatory strategies, we will use θ = [∼ 0,0.5,1,2,∼

∞] for all the upcoming scenarios as this generates degrees of compensatoriness

starting from uniform weights (θ ∼ ∞) all the way to an environment where only

one cue matters (θ ∼ 0). Fig. 6.1 shows the weighting structures that result from

simulating different levels of compensatoriness with four cues by increasing θ .
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Figure 6.1: Compensatoriness for five different levels of θ . The x-axis represents four dif-
ferent cues and the y-axis displays the cue weight magnitudes. These five levels
of compensatoriness were used as five conditions in the Experiment below.

The heuristic literature predicts people’s choice of decision model is adaptive to

compensatoriness and we sought to see whether this is also the case for active learn-

ing models (Martignon & Hoffrage, 1999).
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6.5 Experiment
The experiment was designed to find out whether people are more likely to follow

a rank-based or a weight-based active learning algorithm. The outcome has impli-

cations for either decision mechanism as plausible decision strategies, i.e., either

people might learn the exact weights and integrate the full information (logistic re-

gression), or people might only learn the cue rank orders instead (TTB). We hypoth-

esized that the active model that best describes people’s information querying be-

haviour would map onto the most likely cognitive decision model. This constitutes

the basic assumption of our approach. We also wanted to investigate whether people

are sensitive to the structure of the environment (the degree of compensatoriness)

in their active queries, such that in non-compensatory environments participants

would be better matched by an active TTB algorithm, while in compensatory envi-

ronments they would be better matched by an active logistic regression algorithm.

We assigned people randomly to one of the five above-mentioned compensatoriness

conditions (Fig 6.1).

6.5.1 Participants

Two hundred and sixty-four (N = 264) participants (M = 35.4 years) were recruited

via Amazon Mechanical Turk to take part in the ”Alien Olympics” study. Partic-

ipants were paid $0.50 for participation plus an additional bonus between $0 and

$0.5 depending on their performance.

6.5.2 Procedure and Stimuli

The experiment was divided into a learning phase and a test phase. The learning

phase consisted of participants actively choosing Alien pairs to fight against each

other, with a binary outcome. On each learning trial, participants had to choose a

pair of Aliens to compete with the goal of learning about the Alien’s strengths and

features. Aliens varied on four different cues, which are displayed in Fig. 6.2. All

cues were designed to be helpful in fights, e.g., wings enabled an Alien to fly which

helps in attacking enemies, while camouflage is useful for hiding from enemies,

and antennas give surrounding vision. The cues were explained to participants at
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the start and they were told that the different characteristics might not all be of equal

importance for an Alien’s strength in a fight.

Importantly, we emphasized that people should pick their Aliens wisely by selecting

informative comparisons out of the presented Aliens, as the goal was to learn how

the different cues influenced an Aliens chances to win. Participants were informed

that they would need this feature knowledge later in the experiment for an assess-

ment task (test phase). As there are four cues, we generated all possible cue combi-

Figure 6.2: Aliens varied on 4 different cues (A-D): Antennae, Wings, Diamonds, and
Camouflage. E: Alien without cues, F: Alien with all cues.

nations which results in 16 different Alien types. On a given trial, participants were

presented with four random Aliens on the screen such as in the screenshot in Fig.

6.3. They had to choose only one out of the six possible resulting Alien compar-

isons. After selecting a pair, participants received feedback about which Alien had

won the competition. They were also told that sometimes a weaker Alien could win

against a stronger competitor as in any sport, which reflects the probabilistic gen-

eration of the outcomes. The underlying weights of the four cues that people could
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learn depended on the compensatoriness condition a participant was in (Fig. 6.1).

The actual outcomes observed in feedback were generated by using the weights

from the respective compensatoriness conditions (standardized to always add up to

10) and applying logistic regression in order to determine an Alien’s strength, i.e.,

likelihood of winning against another Alien. The learning phase consisted of 30

trials overall.

Figure 6.3: Training: An example screenshot of a learning trial in the Experiment.

The test phase was designed to assess what people had learned and was structured as

follows: On each test trial, participants were presented with only 2 different Aliens

that were again randomly drawn from the Alien database. We told participants that

these Aliens were the candidates for their Olympic Team, and it was their task to

choose the Alien they considered to be stronger based on what they had learned

about the characteristics in the learning phase. The test phase consisted of 10 tri-

als forcing participants to make binary choices. Participants were reminded that a

bonus payment would depend on their performance in this test phase.
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Figure 6.4: Test: An example screenshot of a test trial in the Experiment.

6.5.3 Results

First, we present test phase results, and then the active learning results. For purpose

of clarity and differentiation, model results from the test phase will sometimes be

referred to as “passive” while model results from the learning phase will be referred

to as “active”.

6.5.4 Passive Model Fits at Test

Participants’ performance at identifying the stronger Aliens during the test stage

was highly above chance, t(263) = 27.44, p < 0.001. The average percentage of

correct choices made was 74% with a range of [30%, 97%]. Performance varied

as a function of the compensatoriness condition that participants were in. Fig. 6.5

represents the average performance score at test as a function of compensatoriness:

As the environmental structure got more non-compensatory (i.e., more weight on

just a few cues), the average performance dropped. This intuitively makes sense as

there is less information to be learned when one cue dominates all others, which
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Figure 6.5: Average test performance by compensatoriness conditions. Y-axis represents
the percent of correct choices that participants made across the 10 test trials.
Error bars represent ± SEM.

makes draws among Aliens more likely and informative comparisons less likely.

However, peak performance was observed for an environment not entirely compen-

satory (θ ∼ ∞), but slightly compensatory (θ = 2).

Next, we demonstrate the correspondence of the TTB heuristic and Logistic Regres-

sion at and participants’ choices at test. That is, we are not looking at any active

learning models yet (below), but are assessing the passive behavioural model fits

at test first. That is, we assessed the how well the two decision making models,

regular TTB (Box 2.3.2) and logistic regression (Box 2.3.4) would perform at pre-

dicting people’s choices at test correctly. This is essentially assessing the models’

predictive accuracy in cross-validation, where the training sets are represented by

a different training set for each participant - that is because each participant had

a different training experience depending on what queries they selected on learn-

ing trials (and the attached feedback). Hence, we let both the TTB and logistic

regression learn in the same training environments as the participants, by creating
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as many simulated participant profiles as there were participants. During learning,

both models extract cue weights, e.g., regression weights or cue validities and cue

rank orders, and the established weights are then used to make predictions for the

novel alien pairs encountered at test. That is, again both models made predictions

for each unique participant profile (test sets differ between participants, as Aliens

are randomly selected). We were interested in the overlap of the models’ test pre-

dictions and participants actual choices at test. This model fit assesses how well the

TTB heuristic and a full-information model, i.e., logistic regression, capture what

people’s decision making strategy is at test, based on what they have learned in

training.

Fig. 6.6 presents the performances of the TTB model and logistic model in com-

parison with a model that predicts at random. It can be seen that both logistic

regression and TTB were better than the random model at predicting people’s be-

haviour at test. However, logistic regression was a lot better than the TTB heuristic

at capturing people’s choices. These initial results suggest that people’s decision

strategy was more in line with a logistic regression strategy. Hence, this speaks for

the psychological plausability of the full-information model rather than the heuristic

as a psychological model for decision making. Importantly, this is where psychol-

ogy experiments usually stop. That is, most psychological studies do not go beyond

comparing models in a passive decision making experiments, such as the test phase

in this experiment. That is, the model selection is often completed with the passive

model fit - based on how well the models capture people’s behaviour as measured

by a criterion (e.g., predictive accuracy (%), R-squared, AIC or BIC). However,

these results, although insightful, still represent passive model fits as they model

participants’ choices made in environments where the stimuli were already chosen

by the experimenter in a highly controlled manner, but were not actively chosen.

Instead, we focus our attention on the active learning results.
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Figure 6.6: Correspondence between participants and (passive) decision models at test.
Regular TTB, logistic regression, and a random model are trained on people’s
observed alien queries and then make predictions for what binary choices peo-
ple will make at test (across 10 test trials). The y-axis refers to the accuracy at
capturing people’s choices at test. Results are averaged across participants and
compensatoriness conditions. Error bars represent ± SEM.

6.5.5 Active Learning Patterns

We categorized all possible pairwise comparisons people could create into the 8

subtypes that can be seen on the x-axis of Fig. 6.7. For example, a query of +000

signifies a comparison of two Aliens with 3 equal cues (0 for draw), but where one

Alien had one more cue than the other Alien (+ for advantage). A +-00 query com-

pares two Aliens that are matched on two cues but differ on two other cues (+ for

advantage, - for disadvantage), e.g., one Alien may have the additional cue ’Wings’

and the other may have the cue ’Camouflage’, while both have Diamonds and An-

tennaes. This query would hence test whether the cue ’Wings’ is more important

than ’Camouflage’ for the outcome.

An important test is to see how people’s frequencies of choosing queries differ from

what is expected under the base rates of the study. That is, each query has a dif-

ferent base rate probability of occuring on any given learning trial, i.e., some Alien
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comparisons are more likely than others due to the nature of how the 16 different

Alien types were generated (see above). We compared the absolute frequencies

with which participants chose each type of query across the whole experiment (i.e.,

8 subtypes in Fig. 6.7) with the probabilities of each query occuring at any trial for

any participant (as measured by the relative frequency of query occurence across

the full experiment). A Chi-square test of goodness of fit reveals that the observed

distribution of frequencies was significantly different from the expected frequency

distribution under the base rate probabilities, χ2 = 460.23, d f = 7, p < 2.2e−16.

Hence, it can be concluded that people’s behaviour in the learning task was non-

random and followed a deliberate pattern. Interestingly, the Chi-square test also
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Figure 6.7: The 8 subtypes of active learning queries that participants could make. Y-axis
represents the frequency of choosing the query across the 30 learning trials
across 264 participants. Coding is as follows: ’+’ = Alien has a cue that the
other alien does not have (advantage); ’-’ = Alien lacks a cue that the other
alien has (disadvantage); ’0’ = Both aliens have the cue, or both aliens do not
have the cue (draw). The figure plots the observed frequency of choosing a
particular query against the expected frequency of choosing a particular query
under the base rate (probability of occuring naturally) in the experiment.

provides a vector of the estimated frequency counts under the base rate probabili-
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ties. Henceforth, it is possible to compare the observed frequency counts of partic-

ipants with the counts expected under the null hypothesis of the base rate, which is

plotted in Fig. 6.7. From these results we can see that the biggest difference between

expected and observed count was that participants were querying the +000 and the

+-00 comparisons much more. People rarely chose comparisons where it is unclear

what feature was responsible for an outcome, e.g., a comparison of an Alien with 3

or 4 more cues than its competitor (+++0, ++++). Instead, the most common com-

parisons were simpler and controlled, such as the +000 query, assessing whether a

cue improves the outcome. This query suggests participants were testing whether a

cue has a positive or negative effect on an Alien’s strength which is a very sensible

query given that this was not clear. For example, the instructions to participants

explained the properties of each cue (e.g., ”Camouflage means an Alien can hide

from enemies”), however it was never explicitly stated that all cue valences were

positive.

Participants queried the +-00 a lot more than expected under the base rate. Specif-

ically the +-00 is a controlled test which tests for the relative effect of one cue in

comparison to another. For example, such as comparing two Aliens differing on

2 cues, e.g., ’Wings’ and ’Camouflage’, and assessing the relative importance of

Wings and Camouflage for the outcome. This behaviour may suggest people were

potentially trying to learn the weights of cues (when performing this query multiple

times over time), aligned with the active logistic model, or it may suggest people

were learning a cue rank order (i.e., Which cue is more important for the outcome?),

aligned with the TTB active model. In general, it can be said that all queries, i.e.,

even queries such as +++0, exhibit some information about cue weights, while for

TTB the best queries to learn about cue order seem to be queries such as +-00, ++-0,

and +++-.

Finally, we assessed strategy change across trials. That is, as the learning trials

progress from the 1st to 30th learning trial, people may prefer different kind of

queries. Fig. 6.8 plots query frequencies as a function of learning trial. It stands out

that the top two lines (query +000 and +-00) cross over, where the +-00 query takes
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over the +000 query during the first half of trials and specifically in the middle trials.

This is interesting as the base rate frequencies would predict that the +-00 query is

always below the +000 query (Fig. 6.7). However, it appears that people are sys-

tematically choosing +-00 more often up to a certain point, while later in the exper-

iment, e.g., from around trial 21, the simpler +000 query starts to dominate again.

In fact, the slope for the +000 query was significant, β = 0.53±0.16, p < 0.01. It

can be assumed that since the +000 query is a relatively uninformative query, once

the cue valence has been established by the learner, the +000 query may reflect a

preference to perform confirmatory, i.e., positive tests (Markant & Gureckis, 2012).

Recent research indicates that people have a tendency to fall back onto confirma-

tory testing towards later trials in learning studies (Bramley et al., 2017). Other

research also suggests people may use a combination of discriminatory and confir-

matory testing, e.g., in causal intervention studies (Coenen, Rehder, & Gureckis,

2015). It is also noteworthy that participants overall preferred the more complex

query ++-0 to the ++00 query (middle green lines) despite the expected base rates

being equal (Fig. 6.7). The ++-0 query is a more non-compensatory query compar-

ing an Alien with two more cues to an Alien with one other cue, e.g., assessing how

much better the cue ’Antennae’ is compared to ’Wings’ and ’Diamonds’ combined.

So far we have looked at people’s active query patterns, however we have not yet

looked at what kind of active queries the active learning algorithms would predict

(assuming people minimize uncertainty) and how these compare to people’s active

queries. Next we look at how well the active learning models could capture people’s

sequential information search behaviour.
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Figure 6.8: The 8 subtypes of active learning queries that participants made as a function
of time, i.e., learning trials progressing from 1 to 30 (x-axis). The y-axis rep-
resents the number of participants out of 264 participants in total that chose
the query at each trial. The data points for each graph were smoothed to a line
graph with a smoothing function ( geomsmooth() in R), where the boundaries
represent the 95% confidence interval.

6.5.6 Active Model Fits at Training

Finally, we compared queries selected by the two learning algorithms against

queries chosen by participants. We let both the TTB and logistic regression algo-

rithms learn in the same compensatory and non-compensatory environments as the

participants, by creating as many simulated participant profiles as there were partic-

ipants in each compensatoriness condition. Then, we let the models learn over time.

That is, the algorithms made one-step ahead predictions for each learning trail from
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1 to 30. Both active algorithms relied on uncertainty sampling, always choosing

that query next which maximally reduces uncertainty about the underlying model

(see above, 6.3.2 and 6.3.1). This method allows us to compare the participants’

queries to those made by the active algorithms and assessing correspondence with

a correlation or regression.

●

●

●

●

●

●

●

●

●

●

0.00

0.02

0.04

0.06

~infinity 2 1 0.5 ~0
θ

Model ● ●Logistic Take The Best
Correspondence

Compensatory          Non- 
Compensatory

Ps
eu

do
-R

-S
qu

ar
ed

Figure 6.9: Correspondence between the active laerning algorithms and participants’ active
queries, as a function of the compensatoriness condition. Results are estab-
lished from simulating active participants with each active model in a step-by-
step fashion predicting participants’ next query. The active logistic algorithm
was better at capturing people’s active queries regardless of compensatoriness
condition. Error bars represent ± SEM.

Fig. 6.9 shows the match between the active algorithms and participants’ queries,

as measured by Pseudo-R-squared, as a function of compensatoriness conditions.

Firstly, it needs to be noted that results in the active learning part were noisy. Results

demonstrate that the active logistic algorithm captured people’s queries better in
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all environments. Interestingly, no clear relationship between the compensatoriness

among cues and the best fit active models could be seen, e.g., it was not the case that

the active TTB model better fit people’s queries in non-compensatory conditions

and the active logistic model better fit in compensatory conditions. Instead, people

seem to be learning the weights regardless of compensatoriness.

These results are very interesting as they go against much of the heuristic literature

claiming people are not able to learn weights due to capacity limitations and instead

rely on heuristics which are less computational demanding (Gigerenzer et al., 1999).

Particularly in highly non-compensatory environments which present the perfect

environments for the TTB heuristic and where it is assumed to be relied on more

extensively (Martignon & Hoffrage, 1999, 2002; Rieskamp & Dieckmann, 2012),

it is surprising that people were still behaving as if they are learning cue weights

rather than cue rank orders.

These results are confirmed with the AIC measures below. Fig. 6.10b compares

the mean AIC of the active logistic and the active TTB model to that of a random

model across all conditions. The mean AIC of the logistic regression model was

lower than the mean AIC of the active TTB model, suggesting participants were

actively querying in a manner more consistent with the cue-weight based model. It

is also interesting to compare the AIC results to those from the passive model fits

at test from above (Fig. 6.10a). Fig. 6.10a and Fig. 6.10b demonstrate that across

the experiment, in both learning and test phase, people were better fit by an active

logistic regression model. Taken together the evidence from both passive and active

part of the experiment is stronger and more insightful than would have been by

looking at passive model fits. However, we go a step further and look at the AIC

model fits of the active learning models on an individual level rather than group

level, in order to see how many people were best fit by an active logistic and an

active TTB model.
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Figure 6.10: AIC model fits for the logistic, TTB and random model in predicting peoples’
active queries (Training) (b) and passive choices at test (Test) (a). Results are
averaged across all 264 participants. For both the passive and active part, the
logistic regression model had the lowest AIC and performs best at describing
what people do. The AIC magnitudes between a) and b) cannot be compared,
as they correspond to capturing entirely different data (e.g., the active data
corresponds to capturing behaviour during training, and the passive data cor-
responds to choices at test.)

6.5.7 Participants best fit by Active Logistic Model vs. Active

TTB Model

We look at the number of participants best classified by an active TTB model versus

active logistic model (as indicated by a lower AIC) in relation to those best fit by

either model in the passive test phase. Table 6.1 shows a 2-by-2 contingency table

displaying frequencies for both learning and test phase. The “active” columns re-

fer to the learning phase and the “passive” rows refer to the test phase. We would

expect that the diagonal entries of this 2-by-2 matrix should be higher than the

non-diagonal entries for indicating internal consistency among strategies between

learning and test. Results show that most people, that were best fit by an active

logistic model (LOG-active) compared to an active TTB model (TTB-active), were

also best fit by a logistic decision model (LOG-passive) at test (i.e., 107 partici-

pants). This is good evidence for the internal consistency among an individual’s use
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Active: No. best fit by AIC
Passive:
No. best fit by AIC TTB-active LOG-active Total by Passive

TTB-passive 47 67 114
LOG-passive 43 107 150
Total by Active 90 174 264

Table 6.1: Number of participants best classified by an active TTB model versus active
logistic model (as indicated by a lower AIC) at training (columns), in relation to
those best fit by a passive TTB model and passive logistic model at test (rows).

of strategies in our experiment. While there was a clear majority of people better fit

by an active logistic model compared to the active TTB model in the active phase

(174 vs. 90), the total number best fit by TTB-passive and LOG-passive at test is

much more balanced (114 vs. 150).

Most striking is the top right cell size (67), which are people that appear to be best

fit by TTB-passive at test, but are in fact better fit by the LOG-active at learning.

Hence, this indicates these were people that were in fact actively learning the cue

weight magnitudes, however looked like they were applying a TTB rule at test in

making binary choices. This finding is particularly interesting as it may indicate

people often know more, and are more sensitive to the information than can be

found from a passive model fit of a heuristic decision model to people’s empirical

data in forced choice tasks. This has interesting implications for the less-is-more

phenomena, and the Bayesian heuristic frameworks, which will be discussed be-

low. Overall, it can be concluded that the active logistic learning algorithm which

minimizes uncertainty with respect to cue weights was a better description of how

people learn in our experiment.

6.6 Discussion

Results demonstrated that people were best fit by a logistic regression model in both

the learning and test phase in our experiment, instead of a TTB heuristic. The ac-

tive logistic algorithm was better at capturing people’s active queries regardless of

compensatoriness condition. This suggests people learned to establish cue weights
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precisely, rather than cue rank orders. These findings lends support to the full-

information model (logistic regression) as a more psychologically plausible mecha-

nism in these environments. Referring back to the original questions of less-is-more

at the beginning, importantly, we show that the descriptive psychological definition

(Box 2.4.3) does not hold in our experiment: People relied on the full information

rather than the heuristic, and less was not more.

Even in highly non-compensatory environments, people seemed to learn cue

weights rather than cue rank orders, lending even more support to the cue-weight

strategy as the underlying psychological model. This goes against what the fast-

and-frugal heuristics program propose (Martignon & Hoffrage, 1999; Rieskamp &

Otto, 2006), and our results may be different, because we rely on active learning

thereby getting a very different window on the decision making process which is

usually invisible with passive model fitting to empirical heuristic data.

Overall, people seemed to have a good idea of the actual weights. Specifically, what

stands out is that some people even appeared to be using TTB from the empirical

data in the forced-choice test trials (of the type in Fig. 6.4), however had actually

learned to cue weights at learning (Table 6.1). This suggests people just appeared

to be using the TTB heuristic as the TTB rule fits the empirical data well, but this

does not reflect what information people hold in their memory and use, and it may

be that they were actually relying on the full weighting structure and much more

sensitive to the full information. This maps onto the theoretical predictions made

by the Bayesian half-ridge and COR model. Interestingly, there are two possibil-

ities to explain these findings: Either people know the weights but decide not to

use them, and rely on a TTB rank order instead. Evidence for this theory comes in

fact from Marewski and Mehlhorn (2011) who argued that people sometimes know

information but decide to ignore it on purpose. The other alternative is that people

know the weights and actually use the weights, but the weights map onto the cue

order of the non-compensatory TTB, such that both the logistic regression model

and the TTB heuristic make the same prediction and are indistinguishable. This is

particularly likely when environments have non-compensatory cue structure since a
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non-compensatory environment can be defined as a logistic regression environment

in which the β weights are exponentially decreasing. Hence, in these environments

the logistic regression strategy that learns its weights from the environment would

map onto the TTB heuristic which relies only on the highest ranked cue. A post-doc

analysis of the 2-by-2 contingency table (Table 6.1) in different compensatoriness

conditions seems to indicate this is roughly the case: In more non-compensatory

conditions, the top right cell sizes are larger than in more compensatory conditions.

Although speculative, a possibility is that even in some past heuristic studies, the ev-

idence for the heuristics as psychological models may have been mistaken as people

might have known the weights but applied them with a non-compensatory decision

rule. Especially in tests with more non-compensatory environments, people might

have appeared to be using TTB because it is the optimal weighting strategy (and

matches logistic regression), however in reality had a much more nuanced idea of

the differential weights. An even stronger argument to make would be that poten-

tially people can only use a heuristic if they know the cue weights , i.e., to extract

the cue rank order in TTB, people may first learn the actual weight magnitudes. Or,

in order to rely on tallying, one needs to extract the signs of these weights. How-

ever note that it does not work the other way around, one cannot use a regression

model based on the cue rank order. Future research needs to approach these pre-

vious experiments with an active learning approach to compare passive model fits

with active model fits similar to our study.

Furthermore, the type of active queries that people chose give a more complete pic-

ture. The queries that participants chose significantly more often than predicted

by the base rate in the experiment (Fig. 6.7) were controlled comparison queries

(+-00), that assess the relative importance of one cue over another. With regard of

the above findings, the queries can be re-interpreted in a new light given that most

people were reducing uncertainty with respect to cue weights rather than cue ranks:

The +-00 query may be a sensible test assessing not only the relative order among

cues (i.e., Is Camouflage better than Wings?) but also how strong the outcome rela-

tionship is with every cue (i.e., how likely is it that a Camouflage Alien outperforms
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an alien with Wings?). As the experiment was designed stochastically, this is a good

query for learning about the differential weights.

Our findings demonstrate that purely passive model fits are limited in their ability to

distinguish between common decision models, even in a prediction-based test (Fig.

6.6). While the passive model fits at test came to the same conclusion that people

are best fit by a logistic regression model compared to a TTB heuristic, the full

picture only becomes clear when looking at the active learning results. The active

learning results represent more processing-based evidence than the usual predictive

accuracy findings or descriptive model fits.

6.6.1 What do these results suggest for Bayesian heuristic mod-

els?

People relied on the full-information, confirming the Chapter 4 and Chapter 5’s

hypotheses that people take into account the full information (but potentially down-

weighting). To answer the question Why is less more? this Chapter’s answer might

be that it sometimes appears that way, when empirical data fits a heuristic well, but

people may actually rely on the full weighting structure such as strategies along the

continuum in COR and half-ridge would suggest.

Hence, the findings of this Chapter are much aligned with the propositions of the

COR and half-ridge models. Both the half-ridge and the COR model speculated

that potentially the optimal intermediate strategies (located between traditional re-

gression and heuristics) may represent people’s psychological processing, however

more research needs to be done. Crucially, the intermediate models that performed

best in real-world environments did not throw away any cues or cue weights, and

instead relied on the full information but down-weighted these weights (regularized

weights). The COR and half-ridge frameworks also suggested that, if indeed peo-

ple’s psychological processing was more aligned with the intermediate strategies

rather than the extreme end cases of the existing heuristics (e.g., which deliberately

ignore information), this would suggest the empirical evidence taken to support

heuristics is typically misinterpreted: people just appear to be using the heuristics

as they fit the data well, however their minds are actually carrying out a much more
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sophisticated strategy. It cannot be concluded from the current experiment whether

people were indeed down-weighting weights or covariance and relied on a strategy

that is located between logistic regression and the TTB heuristic, as we did not test

this. However, an interesting extension of the current thesis would be to incorpo-

rate a half-ridge active learning model and a COR active learning model to predict

people’s active queries, moving beyond the standard logistic regression. The rea-

son that this was not done yet is merely the fact that the active learning Chapter

was done prior to developing the COR and half-ridge models. We believe this will

present an exciting new avenue for future research.

A potential limitation of the experiment might have been that the base rate prob-

abilities of the different type of queries (e.g., Fig. 6.7) were not equal. A future

experiment should try to hold them constant. However, doing that would also mean

a lower external validity of the experiment, as having more of the ++++, +++-, +++0

or ++– queries in the learning phase would mean it becomes much more unlikely

that people are able to learn as much, because these queries are less controlled and

the source of an effect is less clear. It is unlikely that people rely on these more unin-

formative queries to reduce uncertainty about a model as evidence suggests people

are quite sensible in their choice of active queries (Bramley et al., 2017).

6.6.2 Model-based active learning

We give our novel active learning approach to discriminate psychological model

classes the name of model-based active learning as its goal is to learn about pos-

sible underlying psychological models. The current experiment demonstrates that

model-based active learning experiments can be used to distinguish among promi-

nent decision strategies. Our results revealed a more informative picture than the

traditional passive model fitting procedures. Model-based active learning is based

on the assumption that a cognitive agent actively queries information in the envi-

ronment, in order to minimize uncertainty about the cognitive model they utilize in

that particular environment.

We see this experiment only as a first step towards a general model-based active

learning methodology, since the possible applications of this approach are vast.
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From moral decision making to function learning, from evidential reasoning to cat-

egorization learning and decision making tasks, for many researched domains it

is possible to formulate active versions of existing algorithms by simply taking a

given model, re-define it to generate uncertainties over its predictions, and then to

test it in a model-based active learning task. For example, one can imagine doing

the same as above for discriminating among exemplar and prototype models to try

to find new insights on a long-standing debate about how people learn about cate-

gories. We therefore believe that the methods introduced here can be beneficial to

many psychological domains in which researchers have argued about the validity of

different models. However, there are also still many short-comings such as testing

the underlying assumption that people do in fact learn about the models defined as

well as possible by minimizing uncertainty, and are not doing something else in-

stead which we have not uncovered yet, i.e., this is an issue in any active learning

research (Coenen, Nelson, & Gureckis, 2017). Furthermore, the approach currently

does not test the possibility that models might be developed on the go while active

learning is happening. Or else, a participant might consider multiple models to rep-

resent a given environment and only later makes a decision on which one represents

the data best. Despite these shortcomings we believe that they do not make this

approach less exciting. Given that many psychological findings currently seem to

be hard to replicate (Maxwell et al., 2015), we have introduced a novel and hope-

fully exciting way to compare different psychological models, which can be added

to psychology’s methodological tool kit.
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Chapter 7

General Discussion

7.1 Less-Is-Not-More

The initial introduction in Chapter 2 cast heuristics as simple algorithms that can

often perform surprisingly well, however often with no clear explanation of why. I

gave examples of where heuristics excel in the real world. For example, in financial

forecasting a simple 1/N rule was able to outperform a much more complex model

in predicting stock performance over time from limited data. Or else, an AI poker

agent relied on a set of simple opening heuristics similar to humans, but could not

find a better strategy to improve upon the heuristics. The question that was asked at

the end was why was less more?

Throughout the thesis a new perspective on heuristics and less-is-more effects

emerged, which is that less is not more. We learned from the Bayesian formal-

ization of heuristics that heuristics may often appear to perform best, but when the

full range of decision strategies is taken into account with a Bayesian prior, one can

always find a model that performs better by including all information rather than

throwing it out as the heuristics do. Chapter 4 and Chapter 5 found that the best

strategy relies on all the information but down-weights it instead via the influence

of an appropriate prior. That is, while less-is-more is observed for comparing simple

and complex models (e.g., relative less-is-more, such as comparing a heuristic with

regression), the thesis suggests that the absolute less-is-more, wherein heuristics

could be optimal, is never true. That is because, consistent with our Bayesian prin-
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ciples, our empirical evidence suggests the intermediate models, that combine the

input data with the prior, outperform heuristics. In this view, ignoring data does not

improve performance, but, instead, heuristics may often appear successful relative

to full regression models, because heuristics approximate the intermediate models

that are actually optimal. Thus, the Bayesian explanation for less-is-more is that

heuristics work because they embody a prior that approximates the optimal prior.

While the Bayesian framework did not explicitly investigate its implications at the

psychological level, the final psychological Chapter explored to what extent people

represent and use information for decision making in an active learning experiment.

In that way, the psychological Chapter looked at a different kind of less-is-more

effect, i.e., whether people fully and systematically ignore information in the input

data as proposed by the fast-and-frugal heuristics (i.e., a descriptive psychological

less-is-more effect). Interestingly, the psychological Chapter 6 came to the con-

clusion that people do not fully ignore presented information but are much more

adaptive to the full information presented, along the lines of full-information mod-

els. In that way, the conclusions reached in the psychological Chapter were very

similar to the Bayesian Chapters regarding less-is-more despite being at a different

level of analysis: less was not more in that people integrated information rather

than ignoring it. Furthermore, the empirical evidence suggested that while people

sometimes appear to use a simple heuristic during decision making, they had of-

ten behaved as if learning the exact cue weights in a learning phase. This suggests

that sometimes the empirical evidence taken to support heuristics may be mislead

in psychology, which echoes the conclusions of the Bayesian frameworks in Chap-

ters 4 and 5 implying that potentially heuristics may fit empirical data well because

heuristics are close to the more sophisticated full-information strategy that people

may actually be using. Despite these interesting parallels between the formal ap-

proach in this thesis and the psychological study, it would be pre-emptive to draw

conclusions with respect to people’s use of intermediate strategies, as this needs to

be validated in a separate set of studies first.
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7.1.1 Implications for work in psychology

As outline at the end of Chapter 4, one possible interpretation of the intermedi-

ate models performing best in the Bayesian frameworks is that the brain actually

has tractable means for implementing these intermediate models (i.e., for using all

available information but down-weighting it appropriately). The other alternative is

that the intermediate models are intractable and the brain uses heuristics. In the for-

mer case, the hypothesis that people implement intermediate strategies would have

to be validated. Hence, future work in psychology should attempt to see whether an

intermediate strategy with a weighting structure deviating from that of the classical

heuristics and regression models better captures people’s behaviour in behavioural

decision making tasks.

One idea would be to re-analyse empirical data from existing multiple-cue integra-

tion tasks that assessed people’s use of TTB as opposed to a weighted additive strat-

egy. For example, the studies by Newell et al. (2003) and Newell and Shanks (2003)

asked people to make forced choices between two shares based on a set of cues in-

dicative of the shares’ performance. Each cue had a cost attached to it for ”buying”

the additional information. Newell et al. (2003) argued that the best measure dis-

tinguishing between fast-and-frugal behaviour and weighted-additive compensatory

behaviour would be the acquisition of unnecessary information (after discovering a

discriminating cue). Hence, the authors sought to see whether people’s cue look-up

behaviour would stop in line with TTB predictions (i.e., where no more cues are

looked up once the highest weight cue discriminates). Interestingly, while people’s

search behaviour at the group level was consistent with the cue rank orders of TTB,

few people behaved completely consistent with TTB in terms of the search, stopping

and decision rule. Two thirds of participants violated at least one of TTB’s rules and

a considerable amount used a weighted-additive strategy. The majority of people

did not exactly use a perfect stopping rule according to TTB, but a different frugal

stopping rule that took into account more cues than predicted by TTB, even when

it was cognitively demanding and financially disadvantageous. Many of these peo-

ple also violated TTB’s decision rule (deciding based on the highest weighted cue
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only) and indicated they weighted further cues to make a decision. Yet, these par-

ticipants’ strategy also did not appear to be perfectly in line with weighted-additive

strategies according to the authors, as participants did not buy all cues available on

each trial (Newell et al., 2003). These findings represent an interesting opportunity

for research with our Bayesian frameworks and assessing the validity of interme-

diate models, as the evidence indicates people were behaving close to the heuristic

(i.e., cue ranking behaviour) however weighted all pieces of information to different

degrees. This leaves scope for assessing whether people’s weighting structure might

have been not perfectly aligned with TTB nor linear regression, but more in line with

an intermediate weighting structure that regularizes weights. The first step in such a

study would be establishing the prior for the intermediate model in the specific task

environment, which could be done by modelling the task with the Bayesian models.

Once the prior strength is established, the intermediate model’s suggested poste-

rior cue weights could formulate a new intermediate strategy located between TTB

and weighted-additive, and its cue weighting structure could be compared to peo-

ple’s cue buying behaviour, and the intermediate model’s predictions with respect

to forced choices compared to people’s choices. This represents just one potential

avenue for researching the psychologically plausability of intermediate models.

Another test going beyond standard forced-choice tasks could be to analyse peo-

ple’s information-gathering behaviour with an active learning paradigm similar to

Chapter 6, however adding a third active learning model that learns with respect ot

intermediate model weights. By defining an active learning algorithm not only for

the extreme heuristics and regression model but the intermediate models, it could

be tested whether people’s active learning and passive decision making behaviour

is more in line with an intermediate model strategy. If the research into intermedi-

ate models suggested that people’s behaviour is more in line with these strategies

than the extant decision models, these should be added to psychology’s repertoire

of decision making models. Hence, the current framework can be used as a tool to

identify new psychological decision strategies.

Lastly, another potential way in which our work could be extended in psychology is
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by applying the general framework to discover novel heuristics, as briefly outlined

in Chapter 4’ Discussion. The logic behind our framework, i.e, identifying the

correct prior for a particular heuristic, and formalizing the Bayesian prior as drawing

a continuum between a prominent strategy such as linear regression at one end, and

the heuristic at the other extreme end, may be in itself a good ”discovery heuristic”

for identifying strategies for different environmental structures and priors.

7.2 A Revised Understanding of Heuristics?

This work potentially attaches a new meaning to heuristics. What we call simple

heuristics in decision sciences may in fact correspond to strategies that hide a lot

complexity and are more sensitive to learning the full information than we assumed.

This idea echoes previous ideas by Dougherty, Franco-Watkins, and Thomas (2008)

and Juslin and Persson (2002) arguing that heuristics hide a lot of the complexity in

the computations for ordering the cues. If the interpretation of heuristics as inter-

mediate strategies was correct, a new terminology for these intermediate strategies

would be required to distinguish them from the extant heuristics in the literature.

Note that the ideas in this section are based on the assumption that heuristics only

match empirical evidence because they closely mimic a more sophisticated strategy,

and hence this section needs to be judged with caution, as it is speculative.

Heuristics are thought to work as they rely on simple decision rules (such as count-

ing the positive and negative evidence in tallying), which are believed to be robust

and dont overfit as much. However, if the assumptions in this section are correct,

what appeared to be the advantage of a simple decision rule that ignores informa-

tion may in fact have been the advantage of a large inductive bias in combination

with using the full information. This would also suggest what we previously called

a heuristic may in fact be the more complex strategy compared to the standard full-

information models such as linear regression. In that case, the strategy underlying

the heuristics would be a smart strategy which is well adapted to the statistical

structure of the environment by using the right amount of inductive bias. Although
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speculative, a question arising would be: How does the brain know what the cor-

rect prior is for a given environment? One idea is that it might potentially rely on

something similar to an ”overfitting regularizer” (e.g., by putting a hyperprior on

the prior as in a hierarchical Bayesian model), that learns what inductive biases are

appropriate for different environments, and learns to adjust the information integra-

tion rules to be biased as much as needed for the noisy, sparse environments that we

navigate in. If this was correct, the brain might have a mechanism for optimizing

biases for different environments, and is well adapted to the statistical structure of

the environment.

Another possibility that goes against the assumptions in this section may be that in-

stead of using intermediate strategies, people may be sensitive to all the information

in the input data, but deliberately decide not to use it all (Marewski & Mehlhorn,

2011), by applying a simple heuristic decision rule. However, this would also sug-

gest that the decision rules as used by TTB for example (deciding based on highest

ranked cue) work due to the more complex computations used to establish the cue

rank orders (Dougherty et al., 2008). Hence, in this interpretation, despite the mind

being able to learn more nuanced information (e.g., such as optimal weights), it

may still just use a simple cut-off rule (along the lines of fast-and-frugal heuristics)

for decision-making. However, some data (Newell & Shanks, 2003; Newell et al.,

2003; van Ravenzwaaij et al., 2014) goes against this idea as people did not follow

the frugal stopping and decision rules. In conclusion, this section outlined some

interesting implications following from the current research’s interpretations, but

importantly it needs to be emphasized that these were speculative ideas based on

assumptions that need to yet be validated.

7.3 Bayesian Models and Heuristics Revisited

Linking back to the original less-is-more findings in the classic 20 datasets (Czer-

linski et al., 1999) (Chapter 2), and in the city size task (Chapter 3), many of these

less-is-more effects could not be explained with a rational probabilistic model since

the nineties.
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The fast-and-frugal heuristic program interpreted the success of heuristics in the

city size task (Gigerenzer & Goldstein, 1996) as evidence that Bayesian rational

norms could be entirely replaced with ecological rationality, because a much sim-

pler model was able to trump what they called a ”rational” model (multiple regres-

sion). Instead, the fast-and-frugal account (and the heuristics-and-biases account)

perceived heuristics and Bayesian models as opponents (Table 2.2) and as a result

never assessed to what extent heuristic fit into the broader framework of rational

decision making. In contrast, I argued that the ecological rationality approach and

the Bayesian rationality approach are likely to be compatible and not mutually ex-

clusive. Hence, in reaction to the original less-is-more findings in the city size task,

I believe that a rational explanation was missing for why the heuristic succeeded.

Hence, my interpretation is very much aligned with Nick Chater’s interpretation of

the city size task from 2003: ”I suggest that, analogously, Gigerenzer and Gold-

stein’s impressive demonstration of the success of Take-the-Best should lead to a

search for a rational analysis of why it succeeds, rather than the conclusion that ra-

tional explanation is dispensable.” (Chater et al., 2003, p. 72). Chater et al. (2003)

convincingly argued that, while TTB provides ”an outstanding example of how a

fast and frugal algorithm can succeed in the real world, and exemplifies that en-

vironmental success does not require that the cognitive system engages in rational

calculation using probability or statistical theory.” (p.72), this still does not suggest

that descriptive rational theories are not useful, and more importantly, incompat-

ible with the success of TTB. The thesis demonstrated that heuristics are in fact

compatible with Bayesian inference. In contrast to the widespread incompatibility

assumptions, heuristics are part of Bayesian inference for extreme Bayesian priors.

Thereby, we provide a rational explanation for heuristics that was missing since the

nineties (Chater et al., 2003) and resolve the tension between the ecological ratio-

nality approach and the Bayesian rationality approach.

What does the Bayesian explanation add beyond the frequentist explanation of less-

is-more? Our Bayesian characterization of heuristics does not offer an alternative

explanation of (absolute) less-is-more effects. Instead, it refutes the absolute less-is-
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more claim. The Bayesian characterization opened up ways of defining intermediate

models, by taking the infinitely strong priors that yield heuristics and weakening

them to priors of finite strength. The result (for both half-ridge and COR) was a

continuum of models that use all of the available information, except for the spe-

cial case of heuristics (i.e., infinitely strong priors). The evidence across Bayesian

models, priors and regularization techniques suggested that the intermediate models

that combine the input data with the prior outperform those extreme models. What

we learn from taking a Bayesian perspective are all of the aspects mentioned in this

paragraph and the three sections above (e.g., Revised Understanding of Heuristics,

Implications for Psychology and Less-is-Not-More), which follow naturally from

the Bayesian framing, in a way that would not be possible under the frequentist

bias-variance approach. The Bayesian framework furthermore establishes a formal

characterization of the link between traditional statistical models (OLS) and heuris-

tics.

7.4 Implications for work in neuroscience, be-

havioural economics, computer science, machine

learning and other fields

The Bayesian framework developed here can potentially be applied to less-is-more

effects in other fields in order to assess whether a solution that entirely throws out

information could not be improved upon with an intermediate model. I will give

one example of recent work on a neural encoding model which identified a less-is-

more effect, that was brought to our attention by a reviewer. Tsetsos et al. (2016)

found that when choosing among multiple alternatives (e.g., among 3 holiday des-

tinations based on cues) people make intransitive choices (irrational according to

traditional logical norms, (Von Neumann & Morgenstern, 1944,1947,1953,2007)),

however these intransitive choices paradoxically improved accuracy when decision

formation was corrupted by internal neural noise. The authors provide evidence that

people accumulate evidence over time (i.e., cues) using a ”selective integration”
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policy which deliberately discards information about alternatives (e.g., holiday des-

tination) with lower momentary value. Tsetsos et al. (2016) claim that the selective

integration model (called SINT) displays a less-is-more effect on the level of neural

encoding. Tsetsos et al. make the normative claim that the SINT strategy is optimal

in the context of an accumulator model that has late noise, i.e., random diffusion

in the value of the accumulator that is separate from the values of the inputs them-

selves. The SINT model is shown to improve model performance over a model that

uses untransformed inputs (analogous to a relative statistical less-is-more effects

with heuristics). However, as in the current research, there are an array of interme-

diate models that use all the information in the inputs and that would outperform the

SINT model, which were not considered. Hence, although the problem that Tset-

sos et al. investigate is substantially different from ours (i.e., theirs is a question

of encoding, not of decision making), we believe there are some interesting paral-

lels. Looking to the future, there may be interesting new avenues for integrating

this kind of research with our formal frameworks by investigating neural encod-

ing strategies for models that down-weight information sources to different degrees

without entirely discarding them.

Another area where our work may be useful to other fields is in those contexts where

regularization methods are required. Our discoveries are made possible by a novel

extension and application of core ideas in machine learning (i.e., ridge regression)

to psychological theory. The new half-ridge and COR regularization methods may

be useful to researchers in genetics, neuroscience, machine learning, finance and

anywhere where noisy datasets and overfitting models are an issue. Furthermore,

the COR model may be especially useful (in comparison to ridge regression) in

environments where covariance is high, as it allows for a continuum of covariance

sensitivity. The Bayesian framework may also potentially be interesting to those

who work in data-intensive environments where time can be at a premium (e.g.,

traders, financial forecasters, doctors, Big Data architects), because the Bayesian

frameworks allows for a performance comparison of models of different complexity

and simplicity in advance (i.e., how well does a heuristic perform compared to the
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optimal model in this environment?).

7.5 Relationship to other rational approaches to

heuristics
While there are various approaches looking at the compatibility between psycholog-

ically plausible processes and probabilistic models of cognition (Daw & Courville,

2008; Griffiths et al., 2015; Jones & Love, 2011; Lee & Cummins, 2004; Marr,

1982a; Sanborn et al., 2010; Scheibehenne et al., 2013; van Ravenzwaaij et al.,

2014), which are in line with our approach trying to further bridge the gap between

algorithmic-level approaches and computational-level approaches, none of these ap-

proaches tried to directly place heuristics within a Bayesian inference framework.

Yet recently, researchers at the University of Berkeley developed a rational process

model for a different kind of heuristics, i.e., from the heuristics-and-biases program

(Lieder et al., 2017). Lieder et al. (2017) propose a sampling approach to derive the

anchoring-and-adjustment heuristic (Tversky & Kahneman, 1974). The authors ex-

plain the anchoring bias with a sampling approach where the assumption is that the

brain solves numerical estimation tasks by engaging in a sampling process similar

to Markov Chain Monte Carlo sampling (MCMC) (Gilks et al., 1996). According to

their model, the anchoring bias is the result of suboptimal sampling due to limited

cognitive resources, an approach they call ”resource-rational” which is supposedly

compatible with bounded rationality. What their work and ours have in common

is that both try to explain a heuristic (e.g., the anchoring-and-adjustment heuristic

or fast-and-frugal heuristics) with rational inference, however the model by Lieder

et al. (2017) relies on the assumption of limited cognitive resources to derive the

heuristic rather than putting the heuristic on equal footing with other rational in-

ferences strategies and formalizing the mathematical relationship. This presents

a fundamentally different approach. Furthermore, while their work tries to find a

resource-rational algorithm that approximates optimal inference, we take the oppo-

site approach and define optimal Bayesian inference models that approximate the

heuristics. In addition, a crucial difference is the work by Lieder et al. (2017) do



7.6. Reconciling irrational and adaptive notions of heuristics? 190

not explain less-is-more effects and focus on explaining cognitive biases and sub-

optimal behaviour, while our goal is to explain why sometimes less appears to be

more. Despite the different approaches and goals, the work is related and we wel-

come other work looking to further integrate research at the computational level of

analysis with the process level (Marr, 1982a).

7.6 Reconciling irrational and adaptive notions of

heuristics?
Referring back to the introductory discussion on different views on heuristics - one

being the heuristics-and-biases viewpoint and the other being the ecological ratio-

nality viewpoint, our Bayesian extension of heuristics may help a reconciliation

between the adaptive and irrational notion of heuristics. For decades, the two most

prominent heuristic programs have not been able to come to an agreement on the

nature of heuristics and rationality. While the heuristics and biases program (Kah-

neman, 2003; Tversky & Kahneman, 1974) focused on heuristics deviations from

Bayesian rationality as a sign of errors, the fast and frugal program (Gigerenzer

et al., 1999) emphasized heuristics simplicity and more psychologically plausible

computations in comparison to Bayesian models. We show that the two accounts are

not incompatible by making use of parts of both theories. Specifically, we relied on

Bayesian inference as rational norms to identify the optimal model (given particu-

lar prior and data), echoing Tversky and Kahneman’s approach. However, crucially,

we do not measure the performance of the heuristic against the optimal Bayesian

model - instead - the heuristic represents a particular prior setting (prior strength)

on the same Bayesian prior’s continuum as the optimal model and any model along

the continuum can theoretically be optimal (however this will rarely be the heuris-

tics, as they only corresponds to limiting cases which are outperformed by inter-

mediate priors). At the same time, heuristics are successful when the structure of

the environment (environmental prior) matches that of the strategy (strategy’s prior

strength). This echoes ecological rationality and the interpretation shows a heuristic

can be ecologically rational while being compatible with probabilistic inference.



7.7. Conclusions 191

Resulting from this theoretical reconciliation are interesting implications for hu-

man rationality. In this framework, different versions of human rationality coincide.

Concretely, instead of judging normative rationality (most often referring to mod-

els as optimal when accuracy is highest, i.e., economic rationality as mentioned

in Tsetsos et al. (2016)), ecological rationality (a model is judged optimal when

the strategy matches the environment), and Bayesian rationality (a strategy is opti-

mal when it has the appropriate prior for the environment), as separate and irrec-

oncilable, in the current framework, all forms of rationality overlap and apply at

once. Under the assumption that the model is correctly specified, heuristics are ra-

tional when they match the structure environment (ecological rationality), which is

when they are expected to perform optimal (i.e., a normative rationality), which is

when the strategy’s prior (i.e., inductive bias) matches the prior of the environment

(Bayesian rationality). Thus, just because heuristics excel does not need to mean

rational norms have to be abandoned. Heuristics can in fact match all three forms

of rationality.

7.7 Conclusions

In conclusion, this thesis developed a novel Bayesian account for heuristics explain-

ing why less can be more. Less-is-more effects have represented one of the single

greatest puzzles in the decision making literature for the past decades. While ex-

isting explanations based on bias-variance concepts only have limited explanatory

power in capturing why heuristics can sometimes excel, the Bayesian framework

provided moved beyond these limitations by not only addressing a relative less-

is-more effect, that occurs in comparing comparing simple and complex models,

but also an absolute less-is-more effect that addresses whether heuristics can be the

optimal solution in less-is-more findings.

The Bayesian framework developed in this thesis addressed less-is-more from a

novel angle by proposing that heuristics can be thought of as embodying extreme

Bayesian priors. Thereby, an explanation for less-is-more is that the heuristics’ rel-

ative simplicity and inflexibility amounts to a strong inductive bias, that is suitable



7.7. Conclusions 192

for many learning and decision problems. Chapters 4 and 5 formalized this idea

with two Bayesian models wherein heuristics are an extreme case along a contin-

uum of model flexibility defined by the strength of the prior. Importantly, both

Bayesian models included heuristics at one extreme end of the Bayesian prior’s

strength and a full-information models (regression models) at the other end of the

Bayesian prior. The central finding was that models that pertain an intermediately

strong prior performed best across all real-world simulations in this thesis, suggest-

ing that down-weighting information is preferable to entirely ignoring it. Chapters

4 and 5 concluded that while a relative less-is-more effect is possible, absolute less-

is-more is not, as heuristics will usually be outperformed by an intermediate model

that takes into account the full information but weighs it appropriately. Chapter

6 explored whether less is more at the psychological processing level. An active

learning experiment was used as a window on people’s decision models assuming

that people’s information-gathering behaviour reflects how they represent and go

on to use the information in decisions. Chapter 6 came to the same conclusion, that

less is not more, however on the psychological processing level. Chapter 7 drew

all Chapters together and discussed implications for future work in psychology and

other disciplines, proposing that the potential intermediate models should be identi-

fied assessing their psychologically plausability. Chapter 7 also suggested that our

understanding of heuristics may need to be revised based on the findings in this

thesis.

In sum, the story of heuristics is more complex than it appears at first glance,

and only through interdisciplinary novel approaches applying fundamental machine

learning concepts to psychological theory is it possible to gain deeper insights and

provide a formal understanding of heuristics by placing them in a common proba-

bilistic inference framework.
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List of Fast-and-Frugal Heuristics

Heuristic Definition Less-is-more effect

Recognition heuristic

(Goldstein & Gigeren-

zer, 2002)

If one of two alternatives

is recognized, infer that it

has the higher value on the

criterion.

Less-is-more effect with

recognizing fewer objects

(Goldstein & Gigerenzer,

2002), and with system-

atic forgetting (Schooler &

Hertwig, 2005)

Fluency heuristic (Ja-

coby & Dallas, 1981)

If both alternatives are rec-

ognized but one is recog-

nized fast, infer that it has

the higher value on that

criterion

Less-is-more effect; sys-

tematic forgetting can be

beneficial (Schooler &

Hertwig, 2005)

Take-The-Best

(Gigerenzer & Gold-

stein, 1996)

see definition in Box 2.3.2

Can predict more ac-

curately than multiple

regression (Czerlinski

et al., 1999) and other

machine learning models

(Brighton, 2006)
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Tallying (unit-weight

linear model) (Dawes,

1979)

To estimate a criterion, do

not esatimte weights but

simply count the number

of positive cues, see defi-

nition in Box 2.3.3

Can predict equally or

more accurately than mul-

tiple regression (Czerlin-

ski et al., 1999)

Satisficing (Simon,

1955; Todd & Miller,

1999)

Search through alterna-

tives and choose the first

one that exceeds your as-

piration level.

Aspiration levels can lead

to significantly better

choices than chance, even

if they are arbitrary (e.g.,

the secretary problem, see

Gilbert & Mosteller, 1966)

1/N, equality heuristic

(DeMiguel et al., 2009)

Allocate resources equally

to each of N alternatives.

Can outperform optimal

asset allocation portfolios.

(DeMiguel et al., 2009)

Default heuristic (John-

son & Goldstein, 2003;

Pichert & Katsikopou-

los, 2008)

If there is a default, do

nothing.

Explains why mass mail-

ing has little effect on

organ donor registra-

tion; predicts behavior

when trait and preference

theories fail.

Tit-for-tat (Axelrod,

1984)

Cooperate first and then

imitate your partners last

behavior

Can lead to a higher payoff

than optimization (back-

ward induction).

Imitate the majority

(Boyd & Richerson,

2005)

Consider the majority of

people in your peer group

and imitate their behavior

A driving force in bond-

ing, group identification,

and moral behavior.
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Imitate the successful

(Boyd & Richerson,

2005)

Consider the most suc-

cessful person and imitate

his or her behavior

A driving force in cultural

evolution.

Table A.1: Description of 10 heuristics in the adaptive toolbox, taken from Gigerenzer and
Brighton (2009).
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A Description of the 20 Environments

Domain Environment

Psychology

Attractiveness of men: Predict average attractiveness of 32

famous men based on the subjects’ average likeability rat-

ings of each man, the percentage of subjects who recog-

nized the man’s name (subjects saw only the name, no pho-

tos), and whether the man was American. (Based on data

from a study by Henss, 1996, using 115 male and 131 fe-

male Germans, aged 17-66 years)

Attractiveness of women: Predict average attractiveness of

30 famous women based on the subjects’ average likeabil-

ity ratings of each woman, the percentage of subjects who

recognized the woman’s name (subjects saw only the name,

no photos), and whether the woman was American. (Based

on data from a study by Henss, 1996, using 115 male and

131 female Germans, aged 17-66 years)
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Sociology

High school dropout rates: Predict dropout rate of the 57

Chicago public high schools, given the percentage of low-

income students, percentage of nonwhite students, average

SAT scores, etc. (Based on Morton, 1995, and Rodkin,

1995)

Homelessness: Predict the rate of homelessness in 50 US

cities given the average temperature, unemployment rate,

percentage if inhabitants with incomes below the poverty

line, the vacancy rate, whether the city has rent control, and

the percentage of public housing. (From Tucker, 1987)

Demography

Mortality: Predict the mortality rate in 20 US cities

given the average January temperature, pollution level, the

percentage of nonwhites, etc. (Based on McDonald &

Schwing, 1973; reported in StatLib)

City population: Predict populations of the 83 German

cities with at least 100,000 inhabitants based on whether

each city has a soccer team, university, intercity train line,

exposition site, etc. (From Fischer Welt Almanach, 1993.)

Economics

House Price: Predict the selling price of 22 houses in Erie,

PA, based on current property taxes, number of bathrooms,

number of bedrooms, lot size, total living space, garage

space, age of house, etc. (Based on Narula & Wellington,

1977; reported in Weisberg, 1985)
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Land rent: Predict the rent per acre paid in 58 countries

in Minnesota (in 1977 for agricultural land planted in al-

falfa) based on the average rent for all tillable land, den-

sity of dairy cows, proportion of pasture land, and whether

liming is required to grow alfalfa. (Alfalfa is often fed to

dairy cows.) (Data provided by Douglas Tiffany; reported

in Weisberg, 1985)

Professors’ salaries: Predict the salaries of 51 professors at

a midwestern college given gender, rank, number of years

in current rank, the highest degree earned, and number of

years since highest degree earned (Reported in Weisberg,

1985)

Transportation

Car Accidents: Predict the accident rate per million vehi-

cle miles for 37 segments of highway, using the segment’s

length, average traffic count, percentage of truck volume,

speed limit, number of lanes, lane width, shoulder width,

number of intersections, etc. for Minnesota in 1973. (Based

on an unpublished master’s thesis in civil engineering by

Carl Hoffstedt; reported in Weisberg, 1985.)

Fuel consumption: Predict the average motor fuel consump-

tion per person for each of the 48 contiguous United States

using the population of the state, number of licensed drivers,

fuel tax, per capita income, miles of primary highways

etc. (Based on data collected by Christopher Bingham for

the American almanac for 1974, except fuel consumption,

which was given in the 1974 World Almanac, reported in

Weisberg, 1985)
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Health

Obesity at age 18: Predict fatness at age 18 of 46 children

based on body measurements from age 2 to age 18. The

body measurements included higher, weight, leg circum-

ference, and strength. (Based on the longitudinal monitor-

ing of the Berkeley Guidance Study, Tuddenham & Snyder,

1954; reported in Weisberg, 1985)

Body fat: Predict percentage of body fat determined by un-

derwater weighing (a more accurate measure of body fat)

using various body circumference measurements (which are

more convenient measures than underwater weighing) for

218 men. (Data supplied by A. Garth Fisher form the study

of Penrose et al., 1985; reported in StatLib)

Biology

Fish fertility: Predict the number of eggs in 395 female Arc-

tic charr based on each fish’s weight, its age, and the average

weight of its eggs.(Data courtesy of Christian Gillet, 1996)

Mammal’s sleep: Predict the average amount of time 35

species of mammals sleep, based on brain weight, body

weight, life span, gestation time, and predation and dan-

ger indices (From Allison & Cicchetti 1976; reported in

StatLib)

Cow manure: Predict the amount of oxygen absorbed by

dairy wastes given the biological oxygen demand, chemi-

cal oxygen demand, total Kjedahl nitrogen, total solids, and

total volatile solids for 14 trials (Moore, 1975; reported in

Weisberg, 1985)
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Environmental

Science

Biodiversity: Predict the number of species on 26 Galapa-

gos islands, given their area, elevation, distance to the near-

est island, area of the nearest island, distance from the coast,

etc. (Based on Johnson & Raven, 1973; reported in Weis-

berg, 1985)

Rainfall from cloud seeding: Predict the amount of rain-

fall on 24 days in Coral Gables, FL, given the types of

clouds, the percentage of cloud cover, whether the clouds

were seeded, number of days since the first day of the exper-

iment, etc. (From Woodley et al., 1977; reported in Weis-

berg, 1985)

Oxidant in Los Angeles: Predict the amount of oxidant in

Los Angeles for 17 days given each day’s wind speed, tem-

perature, humidity, and insolation (a measure of the amount

of sunlight). (Data provided by the Los Angeles Pollution

Control District; reported in Rice, 1995.)

Ozone in San Francisco: Predict the amount of ozone in

San Francisco on 11 occasions based on the year, average

winter precipitation for the past two years, and ozone level

in San Jose, at the southern end of the Bay. (From Sandberg

et al., 1978; reported in Weisberg, 1985)

Table B.1: Description of the 20 datasets from Czerlinski et al. (1999). The
datasets were retrieved from the public repository at http://www-abc.mpib-
berlin.mpg.de/sim/Heuristica/environments/. The descriptions of the datasets
above are taken from Czerlinski et al. (1999). In each dataset, the cues were
either binary or dichotomized at the median, and the task is always to predict
which of two objects has the higher criterion value.
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Reanalysis of a heuristic dataset (Fig.

2.7B)

Linear regression and the TTB heuristic were both fit to one of the original 20

datasets reported by the ABC Research Group Czerlinski et al. (1999). In these

original simulations (Czerlinski et al. (1999)), the continuous values were trans-

formed to binary values of 0 and 1 by median split. The criterion variable of the

dataset analyzed in Fig. 2.7B encodes which of two houses has a higher actual sales

price. There are 10 cues, which include things like the number of bedrooms, number

of fireplaces, number of garage spaces, living space, current taxes, and the age of the

house. We created all 231 possible pairwise comparisons of the original 22 houses.

Both the linear regression model and TTB were cross-validated on the dataset by

splitting the total number of pairwise comparisons randomly into training and test

sets. The size of the training set was 20 comparisons (∼9% of all comparisons)

or 100 comparisons (∼43% of all comparisons), and the test set was always the

complementary set of comparisons. For each training set size, the cross-validation

split into training and test sets was repeated 1000 times and performance of each

model was averaged across these replications. Fig. 2.7B in the main text demon-

strates the generalization performance, i.e., the out-of-sample performance, of both

multiple linear regression and TTB as a function of the training set size (small or

large). Error bars in Fig. 2.7B represent the variation in performance across all

cross-validation splits, expressed as standard errors of the mean.
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Statistical Parameters in the Simulation
Number of objects 22
Number of pairwise comparisons N = 231
Number of cues m = 10
Class variable (which house had the
higher actual sales price)

Binary, ±1

Absolute correlation between cues
averaged over cue pairs

0.35

Sample cue validities
[1.00, 0.99, 0.94, 0.88, 0.83, 0.76, 0.73,
0.73, 0.72, 0.31]

Small training sample size 20 (∼ 9% of all pairwise comparisons)
Large training sample size 100 (∼ 43% of all pairwise comparisons)
Test sample size N−20, N−100
Number of cross-validation repeti-
tions

1000

Table C.1: Parameters in the house dataset as presented in Fig. 2.7B.
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City Size Task - Dataset

D.1 The Environment
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Figure D.1: The original city size dataset taken from Gigerenzer and Goldstein (1996). The
dataset contains cue values on all 9 binary cues and the population size of all
83 cities.



Appendix E

Mathematical Derivations: TTB as a

limiting case of lasso regression?

E.1 L1 regularization

These mathematical derivations attempt to derive the TTB heuristic as a limiting

case of L1 regularization. The derivations are developed by my co-author Dr. Matt

Jones (University of Colorado, Boulder) and printed here with his approval.

E.2 Posterior Mean for Lasso

To derive the posterior, we start with the special case of a single cue, X (matrix

notation). The prior for the single weight, w, is Laplacian such that its components

are independent and identically distributed:

p(w) = λ

2 e−λ |w|. (E.1)

where the prior’s strength is given by λ .

As in the half-ridge model, we assume that the cue directionalities (i.e., the signs of

the true weights) are known in advance. The posterior for the single weight, w, is
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p(w|X,y) ∝ e−λ |w|− 1
2σ2 ((wX−y)T (wX−y))

∝

e−
1

2σ2 (XT Xw2−2(XT y+λσ2)w) w < 0

e−
1

2σ2 (XT Xw2−2(XT y−λσ2)w) w > 0

=


e
(XT y+λσ2)

2

2σ2XT X e
−XT X

2σ2

(
w−XT y+λσ2

XT X

)2

w < 0

e
(XT y−λσ2)

2

2σ2XT X e
−XT X

2σ2

(
w−XT y−λσ2

XT X

)2

w > 0

∝ f (w;X,y,λ ) =


eλ

XT y
XT X e

−XT X
2σ2

(
w−XT y+λσ2

XT X

)2

w < 0

e−λ
XT y
XT X e

−XT X
2σ2

(
w−XT y−λσ2

XT X

)2

w > 0.

The function f (w;X,y,λ ) is a pair of truncated Gaussians that meet at 0, with the

(common) normalization constant omitted. To determine the mean of the normal-

ized distribution, we use the following relations:
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From these relations, we have

∫
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XT X

)
+ e−2λ

XT y
XT X Φ

(
XT y−λσ2

σ

√
XT X

)]

and

∫
w f (w;X,y,λ )dw =eλ

XT y
XT X

(
− σ2

XT Xe−
(XT y+λσ2)

2

2σ2XT X +

XT y+λσ2

XT X

√
2πσ2

XT X
Φ

(
−XT y+λσ2

σ

√
XT X

))

+ e−λ
XT y
XT X

(
σ2

XT Xe−
(XT y−λσ2)

2

2σ2XT X +

XT y−λσ2

XT X

√
2πσ2

XT X
Φ

(
XT y−λσ2

σ

√
XT X

))

=

√
2πσ2

XT X
eλ

XT y
XT X

[
XT y+λσ2

XT X
Φ

(
−XT y+λσ2

σ

√
XT X

)
+

XT y−λσ2

XT X
e−2λ

XT y
XT X Φ

(
XT y−λσ2

σ

√
XT X

)]
.

The posterior mean of w is then given by

∫
w f (w;X,y,λ )dw∫
f (w;X,y,λ )dw

=

XT y+λσ2

XT X Φ

(
−XT y+λσ2

σ

√
XT X

)
+ XT y−λσ2

XT X e−2λ
XT y
XT X Φ

(
XT y−λσ2

σ

√
XT X

)
Φ

(
−XT y+λσ2

σ

√
XT X

)
+ e−2λ

XT y
XT X Φ

(
XT y−λσ2

σ

√
XT X

)
=

XT y
XT X

+
λσ2

XT X

Φ

(
−XT y+λσ2

σ

√
XT X

)
− e−2λ

XT y
XT X Φ

(
XT y−λσ2

σ

√
XT X

)
Φ

(
−XT y+λσ2

σ

√
XT X

)
+ e−2λ

XT y
XT X Φ

(
XT y−λσ2

σ

√
XT X

) .
This expression is difficult to evaluate directly. We develop solution methods in the
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next two subsections.

E.2.1 A. Simplified Case

For simplification, assume XT X = 1, XT y = y, σ = 1. The posterior becomes

p(w|y) ∝ g(w;y,λ ) =

eλye−
1
2 (w−y−λ )2

w < 0

e−λye−
1
2 (w−y+λ )2

w > 0.

To evaluate the mean of this posterior (and its asymptotic behavior with large λ ),

we decompose the mean into three components: the posterior probability of w > 0,

and the conditional means of w given w > 0 and given w < 0.

The posterior mean conditioned on w > 0 can be calculated using Equation E.2 as

follows:

E [w|w > 0,y] =

∫
∞

0 wg(w;y,λ )dw∫
∞

0 g(w;y,λ )dw

=

∫
∞

0 we−
1
2 (w−y+λ )2

dw∫
∞

0 e−
1
2 (w−y+λ )2

dw

=
e−

(y−λ )2
2 +(y−λ )

√
2πΦ(y−λ )√

2πΦ(y−λ )

= y−λ +
φ (y−λ )

Φ(y−λ )
.

To evaluate how this expression behaves in the limit λ → ∞, observe that (by re-

peated application of l’Hospital’s rule)

lim
λ→∞

λ

(
y−λ +

φ (y−λ )

Φ(y−λ )

)
= lim

λ→∞

(
yλ −λ 2)Φ(y−λ )+λφ (y−λ )

Φ(y−λ )

= lim
λ→∞

(y−2λ )Φ(y−λ )+φ (y−λ )

−φ (y−λ )

= lim
λ→∞

−2Φ(y−λ )+λφ (y−λ )

−(y−λ )φ (y−λ )

= 1.
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Therefore the posterior mean, conditioned on a positive weight, is asymptotically in-

versely proportional to the prior’s strength, with no dependence on the cue-outcome

correlation (i.e., on y):

lim
λ→∞

λE [w|w > 0,y] = 1.

We will also need to know the component of order λ−2, which is obtained as fol-

lows:

lim
λ→∞

λ (λE [w|w > 0,y]−1) = lim
λ→∞

(
λ

2y−λ
3 +λ

2 φ (y−λ )

Φ(y−λ )
−λ

)
= lim

λ→∞

((
λ 2y−λ 3−λ

)
Φ(y−λ )+λ 2φ (y−λ )

Φ(y−λ )

)

= lim
λ→∞

((
2λy−3λ 2−1

)
Φ(y−λ )+3λφ (y−λ )

−φ (y−λ )

)

= lim
λ→∞

(
(2y−6λ )Φ(y−λ )+(λy+4)φ (y−λ )

−(y−λ )φ (y−λ )

)
= y.

The posterior mean conditioned on a negative weight can be calculated as:

E [w|X,y,w < 0] =

∫ 0
−∞

wg(w;y,λ )dw∫ 0
−∞

g(w;y,λ )dw

=

∫ 0
−∞

we−
1
2 (w−y−λ )2

dw∫ 0
−∞

e−
1
2 (w−y−λ )2

dw

=
−e−

(y+λ )2
2 +(y+λ )

√
2πΦ(−y−λ )√

2πΦ(−y−λ )

= y+λ − φ (y+λ )

Φ(−y−λ )
.

This expression behaves similarly to the one above for a positive weight:

lim
λ→∞

λ

(
y+λ − φ (y+λ )

Φ(−y−λ )

)
=−1.

Thus once again, the conditional posterior mean is asymptotically inversely propor-
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tional to the prior’s strength, with no dependence on the cue-outcome correlation:

lim
λ→∞

λE [w|X,y,w < 0] =−1.

Also paralleling the result for w > 0, the component of order λ−2 is given by

lim
λ→∞

λ (λE [w|X,y,w < 0]+1) = lim
λ→∞

(
yλ

2 +λ
3−λ

2 φ (y+λ )

Φ(−y−λ )
+λ

)
= lim

λ→∞

((
yλ 2 +λ 3 +λ

)
Φ(−y−λ )−λ 2φ (y+λ )

Φ(−y−λ )

)

= lim
λ→∞

((
2yλ +3λ 2 +1

)
Φ(−y−λ )−3λφ (y+λ )

−φ (y+λ )

)

= lim
λ→∞

(
(2y+6λ )Φ(−y−λ )+(−4+ yλ )φ (y+λ )

(y+λ )φ (y+λ )

)
= y.

Finally, the odds of a positive weight can be calculated as

Pr [w > 0|y]
Pr [w < 0|y]

=

∫
∞

0 g(w;y,λ )dw∫ 0
−∞

g(w;y,λ )dw

=
e−2λyΦ(y−λ )

Φ(−y−λ )
.

Before evaluating this quantity, note that

lim
λ→∞

e−2λyΦ(y−λ )

φ (−y−λ )
= lim

λ→∞

∫ y−λ

−∞

e−
1
2 z2+ 1

2 (y+λ )2−2λydz

= lim
λ→∞

∫ 0

−∞

e−
1
2 (u+y−λ )2+ 1

2 (y−λ )2
du

= lim
λ→∞

∫ 0

−∞

e−
1
2 u2+u(λ−y)du

≤ lim
λ→∞

∫ 0

−∞

eu(λ−y)du

= lim
λ→∞

1
λ − y

= 0.
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Evidently, the original limit in question is nonnegative, so we have

lim
λ→∞

e−2λyΦ(y−λ )

φ (−y−λ )
= 0.

Now we can show that the odds of a positive weight converge to 1:

lim
λ→∞

e−2λyΦ(y−λ )

Φ(−y−λ )
= lim

λ→∞

−2ye−2λyΦ(y−λ )− e−2λyφ (y−λ )

−φ (−y−λ )

= e−2λy− (y−λ )2
2 +

(y+λ )2
2 +2y lim

λ→∞

e−2λyΦ(y−λ )

φ (−y−λ )

= e−2λy+λy+λy +0

= 1,

which implies the probability of a positive weight converges to 1
2 . To see how it

converges, consider

lim
λ→∞

λ

(
e−2λyΦ(y−λ )

Φ(−y−λ )
−1

)

= lim
λ→∞

λe−2λyΦ(y−λ )−λΦ(−y−λ )

Φ(−y−λ )

= lim
λ→∞

(1−2λy)e−2λyΦ(y−λ )−λe−2λyφ (y−λ )−Φ(−y−λ )+λφ (−y−λ )

−φ (−y−λ )

= lim
λ→∞

2λye−2λyΦ(y−λ )

φ (−y−λ )
− lim

λ→∞

e−2λyΦ(y−λ )

φ (−y−λ )
+ lim

λ→∞

Φ(−y−λ )

φ (−y−λ )

= lim
λ→∞

2y(1−2λy)e−2λyΦ(y−λ )−2λye−2λyφ (y−λ )

(−y−λ )φ (−y−λ )
−0+ lim

λ→∞

−φ (−y−λ )

(−y−λ )φ (−y−λ )

= lim
λ→∞

2y(1−2λy)
−y−λ

e−2λyΦ(y−λ )

φ (−y−λ )
+ lim

λ→∞

−2λyφ (−y−λ )

(−y−λ )φ (−y−λ )
+0

=0+ lim
λ→∞

−2λy
(−y−λ )

=2y.
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This relation implies the probability of a positive weight converges to 1
2 as

lim
λ→∞

λ
(
Pr [w > 0|y]− 1

2

)
= lim

λ→∞

1
2λ (Pr [w > 0|y]−Pr [w < 0|y])

= lim
λ→∞

1
2λ (Pr [w > 0|y]−Pr [w < 0|y])

2Pr [w < 0|y]

= 1
4 lim

λ→∞

λ

(
Pr [w > 0|y]
Pr [w < 0|y]

−1
)

=
y
2
.

Combining the above results, we have an asymptotic expression for the posterior

mean:

lim
λ→∞

λ
2E [w|X,y] = lim

λ→∞

λ
2(Pr [w < 0|X,y]E [w|X,y,w < 0]+

Pr [w > 0|X,y]E [w|X,y,w > 0]
)

= lim
λ→∞

λ
(
Pr [w < 0|X,y]− 1

2

)
λE [w|X,y,w < 0]+

λ
(
Pr [w > 0|X,y]− 1

2

)
λE [w|X,y,w > 0]+

1
2λ (λE [w|X,y,w < 0]+1))+ 1

2λ (λE [w|X,y,w > 0]−1)

=− y
2
(−1)+

y
2
·1+ y

2
+

y
2

=2y.

E.2.2 B. General Case

We now solve the general case, with posterior given by

p(w|X,y) ∝ f (w;X,y,λ ) =


eλ

XT y
XT X e

−XT X
2σ2

(
w−XT y+λσ2

XT X

)2

w < 0

e−λ
XT y
XT X e

−XT X
2σ2

(
w−XT y−λσ2

XT X

)2

w > 0.

The posterior mean conditioned on w > 0 can be calculated using Equation E.2 as
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follows:

E [w|w > 0,X,y] =

∫
∞

0 we
−XT X

2σ2

(
w−XT y−λσ2

XT X

)2

dw∫
∞

0 e−
XT X
2σ2

(
w−XT y−λσ2

XT X

)2

dw

=

σ2

XT Xe−
(XT y−λσ2)

2

2σ2XT X + XT y−λσ2

XT X

√
2πσ2

XT X Φ

(
XT y−λσ2

σ

√
XT X

)
√

2πσ2

XT X Φ

(
XT y−λσ2

σ

√
XT X

)
=

XT y−λσ2

XT X
+

σ√
XT X

φ

(
XT y−λσ2

σ

√
XT X

)
Φ

(
XT y−λσ2

σ

√
XT X

) .
This expression converges to 0 and is proportional to λ−1 with constant of propor-

tionality equal to

lim
λ→∞

λ

XT y−λσ2

XT X
+

σ√
XT X

φ

(
XT y−λσ2

σ

√
XT X

)
Φ

(
XT y−λσ2

σ

√
XT X

)


= lim
λ→∞

(
XT yλ −λ 2σ2)Φ

(
XT y−λσ2

σ

√
XT X

)
+λσ

√
XT Xφ

(
XT y−λσ2

σ

√
XT X

)
XT XΦ

(
XT y−λσ2

σ

√
XT X

)
= lim

λ→∞

(
XT y−2λσ2)Φ

(
XT y−λσ2

σ

√
XT X

)
+σ

√
XT Xφ

(
XT y−λσ2

σ

√
XT X

)
−σ

√
XT Xφ

(
XT y−λσ2

σ

√
XT X

)
= lim

λ→∞

−2σ2Φ

(
XT y−λσ2

σ

√
XT X

)
+ λσ3
√

XT X
φ

(
XT y−λσ2

σ

√
XT X

)
−σ(XT y−λσ2)√

XT X
φ

(
XT y−λσ2

σ

√
XT X

)
=1.
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The component of order λ−2 is given by

lim
λ→∞

λ (λ (E [w|w > 0,X,y])−1)

= lim
λ→∞

λ
2 XT y−λσ2

XT X
+λ

2 σ√
XT X

φ

(
XT y−λσ2

σ

√
XT X

)
Φ

(
XT y−λσ2

σ

√
XT X

) −λ


= lim

λ→∞

(XT yλ 2−λ 3σ2−XT Xλ
)

Φ

(
XT y−λσ2

σ

√
XT X

)
+λ 2σ

√
XT Xφ

(
XT y−λσ2

σ

√
XT X

)
XT XΦ

(
XT y−λσ2

σ

√
XT X

)


= lim
λ→∞

(2XT yλ −3λ 2σ2−XT X
)

Φ

(
XT y−λσ2

σ

√
XT X

)
+3λσ

√
XT Xφ

(
XT y−λσ2

σ

√
XT X

)
−σ

√
XT Xφ

(
XT y−λσ2

σ

√
XT X

)


= lim
λ→∞

(2XT y−6λσ2)Φ

(
XT y−λσ2

σ

√
XT X

)
+ σ√

XT X

(
XT yλ +4XT X

)
φ

(
XT y−λσ2

σ

√
XT X

)
− σ√

XT X

(
XT y−λσ2

)
φ

(
XT y−λσ2

σ

√
XT X

)


=
XT y
σ2 .

For w < 0, the posterior conditional mean is

E [w|w < 0,X,y] =

∫
∞

0 we
−XT X

2σ2

(
w−XT y+λσ2

XT X

)2

dw∫
∞

0 e−
XT X
2σ2

(
w−XT y+λσ2

XT X

)2

dw

=
− σ2

XT Xe−
(XT y+λσ2)

2

2σ2XT X + XT y+λσ2

XT X

√
2πσ2

XT X Φ

(
−XT y+λσ2

σ

√
XT X

)
√

2πσ2

XT X Φ

(
−XT y+λσ2

σ

√
XT X

)
=

XT y+λσ2

XT X
− σ√

XT X

φ

(
XT y+λσ2

σ

√
XT X

)
Φ

(
−XT y+λσ2

σ

√
XT X

) .
This expression converges to 0 and is proportional to λ−1 with constant of propor-
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tionality equal to

lim
λ→∞

λ

XT y+λσ2

XT X
− σ√

XT X

φ

(
XT y+λσ2

σ

√
XT X

)
Φ

(
−XT y+λσ2

σ

√
XT X

)


= lim
λ→∞

(
XT yλ +λ 2σ2)Φ

(
−XT y+λσ2

σ

√
XT X

)
−λσ

√
XT Xφ

(
XT y+λσ2

σ

√
XT X

)
XT XΦ

(
−XT y+λσ2

σ

√
XT X

)
= lim

λ→∞

(
XT y+2λσ2)Φ

(
−XT y+λσ2

σ

√
XT X

)
−σ

√
XT Xφ

(
XT y+λσ2

σ

√
XT X

)
−σ

√
XT Xφ

(
XT y+λσ2

σ

√
XT X

)
= lim

λ→∞

2σ2Φ

(
−XT y+λσ2

σ

√
XT X

)
+ −λσ3
√

XT X
φ

(
XT y+λσ2

σ

√
XT X

)
σ(XT y+λσ2)√

XT X
φ

(
XT y+λσ2

σ

√
XT X

)
=−1.

The component of order λ−2 is given by

lim
λ→∞

λ (λ (E [w|w < 0,X,y])+1)

= lim
λ→∞

λ
2 XT y+λσ2

XT X
−λ

2 σ√
XT X

φ

(
XT y+λσ2

σ

√
XT X

)
Φ

(
−XT y+λσ2

σ

√
XT X

) +λ


= lim

λ→∞

(XT yλ 2 +λ 3σ2 +XT Xλ
)

Φ

(
−XT y+λσ2

σ

√
XT X

)
−λ 2σ

√
XT Xφ

(
XT y+λσ2

σ

√
XT X

)
XT XΦ

(
−XT y+λσ2

σ

√
XT X

)


= lim
λ→∞

(2XT yλ +3λ 2σ2 +XT X
)

Φ

(
−XT y+λσ2

σ

√
XT X

)
−3λσ

√
XT Xφ

(
XT y+λσ2

σ

√
XT X

)
−σ

√
XT Xφ

(
XT y+λσ2

σ

√
XT X

)


= lim
λ→∞

(2XT y+6λσ2)Φ

(
−XT y+λσ2

σ

√
XT X

)
+ σ√

XT X

(
XT yλ −4XT X

)
φ

(
XT y+λσ2

σ

√
XT X

)
σ√
XT X

(
XT y+λσ2

)
φ

(
XT y+λσ2

σ

√
XT X

)


=
XT y
σ2 .
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Finally, the odds of a positive weight can be calculated as

Pr [w > 0|X,y]
Pr [w < 0|X,y]

=

∫
∞

0 f (w;X,y,λ )dw∫ 0
−∞

f (w;X,y,λ )dw

=
e−2λ

XT y
XT X Φ

(
XT y−λσ2

σ

√
XT X

)
Φ

(
−XT y+λσ2

σ

√
XT X

) .

Asymptotically, the odds approach 1:

lim
λ→∞

e−2λ
XT y
XT X Φ

(
XT y−λσ2

σ

√
XT X

)
Φ

(
−XT y+λσ2

σ

√
XT X

)
= lim

λ→∞

−2XT y
XT X e−2λ

XT y
XT X Φ

(
XT y−λσ2

σ

√
XT X

)
− σ√

XT X
e−2λ

XT y
XT X φ

(
XT y−λσ2

σ

√
XT X

)
− σ√

XT X
φ

(
−XT y+λσ2

σ

√
XT X

)
=e

(XT y+λσ2)
2
−(XT y−λσ2)

2

2σ2XT X
− 2λXT y

XT X +
2XT y

σ

√
XT X

lim
λ→∞

e−2λ
XT y
XT X Φ

(
XT y−λσ2

σ

√
XT X

)
φ

(
−XT y+λσ2

σ

√
XT X

)
=1,
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with the component of order λ=1 given by

lim
λ→∞

λ

e−2λ
XT y
XT X Φ

(
XT y−λσ2

σ

√
XT X

)
Φ

(
−XT y+λσ2

σ

√
XT X

) −1


= lim

λ→∞

λe−2λ
XT y
XT X Φ

(
XT y−λσ2

σ

√
XT X

)
−λΦ

(
−XT y+λσ2

σ

√
XT X

)
Φ

(
−XT y+λσ2

σ

√
XT X

)
= lim

λ→∞

(
1− 2λXT y

XT X

)
e−2λ

XT y
XT X Φ

(
XT y−λσ2

σ

√
XT X

)
− λσ√

XT X
e−2λ

XT y
XT X φ

(
XT y−λσ2

σ

√
XT X

)
− σ√

XT X
φ

(
XT y+λσ2

σ

√
XT X

) +

−Φ

(
−XT y+λσ2

σ

√
XT X

)
+ λσ√

XT X
φ

(
−XT y+λσ2

σ

√
XT X

)
− σ√

XT X
φ

(
XT y+λσ2

σ

√
XT X

)
= lim

λ→∞

2λXT ye−2λ
XT y
XT X Φ

(
XT y−λσ2

σ

√
XT X

)
σ

√
XT Xφ

(
XT y+λσ2

σ

√
XT X

) − lim
λ→∞

√
XT Xe−2λ

XT y
XT X Φ

(
XT y−λσ2

σ

√
XT X

)
σφ

(
XT y+λσ2

σ

√
XT X

) +

lim
λ→∞

√
XT XΦ

(
−XT y+λσ2

σ

√
XT X

)
σφ

(
XT y+λσ2

σ
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Therefore the posterior probability of a positive weight obeys

lim
λ→∞

λ
(
Pr [w > 0|X,y]− 1

2

)
= lim

λ→∞

1
2λ (Pr [w > 0|X,y]−Pr [w < 0|X,y])

= lim
λ→∞

1
2λ (Pr [w > 0|X,y]−Pr [w < 0|X,y])

2Pr [w < 0|X,y]

= 1
4 lim

λ→∞

λ

(
Pr [w > 0|X,y]
Pr [w < 0|X,y]

−1
)

=
XT y
2σ2 .

Combining all the above results, we have an asymptotic expression for the posterior

mean:

lim
λ→∞

λ
2E [w|X,y]

= lim
λ→∞

λ
2 (Pr [w < 0|X,y]E [w|w < 0,X,y]+Pr [w > 0|X,y]E [w|w > 0,X,y])

= lim
λ→∞

λ
(
Pr [w < 0|X,y]− 1

2

)
λE [w|w < 0,X,y]+

λ
(
Pr [w > 0|X,y]− 1

2

)
λE [w|w > 0,X,y]+

1
2λ (λE [w|w < 0,X,y]+1))+ 1

2λ (λE [w|w > 0,X,y]−1)

=− XT y
2σ2 (−1)+

XT y
2σ2 ·1+

XT y
2σ2 +

XT y
2σ2

=
2XT y

σ2 .

E.2.3 C. Conclusion

If the directionalities of the weights are taken as known, then all weights are asymp-

totically identical (and independent of the data). Thus L1-penalized truncated

regression converges to tallying, just like in the ridge regression case (L2 regu-

larization). If the directionalities of the weights are unknown, then L1-penalized

regression converges to a scheme that uses all the predictors, with relative weights

determined by their respective inner products with the data. The one caveat to

these results is that they ignore collinearity between predictors, but we conjecture

this factor becomes irrelevant for large penalty parameters (as is true in the L2

case). When ignoring collinearity, the derivations of the posterior show that all cue
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weights become equal in the limit.
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