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Abstract 1 

China has a large economic and demographic exposure to extreme events that is increasing rapidly due to its fast 2 

development, and climate change may further aggravate the situation. This paper investigates China’s 3 

socioeconomic risk from extreme events under climate change over the next few decades with a focus on sub-4 

national heterogeneity. The empirical relationships between socioeconomic damages and their determinants are 5 

identified using a hierarchical Bayesian approach, and are used to estimate future damages as well as associated 6 

uncertainty bounds given specified climate and development scenarios. Considering projected changes in 7 

exposure we find that the southwest and central regions and Hainan Island of China are likely to have a larger 8 

percentage of population at risk, while most of the southwest and central regions could generally have higher 9 

economic losses. Finally, the analysis suggests that increasing income can significantly decrease the number of 10 

people affected by extremes.  11 

Keywords: socioeconomic risk, hierarchical Bayesian, natural disasters, climate change 12 

1 INTRODUCTION  13 

Climate change has significant impacts on society, and is a global challenge (IPCC 2013, 2014). From a policy 14 

perspective an assessment of the potential damage with changing concentration of greenhouse gases (GHGs) is of 15 

interest. Region-specific damage from extreme events plays a significant role in calculating the costs of GHG 16 

emissions (van den Bergh and Botzen 2014), especially for the more vulnerable, developing countries 17 

(Fankhauser and McDermott 2014). More importantly, the uncertainty of future damages is a key issue for 18 

adaptation planning and risk mitigation, and is receiving more attention (Rogelj et al. 2013; Wei et al. 2015). 19 

Here, we present an empirical analysis of regional socioeconomic impacts due to extreme events in China, using a 20 

statistical model that is effective for quantifying the uncertainty in the relationships. 21 

China has experienced heavy losses from weather-related disasters. For example, the average direct losses caused 22 

by floods during 1990-2012 were 130.3 billion CNY (current price) annually, and because of droughts there were 23 

on average 27.3 million people per year who did not have access to drinking water during 1991-2012 (State Flood 24 

Control and Drought Relief Headquarters of China 2013). With rising temperatures, China may also face higher 25 
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risk of adverse consequences. These impacts differ across regions owing to natural and social factors. 26 

Consequently, an assessment of China’s future damages from extreme events is attracting the attention of decision 27 

makers. 28 

There are two common ways to model the damages resulting from disasters, process-based models (Arnell and 29 

Lloyd-Hughes 2014; Hallegatte et al. 2013; Wang et al. 2015) and statistical models (Hsiang 2010; Lloyd et al. 30 

2016; Patt et al. 2010). In practice process-based models usually rely on a large number of high-resolution 31 

climatic, geographic, and socioeconomic data sets to describe the complex natural process. However, this 32 

approach may be challenged in some regions of limited data sets and is relatively difficult to consider model 33 

uncertainty. By comparison, statistical approaches are less data-intensive and easily applied to the analysis with 34 

diversified geographic coverage. In addition, it also provides an opportunity to estimate model uncertainty in a 35 

formal way. An investigation of the statistically significant driving forces for the impacts could help explain 36 

vulnerability to extremes, and advance policy making (Barr et al. 2010; IPCC 2012; Thomas et al. 2014; Tol 37 

2002).  38 

Socioeconomic damages from weather-related disasters, which generally refer to the adverse impacts on people 39 

and economy, depend on various aspects (Bahinipati and Venkatachalam 2016; IPCC 2012; Lazzaroni and van 40 

Bergeijk 2014; Liu et al. 2015; Morss et al. 2011). The physical characteristic (e.g. frequency, magnitude and 41 

intensity) of extreme hazards directly relates to damages (Nordhaus 2010; Pielke 2007; Schumacher and Strobl 42 

2011; Seo 2014). Socioeconomic development can also have significant effects. Growing wealth and population 43 

increases socioeconomic exposure, therefore increasing potential losses (Cavallo et al. 2010; Kebede and Nicholls 44 

2012; Mendelsohn et al. 2012; Preston 2013). At the same time, economic development could enhance adaptive 45 

capacity and therefore help mitigate damages (Fankhauser and McDermott 2014; Kellenberg and Mobarak 2008; 46 

Smit and Wandel 2006; Zhou et al. 2014). There is evidence that high-income areas are generally more likely to 47 

have strong adaptive capacity to deal with extreme events (Kahn 2005; Noy 2009; Raschky 2008; Toya and 48 

Skidmore 2007).  49 

Establishing a relationship between socioeconomic damages and associated influencing factors is essential for 50 

estimating future potential cost. However, uncertainties in such structural relations have not been formally 51 

considered for damage estimation in previous studies using traditional regression techniques. A hierarchical 52 
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Bayesian approach can help quantify model and parameter uncertainties, and provides an opportunity for 53 

uncertainty reduction through partial pooling of the common information from different regions while considering 54 

heterogeneity (Gelman and Hill 2007). Such methods have been employed to flexibly construct statistical 55 

relationships in some fields (Chen et al. 2014; Devineni et al. 2013; Sun et al. 2015). For climate change impact 56 

analysis, a hierarchical Bayesian model could help provide reasonable ranges of potential damages.  57 

At present, there are few studies on China’s socioeconomic consequences of extreme events at the sub-national 58 

level, especially under future climate conditions. There is a need for a representation of model and parameter 59 

uncertainties for long-term prediction. This paper contributes to the empirical analysis of the potential impacts of 60 

extremes in China by formally modelling uncertainty, and the projections of provincial socioeconomic risk under 61 

climate change. To do so, a hierarchical Bayesian model is developed at the provincial level of China to detect the 62 

relationships between socioeconomic damages and their determinants. When presenting regional and national 63 

socioeconomic risk, we also take into account the uncertainty of future extreme events.  64 

The rest of this paper is organized as follows. In Section 2, we describe data sets, scenario assumptions, and 65 

hierarchical Bayesian model. Section 3 presents the results of empirical models and predictions of socioeconomic 66 

damages. Finally, Section 4 concludes the paper and makes some recommendations for China’s adaptation and 67 

mitigation plans. 68 

2 METHODOLOGY 69 

2.1 Study area and data description 70 

Thirty provinces (including municipalities and autonomous regions) of China were taken as a study area (see 71 

Figure S1 for locations and Table S1 for name abbreviations in the supplementary material). Shanghai has zero 72 

damage observations (economic losses or affected people) in several years partly due to low geographic exposure, 73 

and hence it is not included in our analysis. 74 

The historical meteorological data for the period 1970-2012 are taken from China Meteorological Data Sharing 75 

Service System. Daily time series for the selected weather stations (shown in Figure S1) include precipitation, 76 

mean temperature, maximum temperature, and minimum temperature. The 1970-2050 simulated monthly 77 
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precipitation and mean temperature under Representative Concentration Pathways (RCPs) come from the 78 

downscaled outputs (grid with 0.5º×0.5º resolution) of five climate models (HadGEM2-ES, IPSL-CM5A-LR, 79 

MIROC-ESM-CHEM, GFDL-ESM2M, and NorESM1-M) provided by the Inter-Sectoral Impact Model 80 

Intercomparison Project (ISI-MIP). We transformed them into the grids at 0.1º resolution so as to calculate 81 

different climate conditions at the county level. Then the future climate data of counties are used as projections for 82 

the corresponding weather stations based on their locations. The meteorological data are taken to identify and 83 

predict each station’s extreme events (Table S2). For each type of extreme the mean number of events of the 84 

stations within a province is calculated for provincial analysis. We separately detect the impacts of climate models, 85 

and their average results are displayed in this study. 86 

China Civil Affairs’ Statistical Yearbook provides annual total direct economic losses and number of people 87 

affected due to weather-related disasters (including flood, waterlogging, typhoon, drought, low-temperature, snow, 88 

etc.) at the provincial level, and those during 2000-2012 (excluding 2004) are picked out. The economic losses 89 

(constant 2010 CNY) are obtained by the implicit price deflator for gross domestic product (GDP). The provincial 90 

economic and demographic data during 2000-2012 are collected from China Statistical Yearbooks as well as 91 

China Socioeconomic Development Statistical Database.  92 

The shared socioeconomic pathways (SSPs) describe the storylines of possible future (O'Neill et al. 2014), and the 93 

intermediate case SSP2 is used for the development scenario. The projections of national population and GDP 94 

growth rate from OECD in the SSP Database (https://secure.iiasa.ac.at/web-apps/ene/SspDb) are only made for 95 

the whole country, and accordingly they are disaggregated to provinces. We focus on three RCPs for the climate 96 

scenarios. van Vuuren and Carter (2014) suggest that RCP6.0 is compatible with SSP2, and we further evaluate 97 

RCP2.6 and RCP4.5 as climate policy mitigation scenarios.  98 

2.2 Determinants of socioeconomic damages 99 

In this paper we quantify socioeconomic damages in terms economic losses and the number of people affected (i.e. 100 

the population with adverse consequences from disasters). The economic development and population in China 101 

vary from region to region, so the two indicators can help better reveal the regional patterns of socioeconomic 102 

damages. According to previous studies (Fankhauser and McDermott 2014; Kahn 2005; Kellenberg and Mobarak 103 

2008; Patt et al. 2010), the determinants of socioeconomic damages are selected from climatic and socioeconomic 104 
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aspects. Specifically, the variables including the number of flood-related events (NUMF), the number of drought 105 

events (NUMD), the number of heat events (NUMH), the number of cold-related events (NUMC), population 106 

(POP), gross domestic product (GDP), and GDP per capita (GDPPC) are used in the analysis. The number of 107 

extreme events indicates the frequency of extremes occurring within a region, and population and GDP reflect 108 

demographic and economic exposure to extremes respectively. GDP per capita is taken to measure adaptive 109 

capacity (Fankhauser and McDermott 2014). In the following, we explain in details how these variables are 110 

derived under future scenarios. 111 

We consider four types of extremes (as defined in Table S2) relative to the recorded damages from weather-112 

related disasters in China. The historical extreme events at each station are identified from the observed climate 113 

data, and the mean number of events across the stations within a province is used for provincial analysis. For each 114 

type of extreme the relationship between the annual number of events and the associated climate variable (Table 115 

S2) is constructed at each station, and then the future number of extremes is derived from the projected climate 116 

variable of climate models under RCPs. The uncertainty in the predicted number of extreme events is also 117 

considered by modelling its distribution. Since the simulated and observed climate variables are not identical in 118 

distribution, the data for them during 1970-2000 are used to correct the distribution of simulated climate variables. 119 

The bias correction of temperature-related variables is based on a Normal distribution (Hawkins et al. 2013). 120 

Similarly, annual total precipitation is corrected by a Log-Normal distribution due to skewness.  121 

The provincial economic development is derived from the projected growth rate of national GDP provided by the 122 

SSP2 scenario at a 10-year interval. First, we linearly interpolate the values over the time intervals to get annual 123 

GDP growth rate of China by 2050. Second, the structure of provinces’ growth rate is assumed to be the same as 124 

that in 2012. Accordingly, future GDP in each province can be calculated. In our analysis, GDP is in constant 125 

2010 CNY. 126 

For the demographic scenario, population at the provincial level is assumed according to the results from SSP2 127 

which gives the projections of China’s total population up to 2050 at a 10-year interval. First, we linearly 128 

interpolate the values over the time intervals to get annual total population of China by 2050. Second, the 129 

allocation of the country’s total population to each province is calculated using population coefficients. Here the 130 
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ratio of a province’s population to the country’s total is defined as the province’s population coefficient, and the 131 

assumed coefficients are adjusted in accordance with their variations during 2006-2012. 132 

The empirical relationships between damages and their determinants are explored using a hierarchical Bayesian 133 

model, and these are then used to make damage projections over 2015-2050. The socioeconomic damages 134 

separately calculated with the outcomes of different climate models are averaged to represent future estimate. The 135 

uncertainties of our model and associated climate inputs are taken into account to illustrate national and regional 136 

risk from extreme events. Also, we compare the damages in the past and future to reveal the effect of climate 137 

change with the unchanged socioeconomic situation. 138 

2.3 Hierarchical Bayesian model for socioeconomic damage 139 

A multilevel model is considered. At the first level, a log-log relationship between damages and socioeconomic as 140 

well as climate covariates was selected after a preliminary diagnostic evaluation. For the sth (s=1,2,…,S) province 141 

in year t, the number of people affected yst and economic losses zst (both log transformed) are modelled with a 142 

bivariate normal distribution which considers the dependence across the two variables. 143 

0, 1, 1, 2, 2, , ,

0, 1, 1, 2, 2, , ,

...
~ MVN ,

...

s s st s st J s J stst

s

s s st s st K s K stst

x x xy

b b v b v b vz

        
  

      
   (1) 144 

where MVN denotes a multivariate Normal distribution;
1, 2, ,( , ,..., )st st st J stx x xx  is a set of J covariates 145 

associated with the number of people affected of province s in year t; similarly 
1, 2, ,( , ,..., )st st st K stv v vv  is a set 146 

of K covariates associated with economic losses. The regression coefficients 
0, 1, 2, ,( , , ,..., )s s s s J s     and 147 

0, 1, 2, ,( , , ,..., )s s s s K sb b b bb  and the covariance matrix Σs all need to be estimated. Eq. (1) is the model applied 148 

directly to the variables of interest. 149 

At the second level of the model, we assess the spread of covariate effects across provinces. A multivariate 150 

Normal distribution is considered for the regression coefficients βs and bs, respectively (Chen et al. 2014; 151 

Devineni et al. 2013; Kwon et al. 2011). The corresponding equations are expressed as 152 

~ MVN( , )s       (2) 153 
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~ MVN( , )s b bb    (3) 154 

where μβ (a vector of length J+1) and μb (a vector of length K+1) are the common mean regression coefficients for 155 

all the provinces; correspondingly, Σβ and Σb are the covariance matrices. If the estimated variances of βs and bs  156 

(diagonal of Σβ and Σb) are large, then effectively it indicates a no-pooling model where each province is 157 

regressed independently; by contrast, small variances imply a full pooling model with homogeneous responses to 158 

the influencing factors (Gelman and Hill 2007). We use non-formative priors for the parameters Σs, μβ, Σβ, μb and 159 

Σb, and employ Markov Chain Monte Carlo (MCMC) sampling to estimate posterior distributions. The 160 

convergence of the MCMC chain is evaluated by the potential scale reduction factor (Gelman and Rubin 1992), 161 

and all the calculations are conducted using R and RStan (Stan Development Team 2015). 162 

Two models (Table 1) are developed. Specifically, in Model 1 the variables including the number of flood-related 163 

events, the number of drought events, the number of heat events, and the number of cold-related events are used 164 

for both the damages. Population is considered for the number of people affected, while gross domestic product is 165 

involved in the estimation of economic losses. The variables in this model are related to exposure only, and thus 166 

Model 1 is taken as the baseline model that reveals the effect of exposure on damages. GDP per capita that reflects 167 

adaptive capacity is introduced into Model 2. As a result, Model 2 reveals the effects of exposure and adaptation 168 

on damages. These two models present different potential ranges of damages which are both meaningful for 169 

policy making. That is, the possible more severe consequences derived from the models could help risk 170 

management, and the differences in the estimates between two models could provide insights for damage 171 

mitigation. The log transformation is applied to all the variables in the regressions, and dependent variables refer 172 

to number of people affected (thousand persons) and economic losses (billions). 173 

Table 1  Variables included in the models for socioeconomic damages 174 

Independent variable Model 1 Model 2  

 
Number of 

people affected 

Economic 

losses 

Number of 

people affected 

Economic 

losses 

Number of flood-related events (NUMF) × × × × 

Number of drought events (NUMD) × × × × 

Number of heat events (NUMH) × × × × 
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Number of cold-related events (NUMC) × × × × 

Population (POP) ×  ×  

Gross domestic product (GDP)  ×  × 

Gross domestic product per capita (GDPPC)   × × 

3 RESULTS AND DISCUSSION 175 

3.1 Empirical regressions for socioeconomic damages 176 

Two forms of socioeconomic damages are investigated which are the number of people affected and economic 177 

losses. We start with the results on affected people and then economic losses for the two models. 178 

The estimated posterior distributions of regression coefficients for Model 1 are presented in Figure S2 and S3. The 179 

parameter whose 90% interval of the posterior distribution does not overlap with 0 is regarded to have a 180 

significant effect. Based on the estimated common mean regression coefficients for all provinces, flood-related 181 

events and heat events increase by 1% would lead to the 0.34% and 0.25% (median values) increments in the 182 

affected people respectively. These are generally higher than those for drought events and cold-related events. We 183 

also find that the growth of population creates larger demographic exposure to extremes with the average 184 

elasticity of 0.83 (median value), which suggests that affected people would increase almost proportionally to the 185 

increment of population. For economic losses, the scale of economy instead of population is taken into account. It 186 

can be found that a 1% increase in flood-related events and heat events would result in the 0.41% and 0.20% 187 

(median values) average increments in economic losses, respectively. However, drought events and cold-related 188 

events seem to have insignificant impacts. In addition, GDP would raise losses because of growing economic 189 

exposure.  190 

The estimated regression coefficients for Model 2 are shown in Figure S4 and S5. The coefficient for GDP per 191 

capita shows that adaptive capacity would significantly decrease both the number of people affected and economic 192 

losses. These findings are consistent with those in the literature. Here the effects of exposure and adaptation are 193 

included in the model.  194 
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We notice that most predictors have different effects across the provinces, which implies that the partial pooling 195 

regression employed by this study is reasonable. Though some variables have insignificant impacts, we retain 196 

them for prediction since they can still provide some information for the posterior distribution of damage.  197 

By spatially pooling the regression coefficients across provinces, we jointly model two kinds of damages with a 198 

multivariate distribution considering their dependence. Also, the results without dependence are made for further 199 

comparison. The interquartile ranges for the regression coefficients in Model 1 by joint and separate modeling of 200 

affected people and economic losses are presented in Figure S6. It can be seen that the joint model generally 201 

reduces the uncertainty of parameter estimation. Consequently, our model is expected to provide more precise 202 

socioeconomic damages which are important for making adaptation and mitigation plans. 203 

3.2 Regional patterns of socioeconomic risk 204 

The socioeconomic damages over 2015-2050 are predicted for future climate and development scenarios, and 205 

Figure 1 illustrates the average damage projections based on Model 1. Here, only the damages under RCP2.6 are 206 

shown, because the differences in the estimates between RCPs are small. It can be seen that the southwest 207 

provinces (Guizhou, Chongqing, Yunnan, Guangxi, and Sichuan), the central provinces (Jiangxi, Hubei, and 208 

Hunan), and Hainan Island are likely to have a larger percentage of population at risk. The estimates are consistent 209 

with the historical facts that south China suffered from more people affected in total population. These provinces 210 

generally have a less developed economy which gives lower adaptive capacity to disasters. The emergency 211 

response capacity for catastrophe in these areas is weaker, contributing to heavier damages. Higher losses are also 212 

indicated for most of the southwest and central areas, especially for Sichuan and Hunan. Some high-income 213 

provinces such as Guangdong, Zhejiang, Shandong, and Inner Mongolia may experience high losses, even the 214 

increase in the number of people affected may not be as high. By comparison, lower economic losses are found in 215 

the less developed provinces such as Tibet, Ningxia, and Qinghai.  216 
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 217 

Figure 1 Average socioeconomic damages (median value) during 2015-2050 under RCP2.6. Note that affected 218 

people are represented by the share in total population. 219 

Figure 2 displays the changes in the average number of affected people predicted by both models under RCP2.6, 220 

as well as the average from observations during 2000-2012. The estimated medians of the average people affected 221 

with adaptation are all smaller, and in some provinces the whole range of predictions lies below the historical 222 

average. Correspondingly, the average economic losses are shown as Figure 3. It also indicates that adaptation 223 

reduces impact. Due to the increased GDP, the predicted economic losses with adaptation effect are not far away 224 

from the historical averages in most provinces; by comparison, those without adaptation are higher.  225 

On the whole, two models give a wider range of potential socioeconomic damages for risk management. Also, 226 

they imply that economic development plays an important role in damage mitigation, and this is of importance for 227 

vulnerable areas. 228 
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 229 

Figure 2 Average affected people recorded in 2000-2012 and predicted in 2015-2050 under RCP2.6 (2.5-97.5% 230 

uncertainty bound with median value). Note that affected people are represented by the share in total population. 231 

 232 
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 233 

Figure 3 Average economic losses recorded in 2000-2012 and predicted in 2015-2050 under RCP2.6 (2.5-97.5% 234 

uncertainty bound with median value) 235 

3.3 National socioeconomic risk 236 

The national socioeconomic damages in different conditions from 2015 to 2050 are presented in Figure 4. First, 237 

we investigate how future economic and demographic scenarios affect national damages by comparing the 238 

estimates with and without development. The predictions without development (i.e. GDP and population are fixed 239 

as those in 2012) are made by Model 1. It can be seen that both affected people and economic losses increase with 240 

the effect of climate change alone. Under the development scenario, the total number of people affected decreases 241 

slightly to 383.17 million by 2050 due to a reduction of the national population. Yet, the percentage of affected 242 

people in the total population grows with a small change over the entire period. As a result of growing GDP the 243 

economic losses are expected to have an upward trend in the long term, and climate change and development 244 
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induce losses over 500 billion CNY by 2050. Second, the damages with development are estimated by Model 1 245 

and Model 2 to show how adaptation works. The number of people affected is projected to have a continuous 246 

reduction, while the economic losses are stable over the period. Overall, these comparisons indicate that there 247 

would be a high risk of damages with growing exposure to extreme events that could be mitigated under economic 248 

development. The estimated damages by Model 1 are important for risk planning which needs to consider 249 

potential more severe consequences. Furthermore, Model 2 reveals the possible benefits from enhanced adaptive 250 

capacity due to economic development.  251 

 252 

Figure 4 National socioeconomic damages (median values) during 2015-2050 under RCP2.6 253 

3.4 The impacts of climate change on socioeconomic damages 254 

In this section we compare the estimated socioeconomic damages in the past (1971-1999) and future (2015-2050) 255 

climate conditions to reveal the effect of climate change alone, with the economic and demographic scenarios for 256 

the two periods fixed to the values in 2012. The changes in extreme events under RCPs are presented in Figure 257 

S7-S10, and we use Model 1 to estimate the damages in the two periods. As shown in Figure S11, the number of 258 

people affected for all provinces in the future would become bigger. The mean relative change in the median value 259 

is 15.2% (15.7% and 14.4%) under RCP2.6 (RCP4.5 and RCP6.0). Similarly, we find that future climate 260 

condition raises the economic losses of provinces (Figure S12) with an average change in the median value of 261 

17.8% (17.4% and 15.3%) under RCP2.6 (RCP4.5 and RCP6.0). As for national damages, the distributions of 262 



 

15 

annual medians during two periods are displayed in Figure 5. There are some differences in the estimates between 263 

climate models, however, they all eventually indicate that both affected people and economic losses would be 264 

more serious in the changing climate condition. We also notice that the ranges of annual medians of damages 265 

under RCP4.5 are generally wider, which implies that the impacts of extreme events vary greatly during future 266 

period. Yet, the regional temperature and precipitation lead to fewer flood-related and heat events in some regions 267 

under RCP6.0, and thus there is no higher damage for the whole country.  268 

 269 

Figure 5 Annual medians of national socioeconomic damages in the periods of 1971-1999 and 2015-2050 with 270 

the same development situations in 2012. Each box shows the 25th and 75th percentile and whiskers extend to the 271 

2.5th and 97.5th percentile. The damages during 2015-2050 are predicted by 5 climate models respectively. 272 

4 SUMMARY 273 

This paper investigated China’s socioeconomic risk from extreme events under climate change over the next few 274 

decades with a focus on sub-national heterogeneity, and quantification of uncertainty. The main points of the 275 

analysis are summarized below. 276 

(1) A hierarchical Bayesian model provides a useful way to quantify the uncertainties in model parameters, 277 

structural relation and predictions. It keeps a region’s characteristics, and also allows appropriate grouping of 278 

the information in different regions. The posterior distributions of socioeconomic damages are of importance 279 

for planning risk adaptation and mitigation. We show that the approach reduces uncertainties of estimates, 280 

and thus provides a better quantification on the uncertainty of damage costs. 281 
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(2) Southwest provinces (Guizhou, Chongqing, Yunnan, Guangxi, and Sichuan), central provinces (Jiangxi, 282 

Hubei and Hunan), and Hainan Island are likely to have a larger percentage of population at risk with 283 

exposure effect only. As for economic losses, most of the southwest and central areas are generally higher, 284 

especially for Sichuan and Hunan. Some high-income provinces would also be faced with heavy losses. 285 

(3) GDP per capita which reflects adaptive capacity can significantly decrease the number of people affected by 286 

extreme events. The average affected people with adaptation effect in 2015-2050 are expected to be lower 287 

than the average of historical observations. Yet, the economic losses with adaptation effect are projected to 288 

be close to the historical averages due to growing economic exposure to extremes. 289 

(4) The impacts of climate change are significant, and the socioeconomic damages of all provinces in the future 290 

would shift to a higher level on average. Overall the national damages separately estimated from climate 291 

models have upward trends in the changing climate condition. 292 

There are several limitations of our analysis. First, the number of extreme events rather than recorded weather-293 

related disasters is used to explore the impacts on damages. We believe that the chosen extremes are relevant to 294 

the corresponding disasters, and can serve as reasonable proxies. The estimated relationships facilitate the 295 

projection of socioeconomic damages, since it is easier to obtain future extreme events. Second, the relationship 296 

for damage estimation is composed of simple terms. Apart from the variables (e.g. the frequency of extremes and 297 

the scales of population and economy) included in this paper, some other determinants (e.g. the magnitude of 298 

extreme event) could also affect socioeconomic damages. Thus, a more comprehensive consideration of 299 

determinants could be explored in the future. Further developments could be focused on model improvement to 300 

better include various climate factors. Moreover, nonlinearity for some of the predictors is not considered in our 301 

study. For example, the relationship between damages and economic development might be nonlinear, which is 302 

still under discussion. Third, future scenarios are questionable. The real development of climate and 303 

socioeconomic conditions might deviate from the assumptions made today. The uncertainty in economic and 304 

demographic development is not involved here, but note the Bayesian framework could actually integrate all the 305 

uncertainties and provide a more informative estimate of socioeconomic damages. Further studies can also 306 

explore the impacts with the different combinations of climate and socioeconomic scenarios. 307 
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The possible ranges of socioeconomic damages estimated by two models eventually offer some insights for 308 

adaptation and mitigation plans in China. First, the economic risk of high-income areas is high due to a large 309 

exposure to extreme events. For better risk management, reasonable and effective plans are needed, especially for 310 

emergency measures for catastrophe. Second, economic development is essential for vulnerable areas. In China, 311 

the less developed provinces may experience heavier relative damages, because of low adaptive capacity and high 312 

frequency of severe disaster. Economic development in these areas may help build basic capacity for response to 313 

climate change. Third, climate change may cause more damages from extreme events, and this should be 314 

combined in the integrated assessment model to further compare appropriate climate polices. 315 
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