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ABSTRACT 1 

 Coastal ecosystems, such as mangroves, provide key ecosystem services for climate change mitigation 2 

and adaptation. However, combined anthropogenic activities and climatic change-driven sea level rise 3 

(SLR) pose a severe threat to their global persistence, and to the continued delivery of these services. 4 

Mangrove vulnerability to SLR depends upon capacity for both resilience (landward migration) and 5 

resistance (maintained functioning with the existing distribution), which are in turn hindered by 6 

extractive activities and coastal infrastructure development. Limited landscape-scale data availability 7 

means existing SLR vulnerability assessment frameworks lack rigorous quantification of these discrete 8 

processes. 9 

 Here we develop and implement a novel multi-product (multispectral, microwave, derived-product) 10 

open-access satellite remote sensing approach to assess both coastal ecosystem SLR resilience and 11 

resistance capacity in multiple mangrove sites across the world, and landscape-level and anthropogenic 12 

factors driving these capacities. Our approach allows comparative ranking of resilience and resistance 13 

capacities across sites, based on relative changes in constraints to these two components of SLR 14 

vulnerability.  15 

 We observe generally low SLR resilience and resistance across our case study sites. Interestingly, we 16 

find that site-specific resilience and resistance capacities and constraints can be highly incongruent, 17 

highlighting the importance of comprehensive SLR vulnerability monitoring for effective 18 

management. High within-site variation was also detected in resilience and resistance capacities and 19 

their constraints. This underlines the importance of spatially-explicit monitoring at extensive spatial 20 

scales to inform decision making.  21 

 The methodology developed and repeat-pass imagery employed adds to the remote monitoring and 22 

assessment toolkit for adaptive coastal ecosystem management under SLR, providing a new approach 23 

to inform conservation and management priority assessments in data deficient regions. 24 
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INTRODUCTION 25 

Global sea level rise (SLR) presents a major threat to coastal ecosystems, and to the multiple ecosystem 26 

services they provide to humans (see de Groot et al. 2012; Brander et al. 2012). Management focus is 27 

increasingly placed on coastal zone risk assessment and mitigation, in order to enhance climate change 28 

mitigation and adaptation (CCMA). The potential future success of activities to enhance CCMA hinges on 29 

adaptive management under variable climatic projections (IPCC 2013) to reduce coastal ecosystem 30 

vulnerability to SLR. In order to plan for change, monitoring of the relative potential for coastal ecosystems 31 

to maintain functionality and service delivery in the face of SLR, and the factors principally driving their 32 

vulnerability, is required. Quantitative and semi-quantitative site-specific information on coastal ecosystem 33 

exposure, sensitivity and adaptive capacity to SLR (Lee et al. 2017; Ellison 2015) currently enable 34 

categorisation of these systems according to relative vulnerability. However, such assessments often do not 35 

comprehensively assess components of vulnerability to specific factors, are rarely fully spatially-explicit 36 

(but see Lee et al. 2017), and importantly do not allow for high temporal resolution monitoring of changes 37 

in the drivers inherently shaping spatial variation in vulnerability to SLR. 38 

Owing to their often-extensive areal coverage, dense vegetation and deep, organic carbon-rich sediments, 39 

global mangrove forests provide arguably the greatest coastal zone ecosystem-specific CCMA potential 40 

(Dahdouh-Guebas et al. 2005; Donato et al. 2011; McIvor et al. 2012). They are, however, highly sensitive 41 

to SLR impacts. Mangrove SLR resilience can be broken down in to two components, termed resilience 42 

(capacity for maintained areal coverage [e.g. through landward migration]) and resistance (capacity to 43 

maintain functionality within existing distributions [e.g. maintained productivity]; Gilman et al. 2008). This 44 

distinction is key, as the underlying processes (abiotic and anthropogenic pressures) affecting mangrove 45 

resilience and resistance capacities may vary (Gilman et al. 2008). Resistance is driven predominantly 46 

through sediment accretion and surface elevation gain (root biomass production) relative to SLR (sediment 47 

and freshwater inputs), and cryptic degradation with maintained areal coverage (e.g. selective cutting and 48 

pollution) (Dahdouh-Guebas et al. 2005; Lee et al. 2014; Lovelock et al. 2015). Sediment and freshwater 49 

input regimes may also impact mangrove SLR resilience (e.g. influencing levels of seaward die-back; 50 
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Ellison 1993; Woodroffe 1995; Gilman et al. 2008; Ellison 2015). However, capacity for landward 51 

migration is dependent principally on: (1) landward topography (hydro-ecological conditions for landward 52 

recruitment); and (2) presence of landward physical barriers (anthropogenic structures: buildings; dikes; 53 

sea walls; roads; agri-/aquaculture) (Gilman et al. 2008; Ellison 2015). Management to enhance mangrove 54 

resilience and resistance thus necessitates different approaches. For example, resistance may benefit from 55 

actions to increase sediment inputs and reduce cutting in stressed systems, while resilience may benefit 56 

from actions to zone landward areas to facilitate landward expansion (Gilman et al. 2008; Rogers et al. 57 

2014). Accordingly, to prioritise management to maximise coastal zone CCMA into the future where 58 

resources and capacity are limited, combined examination of relative mangrove forest resilience and 59 

resistance capacities is required. 60 

Due largely to the complexities of mangrove field data collection, studies on SLR vulnerability to date have 61 

often been limited in geographic scope (one or few forests: Ellison 1993; Gilman et al. 2007; Ellison & 62 

Zouh 2012), or have focussed on only one component of vulnerability in extensive regional assessments 63 

(resistance: Lovelock et al. 2015; Sasmito et al. 2016). Where mangrove SLR resilience and resistance 64 

capacities have been assessed in parallel, anthropogenic controls on these processes (landward land-use 65 

change/development; cryptic degradation through cutting) have not been considered (Ellison & Zouh 66 

2012). Accordingly, we lack systematic, repeatable methods to index and monitor SLR resilience and 67 

resistance capacities across the large spatial scales required for decision-making, as well as methods to 68 

assess the predominant factors driving these under current anthropogenic activities and management 69 

regimes. Here, we develop and subsequently employ (global case study mangroves) a multi-product 70 

satellite remote sensing approach to simultaneously monitor mangrove SLR resilience and resistance 71 

capacities, and their potential abiotic and anthropogenic drivers. The approach allows ranking of resilience 72 

and resistance capacities across sites, while accounting for relative changes to constraints to these two 73 

components of SLR vulnerability, for management priority assessment.  74 

 75 

 76 
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MATERIALS AND METHODS 77 

Study sites 78 

Seven mangrove forests (West Africa to South Asia: Figure 1) were selected as case studies. Each site 79 

satisfied the following criteria: (1) large size (>5,000 ha; minimise influence from stochastic processes: 80 

Keith et al. 2013); (2) known and substantial historical SLR (5–15cm over 1993–2008; Beckley et al. 2010; 81 

GSFC 2013); (3) available satellite imagery (temporal coverage; comparable seasons) for all required 82 

products (Table S1). The sites are currently under varying levels of protection, ranging from no official 83 

protection to inclusion within protected areas, UNESCO World Heritage and Ramsar sites. All sustain 84 

extractive use, mostly at landward, upper-intertidal boundaries (e.g. timber extraction, land clearing: Diop 85 

et al. 2002; UNEP-WCMC 2003; 2007; Spalding et al. 2010), and experience varying amounts of human 86 

settlement/infrastructure and unconverted land at their landward boundaries. 87 

Satellite remote sensing data 88 

Multiple remote sensing data (multispectral and microwave) and products were employed to monitor: (1) 89 

mangrove resilience (areal maintenance; landward migration and/or shoreline retreat) and resistance 90 

(biomass maintenance within existing distribution) capacities; and (2) potential landscape-level (landward 91 

topographic slope and sediment availability) and anthropogenic development drivers (Table 1). Temporal 92 

coverages were limited to 2007–2010 (12.5m radar imagery availability; biomass change), 2007–2015 93 

(matching recent multispectral imagery availability [2015 time of investigation] to assess longer-term 94 

changes at landward boundaries), and 2006–2010 (to assess trends in sediment availability around the time-95 

period of radar imagery availability) (Table 1). 96 

Satellite data pre-processing 97 

All data processing was conducted in open-source software: R 3.2.5 (R Development Core Team 2016), 98 

QGIS 2.14.0 (QGIS Development Team 2016), ASF MapReady 3.1.24 (ASF 2013), and SENTINEL-1 99 

Toolbox 4.0.0 (Array Systems Computing Inc. 2016). 100 
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Six Landsat bands were used: 𝑏𝑙𝑢𝑒, 𝑔𝑟𝑒𝑒𝑛, 𝑟𝑒𝑑, 𝑛𝑒𝑎𝑟 𝑖𝑛𝑓𝑟𝑎𝑟𝑒𝑑 [𝑁𝐼𝑅], 𝑠ℎ𝑜𝑟𝑡𝑤𝑎𝑣𝑒 𝑖𝑛𝑓𝑟𝑎𝑟𝑒𝑑 [𝑆𝑊𝐼𝑅] 1 101 

and 2. Atmospheric radiometric calibration and correction was applied via simple Dark Object Subtraction 102 

from the single darkest (minimum reflectance) band-specific pixel (‘radCor’; ‘sdos’: Leutner & Horning 103 

2016). Adjacent scenes were mean mosaicked following band-specific histogram matching (‘histMatch’: 104 

Leutner & Horning 2016), and resampled to ALOS/PALSAR imagery (bilinear interpolation). Vegetation, 105 

soil and water indices were calculated to improve the predictive ability of mangrove landcover classification 106 

(Kuenzer et al. 2011; Lee et al. 2017): Normalised Difference Vegetation Index (𝑁𝐷𝑉𝐼); Enhanced 107 

Vegetation Index (𝐸𝑉𝐼); Soil-Adjusted Vegetation Index (𝑆𝐴𝑉𝐼); Automated Water Extraction Index 108 

(𝐴𝑊𝐸𝐼𝑠ℎ); Modified Normalised Difference Water Index (𝑀𝑁𝐷𝑊𝐼); Normalised Difference Vegetation 109 

Index (𝑁𝐷𝑊𝐼); Normalised Multi-Band Drought Index (soil; 𝑁𝑀𝐷𝐼𝑠𝑜𝑖𝑙) (Table S4; Figure S4).  110 

ALOS/PALSAR HV scenes were radiometrically calibrated to backscatter amplitude, co-registered and 111 

terrain-corrected (SRTM DEM) (ASF 2013). Automated image co-registration was applied between 112 

adjacent scenes (‘coregisterImages’: Leutner & Horning 2016) for sites with >1 scene (Saloum Delta and 113 

Sundarbans; Figure 1) prior to mean mosaicking. Site-specific 2007 ALOS/PALSAR imagery was co-114 

registered to 12.5m Landsat-derived 𝑆𝐴𝑉𝐼 index (multi-product pixels’ spatial alignment). Site-specific 115 

2010 ALOS/PALSAR imagery was then co-registered to 2007 imagery (Cornforth et al. 2013). To reduce 116 

ALOS/PALSAR speckle noise (and maintain edge features: Lee et al. 1994) we used a two-dimensional 117 

discrete wavelet transformation: Maximal Overlap Discrete Wavelet Transform using Daubechies 118 

orthonormal compactly supported wavelet (L = 8; Daubechies 1992) (‘denoise.modwt.2d’: Whitcher 2015). 119 

Pixels >35m SRTM DEM within-canopy surface elevation are beyond the conditions in which mangrove 120 

forests grow (see Fatoyinbo et al. 2008). All pixels >35m SRTM DEM (resampled to 12.5m; bilinear 121 

interpolation) were therefore masked from further analyses (see also Lee et al. 2017). Pixels containing 122 

water bodies were masked on a threshold of 𝐴𝑊𝐸𝐼𝑠ℎ>0 (Feyisa et al. 2014; Li & Gong 2016).  123 

Landcover classification 124 

The stepwise approach to quantifying current mangrove capacity for resilience and resistance is outlined in 125 

Figure 2. Low spectral complexity in coastal landcover facilitated unsupervised landcover classification 126 



 

7 
 

(Wegmann et al. 2016). To determine potentially redundant variables (Landsat bands and indices; Table 127 

S4; Figure S4) and improve site-specific multi-temporal classifications (Eklundh & Singh 1993), 128 

unstandardized Principal Components Analyses (PCA; ‘rasterPCA’: Leutner & Horning 2016) and PCA 129 

loadings inspections were conducted. The final set of input variables were then: 𝑟𝑒𝑑, 𝑁𝐼𝑅, 𝑆𝑊𝐼𝑅1, 𝑆𝑊𝐼𝑅2, 130 

𝐴𝑊𝐸𝐼𝑠ℎ, 𝑀𝑁𝐷𝑊𝐼, 𝑁𝐷𝑊𝐼, 𝑁𝐷𝑉𝐼 and 𝑆𝐴𝑉𝐼. Unsupervised classification via kmeans clustering (Hartigan-131 

Wong), using 10,000 randomly-sampled pixels and 100 model iterations over 25 random starts, was 132 

conducted to cluster pixels into 10 classes (Wegmann et al. 2016; ‘unsuperClass’: Leutner & Horning 133 

2016). Site-specific unsupervised classifications were subsequently re-run with iterative removal of one 134 

class per interval, and assessed via visual inspection of meaningful classes (Giri 2016) against high-135 

resolution imagery (2006–2008 and 2014–2016 for each time-period: Google Earth 2016). Optimal number 136 

of classes for most sites was five, visually corresponding to mangrove, wet bare-ground (mudflats; 137 

aquaculture), dry bare-ground (sand; salt pans; pond banks; cleared [agriculture] and urban landcover), dry 138 

terrestrial forest and dry terrestrial shrub-/grass-/agricultural land. Further identified classes (>5) 139 

corresponded to: cloud, cloud shadow (Saloum Delta); multiple mangrove vegetation classes (top-dying 140 

disease [Sundarbans; Iftekhar & Islam 2004]; shrubby, high saline mangroves [Mahajamba; Jones et al. 141 

2015]).  142 

To avoid eroding mangrove boundaries via post-classification filtering (Giri 2016; Wegmann et al. 2016), 143 

only larger, contiguous patches (>3,600 m2; four initial Landsat pixels) were considered in further analyses. 144 

To reduce mangrove change detection error from introduction of classification error at two time-periods 145 

and differences in Landsat sensor calibration (see Table S4), assessment of mangrove pixel-specific change 146 

was conducted (see Deng et al. 2008; Giri 2016). “Gain” or “loss” pixels in the 2015 mangrove distribution 147 

were conservatively maintained only if they also exhibited pixel-specific change in 𝑁𝐷𝑉𝐼 ≥25% from 2007 148 

imagery. 149 

Site-specific classification accuracies for identified mangrove distributions were conducted for 200 150 

randomly-selected pixels per time-period (site areas with available high resolution optical imagery; Google 151 

Earth 2016). These pixels were polygonized for visual accuracy assessment into three categories to assess 152 
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both true positives rates, and potential impact of mixed pixels on boundary extent and change classification 153 

(de Jong & van der Meer 2007): (1) true mangrove (>50% mangrove cover); (2) misclassified (0% 154 

mangrove cover); (3) mixed pixel (≤50% mangrove cover) (Figure S5). Two hundred ‘non-mangrove’ (i.e. 155 

all other landcover classes) pixels per time-period were also randomly selected for visual accuracy 156 

assessment into three categories to assess true negative rates: (1) true ‘non-mangrove’ (0% mangrove 157 

cover); (2) misclassified ‘non-mangrove’ (>50% mangrove cover); (3) mixed pixel. 158 

 159 

Mangrove boundary change 2007–2015 (resilience and resistance) 160 

Change in mangrove distribution 2007–2015 was assessed via spatial overlaying the two site-specific 161 

landcover classifications. Total area of gain and loss (ha) and percentage change were calculated as one 162 

index of capacity for landward resilience to SLR (Gilman et al. 2008) under current anthropogenic threats 163 

and management. 164 

Change in seaward boundary 2007–2010 was assessed via ALOS/PALSAR HV backscatter amplitude 165 

change detection. Waterways display very low backscatter amplitude due to specular microwave reflection, 166 

and following from Cornforth et al. (2013) were determined and eliminated from further analyses using a 167 

threshold value on a 7×7 Refined Lee filter (Lee et al. 1994; edge variance threshold 5,000) on: 168 

 √𝐻𝑉2007 + 𝐻𝑉2010 
1 

where 𝐻𝑉 = ALOS/PALSAR HV backscatter amplitude. This enabled extraction of pixels that were land 169 

in one year and water in the other, and thus identification of changes in coastline extent (Cornforth et al. 170 

2013). All identified seaward mangrove pixels within five-pixels’ distance (62.5m) from the 2007–2010 171 

coastline edge were then analysed for significant biomass change (see next section). Site-specific 172 

comparison of coastline (biomass) and landward boundary (distribution shift) change was conducted as a 173 

second index of capacity for SLR resilience. 174 

Mangrove biomass change 2007-2010 (resistance) 175 
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The capacity for biomass maintenance (resistance) was assessed via pixel-specific change detection in 176 

ALOS/PALSAR L-Band HV backscatter amplitude 2007–2010 (aboveground biomass proxy: Proisy et al. 177 

2003; Lucas et al. 2014; Cornforth et al. 2013) within identified stable mangrove distributions. To produce 178 

conservative estimates (to reduce potential overestimation from any differences in tidal height at 179 

ALOS/PALSAR imagery acquisition times; see Cornforth et al. 2013), areas of ≥15% backscatter 180 

amplitude change were extracted: 10% change can correspond to a significant on-the-ground biomass 181 

change (Cornforth et al. 2013). Significant biomass changes which were detected are assumed herein to 182 

correspond to both SLR and anthropogenic processes. To index site-specific total significant biomass 183 

change, percentage significant change in the sum of total backscatter amplitude was calculated: from 184 

reference 2007 backscatter amplitude and + significant pixel-specific backscatter amplitude change (>15%) 185 

in 2015 across all stable mangrove distribution pixels. 186 

Drivers of capacity for mangrove resilience and resistance 187 

1: Topographic constraints to capacity for resilience 188 

All pixels immediately adjacent to site-specific 2007 landward mangrove boundaries were extracted (nine 189 

metre buffer [>pixel centre diagonal distance]) to create year 2007 mangrove landward perimeter pixel 190 

rasters. Seaward edge pixels were masked by 𝐴𝑊𝐸𝐼𝑠ℎ2007 + 𝐴𝑊𝐸𝐼𝑠ℎ2015 > 0 (water in both years), and 191 

manual removal of seaward adjacent perimeter pixels not comprising water bodies (i.e. those behind 192 

mudflats, sandbanks, etc.) following polygonization. Year 2015 mangrove rasters were then cropped to the 193 

2007 mangrove landward perimeter pixel polygons (1 = mangrove cover, or 0 = no mangrove cover in 194 

2015). Topographic slope (radians) of SRTM DEM elevation pixels (12.5m) was calculated (eight 195 

neighbours; ‘terrain’: Hijmans et al. 2016), and extracted for each 2007 mangrove landward perimeter 196 

pixel.  197 

To assess within-site topographic controls on pixel-specific migration, an Integrated nested Laplace 198 

approximation (INLA) approach for latent Gaussian Markov random field models (Rue et al. 2009) was 199 

used to control for spatial structure (autocorrelation) in 2015 mangrove migration into 2007 mangrove 200 
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landward perimeter pixels, using a Stochastic Partial Difference Equation (SPDE) (Lindgren et al. 2011; 201 

Blangiardo et al. 2013). Site-specific binomial INLA SPDE models (Delauney triangulation mesh 202 

minimum observation distance 1.25 km; maximum triangle edge 125,000 km) (Blangiardo & Cameletti 203 

2015; Lindgren & Rue 2015) were employed using 20,000 randomly-sampled 2007 mangrove landward 204 

perimeter pixels and their associated SRTM DEM slope predictor variable (radians; square root-205 

transformed). Site-specific topographic constraints to capacity for future landward migration was then 206 

indexed via the percentage of non-anthropogenic (see next section) 2007 landward perimeter pixels with 207 

SRTM DEM slope < the 95% quantile (θ) of the distribution of slope values for pixels with observed 208 

migration into the landward perimeter by 2015. 209 

2: Anthropogenic constraints to capacity for resilience and resistance 210 

To index potential site-specific anthropogenic constraints (i.e. infrastructure, cleared land [agriculture]) to 211 

landward migration (resilience) and biomass maintenance (resistance; pressure from extractive use), 212 

potential anthropogenic landcover was proxied by the number (length) and relative proportion of 2007 213 

mangrove landward perimeter dry bare-ground pixels in both 2007 and 2015. To eliminate site-specific 214 

naturally-occurring (i.e. non-anthropogenic) dry bare-ground, proportional ‘true’ anthropogenic landcover 215 

was visually validated at each time-period via random-selection of 200 classified 2007 mangrove landward 216 

perimeter dry bare-ground pixels (>50% pixel coverage: Google Earth 2016). The site-, time-period -217 

specific total number of identified 2007 mangrove landward perimeter potential anthropogenic (classified 218 

dry bare-ground) pixels were then scaled by validated proportional true anthropogenic cover.   219 

3: Sediment availability constraints to capacity for resilience and resistance 220 

Open-access eight-day composite Level 3 global TSM concentration (g m-3) data (4km resolution) were 221 

extracted from ACRI-ST (http://hermes.acri.fr/), and processed for pixel-specific mean TSM, and 222 

significant deseasoned trends (Mann Kendall tau value p<0.05, else tau = 0) in TSM 2006–2010 223 

(‘significantTau’: Detsch 2016). Extractive mangrove use is assumed to occur more frequently in more 224 

easily-accessible landward portions of forests. Thus, to index potential within-site sediment availability 225 

http://hermes.acri.fr/
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controls on the capacity for mangrove resilience and resistance (seaward boundary biomass change), all 226 

seaward mangrove pixels within five-pixels’ distance (62.5m) from the combined 2007–2010 coastline 227 

edge, and mean TSM and Kendall’s tau of the closest TSM pixel (‘gDistance’: Bivand et al. 2016) were 228 

extracted. Site-specific single predictor and additive two-predictor Gaussian INLA SPDE models were 229 

constructed for 20,000 randomly-selected seaward mangrove pixels (percentage change ALOS/PALSAR 230 

HV backscatter amplitude 2007-2010). INLA SPDE models were assessed for significant effects via 231 

predictor-specific slope estimate 97.5% quantiles, and compared via Deviance Information Criterion (DIC; 232 

Spiegelhalter et al. 2002) and Watanabe-Akaike Information Criterion (WAIC; Watanabe 2010) for 233 

Bayesian hierarchical models. Site-specific potential sediment availability constraints to capacity for future 234 

seaward boundary resilience and resistance were then indexed via the mean Kendall’s tau value for all 235 

coastal TSM pixels with significant trends in TSM 2006-2010. 236 

Categorising resilience and resistance capacities, and severity of constraints 237 

Capacity for resilience was categorised based on the distribution of observed capacities as: high resilience 238 

(increasing/stable [<4% loss] area, and landward migration > seaward biomass loss); medium resilience 239 

(stable [<4% loss] area, and landward migration ≈ seaward biomass loss [<2% seaward retreat]); low 240 

resilience (stable [<4% loss]/decreasing area, and landward migration < seaward biomass loss). Capacity 241 

for resistance (total significant biomass change) was categorised as: high resistance (increasing/stable [<1% 242 

loss]); medium resistance (marginal [<5%] loss); low resistance (> 5% loss). 243 

Site-specific constraints to the capacity for mangrove resilience and resistance were similarly ranked into 244 

categories of severity. Topographic constraints to the capacity for resilience (% 2007 landward perimeter 245 

non-anthropogenic pixels with capacity for future migration [SRTM DEM slope ≤ θ]) were categorised as: 246 

low concern (>70%); medium concern (50–70%); high concern (<50%). Anthropogenic development 247 

constraints to the capacity for resilience and resistance (% change in landward perimeter pixels’ 248 

anthropogenic landcover 2007–2015) were categorised as: low concern (decreasing/stable [<0.5% 249 

increase]); medium concern (marginal increase [0.5-5%]); high concern (>5% increase). Sediment loss 250 

constraints to the capacity for resistance (mean Kendall’s tau in TSM concentration (g m-3) 2006–2010) 251 
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were categorised as: low concern (increasing/stable [>-0.01]); medium concern (marginal decrease [>-252 

0.04]); high concern (decreasing [≤-0.04]). 253 

 254 

RESULTS 255 

Accuracy assessment of unsupervised landcover classifications at randomly selected classified mangrove 256 

pixels (N = 200 per time-period [2007 and 2015] per site) revealed reasonable accuracy in mangrove 257 

landcover identification (means: true positives = 90.80%; false positives = 3.89%; ‘mangrove’ mixed pixels 258 

= 6.00%; true negatives = 90.32%; false negatives = 5.54%; ‘non-mangrove’ mixed pixels = 4.14%; Table 259 

S5). Most sites showed increasing (Mahajamba, Save River Delta) or stable mangrove area over 2007–260 

2015 (<2% loss: Ruvuma Estuary, Rufiji Delta, Sundarbans, Saloum Delta; Table 2; Figure 3 and S6–S12). 261 

Five of seven sites exhibited 2015 landward migration into the 2007 mangrove landward perimeter (Table 262 

3). Net seaward significant biomass increase was observed at one site, where sediment availability (mean 263 

TSM g m-3) was also high and stable: Mahajamba (3.13%) (Tables 4 and 5). However, net seaward 264 

significant biomass loss (-4.48%) was observed at the Sundarbans (Tables 4 and 5); but was outpaced by 265 

observed landward migration 2007–2015 (Table 3). Net seaward significant biomass loss was moderate in 266 

the two West African sites, substantially outpacing landward migration at Saloum Delta (Tables 3 and 5). 267 

Net seaward significant biomass loss was substantial in all East African sites (-5.54– -5.62%), but was 268 

outpaced by landward migration at Save River Delta and Ruvuma Estuary (Tables 3 and 5). 269 

Mangrove aboveground biomass was stable or increasing at Mahajamba, Sundarbans and Sherbro Bay, 270 

while marginal biomass loss (<5%) was detected at Saloum Delta and Ruvuma Estuary (Table 6). 271 

Substantial net significant biomass loss was observed at Save River Delta (-5.33%) and Rufiji Delta (-272 

5.34%) (Table 6), which was spatially heterogeneous and greater (-6.05%) in the northern portion of the 273 

Rufiji Delta where agricultural expansion was also observed (Figure 3). 274 

Pixel-specific probability of 2015 landward migration was significantly negatively related to SRTM DEM-275 

derived slope (radians; square root-transformed) at all sites with observed landward migration 2007-2015 276 
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(b 97.5% quantiles<0): greater landward migration probability with shallower topographic slope. The 277 

strongest negative effect was observed at Mahajamba (b √𝑆𝑅𝑇𝑀 𝑠𝑙𝑜𝑝𝑒 = -2.30 ± 0.25 [1 s.d.]; 97.5% 278 

quantiles: -2.80– -1.81), and the weakest at Rufiji Delta (b √𝑆𝑅𝑇𝑀 𝑠𝑙𝑜𝑝𝑒 = -0.66 ± 0.28 [1 s.d.]; 97.5% 279 

quantiles: -1.21– -0.16). 280 

Most mangroves showed low site-specific topographic constraints to capacity for future landward 281 

migration; however, Sherbro Bay showed medium (63.07% non-anthropogenic landward perimeter pixels 282 

slope < θ), and Rufiji Delta exhibited high concern capacity (45.33%) (Figure 4). These sites also exhibited 283 

medium to low resilience capacity, respectively, over 2007–2015.  284 

Excepting Saloum Delta, an increase in landward perimeter potential anthropogenic landcover was 285 

observed at all sites (Table 7).  The largest of these increases were observed in Sherbro Bay (medium 286 

concern: 3.09% perimeter increase) and Rufiji Delta (high concern: 6.34% perimeter increase) (Table 7).  287 

No significant effect of mean or trend in sediment availability on within-site seaward biomass change was 288 

found in sites with high site-specific sediment loads (Table 4). A positive effect of mean TSM on percentage 289 

change in seaward biomass was, however, detected in Sherbro Bay (b Mean TSM = 1.50 ± 0.46 [1 s.d.]; 290 

97.5% quantiles: 0.60–2.41) and Ruvuma Estuary (b Mean TSM = 0.38 ± 0.12 [1 s.d.]; 97.5% quantiles: 291 

0.14–0.61), while a negative effect was detected at Sundarbans (b Mean TSM = -0.29 ± 0.10 [1 s.d.]; 97.5% 292 

quantiles: -0.48– -0.10), possibly owing to heterogeneous background erosion rates in the delta (Rahman 293 

& Islam 2010; Rahman et al. 2011; Cornforth et al. 2013). 294 

Most mangroves showed low site-specific sediment availability constraints to capacity for future resistance 295 

and seaward boundary resilience: no significant mean Kendall’s tau in TSM across all pixels at Save River 296 

Delta and Ruvuma Estuary; a weak positive trend at Sherbro Bay (tau = 0.006); weak negative trends at 297 

Mahajamba and Sundarbans (tau = -0.005 and -0.004, respectively). Stronger negative trends in TSM were 298 

found at Saloum Delta (tau = -0.02; medium concern), and Rufiji Delta (tau = -0.04; high concern) (Table 299 

4; Figure 4). 300 
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Based on our analyses, two sites showed high capacity for both resilience and resistance: Mahajamba and 301 

Sundarbans (Figure 4). Both sites also showed low concern for all potential constraints to current and future 302 

resilience and resistance. Two further sites had high resilience capacity, but had medium (Ruvuma Estuary) 303 

to low (Save River Delta) resistance capacity, despite low concern for all proxied constraints (Figure 4). 304 

Increases in landward perimeter anthropogenic landcover were observed in both sites (Table 7); however, 305 

biomass loss at the low-elevation Save River Delta (Table 4) may be more associated with SLR impacts on 306 

forest functionality, where observed anthropogenic development at landward boundaries was 307 

comparatively marginal. Sherbro Bay showed stable biomass but medium resilience capacity, where low 308 

concern was observed for changes to sediment availability, but medium concern observed for landward 309 

topographic and anthropogenic barrier constraints to landward migration (Figure 4). Sites with lower 310 

capacities for both resilience and resistance (Saloum Delta, Rufiji Delta) also had observed reductions in 311 

sediment availability 2006–2010 (Figure 4). Low resilience and resistance capacity was observed at Rufiji 312 

Delta, alongside high concern for all topographic, anthropogenic and sediment availability constraints to 313 

future landward migration and biomass maintenance (Figure 4). 314 

 315 

DISCUSSION 316 

This study demonstrates the capability of multi-product satellite monitoring to simultaneously index 317 

multiple elements of coastal ecosystem SLR vulnerability, and spatially-explicit landscape-level and 318 

anthropogenic constraints (and trends therein). The main novelty of our approach is its ability to separately 319 

monitor processes and drivers of SLR resilience and resistance across large spatial extents (>5,000 ha 320 

forests). Our results show that: (1) incongruence can exist between site-specific resilience and resistance 321 

capacities, and their probable predominant constraints, revealing the importance of comprehensive SLR 322 

vulnerability monitoring; (2) there can be high within-site variation in both resilience and resistance 323 

capacities, and in constraints to these processes (i.e. topographic; sediment availability), which necessitate 324 

spatially-explicit monitoring at these scales to inform decision-making. Our systematic monitoring 325 
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approach can inform management prioritisation of higher risk elements of potential responses to SLR and 326 

of actions to mitigate current and future constraints. 327 

Our results clearly demonstrate that, given room for expansion (Gilman et al. 2008; Rogers et al. 2014), 328 

mangroves can colonise landward along suitably shallow topographic gradients at fairly rapid rates (Table 329 

3; Figure 4). Furthermore, where sediment loads are sufficiently high they can also extend seaward over 330 

the same timescales despite SLR (Table 5; Figure 4). Thus, although a less empirically-explored component 331 

of vulnerability (but see Gilman et al. 2007; Ellison & Zouh 2012; Runting et al. 2016), resilience can 332 

provide an important contribution to SLR adaptability where constraints to expansion are low. Our findings 333 

do, however, urge caution against resilience assessment via areal coverage alone, as reduced productivity 334 

and extractive degradation may cause cryptic loss of functionality (also low resistance) at ecosystem 335 

boundaries (Figures 3 and 4). Biomass loss is both a consequence and driver of SLR vulnerability: as 336 

biomass is lost, capacity for sediment trapping and surface elevation gain also decreases (McKee et al. 337 

2007). Satellite monitoring (SAR) of these processes provides a key tool to inform necessary management. 338 

However, at present, our approach can monitor only capacity for resistance processes (under existing 339 

pressures and management), and not directly attribute observed biomass changes with specific SLR 340 

impacts. Much previous mangrove SLR vulnerability research has focussed on resistance: predominantly 341 

on relative surface elevation gain via Rod-Surface Elevation Tables (R-SETs) (i.e. Lovelock et al. 2015). 342 

Conversely to satellite-derived information, the global R-SET network is limited (Sasmito et al. 2016) and 343 

unable to capture ecosystem-wide variation in resistance. It may also under-/overestimate vulnerability 344 

where capacity for boundary changes are not considered. Going forward, a key development will lie in 345 

linking SAR-derived vegetation structure change with field-derived sediment elevation capital information 346 

(see Lovelock et al. 2015) to improve remote SLR resistance monitoring. 347 

Our findings echo previous regional studies reporting high mangrove vulnerability to SLR (e.g. Lovelock 348 

et al. 2015): we find both high resilience and resistance capacities in only two sites (also all topographic, 349 

anthropogenic and sediment availability constraints low concern), with most others showing incongruent 350 

capacities. Only one site had low resilience and resistance capacities (all constraints high concern: Rufiji 351 
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Delta; Figure 4). Overall, lower SLR resilience and resistance capacities were observed in mainland African 352 

mangroves. Resilience capacities were a concern for West Africa, coinciding with topographic, 353 

anthropogenic (Sherbro Bay) and decreasing sediment availability constraints to landward migration 354 

(Saloum Delta; Figure 4). Zoning to reduce future anthropogenic development in shallow-sloping landward 355 

areas and catchment management to maximise freshwater and sediment inputs (regional desertification: see 356 

Saenger & Bellan 1995; Ndour et al. 2011) may be important considerations for enhancing the resilience 357 

of West African coastal ecosystems. Low resistance capacities, and seaward boundary resilience, were 358 

conversely a concern for East Africa, largely coinciding with landward anthropogenic development 359 

constraints (Figures 3 and 4: cryptic degradation; but see Save River Delta: Results; Figure 4). Minimisation 360 

of unsustainable extractive activities near population centres, and agricultural and infrastructural 361 

development within existing mangrove boundaries, as well as in potential migration areas, should be a 362 

regional priority for East Africa to enhance SLR resistance into the future (Gilman et al. 2008). The spatial 363 

configuration of landward anthropogenic pressures may have significance in determining the intensity of 364 

impact upon mangrove forest SLR resilience and resistance capacities (see Figure 3), and is a key area for 365 

future development. The case studies considered represent ecosystems with low comparative anthropogenic 366 

pressure. Capacity for SLR resistance, and particularly resilience, in the wider tropics (c.f. Southeast Asia) 367 

is likely to be substantially lower, where extensive anthropogenic pressure exists at landward margins 368 

(Lovelock et al. 2015; Richards & Friess 2016), as well as in low sediment-fed small islands (Sasmito et 369 

al. 2016). Geographically rolling-out the framework developed in this study will in future facilitate a more 370 

comprehensive view of global mangrove SLR resilience and resistance capacities.  371 

Our developed monitoring approach is not without limitation. First, we were unable to control for time-372 

period-specific tidal height differences in ALOS/PALSAR imagery; thus, while we employed conservative 373 

thresholds (≥15%) for ‘significant’ on-ground biomass change (see Materials and Methods; Cornforth et 374 

al. 2014), changes to below-canopy standing water may have influenced resistance capacities’ 375 

quantification in more open-canopy sites. Employment of recently-launched, much-increased temporal 376 

coverage Sentinel-1 SAR satellite data (Copernicus 2016; but see short-wavelength C-band limitation: see 377 
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Lucas et al. 2014) may enable imagery tidal-matching in future applications. Second, to minimise the 378 

impacts of cross-sensor (Landsat) spectral differences, we applied an 𝑁𝐷𝑉𝐼 threshold for ‘true’ mangrove 379 

distribution change. This, alongside 30m Landsat imagery resolution (minimum mapping unit for isolated 380 

patches then four pixels) and ‘scaling-up’ to ALOS/PALSAR resolution (12.5m), means our approach is 381 

currently conservative in its quantification of SLR resilience capacities, being less able to detect fine-scale 382 

landward migration – i.e. common-place gradual movement of sparse individuals (see Kelleway et al. 383 

2016). Multi-sensor fusion with higher resolution optical imagery (e.g. Cavanaugh et al. 2014), where 384 

available, could enhance resilience capacities’ quantification. Third, SRTM DEM represents within-385 

canopy, not true ground, elevation (Fatoyinbo et al. 2008); thus, overestimation of landward topographic 386 

slopes is risked due to inclusion of mangrove and non-mangrove SRTM pixels. Going forward, masking 387 

by emerging global mangrove height models (i.e. Fatoyinbo et al. 2016) will assist in minimising this 388 

limitation. Finally, at present our approach does not consider site-specific stochastic climatic extremes (i.e. 389 

storms; Lee et al. 2017). Storm impacts may influence SLR resilience and resistance capacities, and their 390 

quantification herein, via periodic reduction of mangrove productivity and landward establishment. Indeed, 391 

cyclone Bondo hit Mahajamba in October 2007 (~70 knots; ~8 months pre-ALOS/PALSAR imagery 392 

acquisition: Kossin et al. 2010); biomass recovery from which may have contributed in part to estimated 393 

high resistance capacity (Table 6; Figures 4 and S6.10). Pre- (cyclone Favio; February 2007) and within-394 

investigation period storms (Sidr: November 2007; Rashimi: October 2008) were also experienced at Save 395 

River Delta and Sundarbans, respectively (Kossin et al. 2010). Further research into the potential for storm 396 

impacts (frequency, intensity) to limit coastal ecosystem SLR resilience and resistance capacities is now 397 

required to extend our approach for their inclusion. 398 

In summary, we have integrated multiple satellite data and products to present a new spatially-explicit 399 

approach to more comprehensive monitoring of SLR resilience and resistance capacities, which minimises 400 

costly, time-intensive and logistically challenging on-ground monitoring requirements. While we have 401 

focussed application of our SLR vulnerability monitoring approach to mangroves, it is applicable to all 402 

vegetated ecosystems similarly exposed to and with potential to keep pace with SLR processes (mangroves; 403 
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[salt]marshes; freshwater/peat swamps). Potentially lower sensitivities of SAR backscatter to biomass and 404 

change detection in low-/open-canopy marsh (but see Ramsey et al. 2014) may, however, necessitate 405 

substitution/fusion with multispectral-derived productivity proxies (e.g. 𝑁𝐷𝑉𝐼; Table S4). Extension of our 406 

approach to sub-tropical and temperate regions will further require inclusion of metrics on climatic extreme 407 

(temperature) controls on SLR resilience and resistance capacities (encroachment and productivity: see e.g. 408 

Cavanaugh et al. 2014). The global and repeat-pass coverage of optical (Landsat) and SAR sensors 409 

(ALOS/PALSAR and PALSAR-2), and novel increased temporal coverage satellites (Sentinel-1 C-Band 410 

SAR and -2 multispectral: Copernicus 2016), could facilitate repeated, near real-time monitoring of 411 

resilience and resistance capacities, SLR responses, and their drivers using and developing upon the 412 

approach developed herein into the future. This can inform adaptive management of coastal ecosystems in 413 

the face of rising sea levels. Minor adaptation of our multi-product approach to monitoring differential 414 

threat processes and responses within ecosystem cores and at boundaries could, moreover, provide useful 415 

inputs into wider marine and terrestrial ecosystem risk assessment procedures (i.e. Lee et al. 2017; Keith et 416 

al. 2013), and the evaluation of conservation measures (i.e. protected area effectiveness: Joppa et al. 2008; 417 

Pettorelli et al. 2012).418 
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TABLES 

Table 1. Satellite remote sensing data and products employed. 

Data Parameter(s) 

Spatial 

resolution 

Temporal 

coverage References 

Landsat 5 TM and 

8 OLI/TIRS 

(multispectral) 

 Areas of stable mangrove 

distribution 

 Landward migration 

 Landward margins 

anthropogenic landcover 

30m 2007-2015 

(but see 

Table S2) 

USGS 2015 

ALOS/PALSAR 

L-Band HV 

polarisation 

Synthetic 

Aperture Radar 

(SAR) (Level 1.5 

processed; 

amplitude)  

 Biomass changes 

 Seaward boundary 

biomass changes 

12.5m 2007-2010 

(but see 

Table S3) 

JAXA/METI 2009; 2010 

ASF DAAC 2016 

ESA 2013 

Proisy et al. 2003 

Lucas et al. 2014 

Cornforth et al. 2013 

SRTM Digital 

Elevation Model 

(DEM; m) 

 Landward topographic 

slopes 

30m 2000 

(single 

date) 

USGS 2014 

Eight-day 

composite 

ENVISAT-

MERIS Total 

Suspended Matter 

(TSM; g m-3) 

 Mean sediment 

availabilities 

 Temporal trends in 

sediment availability 

4km 2006-2010 ESA GLOBCOLOUR 

2014 

Lovelock et al. 2015 

 



 

 
 

Table 2. Results of mangrove distribution change assessments (spatial overlays of mangrove landcover 

classifications 2007–2015). 

Site 2007 (ha) 2015 (ha) Loss (ha) Gain (ha) 

Stable 

(ha) 

Change 

(ha) 

Change 

(%) 

Saloum 

Delta, SN 
472,177.40 471,728.80 644.48 195.92 471,532.90 -448.60 -0.09 

Sherbro Bay, 

SL 
196,085.30 191,262.80 4,831.97 10.80 191,252.00 -4,822.50 -2.46 

Save River 

Delta, MZ 
60,182.05 62,919.28 483.27 3,220.5 59,698.78 2.737.23 4.55 

Ruvuma 

Estuary, TZ 
13,700.62 13,787.84 37.14 124.36 13,663.48 87.22 0.64 

Rufiji Delta, 

TZ 
43,000.92 43,157.88 651.69 808.64 42,349.23 156.96 0.36 

Mahajamba, 

MG 
71,953.86 80,650.56 1,784.50 10,481.20 70,169.36 8,696.70 12.09 

Sundarbans, 

IN & BD 
638,198.60 639,528.40 82.25 1,411.98 638,116.40 1,329.80 0.21 
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Table 3. Results of mangrove landward migration assessment 2007–2015 (into one-pixel wide 2007 

mangrove landward perimeters: Materials and Methods).  

Site 

Total landward pixels 

(No. & length; km) 

Landward pixels 

migrated 2007-2015 

(No. & length; km) 

Proportion landward 

pixels migrated 

2007-2015 (%) 

Saloum Delta, SN 
6,192,415 

77,405.19 

0 

0.00 
0.00 

Sherbro Bay, SL 
701,606 

8,770.08 

0 

0.00 
0.00 

Save River Delta, MZ 
380,151 

4,751.89 

79,768 

997.10 
20.98 

Ruvuma Estuary, TZ 
49,225 

615.31 

3,215 

40.19 
6.53 

Rufiji Delta, TZ 
243,416 

3,042.70 

4,501 

56.26 
1.85 

Mahajamba, MG 
384,712 

4,839.00 

119,650 

1,495.63 
31.11 

Sundarbans, IN & BD 
442,870 

5,535.88 

50,889 

636.11 
11.49 
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Table 4. Summary of SRTM DEM-derived landward topographic and ENVISAT MERIS-derived total 

suspended matter (TSM; g m-3) data at each study site. Figures in bold represent significant mean Kendall’s 

tau TSM (g m-3) trend estimates based on bootstrapped 95% confidence intervals (CIs). 

Site 

Mean elevation 

(m; range) 

Mean slope  

(radians; range) 

Mean TSM 

(g m-3; 95% CIs; 

range) 

Mean 

Kendall’s tau 

TSM 

(95% CIs; range) 

Saloum Delta,  

SN 

12.86 

(0.00-34.99) 

0.04 

(0.00-0.94) 

10.41 

(10.01-10.80; 

0.03-37.84) 

-0.02 

(-0.02--0.01; 

-0.40-0.26) 

Sherbro Bay,  

SL 

11.57 

(0.00-34.99) 

0.05 

(0.00-0.74) 

5.32 

(4.93-5.69; 

0.04-21.28) 

0.006 

(0.003-0.008; 

-0.09-0.28) 

Save River 

Delta,  

MZ 

4.84 

(0.00-27.02) 

0.003 

(0.00-0.45) 

9.92 

(9.07-10.77; 

0.12-19.66) 

0.001 

(-0.001-0.003; 

-0.08-0.09) 

Ruvuma 

Estuary,  

TZ 

11.72 

(0.00-34.99) 

0.04 

(0.00-0.51) 

5.77 

(3.93-7.42; 

0.12-17.47) 

-0.01 

(-0.02-0.004; 

-0.21-0.00) 

Rufiji Delta,  

TZ 

12.17 

(0.00-34.99) 

0.04 

(0.00-0.69) 

9.69 

(7.70-11.59; 

1.00-27.39) 

-0.04 

(-0.05--0.02; 

-0.21-0.02) 

Mahajamba,  

MG 

14.55 

(0.00-34.99) 

0.04 

(0.00-0.79) 

13.08 

(11.70-14.45; 

0.20-34.88) 

-0.005 

(-0.009--0.001; 

-0.25-0.12) 

Sundarbans,  

IN & BD 

6.27 

(0.00-34.93) 

0.03 

(0.00-0.61) 

20.90 

(20.40-21.40; 

1.05-32.55) 

-0.004 

(-0.007--0.002; 

-0.18-0.20) 
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Table 5. Results of ALOS/PALSAR HV backscatter amplitude seaward boundary change detections (five-

pixels’ distance of combined 2007–2010 coastline edges) 2007–2010. Significantly increasing/decreasing 

pixels are indexed as those with ≥15% HV backscatter amplitude change (see Materials and Methods).  

Site 

Coverage 

of total 

stable 

mangrove 

area 

(ha; %) 

Seaward 

significantly 

increasing 

(ha) 

Seaward 

significantly 

decreasing 

(ha) 

Seaward 

significantly 

increasing 

(%) 

Seaward 

significantly 

decreasing 

(%) 

2007-2010 

total 

significant 

seaward 

biomass 

change (%) 

Saloum, SN 
54,285.45 

11.51 
1,454.02 755.14 38.24 19.86 -2.81 

Sherbro, SL 
51,600.06 

26.98 
432.08 506.00 23.06 27.00 -0.60 

Save, MZ 
31,617.58 

52.96 
290.30 520.67 20.11 36.06 -5.54 

Ruvuma, TZ 
13,591.00 

99.45 
175.77 332.23 19.14 36.18 -5.57 

Rufiji, TZ 
34,710.97 

81.96 
200.83 415.39 16.72 34.59 -5.62 

Mahajamba, 

MG 

19,987.47 

28.48 
272.70 167.97 39.62 24.40 3.13 

Sundarbans, 

IN & BD 

216,747.30 

33.97 
286.89 597.63 16.93 35.26 -4.48 
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Table 6. Results of ALOS/PALSAR HV backscatter amplitude change detections (constant mangrove 

distribution) over 2007–2010. Significantly increasing/decreasing pixels are indexed as those with ≥15% 

HV backscatter amplitude change (see Materials and Methods). 

Site 

Coverage 

of total 

stable 

mangrove 

area 

(ha; %) 

Signif.  

increasing 

(ha) 

Signif.  

decreasing 

(ha) 

Signif. 

increasing 

 (%) 

Signif. 

decreasing 

 (%) 

2007-2010 

total 

significant 

biomass 

change 

(%) 

Saloum 

Delta, SN 

54,285.45 

11.51 
11,313.03 13,985.12 20.84 25.76 -2.04 

Sherbro Bay, 

SL 

51,600.06 

26.98 
11,532.41 12,142.22 22.35 23.53 -0.62 

Save River 

Delta, MZ 

31,617.58 

52.96 
5,860.44 11,159.64 18.54 35.30 -5.33 

Ruvuma 

Estuary, TZ 

13,591.00 

99.45 
2,546.23 4,257.66 18.73 31.33 -3.96 

Rufiji Delta, 

TZ 

34,710.97 

81.96 
5,269.42 11,705.89 15.18 33.72 -5.34 

Mahajamba, 

MG 

19,987.47 

28.48 
5,712.23 4,302.40 28.58 21.53 1.56 

Sundarbans, 

IN & BD 

216,747.30 

33.97 
37,263.08 40,356.98 17.19 18.62 -0.66 
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Table 7. Results of landward anthropogenic development analyses. Anthropogenic landward pixels = 

validated anthropogenic dry bare-ground landcover within one-pixel wide year 2007 mangrove landward 

perimeters in years 2007 and 2015. Numbers in brackets represent proportional ‘true’ validated 

anthropogenic landcover from total classified mangrove landward perimeter dry bare-ground pixels used 

to scale anthropogenic landward pixel numbers (N = 200 pixels; see Materials and Methods). 

  2007  2015   

Site 

Total 

landward 

pixels (N; 

length 

[km]) 

Anthro. 

landward 

pixels (N; 

length 

[km]) 

Proportion 

landward 

perimeter 

anthro. (%) 

Anthro. 

landward 

pixels (N; 

length 

[km]) 

Proportion 

landward 

perimeter 

anthro. (%) 

Change  

(in total 

landward 

length [%]; 

[km]) 

Saloum, SN 
3,417,966 

42,736.21 

184,726 

2,309.08 

(47.50%) 

5.40 

45,598  

569.98 

(17.00%) 

1.33 
-4.07 

-1,739.10 

Sherbro, SL 
701,606 

8,770.08 

9,315  

116.44 

(7.50%) 

1.33 

30,980  

387.25 

(27.50%) 

4.42 
3.09 

270.81 

Save, MZ 
380,151 

4,751.89 

20 

0.25  

(6.50%) 

0.005 

92 

1.15 

(3.00%) 

0.02 
0.015 

0.90 

Ruvuma, TZ 
49,225 

615.31 

0 

0.00 

(0.00%) 

0.00 

189 

2.36 

(31.00%) 

0.38 
0.38 

2.36 

Rufiji, TZ 
243,416 

3,042.70 

8,104  

101.30 

(41.50%) 

3.33 

23,540 

294.25 

(21.00%) 

9.67 
6.34 

192.95 

Mahajamba, 

MG 

384,712 

4,839.00 

0 

0.00 

(0.00%) 

0.00 

0 

0.00 

(0.00%) 

0.00 
0.00 

0.00 

Sundarbans, 

IN & BD 

442,870 

5,535.88 

15,616  

195.20 

(96.00%) 

3.53 

16,209  

202.61 

(96.00%) 

3.66 
0.13 

7.41 
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FIGURE LEGENDS 

Figure 1. Mangrove study sites from West Africa to South Asia. Displayed imagery: Landsat 5 TM and 8 

OLI/TIRS imagery (USGS 2015). (a) Saloum Delta, Senegal; (b) Sherbro Bay, Sierra Leone; (c) Save River 

Delta, Mozambique; (d) Ruvuma Estuary, Tanzania; (e) Rufiji Delta, Tanzania; (f) Mahajamba, 

Madagascar; (g) Sundarbans, India and Bangladesh. See also Table S1. 

Figure 2. Schematic of the multi-product remote sensing approach to index mangrove SLR resilience and 

resistance capacity. PCA = principal components analysis. Red arrows: processing stages for resilience 

capacity; green arrows: processing stages for resistance capacity. 

Figure 3. Distribution, biomass and seaward boundary change assessment at Rufiji Delta, Tanzania. a) 

spatial overlay of distribution change 2007–2015; b) close-up of the northern delta, with heavy mangrove 

clearing for agriculture observed (mid-dark grey in underlaid 2015 Landsat imagery); c) ALOS/PALSAR 

L-Band HV backscatter amplitude change detection 2007–2010 within the stable 2007–2015 mangrove 

distribution (pixel-specific significant biomass change = ≥15% change); significant biomass change 

northern delta = -6.05%, southern delta = -4.56%; d) [for visualisation only] resampled significant biomass 

change in seaward mangrove boundary pixels 2007–2010 (62.5m resolution). 

Figure 4. Ranking of identified current mangrove resilience and resistance capacities for management 

prioritisation. L = landward; S = seaward; migration ability = percentage of current (2015) non-dry bare-

ground (c.f. potential anthropogenic) landcover with suitable topographic slope for landward migration (≤ 

θ [95% quantile SRTM DEM slope of migrated pixels]); potential change (resilience) = percentage increase 

in potential anthropogenic development 2007-2015; potential change (resistance) = mean trend in sediment 

availability (mean Kendall’s tau ENVISAT MERIS-derived TSM [g m-3] 2006-2010; ESA 

GLOBCOLOUR 2014). Rankings: red = low; orange = medium; green = high. 

 



 

33 
 

 

 



 

34 
 

 

 

 

 

 

 

 

 

 



 

35 
 

 



 

 
 

 

Site Capacity for resilience 
Capacity for 
resistance 

Migration 
availability 

(topographic; 
% [radians]) 

Potential 
change 

(anthropogenic; 
%) 

Potential 
change 

(sediment; 
tau TSM) 

Saloum Delta, 
SN 

Stable area  
(-0.09%) 

Landward migration 
< Seaward loss 

(0.00% L; -2.81% S) 

Marginal 
biomass loss 

(-2.04%) 

82.92 
(θ = 0.098) 

-4.07 -0.02 

Sherbro Bay, 
SL 

Decreasing area 
(-2.46%) 

Landward migration 
≈ Seaward loss 

(0.00% L; -0.60% S) 

Stable biomass 
(-0.62%) 

63.07 
(θ = 0.123) 

3.09 0.006 

Save River 
Delta, 
MZ 

Increasing area 
(4.55%) 

Landward migration 
> Seaward loss 

(20.98% L; -5.54% S) 

Biomass loss 
(-5.33%) 

93.82 
(θ = 0.064) 

0.015 - 

Ruvuma 
Estuary, 
TZ 

Stable area 
(0.64%) 

Landward migration 
> Seaward loss 

(6.54% L; -5.57% S) 

Marginal 
biomass loss 

(-3.96%) 

87.22 
(θ = 0.066) 

0.38 - 

Rufiji Delta, 
TZ 

Stable area 
(0.36%) 

Landward migration 
< Seaward loss 

(1.85% L; -5.62% S) 

Biomass loss 
(-5.34%) 

47.18 
(θ = 0.086) 

6.34 -0.04 

Mahajamba, 
MG 

Increasing area 
(12.09%) 

Landward &  
Seaward increasing 

(31.11% L; 3.13% S) 

Biomass gain 
(1.56%) 

94.12 
(θ = 0.082) 

0.00 -0.005 

Sundarbans, 
IN & BD 

Stable area 
(0.21%) 

Landward migration 
> Seaward loss 

(11.49% L; -4.48% S) 

Stable biomass 
(-0.66%) 

89.94 
(θ = 0.066) 

0.13 -0.004 

 


