
Shakir, D I et al 2017 GIFT-Grab: Real-time C++ and Python Multi-channel
Video Capture, Processing and Encoding API. Journal of Open Research
Software, 5: 27, DOI: https://doi.org/10.5334/jors.169

Journal of
open research software

SOFTWARE METAPAPER

GIFT-Grab: Real-time C++ and Python Multi-channel
Video Capture, Processing and Encoding API
Dzhoshkun Ismail Shakir1,2, Luis Carlos García-Peraza-Herrera1, Pankaj Daga1,
Tom Doel1,2, Matthew J. Clarkson1, Sébastien Ourselin1 and Tom Vercauteren1

1 Translational Imaging Group, CMIC, Department of Medical Physics and Biomedical Engineering, University College London, GB
2 University College London Hospitals NHS Foundation Trust, GB
Corresponding author: Dzhoshkun Ismail Shakir, Research Associate, Honorary Research Fellow (d.shakir@ucl.ac.uk)

GIFT-Grab is an open-source API for acquiring, processing and encoding video streams in real time. GIFT-Grab
supports video acquisition using various frame-grabber hardware as well as from standard-compliant
networkstreamsandvideofiles.ThecurrentGIFT-Grabreleaseallowsformulti-channelvideoacquisition
and encoding at the maximum frame rate of supported hardware – 60 frames per second (fps). GIFT-Grab
buildsonwell-establishedhighlyconfigurablemultimedialibrariesincludingFFmpegandOpenCV.GIFT-Grab
exposesasimplifiedhigh-levelAPI,aimedatfacilitatingintegrationintoclientapplicationswithminimal
codingeffort.ThecoreimplementationofGIFT-GrabisinC++11.GIFT-GrabalsofeaturesaPythonAPI
compatiblewiththewidelyusedscientificcomputingpackagesNumPyandSciPy.

GIFT-Grab was developed for capturing multiple simultaneous intra-operative video streams from
 medical imaging devices. Yet due to the ubiquity of video processing in research, GIFT-Grab can be used in
many other areas. GIFT-Grab is hosted and managed on the software repository of the Centre for Medical
Image Computing (CMIC) at University College London, and is also mirrored on GitHub. In addition it is
available for installation from the Python Package Index (PyPI) via the pip installation tool.

Keywords: multi-channel; video capture; real-time video encoding; video processing; hardware-accelerated
video encoding; GPU; frame-grabber hardware; network video streaming; Epiphan DVI2PCIe Duo;
BlackmagicDeckLinkSDI4K;EpiphanPearl;C++;Python;NumPy;SciPy;Xvid;H.265;H265;VP9;HEVC
Funding statement: This work was supported through an Innovative Engineering for Health award
bytheWellcomeTrust[WT101957],theEngineeringandPhysicalSciencesResearchCouncil(EPSRC)
[NS/A000027/1]andaNationalInstituteforHealthResearchBiomedicalResearchCentreUCLH/UCLHigh
ImpactInitiative.SébastienOurselinreceivesfundingfromtheEPSRC(EP/H046410/1,EP/J020990/1,
EP/K005278) and the MRC (MR/J01107X/1). Luis C. García-Peraza-Herrera is supported by the
EPSRC-fundedUCLCentreforDoctoralTraininginMedicalImaging(EP/L016478/1).

(1) Overview
Introduction
GIFT-Grab is an open-source application programming
interface (API) for acquiring, processing and encoding
video data in real time. GIFT-Grab supports live video
acquisition via supported frame-grabber hardware as well
as the capture of standard-compliant network streams [1].
GIFT-Grab also supports offline video acquisition from
video files. GIFT-Grab is implemented in C++11 yet it also
comes with a Python API that facilitates video data pro-
cessing with NumPy [2] and SciPy [3], two popular Python
scientific computing packages widely used in academia.
GIFT-Grab can be built from source code and can also be
installed from the Python Package Index (PyPI) [4] using
the pip installation tool [5] (please see the installation
note in the Availability section).

GIFT-Grab leverages the video capture and processing
functionality of external multimedia libraries including
FFmpeg [6] and OpenCV [7], and of software develop-
ment kits (SDKs) provided by frame-grabber hardware
manufacturers. Although FFmpeg comes with powerful
capabilities, it is architected in a low-level C-language cod-
ing style. Due to this, it requires unintuitive configuration
involving numerous parameters, even for seemingly sim-
ple tasks. On the other hand, OpenCV provides a higher-
level API than FFmpeg, resulting in a shallower learning
curve. However it does not support callbacks; but instead
requires the client application to query video sources for
new data.

Video data acquired from external sources is frequently
used in an image processing pipeline. It becomes a chal-
lenge for the end user to convert between various datatypes

https://doi.org/10.5334/jors.169
mailto:d.shakir@ucl.ac.uk

Shakir et al: GIFT-GrabArt. 27, p. 2 of 11

representing video data in different software packages,
especially when using various capabilities offered by dif-
ferent libraries and SDKs. It is not uncommon for different
video processing libraries to have no common data inter-
face other than a byte array. On the other hand, scientific
computing packages like SciPy [3] provide powerful image
processing capabilities in conjunction with more natural
datatypes like the NumPy array [2]. GIFT-Grab aims to
bridge this gap of video acquisition, processing and sub-
sequent encoding, by providing a pipeline-oriented archi-
tecture which facilitates real-time video processing with
minimal coding effort. We have developed GIFT-Grab to
meet the requirements of the international research ini-
tiative “Guided Instrumentation for Fetal Therapy and
Surgery” (“GIFT-Surg”) [8]. GIFT-Surg involves major inno-
vations in science and engineering combined with clinical
translation for improving fetal therapy and diagnosis by
providing advanced image processing and visualisation
capabilities. We have already obtained promising results
with a number of novel methods including real-time
mosaicing of the placenta [9] and sensor-free real-time
instrument tracking [10]. These methods rely on real-time
video streams from medical devices such as endoscopes
and ultrasound probes. GIFT-Grab seamlessly makes video
data from medical devices available for use in these medi-
cal imaging methods. It supports the simultaneous acqui-
sition of multi-channel video streams at up to 60 Full HD
(1080p) fps.

An integral part of the development cycle of new medi-
cal imaging methods is validation with data representative
of the targeted medical scenario. In the case of GIFT-Surg
this requires making intra-operative video data from med-
ical devices available for offline use. However raw video
data imposes an impractical burden in terms of storage
requirements. For instance one Full HD (1920 × 1080)
video frame with three channels occupies approximately
6 megabytes (MB) in raw format. At a frame rate of 60
fps, storing an hour’s worth of intra-operative endoscopic
video requires 1.25 terabytes (TB) of storage space. It is
clear that permanently storing raw video is not a scalable
solution. However it is also easy to see that even tempo-
rarily storing raw video (e.g. for offline encoding) would
push storage hardware to its limit if not handled carefully.
To remedy this, GIFT-Grab supports real-time encoding of
video in popular formats including High Efficiency Video
Coding (HEVC) [11] and Xvid [12]. GIFT-Grab leverages
the real-time data processing capabilities of graphics pro-
cessing units (GPU) for streamlining intra-operative video
capture. GIFT-Grab is made available to the community as
open-source under a permissive licence [1, 4].

Implementation and architecture
Before diving into the details of the GIFT-Grab architec-
ture, listing 1 illustrates a simple video processing pipe-
line using the GIFT-Grab Python API. As an example, this
pipeline includes saving Gaussian-smoothed video data
captured from a frame-grabber card to a file. The reader
should note that the source code in listing 1 is trimmed
for brevity. A full working example is provided in listing 3.

Connect to an Epiphan DVI2PCIe Duo device
source_fac = VideoSourceFactory.get_instance()
source = source_fac.get_device(
 Device.DVI2PCIeDuo_DVI, ColourSpace.BGRA
)

Get a Gaussian smoother
gauss = GaussianSmootherBGRA()

Get a file writer
target_fac = VideoTargetFactory.get_instance()
target = target_fac.create_file_writer(
 Codec.HEVC, “/tmp/myfile.mp4”,
 source.get_frame_rate()
)

Attach the Gaussian smoother to the live video
stream
source.attach(gauss)
Attach the file writer to the Gaussian smoother
gauss.attach(target)

[...]
#
Frames automatically processed in the
background
#
[...]

Detach the Gaussian smoother from the live
video stream
source.detach(gauss)
Detach the file writer from the Gaussian
smoother
gauss.detach(target)

Device object automatically deallocated by
source_fac

Listing 1: Python code snippet demonstrating a GIFT-Grab
pipeline for capturing live video data from an Epiphan
DVI2PCIe Duo card [13]; processing and encoding it for
saving to a video file. Note that the Python imports (six
lines of code) have been excluded for brevity. The process-
ing node of the pipeline is a class called GaussianS-
mootherBGRA and defined in listing 2. A full working
example is provided in listing 3.

GIFT-Grab uses the abstract factory design pattern
[14] as an abstraction layer representing the creation
of connections to supported devices. Upon request,
the video source factory creates a polymorphic object
that implements the abstract video source interface
(IVideoSource). This is illustrated in the UML class
diagram in Figure 1. The video source factory manages
each device connection as a singleton [14]. As a safety
net against potential resource issues, it also takes care of
properly destroying all created device connection single-
tons at the end of its lifetime.

GIFT-Grab relates video producers (sources) to video con-
sumers (targets) via the observer design pattern [14]. The
observer design pattern is a high-level design paradigm
similar in concept to function callbacks. It allows observ-
ers to subscribe to video sources (i.e. to be attached), so as
to be notified of each new video frame. The observable-
observer hierarchy in GIFT-Grab is illustrated by the UML
class diagram in Figure 2.

Shakir et al: GIFT-Grab Art. 27, p. 3 of 11

The observable-observer hierarchy is a solid
building block that facilitates video processing
pipelines in GIFT-Grab. The exemplary processing
pipeline shown in listing 1 includes a processing
node. This node is the GaussianSmootherBGRA

class detailed in listing 2 that smoothes arriving
frames using the GIFT-Grab NumPy [2] data wrapper
in conjunction with SciPy image processing functions
[3], and subsequently passes them further down the
pipeline.

Figure 1: UML class diagram showing how connections to supported devices are created and maintained in GIFT-Grab.
The VideoSourceFactory singleton creates on demand a polymorphic IVideoSource object that serves as the
interface for acquiring video frames from a supported device. The diagram shows three of the derived classes which
implement this interface. The choice of the IVideoSource type depends on the connection request.

Figure 2: UML class diagram showing the observer design pattern hierarchy for video sources and targets in GIFT-Grab.
Every IVideoSource is also an IObservable, to which IObservers can be attached. Each time a new
 VideoFrame becomes available, the IObservable notifies all its IObservers by calling the update method.
 Similarly, each IVideoTarget is an IObservers, with its update method automatically calling the append
method (i.e. appending that particular frame to the file).

Shakir et al: GIFT-GrabArt. 27, p. 4 of 11

from pygiftgrab import IObservableObserver
import scipy.ndimage as ndimage

class GaussianSmootherBGRA(IObservableObserver):

 def __init__(self):
 super(GaussianSmootherBGRA, self).__init__()

 def update(self, frame):
 data_np = frame.data(True)
 ndimage.gaussian_filter(
 input=data_np, sigma=(5, 15, 0),
 order=0, output=data_np)

Figure 3: UML sequence diagram showing how the visitor design pattern [14] is used for realising the observer pattern
with an IVideoSource implementor that does not inherently support callbacks: The BroadcastDaemon visitor
queries the VideoSourceOpenCV object in regular intervals for a new VideoFrame. Once obtained, the new
VideoFrame is propagated to all attached observers by calling notify.

Listing 2: Python code snippet showing a sample video processing node: upon receiving a video frame
GaussianSmootherBGRA smoothes it with a Gaussian kernel and feeds it further down the processing pipeline
(such as the one shown in listing 1) – cf. Figure 2. GIFT-Grab wraps video data into NumPy arrays [2] to allow for
processing with SciPy routines [3]. Note that the sole purpose of this code snippet is to demonstrate GIFT-Grab’s
compatibility with NumPy and SciPy. As such GaussianSmootherBGRA does not implement any data buffering
(such as a ring buffer). Data buffering might be required to enable such a processing node to cope with real-time frame
rates depending on the capabilities of the platform hardware.

The GIFT-Grab IVideoSource implementors make
use of functionality provided by external libraries such as
OpenCV [7] and Epiphan Video Grabber SDK [15] to realise
the actual data connection to the supported devices. Some

of these libraries inherently support callbacks, thereby
making the implementation of the observer design pattern
intuitive. However others operate on a data-querying
basis rather than providing a callback mechanism. In

Shakir et al: GIFT-Grab Art. 27, p. 5 of 11

GIFT-Grab we remedy this issue by using the visitor design
pattern [14]: a daemon object acts as the visitor to any
IVideoSource implementor that does not inherently
support the observer paradigm. This daemon object
queries the video source in regular time intervals for new
video frames, and subsequently notifies all observers of
that video source. This is shown in Figure 3.

GIFT-Grab uses the abstract factory design pattern [14]
also for abstracting the creation of video targets (see
Figure 4). Video targets abstract the encoding of video
frames to video files. The VideoTargetFactory
operates on the “resource acquisition is initialisation”
(RAII) principle [16]: each created IVideoTarget
is immediately ready for use (see listing 1). As shown
in Figure 2 each video target is also an observer in the
observable-observer hierarchy, which allows it to be
attached to a video source for automatically saving each
frame from a connected device. The abstract factory
design pattern helps minimise the exposed API, which
allows for a better encapsulation of the underlying
implementation details.

Real-time encoding benchmarks
We benchmarked the real-time performance of GIFT-Grab
by measuring the time it takes to encode video frames
to a video file using a GPU. The video frames were read
from the “Big Buck Bunny” sequence [17], in two differ-
ent colour spaces: I420 and BGRA. They were then used
for producing three different HEVC-encoded MP4 video
files [11, 18] of different resolutions:

•	 4K (3840 × 2160): Native resolution of the “Big
Buck Bunny” sequence

•	 Full HD (1920 × 1080): All frames cropped to the
middle 1920 × 1080 region

•	 HD (1280 × 720): All frames cropped to the middle
1280 × 720 region

We measured the wall-clock execution time of the
append function of VideoTargetFFmpeg using the
Boost Timer Library [19]. This execution time includes
copying the video data from the CPU to the GPU, encoding
the frame and actually writing it to the target video file. In

Figure 4: UML class diagram representing the video target hierarchy in GIFT-Grab. Two implementors of the
IVideoTarget interface are shown: VideoTargetOpenCV and VideoTargetFFmpeg classes which are
used for encoding video frames and saving them to video files. Similar to the case of VideoSourceFactory, the
VideoTargetFactory singleton creates on demand a polymorphic IVideoTarget object. However contrary
to the case of VideoSourceFactory, the ownership of the created IVideoTarget object passes to the caller,
i.e. the caller is responsible for destroying it to free up memory at the end of its lifetime.

Table 1: Recorded maximum CPU load (as percentage) and maximum system memory used (in gigabytes) while re-
cording each of the datasets shown in figure 5. Note that these are system-wide measurements to give an idea of the
system load during the benchmarking process.

GeForce GTX TITAN X GeForce GTX 980 Ti

I420 frames HD: 14.3%, 5.7 GB 14.3%, 5.7 GB

Full HD: 14.7%, 5.7 GB 17.2%, 5.7 GB

4K: 67.7%, 6.3 GB 75.8%, 6.3 GB

BGRA frames HD: 18.5%, 3.8 GB 15.6%, 3.8 GB

Full HD: 50.0%, 4.8 GB 16.7%, 4.8 GB

4K: 52.9%, 11.0 GB 55.2%, 11.0 GB

Shakir et al: GIFT-GrabArt. 27, p. 6 of 11

addition we monitored the GPU memory used throughout
the process, via the NVIDIA System Management Interface
[20]. We report the maximum recorded GPU memory
value for each case. Furthermore we monitored the total
CPU load and the total system memory usage, using the
Bash commands top and free respectively (see Table 1).
We obtained these measurements on a workstation with
two GPUs. At the time of recording, the workstation was in
an idle state, with each of the GPUs running only a graphi-
cal user session. The hardware and software specifications
of the workstation follow:

•	 CPU: Haswell FCLGA2011-3 with 6 Cores (12 Threads)
3.5 GHz (Intel Xeon E5-1650V3)

•	 GPUs
1. GeForce GTX TITAN X: 3072 Maxwell Cores with

Compute Capability 6.1 and 12 GB 7.0 Gbps GDDR5
memory (donated by the NVIDIA Corporation)

2. GeForce GTX 980 Ti: 2816 Maxwell Cores with
Compute Capability 5.2 and 6 GB 7.0 Gbps GDDR5
memory (ZOTAC GeForce GTX 980 Ti AMP!)

•	 Memory: 64 GB (4x 16 GB) DDR4-2133 quad-channel
RAM (Crucial 64GB Kit)

•	 Storage: 500 GB SATA 6 Gbps SSD (Samsung 850
EVO)

•	 Motherboard: Asus X99-S
•	 Operating system: Ubuntu 16.04 LTS, kernel ver-

sion: 4.4.0-72-generic
•	 NVIDIA driver version: 375.39
•	 CUDA version: 8.0

Figure 5 shows the wall-clock execution times for 100
video frames in each configuration. The execution time
for the first video frame has been excluded from these
graphs, but reported in Table 2. This is because the first
frame is used for inferring the resolution to use in the
resulting video file. This information is subsequently used
for initialising the file writer object, including memory
allocation.

The upper row in Figure 5 demonstrates that in the
absence of colour conversion (when I420 frames are fed
to the file writer), all recorded execution times are well
below 16.67 msec, the time interval between two video
frames at 60 fps. The lower row shows that even when
colour conversion is involved, 60 fps can still be achieved
for Full HD video frames. However neither 60 fps nor 30

Figure 5: Wall-clock execution times in milliseconds for encoding 100 video frames of three different resolutions on
two GPUs and subsequently writing them to a video file. Each column is for one GPU. The upper row shows execution
times when I420 frames are fed into the file writer, i.e. no colour space conversion before encoding. The lower row
shows the case when BGRA frames are fed into the file writer, i.e. BGRA-to-I420 conversion performed before encod-
ing. The darker shade in each graph shows the region within the time limits that would allow for processing 60 fps.
The lighter shade in the lower row shows the respective region for 30 fps (but not 60 fps). The numbers in paranthe-
ses in the figure legends indicate the maximum GPU memory allocated at a time for each dataset.

Shakir et al: GIFT-Grab Art. 27, p. 7 of 11

fps can be guaranteed for 4K video frames when colour
conversion is involved. On the other hand, the relatively
low GPU memory consumption suggests that multiple
frames of the same video stream or frames of multiple
video streams may be encoded in parallel. This could thus
potentially yield higher frame rates when colour conver-
sion is needed. Encoding multiple frames of the same
video stream however requires proper synchronisation
mechanisms to preserve the order of video frames, as well
as proper handling of the inter-frame dependencies.

Quality control
GIFT-Grab can be built from source code or installed via
the pip installation tool [5] from the Python Package
Index (PyPI) [4]. We encourage the reader interested in
the GIFT-Grab Python API to use this option (please see
the installation note in the Availability section). Building
GIFT-Grab from source requires configuration via CMake
[21]. This installation option comes with a CMake discov-
ery script that allows for seamlessly including GIFT-Grab
in C++ software projects that use CMake [21].

Delivering high-quality sustainable medical imaging
software is one of the core goals of GIFT-Surg [8]. Owing
to the fact that the GIFT-Surg software deliverables are
intended to be used for pre-operative surgical planning
and intra-operative interventional guidance applications,
we follow a development process that is inspired by the
internationally accepted IEC EN 62304:2006 Standard
“Medical device software – Software life cycle processes”
[22]. This standard outlines the key requirements for
the safe design and maintenance of software products
intended for clinical use. We will briefly discuss the key
sections of EN 62304 in relation to our development
practices.

Section 5 of EN 62304 defines the requirements of the
medical software development process. It emphasises
traceability between each software development step and
the software specifications, tests and risk control meas-
ures. It allows for an existing development process com-
patible with the standard to be adopted instead of defining
a new one. We follow a development process very similar
to that demonstrated by Höss et al. in a recent paper [23].
Höss et al. use state-of-the-art software development tools
and technologies to implement the key requirements of
EN 62304. As such they have not only achieved quality
assurance (QA) of their software tool, but also laid a solid

practical example for translating EN 62304 to the clinical
ecosystem.

We use GitLab [24] for project management and Gitlab
CI [25] for continuous integration (CI) in a similar fash-
ion to how Höss et al. use Redmine [26] and Jenkins [27]
respectively for these two tasks. The issue tracker function-
ality of GitLab serves to document feature requests and
bug reports, which then steer the development process.
GitLab allows for referencing issues from code commits,
which ensures a direct link between the software specifi-
cations and the concrete development steps that lead to
the realisation of those. This practice is also in line with
section 6 of EN 62304, which outlines the requirements
for maintaining clinical software.

We have adopted the test-driven development (TDD)
process [28] for GIFT-Grab. In TDD each new feature or bug
is first defined through a set of failing tests. Subsequently
the implementation of the new feature or the bug fix
boils down to adding new and/or refactoring the existing
source code in a manner that makes the new tests pass.
GitLab CI automatically executes the GIFT-Grab tests as
well as the documented deployment procedures. This is a
safety net that ensures changes to GIFT-Grab do not break
existing functionality. In other words, when implement-
ing a new feature or fixing a bug, only the code changes
that make the new tests pass without causing the existing
ones to fail are merged into the stable code branch. This
practice is inspired by the requirement for identifying and
resolving potential regressions during the active develop-
ment of medical device software, as outlined in section 5
of EN 62304.

The GIFT-Grab tests are organised as a comprehensive
test suite that is configured using CTest [29]. This test suite
uses Catch [30] and pytest [31], at the C++ and Python lev-
els respectively. The unit tests implemented using Catch
[30] serve two purposes. First, they ensure that the video
source and target factory instances are created accord-
ing to the singleton pattern. Second, they check that the
video source factory manages the connection to each
supported device as a singleton. The unit tests imple-
mented using pytest [31] check the correct operation of
all documented GIFT-Grab features. All the tests pertain-
ing to video acquisition from supported frame-grabber
hardware are executed on dedicated test machines with
the respective cards installed. Owing to the polymor-
phism that enables treating video files and frame-grabber

Table 2: Encoding times in milliseconds for the excluded first frame (initialisation) in each of the datasets shown in
figure 5.

GeForce GTX TITAN X GeForce GTX 980 Ti

I420 frames HD: 486 msec 451 msec

Full HD: 495 msec 412 msec

4K: 754 msec 731 msec

BGRA frames HD: 509 msec 441 msec

Full HD: 505 msec 452 msec

4K: 798 msec 736 msec

Shakir et al: GIFT-GrabArt. 27, p. 8 of 11

cards simply as video sources, the unit tests for files are
designed following a similar pattern to the unit tests for
frame-grabber hardware. Sample video files with known
specs are also included as part of the testing infrastruc-
ture. These together with a provided internal Python
module that makes use of FFmpeg utility applications [6]
serve to ensure video de-/encoding capabilities are opera-
tional. In addition to the unit tests, the GIFT-Grab pytest
suite also provides real-time integration tests that create
image processing pipelines where intermediate process-
ing nodes measure the acquisition frame rates and report
in cases where the measured frame rates are lower than
documented values. Last but not least, the GIFT-Grab test
suite also checks the correct exposure of raw video data
as NumPy arrays. For further technical details we refer
the reader to the GIFT-Grab documentation [1, 4]. Apart
from the automated tests, we also run manual tests, nota-
bly before each release, where a human observer runs a
sample Python application related to a specific GIFT-Grab
feature and (visually) assesses the result (e.g. a video file
produced) for correctness.

Section 8 of EN 62304 defines the requirements for the
configuration management of medical device software.
This among others involves the version management of
the “software of unknown provenance” (SOUP) in relation
to the versions of developed software. In the case of GIFT-
Grab, SOUP corresponds to the third party software librar-
ies used by GIFT-Grab. We clearly document these software
libraries in the GIFT-Grab documentation alongside their
respective versions that GIFT-Grab has been tested with.
GitLab further allows for documenting project-specific
information using the Markdown language [32]. Using
GitLab, information can be organised in the form of
wiki pages and the Markdown language provides means
for cross-referencing between different documentation
resources. We use these GitLab features for document-
ing details related to the relevant SOUP libraries, such as
detailed and custom installation instructions wherever
applicable.

Section 9 of EN 62304 stipulates that problems related
to medical device software are to be documented, classi-
fied for criticality and impact, and subsequently investi-
gated. It further demands that users of the software be
advised of existing problems. Our GitLab infrastructure
serves to document reported problems in the form of
issue tickets as detailed above. In addition, one or more
labels related to an issue’s criticality and impact can be
assigned to each ticket. Last but not least, each ticket can
be marked for resolution in a specific release. We have
also open-sourced GIFT-Grab on the popular GitHub [1].
GitHub provides a similar issue tracking and documenta-
tion functionality, and has millions of users. We believe
making GIFT-Grab thus available to a broader audience
will accelerate the discovery (and potentially the resolu-
tion) of problems.

GIFT-Grab is not a full medical diagnostic or guidance
tool, but one of the building blocks thereof. In other
words, GIFT-Grab is a component that serves to make data
from external medical devices available for processing

in clinical software. As such, we focus on defining
interfaces i) between GIFT-Grab and medical devices
by supporting appropriate frame-grabber hardware,
and ii) between GIFT-Grab and clinical software via an
appropriate representation of video data to facilitate
integration and compatibility with a broad range
of available software tools. This is inspired by the
requirement of EN 62304 for defining software inputs
and outputs, and the interfaces between the software
system and other systems (section 5.2.2). Although we
endeavour to follow development practices compatible
with EN 62304, we are also aware that compliance with EN
62304 requires a formal process for quality management
and risk mitigation, as well as for usability engineering
[23]. Furthermore, these processes are not only to be
formalised and followed, but will also be subject to a
formal independent audit.

(2) Availability
Installation note: The reader interested in install-
ing GIFT-Grab via the pip installation tool should read
the installation instructions in [33] before proceeding.
Availability information for GIFT-Grab at the time of pre-
paring this manuscript is listed below.

Operating system
Linux (tested on Ubuntu 14.04 LTS, Ubuntu 16.04 LTS,
and Debian 9 “testing”)

Programming language
C++11, Python

Additional system requirements
Currently supported frame-grabber hardware:

•	 Epiphan	DVI2PCIe	Duo	[13]
•	 Blackmagic	DeckLink	SDI	4K	[34]

Also an NVIDIA Maxwell 2nd generation GPU (or newer)
[35] is needed for real-time video encoding.

Dependencies
The required GIFT-Grab dependencies are listed in bold
face below. The requirement for each of the others
depends on the desired GIFT-Grab features. As such, all
features are inactive by default, to ensure the minimal
number of dependencies for installing GIFT-Grab. We refer
the reader to the GIFT-Grab documentation [1] for more
detailed information, in particular the minimum accept-
able versions of the listed dependencies.

At time of composing this manuscript GIFT-Grab uses
stable versions of all the listed external dependencies
except for libVLC. This is because some critical issues in
the stable releases of libVLC have been fixed in recent
release candidates.

•	 A C++11 compatible compiler such as GCC [36]
•	 CMake [21]
•	 Python	[37]

Shakir et al: GIFT-Grab Art. 27, p. 9 of 11

•	 Boost.Python	[38]
•	 pkg-config	[39]
•	 OpenCV	[7]
•	 x265	[40]
•	 libvpx	[41]
•	 kvazaar	[42]
•	 libVLC	(VLC	SDK)	[43]
•	 NVIDIA	Video	Codec	SDK	(NVENC)	[35]
•	 FFmpeg	[6]
•	 zlib	[44]
•	 Epiphan	Video	Grabber	SDK	[15]
•	 Blackmagic	Desktop	Video	SDK	[45]
•	 POSIX	threads	(pthreads)	[46]
•	 pytest	[31]
•	 Catch	[30]
•	 doxygen	[47]

List of contributors
The list of authors includes all contributors.

Software location
Archive

Name: Zenodo
Persistent identifier: https://doi.org/10.5281/

zenodo.840633
Licence: BSD 3-Clause License
Publisher: Dzhoshkun Ismail Shakir
Version published: 1708 (August 2017 release)
Date published: 09/08/2017

Code repository
Name: GitHub
Persistent identifier: https://github.com/gift-surg/

GIFT-Grab
Licence: BSD 3-Clause License
Date published: 09/08/2017

Language
English

(3) Reuse potential
Real-time and non-real-time video processing are ubiqui-
tous in our age. Many applications in different domains
use video data. The GIFT-Surg research initiative [8] devel-
ops novel medical imaging methods for fetal therapy and
surgery, that rely on video from medical devices [10, 9].
Other examples include real-time stereo reconstruction
[48] and probe tracking [49] in robotic surgery, surveil-
lance endoscopies [50], real-time panorama image synthe-
sis [51], vehicle surveillance [52] and content-based video
identification [53].

GIFT-Grab allows real-time video processing applica-
tions to connect to external devices and to encode video
data from these devices. In addition GIFT-Grab exposes a
simplified API architecture suitable for video processing
pipelines. Wrapping video data as NumPy arrays [2] makes
it possible to create video processing pipelines using the
rich collection of methods in SciPy [3]. In order to facili-
tate easy deployment, GIFT-Grab is also bundled as a PyPI

package [4]. This allows for a one-liner installation using
pip, the recommended tool for Python packages [5] (please
see the installation note in the Availability section).

GIFT-Grab relies on highly configurable external mul-
timedia libraries and SDKs. Wherever applicable, it uses
default configuration options for these. In other words,
GIFT-Grab does not attempt to tweak the parameters of
these external dependencies unless absolutely necessary.
As such GIFT-Grab may not be a suitable choice for appli-
cations that have specific requirements, for instance cus-
tom video quality.

Appendix A. Full working Python example
The source code listing below shows a full Python exam-
ple that can be copy-pasted out to a Python interpreter
and executed.

#!/usr/bin/env python2

from pygiftgrab import IObservableObserver
import scipy.ndimage as ndimage
from pygiftgrab import VideoSourceFactory
from pygiftgrab import ColourSpace
from time import sleep
from pygiftgrab import VideoTargetFactory
from pygiftgrab import Codec

class GaussianSmootherBGRA(IObservableObserver):

 def __init__(self):
 super(GaussianSmootherBGRA, self).
 __init__()

 def update(self, frame):
 data_np = frame.data(True)
 ndimage.gaussian_filter(
 input=data_np, sigma=(5, 15, 0),
 order=0, output=data_np)

if __name__ == “__main__”:
 sfac = VideoSourceFactory.get_instance()
 file_reader = sfac.create_file_reader(
 “/tmp/myinput.mp4”, ColourSpace.BGRA)

 gauss = GaussianSmootherBGRA()

 tfac = VideoTargetFactory.get_instance()
 frame_rate = file_reader.get_frame_rate()
 file_writer = tfac.create_file_writer(
 Codec.HEVC, “/tmp/myoutput.mp4”,
 frame_rate)

 file_reader.attach(gauss)
 gauss.attach(file_writer)

 sleep(20) # operate pipeline for 20 sec

 file_reader.detach(gauss)
 gauss.detach(file_writer)

Listing 3: A full Python example that demonstrates a
GIFT-Grab pipeline capturing video data from a local
file; processing and subsequently encoding processed
frames out to another video file. The processing node of
this pipeline is the GaussianSmootherBGRA class
defined in listing 2 and duplicated here for conveni-
ence.

https://doi.org/10.5281/zenodo.840633
https://doi.org/10.5281/zenodo.840633
https://github.com/gift-surg/GIFT-Grab
https://github.com/gift-surg/GIFT-Grab

Shakir et al: GIFT-GrabArt. 27, p. 10 of 11

Acknowledgements
We gratefully acknowledge the support of NVIDIA
Corporation with the donation of the Tesla K40 GPU used
for this research. We would like to thank Dr. Valentina
Vitiello for an insightful discussion on the quality
 management of medical device software.

Competing Interests
The authors have no competing interests to declare.

References
1. GIFT-Grab on GitHub. URL: https://github.com/gift-

surg/GIFT-Grab [Online; accessed 04-Aug-2017].
2. van der Walt, S, Colbert, S C and Varoquaux, G 2011

The NumPy Array: A Structure for Efficient Numerical
Computation. Computing in Science Engineering,
13(2): 22–30. ISSN 1521-9615. DOI: https://doi.
org/10.1109/MCSE.2011.37

3. Jones, E, Oliphant, T, Peterson, P, et al. SciPy: Open
source scientific tools for Python. URL: http://www.
scipy.org/ [Online; accessed 01-Mar-2017].

4. GIFT-Grab on Python Package Index. URL:
https://pypi.org/project/GIFT-Grab [Online; accessed
 04-Aug-2017].

5. pip. URL: https://pip.pypa.io [Online; accessed
 01-Mar-2017].

6. FFmpeg. URL: https://www.ffmpeg.org/ [Online;
 accessed 25-Nov-2016].

7. OpenCV (Open Source Computer Vision). URL:
http://opencv.org/ [Online; accessed 16-Mar-2017].

8. GIFT-Surg Homepage. URL: http://www.gift-surg.
ac.uk [Online; accessed 22-Nov-2016].

9. Daga, P, Chadebecq, F, Shakir, D I, Garcia-Peraza-
Herrera, L C, Tella, M, Dwyer, G, David, A L, Deprest,
J, Stoyanov, D, Vercauteren, T and Ourselin, S 2016
Real-time mosaicing of fetoscopic videos using SIFT.
Proc SPIE 9786: 97861R–97861R–7. DOI: https://doi.
org/10.1117/12.2217172

10. García-Peraza-Herrera, L C, Li, W, Gruijthuijsen,
C, Devreker, A, Attilakos, G, Deprest, J,
Vander Poorten, E, Stoyanov, D, Vercauteren, T
and Ourselin, S 2017 Real-Time Segmentation of
Non-rigid Surgical Tools Based on Deep Learning and
Tracking, 84–95. Springer International Publishing,
Cham. ISBN 978-3-319-54057-3. DOI: https://doi.
org/10.1007/978-3-319-54057-3_8

11. High efficiency video coding 2015 Recommendation
ITU-T H.265, International Telecommunication Union,
Geneva, CH.

12. Xvid. URL: https://www.xvid.com/ [Online; accessed
25-Nov-2016].

13. DVI2PCIe Duo – Epiphan’s high performance
PCIe capture card. URL: https://www.epiphan.com/
products/dvi2pcie-duo/ [Online; accessed 25-Nov-
2016].

14. Shvets, A, Pavlova, M and Frey, G. Design Patterns
Explained Simply. URL: https://sourcemaking.com
[Online; accessed 24-Nov-2016].

15. Support – Epiphan Video. URL: https://www.epi-
phan.com/support/ [Online; accessed 25-Nov-2016].

16. Stroustrup, B 2013 The C++ Programming Lan-
guage. Addison-Wesley Professional, 4th edition. ISBN
0321563840, 9780321563842.

17. Sample HEVC Video Files. URL: https://x265.com/
hevc-video-files/ [Online; accessed 4-May-2017].

18. Information technology – Coding of audio-visual
 objects – Part 14: MP4 file format, 2003 Standard
ISO/IEC 14496-14:2003, International Organization
for Standardization, Geneva, CH.

19. Dawes, B. Boost Timer Library. URL: http://www.boost.
org/libs/timer/doc/ [Online; accessed 4-May-2017].

20. NVIDIA Corporation. NVIDIA System Management
Interface. URL: https://developer.nvidia.com/nvidia-
system-management-interface [Online; accessed
4-May-2017].

21. Kitware, Inc. CMake. URL: http://cmake.org/
 [Online; accessed 16-Mar-2017].

22. Medical device software – Software life cycle pro-
cesses 2006 Standard IEC 62304:2006, International
Organization for Standardization, Geneva, CH.

23. Höss, A, Lampe, C, Panse, R, Ackermann, B,
 Naumann, J, and Jäkel, O 2014 First experiences
with the implementation of the European stand-
ard EN 62304 on medical device software for the
quality assurance of a radiotherapy unit. Radiation
 Oncology, 9(1): 79. ISSN 1748-717X. DOI: https://doi.
org/10.1186/1748-717X-9-79.

24. GitLab. URL: https://about.gitlab.com/ [Online;
 accessed 10-May-2017].

25. GitLab Continuous Integration & Deployment
Pipelines. URL: https://about.gitlab.com/features/
gitlab-ci-cd/ [Online; accessed 10-May-2017].

26. Redmine. URL: http://www.redmine.org/ [Online;
 accessed 10-May-2017].

27. Jenkins. URL: https://jenkins.io/ [Online; accessed
10-May-2017].

28. Beck 2002 Test Driven Development: By Example.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA. ISBN 0321146530.

29. Kitware, Inc. CMake/Testing with CTest. URL:
https://cmake.org/Wiki/CMake/Testing_With_CTest
[Online; accessed 16-Mar-2017].

30. philsquared/Catch: A modern, C++-native, header-
only, framework for unittests, TDD and BDD C++
Automated Test Cases in Headers. URL: https://
github.com/philsquared/Catch [Online; accessed
07-Dec-2016].

31. pytest: helps you write better programs – pytest
documentation. URL: http://doc.pytest.org/ [Online;
 accessed 07-Dec-2016].

32. Markdown – GitLab Documentation. URL: https://
docs.gitlab.com/ce/user/markdown.html [Online;
 accessed 10-May-2017].

33. Install GIFT-Grab from the Python Packaging
 Index. URL: https://github.com/gift-surg/GIFT-
Grab/blob/master/doc/pypi.md [Online; accessed
 16-Jun-2017].

34. Blackmagic Design: DeckLink Models. URL: https://
www.blackmagicdesign.com/products/decklink/mod-
els [Online; accessed 23-Jan-2017].

https://github.com/gift-surg/GIFT-Grab
https://github.com/gift-surg/GIFT-Grab
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
http://www.scipy.org/
http://www.scipy.org/
https://pypi.org/project/GIFT-Grab
https://pip.pypa.io
https://www.ffmpeg.org/
http://opencv.org/
http://www.gift-surg.ac.uk
http://www.gift-surg.ac.uk
https://doi.org/10.1117/12.2217172
https://doi.org/10.1117/12.2217172
https://doi.org/10.1007/978-3-319-54057-3_8
https://doi.org/10.1007/978-3-319-54057-3_8
https://www.xvid.com/
https://www.epiphan.com/products/dvi2pcie-duo/
https://www.epiphan.com/products/dvi2pcie-duo/
https://sourcemaking.com
https://www.epiphan.com/support/
https://www.epiphan.com/support/
https://x265.com/hevc-video-files/
https://x265.com/hevc-video-files/
http://www.boost.org/libs/timer/doc/
http://www.boost.org/libs/timer/doc/
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
http://cmake.org/
https://doi.org/10.1186/1748-717X-9-79
https://doi.org/10.1186/1748-717X-9-79
https://about.gitlab.com/
https://about.gitlab.com/features/gitlab-ci-cd/
https://about.gitlab.com/features/gitlab-ci-cd/
http://www.redmine.org/
https://jenkins.io/
https://cmake.org/Wiki/CMake/Testing_With_CTest
https://github.com/philsquared/Catch
https://github.com/philsquared/Catch
http://doc.pytest.org/
https://docs.gitlab.com/ce/user/markdown.html
https://docs.gitlab.com/ce/user/markdown.html
https://github.com/gift-surg/GIFT-Grab/blob/master/doc/pypi.md
https://github.com/gift-surg/GIFT-Grab/blob/master/doc/pypi.md
https://www.blackmagicdesign.com/products/decklink/models
https://www.blackmagicdesign.com/products/decklink/models
https://www.blackmagicdesign.com/products/decklink/models

Shakir et al: GIFT-Grab Art. 27, p. 11 of 11

35. NVIDIA VIDEO CODEC SDK|NVIDIA Developer.
URL: https://developer.nvidia.com/nvidia-video-co-
dec-sdk [Online; accessed 25-Nov-2016].

36. GCC, the GNU Compiler Collection. URL: https://
gcc.gnu.org/ [Online; accessed 25-Nov-2016].

37. Van Rossum, G and Drake, F L 2003 Python language
reference manual. Network Theory.

38. Abrahams, D and Seefeld, S. Boost.Python. URL:
http://www.boost.org/libs/python/doc/ [Online;
 accessed 16-Mar-2017].

39. pkg-config. URL: https://www.freedesktop.org/wiki/
Software/pkg-config/ [Online; accessed 07-Dec-2016].

40. x265 HEVC Encoder/H.265 Video Codec. URL:
http://x265.org/ [Online; accessed 25-Nov-2016].

41. The WebM Project|Developer Overview. URL:
http://www.webmproject.org/code/ [Online; accessed
 07-Dec-2016].

42. Viitanen, M, Koivula, A, Lemmetti, A, Ylä-Outinen,
A, Vanne, J and Hämäläinen, T D 2016 Kvazaar:
Open-Source HEVC/H.265 Encoder. In: Proceed-
ings of the 2016 ACM on Multimedia Confer-
ence, MM ’16, 1179–1182. ACM, New York, NY,
USA. ISBN 978-1-4503-3603-1. DOI: https://doi.
org/10.1145/2964284.2973796

43. libVLC. URL: https://wiki.videolan.org/LibVLC [On-
line; accessed 07-Dec-2016].

44. zlib Home Site. URL: http://www.zlib.net/ [Online;
accessed 07-Dec-2016].

45. Blackmagic Design: Support Center. URL: https://
www.blackmagicdesign.com/support [Online; ac-
cessed 23-Jan-2017].

46. POSIX.1-2008, 2016 Standard IEEE Std 1003.1™-
2008, Institute of Electrical and Electronics
 Engineers, Inc. and The Open Group, New York, NY,
USA and Reading, Berkshire, UK. URL: http://pubs.
opengroup.org/onlinepubs/9699919799/ [Online;
accessed 07-Dec-2016].

47. Doxygen: Main Page. URL: http://www.doxygen.org/
[Online; accessed 25-Nov-2016].

48. Stoyanov, D, Scarzanella, M V, Pratt, P and
Yang, G Z 2010 Real-Time Stereo Reconstruction
in Robotically Assisted Minimally Invasive Surgery,
275–282. Springer Berlin Heidelberg, Berlin,
Heidelberg. ISBN 978-3-642-15705-9. DOI: https://
doi.org/10.1007/978-3-642-15705-9_34

49. Pratt, P, Jaeger, A, Hughes-Hallett, A, Mayer, E,
Vale, J, Darzi, A, Peters, T and Yang, G Z 2015
Robust ultrasound probe tracking: initial clinical
experiences during robot-assisted partial nephrec-
tomy. International Journal of Computer Assisted
Radiology and Surgery, 10(12): 1905–1913. ISSN
1861-6429. DOI: https://doi.org/10.1007/s11548-
015-1279-x

50. Atasoy, S, Mateus, D, Meining, A, Yang, G Z
and Navab, N 2011 Targeted Optical Biopsies for
Surveillance Endoscopies, 83–90. Springer Berlin
Heidelberg, Berlin, Heidelberg. ISBN 978-3-642-
23626-6. DOI: https://doi.org/10.1007/978-3-642-
23626-6_11

51. Kim, B S, Lee, S H and Cho, N I 2012 Real-time
 panorama image synthesis by fast camera pose
 estimation. In: Proceedings of The 2012 Asia Pacific
 Signal and Information Processing Association Annual
 Summit and Conference, 1–4.

52. Leotta, M J and Mundy, J L 2011 Vehicle Surveillance
with a Generic, Adaptive, 3D Vehicle Model. IEEE
 Transactions on Pattern Analysis and Machine
 Intelligence, 33(7): 1457–1469. ISSN 0162-8828. DOI:
https://doi.org/10.1109/TPAMI.2010.217

53. Yang, X, Sun, Q and Tian, Q 2003 Content-based video
identification: a survey. In: International Conference
on Information Technology: Research and Education.
Proceedings. ITRE2003., 50–54. DOI: https://doi.
org/10.1109/ITRE.2003.1270570

How to cite this article: Shakir, D I, García-Peraza-Herrera, L C, Daga, P, Doel, T, Clarkson, M J, Ourselin, S and Vercauteren, T
2017 GIFT-Grab: Real-time C++ and Python Multi-channel Video Capture, Processing and Encoding API. Journal of Open Research
Software, 5: 27, DOI: https://doi.org/10.5334/jors.169

Submitted: 16 March 2017 Accepted: 24 August 2017 Published: 09 October 2017

Copyright: © 2017 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

https://developer.nvidia.com/nvidia-video-codec-sdk
https://developer.nvidia.com/nvidia-video-codec-sdk
https://gcc.gnu.org/
https://gcc.gnu.org/
http://www.boost.org/libs/python/doc/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
http://x265.org/
http://www.webmproject.org/code/
https://doi.org/10.1145/2964284.2973796
https://doi.org/10.1145/2964284.2973796
https://wiki.videolan.org/LibVLC
http://www.zlib.net/
https://www.blackmagicdesign.com/support
https://www.blackmagicdesign.com/support
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://www.doxygen.org/
https://doi.org/10.1007/978-3-642-15705-9_34
https://doi.org/10.1007/978-3-642-15705-9_34
https://doi.org/10.1007/s11548-015-1279-x
https://doi.org/10.1007/s11548-015-1279-x
https://doi.org/10.1007/978-3-642-23626-6_11
https://doi.org/10.1007/978-3-642-23626-6_11
https://doi.org/10.1109/TPAMI.2010.217
https://doi.org/10.1109/ITRE.2003.1270570
https://doi.org/10.1109/ITRE.2003.1270570
https://doi.org/10.5334/jors.169
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	Real-time encoding benchmarks
	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Archive
	Code repository

	Language

	(3) Reuse potential
	Appendix A. Full working Python example
	Acknowledgements
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1
	Table 2

