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A method based on wide spacing approximation is proposed for the interaction of water wave with a
body floating on a polynya. The ice sheet is modelled as an elastic plate and fluid flow is described by
the velocity potential theory. The solution procedure is constructed based on the assumption that when
the distance between two disturbances to the free surface is sufficiently large, the interactions between
them involve only the travelling waves caused by the disturbances and the effect of the evanescent
waves is ignored. The solution for the problem can then be obtained from those for a floating body
without an ice sheet and for an ice sheet/free surface without a floating body. Both latter solutions
have already been found previously and therefore there will be no additional effort in solution once
the wide spacing approximation formulation is derived. Extensive numerical results are provided to
show that the method is very accurate compared with the exact solution. The obtained formulations
are then used to provide some insightful explanations for the physics of flow behaviour, as well as
the mechanism for the highly oscillatory features of the hydrodynamic force and body motion. Some
explicit equations are derived to show zero reflection by the polynya and peaks and troughs of the
force and excited body motion. It is revealed that some of the peaks of the body motion are due to
resonance while others are due to the wave characters in the polynya. Published by AIP Publishing.
https://doi.org/10.1063/1.4991675

I. INTRODUCTION

Interaction of water wave with a floating body has been
of great interest due to the complexity of flow features and its
practical relevance, in particular to ocean and coastal engineer-
ing, as well as naval architecture. The ocean surface is usually
treated as infinitely large, on which the pressure is assumed
to be atmospheric, and it is commonly refereed as the free
surface when the atmospheric pressure is taken as constant.
The research over the last decades has significantly advanced
our understanding of the nature of the wave physics and the
mechanism of its interaction with a floating body. The latest
development in Arctic engineering, in particular the possibility
of new shipping routes in the next few decades, has led to some
new technical challenges. One of such challenges arises when
a ship navigates through a strip of water confined between
large ice sheets, which could be formed through melting of
Arctic ice1 or opened up by an icebreaker.2 The flow and body
motion features will be different from those in open sea and
will very much depend on the wave/ice/body interaction. A
better understanding of these features is highly important for
safety, environmental protection as well as economic cost.

The observations by Robin3 suggested that a large ice
sheet could be treated as an elastic plate in the wave/ice interac-
tion problems. This model has been widely used subsequently.
A review of earlier work for this kind of problem was given

a)Author to whom correspondence should be addressed: g.wu@ucl.ac.uk. Tel.:
+44 20 7679 3870. Fax: +44 20 7388 0180.

by Squire et al.,4 and the more recent ones were given by
Squire.1,5 A semi-infinite ice sheet on the free surface was con-
sidered based on the thin plate model by Fox and Squire6 and
based on the thick plate model by Fox and Squire7 using the
matched eigenfunction expansion method. Numerical compar-
ison showed that in terms of the reflection and transmission
coefficients these two models gave graphically indistinguish-
able results. The case was then extended to the oblique incident
wave by Fox and Squire.8 For the similar problems, Sahoo
et al.9 introduced an inner product of orthogonality and con-
sidered the ice sheets with various edge conditions. Meylan and
Squire10 adopted the Green function method which was more
flexible and could be applied to a much wider range of prob-
lems. It is also possible to apply the Wiener-Hopf method for
this type of problem.11 Chung and Fox12 used the method for
the oblique reflection and transmission of ocean waves into the
semi-infinite ice sheet. Other notable work using the Wiener-
Hopf method includes those by Balmforth and Craster13 and by
Tkacheva.14,15 Chung and Linton16 considered wave reflection
and transmission when propagating across a gap between two
semi-infinite ice sheets, or polynya, and found that the reflec-
tion coefficient could be zero at discrete frequencies. Williams
and Squire17 solved the problem of interaction of wave with
three connected plates of different thickness. When the thick-
ness is taken as zero, it becomes a free surface and thus the
polynya can be treated as one of the special cases of such a
problem. The problem of an imperfect ice sheet, with a crack,
for example, was investigated by Evans and Porter,18 Porter
and Evans,19 and more recently by Sturova and Tkacheva.20
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The above work is mainly about the interactions between
ocean waves and ice sheets. For wave/ice/body interaction
problems, Das and Mandal21 studied the oblique wave scat-
tering by a circular cylinder submerged beneath an ice cover
through the multipole expansion method. Sturova22 consid-
ered the problem of a submerged cylinder and the correspond-
ing Green function satisfying all the boundary conditions apart
from that on the body surface was derived. The method was
then extended to the problem of two semi-infinite ice sheets
connected by vertical and flexural rotational springs23 and the
ice floe or polynya.24 For a floating body on the polynya,
Ren et al.25 obtained the semi-analytical solution based on
the matched eigenfunction expansions for a rectangular box.
Li et al.26 considered the nonlinear effects of the body motion
through a semi-analytical solution for a circular cylinder in
large amplitude oscillation. For general cases of a body with
arbitrary shapes, Li et al.27 developed a hybrid method by
combining the boundary element method and eigenfunction
expansion method.

The problem described above have been mainly solved
exactly in the sense when a discretization of the boundary is
refined or the number of terms in an infinite series further
increases, the numerical result no longer changes within the
desired accuracy. We may also notice that the solution proce-
dure for such a problem is much more complex than that for a
free surface without an ice sheet or for an ice sheet without a
free surface. This is reflected by the far more complex Green
function for the wave/body/ice interaction problem.24 Thus
this has motivated the present work to develop an efficient yet
highly accurate method.

Here we notice the fact that the wave generated/disturbed
by the body or ice edge has two components. One is the evanes-
cent wave which will decay exponentially away from the
disturbance, while the other is the travelling wave which will
propagate away from the disturbance to infinity. Thus when
the locations of two disturbances are sufficiently large, only
the latter needs to be considered in their interactions. There-
fore, in this work by following the wide spacing approximation
used in the multi-bodies/wave interaction,28 we consider the
problem of wave interaction with a body floating on a wide
polynya. The wide approximation enables us to construct a
solution based on those for the problem of a floating body
without an ice sheet and the problem of an ice sheet/free
surface without a floating body. The merit of this method is

that it can give an accurate solution based on what has already
been solved previously. In Secs. II–IV, we shall first derive the
formulation based on this method. Extensive numerical results
are then provided, including the wave propagation across the
polynya, and interaction with a submerged body and a floating
body in polynya. The method is verified through the excellent
agreement with the exact solution. The formulation is subse-
quently used to provide deep insights into the complex wave
features, as well as hydrodynamic forces and body response
to the waves.

II. MATHEMATICAL MODEL AND NUMERICAL
PROCEDURES
A. Mathematical model

We consider the interaction problem of wave with a two-
dimensional body floating on a wide polynya confined between
two semi-infinite ice sheets, as sketched in Fig. 1. A Cartesian
coordinate system ~x = (x, z) fixed in space is chosen with
the origin O at the undisturbed mean free surface, x being the
horizontal direction and z vertically upward. When the body is
at its equilibrium position, the z-axis passes through the centre
of its mass. In each side of the polynya, i.e., x < x1 and x > x2,
the upper surface of the fluid is covered by a semi-infinite ice
sheet. The width of the polynya is l = x2 − x1. The body with
beam a and draught b, respectively, is assumed to be excited
into motion by an incident wave propagating underneath the
left ice sheet. The present work is undertaken on the basis that
the gap between the edge of the ice to the body is much larger
than the typical dimension of the body or l >> a.

The fluid with density ρ and constant depth H is assumed
to be inviscid, incompressible, and homogeneous, and its
motion to be irrotational. Thus the velocity potential Φ can
be introduced to describe the fluid flow. Under the assumption
that the amplitude of wave motion is small compared to its
length and the dimension of the body, the linearized velocity
potential theory can be further used. When the motion is sinu-
soidal in time with radian frequency ω, the total potential can
be written as29

Φ(x, z, t) = Re[α0φ0(x, z)eiωt]

+ Re[
3∑

k=1

iωαkφk(x, z)eiωt], (1)

FIG. 1. Coordinate system and sketch of the problem.
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where φ0 contains the incident potential φI and diffracted
potential φD, α0 is the amplitude of the incident wave, φk

(k = 1,2,3) are the radiation potentials due to body oscilla-
tion with complex amplitude αk in three degrees of freedom:
translations in x and z directions and rotation about the y-axis
parallel to the ice sheet edge. Mass conservation requires that
the potential φk satisfies the Laplace’s equation,

∇2φk = 0, (k = 0, 1, 2, 3), (2)

throughout the fluid. The combination of the linearized
dynamic and kinematic free surface boundary conditions gives

− ω2φk + g
∂φk

∂z
= 0, (x1 < x < x2, z = 0) , (3)

where g is the acceleration due to gravity. The ice sheet is
modelled as a continuous elastic plate with uniform properties,
i.e., thickness hj, draught dj, density ρj, Young’s modulus Ej,
and Poisson’s ratio νj are all constants. Thus the boundary
condition on the ice sheets can be written as6

(Lj
∂4

∂x4
− mjω

2 + ρg)
∂φk

∂z
− ρω2φk = 0,

(|x | ≥ ���xj
��� , z = −dj, j = 1, 2), (4)

where Lj = Eh3
j /[12(1 − νj

2)] is the effective flexural rigidity
of the ice sheet and mj = hj ρj is its mass per unit area. Without
loss of generality, the end of the ice sheet is assumed to be free
here. Thus the vanishing of the bending moment and shear
force leads to the following two conditions on the ice sheet
edge corner:

∂2

∂x2
(
∂φk

∂z
) = 0 and

∂3

∂x3
(
∂φk

∂z
) = 0, (x = xj, z = −dj). (5)

On the vertical surface of the ice sheet, the impermeable
condition yields

∂φk

∂x
= 0, (x = xj, −dj ≤ z ≤ 0). (6)

The impermeable condition on the body surface is

∂φ0

∂n
= 0 and

∂φk

∂n
= nk , (k = 1, 2, 3), (7)

where n1 and n2 are the x, z components of the unit normal
vector~n pointing into the body, n3 = (z−z′)n1−(x−x′)n2 is the
component related to the rotational mode, with (x′, z′) as the
rotational centre. The boundary condition on the flat seabed
can be written as

∂φk

∂z
= 0, (−∞ < x < +∞, z = −H). (8)

The radiation condition requires the wave to propagate
outwards,

lim
x→+∞

(
∂φk

∂x
+ κ(2)

0 φk) = 0,

lim
x→−∞

(
∂φk

∂x
− κ(1)

0 φk) = 0, (k = 1, 2, 3), (9)

lim
x→+∞

(
∂φD

∂x
+ κ(2)

0 φD) = 0, lim
x→−∞

(
∂φD

∂x
− κ(1)

0 φD) = 0, (10)

where κ(1)
0 and κ(2)

0 are the purely positive imaginary roots of
the dispersion equations for the ice covered regions or

−κ
( j)
0 tan[κ( j)

0 (H − dj)] =
ρω2

Lj(κ
( j)
0 )

4
+ ρg − mjω2

, ( j = 1, 2).

(11)

B. Hydrodynamic force and body motion

When the velocity potential φk is solved, the pressure
can be obtained through the linearized Bernoulli equation,
and the hydrodynamic force exerting on the body can be
obtained directly by integrating the dynamic pressure over the
mean wetted body surface. Based on the decomposition of
the velocity potentials Eq. (1), the hydrodynamic force can be
equivalently expressed as the wave exciting force due to unit
wave amplitude,

fE,k = −iωρ
∫

S0

φ0(x, z)nkdS (12)

and the hydrodynamic coefficients

µkj − i
λkj

ω
= ρ

∫
S0

φjnkdS, (13)

where µkj and λkj are the added mass and damping coefficient,
respectively.

Based on Newton’s law, and taking into account the hydro-
static force due to the variation of the buoyance during body
oscillation, the complex motion amplitudes αj ( j = 1,2,3) can
be computed through the following linear equations:

3∑
j=1

[−ω2(mkj + µkj) + iωλkj + Ckj]αj = α0 fE,k , k = 1, 2, 3,

(14)

where j = 1,2,3 represent the modes sway, heave, and roll;
mkj and Ckj are, respectively, the body mass and hydrostatic
restoring coefficients.

C. Solution procedure

The problem described in Eqs. (1)–(11) can be solved
accurately through numerical methods generally. Here we shall
use wide spacing approximation. To construct the expression
for the solution, we denote the radiation and scattering veloc-
ity potentials of the body in the absence of ice sheets as ψr

k
and ψs±

0 , respectively, where + and � correspond to that the
incident wave opposite to and along the x-axis, respectively.
We further consider the problem due to a semi-infinite ice
sheet and semi-infinite free surface and define the velocity
potentials asψw2i

Ice,L andψw2i
Ice,R, where the superscript w2i means

that the incident wave is propagating from the open water to
the ice covered region, and the subscripts L and R mean that
the semi-infinite ice sheet is covered on the left- and right-
hand sides of the upper surface, respectively, i.e., x ∈ (−∞, 0]
and x ∈ [0, +∞). Corresponding to these two potentials, we
also define ψi2w

Ice,L and ψi2w
Ice,R, where i2w means that the inci-

dent wave is propagating from the ice covered region to the
open water.
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The velocity potentials ψr
k and ψs±

0 satisfy the following
boundary condition on the body surface:

∂ψr
k

∂n
= nk and

∂ψs±
0

∂n
= 0, (k = 1, 2, 3), (15)

and the boundary conditions in Eqs. (3) and (8), respectively,
on the free surface and flat seabed. At infinity we have

lim
x→±∞

(
∂ψr

k

∂x
± k0ψ

r
k) = 0, (k = 1, 2, 3), (16)

lim
x→±∞

[
∂(ψs±

0 − ψI )

∂x
± k0(ψs±

0 − ψI )] = 0, (17)

where k0 is the purely positive imaginary root of the dispersion
equation for open water or

− k0 tan(k0H) =
ω2

g
, (18)

and ψI is the incident potential in open water.
For the interaction problem of wave with the semi-infinite

ice sheet, the velocity potential should satisfy the boundary
conditions in Eqs. (3) and (4), respectively, on the free surface
and the ice sheet, and the boundary condition in Eq. (8) on the
flat seabed. Also, the free edge condition in Eq. (5) should be
satisfied. At infinity, the radiation conditions are the same as
those in Eqs. (17) and (10), in the open water and ice covered
region, respectively.

Here we notice that the velocity potentials ψr
k and ψs±

0 are
classic problems and have been solved previously, for example,
by the hybrid integral equation and eigenfunction expansion
method30 or the hybrid finite element and integral equation
method.31 Similarly the velocity potential ψw2i

Ice,L and ψw2i
Ice,R,

ψi2w
Ice,L and ψi2w

Ice,R have also been solved by a variety of meth-

ods, e.g., by the Wiener-Hopf method14 and by the matched
eigenfunction expansion method.9

At infinity, there will only be the travelling wave and
the velocity potentials above have the following asymptotic
forms

ψr
k = A±k e∓k0x cos[k0(z + H)]

cos(k0H)
as x → ±∞ (k = 1, 2, 3), (19)

ψs+
0 = (e+k0x + r+

0 e−k0x)
cos[k0(z + H)]

cos(k0H)
as x → +∞, (20)

ψs+
0 = t+

0 e+k0x cos[k0(z + H)]
cos(k0H)

as x → −∞, (21)

ψs−
0 = t−0 e−k0x cos[k0(z + H)]

cos(k0H)
as x → +∞, (22)

ψs−
0 = (e−k0x + r−0 e+k0x)

cos[k0(z + H)]
cos(k0H)

as x → −∞, (23)

ψw2i
Ice,L = (e+k0x + Rw2i

L,0 e−k0x)
cos[k0(z + H)]

cos(k0H)
as x → +∞, (24)

ψw2i
Ice,L = Tw2i

L,0 e+κ(1)
0 x

cos[κ(1)
0 (z + H)]

cos[κ(1)
0 (H − d1)]

as x → −∞, (25)

ψw2i
Ice,R = Tw2i

R,0 e−κ
(2)
0 x

cos[κ(2)
0 (z + H)]

cos[κ(2)
0 (H − d2)]

as x → +∞, (26)

ψw2i
Ice,R = (e−k0x + Rw2i

R,0 e+k0x)
cos[k0(z + H)]

cos(k0H)
as x → −∞,

(27)

ψi2w
Ice,L = T i2w

L,0 e−k0x cos[k0(z + H)]
cos(k0H)

as x → +∞, (28)

ψi2w
Ice,L = (e−κ

(1)
0 x + Ri2w

L,0 e+κ(1)
0 x)

cos[κ(1)
0 (z + H)]

cos[κ(1)
0 (H − d1)]

as x → −∞,

(29)
where A±k is the amplitude of the radiation potential at x → ±∞
due to the forced body oscillation in the k-th mode with
unit amplitude; r±0 and t±0 are, respectively, the reflection and
transmission coefficients for the incident wave propagating
across the fixed body; Rw2i

L,0 and Rw2i
R,0 , Tw2i

L,0 and Tw2i
R,0 are,

respectively, the reflection and transmission coefficients for
the incident wave propagating from the open water to the ice
covered region; Ri2w

L,0 and Ri2w
R,0 , T i2w

L,0 and T i2w
R,0 are, respectively,

the reflection and transmission coefficients for the incident
wave propagating from the ice covered region to the open
water.

With these solutions for the pure wave/body and pure
wave/ice interaction problems, we are now able to study the
radiation and scattering problems of the body floating on a
wide polynya, or the wave/ice/body interaction problem, fol-
lowing the procedure in the work of Srokosz and Evans28 for
the wide spacing multibodies/wave interaction problem.

1. Radiation potential

Here we consider a floating body located at x = 0 under-
going oscillation in the kth mode. Near the floating body, we
may write the velocity potential as

φk(x, z) = ψr
k(x, z) + ε1

kψ
s+
0 (x, z) + ε2

kψ
s−
0 (x, z). (30)

Similarly for the ice sheets, noticing that edges are located at
x = xj ( j = 1,2), we may write the velocity potential as

φk(x, z) = η1
kψ

w2i
Ice,L(x − x1, z), (31)

for the left ice sheet and

φk(x, z) = η2
kψ

w2i
Ice,R(x − x2, z), (32)

for the right ice sheet.
Here ε1

k and ε2
k , η1

k and η2
k are unknown coefficients.

x � x1 and x � x2 are used, respectively, in Eqs. (31) and (32)
instead of using x, since the ice sheet edge is not situated at the
origin x = 0, whereas the solutions ψw2i

Ice,L and ψw2i
Ice,R correspond

to edge being at the origin.
We may notice that the first term on the right-hand side

of Eq. (30) is the solution in the absence of the semi-infinite
ice sheets. The second and third terms represent the scatter-
ing of the wave reflected back from the ice sheets, which are
given by Eqs. (20)–(23) based on the large gap assumption. In
Eqs. (31) and (32), the right-hand sides represent the interac-
tion of the propagating wave with the semi-infinite ice sheet,
with the incident potential due to the radiated wave of the
body.

To determine the unknown coefficients, we choose two
vertical interfaces located at x = xL and x = xR, respectively,
as shown in Fig. 1. They are assumed to be sufficiently away
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from the body and ice edge and the asymptotic formulas in
Eqs. (19)–(29) apply. On these two vertical interfaces, the con-
tinuous condition of pressure and normal velocity should be
enforced, i.e.,

φk(xL−, z) = φk(xL+, z),
∂φk(xL−, z)

∂x
=
∂φk(xL+, z)

∂x
(33)

and

φk(xR−, z) = φk(xR+, z),
∂φk(xR−, z)

∂x
=
∂φk(xR+, z)

∂x
, (34)

where the subscripts + and � mean that the potentials should
be taken from the solutions on the left- and right-hand sides,
respectively. Substituting the potentials on each side of the
interfaces into the above equations, we can have

ε1
k = −

[
(A−k t−0 − A+

k r−0 )Rw2i
L,0 Rw2i

R,0 ek0(x1−x2)

+ A+
k Rw2i

R,0 e−k0(x1+x2)]/M, (35)

ε2
k = −

[
(A+

k t+
0 − A−k r+

0 )Rw2i
L,0 Rw2i

R,0 ek0(x1−x2)

+ A−k Rw2i
L,0 ek0(x1+x2)]/M, (36)

η1
k = −[(A+

k t+
0 − A−k r+

0 )Rw2i
R,0 e−k0x2 + A−k ek0x2 ]/M, (37)

η2
k = −[(A−k t−0 − A+

k r−0 )Rw2i
L,0 ek0x1 + A+

k e−k0x1 ]/M, (38)

where

M = (t+
0 t−0 − r+

0 r−0 )Rw2i
L,0 Rw2i

R,0 ek0(x1−x2) − e−k0(x1−x2)

+ r−0 Rw2i
L,0 ek0(x1+x2) + r+

0 Rw2i
R,0 e−k0(x1+x2). (39)

Invoking Eq. (30), we can obtain the added mass and damping
coefficient for the body floating on a polynya from the results
for open water or

µkj − i
λkj

ω
= µo

kj − i
λo

kj

ω
− ε1

j

f o+
E,k

g
− ε2

j

f o−
E,k

g
, (40)

where the superscript o means that the results are from open
water, and + and � in f o

E,k mean that the wave exciting force
is due to the incident wave opposite to and along the x-axis,
respectively. Here the incident wave potential in Eq. (40) is
the same as that defined after Eq. (1) with zero ice thickness
when computing f o±

E,k .
From Eqs. (31) and (32), together with Eqs. (25) and (26),

we can obtain the asymptotic expressions for the velocity
potential φk ,

φk(x, z) = η1
kTw2i

L,0 e+κ(1)
0 (x−x1)

cos[κ(1)
0 (z + H)]

cos[κ(1)
0 (H − d1)]

as x → −∞,

(41)

φk(x, z) = η2
kTw2i

R,0 e−κ
(2)
0 (x−x2)

cos[κ(2)
0 (z + H)]

cos[κ(2)
0 (H − d2)]

as x → +∞.

(42)

Substituting these into the far field formula of Ren et al.,25 the
damping coefficient can be also written as

λkj = ρω[Q(1)
0 C(1)

g (η1
j )(η1

k )∗ |Tw2i
L,0 |

2 +Q(2)
0 C(2)

g (η2
j )(η2

k )∗ |Tw2i
R,0 |

2](
k, j = 1, 2, 3

)
, (43)

where the superscript * denotes complex conjugation,

Q( j)
0 =

ρω[Lj(κ
( j)
0 )

4
+ ρg]

[Lj(κ
( j)
0 )

4
+ ρg − mjω2]

2
( j = 1, 2), (44)

and

C( j)
g = i

ω

2κ( j)
0

(
1 +

2κ( j)
0 (H−dj)

sin[2κ( j)
0 (H−dj)]

)
+

2Lj(κ
( j)
0 )

3
ω

Lj(κ
( j)
0 )

4
+ ρg−mjω2

Lj(κ
( j)
0 )

4
+ ρg

Lj(κ
( j)
0 )

4
+ ρg−mjω2

( j = 1, 2)

(45)

is the wave group velocity in the ice covered region.

2. Scattering potential

We follow the procedure similar to that used for the radia-
tion above. Near the body, we may write the velocity potential
as

φ0(x, z) = γ1ψ
s+
0 (x, z) + γ2ψ

s−
0 (x, z), (46)

and near the left and right ice sheets, we may write the velocity
potential, respectively, as

φ0(x, z) = ψi2w
Ice,L(x − x1, z) + β1ψ

w2i
Ice,L(x − x1, z), (47)

φ0(x, z) = β2ψ
w2i
Ice,R(x − x2, z), (48)

where γ1 and γ2, β1 and β2 are constants to be found. The
above two equations are based on the assumption that the inci-
dent wave is propagating beneath the left ice sheet along the
positive direction of the x-axis. Substituting Eqs. (19)–(29)
into Eqs. (46)–(48) and imposing the matching conditions on
x = xL and on x = xR, we have

γ1 = −t−0 Rw2i
R,0 T i2w

L,0 e−k0x2/N , (49)

γ2 = −(e+k0x2 − r+
0 Rw2i

R,0 e−k0x2 )T i2w
L,0 /N , (50)

β1 = [−r−0 ek0x2 + (r−0 r+
0 − t−0 t+

0 )Rw2i
R,0 e−k0x2 ]T i2w

L,0 e+k0x1/N , (51)

β2 = −t−0 T i2w
L,0 /N , (52)

where

N = (t−0 t+
0 − r−0 r+

0 )Rw2i
L,0 Rw2i

R,0 ek0(x1−x2) − e−k0(x1−x2)

+ r−0 Rw2i
L,0 e+k0(x1+x2) + r+

0 Rw2i
R,0 e−k0(x1+x2). (53)

Invoking Eq. (46) we can obtain the wave exciting force for
the body floating on polynya from the results for open water
or

fE,k = γ1 f o+
E,k + γ2 f o−

E,k (54)

when Eqs. (12) and (46) are used.
At infinity, the asymptotic form of the velocity potential

can be written as
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φ(x, z)=




(e−κ
(1)
0 (x−x1) + Reκ

(1)
0 (x−x1))

cos[κ(1)
0 (z + H)]

cos[κ(1)
0 (H − d1)]

, x → −∞

Te−κ
(2)
0 (x−x2)

cos[κ(2)
0 (z + H)]

cos[κ(2)
0 (H − d2)]

, x → +∞

, (55)

where R and T are the reflection and transmission coeffi-
cients, respectively. Then from Eqs. (47) and (48), together
with Eqs. (29), (25), and (26), respectively, we have

R = Ri2w
L,0 + β1Tw2i

L,0 , (56)

T = β2Tw2i
R,0 . (57)

Similar to the damping coefficient, through the asymptotic
expressions of Eqs. (55), (41), and (42), the far field equation
for the wave exciting force (e.g., Ren et al.25) gives

f −E,k = −2iρgη1
kTw2i

L,0 C(1)
g Q(1)

0

f +
E,k = −2iρgη2

kTw2i
R,0 C(2)

g Q(2)
0

(k = 1, 2, 3), (58)

where Q( j)
0 and C( j)

g are defined in Eqs. (44) and (45), respec-
tively. Invoking Eqs. (43) and (58), we can obtain the link
between the damping coefficient and exciting force as

λkj = −
ω

4ρg2
[

1

C(1)
g Q(1)

0

(f −E,j)(f
−
E,k)∗ +

1

C(2)
g Q(2)

0

(f +
E,j)(f

+
E,k)∗]

(k, j = 1, 2, 3). (59)

It is noticeable that the identity above is the same as Eq. (47)
in the work of Li et al.32 obtained from the exact solution.

III. NUMERICAL RESULTS

We shall first demonstrate the accuracy and efficiency of
the present method. This is to be achieved by comparing the
obtained results with the “exact” solution. After the method is
verified, we shall use the formulation to provide some insights
into the features of the hydrodynamic force and body motion,
in particular its highly oscillatory behaviour. The numerical
results are presented in the nondimensionalized form, based
on a characteristic length scale, the density of water ρ, and
acceleration due to gravity g.

A. Wave propagation across a polynya

We first consider the case for a wave propagating under-
neath the left ice sheet. It passes through a polynya and moves
into the right ice sheet. As the body is removed, the wide
polynya approximation is made on the basis that its width
is much larger than the wavelength. Then the reflection and
transmission coefficients can be obtained directly by letting
r+

0 = r−0 = 0, t+
0 = t−0 = 1 in Eqs. (56) and (57) or

R = Ri2w
L,0 +

Rw2i
R,0 T i2w

L,0 Tw2i
L,0 e−2k0(x2−x1)

1 − Rw2i
L,0 Rw2i

R,0 e−2k0(x2−x1)
, (60)

T =
T i2w

L,0 Tw2i
R,0 e−k0(x2−x1)

1 − Rw2i
L,0 Rw2i

R,0 e−2k0(x2−x1)
, (61)

which can be found to satisfy the energy conservation equation
[i.e., Eq. (A2) in the work of Ren et al.25]. These two equa-
tions may also be obtained by using the procedure in the work
of Meylan and Squire33 for wave propagation across a finite
floe. Assume that the incoming wave is from x = �∞. Near
the left ice sheet edge at x = x1, if we ignore the evanescent
waves, we can consider the two travelling waves with com-
plex amplitudes wa and wb, propagating along and opposite to
the x-axis, respectively. The reflection coefficient R at x = �∞

should be due to the reflection (semi-infinite ice to semi-infinite
free surface) and transmission of wb (semi-infinite water to
semi-infinite ice). Thus

R = Ri2w
L,0 + wbTw2i

L,0 . (62)

On the other hand, wa is due to the combination of transmission
(semi-infinite ice to semi-infinite water) and reflection of wb

(semi-infinite water to semi-infinite ice),

wa = T i2w
L,0 + wbRw2i

L,0 . (63)

At the other ice sheet edge x = x2, the waves of wa and wb

should have a phase shift

wae−k0(x−x1) = wae−k0(x2−x1)e−k0(x−x2), (64)

wbek0(x−x1) = wbek0(x2−x1)ek0(x−x2), (65)

which means that their complex amplitudes at x = x2 become
wae−k0(x2−x1) and wbek0(x2−x1), respectively. Then wbek0(x2−x1)

is due to the reflection of wae−k0(x2−x1) (semi-infinite water to
semi-infinite ice),

wbek0(x2−x1) = wae−k0(x2−x1)Rw2i
R,0 , (66)

and the wave at x = +∞ is due to the transmission of
wae−k0(x2−x1),

T = wae−k0(x2−x1)Tw2i
R,0 . (67)

From Eqs. (63) and (66), we have

wa =
T i2w

L,0

1 − Rw2i
R,0 Rw2i

L,0 e−2k0(x2−x1)
, (68)

wb =
T i2w

L,0 Rw2i
R,0 e−2k0(x2−x1)

1 − Rw2i
R,0 Rw2i

L,0 e−2k0(x2−x1)
. (69)

Substituting Eqs. (69) and (68) into Eqs. (62) and (67), we can
further obtain the expression for R and T, which are identical
to Eqs. (60) and (61). Therefore for this particular case, the
procedure in the work of Meylan and Squire33 and the present
method give the same result. It also ought to point out that in
the work of Meylan and Squire,33 the origin was taken at one
of the edges, while here in Eqs. (47) and (48), the origin is
taken at x = x1 and x2, respectively.

The reflection and transmission coefficients between
semi-infinite i2w (ice to water) and semi-infinite w2i (water
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FIG. 2. Reflection and transmission coefficients for a wave propagating across a polynya with zero ice draught. (a) Reflection coefficient; (b) transmission
coefficient. Solid lines: exact results computed by the matched eigenfunction expansions in the work of Ren et al.;25 dashed lines: computed by formula Eqs. (60)
and (61) (H = 5, x1 = �x2 = �0.5, h2 = h1 = 0.02, d2 = d1 = 0, m2 = m1 = 0.018, and L2 = L1 = 0.003 647).

to ice) are in fact related. Similar to Meylan and Squire,33 we
may use Stokes time reverse and obtain

Ri2w
L,0 = −

(Rw2i
L,0 )

∗
Tw2i

L,0

(Tw2i
L,0 )

∗ , T i2w
L,0 =

1 − |Rw2i
L,0 |

2

(Tw2i
L,0 )

∗ , (70)

which can also be obtained by using the Green identity, for
example, Eq. (A1) in the work of Ren et al.25 through replacing
φ and φ∗ by φi2w and (φw2i)∗, then by φi2wand φw2i, and by φw2i

and (φw2i)∗.
To verify the accuracy and efficiency of the present

method, we consider the polynya with the following parame-
ters:

H = 5, h2 = h1 = 0.02, m2 = m1 = 0.018,

L2 = L1 = 0.003 647. (71)

The characteristic length scale above has been chosen as the
polynya width l = x2 � x1. Figures 2 and 3 show the reflec-
tion and transmission coefficients at zero ice draught and at
d2 = d1 = 0.018, respectively, against |k0l |. It can be seen from
these two figures that the present numerical results agree very
well with those exact solutions which are calculated through
the eigenfunction method in the work of Ren et al.25 Strictly
speaking, the present approximation should be valid only when

the width is much larger than the wavelength or |k0l | � 1.
However, it can be seen from Eqs. (60) and (61) that |R | → 0
and |T| → 1 when |k0l | → 0, which is in fact a result of the
exact solution.16 Thus it is not a total surprise that the present
approximate method can give such an accurate result for the
whole wave frequency span shown in Figs. 2 and 3.

From the exact solution of Chung and Linton16 for zero
ice draught, it was found that there were an infinite num-
ber of discrete frequencies at which the reflection coeffi-
cient R could be zero. Here when the left and right ice
sheets have the same physical properties, we have R=Rw2i

R,0

=Rw2i
L,0 , T =Tw2i

R,0 =Tw2i
L,0 . Substitution of Eq. (70) into Eq. (60)

provides

R = −
T

T ∗R
SR(ω), (72)

where

SR(ω) =
e2i(δ+β) − 1

e2i(δ+β) − 1/|R|2
, (73)

with δ = ik0l and β = Arg(R) ∈ [0, 2π) which is the argument
of R. Equation (73) maps the unit circle e2i(δ+β) to a circle with
the centre at 1/(1 + 1/|R|2) and a radius of 1/(1 + 1/|R|2), from
which we find that |R | will reach its troughs (i.e., zero) when
δ equals

δR
T = nπ − β, (74)

and will reach its peaks when δ equals

FIG. 3. Reflection and transmission
coefficients for a wave propagating
across a polynya with nonzero ice
draught. (a) Reflection coefficient; (b)
transmission coefficient. Solid lines:
exact results computed by the matched
eigenfunction expansions in the work
of Ren et al.;25 dashed lines: computed
by formula Eqs. (60) and (61) (H = 5,
x1 = �x2 = �0.5, h2 = h1 = 0.02, d2 = d1
= 0.018, m2 = m1 = 0.018, and L2 = L1
= 0.003 647).
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δR
P = nπ + π/2 − β, (75)

where n includes all integers which ensure δ < 0 required
based on the definition of k0. This can be seen in Fig. 2 at zero
ice draught. These two equations can be further explained by
the physical process of the wave motion in the polynya. From
Eq. (70), the phase of the first term on the right-hand side of
Eq. (62) can be obtained as

Arg(Ri2w
L,0 ) = −β + 2γ + π, (76)

where γ = Arg(T ). When the incoming wave passes through
the ice sheet edge at x = x1, the transmitted wave can be written
as

w1 = T i2w
L,0 e−k0(x−x1). (77)

When w1 reaches the right ice sheet edge at x = x2, there will
be a reflected wave

w2 = T i2w
L,0 Re−k0lek0(x−x2). (78)

When w2 reaches the left ice sheet edge at x = x1, there will
be a transmitted wave into the ice sheet,

w3 = T i2w
L,0 RTe−2k0leκ

(1)
0 (x−x1). (79)

The phase of the complex amplitude of this wave is then equal
to β+2γ+2δ [note that we have Arg(T i2w

L,0 ) = Arg(Tw2i
L,0 ) accor-

ding to the second equation in Eq. (70)]. Its difference with the
phase in Eq. (76) is then 2β+2δ−π. When this is equal to 2nπ +
π, Eq. (79) will be out of phase with the reflected wave in the
first term of Eq. (62) and the combined wave will be reduced.
Similarly when the difference is equal to 2nπ, the combined
wave will increase. This is consistent with Eqs. (74) and (75).

In addition to the reflection and transmission coefficients
R and T, we further investigate the accuracy of the present
method for the local wave, through the wave elevation in a
polynya obtained from

η0

α0
= −

iω
g
φ0(x, 0). (80)

Three points are chosen and they are, respectively, taken at the
edge of the left ice sheet x = x1, middle in the open water x =
(x1 + x2)/2, and the edge of the right ice sheet x = x2. The wave
elevations are shown in Fig. 4. It can be seen that the results
from the present method almost coincide with the exact solu-
tion, which shows that the approximate method can give a very
accurate result for the local wave across the frequency range.

B. Wave interaction with a submerged ellipse

The case chosen for further comparison is an elliptic cylin-
der defined as (x − x0)2/a2 + (z − z0)2/b2 = 1, where a and b
are its half axes in x and z directions, respectively, and (x0, z0)
is the centre of the cylinder, at which the rotational centre is
located or (x′, z′) = (x0, z0). The characteristic length scale
is chosen as a. The exact solution for this problem has been
obtained by the source distribution method24 using the Green
function satisfying all the boundary conditions apart from
that on the body surface. Here we use the hybrid method.27

Figures 5 and 6, respectively, show the added mass and damp-
ing coefficient against the nondimensional wavenumber in
deep open water or σ = aω2/g, while Fig. 7 presents the cor-
responding wave exciting force. The parameters are chosen
as the same as those in the work of Sturova.24 These figures

FIG. 4. Wave elevation at different
location in polynya. (a) x = x1. (b) x =
(x1 + x2)/2. (c) x = x2. Solid lines: exact
results computed by the matched eigen-
function expansions in the work of Ren
et al.;25 dashed lines: results computed
by formula Eq. (47) for x < 0 and Eq.
(48) for x > 0. In (b), the dashed line
is by Eq. (47), while the dashed-dotted
line is by Eq. (48) (H = 5, x1 = �x2 =
�0.5, h2 = h1 = 0.02, d2 = d1 = 0.018, m2
= m1 = 0.018, and L2 = L1 = 0.003 647).
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show that there is no real visible difference between the results
obtained from the present method and the exact solution. The
damping coefficient and exciting force are also computed by
the far field formula and obtained results virtually coincide
with those from the near field formula. We may notice that the
width of the polynya is only two and half times the body width.
The excellent agreement across the frequency span shows the
effectiveness of the present method, even though it is based on
the large gap assumption.

C. Wave interaction with a floating rectangle body

The case chosen now is a floating rectangle body, and
its beam a is taken as the characteristic length scale. The
added mass and damping coefficient for the floating rect-
angle body against σ = aω2/g are, respectively, shown in

Figs. 8 and 9, while the corresponding wave exciting force is
presented in Fig. 10. From these figures, we can see that once
again there is no visible difference between the results from
the present method and the exact solution using the eigen-
function method.25 It can be seen from Fig. 3 in the work
of Ren et al.25 that the radiation force for the body, respec-
tively, floating on the polynya and open water tend to the
same value at very small σ (noticing that they will be slightly
different from that with an ice sheet of non-zero draught).
It can also be seen from Fig. 3 that the reflection and trans-
mission coefficients for the wave/semi-infinite ice sheet inter-
action problem will, respectively, tend to 0 and 1 for very
long waves. As σ → 0, from Eq. (40) both coefficients ε1

j

and ε2
j will tend to 0, and from Eq. (54) the coefficients

γ1 and γ2 will, respectively, tend to 0 and 1 (noticing

FIG. 5. Added mass of a submerged
elliptic cylinder. (a) Sway; (b) sway-
heave; (c) heave; (d) sway-roll; (e) roll;
(f) heave-roll. Solid lines: results com-
puted by the hybrid method in the work
of Li et al.;27 dashed lines: results com-
puted by the present method (a = 1, b =
0.5, (x′, z′) = (0,−1), H = 25, x1 = �x2
= �2.5, h1 = 0.025 and h2 = 0.1, d1 = 0
and d2 = 0, m1 = 0.0225 and m2 = 0.09,
and L1 = 0.0356 and L2 = 2.2791).



097104-10 Li, Shi, and Wu Phys. Fluids 29, 097104 (2017)

that there is a phase difference −k0x1 in the definition of
incident potential when computing the exciting force). These
are the same as those from the exact solution. Then the
hydrodynamic force computed by the present method will
tend to that in open water for a very long wave, i.e.,
tend to the exact solution with the ice draught effect
ignored.

We then investigate the accuracy of the wide spacing
approximation through varying the gap width between the ice
edge and the body. The heave mode is taken as an example. The
added mass and damping coefficient are presented in Fig. 11,
against ` = `1 = `2, where `1 = |x1 + a/2| and `2 = |x2 − a/2|.
At σ = 1.0, the results are almost the same as those from
the exact solution even when the ice edge nearly touches the
body. The difference begins to appear when ` < 1.0 for the

cases of σ = 2.0 and σ = 3.0. We have already discussed
previously that the result from the present method tends to the
exact solution as σ → 0 for any `. Also at very high frequen-
cies, all the evanescent modes decay rapidly. These with Fig. 11
show that there will be some noticeable difference between the
result of wide spacing approximation and the exact solution
only when the gap between the ice edge and body is very small
and the frequency is within certain range.

D. Oscillatory features of the hydrodynamic force and
body motion

The above comparisons show that the present method,
based on the wide polynya assumption, is accurate and efficient
for a body in a polynya across the frequency span. This allows

FIG. 6. Damping coefficient of an
elliptic cylinder. (a) Sway; (b) sway-
heave; (c) heave; (d) sway-roll; (e) roll;
(f) heave-roll. Solid lines: results com-
puted by the hybrid method in the work
of Li et al.;27 dashed lines: results com-
puted by the present method; dashed-
dotted lines: same to dashed lines, but
by the far field formula (a = 1, b = 0.5,
(x′, z′) = (0,−1), H = 25, x1 = �x2 =
�2.5, h1 = 0.025 and h2 = 0.1, d1 = 0
and d2 = 0, m1 = 0.0225 and m2 = 0.09,
and L1 = 0.0356 and L2 = 2.2791).
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FIG. 7. Wave exciting force on an ellip-
tic cylinder. (a) Sway; (b) heave; (c)
roll. Solid lines: results computed by the
hybrid method in the work of Li et al.;27

dashed lines: results computed by the
present method; dashed-dotted lines:
same to dashed lines, but by the far field
formula (a = 1, b = 0.5, (x′, z′) = (0,−1),
H = 25, x1 = �x2 = �2.5, h1 = 0.025 and
h2 = 0.1, d1 = 0 and d2 = 0, m1 = 0.0225
and m2 = 0.09, and L1 = 0.0356 and
L2 = 2.2791).

FIG. 8. Added mass of a floating rect-
angular body. (a) Sway; (b) heave; (c)
roll; (d) sway-roll or roll-sway. Solid
lines: semi-analytical solution in the
work of Ren et al.;25 dashed lines:
results computed by the present method;
dotted lines: results for open water
(a = 1, b = 0.5, (x′, z′) = (0,−b/2),
H = 10, x1 = �x2 = �5, h1 = h2 = 0.1,
d1 = d2 = 0.09, m1 = m2 = 0.09, and
L1 = L2 = 4.5582).



097104-12 Li, Shi, and Wu Phys. Fluids 29, 097104 (2017)

FIG. 9. Damping coefficient of a floating rectangular body. (a) Sway; (b) heave; (c) roll; (d) sway-roll or roll-sway. Solid lines: semi-analytical solution in the
work of Ren et al.;25 dashed lines: results computed by the present method; dashed-dotted lines: same to dashed lines, but by the far field formula; dotted lines:
results for open water (a = 1, b = 0.5, (x′, z′) = (0,−b/2), H = 10, x1 = �x2 = �5, h1 = h2 = 0.1, d1 = d2 = 0.09, m1 = m2 = 0.09, and L1 = L2 = 4.5582).

FIG. 10. Wave exciting force on a
floating rectangular body. (a) Sway;
(b) heave; (c) roll. Solid lines: semi-
analytical solution in the work of Ren
et al.;25 dashed lines: results computed
by the present method; dashed-dotted
lines: same to dashed lines, but by the
far field formula; dotted lines: results for
open water (a = 1, b = 0.5, (x′, z′) =
(0,−b/2), H = 10, x1 = �x2 = �5, h1 =
h2 = 0.1, d1 = d2 = 0.09, m1 = m2 = 0.09,
and L1 = L2 = 4.5582).
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us to use the explicit form of the derived formula to give some
insights into the behaviours of the hydrodynamic force and
body motion.

1. Oscillation features of the hydrodynamic force

Highly oscillatory behaviour of the hydrodynamic force
has been observed in the wave/body/ice interaction prob-
lems,25 which is different from the typical case of a body
floating on open water. From Eqs. (40) and (54), we can see
that the oscillatory behaviour of the hydrodynamic force is
closely linked to the coefficients ε1

j and ε2
j , γ1 and γ2. If we

look Eq. (30) carefully, we may see that the right-hand side
terms related to ε1

j and ε2
j are due to the refection of the body

generated wave by the ice sheet. The reflected wave will then
be reflected back by the body to the ice sheet, which will be

further reflected back to the body by the ice sheet. This resem-
bles the sloshing wave inside a tank in which the waves con-
tinue to be reflected by the side walls, leading to the oscillatory
behaviour.

We may use the case in Sec. III C as an example. Due to
symmetry of the problem, we have ε1

j = (−1) jε2
j and f o+

E,k =

(−1)k f o−
E,k . The coefficients ε2

j in Eq. (36) can be written as

ε2
j = −

(A+
j t+

0 − A−j r+
0 )Rw2i

L,0 Rw2i
R,0 e−k0l + A−j Rw2i

L,0

(t+
0 t−0 − r+

0 r−0 )Rw2i
L,0 Rw2i

R,0 e−k0l − ek0l + r−0 Rw2i
L,0 + r+

0 Rw2i
R,0

,

(81)

where l = 2x2 = −2x1. It is well known that with the increase
of σ, we have t+

0 = t−0 → 0. Thus for relatively large σ, by

FIG. 11. Hydrodynamic coefficients of
a floating rectangular body in the heave
mode. In (a) and (b), σ = 1.0; in (c)
and (d), σ = 2.0; in (e) and (f), σ =
3.0. Solid lines: results computed by the
exact method; dashed lines: results com-
puted by the present method (a = 1, b =
0.5, (x′, z′) = (0,−b/2), H = 10, h1 = h2
= 0.1, d1 = d2 = 0.09, m1 = m2 = 0.09,
and L1 = L2 = 4.5582).
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letting t+
0 = t−0 = 0 Eq. (81) can be simplified as

ε2
j =

A−j R

ek0l − rR
, (82)

where r = r+
0 = r−0 . Then invoking Eq. (82), we can find the

peaks and troughs of |ε2
j | through

|Sε(ω)| = |ek0l − rR| =
√

1 + |rR|2 − 2 Re(rRe−k0l). (83)

It shows that |ε2
j | will reach its peaks when δ = ik0l equals

δεP = 2nπ − β − Arg(r) (84)

and reach its troughs when δ equals

δεT = 2nπ + π − β − Arg(r), (85)

where n includes all integers which ensure δ < 0 required based
on the definition of k0. From Eq. (58), the far field formula for
f o−
E,k can be given as

f o−
E,k = −2iρωA−k Cg, (86)

where Cg is the wave group velocity in the open
water. Substituting Eqs. (82) and (86) into Eq. (40), we
have

µkj = µ
o
kj −

2ρωCg[1 + (−1) j+k]

g
Im(Akj), (87)

λkj = λ
o
kj −

2ρω2Cg[1 + (−1) j+k]

g
Re(Akj), (88)

where

Akj =
A−j A−k R

ek0l − rR
. (89)

The denominator of this equation is the same as that of
Eq. (82) and therefore Eqs. (84) and (85) apply here. From
Eqs. (8.6.26) and (8.6.49) in the work of Mei et al.,29 we
have

Arg(r) = Arg(t−0 ) ± π/2, (90)

and

r + (−1) jt−0 = −e2iArg(A−j ). (91)

Thus when δ = δεP in Eq. (84), we have

Akj =
|A−j A−k R|

1 − |rR|
ei[Arg(A−j )+Arg(A−k )−Arg(r)]

=




−
|A−j A−k R|

1 − |rR|
[|r | ± i|t−0 |], j, k = 1, 3

−
|A−j A−k R|

1 − |rR|
[|r | ∓ i|t−0 |], j, k = 2

, (92)

FIG. 12. Hydrodynamic coefficient in the heave mode against |k0l |. (a) Added mass; (b) damping coefficient; (c) |ε2
2 |. In (a) and (b), solid lines

are for polynya while dashed lines are for open water. In (c), the solid line is for Eq. (81), the dashed line is for Eq. (82), and the dashed-
dotted line represents |Sε (ω) |/10 (a = 1, b = 0.5, H = 10, x1 = �x2 = �5, h1 = h2 = 0.1, d1 = d2 = 0.09, m1 = m2 = 0.09, and L1 = L2
= 4.5582).
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while when δ = δεT in Eq. (85), we have

Akj = −
|A−j A−k R|

1 + |rR|
ei[Arg(A−j )+Arg(A−k )−Arg(r)]

=




|A−j A−k R|

1 + |rR|
[|r | ± i|t−0 |], j, k = 1, 3

|A−j A−k R|

1 + |rR|
[|r | ∓ i|t−0 |], j, k = 2

. (93)

It should be noticed that t+
0 = t−0 → 0 has been used for a

large σ, in Eqs. (84) and (85), and it may be used in Eqs. (92)
and (93) as well. Therefore, when λkj will reach its peaks and
troughs at δ = δεP and δ = δεT , respectively, µkj will reach the
value of µo

kj, or the last term in Eq. (87) due to which the ice
sheet has no effect. These results can be seen in Fig. 12. We
should also notice that Eqs. (87) and (88) are for a body of
symmetry. µkj = 0 and λkj = 0 when k + j is an odd number,
and therefore only even k + j is discussed.

Invoking Eq. (40), we can see that the hydrodynamic coef-
ficients will follow the oscillatory behaviour of ε2

j and the
oscillation period in terms of |k0l | roughly equals 2π. This is
reflected in Fig. 12, but the period of 2π is not exact as other
parameters in Eq. (81) vary with σ or k0 when l is fixed. Thus
in Fig. 13, results are plotted against |k0l | at various given σ
while varying l. From the figure, it can be seen that the period
is 2π, as expected from Eq. (81).

For the wave exciting force, Eq. (54) can be rewritten as

fE,k = Υk f o−
E,k , (94)

where

Υk = γ1(−1)k + γ2

= −
T i2w

L,0 [(t−0 (−1)k − r+
0 )Rw2i

R,0 e−k0l/2 + ek0l/2]

(t−0 t+
0 − r−0 r+

0 )Rw2i
L,0 Rw2i

R,0 e−k0l − ek0l + r−0 Rw2i
L,0 + r+

0 Rw2i
R,0

.

(95)

Similar to Eq. (82), Υk can be approximated as

Υk =
T i2w

L,0

ek0l/2 − rRe−k0l/2
. (96)

The peaks and troughs of |Υk | can be found through Eq. (83).
Thus the oscillatory behaviour of the exciting force is the same

as that of the hydrodynamic coefficient, as can be seen in
Fig. 14 for the heave wave exciting force, together with Fig. 12
for the heave added mass and damping coefficient. Equation
(95) indicates that fE,k will oscillate against |k0l | periodically
at a given σ, as plotted in Fig. 15.

From Eqs. (81) and (95), it can be seen that the oscilla-
tory behaviour for the hydrodynamic force will never diminish
even when l → ∞ at a given σ. This means that the motion
of a body in an infinitely large polynya is not the same as
that of a body on a completely open free surface. This may
seem to be a surprise. However, we may notice the radiation
conditions in these two cases are given in Eqs. (9), (10), (16),
and (17), respectively, which are different. Different radiation
conditions are expected to give different results. Physically, a
periodic motion state can be reached only after t → ∞. Thus
no matter how large l is, after sufficiently large time, the wave
will arrive at the ice edges which will give wave reflection.
The reflected wave will eventually affect the body. We may
also notice that if we increase σ at a fixed l while exp(k0l)
is fixed, the result will be different. This is because A−j , T i2w

L,0 ,
R, and r will vary as well now. In particular, as σ increases,
for radiation problems, A−j will tend to zero and the effect of

the ice sheet will disappear. For scattering problems, T i2w
L,0 will

also tend to zero asσ increases, which means that no wave will
transmit into the polynya, and the exciting force will become
zero.

From Fig. 10 in the work of Ren et al.,25 it was found that
there was no standing wave in the polynya due to the forced
oscillation of the body. This can be analyzed explicitly through
Eq. (30). On the left-hand side of the body, the complex wave
amplitude of the wave along the x-axis is

Ck = ε
2
k (97)

and that opposite to the x-axis is

Dk = A−k + (−1)iε2
k t+

0 + ε2
kr−0 . (98)

Invoking Eq. (82), when σ increases, the above two equations
can be further written as

Ck =
A−k R

ek0l − rR
, (99)

Dk =
A−k ek0l

ek0l − rR
. (100)

FIG. 13. Hydrodynamic coefficient in
the heave mode with differentσ against
|k0l |. (a) Added mass; (b) damping
coefficient. Solid lines:σ = 1.94; dashed
lines: σ = 2.24; dashed-dotted lines:
σ = 2.60 (a = 1, b = 0.5, H = 10,
x1 = �x2 = �5, h1 = h2 = 0.1, d1 = d2
= 0.09, m1 = m2 = 0.09, and L1 = L2 =
4.5582).
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FIG. 14. Heave exciting force against |k0l |. The solid line is for the polynya
while the dashed line is for open water (a = 1, b = 0.5, H = 10, x1 = �x2 = �5,
h1 = h2 = 0.1, d1 = d2 = 0.09, m1 = m2 = 0.09, and L1 = L2 = 4.5582).

This indicates that we generally have |Ck | < |Dk | unless when
|R| = 1 at a total reflection which is most rare. Thus there
is usually no standing wave in the polynya due to the forced
motion.

For the scattering problem, Eq. (46) shows that on the
left-hand side of the body, the complex wave amplitude for
the waves along and opposite to the x-axis are

C0 = γ2, (101)

D0 = γ1t+
0 + γ2r−0 , (102)

respectively. Then invoking Eq. (96), the above two equations
can be written as

C0 =
T i2w

L,0

ek0l/2 − rRe−k0l/2
, (103)

D0 =
T i2w

L,0 r−0
ek0l/2 − rRe−k0l/2

. (104)

At large σ, we have |r | = |r+
0 | = |r

−
0 | → 1, which gives

|C0 | = |D0 |. Thus there could be standing waves or at least
approximately.

FIG. 15. Heave exciting force with different σ against |k0l |. Solid line:
σ = 1.94; dashed line: σ = 2.24; dashed-dotted line: σ = 2.60 (a = 1, b = 0.5,
H = 10, x1 = �x2 = �5, h1 = h2 = 0.1, d1 = d2 = 0.09, m1 = m2 = 0.09, and
L1 = L2 = 4.5582).

2. Oscillation features of the body motion

Since the body is symmetric about x = 0, the symmetric
heave motion is fully decoupled from the anti-symmetric sway
and roll motions. From Eq. (14), the complex heave motion
amplitude can be obtained as

α2

α0
=

fE,2

−σ(m22 + µ22) + i
√
σλ22 + C22

, (105)

where the parameters are all nondimensional. Invoking Eqs.
(40) and (54), this becomes

α2

α0
=

(γ1 + γ2)f o−
E,2

−σ(m22 + µ0
22) + i

√
σλ0

22 + 2σε2
2 f o−

E,2 + C22
. (106)

Resonance occurs when the exciting frequency coincides
with one of the natural frequencies. For the undamped heave
motion, we can find the natural frequencies when the inertial
force is canceled by the restoring force or

− σ[m22 + µ0
22 − 2 Re(ε2

2 f o−
E,2)] + C22 = 0. (107)

This equation shows that the natural frequency for heave
motion in a polynya will be different from that for open water.
Since both µ0

22 and ε2
2 f o−

E,2 are frequency dependent, Eq. (107)
has to be solved numerically, for example, done in Fig. 8(a)
in the work of Ren et al.25 From the numerical solution, it
is found that the natural frequency σ ≈ 1.19 in the present
case. A large peak can be found near this frequency (it should
also be noticed that the damping will have some effect on
this frequency) or resonance occurs. In addition to this peak,
there are a series of local peaks in Fig. 16(a), which are not
commonly seen in the open water, as reflected by the dashed
line in the figure. For large σ, we may use Eqs. (82) and (96)
in (106). This gives

α2

α0
=

T i2w
L,0 α̃2/α0

ek0l/2 − R(r − 2σA−2 α̃2/α0)e−k0l/2
, (108)

where α̃2 is the complex heave motion for open water. Then the
local extrema of |α2 |/α0 can be found through the following
equation:

|U2(σ)| = |ek0l/2 − R(r − 2σA−2 α̃2/α0)e−k0l/2 |

=

√
1 + |R(r − 2σA−2 α̃2/α0)|2 − 2 Re[R(r − 2σA−2 α̃2/α0)e−k0l]

,

(109)

or more directly through

|S2(σ)| = |1 + e−k0leiArg[R(r−2σA−2 α̃2/α0)] |. (110)

Its peaks and troughs occur when δ equals

δ2
P = 2nπ − β − Arg(r − 2σA−2 α̃2/α0), (111)

and

δ2
T = 2nπ + π − β − Arg(r − 2σA−2 α̃2/α0), (112)

respectively. |S2(σ)| is plotted in Fig. 16(a). It can
be seen that oscillations of |α2 |/α0 and |S2(σ)| follow
the same peaks and troughs, which explains its oscilla-
tory behaviour. Equation (108) also indicates that |α2 |/α0

will oscillate with |k0l | periodically at a given σ with



097104-17 Li, Shi, and Wu Phys. Fluids 29, 097104 (2017)

FIG. 16. Heave motion of a floating
rectangle body. (a) |α2 |/α0 against σ.
(b) |α2 |/α0 against |k0l |. In (a), the
solid line is for x1 = �x2 = �5 while
the dashed line is for open water, the
dashed-dotted line represents |S2(σ) |.
In (b), the solid line is for σ = 1.94, the
dashed line is for σ = 2.24, the dashed-
dotted line is for σ = 2.60 (a = 1, b =
0.5, m22 = 0.5, C22 = 1, H = 10, h1 = h2
= 0.1, d1 = d2 = 0.09, m1 = m2 = 0.09,
and L1 = L2 = 4.5582).

the period of 2π, and the peaks and troughs occur when δ
equals δ2

P and δ2
T , respectively, as shown in Fig. 16(b).

For the anti-symmetric coupled sway and roll motions,
Eq. (14) provides

α1

α0
=
ϑ1

ϑ
, (113)

α3

α0
=
ϑ3

ϑ
(114)

with

ϑ1 = [−σm33 + (−σµ33 + i
√
σλ33) + C33] fE,1

− (−σµ13 + i
√
σλ13) fE,3, (115)

ϑ3 = [−σm11 + (−σµ11 + i
√
σλ11)] fE,3

− (−σµ31 + i
√
σλ31) fE,1, (116)

ϑ = [−σm11 + (−σµ11 + i
√
σλ11)][− σm33

+ (−σµ33 + i
√
σλ33) + C33]

− (−σµ13 + i
√
σλ13)(−σµ31 + i

√
σλ31). (117)

Then invoking Eq. (40) the undamped natural frequency can
be found through

σ
{
[−(m11 + µ0

11) + 2 Re(ε2
1f o−

E,1)][−(m33 + µ0
33) + 2 Re(ε2

3 f o−
E,3)]

− [−µ0
13 + 2 Re(ε2

3 f o−
E,1)][−µ0

31 + 2 Re(ε2
1 f o−

E,3)]
}

+ C33[−(m11 + µ0
11) + 2 Re(ε2

1 f o−
E,1)] = 0. (118)

FIG. 17. Coupled sway and roll
motions of a floating rectangle body.
(a) |α1 |/α0 against σ. (b) |α3 |/α0
against σ. (c) |α1 |/α0 against |k0l |. (d)
|α3 |/α0 against |k0l |. In (a) and (b),
the solid line is for x1 = �x2 = �5 while
the dashed line is for open water, the
dashed-dotted line represents |S13(σ) |.
In (c) and (d), the solid line is for σ =
1.94, the dashed line is for σ = 2.24,
the dashed-dotted line is for σ = 2.60
(a = 1, b = 0.5, m11 = 0.5, m33 = 0.0521,
C33 = 1/12, H = 10, h1 = h2 = 0.1, d1 =
d2 = 0.09, m1 = m2 = 0.09, and L1 = L2
= 4.5582).



097104-18 Li, Shi, and Wu Phys. Fluids 29, 097104 (2017)

The numerical solution of this equation shows that there are
multi-natural frequencies for the coupled motions. Especially
nearσ = 1.26, the coupled motions are very large due to which
the equivalent damping level is very small at this frequency.
Similar to the heave motion, there are also a series of local
peaks and troughs in |α1 |/α0 and |α3 |/α0, which can be ana-
lyzed by substituting Eqs. (82) and (96) into Eqs. (113) and
(114) or

α1

α0
=

T i2w
L,0 α̃1/α0

ek0l/2 − [Rr − 2Rσ(A−1 α̃1/α0 + A−3 α̃3/α0)]e−k0l/2
,

(119)

α3

α0
=

T i2w
L,0 α̃3/α0

ek0l/2 − [Rr − 2Rσ(A−1 α̃1/α0 + A−3 α̃3/α0)]e−k0l/2
.

(120)

Similar to Eq. (108), the local extrema for the coupled motions
can be found through

|S13(σ)| = |1 + e−k0leiArg[Rr−2Rσ(A−1 α̃1/α0+A−3 α̃3/α0)] |. (121)

Its peaks and troughs occur when δ equals

δ13
P = 2nπ − β − Arg[r − 2σ(A−1 α̃1/α0 + A−3 α̃3/α0)], (122)

and

δ13
T = 2nπ + π − β − Arg[r − 2σ(A−1 α̃1/α0 + A−3 α̃3/α0)],

(123)

respectively. It can be seen from Figs. 17(a) and 17(b) that
|α1 |/α0 and |α3 |/α0 follow the same peaks and troughs as
|S13(σ)|. Equations (119) and (120) indicate that |α1 |/α0 and
|α3 |/α0 will also oscillate against |k0l | for a given σ with
period as 2π, and the peaks and troughs appear when δ equals
δ13

P and δ13
T , respectively, as reflected in Figs. 17(c) and 17(d).

IV. CONCLUSIONS

A method based on the wide spacing approximation has
been proposed for the interaction of water wave with a body
floating on a polynya. It has been found that this method based
on the solutions for a floating body without an ice sheet and
for an ice sheet/free surface without a floating body can give
accurate results for wave/body/ice sheet interaction problems.
Extensive numerical results are provided, including the wave
propagation across the polynya and wave interaction with a
submerged body and a floating body in polynya. The complex
wave features, as well as the hydrodynamic force and body
response to the waves, are analyzed. From these the following
conclusions can be drawn:

(1) The method is accurate and efficient for the problems of
wave propagation across a polynya, and interaction with
the submerged and floating bodies in polynya, including
the long wave cases even though the method is based on
the assumption of short waves.

(2) An explicit formula based on the present approxi-
mation has been found, which provides the discrete
frequencies at which the wave reflection from a polynya

confined between two semi-infinite ice sheets is zero. It
occurs when the wavenumber K nondimensionalized by
polynya width l is at Kl = nπ+Arg(R), where n includes
all integers which ensure Kl > 0 and R is the complex
reflection coefficient of the free surface water wave by
the semi-infinite ice sheet.

(3) The hydrodynamic force on a body in a polynya has
a highly oscillatory behaviour with the variation of
the frequency. The mechanism for such oscillation has
been investigated, which is found to be principally due
to the waves being constantly reflected between the
body and the ice sheet. It has been found that when
Kl = 2nπ + Arg(Rr) or Kl = 2nπ + π + Arg(Rr), where
r is the reflection coefficient of the body in the open
water without ice, the damping coefficient and wave
exciting force tend to peak and trough values, respec-
tively, while the added mass tends to the value in the
open water.

(4) The body motion in a polynya, excited by an incoming
wave, can experience resonance as in the open water,
although the resonant frequency is different. In addi-
tion to the peak at the resonance, the motion amplitude
also has many local peaks, or it also has oscillatory
behaviour with respect to the frequency. These peaks
are not necessarily due to the resonance at which the
inertial force is canceled by the restoring force. They
are primarily linked to the oscillatory behaviours of
the hydrodynamic coefficients and the excitation force,
although their peaks and troughs may not be at the same
frequency.

(5) At a given frequency, the hydrodynamic force and
motion response of a body in polynya will vary with
the polynya width periodically, and the period is
∆l = 2π/K. This suggests that no matter how wide the
polynya is, the effect of the ice sheet always exists. It
means that when l→∞, the result does not tend to that
in the open water without ice.

ACKNOWLEDGMENTS

This work is supported by Lloyd’s Register Foundation
through the joint centre involving University College London,
Shanghai Jiaotong University, and Harbin Engineering Univer-
sity, to which the authors are most grateful. Lloyd’s Register
Foundation helps to protect life and property by supporting
engineering-related education, public engagement, and the
application of research. This work is also supported by the
National Natural Science Foundation of China (Grant No.
11472088).

1V. A. Squire, “Past, present and impendent hydroelastic challenges in the
polar and subpolar seas,” Philos. Trans. 369, 2813 (2011).

2E. M. Appolonov, K. E. Sazonov, A. A. Dobrodeev, N. Y. Klementieva,
M. A. Kudrin, E. A. Maslich, V. O. Petinov, and V. M.
Shaposhnikov, “Studies for development of technologies to make a
wide channel in ice,” in The 22nd International Conference on Port and
Ocean Engineering under Arctic Conditions, Espoo, Finland, 9–13 June
2013.

3G. D. Q. Robin, “Wave propagation through fields of pack ice,” Philos.
Trans. R. Soc., A 255, 313 (1963).

https://doi.org/10.1098/rsta.2011.0093
https://doi.org/10.1098/rsta.1963.0006
https://doi.org/10.1098/rsta.1963.0006


097104-19 Li, Shi, and Wu Phys. Fluids 29, 097104 (2017)

4V. A. Squire, J. P. Dugan, P. Wadhams, P. J. Rottier, and A. K. Liu, “Of
ocean waves and sea ice,” Annu. Rev. Fluid Mech. 27, 115 (1995).

5V. A. Squire, “Of ocean waves and sea-ice revisited,” Cold Reg. Sci. Technol.
49, 110 (2007).

6C. Fox and V. A. Squire, “Reflection and transmission characteristics at
the edge of shore fast sea ice,” J. Geophys. Res.: Oceans 95, 11629,
doi:10.1029/jc095ic07p11629 (1990).

7C. Fox and V. A. Squire, “Coupling between the ocean and an ice shelf,”
Ann. Glaciol. 15, 101 (1991).

8C. Fox and V. A. Squire, “On the oblique reflexion and transmission of
ocean waves at shore fast sea ice,” Philos. Trans. R. Soc., A 347, 185
(1994).

9T. Sahoo, T. L. Yip, and A. T. Chwang, “Scattering of surface waves by a
semi-infinite floating elastic plate,” Phys. Fluids 13, 3215 (2001).

10M. Meylan and V. A. Squire, “The response of ice floes to ocean waves,”
J. Geophys. Res.: Atmos. 99, 891, doi:10.1029/93jc02695 (1994).

11D. V. Evans and T. V. Davies, “Wave–ice interaction,” Report No.
1313, Davidson Laboratory, Stevens Institute of Technology, New Jersey,
1968.

12H. Chung and C. Fox, “Calculation of wave-ice interaction using the Wiener-
Hopf technique,” New Zealand J. Math. 31, 1 (2002).

13N. J. Balmforth and R. V. Craster, “Ocean waves and ice sheets,” J. Fluid
Mech. 395, 89 (1999).

14L. A. Tkacheva, “Hydroelastic behavior of a floating plate in waves,”
J. Appl. Mech. Tech. Phys. 42, 991 (2001).

15L. A. Tkacheva, “The diffraction of surface waves by a floating elastic plate
at oblique incidence,” J. Appl. Math. Mech. 68, 425 (2004).

16H. Chung and C. M. Linton, “Reflection and transmission of waves across
a gap between two semi-infinite elastic plates on water,” Q. J. Mech. Appl.
Math. 58, 1 (2005).

17T. D. Williams and V. A. Squire, “Scattering of flexural–gravity waves at the
boundaries between three floating sheets with applications,” J. Fluid Mech.
569, 113 (2006).

18D. V. Evans and R. Porter, “Wave scattering by narrow cracks in ice
sheets floating on water of finite depth,” J. Fluid Mech. 484, 143
(2003).

19R. Porter and D. Evans, “Diffraction of flexural waves by finite straight
cracks in an elastic sheet over water,” J. Fluids Struct. 23, 309 (2007).

20I. V. Sturova and L. A. Tkacheva, “Action of periodic external pressure on
inhomogeneous ice cover,” in The 32th International Workshop on Water
Waves and Floating Bodies, Dalian, China, 23–26 April 2017.

21D. Das and B. N. Mandal, “Oblique wave scattering by a circular cylinder
submerged beneath an ice-cover,” Int. J. Eng. Sci. 44, 166 (2006).

22I. V. Sturova, “Wave generation by an oscillating submerged cylinder in the
presence of a floating semi-infinite elastic plate,” Fluid Dyn. 49, 504 (2014).

23I. V. Sturova, “The effect of a crack in an ice sheet on the hydrodynamic
characteristics of a submerged oscillating cylinder,” J. Appl. Math. Mech.
79, 170 (2015).

24I. V. Sturova, “Radiation of waves by a cylinder submerged in water with
ice floe or polynya,” J. Fluid Mech. 784, 373 (2015).

25K. Ren, G. X. Wu, and G. A. Thomas, “Wave excited motion of a body float-
ing on water confined between two semi-infinite ice sheets,” Phys. Fluids
28, 127101 (2016).

26Z. F. Li, Y. Y. Shi, and G. X. Wu, “Large amplitude motions of a submerged
circular cylinder in water with an ice cover,” Eur. J. Mech.-B/Fluids 65, 141
(2017).

27Z. F. Li, Y. Y. Shi, and G. X. Wu, “A hybrid method for wave interacting with
a body floating on polynya confined between two semi-infinite ice sheets,”
in The 32th International Workshop on Water Waves and Floating Bodies,
Dalian, China, 23–26 April 2017.

28M. A. Srokosz and D. V. Evans, “A theory for wave-power absorption by
two independently oscillating bodies,” J. Fluid Mech. 90, 337 (1979).

29C. C. Mei, M. Stiassnie, and K. P. Yue, Theory and Applications of Ocean
Surface Waves Part 1: Linear Aspects (World Scientific Publishing Co. Pte.
Ltd., Hackensack, NJ, 2005).

30R. W. Yeung, “A hybrid integral-equation method for time-harmonic free-
surface flows,” in The 1st International Conference on Numerical Ship
Hydrodynamics, Gaithersburg, Maryland, 20–22 October 1975.

31R. Eatock Taylor and J. Zietsman, “A comparison of localized finite element
formulations for two-dimensional wave diffraction and radiation problems,”
Int. J. Numer. Methods Eng. 17, 1355 (1981).

32Z. F. Li, Y. Y. Shi, and G. X. Wu, “Interaction of waves with a body floating on
polynya between two semi-infinite ice sheets,” J. Fluids Struct. (submitted).

33M. Meylan and V. A. Squire, “Finite-floe wave reflection and transmission
coefficients from a semi-infinite model,” J. Geophys. Res.: Atmos. 981,
12537, doi:10.1029/93jc00940 (1993).

https://doi.org/10.1146/annurev.fl.27.010195.000555
https://doi.org/10.1016/j.coldregions.2007.04.007
https://doi.org/10.1029/jc095ic07p11629
https://doi.org/10.1017/s0260305500009605
https://doi.org/10.1098/rsta.1994.0044
https://doi.org/10.1063/1.1408294
https://doi.org/10.1029/93jc02695
https://doi.org/10.1017/s0022112099005145
https://doi.org/10.1017/s0022112099005145
https://doi.org/10.1023/a:1012561710673
https://doi.org/10.1016/s0021-8928(04)00057-7
https://doi.org/10.1093/qjmamj/hbh011
https://doi.org/10.1093/qjmamj/hbh011
https://doi.org/10.1017/s0022112006002552
https://doi.org/10.1017/s002211200300435x
https://doi.org/10.1016/j.jfluidstructs.2006.08.014
https://doi.org/10.1016/j.ijengsci.2006.01.001
https://doi.org/10.1134/s0015462814040103
https://doi.org/10.1016/j.jappmathmech.2015.07.008
https://doi.org/10.1017/jfm.2015.582
https://doi.org/10.1063/1.4968553
https://doi.org/10.1016/j.euromechflu.2017.02.004
https://doi.org/10.1017/s0022112079002251
https://doi.org/10.1002/nme.1620170906
https://doi.org/10.1029/93jc00940

