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Abstract 

The primary progressive aphasias (PPA) are a diverse group of neurodegenerative 

disorders that selectively target brain networks mediating language. The pathophysiology of 

PPA remains poorly understood, but emerging evidence suggests that deficits in auditory 

processing accompany and may precede language symptoms in these patients. In four 

studies, I have probed the pathophysiology of auditory signal decoding in patient cohorts 

representing all major PPA syndromes – nonfluent variant PPA (nfvPPA), semantic variant 

PPA (svPPA), and logopenic variant PPA (lvPPA) – in relation to healthy age-matched 

controls. In my first experiment, I presented sequences of spoken syllables manipulated for 

temporal regularity, spectrotemporal structure and entropy. I used voxel-based morphometry 

to define critical brain substrates for the processing of these attributes, identifying correlates 

of behavioural performance within a cortico-subcortical network extending beyond canonical 

language areas. In my second experiment, I used activation functional magnetic resonance 

imaging (fMRI) with the same stimuli. I identified network signatures of particular signal 

attributes: nfvPPA was associated with reduced activity in anterior cingulate for processing 

temporal irregularity; lvPPA with reduced activation of posterior superior temporal cortex for 

processing spectrotemporal structure; and svPPA with reduced activation of caudate and 

anterior cingulate for processing signal entropy. In my third experiment, I manipulated the 

auditory feedback via which participants heard their own voices during speech production. 

Healthy control participants spoke significantly less fluently under delayed auditory 

feedback, but patients with nfvPPA and lvPPA were affected significantly less. In my final 

experiment, I probed residual capacity for dynamic auditory signal processing and 

perceptual learning in PPA, using sinewave speech. Patients with nfvPPA and lvPPA 

showed severely attenuated learning to the degraded stimuli, while patients with svPPA 

showed intact early perceptual processing, but deficient integration of semantic knowledge. 

Together, these experiments represent the most concerted and comprehensive attempt to 

date to define the pathophysiology of auditory signal decoding in PPA. 
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1. General introduction 

1.1. The challenge of diagnosis and stratification in primary progressive aphasia 

 

“An account of aphasia … must go beyond the description of pathological phenomena and 
their grouping into clinical types … It must be an attempt, through an increasingly deeper-
penetrating description of phenomenology, to achieve an understanding of the pathological 
processes and their relationships”. 

Arnold Pick, 1931 (published posthumously) 

 

‘Aphasia’ is a broad term, defined as a language and communication disorder 

caused by damage to the brain. Broadly, the syndrome can be caused by an acute episode, 

such as a traumatic brain injury or a stroke, or by an underlying neurodegenerative process. 

This thesis attempts to extend current understanding of the major neurodegenerative 

processes associated with aphasia: the primary progressive aphasias (PPA). These are 

typically, and unsurprisingly, characterised as ‘language-led dementias’, and the earliest 

medical observation of PPA came around 125 years ago, with the French psychiatrist Paul 

Sérieux (1864-1947) describing for the first time a case of dementia that seemed specifically 

to manifest in problems with language (Sérieux, 1893). The Czech psychiatrist Arnold Pick 

(1851-1924) saw similar cases and wrote extensively on ‘amnestic aphasia’: a syndrome 

that he linked to left temporal lobe atrophy and that we recognise today as the semantic 

variant of PPA or semantic dementia (see below). Their contemporary, the English 

neurologist Henry Head (1861-1940), studied aphasia expansively and again used a 

framework of classifications that are still recognised today (e.g. “semantic aphasia”).  

Our understanding of the degenerative aphasias has improved dramatically over 

the last century, helped by incredible improvements in neuroimaging and molecular 

techniques. Importantly, however, the approach taken by these three pioneering clinicians is 

just as relevant today as it was in their own time. Arnold Pick and Henry Head, in particular, 

took a very physiological approach to language disorders, delineated clearly in Pick’s 

writings on aphasia, an excerpt from which I have included at the beginning of this Chapter. 

He argued that in order for us to fully understand aphasia, it is crucial to go beyond the basic 

clinical phenotype: to characterise the entire disease entity and to relate these deficiencies 
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to their pathophysiological underpinnings. One-hundred and twenty-five years later, this is 

the argument that I am attempting to develop in relation to the PPAs in this thesis. These 

disorders are typically defined as ‘language-led’, but there is now a large body of literature 

emerging, suggesting that in fact these may be disorders of generic signal processing which 

go beyond language. 

Forty years ago, Elizabeth Warrington wrote the first description of semantic 

dementia, now known as semantic variant PPA (svPPA) (Warrington, 1975). In 1982, Marsel 

Mesulam wrote a seminal paper of 8 cases with PPA (Mesulam, 1982), in which he made 

the distinction between fluent (i.e. svPPA) and nonfluent variants (i.e. nfvPPA). The 

logopenic variant was most recently described as a separate entity from nfvPPA for the first 

time (Gorno-Tempini et al., 2004, 2008), and consensus criteria written in 2011 are the 

current ‘gold-standard’ for diagnosis of PPA (Gorno-Tempini et al., 2011). According to these 

criteria, PPA comprises these three major syndromes (Gorno-Tempini et al., 2011): nfvPPA,  

presenting with impaired speech production and/or agrammatism; svPPA, presenting with 

impaired single word comprehension and vocabulary loss due to progressive erosion of 

conceptual knowledge; and lvPPA, presenting with word-finding difficulty and impaired 

phonological verbal working memory. An experienced neurologist is usually required for an 

accurate diagnosis of one of the PPA variants to be made, and there are considerable 

problems with nosology and classification associated with each syndrome. As a 

consequence of this, PPA is probably under-diagnosed and under-recognised, especially in 

the early stages. Accurate and early identification is the key for prognostication, molecular 

stratification, research, and recommendation of appropriate therapies. In particular, 

molecular stratification will become crucial with putative future clinical trials of new medicines 

on the horizon (Croot, 2009; Spinelli et al., 2017).  

Critically, a significant proportion of cases presenting with a primary progressive 

aphasic syndrome do not fit any of the current consensus criteria and therefore are labelled 

as primary progressive aphasia – not otherwise specified (PPA-NOS). Estimates vary across 

case series, but a substantial minority of patients are consistently put into this PPA-NOS 

category (Rohrer et al., 2011; Mesulam et al., 2012, 2014b; Harris et al., 2013; Matias-Guiu 

et al., 2014; Wicklund et al., 2014; Botha et al., 2015). Automatic clustering algorithms fail to 
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accurately differentiate between lvPPA and nfvPPA on the basis of semantic, language, and 

non-linguistic cognitive scores (Hoffman et al., 2017). One series noted that 41.3% of their 

46 patients with PPA did not meet diagnostic criteria for any of the major syndromes (Sajjadi 

et al., 2012), and my own impression is that between 10 and 20% of patients I have seen 

with PPA are unclassifiable according to the current criteria.  

These problems with classification are significant, as they imply that standard 

linguistic tests may not be sufficient or adequate to capture the phenomenology and 

pathophysiology of these heterogeneous syndromes. These leaves open the possibility that 

the language symptoms regarded until now as cardinal features of the syndromes may in 

fact be downstream corollaries of a more fundamental mechanism: auditory processing. In 

this introduction, I will briefly describe each of the main syndromes in relation to the current 

consensus criteria, with reference to clinical presentation, neuropsychological features, 

neuroanatomy and molecular and genetic pathologies. I will then turn to consideration of the 

neuroanatomy and neuropsychology of auditory processing in the healthy brain, before 

briefly synthesising the literature on auditory processing deficits in the PPA syndromes. My 

central tenet is this: the PPAs are general disorders of auditory signal processing, rather 

than specific disorders of language processing. 

1.1.1. Diagnosis of semantic variant PPA 

Semantic variant PPA is characterised by a generic loss of multimodal conceptual 

knowledge (Knibb & Hodges, 2005; Garrard & Carroll, 2006), reflected by anomia, single-

word comprehension deficits and impaired object knowledge. Semantic deficits in svPPA 

have been shown across the full range of conceptual and sensory modalities, including 

olfaction (Luzzi et al., 2007; Piwnica-Worms et al., 2010), flavour (Piwnica-Worms et al., 

2010), faces and names (Snowden, 2004), object use (Hodges, 2000), and nonverbal 

sounds (Bozeat et al., 2000; Goll et al., 2012b).  

A key feature of svPPA is in asking the meaning of previously familiar words, and 

patients tend to have fluent, garrulous, circumlocutory speech that can be strikingly devoid of 

content. Analysis of their speech shows reliance on high-frequency words as well as 

frequent use of demonstratives (Wilson et al., 2010b; Fraser et al., 2014). Surface dyslexia 

is a common feature of svPPA, reflecting an intact phonological route to reading 
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compensating for the impaired semantic route that stores irregular word knowledge in the 

healthy brain (Woollams et al., 2007). This will manifest in patients making ‘regularisation 

errors’, for instance reading /'aɪlənd/ (“island”) as /'ɪzlənd/. 

For a diagnosis of svPPA to be made, the current diagnostic criteria stipulate that 

the patient must present with two main deficits: impaired confrontation naming and impaired 

single-word comprehension. If the patient presents with isolated problems with naming, this 

would be regarded as an atypical form of PPA: primary progressive anomia (Ingles et al., 

2007). If both impairments are present, the criteria stipulate that the patient must have three 

of the following four symptoms: i) impaired object knowledge (particularly for low-frequency 

items); ii) surface dysgraphia/ dyslexia; iii) spared repetition; and iv) spared grammar and 

motor speech production (see Table 1.1).  

 

Table 1.1. Consensus criteria for a diagnosis of svPPA. 

 

Hallmark atrophy associated with svPPA is knife-blade anterior temporal lobe 

damage lateralised to the dominant hemisphere that is particularly severe at the temporal 

pole and fusiform cortex, also affecting mesial temporal structures. (Fletcher & Warren, 

2011; Gorno-Tempini et al., 2011) (Figure 1.1). Large case studies consistently report that 

the vast majority of patients with svPPA have FTLD TDP-43 pathology at post-mortem 

(Rohrer et al., 2011; Harris et al., 2013; Chare et al., 2014; Spinelli et al., 2017). Pick’s 

disease, FUS, Alzheimer’s and tau represent the significant minority of alternative 

pathologies (Rohrer et al., 2011; Chare et al., 2014). Neurofilament light chain concentration 

is elevated in FTD phenotypes as compared to Alzheimer’s and other neurodegenerative 

diseases in cerebrospinal fluid (Scherling et al., 2014) and serum (Rohrer et al., 2016). 

Both of: 
     1. Impaired confrontation naming 
     2. Impaired single-word comprehension 

3 of: 
     1. Impaired object knowledge, particularly for low-frequency or low-familiarity items 
     2. Surface dyslexia or dysgraphia 
     3. Spared repetition 
     4. Spared speech production (grammar and motor speech) 

At least 1 of: 
     1. Predominant anterior temporal lobe atrophy 
     2. Predominant anterior temporal hypoperfusion or hypometabolism on SPECT or PET 
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Cases of svPPA are rarely genetic, though a similar syndrome can occur with 

MAPT mutations, which are typically associated with behavioural variant FTD. This 

syndrome is associated with a specific language phenotype that is qualitatively similar to that 

seen in svPPA (Hardy et al., 2015), and while the leading symptoms are usually behavioural, 

there are instances in which language decline can be the leading symptom. 

 

 

Figure 1.1. Coronal volumetric T1-weighted MRI of a patient with svPPA. The scan 
shows characteristic knife-blade atrophy of the left anterior lobe. The left hemisphere is on 
the right side. 
 

1.1.2. Diagnosis of nonfluent variant PPA 

The speech of patients with nfvPPA is characteristically hesitant and malformed, 

with frequent stuttering and phonological speech errors (Gunawardena et al., 2010; Wilson 

et al., 2010b; Yunusova et al., 2016; Cordella et al., 2017). Agrammatism is also common in 

expressive speech production, and while the two cardinal features of speech apraxia and 

agrammatism are typically comorbid, primary progressive apraxia of speech is sometimes 

recognised as a separate entity to the agrammatic variant of nonfluent aphasia (Southwood 

& Chatterjee, 1998; Ricci et al., 2008; Josephs et al., 2012). Speech is typically devoid of 

function words and contains inappropriate verb usage, both of which are typical of the 

grammatical errors made by patients (Wilson et al., 2010b).  
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Patients may show impairment at the level of sentence comprehension (Grossman 

et al., 2005; Peelle et al., 2007, 2009). Spared single-word comprehension is emphasised in 

the criteria, but can in fact be impaired in nfvPPA, particularly in patients with high levels of 

agrammatism (Rohrer et al., 2010d). Similarly, confrontation naming can be affected in 

nfvPPA (McMillan et al., 2004), perhaps disproportionately for verbs relative to nouns 

(Thompson et al., 2012) but object knowledge should be preserved. 

According to the current consensus criteria for nfvPPA, the patient must present 

with either agrammatism in spoken or written language production, or apraxia of speech 

(defined as effortful, halting speech with inconsistent speech sound errors and distortions). If 

one of these main features is present, they must also show two of the following three 

subsidiary features: i) impaired comprehension of syntactically complex sentences; ii) 

spared single-word comprehension; or iii) spared object knowledge (see Table 1.2). 

 

Table 1.2. Consensus criteria for a diagnosis of nfvPPA. 

 

Estimates vary, but a significant proportion of patients with nfvPPA develop 

symptoms of Parkinsonism (Kremen et al., 2011; Graff-Radford et al., 2012; Doherty et al., 

2013; Park et al., 2017) that overlap with progressive supranuclear palsy (PSP) and 

corticobasal degeneration (CBD). Many patients with nfvPPA present with orofacial apraxia 

– an inability of the mouth to form movements like coughing, yawning or whistling on 

demand (Rohrer et al., 2010c; Botha et al., 2014).  

nfvPPA is associated with atrophy of the dominant hemisphere along a fronto-

insular gradient (Grossman et al., 1996; Gorno-Tempini et al., 2011) (Figure 1.2). The 

underlying proteinopathy is more heterogeneous than seen in svPPA. One recent case 

1 of: 
     1. Agrammatism in language production 
     2. Effortful, halting speech with inconsistent speech sound errors and distortions (AOS) 

2 of: 
     1. Impaired comprehension of syntactically complex sentences 
     2. Spared single-word comprehension 
     3. Spared object knowledge 

At least 1 of: 
     1. Predominant left posterior fronto-insular atrophy on MRI 
     2. Predominant left posterior fronto-insular hypoperfusion or hypometabolism on SPECT      
         or PET 
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series suggested that 88% of cases with nfvPPA had underlying tau pathology (Spinelli et 

al., 2017), but other series have reported more balanced representations of tau and TDP-43 

pathologies (Rohrer et al., 2011). The nature of the clinical phenotype can to an extent 

predict the molecular pathology: presence of motor symptoms like orofacial apraxia or 

Parkinsonism is more likely to be indicative of underlying tau pathology (Deramecourt et al., 

2010; Gorno-Tempini et al., 2011). 

A minority of cases of nfvPPA have a relevant family history of a disorder in the 

frontotemporal lobar degeneration (FTLD) spectrum  (Snowden et al., 2006; Mesulam et al., 

2007; Beck et al., 2008; Rohrer et al., 2009a). Mutations in the GRN gene are the most 

common cause, and there is some speculation that PPA-GRN may represent a distinct 

clinical phenotype characterised by severe agrammatism without apraxia of speech, and 

anomia and prominent word-finding pauses (Snowden et al., 2007; Rohrer et al., 2010a). 

Mutations in the C9ORF72 gene account for a smaller number of cases of nfvPPA (Hsiung 

et al., 2012; Mahoney et al., 2012; Simon-Sanchez et al., 2012). 

 

 

Figure 1.2. Coronal volumetric T1-weighted MRI of a patient with nfvPPA. The scan 
shows typical asymmetric atrophy of left insula and opercular inferior frontal gyrus. The left 
hemisphere is on the right side.  
 

1.1.3. Diagnosis of logopenic variant PPA 

The spontaneous speech of somebody with lvPPA is characterised by word-finding 

pauses and phonemic paraphasias. In this sense, it is dissociable from the fluent speech of 

someone with svPPA, and the severely distorted motor speech of somebody with nfvPPA: 
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the speech phenotype falls somewhere between the two in terms of fluency, distortions and 

syntactic errors (Wilson et al., 2010b). Phonemic paraphasias can induce morphological 

grammatical errors in speech and indeed written sentences, but crucially these grammatical 

errors are not typically representative of frank agrammatism. Impaired repetition of 

sentences and phrases is emphasised in the consensus criteria for lvPPA.  

 

Table 1.3. Consensus criteria for a diagnosis of lvPPA. 

 

The cardinal deficit in lvPPA is arguably still yet to be defined. Current research, 

however, emphasises the role of phonological working memory – the short-term storage 

system for auditory information. This manifests in a dissociation between relatively intact 

repetition for single words, and poorer performance for longer words and sentences, when 

this phonological store is over-burdened. This deficit is likely to be attributable to temporo-

parietal junction damage (Rohrer et al., 2010b; Henry et al., 2016), and consensus criteria 

emphasise that atrophy should occur in dominant posterior peri-Sylvian cortex (Gorno-

Tempini et al., 2011); see Figure 1.3. The phenotype of lvPPA is considered as an atypical 

form of Alzheimer’s disease, reflecting the fact that the pathology associated with lvPPA is 

most likely to be the amyloid plaques and tau tangles that are hallmarks of Alzheimer’s 

pathology (Henry & Gorno-Tempini, 2010; Rohrer et al., 2011; Matías-Guiu et al., 2015; 

Magnin et al., 2016; Spinelli et al., 2017). Cerebrospinal fluid profiles of patients with lvPPA 

are also typically consistent with Alzheimer’s pathology (Ikeda et al., 2014). 

The consensus criteria for lvPPA emphasise impaired single-word retrieval in 

spontaneous speech/ naming, together with impaired repetition of sentences and phrases: 

both must be present. Additionally, the patient must have three of the following four 

Both of: 
     1. Impaired single-word retrieval in spontaneous speech and naming 
     2. Impaired repetition of sentences and phrases 

3 of: 
     1. Speech (phonologic) errors in spontaneous speech and naming 
     2. Spared single-word comprehension and object knowledge 
     3. Spared motor speech 
     4. Absence of frank agrammatism 

At least 1 of: 
     1. Predominant left posterior perisylvian or parietal atrophy on MRI 
     2. Predominant left posterior perisylvian or parietal hypoperfusion or hypometabolism on 
         SPECT or PET 
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symptoms: i) speech (phonologic) errors in spontaneous speech and naming; ii) spared 

single-word comprehension and object knowledge; iii) spared motor speech; and iv) 

absence of frank agrammatism; see Table 1.3. 

 

Figure 1.3. Coronal volumetric T1-weighted MRI of a patient with lvPPA. The scan 
shows characteristic asymmetric atrophy of left tempoparietal cortex. The left hemisphere is 
on the right side. 
 

1.1.4. The relationship between primary progressive and stroke aphasia 

A comprehensive account of the relationship between the degenerative aphasia 

subtypes and aphasias caused by strokes is beyond the scope of this thesis. Moreover, 

contrasting the two syndromes is perhaps artificial: comparing a focal lesion (as in stroke) 

with network-level breakdown (as in PPA) is by no means a direct comparison. However, the 

fact that constellations of similar symptoms can arise from ostensibly different diseases is of 

relevance.  

First, nfvPPA is broadly comparable to Broca’s aphasia (BA) (Broca, 1861), which 

is characterised by nonfluent speech, agrammatism and relatively intact comprehension. BA 

is associated, not unsurprisingly, with a lesion to Broca’s area: the same IFG region that is 

affected early on in nfvPPA. lvPPA has no direct counterpart in stroke, although it has been 

argued that it is most similar to conduction aphasia arising from stroke (Gorno-Tempini et al., 

2008). Conduction aphasia is associated with a repetition deficit comparable to that seen in 

lvPPA, with problems emerging for sentences and phrases. Comprehension of spoken 

language is also intact, and naming is affected too, which is again consistent with lvPPA 
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(Mesulam, 2009). The lesion implicated in conduction aphasia affects the arcuate fasciculus, 

sparing Broca’s and Wernicke’s areas, but ultimately resulting in a functional disconnection 

between the two regions. Speech in conduction aphasia is typically fluent (albeit 

paraphasic), again distinguishing it from the ‘nonfluent’ logopenic variant.  

On anatomical grounds, Wernicke’s aphasia (WA) more closely resembles the 

pattern of atrophy seen (at least initially) in lvPPA: Wernicke’s area comprises an area in 

posterior STG that is completely consistent with lvPPA (see Figure 1.3). However, there are 

phenotypical differences between WA and lvPPA too: WA is associated with comprehension 

deficits in spoken and written language, problems with repetition, but fluent spontaneous 

speech production that is highly paraphasic and circumlocutious (Mesulam, 2009) – making 

it unlike the speech of somebody with lvPPA which is characterised by frequent word-finding 

pauses. Indeed, a key difference here is in terms of self-monitoring: patients with lvPPA are 

typically able to monitor their speech and correct for errors, whereas patients with WA are 

not. As the syndrome of lvPPA develops, however, this self-monitoring can be lost; ‘jargon 

aphasia’ syndromes have been reported to develop in the context of lvPPA (Rohrer et al., 

2009b; Caffarra et al., 2013) and patients often lose insight into the fact that what they are 

saying is incomprehensible to the listener. In WA, research has shown that comprehension 

deficits are associated with lesions extending to posterior MTG and other extra-Sylvian 

areas (Robson et al., 2012). 

Intriguingly, recent work suggests that the auditory comprehension deficit observed 

typically in WA may not be limited to linguistic stimuli. One case study observed that a stroke 

in Wernicke’s area resulted in the patient having a remarkable dissociation in terms of intact 

speech processing relative to severely impaired nonverbal auditory processing (Saygin et 

al., 2010). Another observed an equally remarkable case of amusia characterised by 

arrhythmia in a professional musician that was associated with a stroke in left temporo-

parietal cortex (Di Pietro et al., 2004). Most recently, Robson and colleagues demonstrated 

that patients with WA had normal frequency discrimination but significant impairments in 

terms of frequency and dynamic modulation detection (Robson et al., 2013). The authors 

argue that the auditory language comprehension impairment that is a cardinal feature of WA 
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could be subserved by this core auditory processing deficit for temporal and spectrotemporal 

nonverbal stimuli.  

Semantic variant PPA is broadly comparable to the syndrome of transcortical 

sensory aphasia (TSA). This is characterised by impaired auditory comprehension with 

intact repetition and fluent speech, arising from posterior temporal lobe atrophy (not 

implicating Wernicke’s area). svPPA, by contrast, is associated with a pan-modal 

degradation of semantic and conceptual knowledge, and so the specificity of the deficit in 

TSA to the auditory domain is not comparable here. Phonological processing is assumed to 

be broadly intact in both svPPA and TSA, distinguishing it from WA (Robson et al., 2012). 

One additional important point is that despite the similar terminologies, svPPA and semantic 

aphasia are not synonymous either in terms of their clinical phenotype or neuroanatomical 

profiles (Jefferies & Lambon Ralph, 2006; Jefferies et al., 2010). 

Thus, consideration of the stroke aphasias raises three conclusions that are of 

central importance to this thesis: i) damage to key areas in the language network results in 

specific clinical phenotypes; ii) there are broad similarities in terms of language phenotypes 

with the PPA syndromes; and iii) there is some evidence to suggest that a core auditory 

processing deficit may subserve some of the language symptoms associated with the stroke 

aphasias.  

1.2. Auditory processing 

I now turn to a brief consideration of auditory processing in the healthy brain. This 

will outline the neuroanatomical and neuropsychological hierarchies that are used for 

auditory perception, and outline different stages at which impairments can arise, with 

important corollaries for my consideration of the PPA syndromes in section 1.3. 

1.2.1. Auditory processing neuroanatomy 

The earliest level of processing of acoustic stimuli begins in the inner ear. Hair 

cells in the cochlea convert the mechanical energy of sound into electrical impulses in the 

auditory nerve. Problems at this stage of processing reflect ‘peripheral’ hearing loss typically 

associated with deficient hair cell function, and are distinct from ‘central’ hearing loss that is 

associated with damage to the cortex itself. From the auditory nerve, information is then 
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transmitted as neuroelectrochemical activity through a succession of neurons to auditory 

receptive areas in the cortex. Here, the medial portion of the transverse gyrus of Heschl 

(Heschl’s gyrus; HG) in the superior temporal plane comprises the primary auditory cortex 

(PAC). There is, however, considerable variability across individuals: PAC accounts for 

between 16-90% of HG depending upon the individual (Rademacher et al., 2001). The 

auditory processing pathway then extends laterally through HG into planum temporale (PT), 

which lies posterior to HG on the superior temporal plane. Both regions show plasticity in 

relation to auditory experience, e.g. increased grey matter volume of HG (Schneider et al., 

2002) with musical training and PT (Zatorre et al., 1998) with absolute pitch. 

As auditory processing becomes more complex, two streams are thought to 

emerge that are analogous to those propounded by the dual stream hypothesis that is widely 

accepted to apply to the visual system (Mishkin et al., 1983; Goodale & Milner, 1992). For 

auditory processing, the dorsal and ventral streams are proposed to focus on ‘where’ and 

‘what’, respectively (Rauschecker & Tian, 2000); a division that has been supported in 

human studies (Clarke et al., 2000, 2002; Alain et al., 2001; Adriani et al., 2003; Hart et al., 

2004). The auditory dorsal ‘where’ stream, broadly implicated in space and motion 

processing, extends from the planum temporale to inferior and superior parietal regions, and 

then on to dorsal frontal areas. The ventral ‘what’ stream, preferentially involved in 

processing auditory objects for meaning, projects more anteriorly along the STG and STS to 

the IFG (Bizley & Cohen, 2013). 

Considering speech processing, which might be regarded as a highly specialised 

form of auditory processing, the ventral stream is thought to be critical for speech recognition 

and comprehension (Hickok & Poeppel, 2007). The left ventral stream is particularly involved 

in phonetic discrimination, phonological processing, lexical, semantic and combinatorial 

processes, whereas the right ventral stream is more associated with voice identification and 

processing of prosody (Specht, 2014). The dorsal stream is critical for translating speech 

signals into articulatory representations in the inferior frontal lobe (thus making it critical for 

speech production as well as speech perception) (Hickok & Poeppel, 2007), and it has been 

argued that the dorsal stream also contains an auditory feedback loop allowing for online 

monitoring of speech production (Warren et al., 2005); see Figure 1.4. There is still some 
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controversy as to whether there are just two streams for auditory processing, or a series of 

parallel streams (Rauschecker & Scott, 2009), but it is widely accepted that there is a degree 

of functional specialisation for the processing and production of speech.  

 

Figure 1.4. Schematic diagram of the dual-stream model of the functional anatomy of 
language. Early spectrotemporal analysis is carried out in auditory cortices bilaterally in the 
supratemporal plane. Phonological-level processing and representation occurs in middle and 
posterior portions of the STS bilaterally, with a slight left-hemispheric bias. The hierarchy 
then diverges into a ventral stream (pink) that maps sensory/ phonological representations 
onto lexical conceptual representations, and a dorsal stream (blue) that maps sensory/ 
phonological representations onto motor representations (adapted from Hickok & Poeppel, 
2007). The dotted arrow represents an addition made to the dual streams model, 
incorporating auditory feedback into the model (Warren et al., 2005). This is critically 
relevant to the work described in Chapter 5.  
 
 

More recently, the temporal domain has been integrated into speech processing 

models. Oscillatory neural activity is ubiquitous, and in the auditory cortex, these oscillations 

‘phase-lock’ (entrain) to temporally regular acoustic cues. All sounds are inherently temporal, 

but speech perception is relatively more dependent upon fine temporal discrimination: low-

frequency information in the range of 4-8Hz provides rhythmic scaffolding for the processing 

of spoken language. A wealth of recent research suggests that oscillations in the human 

auditory cortex entrain to speech rhythm. Importantly, this entrainment goes beyond 

processing of acoustic characteristics: phase-locking is enhanced by intelligibility of the 

speech signal (Peelle & Davis, 2012; Peelle et al., 2013), although these results have not 

been replicated universally (Millman et al., 2015). 

1.2.2. Neuropsychology of auditory object processing 

The neuropsychological hierarchy by which we are able to process auditory 

information has been aligned with other complex neuropsychological processes such as 

vision (Goll et al., 2010b; Cope et al., 2015). Speech, music and environmental sounds are 
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extremely different in terms of their acoustic properties. Such sounds can be considered as 

‘auditory objects’ (Griffiths & Warren, 2004) – collections of acoustic data bound into 

cohesive and coherent perceptual representations that are disambiguated from the auditory 

background (Goll et al., 2010b). Stages of this neuropsychological hierarchy therefore 

comprise early perceptual spectrotemporal analysis (i.e. encoding features like rhythm, 

timbre, and pitch); auditory scene analysis (i.e. deconstructing the acoustic environment to 

identify and track sounds of interest); apperceptive processing (i.e. identifying sound 

characteristics under varying listening conditions); and associative processing (i.e. 

recognising and ascribing meaning to the sound). Below I briefly consider each stage of the 

hierarchy and its relevance to auditory processing as a whole; a summary is given in Figure 

1.5. 

1.2.2.1. Sub-object level processing 

Certain acoustic characteristics, such as pitch, modulation, and timbre, are 

features of all auditory objects. Processing of these elements is thought to involve brain 

mechanisms separable from those involved in formation of whole-object-level 

representations. Importantly, these properties represent auditory precepts, rather than 

physical sound attributes, and are most likely processed in primary auditory cortex and 

beyond.  

1.2.2.2. Auditory scene and spatial analysis 

Auditory scene analysis (ASA) is the process by which we parse auditory 

information into single auditory objects for further analysis. Critical examples include 

segregating a specific sound object from a wider auditory background (e.g. disambiguating 

one’s own name from a background of voices in a noisy room: the so-called ‘cocktail party’ 

effect (Cherry, 1953)), and grouping temporally separated sounds into a single object (e.g. 

notes in a musical melody). Auditory spatial analysis represents a core component of 

auditory scene analysis, allowing the listener to identify the location and motion of sounds in 

space.  
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Figure 1.5. A simplified hierarchical neuropsychological model of auditory 
processing. Arrows delineate the likely directionality of information flow between processing 
modules in the hierarchy, though most connections are probably reciprocal. Arrows are 
colour-coded as follows: black = basic acoustic features; blue = temporal properties; green = 
temporal properties relevant to encoding of imitable action sounds; red = spectral properties; 
magenta = cross-modal sensory processing; brown = executive processes. Solid arrows 
show obligatory processes, and dotted arrows are processes that may be engaged in some 
circumstances (e.g. increased perceptual load). Adapted from Goll et al., 2010.  
 

1.2.2.3. Apperceptive processing 

The next stage is representation of whole auditory objects (i.e. collections of sub-

object properties bound together in coherent auditory objects). The formation of whole-

object-level representations requires the brain to process incoming sensory data 

corresponding to particular auditory objects under widely varying conditions, for instance the 

same phoneme spoken by different voices or the same tune played by different instruments. 

Apperceptive sound agnosias are difficult to differentiate from higher-level associative 

deficits. Auditory templates representing the sound structures of particular auditory objects 

might facilitate discrimination of familiar sounds under degraded listening conditions  
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1.2.2.4. Associative processing 

Auditory object recognition – the level of associative processing – is the process by 

which the successfully parsed auditory object is matched to the conceptual mental lexicon. 

This manifests in recognition and identification of a song from hearing its melody, or a 

person from hearing their voice. We are able to ascribe meaning to environmental sounds, 

such as running water or a door shutting, that facilitate appropriate navigation. 

1.3. Auditory processing in primary progressive aphasia 

Prevailing recent evidence suggests that cognitive deterioration may be predicted, 

or even accelerated, by hearing loss (Hardy et al., 2016), although the vast majority of 

literature refers to typical AD (Lin et al., 2011a, 2011b, 2014). Below I briefly describe issues 

around peripheral and central hearing loss in the context of neurodegeneration, before 

turning my attention to focus on central hearing loss exclusively in PPA. 

1.3.1. The challenge of peripheral vs central hearing loss 

‘Hearing loss’ can be used ubiquitously to refer to any phenotype of auditory 

deafferentation, but it is crucial to make a distinction between peripheral (i.e. damage to 

structures of the ear) and central (i.e. damage to the cortex) levels. Differentiating between 

the two can be extremely difficult in patients with PPA, and it is crucial that peripheral 

hearing function is assessed in conjunction with central auditory processing.  

Around 40% of people over the age of 65 have significant peripheral hearing loss 

(Gates & Mills, 2005), which has important links to cognitive impairment and dementia. 

Presbycusis (age-related hearing loss) most commonly arises from cochlear dysfunction, 

although central auditory involvement is relevant and has probably been under-recognised in 

the past (Panza et al., 2015). Across studies, epidemiological evidence is in accord that 

hearing loss is associated with cognitive decline, therefore constituting a risk factor for 

development of AD and other dementias, although the strength of this association does vary 

dramatically across studies (Panza et al., 2015; Taljaard et al., 2015). In the Baltimore 

Longitudinal Study of Aging hearing loss of 25dB had an effect on cognition equivalent to 

around seven years of aging (Lin et al., 2011a), and risk of dementia onset correlated with 

severity of hearing impairment (Lin et al., 2011b). Tissue volume loss in auditory cortex in 
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older adults correlates with hearing loss (Peelle et al., 2011), as well as in temporal lobe and 

whole brain (Lin et al., 2014).  

However, the mechanism accounting for the association between peripheral 

hearing loss and cognitive decline is unresolved. One possibility is that hearing impairment 

could compound sensory and social isolation and increase cognitive load, exhausting the 

brain’s capacity for compensatory cognitive reallocation (Panza et al., 2015). The 

association between peripheral hearing and cognition, however, remains even after 

controlling for various demographic and comorbidity factors (Lin et al., 2011b; Dawes et al., 

2015). The link between peripheral hearing loss and neurodegeneration may therefore be 

more direct. Many major auditory relay nuclei are affected in AD (Sinha et al., 1993; Parvizi 

et al., 2001), and animal models have suggested there is a causal link between peripheral 

deafferentation and hippocampal function (Liu et al., 2016; Park et al., 2016). These studies 

have been almost exclusively undertaken in the context of AD. One study linked peripheral 

hearing impairment to general disability (i.e. not specifically cognitive dysfunction) in patients 

with Parkinson’s disease (Vitale et al., 2012), but to my knowledge, no studies have 

systematically explored peripheral hearing alongside central auditory processing in PPA.  

In AD, central auditory deficits may be disproportionate to abnormalities in sound 

detection or otological markers (Strouse et al., 1995; Gates et al., 1996, 2011; Idrizbegovic 

et al., 2011; Quaranta et al., 2014; Panza et al., 2015), and young carriers of pathogenic AD 

mutations show abnormal auditory cortical evoked potentials that predate their clinical 

symptoms (Golob et al., 2009). Indeed, the presenting clinical feature in any 

neurodegenerative syndrome is rarely auditory dysfunction, but significant histopathological 

involvement of auditory cortices has been described across the major dementia syndromes 

(Sinha et al., 1993; Baloyannis et al., 1995, 2011a, 2011b; Baloyannis, 2005). Patients with 

svPPA often report tinnitus, which has been linked to structural alterations in a fronto-

temporo-subcortical network, and patients may also show ‘hyperacusis’, or increased 

sensitivity to sound (Mahoney et al., 2011).  

Below, I discuss the literature on central auditory processing dysfunction in PPA, 

using the neuropsychological hierarchy outlined in Section 1.2.2: first contemplating the 

important role of working memory and very early sub-object level processing, then turning to 
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auditory scene analysis before considering apperceptive and associative agnosias for 

particular classes of sounds.  

1.3.2. Working memory 

Working memory refers to the short-term rehearsal of information in a temporary 

store that is then available for subsequent processing (Baddeley, 2010). One important 

consideration is that working memory is not a unitary store: there is in fact a heterogeneity of 

working memory storage systems distributed throughout the brain that subserve short-term 

storage of information in a number of different sensory modalities. Dissociations between 

visual, phonological and visuospatial working memory systems are well documented 

(Warrington & Rabin, 1971; Warrington & Shallice, 1972).  

These systems are cognitively and neuroanatomically dissociable: visuospatial 

STM is putatively processed in right parietal regions (Chechlacz et al., 2014); visual-verbal 

STM is left-lateralized to a temporo-parietal-occipital region (Warrington & Rabin, 1971; 

Shallice & Saffran, 1986), and auditory-verbal information is processed in left temporo-

parietal junction (Warrington et al., 1971, 1986). The insidious pathological spread of atrophy 

extending posteriorly in the left temporal and parietal lobes in nfvPPA and lvPPA is therefore 

consistent with the deficits in phonological working memory that have been widely observed 

in nfvPPA and lvPPA (Greene et al., 1996; Grossman et al., 1996, 2005; Code et al., 2006; 

Gorno-Tempini et al., 2008, 2011; Leyton et al., 2014; Whitwell et al., 2015; Hardy et al., 

2015, 2016; Henry et al., 2016): indeed, PWM impairment is often regarded as the defining 

feature of lvPPA (Gorno-Tempini et al., 2004, 2008; Rohrer et al., 2010b). This has 

important implications for assessing auditory cognition and accounting for phonological 

working memory capacity is often critical in designing novel psychoacoustic tests. 

1.3.3. Sub-object level processing 

Early spectrotemporal auditory processing deficits of pitch direction perception and 

timbre processing have been identified across the PPA syndromes. Timbre processing is 

affected in nfvPPA but not in svPPA (Goll et al., 2010a, 2011), and is also affected in lvPPA 

– with the important consideration that this is not accounted for by reduced working memory 

capacity (Goll et al., 2011). Deficits in lvPPA for processing of pitch direction and auditory 
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size perception are attributable to reduced working memory capacity, while in nfvPPA 

auditory size perception appears to be unaffected relative to impaired pitch direction 

perception (Goll et al., 2011). 

However, despite the small number of studies in this area, results are not entirely 

consistent. Recently, Grube and colleagues constructed a novel psychoacoustic battery of 

tasks probing auditory processing in PPA still further. They found that patients with nfvPPA 

were particularly impaired on tasks requiring rhythm and pitch processing, while patients 

with lvPPA did not show any significant impairments (Grube et al., 2016). The rhythm 

perception deficit in nfvPPA here could be indicative of altered auditory timing pathways in 

this group, manifesting in the speech production problems inherent to the disease and 

deficient processing of acoustic sequence structures. A subset of patients in the svPPA 

group was also impaired, but this was not universal across the whole cohort, and they were 

relatively less impaired than patients in the nfvPPA group. The results here should be 

interpreted with some caution, especially with regard to the null effect in the lvPPA group, as 

they only had four patients, with mean symptom duration of one-and-a-half years.  

Taken together, the available literature suggests that patients with nfvPPA have a 

deficit at the sub-object level of early spectrotemporal processing, and that those with lvPPA 

may be similarly impaired. By contrast, patients with svPPA are relatively unaffected at this 

level of processing. 

1.3.4. Impaired perception of auditory scenes 

Deficits with auditory scene analysis have been associated with disintegration of a 

core parieto-temporal network in typical AD and posterior cortical atrophy (Goll et al., 2012a; 

Golden et al., 2015a, 2015c). Comparatively little research has been undertaken in PPA, 

although the temporo-parietal cortical hub regions implicated in parsing the acoustic stream 

into constituent sound objects are contiguous with the classic pattern of atrophy typically 

reported in lvPPA (Gorno-Tempini et al., 2011), and one would predict similar deficits 

associated with the underlying AD pathology.   



32 
 

1.3.5. Speech processing 

Speech represents a major auditory signal carrying a wealth of nonverbal and 

metalinguistic information before even being mapped onto the mental lexicon. In this section, 

I review literature on metalinguistic speech processing, considering auditory agnosia for 

speech (word deafness), voice processing, accent processing and receptive prosody.  

1.3.5.1. Word deafness 

Word deafness is a selective auditory agnosia for speech, characterized by an 

inability to understand spoken language in the context of intact peripheral hearing and 

retained comprehension of written language. The specificity of the deficit for speech is 

crucial: auditory agnosia for any sound reflects general cortical deafness. Cases in a 

neurodegenerative context are relatively rare (see Table 1.4): one study of 100 consecutive 

patients with PPA observed that only three patients presented with pure word deafness as 

the leading symptom (Senaha et al., 2013). Intriguingly, a higher number of cases seem to 

be reported in Japanese and Korean patients (Otsuki et al., 1998; Kuramoto et al., 2002; 

Kaga et al., 2004; Iizuka et al., 2007; Kim et al., 2011)
1
 which could potentially reflect some 

aspect particular to these languages that is especially vulnerable, though cases in the 

context of European languages have also been reported (Sérieux, 1893; Jörgens et al., 

2008; Gibbons et al., 2012): see Table 1.4.  

The case described by the French neurologist Sérieux in the paper “Sur un case 

de surdité verbale pure” (Sérieux, 1893) is often hailed as one of the first descriptions of a 

PPA. However, the patient presented with word deafness and contemporary neurologists 

have suggested that his patient might be better characterised as a case of primary 

progressive auditory agnosia (Ceccaldi et al., 1996), which raises the intriguing possibility 

that one of the most widely-known and earliest descriptions of PPA would not meet the 

consensus criteria used today, and suggests that progressive pure word deafness 

represents an exception syndrome outside of the consensus criteria. Remarkably, one of the 

eight patients in Mesulam’s original case series of PPA was a 17 year-old girl who presented 

with word deafness (Mesulam, 1982). This case was extremely atypical, however, in terms 

                                                      
1
Note that the patient described by (Kim et al., 2011) is described as having a clinical phenotype 

consistent with atypical early-onset Alzheimer’s disease. The clinical syndrome they describe, 
however, is in keeping with a language-led, i.e. logopenic-type primary progressive aphasia syndrome. 
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of her age at presentation and the fact that she did not deteriorate over time. Later testing of 

the same patient revealed that her auditory agnosia for words was more likely attributable to 

cranial nerve or cerebellar, rather than cortical, dysfunction (Pinard et al., 2002). 

Table 1.4. Documented cases of word deafness in the context of PPA 
 

 
The Table shows all cases of progressive word deafness in the context of a PPA syndrome. 
Note that here I have described each case as PPA-NOS, reflecting the fact that none would 
meet a diagnosis for one of the major PPA syndromes according to current consensus 
criteria. The original clinical label ascribed to each case is given in parentheses if available. 
Demographic information for each case is given in the format age at case study, 
handedness, gender, native language. If neuroimaging correlates were reported, they are 
summarised in bold.  

Authors Participant Key findings 

(Croisile 
et al., 
1991) 

1 PPA-NOS 
(NA): 69, RH, 
M, French 

Word deafness with reduced spontaneous speech, 
anomia, spared single word repetition relative to poor 
sentence repetition. Left temporal lobe atrophy with 
widening of the peri-Sylvian fissure. 

(Gibbons 
et al., 
2012) 

1 PPA-NOS 
(PPA): 57, RH, 
M, English 

Word deafness accompanied by other language deficits 
that were limited to the verbal domain: written testing 
showed adequate performance.  

(Iizuka et 
al., 2007) 

1 PPA-NOS 
(FTD): 66, RH, 
M, Japanese 

Word deafness was the presenting symptom, followed by 
speech production problems one year later. Severe 
atrophy of left peri-Sylvian cortex. 

(Jörgens 
et al., 
2008) 

1 PPA-NOS 
(NA): 71, RH, 
F, German 

Word deafness with all other language functions relatively 
intact. Bilateral atrophy of Heschl’s gyrus and peri-
Sylvian cortex. 

(Kaga et 
al., 2004) 

1 PPA-NOS 
(PPA): 70, NA, 
F, Japanese 

Progressive word deafness that affected environmental 
sound processing on later testing. Bilateral peri-Sylvian 
hypometabolism and atrophy of primary auditory and 
temporoparietal areas. 

(Kim et 
al., 2011) 

1 PPA-NOS 
(AD): 59, RH, 
F, Korean 

Word deafness was the presenting symptom, followed by 
poor repetition and phonemic paraphasias in speech. 
Bilateral temporo-parietal hypometabolism left > right. 

(Kuramot
o et al., 
2002) 

1 PPA-NOS 
(PPA): 68, RH, 
Japanese 

Word deafness in conjunction with jargon aphasia. 
Widening of peri-Sylvian fissure and atrophy along a 
frontotemporal network. 

(Otsuki et 
al., 1998) 

1 PPA-NOS 
(PPA): 67, RH, 
M, Japanese 

Word deafness that eventually affected environmental 
sound processing and temporal auditory discrimination. 
Atrophy in left STG likely responsible for phenotype 
of word deafness. 

(Sérieux, 
1893) 

1 PPA-NOS 
(PPA): 55, RH, 
F, French 

Isolated progressive word deafness with eventual 
progression to Wernicke-type aphasia. Bilateral temporal 
lobe atrophy. 
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1.3.5.2. Voice processing 

A person’s voice conveys a wealth of information about the speaker, such as 

their accent (see below), gender, age, and emotional state. Voice identification is 

thought to depend upon a fine-grained spectrotemporal representation (at the early 

perceptual level), followed by speaker discrimination (the apperceptive level), and then 

attribution of meaning (the associative level); this is in line with the broad 

neuropsychological processing hierarchy summarised earlier in this Chapter, and with 

the formulation described by Hailstone and colleagues, depicted in Figure 1.6 

(Hailstone, 2012). 

Impaired recognition of familiar voices in the context of intact apperceptive 

processing has been consistently identified in the temporal variants of FTD (see Table 

1.5).  In two cases with right temporal lobe damage, one had a relatively selective deficit 

for voices (progressive associative phonagnosia), while the other had a deficit for voices 

consistent with a general decline in person knowledge characterised by progressive 

prosopagnosia (Hailstone et al., 2010). In a VBM study of a combined cohort of 22 

patients with AD and 14 with temporal variant FTD (13 of which had svPPA), patients 

with svPPA were found to have a voice recognition deficit above that seen in the AD 

group that was associated with atrophy of the right temporal pole and anterior fusiform 

gyrus (Hailstone et al., 2011). Therefore, voice processing is affected in svPPA at the 

level of associative processing, reflecting general decline in semantic conceptual 

knowledge. 



35 
 

 

Figure 1.6. A hierarchical model of voice processing. Size/ gender information is 
indicated in yellow; parallel processing pathways for voice identity and accent 
processing are given in green and orange, respectively. Putative anatomical substrates 
are given on the relevant side of the diagram. Accent processing recruits linguistic 
processing mechanisms possibly at the level of phonemes(*), although this is unclear. 
Coloured arrows demonstrate the primary direction of communication between stages in 
the hierarchy; dotted arrows show candidate links between perceptual cues and 
processes that are less evident than those depicted by solid lines. Arrows linking 
template processing and spectral and temporal shape representations are bidirectional, 
emphasising the dynamic updating of these templates via the interaction between 
incoming information and stored representations. Reproduced from Hailstone (2012). 
  

1.3.5.3. Accent processing 

Accented speech is processed routinely by the healthy brain, providing 

nonverbal information about the speaker, including geographical origin, social milieu and 

ethnicity. Processing of accents is computationally demanding, relying on neural 

mechanisms that are anatomically and functionally separable from those concerned with 

the verbal content of speech. However, impairments of accent processing may 
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themselves constitute syndrome specific signatures of neurodegenerative diseases: see 

Table 1.5. 

In one group study of 20 patients with AD and six with nfvPPA, both groups 

were impaired at recognition of both regional and international accents relative to the 

control participants (Hailstone et al., 2012). Importantly, however, the patterns of 

impairment were dissociable for each patient group. Whilst patients with AD showed a 

perceptual cost for comprehension of accented sentences (but not single words), 

patients with nfvPPA tended to show the opposite effect – a perceptual cost for 

comprehension of accented words, but not sentences. The nfvPPA group also showed a 

reduced ability to understand words spoken in international accents as compared to 

words spoken in a southern English accent.  

Fletcher and colleagues have probed the brain basis of accent processing in 

PPA still further in a study of two patients: one with nfvPPA and one with svPPA 

(Fletcher et al., 2013). The nfvPPA patient presented with a marked difficulty in 

understanding non-native accents, whereas the svPPA patient presented with 

prosopagnosia and phonagnosia, but no reported difficulty in understanding accents. At 

an apperceptive level, the nfvPPA patient was significantly impaired relative to healthy 

controls and the svPPA patient on detecting changes in accent, but not on phoneme 

discrimination or speaker change, suggesting that this was an apperceptive level deficit 

that was not grounded in a more general deficit of early perceptual coding. By contrast, 

the svPPA patient was able to perceive changes in phonemes, voices and accents, with 

a mild impairment in accent identification. Whilst the svPPA patient was unable to 

identify faces normally, the nfvPPA patient was able to do this, suggesting that whilst the 

nfvPPA patient had an interacting apperceptive and semantic deficit for accent 

processing, the svPPA patient had a primary semantic (associative) deficit. 

The consensus here, therefore, is that svPPA patients have impairment at the 

level of associative processing, while patients with nfvPPA have an earlier, 

apperceptive-level impairment. Accent processing in lvPPA has not yet been studied, 

though one might predict them to display a pattern of deficits similar to that seen in 

nfvPPA. 
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1.3.5.4. Receptive prosody 

Prosody represents another metalinguistic, suprasegmental vocal pattern that 

conveys important information to the listener pertaining to the speaker’s affect and 

intentions. Expressive prosody (the ‘melody of speech’) has been studied extensively in 

PPA and is abnormal in many patients (Ghacibeh & Heilman, 2003; Tsao et al., 2004; 

Josephs et al., 2006; Graff-Radford et al., 2012), but less is known about receptive 

prosody (see Table 1.5). Rohrer and colleagues conducted a systematic investigation of 

three different dimensions of receptive prosody processing (acoustic, linguistic and 

emotional) in a cohort of patients with PPA. lvPPA patients (n = five) performed 

significantly worse than control participants on all tests of linguistic and acoustic prosody 

subtests (Rohrer et al., 2012). nfvPPA (n = 11) and PPA-GRN (n = three) participants 

were significantly worse than controls on all tests except for stress discrimination. Grey 

matter associations of acoustic and linguistic prosody processing were identified in a 

distributed cortical network involved in the perceptual analysis of vocalisations (left 

posterior temporal and inferior parietal cortices) and fronto-parietal circuitry involved in 

working memory.  

In the same study, recognition of vocal emotions was more impaired than 

recognition of facial emotions in all PPA subgroups studied (svPPA patients were not 

included), suggesting that this was not representative of a deficit at the level of generic 

semantic processing, but more likely reflecting the involvement of early perceptual 

mechanisms that cascade to higher levels of prosodic processing in PPA. VBM revealed 

atrophy associated with emotional prosody processing for negative emotions (disgust, 

fear, sadness) in a broadly overlapping network of left frontal, temporal limbic and 

parietal areas. There is little other research in this area, although four patients with 

bvFTD or svPPA were relatively unimpaired on an emotional prosody discrimination task 

compared to an emotional prosody naming task (Perry et al., 2001). Taken together, 

results suggest that the nonfluent PPA syndromes are impaired at earlier perceptual 

levels than affected in svPPA, corroborating the characterization of nfvPPA and lvPPA 

as disorders of generic early perceptual auditory signal processing.   
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Table 1.5. Case and group studies of voice, accent, and receptive prosody 
processing deficits in PPA. 
 

 
The table shows group and case studies of voice, accent and receptive prosody 
processing in PPA. For individual case studies, demographic information is given in the 
format: age at case study, handedness, gender, native language. If neuroimaging 
correlates were reported, they are summarised in bold.  
 
 
 
 

 

Authors Participant(s) Key findings 

Voice processing 

(Hailstone 
et al., 
2010) 

1 tvPPA: 72, 
LH, M, 
American 

The patient showed severe phonagnosia and 
prosopagnosia in the context of partly preserved 
recognition of musical instrument and entirely preserved 
environmental sound processing. Bilateral 
predominantly anterior temporal lobe atrophy R > L. 

(Hailstone 
et al., 
2011) 

13 svPPA svPPA patients were not impaired at level of vocal 
gender perception or voice perception but were severely 
affected at voice recognition, reflecting general semantic 
decline. Combined with an AD cohort, voice 
recognition was associated with GM volume in right 
temporal pole and anterior fusiform gyrus 

(Omar et 
al., 2011) 

10 svPPA svPPA patients showed significantly impaired emotion 
recognition from voices, as well as from faces and 
music. 

Accent processing 

(Fletcher et 
al., 2013) 

1 nfvPPA: 67, 
RH, F, 
English; 
1 svPPA: 71, 
RH, F, 
English. 

The nfvPPA patient showed an apperceptive and 
associative accent agnosia; the svPPA patient only had 
an associative deficit. The nfvPPA patient had left 
peri-Sylvian atrophy while the svPPA patient had 
relatively focal asymmetric right temporal lobe 
atrophy. 

(Hailstone 
et al., 
2012) 

6 nfvPPA nfvPPA patients showed deficits of non-native accent 
recognition, and reduced comprehension of words 
spoken in international accents. 

Receptive prosody 

(Perry et 
al., 2001) 

4 tvFTD Patients were relatively unimpaired on an emotional 
prosody discrimination task compared to much poorer 
performance on an emotional prosody naming task.  

(Rohrer et 
al., 2012) 

11 nfvPPA; 
5 lvPPA; 
3 PPA-GRN 

Broadly comparable profiles across the three syndromes 
in terms of receptive acoustic, linguistic and affective 
prosodic processing deficits. Acoustic and linguistic 
deficits were associated with posterior temporal and 
inferior parietal cortices, and fronto-parietal 
circuitry.  
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1.3.6. Environmental and nonverbal sound processing 

Here, I characterise environmental and nonverbal sounds as auditory objects 

that potentially carry meaning (e.g. a horse neighing; a hammer striking a nail; water 

trickling). A summary of research into environmental and nonverbal sound processing in 

PPA is given in Table 1.6. 

In svPPA, nonverbal sound recognition is impaired, reflecting general decline 

in conceptual knowledge that is not limited to the verbal domain. This was first put on 

record at the turn of the century (Bozeat et al., 2000), and has subsequently been 

replicated many times (Yamamoto et al., 2004; Adlam et al., 2006; Garrard & Carroll, 

2006; Uttner et al., 2006; Goll et al., 2010a, 2012b; Hsieh et al., 2011; Golden et al., 

2015b), and activation fMRI work suggests that altered bilateral networks involving the 

superior and middle temporal lobes are implicated in the altered semantic processing of 

environmental sounds in svPPA (Goll et al., 2012b). Physiological responses to salient 

stimuli may also be attenuated in svPPA (Fletcher et al., 2015b). Intriguingly, recent 

research manipulating the semantic and emotional congruity of constituent sounds in 

auditory scenes suggested that patients with svPPA and bvFTD had impaired 

processing of these complex auditory environments, possibly reflecting a deficit at the 

level of decoding auditory signal relatedness (Clark et al., 2017). 

Broadly, evidence suggests that patients with semantic dementia develop 

deficits of nonverbal sound recognition (auditory associative agnosias) as part of a pan-

modal erosion of semantic memory, linked to antero-mesial temporal lobe dysfunction 

(Bozeat et al., 2000; Goll et al., 2010a; Golden et al., 2015b). In the nonfluent variants, 

patients with nfvPPA may also have associative deficits for nonverbal sound processing, 

with relatively unaffected apperceptive processing (Goll et al., 2011). Deficits across 

both levels have been reported in lvPPA, but these are likely both accounted for to a 

large extent by their phonological working memory deficit (Goll et al., 2011). 
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Table 1.6. Studies of environmental sound processing in PPA. 
 

 
 
The table shows group and case studies of nonverbal sound processing in PPA. Note 
that I have classified each case study according to the 2011 consensus criteria: the 
original clinical label ascribed to each case is given in brackets if available. 
Demographic information for individual case studies is given in the format age at case 
study, handedness, gender, native language. If neuroimaging correlates were reported, 
they are summarised in bold.  

Authors Participant(s) Key findings 

(Adlam et 
al., 2006) 

7 svPPA 

Patients were impaired on a range of semantic associative 
tasks, including nonverbal sound recognition. Task 
performance related to left inferior temporal lobe 
volume. 

(Bozeat et 
al., 2000) 

10 svPPA 
Patients were impaired on environmental sound recognition 
and association tasks. 

(Clark et 
al., 2017) 

10 svPPA 

Patients were impaired on processing semantic and 
emotional components of complex incongruent auditory 
scenes. Semantic: prefrontal, parieto-temporal, insular; 
Emotional: insular and striatal. 

(Fletcher 
et al., 
2015c) 

12 nfvPPA; 10 
svPPA 

Autonomic reactivity to salient environmental, animal, 
human and mechanical sounds was reduced in svPPA. 

(Garrard & 
Carroll, 
2006) 

12 svPPA 
Patients performed equally poorly on tasks assessing 
knowledge of environmental sounds, colours, contexts and 
motions. 

(Goll et al., 
2010a) 

12 nfvPPA;  
8 svPPA 

Both groups showed an associative deficit for 
environmental sounds that was specific to the auditory 
modality in nfvPPA and reflective of general semantic 
degradation in svPPA. 

(Goll et al., 
2011) 

5 nfvPPA; 
7 lvPPA; 
1 PPA-GRN: 
64, RH, M, 
English 

Patients with nfvPPA were impaired on an associative, but 
not apperceptive, level of environmental sound processing. 
Patients with lvPPA were impaired at both levels but PWM 
performance accounted for these deficits. The PPA-GRN 
patient was impaired on an apperceptive level. 

(Goll et al., 
2012b) 

9 svPPA 

Patients were impaired on recognition of animal and tool 
sounds. fMRI showed differential activation of areas 
around the STS for perceptual and semantic 
processing of sounds compared to controls.  

(Golden et 
al., 2015b) 

9 svPPA 
Patients showed impaired performance on within-modality 
environmental sound matching tasks. 

(Hsieh et 
al., 2011) 

13 svPPA 
Patients were profoundly impaired on recognition of every 
day environmental sounds. 

(Uttner et 
al., 2006) 

1 lvPPA 
(PPA): 65, ?, 
F, German 

Environmental sound agnosia in the context of word-finding 
difficulties and repetition problems with long words. 
Atrophy of Wernicke’s area and inferior parietal cortex; 
hypometabolism of right temporal and frontal regions. 

(Yamamot
o et al., 
2004) 

1 PPA-NOS 
(PPA): 60, RH, 
M, Japanese 

Progressive environmental sound agnosia accompanied by 
speech production problems. Atrophy to secondary 
auditory area in right temporal lobe. 
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1.3.7. Music processing 

Music is a powerful nonverbal signal, and several studies have reported music 

processing to be impaired at some level across typical and atypical FTD and PPA 

syndromes (Confavreux et al., 1992; Gentileschi et al., 2001; Hailstone et al., 2009; 

Matthews et al., 2009; Barquero et al., 2010; Omar et al., 2011, 2010, Hsieh et al., 2011, 

2012; Johnson et al., 2011; Golden et al., 2017); see Table 1.7. 

In svPPA, evidence points to a dissociation between musical knowledge and 

music emotion recognition. In a case study, Omar and colleagues found that while their 

patient with svPPA showed relatively preserved ability to recognise musical symbols and 

objects, they were severely impaired at recognising musical emotions or identifying 

musical instruments from their sounds (Omar et al., 2010). Similar findings were 

reported by Hailstone, who observed that their patient with svPPA was able to continue 

singing well-known melodies when given the start of the melody, despite focal atrophy in 

the left anterior temporal lobe (Hailstone et al., 2009). It is likely that this region is less 

critical for musical than other forms of semantic memory, and in fact the right temporal 

lobe may be crucial for the processing of known tunes. 

Music recognition impairment in svPPA is consistently associated with atrophy 

to the right temporal pole (Hsieh et al., 2012). One case study reported on a 60 year old 

svPPA patient with predominately right temporal lobe atrophy who could only recognise 

14 out of 33 previously familiar songs (Gentileschi et al., 2001), and similar findings 

have been reported elsewhere (Confavreux et al., 1992; Johnson et al., 2011). 

Music processing in the nonfluent variants is less well-studied. However, in 

one group study of music processing, lvPPA patients had deficits of global pitch 

processing, while nfvPPA patients had both local and global pitch processing deficits 

(Golden et al., 2017). Local pitch processing is broadly defined as processing the pitch 

of an individual tone, or the interval size between two adjacent tones, whereas global 

pitch processing reflects processing of the contour, characterising pitch directions 

independent of precise pitch values (Peretz, 1990).  

Taken together, results suggest that music recognition is impaired in svPPA, 

but perhaps to a lesser extent than other semantic constructs. This could reflect 
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localization of music knowledge to the right temporal lobe; damage to this structure is 

associated with poorer music recognition performance. Work in the nonfluent variants 

suggests that music recognition is relatively unimpaired, but both syndromes may show 

impairments in terms of melody processing that is at least partially separable across 

global and local pitch processing.  

1.3.8. Autonomic/ emotional responses to sound in PPA 

Altered hedonic (emotional) behavioural responses to sound are common to a 

number of dementia syndromes. Impaired processing of emotional prosody has been 

described in tAD (Horley et al., 2010), bvFTD (Dara et al., 2013) and nfvPPA and lvPPA 

(Rohrer et al., 2012), while patients with svPPA and bvFTD show impaired recognition of 

musical and nonverbal vocal emotions (Omar et al., 2011). 

Across the whole FTD spectrum, many patients exhibit misophonia
2
 or sound 

aversion, while an abnormal craving for music (musicophilia) seems particularly 

prevalent in svPPA, but not in nfvPPA (Fletcher et al., 2015a). In nfvPPA, however, 

looming sounds appear to be significantly less alerting than to a healthy control group, 

and showed abnormal patterns of pupillary responses to looming vs withdrawing 

sounds, dissociating from patients with svPPA who did not differ from healthy control 

participants (Fletcher et al., 2015c). 

                                                      
2
It is worth noting, however, that misophonia has been precisely defined and the phenotype of 

sound aversion described in patients with PPA does not fit the description of congenital 
misophonia (Kumar et al., 2017). 
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Table 1.7. Group and case studies of music processing in PPA. 
 

 
The table shows group and case studies of music sound processing in PPA. Note that I 
have classified each case study according to the 2011 consensus criteria: the original 
clinical label ascribed to each case is given in brackets if available. Demographic 
information for individual cases is given in the format age at case study, handedness, 
gender, native language. If neuroimaging correlates were reported, they are 
summarised in bold.  
 

Authors Participant(s) Key findings 

(Barquero 
et al., 2010) 

1 PPA-GRN: 53, 
RH, F, Spanish 

The patient worked as a music critic and was unimpaired on 
tasks requiring processing of melody, pitch or rhythm, but 
could not differentiate between a piece played by a 
professional and played by a student (apperceptive 
processing deficit). Cortical atrophy in left frontotemporal 
areas. 

(Confavreux 
et al., 1992) 

1 PPA-NOS: 63, 
RH, F,  

The patient presented with progressive amusia, manifesting 
in her inability to sing in the choir. She could not recognise 
well-known tunes or discriminate between simple rhythms. 
Musical knowledge, however, was preserved. Right-sided 
peri-Sylvian and insular atrophy. 

(Fletcher et 
al., 2015a) 

19 svPPA; 
15 nfvPPA 

Patients with svPPA were more likely to show musicophilia. 
Antero-mesial temporal lobe, insula, anterior cingulate 
and nucleus accumbens. 

(Gentileschi 
et al., 2001) 

1 PPA-NOS 
(FTD): 60, RH, 
F, Italian. 

The patient presented with a progressive prosopagnosia 
syndrome that was accompanied by an inability to name 
famous pieces of music. Right temporal lobe damage. 

(Golden et 
al., 2017) 

5 lvPPA; 
9 nfvPPA 

All patients were impaired at global pitch (melody contour) 
processing; patients with nfvPPA were additionally impaired 
at local pitch (interval) processing. Neither group was 
impaired on music temporal processing, timbre processing, 
musical scene analysis or tune recognition. 

(Hsieh et 
al., 2011) 

13 svPPA 
Patients with svPPA were profoundly impaired in the 
recognition of famous tunes. Correlated with right 
temporal lobe volume, particularly in the pole. 

(Hsieh et 
al., 2012) 

11 svPPA 

Identification of emotions from unknown musical tunes was 
impaired in svPPA, particularly for negatively valenced 
stimuli. Correlated with right temporal pole, insula and 
amygdala volumes. 

(Johnson et 
al., 2011) 

20 svPPA 

Patients with svPPA were not different from controls on 
basic pitch and melody discrimination tasks. They had 
difficulties naming familiar melodies and were less able to 
identify pitch errors in the same melodies. This pitch 
identification error correlated with right temporal lobe 
while naming correlated with bilateral temporal lobes 
and inferior frontal gyrus. 

(Omar et 
al., 2010) 

1 svPPA: 56, 
RH, M, English 

Severely impaired recognition of musical emotions and 
identification of musical instruments from sounds, with 
relatively preserved recognition of musical compositions and 
musical symbols. Anterior temporal lobe involvement. 
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1.4. Key experimental questions motivating this thesis 

This thesis addresses the neuropsychological and neuroanatomical 

mechanisms of impaired auditory signal decoding in the PPAs. A wealth of evidence 

suggests that nfvPPA and lvPPA are impaired at early perceptual and apperceptive 

levels of auditory processing, while patients with svPPA typically have problems with 

associative auditory processing, reflecting the pan-modal nature of their disease. In light 

of the nosological difficulties that surround PPA, and mounting neuropsychological and 

functional neuroanatomical evidence for nonverbal auditory impairment in these 

syndromes, it may be timely to re-evaluate the ‘language-led’ dementias as more 

fundamental disorders of auditory signal decoding. There is considerable interest in 

identifying psychoacoustic measures that could stratify patients by syndrome, and allow 

for greater understanding of the auditory signal processing impairments previously 

identified, with a view to measuring and tracking disease evolution in relation to the 

development and evaluation of therapies. Broadly, I use the hierarchy of auditory 

processing outlined in Figure 1.5 as a neuropsychological model in which to probe 

deficits at different levels across the PPA syndromes. 

Here I report the results of four linked experiments conducted with a well-

characterised cohort of patients with PPA in relation to healthy older individuals 

(Chapters 3-6) and to neurodegenerative control groups (Chapters 5 and 6). 

Psychoacoustic tests were used to define auditory deficits behaviourally (Chapters 3-6), 

and structural/ functional imaging techniques then used to establish neuroanatomical 

associations with these behavioural deficits (Chapters 3-4, 6). 

 

Experiment 1: Behavioural and neuroanatomical correlates of auditory speech 

analysis 

The PPA syndromes are associated with impaired decoding of auditory 

speech signals. The deficits displayed by each patient group are, to some extent, non-

contiguous and different syndromes will be associated with specific speech signal 

processing deficits. In this experiment, I manipulate non-linguistic speech stimuli 

(sequences of spoken syllables) for three basic characteristics: temporal regularity; pitch 
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sequence entropy (information content); and phonemic structure, and assess patients’ 

ability to process these sequences. Behavioural performance is then used in a voxel-

based morphometry (VBM) analysis. Based on previous literature discussed in this 

Chapter, I predict that patients with nfvPPA and lvPPA will show early perceptual deficits 

characterised by impaired processing of temporal regularity and phonemic structure, 

while patients with svPPA will show impaired processing of entropy, and that these 

behavioural deficits will correlate with grey matter volume in dissociable brain regions 

(frontotemporal-subcortical for temporal regularity/ entropy; temporo-parietal cortex for 

phonemic structure).  

 

Experiment 2: Functional neuroanatomy of speech signal decoding 

Here, I extend the work presented in Chapter 3, as participants with PPA and 

healthy controls listened to auditory sequences manipulated for the same basic 

characteristics (temporal regularity, pitch sequence entropy, and phonemic structure) in 

an activation fMRI paradigm. I predict that the functional substrates of temporal 

regularity will lie within a distributed frontotemporal-subcortical network, while the 

substrate of phonemic processing will lie within posterior superior temporal cortex. I 

further predict that each of the PPA syndromes will have separable functional 

neuroanatomical signatures of abnormal speech signal decoding relative to healthy 

older individuals.  

 

Experiment 3: Delayed auditory feedback 

In my third experiment, I focus on the interaction between speech perception 

and speech production, using the paradigm of delayed auditory feedback in a cohort of 

patients with PPA, bvFTD and AD and healthy control participants. DAF has been used 

therapeutically in the context of developmental stammering, but has a paradoxically 

negative effect on speech output in healthy individuals. Here, I predict that healthy 

controls and patients with svPPA, bvFTD and AD will show significant impairment in 

terms of spoken speech production under DAF, while patients with nfvPPA and lvPPA 

will show the opposite result, speaking faster and with fewer speech errors.   
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Experiment 4: Degraded speech signal processing  

In my final experiment, I use linguistic speech stimuli, as participants with PPA, 

tAD and healthy controls listened to speech signals that had been dramatically distorted 

using the paradigm of sinewave speech. The sinewave transformation used here initially 

renders speech unintelligible, but over time healthy individuals adjust through perceptual 

learning to the degraded stimuli. Here, I predict that patients with lvPPA and nfvPPA will 

show early perceptual speech processing deficits that would correlate in a VBM analysis 

with neuroanatomical substrates in early speech areas including posterior superior 

temporal gyrus and planum temporale, while patients with svPPA will show rapid 

adaptation to the distorted speech stimuli, but exhibit reduced top-down associative 

integration of content.     
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2. Methods overview 

This Chapter provides an overview of the experimental methods employed in 

performing the work described in this thesis. Where individual experiments deviate from 

the procedures and protocols described here, further information will be given in the 

specific Chapter. 

2.1.1. Participants 

Participants were recruited over a three-year period from October 2014–March 

2017 from the tertiary specialist cognitive clinic at the National Hospital for Neurology 

and Neurosurgery (NHNN), London. A minority of patients were referred from external 

consultants. All patients had neuroimaging findings compatible with their clinical 

syndromic diagnosis and conformed to consensus criteria for their respective diagnoses. 

Ethical approval for all studies included in this thesis was obtained from the University 

College London and NHNN Research Ethics Committees, in accordance with the 

Declaration of Helsinki, and written informed consent was obtained from all participants. 

Where patients were adjudged not to have capacity to consent to participate in the study 

themselves, a carer or guardian consented on their behalf, affirming that it was the 

express wish of the participant that they would participate in research at our Centre 

before losing capacity to consent themselves. 

Demographic information was collected from each participant, including 

gender, handedness, age, and years of education. Patients’ symptom duration was 

calculated from the date of symptom onset as reported by their principal caregiver. All 

patients and controls underwent a full neurological examination during which a mini-

mental state examination (MMSE) (Folstein et al., 1975) was conducted. 

Syndromic group characteristics for each of the three main PPA syndromes 

are clearly outlined in Chapter 1. In Chapters 5 and 6, I recruited a cohort of patients 

with typical Alzheimer’s disease (AD) as a disease control group, and in Chapter 5, I 

additionally studied patients with behavioural variant frontotemporal dementia (bvFTD). 

Both of these additional groups met consensus criteria for a diagnosis of Alzheimer’s 

disease (Dubois et al., 2007) or bvFTD (Rascovsky et al., 2007). Healthy control 

participants were recruited from a local research database and screened to ensure that 
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they had no history of neurological or psychiatric illness. Supplementary Table 1 in the 

Appendix to this thesis lists individual participants by involvement in each experiment. 

2.1.2. Peripheral audiometry 

Pure tone audiometry was performed using an Otovation Roto audiometer 

(www.otovation.com) in a quiet room. Five frequency levels were tested (500, 1000, 

2000, 4000, 6000 Hz). At each frequency, the participant was played three tones, 

starting at 20dB. If the participant indicated correctly that they had heard at least two of 

the three tones, this was recorded as the threshold for that frequency; if not, the level 

was increased in increments of 5dB up to 70dB. Hearing was assessed in both ears for 

each participant. I created a composite pure tone average score based on the average 

volume (dB) required for tone detection at 500, 1000, and 2000 Hz, for each ear 

separately. Using data from the best ear for each participant, scores within the range of 

0-25dB were categorised as ‘normal’, scores between 26-40dB were classified as ‘mild 

hearing loss’, and scores between 40-70dB as ‘moderate hearing loss’, consistent with 

previously established protocols (Lin et al., 2011c).  

2.1.3. Neuropsychological assessment 

All participants had a comprehensive general neuropsychological assessment 

including standardised measures of general intellect, visuoperceptual, executive and 

linguistic functions that are summarised in Table 2.1. Additional tasks probing linguistic 

psychometry more deeply were administered to all healthy controls and patients with 

PPA. 
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Table 2.1. Summary of general neuropsychological tasks used in this thesis 
 

 

 C sv nfv lv AD bv Reference Notes 

General intellect         

     MMSE (/30)       (Folstein et al., 1975) Used widely as a quick test of global cognition 

     PIQ       (Wechsler, 1981) Generated from WASI Block Design and WASI Matrices 

     VIQ       (Wechsler, 1981) Generated from WASI Vocabulary and WASI Similarities 

Episodic memory         

     RMT Words (/50)       (Warrington, 1984) The 25-item version of this task was used with AD patients. 

     RMT Faces (/50)       (Warrington, 1984) The 25-item version of this task was used with AD patients. 

Working memory         

     Digit span forward (max)       (Wechsler, 1987) The participant is given two attempts at each span length 

     Spatial span forward (max)       (Wechsler, 1987) The participant is given two attempts at each span length 

Executive skills         

     Digit span reverse (max)       (Wechsler, 1987) The participant is given two attempts at each span length 

     Spatial span reverse (max)       (Wechsler, 1987) The participant is given two attempts at each span length 

     Letter fluency (F)       in-house Maximum time limit of 60 seconds 

     Category fluency (animals)       in-house Maximum time limit of 60 seconds 

     Trails A (s)       (Tombaugh, 2004) Maximum time limit of 150 seconds 

Posterior cortical skills         

     GDA Calculation (/24)       (Jackson & Warrington, 1986) Administered with 10 second time limit for each item 

     VOSP (/20)       (Warrington & James, 1991) 4AFC 

Auditory input processing         

     PALPA-3 (/36)       (Kay et al., 1992) 2AFC 

Naming         

     GNT (/30)       (Mckenna & Warrington, 1980) Written answers accepted from patients with nfvPPA 

     BNT (/30)       (Kaplan et al., 1983) I used a reduced (30-item) version of the BNT 

Comprehension         

     BPVS (/51)       (Dunn, L & Whetton, 1982) The full task is 150 items long: we use items 100-150. 

     Concrete synonyms (/25)         

     Abstract synonyms (/25)       (Warrington et al., 1998) A graded difficulty 2AFC task 

     PALPA-55 (/24)       (Kay et al., 1992) 3AFC 

Speech repetition         

     Polysyllabic words (/45)       (Mccarthy and Warrington, 1984 The examiner covered their mouth to prevent lip-reading 

     Graded sentences (/10)       (Mccarthy & Warrington, 1984) Included to probe difference between nfvPPA and lvPPA 

Spelling         

     BST (/30)       (Baxter & Warrington, 1994) I used List A here: all target words were given orally 
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2.2. Presentation of auditory stimuli 

All experimental sound stimuli were stored as wavefiles at a 44100Hz 

sampling rate. Within each test, sounds were matched for root-mean-square (rms) 

intensity over trials, and all sounds created in MATLAB were windowed with 20ms 

onset-offset temporal ramps to prevent click artefacts. All sound stimuli were played 

binaurally via ATH-M50X Audio-Technica headphones through a MacBook computer at 

a comfortable listening level (at least 70dB).  

2.3. Ancillary/ Molecular techniques 

All patients were asked if they would be willing to give a sample of 

cerebrospinal fluid (CSF) via lumbar puncture, allowing stratification of underlying AD 

from non-AD pathologies. Results were interpreted based on local laboratory reference 

ranges for known neurodegenerative markers: normal ranges were considered as total 

tau < 320, Amyloid-Beta1-42 (Aβ1-42) 220-2000, and a tau: Aβ1-42 ratio of above 0.8 was 

considered as predictive of underlying AD pathology. 

Genetic screening was performed using a panel of mutations in major 

causative dementia genes including C9orf72, MAPT, PRGN, presenilin 1 and 2 (PS1 

and PS2), TBK1, and pathogenic mutations in amyloid precursor protein (APP). 

2.4. Structural MRI acquisition 

Participants underwent volumetric brain MRI on a 3Tesla scanner for all of the 

experiments reported in Chapters 3, 4, and 6. The scanner model changed in March 

2016, so the different acquisition strategies are outlined below in relation to the relevant 

chapters. All structural MRI data reported in Chapters 3 and 4 were acquired in a 3T 

Siemens Tim Trio MRI scanner, using a 32-channel receiver array head-coil and a T1-

weighted sagittal 3D magnetization prepared rapid gradient echo (MPRAGE) sequence 

(TE = 2.9msec, TI = 900msec, TR = 2200msec), with dimensions 256 x 256 x 208 and 

voxel size 1.1 x 1.1 x 1.1 mm.  Note that the functional data reported in Chapter 4 were 

obtained using different parameters, and these are described in full in that Chapter. 

All MRI data reported in Chapter 6 were acquired in a 3T Siemens 

Magnetom Prisma MRI scanner, using a 64-channel head-and-neck receiver array 
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coil and a T1-weighted sagittal 3D magnetization prepared rapid gradient echo 

(MPRAGE) sequence (TE = 2.93ms, TI = 850ms, TR = 2000ms), with matrix size 

256x256x208 and voxel dimensions 1.1x1.1x1.1mm. Parallel imaging was used 

(GRAPPA with acceleration factor 2), resulting in an overall scan time of five minutes six 

seconds. 

2.5. Structural MRI preprocessing 

All structural brain imaging data were preprocessed using statistical parametric 

mapping software (SPM12; http://www.fil.ion.ucl.ac.uk/spm) running under MATALB 

R2014b (The Mathworks, Inc). 

Images were segmented, bias corrected and spatially normalized using the 

‘Segment’ procedure in SPM12 and a smoothing Gaussian full-width-half-maximum 

(FWHM) kernel of 6mm. This step outputs data for each participants in a number of 

user-specified tissue types. Native space grey matter, white matter and CSF volumes 

were used to calculate total intracranial volume (TIV) by summing them together for 

each participant. TIV was later used as a nuisance covariate to control for individual 

differences in head size in subsequent analyses. The number of Gaussians used to 

represent the intensity distribution for grey matter, white matter and CSF was set to 2. 

DARTEL processes were implemented in SPM for inter-subject registration of 

brain images. The Run Dartel (create Template) tool computes an initial template from 

the imported data (the rigidly-aligned images) which incorporates a smoothing 

procedure. This template is then iteratively performed on each of the participants’ scans 

in turn. The Normalise to Montreal Neurological Institute (MNI) Space tool was then 

used to spatially normalise the scans into standard (MNI) space using an affine 

transformation that maps from the Dartel Template average (i.e. sample-specific space) 

to the MNI space.  

Study-specific mean structural brain images were created by calculating the 

average (mean) of the brain images generated after the DARTEL steps. Statistical 

parametric maps were then overlayed on the study-specific mean brain image.   

http://www.fil.ion.ucl.ac.uk/spm
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2.6. Small volume generation 

Small volume corrections were used in the testing of study-specific a priori 

hypotheses relating to both functional and structural imaging. Volumes were derived 

from Oxford-Harvard cortical (Desikan et al., 2006) and Jülich histological (Eickhoff et 

al., 2005) atlases via FSLview (Jenkinson et al., 2012). Where appropriate, these maps 

were manually edited in MRICron (Rorden et al., 2007). Further details of small volumes 

are outlined in the relevant chapters. 

2.7. Statistical analysis 

Statistical analyses on behavioural data were performed in Stata v14 

(StataCorp, 2015). Brain imaging analyses were performed in SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/) in MATLAB R2014b (The Mathworks, Inc.). 

2.7.1. Demographic, neuropsychological and behavioural analyses 

Typically, parametric regression models were initially employed, and residuals 

of the applied statistical models were assessed for skewness and kurtosis to ensure that 

they approximated a normal distribution. Heteroscedasticity was assessed using 

Levene’s test and visual inspection of a spread of residuals versus predicted values. 

Where these assumptions were violated, nonparametric equivalents were adopted: 

Wilcoxon rank-sum tests were substituted for independent sample t-tests, Wilcoxon 

signed-rank tests for one-sample t-tests, and Kruskal-Wallis tests for analyses of 

variance (ANOVAs). Categorical variables were compared using χ
2
 or Fisher’s exact 

tests. Pearson’s correlation coefficient was used to assess degree of correlations 

between certain variables, used particularly with measures of disease severity and 

experimental task scores. 

For background demographic and neuropsychological data, I used an omnibus 

test (ANOVA/ Kruskal-Wallis) looking for a main effect of diagnosis. If this was 

significant, I used post-hoc follow-up t-tests (or Wilcoxon rank-sum tests when 

appropriate) to compare groups. In Chapters 3 and 4 it was possible to compare each 

participant group to each other group; in Chapters 5 and 6, the additional 

neurodegenerative control groups made this untenable, so each patient group was 

http://www.fil.ion.ucl.ac.uk/spm/
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compared to the healthy control group only, in order to reduce the number of 

comparisons being made. 

2.7.2. Voxel-based morphometry analyses 

The analysis framework employed by SPM12 is based on the general linear 

model, which makes the assumption that intensity within a given voxel (i.e. grey matter 

volume) can be to some extent explained by (a) certain predictor variable(s) plus a 

degree of error. This is expressed by the equation: yi = intercept + βxi + εi where y 

represents a matrix of observed data (i.e. voxel intensity), β represents each parameter 

to be estimated, 𝑥 is a variable of interest or nuisance covariate, and 𝜀 denotes error, 

representing the difference between the observed data, and the data predicted by the 

model (Ridgway et al., 2008). 

VBM was used for two separate purposes in this thesis: i) to examine 

associations between specific experimental task performance and grey matter atrophy in 

patient groups; and ii) to create ‘disease-maps’ representing areas of high atrophy in 

patient groups relative to healthy age-matched controls.  

In the task-volume regression analyses (i), individual voxel grey matter volume 

was modelled as a function of experimental test score. For the patient-control disease 

maps (ii), groups were compared using voxel-wise two-sample t-tests. The standard 

procedure was to incorporate nuisance covariates of age, gender and TIV; deviations 

from this approach are reported in individual chapters. In healthy control participants, 

total brain volume varies with head size (Acer et al., 2007), and adjusting for TIV 

controls for this (Whitwell et al., 2001). In the studies reported in this thesis, TIV was 

always calculated by adding together the volumes of the grey matter, white matter, and 

CSF generated during the initial segmentation process (Malone et al., 2015). 

To limit the number of multiple comparisons and to ensure that only voxels 

inside the brain were included in the analyses, I used an automatic mask creation 

strategy designed to find an optimal threshold at which to binarise an average image 

(Ridgway et al., 2009). Traditional explicit mask creation strategies commonly exclude 

voxels in areas of the brain that are most vulnerable to atrophy, and using this automatic 
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mask creation approach reduces the possibility of false negatives arising from masking 

out critical areas of atrophy (Ridgway et al., 2009). 

For all studies reported in this thesis, I used the SPM default uncorrected 

cluster-defining threshold of p < 0.001 at voxel level, which is widely accepted as an 

appropriate primary threshold (Woo et al., 2014) followed by a correction for multiple 

comparisons at peak-level for voxel-based morphometry and cluster level for functional 

magnetic resonance imaging. 

Controlling for multiple comparisons protects against the possibility of making 

a Type 1 error (obtaining ‘false-positive’ results), and in this thesis I consistently use a 

family-wise error (FWE) correction (Worsley et al., 1996), either across the whole brain 

or within Chapter-specific small volumes. In behavioural statistics, the problem of 

multiple comparisons can be overcome with Bonferroni corrections, where the accepted 

alpha level for significance is divided by the number of tests conducted (Benjamini & 

Hochberg, 1995). Such an approach is not appropriate for use with VBM or fMRI 

because the tests are not independent: if one voxel is heavily atrophied, or shows 

heightened activation, it is likely that the surrounding voxels will be too. The 

methodology proposed by Worsley and colleagues employs random-field theory to limit 

the Type 1 error rate, by assuming that the distributions of statistics in the imaging data 

follow a smoothly varying random field. This approach requires the neuroimaging data to 

have a minimum level of smoothness, and this is why I consistently use a Gaussian 

smoothing kernel of 6mm in preprocessing. Essentially, this approach is then able to 

estimate the likelihood of voxels (or clusters of voxels) with particular statistical values 

occurring by chance in data of that smoothness (Worsley et al., 1996; Nichols, 2012). 

However, FWE corrections over the whole brain are still stringent and small volume 

corrections represent an appropriate way of reducing the number of multiple 

comparisons being made, if defined a priori on the basis of previous reports in the 

literature.  
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2.8. Presentation of data 

2.8.1. Tables 

For all tables containing demographic data in this thesis, mean (standard 

deviation (SD)) scores are presented, unless otherwise indicated. Maximum possible 

scores are given in parentheses after the name of each test, and significant group 

differences from the control cohort are typically indicated in bold. If reduced numbers of 

participants completed a particular task, this is shown with a footnote to each table. 

For tables containing neuroimaging data, peak (local maxima) coordinates are 

given in MNI standard stereotactic space. Only positive grey matter associations are 

reported; no negative associations were identified at the prescribed significance 

thresholds for the contrasts and groups of interest in any of the experimental chapters. 

2.8.2. Figures 

For behavioural data, scatter plots or box-and-whisker diagrams have been 

used to give an indication of the variability in performance across groups and tasks. 

SPM figures show regional grey matter volume (VBM)/ activation (fMRI) 

associated with performance on key experimental tasks in particular patient groups. All 

SPMs have been overlaid on representative sections of the normalised study-specific 

T1-weighted mean brain MR image in MNI space. Coronal sections show the left 

hemisphere on the left and axial sections show the left hemisphere at the top. Colour 

bars code T-values for each SPM, and all SPMs are thresholded at a voxel-level of 

p<0.001 uncorrected for display purposes, while regional local maxima were significant 

at p<0.05FWE corrected for multiple comparisons at whole brain or within pre-specified 

regions of interest. 
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3. Behavioural and neuroanatomical correlates of auditory speech 

analysis  

3.1. Chapter Summary 

It is clear from the research discussed in Chapter 1 that the PPA syndromes are 

associated with core auditory processing deficits. In this experiment, I used auditory 

sequences manipulated for three core auditory speech signal parameters: temporal 

regularity, phonemic structure, and entropy. I studied 27 patients with PPA (10 nfvPPA; 

nine svPPA; eight lvPPA) and 19 healthy controls, and assessed their ability to process 

these parameters behaviourally using a series of two-alternative, forced-choice tasks. All 

patient groups showed impaired processing of phonemic structure and entropy, and the 

nfvPPA and lvPPA groups were also impaired in terms of processing temporal regularity 

in speech signals. In a VBM analysis across a combined patient cohort comprising 

patients with nfvPPA and svPPA, performance on the temporal regularity task was 

associated with grey matter volume in left supplementary motor area and right caudate, 

while phonemic processing correlated with grey matter in left supramarginal gyrus. 

Performance on processing of prosodic predictability correlated with grey matter volume 

in right putamen. My findings here suggest that PPA syndromes may be underpinned by 

generic deficits of auditory signal analysis, and that these deficits have structural 

correlates in a distributed network of regions that are crucial for these elements of 

auditory signal analysis. 

3.2. Introduction 

The primary progressive aphasias (PPAs) have collectively helped establish 

the paradigm of selective neural network vulnerability to neurodegenerative pathologies 

(Mesulam, 1982; Mesulam et al., 2014a). A large body of work discussed in detail in 

Chapter 1 has identified nonverbal auditory deficits associated with PPA syndromes, 

and it has been proposed that generic deficits of auditory signal processing may be 

intrinsic to PPA syndromes, and could underpin the neurolinguistic deficits associated 

with these diseases (Goll et al., 2010a; Grube et al., 2016), reflecting underlying network 

pathophysiology. 
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Consistent with the clinico-anatomical profiles described in Chapter 1, nfvPPA 

and lvPPA syndromes are associated with more prominent deficits of early perceptual 

auditory analysis. svPPA, by contrast is particularly associated with auditory associative 

deficits and impaired sound meaning (Bozeat et al., 2000; Goll et al., 2010a, 2011; 

Rohrer et al., 2012; Golden et al., 2015b, 2017; Grube et al., 2016; Hardy et al., 2016; 

Henry et al., 2016). 

In this Chapter and in Chapter 4, I explore auditory speech signal processing 

in patients with nfvPPA, svPPA and lvPPA relative to healthy older individuals, using 

experimental stimuli based on sequences of spoken syllables. These sequences were 

manipulated for three generic auditory speech signal characteristics relevant to 

previously documented neurolinguistic deficits in PPA syndromes: temporal regularity, 

phonemic structure, and entropy. These “building blocks” of speech signals have not 

been explored systematically in PPA previously. 

Analysis of temporal structure is critical for speech segmentation (and 

therefore lexical access) in healthy individuals (Dilley & McAuley, 2008; Dilley et al., 

2010), and particularly vulnerable in nfvPPA (Grube et al., 2016). Here, I varied the 

syllabic timing so that the interval between syllables was either regular (isochronous) or 

irregular (anisochronous).  

Phonemes are the smallest intelligible units of spoken language and as such 

constitute a special category of auditory ‘objects’ (Griffiths & Warren, 2004): phonemic 

processing deficits are prominent in lvPPA and nfvPPA (Rohrer et al., 2010b; Hailstone 

et al., 2012; Hardy et al., 2015; Henry et al., 2016). Here, I manipulated the higher-order 

spectral structure that distinguishes natural (intelligible) phonemes from complex, but 

synthetic (unintelligible) speech-like sounds (Blesser, 1972), in order to target a 

universal neural mechanism of phoneme detection relevant to any language. 

‘Entropy’ is a concept derived from information theory describing the average 

amount of information carried by any signal (Shannon, 1948; Overath et al., 2007): it 

measures signal unpredictability, in the sense that an unpredictable signal is less 

‘redundant’ and therefore conveys more information (henceforth I use the term 

‘information’ in this technical sense). I manipulated the information content (entropy) of 
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the experimental stimuli by varying the predictability of pitch patterns across successive 

syllables in a sequence: a generic characteristic relevant to speech prosody, but not 

bound to the prosodic conventions of any particular language. Deficits of pitch pattern 

processing have been identified in all major PPA syndromes (Hsieh et al., 2011; Rohrer 

et al., 2012; Golden et al., 2015b, 2017). However, the manipulation used here – unlike 

those previously employed – was designed to index a brain mechanism responsible for 

computing the overall statistics of an auditory object (the ‘melody’ of the syllable 

sequence). An analogous computational mechanism has been invoked to account for 

the profile of evolving object recognition deficits across sensory modalities in svPPA 

(Lambon Ralph et al., 2010). 

In this Chapter, I identify behavioural signatures for each syndrome, before 

exploring the critical structural brain substrates driving performance on the auditory 

tasks across PPA syndromes. In Chapter 4, I use the same stimuli in the context of a 

functional magnetic resonance imaging (fMRI) experiment to identify functional 

neuroanatomical substrates: the mechanisms underpinning deficits for particular PPA 

syndromes. 

3.3. Key predictions 

 Patients with nfvPPA and lvPPA will show impaired processing of temporal 

regularity and phonemic spectral structure (Rohrer et al., 2010b; Hailstone et al., 

2012; Hardy et al., 2015; Grube et al., 2016; Henry et al., 2016). 

 Patients with svPPA will show impaired processing of predictability (entropy) of 

speech signals (Hsieh et al., 2011; Golden et al., 2015b, 2017; Lambon Ralph et 

al., 2016). 

 Processing of temporal regularity and signal predictability will correlate with grey 

matter volume in a distributed frontotemporal-subcortical network comprising 

posterior temporal, medial prefrontal and striatal cortex (Griffiths & Warren, 2002; 

Overath et al., 2007; Ide et al., 2013; Cope et al., 2014; Schaeverbeke et al., 

2016). 
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 Processing of phonemic spectral structure will correlate with grey matter volume 

in temporo-parietal cortex (Liberman & Mattingly, 1989; Scott et al., 2000; Hickok 

& Poeppel, 2007; Rauschecker & Scott, 2009). 

3.4. Materials and methods 

3.4.1. Participants 

Ten patients with nfvPPA (five female; mean age 71.2 ± 8.9 (SD) years), nine 

patients with svPPA (three female; mean age 63.8 ± 4.6 years), eight patients with 

lvPPA (three female; mean age 64.5 ± 6.3 years), and nineteen healthy older individuals 

(10 female; mean age 69.4 ± 4.5 years) participated in this study. Cerebrospinal fluid 

tau/ abeta profiles were available for six of the eight patients with lvPPA, all of which 

were consistent with Alzheimer’s pathology based on local reference ranges (total tau: 

beta-amyloid 1-42 ratio > 1). All participants were recruited in accordance with the 

procedures described in Section 2.1. Demographic and background clinical information 

are given in Table 3.1.   
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Table 3.1. Demographic, clinical and neuropsychological characteristics of 
participant groups. 

 
Significant differences (p<0.05) from healthy control values are indicated in bold; 
*significantly different from nfvPPA group; 

†
significantly different (p<0.05) from svPPA 

group; 
‡
significantly different (p<0.05) from lvPPA group; **see text for details. Reduced 

numbers of participants are indicated: 
a
n–1; 

b
n–2; 

c
n–3; 

d
n–4; 

e
n–5; 

f
n–6.  

Characteristic Controls nfvPPA svPPA lvPPA 

Demographic and clinical 
   

 

     No. (m:f) 9:10 5:5 6:3 5:3 

     Age (years) 69.4 (4.5) 71.2 (8.9) 63.8 (4.6)* 64.5 (6.3)* 

     Handedness (R:L) 18:1 8:2 8:1 7:1 

     Education (years) 15.8 (2.4) 14.8 (2.9) 14.9 (2.9) 14.9 (2.0) 

     MMSE (/30) 29.7 (0.6) 25.6 (4.6) 19.7 (9.1) 17.0 (7.8) 

     Symptom duration (years) - 4.8 (2.8) 5.3 (2.8) 4.4 (1.5) 

     PTA best ear (N:Mild:Mod) 10:7:0
b
 3:5:1

a
 5:4:0 3:5:0 

Background neuropsychology     

General intellect: IQ 
   

 

     PIQ 125.9 (7.3) 90.7 (21.4)
a
 72.3 (18.9) 65.4 (18.8)* 

     VIQ 124.6 (2.5) 101.2 (7.0) 102.1 (25.6) 87.8 (13.9) 

Episodic memory     

     RMT words (/50) 49.3 (0.9) 43.5 (6.3) 36.0 (8.0)
c,
* 34.8 (6.4)

b,
*

 

     RMT faces (/50) 45.2 (3.1) 39.3 (6.1) 33.3 (6.8)
c 

32.5 (9.7) 

Working memory     

     Digit span forward (max) 7.2 (1.2) 5.1 (0.8)
b 

6.0 (1.9) 3.4 (0.9)*,
†
 

     Spatial span forward (max) 5.5 (0.8)
c 

4.3 (1.1)
c,†

 5.4 (0.9) 3.6 (0.7)† 

Executive skills     

     Digit span reverse (max) 5.6 (1.2) 3.4 (0.9)
b
 4.4 (2.1) 2.0 (1.3)*,

†
 

     Spatial span reverse (max) 5.4 (1.0)
c 

4.4 (1.5)
c
 4.9 (2.0) 3.1 (1.1)*,

†
 

     Letter fluency (total) 16.8 (5.0) 5.5 (5.8)
d
 7.3 (6.5) 1.9 (1.7)

a,
*,

† 

     Category fluency (total) 23.6 (5.5) 10.7 (4.3)
d
 4.9 (5.8) 4.1 (3.2)

a.
*

 

     Trails A (s) 34.5 (6.8)
a 

86.9 (50.0)
b
 48.8 (18.2)

a 
111.5 (85.7)

†
 

Posterior cortical skills     

     GDA Calculation (/24) 15.3 (5.5) 5.7 (3.6)
c
 11.2 (9.8) 1.6 (2.2)*,

†
 

     VOSP Object Decision (/20) 19.2 (1.3)
a 

15.1 (4.6)
a 

16.8 (3.1)
a 

16.9 (2.1) 

Neurolinguistic functions     

Auditory input processing     

     PALPA-3 (/36) 35.8 (0.5)
c
 34.0 (2.6)

c
 32 (6.5) 31.5 (3.8) 

Word retrieval     

     GNT (/30) 26.4 (2.5) 17.0 (7.1)
a
 1.9 (4.6)* 3.6 (6.4)* 

Comprehension     

     BPVS (/51) 49.5 (1.3) 43.4 (5.7) 10.1 (14.9)*,
‡
 35.5 (13.0)* 

     Concrete synonyms (/25) 24.1 (0.8)
c
 21.3 (4.7)

c
 14.6 (3.2)*,

‡
 17.6 (2.6)

a
,* 

     Abstract synonyms (/25) 24.3 (0.9)
c
 21.1 (5.1)

c
 15.9 (3.5)

c,
* 14.7 (4.1)

a
,*

 

     PALPA-55 sentences (/24) 23.8 (0.6)
e
 22.1 (3.3)

c
 19.7 (6.8) 15.0 (5.1)* 

Speech repetition     

    Polysyllabic words (/45) 44.4 (0.9)
e
 33.2 (12.0)

d,†
 43.8 (1.6) 32.0 (7.8)

†
 

Psychoacoustic tasks**     

     Temporal regularity (/20) 19.5 (1.0) 18.0 (2.3) 18.6 (2.7) 17.0 (3.9) 

     Phonemic structure (/20) 18.8 (1.6) 15.3 (3.4) 15.6 (1.6) 11.8 (2.9)*,
†
 

     Entropy  (/20) 19.1 (1.8) 14.0 (3.1) 15.0 (4.0) 13.5 (4.1) 
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3.4.2. Experimental stimuli 

The stimuli used here and in Chapter 4 were based on sequences of spoken 

syllables comprising consonant-vowel or vowel-consonant phoneme combinations, 

recorded in a standard southern English accent by a young adult male speaker (myself).  

The syllables ‘af’, ‘ba’, ‘da’, ‘mo’, ‘om’, ‘or’, ‘po’, and ‘ro’ were selected for high 

intelligibility and identifiability, based on pilot testing in five young adult listeners in the 

Dementia Research Centre. In MATLAB R2012a (https://uk.mathworks.com/), recorded 

syllables were each edited to duration 240 msec and concatenated with random 

ordering into sequences; each sequence comprised 20 syllables and intervening silent 

intervals, with fixed overall sequence duration (7.65 seconds) and root-mean-square 

intensity. 

I varied three sequence parameters independently to create the experimental 

conditions used in these Chapters. Temporal regularity was manipulated by varying the 

inter-syllable interval within each sequence such that the interval was either kept 

constant at 150ms (isochronous condition) or randomly allocated in the range 50 to 250 

msec around a mean of 150 msec (anisochronous condition), maintaining the same 

overall sequence tempo. 

Phonemic structure was manipulated by spectrally rotating spoken syllables 

using a previously described procedure (Blesser, 1972); spectral rotation preserves 

overall acoustic spectral and temporal complexity and bandwidth but radically alters 

spectral detail, by inverting the acoustic frequency spectrum. This manipulation renders 

the rotated signal unintelligible as human speech (it is perceived as ‘alien’ or ‘computer 

speech’) and here enabled me to create stimulus conditions in which the constituent 

syllables in each sequence were either all unrotated (natural) or all spectrally rotated 

(unintelligible).  

Entropy (or average information content in the sequence) was manipulated by 

varying fundamental frequency (pitch) of constituent syllables over a half-octave range 

from a lower fundamental frequency of 100 Hz with a 20-note octave division (i.e., not 

conforming to the intervals of Western music), adapting a previously described 

procedure (Overath et al., 2007). Pitch sequences were based on inverse Fourier 

https://uk.mathworks.com/
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transforms of f
n
 power spectra, using values of n = 0 (no correlation between successive 

pitch values) for the high entropy condition and n = 4 (high correlation between 

successive pitch values, approaching a sine wave contour for the low entropy condition. 

Examples of these stimuli are schematised in Figure 3.1 and included on the enclosed 

CD in Audio Files 3.1–3.6 (see Supplementary Table 2).  

 

Figure 3.1. Schematic representations of stimulus manipulations used to create 
the conditions in Chapters 3 and 4. The top panels show examples of isochronous 
and anisochronous sequences. The middle panels show spectrograms for syllable 
sequences in the natural and spectrally rotated conditions. The bottom panels show 
examples of low and high entropy sequences, based on degree of correlation between 
pitch (fundamental frequency, f0) of successive intervals (highly correlated and 
approaching a sine wave contour in the low entropy condition; uncorrelated in the high 
entropy condition).  
 



63 
 

3.4.3. Experimental psychoacoustic test procedure 

Each participant’s ability to perceive the key experimental manipulations was 

determined using psychoacoustic tests employing two-alternative-forced-choice 

decisions on the syllable sequences described above. Separate tests were administered 

to assess temporal processing (regular vs irregular sequences), phoneme detection 

(natural vs artificial [spectrally rotated] phonemes) and pitch pattern detection (low 

entropy vs high entropy sequences). Pictorial cards were used to ensure all participants 

understood the task instructions and to allow nonverbal responses where preferred 

(details of task instructions and aids used are in Figure 3.2). For each test, 20 stimuli (10 

representing each of the two conditions of interest) were presented; no feedback was 

given and no time limits were imposed. Participant responses were recorded for offline 

analysis. 

3.4.4. Analysis of clinical and background neuropsychological data 

Clinical and behavioural data were analysed in accordance with the general 

principles outlined in Section 2.9.1.  

3.4.5. Analysis of experimental psychoacoustic data 

Here, nonparametric Mann-Whitney U tests were used to compare groups on 

neuropsychological parameters where residuals were non-normally distributed. In 

separate regression (Spearman’s rank correlation) analyses over the participant cohort, 

I assessed experimental psychoacoustic task performance against background 

executive function (WASI Matrices score; a proxy for disease severity) and performance 

on the experimental phonemic task against a standard measure of phoneme 

discrimination (PALPA-3 score).  
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Figure 3.2. Visual aids used in behavioural testing. Pictorial cue cards were used to 
assist understanding and responding on the behavioural tasks. For the test assessing 
temporal processing (top panels), on each trial participants were asked to decide 
whether the sounds they heard came regularly or irregularly. For the test assessing 
processing of phonemic structure (middle panels), participants were asked to decide 
whether the sounds were made by a human or by a computer. For the test assessing 
processing of sequence entropy, participants were asked to decide whether the sounds 
were arranged randomly or following a pattern. On each trial, participants were able to 
respond verbally or by pointing to the appropriate cue card. 
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3.4.6. Brain MRI acquisition and voxel-based morphometry 

I first assessed disease-associated atrophy profiles in each patient group; see 

Section 2.9.2 for a description of the procedure. I also assessed neuroanatomical 

correlates of experimental behavioural task performance in each syndromic group 

individually, incorporating age, total intracranial volume (TIV) and symptom duration as 

nuisance covariates. Correlates of behavioural performance on the temporal regularity 

and prosodic predictability tests were assessed within a region comprising bilateral 

posterior superior temporal gyrus, planum temporale, supramarginal gyrus, 

supplementary motor area, anterior cingulate and striatum (Griffiths & Warren, 2002; 

Overath et al., 2007; Ide et al., 2013; Cope et al., 2014). Grey matter correlates of 

performance on the phoneme detection test were assessed with a more restricted 

subregion comprising left posterior superior temporal gyrus, planum temporale and 

supramarginal gyrus (Liberman & Mattingly, 1989; Scott et al., 2000; Hickok & Poeppel, 

2007; Rauschecker & Scott, 2009). Anatomical regions are depicted in Figure 3.3. 

Ultimately, this approach lacked power to detect changes within each 

syndromic group separately, so I decided to pool just the nfvPPA and svPPA groups (i.e. 

the syndromes most likely to have FTLD pathology) into a combined cohort. Age, total 

intracranial volume, symptom duration and group membership were incorporated as 

nuisance covariates in a multiple regression design, using the same small volumes as 

described above and depicted in Figure 3.3. All other parameters were consistent with 

the procedure described in Section 2.9.2.  
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Figure 3.3. Representative sections of small volume corrections. Small volumes are 
rendered on sections of the mean normalised brain template for the patient cohort. For 
the contrasts assessing temporal processing and prosodic predictability processing, the 
anatomical region of interest (green, above) comprised bilateral posterior superior 
temporal gyrus/sulcus, planum temporale, supramarginal gyrus, striatum (caudate and 
putamen), supplementary motor cortex and anterior cingulate. For the contrast 
assessing phonemic processing, the anatomical region for small volume correction (lilac, 
below) was a subregion comprising left posterior superior temporal gyrus/sulcus, planum 
temporale and supramarginal gyrus. 
 

3.5. Results 

3.5.1. General participant characteristics 

Comparisons of general characteristics and neuropsychological performance 

between participant groups are summarised in Table 3.1. 

Patient groups did not differ significantly from healthy controls in terms of 

gender, handedness or years in formal education (all p > 0.05). The svPPA and lvPPA 

groups were significantly younger than both the healthy control and nfvPPA groups (p < 

0.05; accordingly, the effect of age as a nuisance covariate of group experimental 

psychoacoustic task performance was separately assessed). The patient groups had 

comparable symptom duration (p = 0.4), and there were no overall group differences in 

terms of MMSE score (p = 0.5). Participant groups showed no significant differences in 

peripheral hearing (see Table 3.1). 

3.5.2. Experimental psychoacoustic task performance 

Group performance profiles on the experimental psychoacoustic tasks are 

summarised in Table 3.1 and individual data are plotted in Figure 3.4. On the tests of 

phoneme detection and entropy analysis, all patient groups performed significantly 
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worse than the healthy control group (all p < 0.05). On the test of temporal regularity 

processing, the nfvPPA and lvPPA groups performed significantly worse than the 

healthy control participants (p < 0.05), whereas the performance of the svPPA group did 

not differ significantly from controls (p = 0.07). The lvPPA group also performed 

significantly worse than the nfvPPA and svPPA patient groups on this task. This pattern 

of results was not altered by incorporating age as a nuisance covariate.  

Performance on each of the experimental psychoacoustic tasks correlated 

significantly with a standard index of background executive capacity (WASI Matrices 

score; all p<0.01), an index of overall disease severity. Performance on the experimental 

phoneme detection task correlated significantly with a standard measure of phoneme 

discrimination ability (PALPA-3 score; p = 0.04).  

3.5.3. Neuroanatomical data 

Statistical parametric maps of disease-associated atrophy are shown in Figure 

3.5. Maps of grey matter regions associated in the combined patient cohort with 

performance on the experimental psychoacoustic tasks are shown in Figure 3.6. 

Local maxima for disease-related atrophy are summarised in Table 3.2; local 

maxima of grey matter change correlated with experimental psychoacoustic task 

performance are summarised in Table 3.3. 
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Figure 3.4. Performance on experimental psychoacoustic tasks. Scatter plots 
showing individual performance on each of the psychoacoustic tasks of interest, by 
participant group. Note that individual data points have been “jittered” randomly so as to 
minimise overlap. 
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Figure 3.5. Disease-associated grey matter atrophy in each patient group. The 
Figure shows SPMs of disease-associated grey matter atrophy relative to healthy 
controls, based on a voxel-based morphometric analysis.  
 

Figure 3.6. Neuroanatomical correlates of performance on speech signal analysis 
tasks. Statistical parametric maps of regional grey matter volume positively associated 
with performance on speech signal analysis tasks (assessing processing of temporal 
regularity, phonemic spectral structure and prosodic predictability, respectively) in the 
combined nfvPPA and svPPA patient cohort.  
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Table 3.2. Neuroanatomical associations of disease-related grey matter atrophy 
 

 
The Table summarises the distribution of significant disease-related regional grey 
matter loss, comparing each syndromic group with the healthy control group in 
separate voxel based morphometric analyses. All values shown were significant at a 
lenient threshold p<0.001 uncorrected over the whole brain volume; clusters >100 
voxels in size are included and coordinates of local maxima are in MNI standard 
space; *region also identified as a significant association of experimental 
psychoacoustic task performance (see Table 3.3). 
  

Region Side Cluster 
(voxels) 

Peak (mm) t-value 

x y z 

Nonfluent variant 

     Supplementary motor cortex* L 2581 -8 9 48 5.97 

     Insula/ precentral gyrus L 4903 -38 14 2 5.80 

     Lingual gyrus R 104 21 -48 -4 5.19 

     Lingual gyrus L 595 -15 -56 -2 5.05 

     Middle frontal gyrus R 108 45 12 34 5.00 

     Fusiform gyrus L 185 -28 -12 -33 4.90 

     Inferior temporal gyrus L 376 -56 -63 -15 4.87 

     Supplementary motor cortex R 141 12 3 60 4.84 

     Fusiform gyrus R 279 28 -30 -24 4.78 

     Thalamus L 101 -20 -32 -3 4.65 

     Precentral gyrus R 304 40 -15 52 4.49 

     Supramarginal gyrus R 193 57 -44 39 4.18 

     Supramarginal gyrus* L 136 -40 -42 38 4.01 

Semantic variant  

     Temporal pole L 29614 -33 14 -32 13.82 

     Temporal pole R 8845 39 9 -34 7.79 

     Anterior cingulate L 103 -4 -3 33 4.71 

     Anterior cingulate (separate locus) L 406 -4 24 32 4.04 

Logopenic variant  

     Middle/ superior temporal gyrus L 15162 -60 -12 -12 7.77 

     Middle/ superior temporal gyrus R 2246 62 -26 -8 6.36 

     Supramarginal gyrus L 738 -36 -46 42 5.83 

     Middle occipital gyrus L 363 -27 -86 28 5.72 

     Angular gyrus L 384 -45 -48 27 5.55 

     Hippocampus R 699 27 -6 -16 5.46 

     Postcentral gyrus L 304 -50 -24 40 5.31 

     Middle frontal gyrus L 743 -33 50 26 5.31 

     Superior parietal lobule L 129 -21 -75 44 5.28 

     Temporal pole R 156 40 8 -36 5.03 
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Compared with the healthy control group, each syndromic group exhibited the 

anticipated profile of disease-associated grey matter loss (see Figure 3.5). The nfvPPA 

group had bilateral, predominantly fronto-insular atrophy that was more marked in the 

left cerebral hemisphere. The svPPA group showed asymmetric atrophy predominantly 

involving the antero-mesial and inferior temporal lobes, again more marked in the left 

cerebral hemisphere. The lvPPA group again showed asymmetric atrophy, 

predominantly involving the middle and superior temporal lobes, but with considerable 

parietal extension into supramarginal gyrus and associated structures. 

 

Table 3.3. Neuroanatomical correlates of speech signal analysis. 
 

 

The Table summarises statistically significant positive associations between grey matter 
volume and performance on psychoacoustic tasks to assess the temporal regularity, 
phoneme structure and prosodic predictability of experimental speech stimuli (see text 
for details), based on a voxel based morphometric analysis of brain MR images for the 
combined nfvPPA and svPPA patient cohort. All values were significant at p<0.05FWE 
within a prespecified neuroanatomical small volume correction (see Figure 3.1); *local 
maximum coincident with regional disease-related grey matter atrophy in the nfvPPA 
group (see Table 3.2). 
 

 
 

Performance on the task assessing temporal regularity in speech signals was 

positively associated with grey matter volume in left supplementary motor area and right 

caudate (both p<0.05FWE within the pre-specified region of interest). Performance on the 

task assessing phoneme detection was associated with grey matter volume in left 

supramarginal gyrus (p<0.05FWE within the pre-specified region of interest). Performance 

on the task assessing prosodic predictability was associated with grey matter volume in 

right putamen (p<0.05FWE within the pre-specified region of interest).  

 

Contrast Region Side Cluster 
(voxels) 

Peak (mm) t-value p-value 

   x y z   

Temporal 
regularity 

Supplementary 
motor*

 L 427 -2 -9 63 7.93 0.016 

 Caudate R 216 16 -2 20 7.02 0.042 

Phonemic 
structure 

Supramarginal 
gyrus*

 L 12 -58 -28 14 5.53 0.026 

Prosodic 
predictability 

Putamen
 

R 289 28 0 6 7.01 0.035 
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3.6. Discussion 

Here, I have demonstrated that all three of the major PPA syndromes are 

associated with core deficits at the level of speech signal decoding, relative to healthy 

older individuals. Furthermore, I have identified neuroanatomical correlates of the 

defective analysis of these generic speech signal attributes that extend across the two 

canonical FTLD PPA syndromes: nfvPPA and svPPA.  

Consistent with previous evidence concerning the processing of nonverbal 

sounds in PPA (Goll et al., 2010a, 2011; Rohrer et al., 2012; Golden et al., 2015b, 2017; 

Grube et al., 2016; Hardy et al., 2016), processing of speech signal temporal regularity 

(an early perceptual property) was impaired in the patient groups with nfvPPA and 

svPPA, while processing of phonemic structure and entropy processing were impaired 

across all three patient groups. These findings substantiate the emerging picture of 

more generic, extra-linguistic deficits that may contribute to the hallmark neurolinguistic 

syndromes of PPA.  

Due to the lack of statistical power to run robust VBM analyses within 

individual syndromic groups, I combined the nfvPPA and svPPA groups in order to 

identify shared neuroanatomical substrates implicated in the processing of these key 

auditory characteristics. The combined FTD-PPA cohort could necessarily not include 

the lvPPA participants as this syndrome is typically associated with AD pathology (and 

indeed at least six of the eight participants included here had CSF profiles consistent 

with AD pathology; see Section 3.4.1). I focus on this patient group more specifically in 

Chapter 4. 

Across the combined nfvPPA and lvPPA patient cohort, the psychoacoustic 

deficits identified here had separable structural neuroanatomical substrates within 

distributed cerebral cortico-subcortical networks that have previously been implicated in 

the analysis of auditory object and multimodal sensory information (Liberman & 

Mattingly, 1989; Scott et al., 2000; Griffiths & Warren, 2002; Hickok & Poeppel, 2007; 

Overath et al., 2007; Rauschecker & Scott, 2009; Ide et al., 2013; Cope et al., 2014; 

Schaeverbeke et al., 2016). 
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Impaired processing of auditory rhythm and a neuroanatomical correlate in 

supplementary motor cortex have been identified previously in nfvPPA (Grube et al., 

2016; Schaeverbeke et al., 2016). My findings here confirm work suggesting that this is 

a structural substrate of auditory rhythm processing that extends to speech signals, and 

supports a link between impaired perception of production of speech in these patients 

(see Figure 1.7). In addition to any deficit of motor speech planning, impaired tuning, 

monitoring and rehearsal of own speech output may contribute to impaired production of 

lexical stress and prosody in patients with nfvPPA (Ash et al., 2010; Grube et al., 2016; 

Schaeverbeke et al., 2016). As discussed at more length in the discussion to Chapter 4, 

the supplementary motor cortex is involved in mediating the tracking and integration of 

prosodic and syntactical rhythms in the healthy brain (Hertrich et al., 2016), and speech 

apraxia in nfvPPA may at least in part reflect dysfunctional integration of temporal 

perceptual and speech output processes (Ash et al., 2010; Grube et al., 2016; 

Schaeverbeke et al., 2016). An additional correlate of temporal regularity processing 

was identified here in caudate nucleus, consistent with previous work implicating 

striatum in tracking of speech and other stimuli with extended temporal structures 

(Grahn & Rowe, 2013). My findings, therefore, corroborate previous formulations of 

nfvPPA as an essentially fronto-striatal disorder (Looi et al., 2012; Mandelli et al., 2014). 

The phonemic processing deficit exhibited by all three patient groups reflects 

impaired representation of auditory object features: whereas phonemes constitute a 

specialised category of auditory objects, an analogous deficit has been demonstrated 

previously to affect a range of nonverbal sounds across PPA syndromes (Goll et al., 

2010a). While linguistic phonological impairment is well recognised as a feature of 

nfvPPA and lvPPA, my findings here in the context of previous work suggest that 

phonemic deficits may be underpinned by a generic defect of auditory apperceptive 

function (Goll et al., 2010a; Hailstone et al., 2012; Grube et al., 2016; Henry et al., 

2016). 

The neuroanatomical correlate of impaired phoneme detection in my patient 

cohort was localized to left supramarginal gyrus: this temporo-parietal junctional zone 

has previously been identified as a phonological processing hub in the healthy brain 
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(Ravizza et al., 2004) and a seat of apperceptive discrimination of nonlinguistic sound 

objects such as human voices (Hailstone et al., 2011). Moreover, PPA syndromes show 

convergent involvement of this region (Rogalski et al., 2011). Although linguistic 

phonological impairment is not a defining feature of svPPA, this syndromic group has 

been shown to have deficits extending to the perceptual analysis of sounds (Goll et al., 

2010a; Grube et al., 2016): this might be parsimoniously interpreted as evidence for 

impaired top-down integration of auditory object properties into conceptual 

representations, in keeping with current computational models of semantic cognition 

(Lambon Ralph et al., 2016). This interpretation is consistent with previous findings 

suggesting that semantic and non-semantic systems interact in svPPA to manifest in 

ostensibly non-semantic deficits (Jefferies et al., 2004; Caine et al., 2009; Adlam et al., 

2013; Rogers et al., 2015). 

All three syndromic groups here showed impaired analysis of entropy, an 

index of the fundamental, nonlinguistic information content of speech signals. In the 

combined nfvPPA and svPPA patient cohort, this deficit had a neuroanatomical correlate 

in right putamen, corroborating work in the healthy brain implicating striatum in tracking 

and probabilistic coding of sensory signals (Haruno & Kawato, 2005; Overath et al., 

2007; Geiser et al., 2012; Grahn & Rowe, 2013; Nastase et al., 2015). This finding is in 

line with previous evidence for impaired extraction of global statistical regularities in 

auditory signals in both nfvPPA and svPPA (Goll et al., 2010a): a core deficit of this kind 

might potentially disrupt the decoding of syntactic, prosodic and musical patterns in 

nfvPPA (Rohrer et al., 2012; Golden et al., 2017) and computation of coherent auditory 

object concepts in svPPA (Lambon Ralph et al., 2010, 2016). 

From a clinical perspective, my findings in this Chapter show that generic 

auditory processing deficits in PPA syndromes extend to the processing of speech 

signals and suggest that such deficits may correlate with overall disease severity as well 

as standard indices (here, phonemic discrimination) of linguistic competence in these 

syndromes. With respect to the nosology of PPA, these findings suggest that certain 

measures of speech signal analysis (such as temporal coding) may stratify syndromes 

whereas other measures (such as spectral and statistical coding) may cross 
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conventional syndrome boundaries. These behavioural measures capture regional 

atrophy in FTLD-PPA within a distributed fronto-temporal network that overlaps but 

extends beyond canonical language areas (compare Tables 3.2 and 3.3), involving 

striatal structures implicated in nonverbal pattern decoding.  

The relationship between linguistic and pre-linguistic impairment in PPA will 

only be fully defined through more comprehensive neuropsychological correlation and 

functional neuroimaging techniques that address underlying neural mechanisms directly. 

The work I present in Chapter 4 attempts to do just this, employing functional MRI to 

delineate the functional mechanisms underpinning the deficits reported in this Chapter. 
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4. Functional neuroanatomy of speech signal decoding 

4.1. Chapter summary 

Here, I build on the results presented in Chapter 3, using the paradigm of functional MRI 

(fMRI) in a cohort of 27 patients with all three of the main syndromic variants of PPA 

relative to 15 healthy controls. All participants passively listened to sequences of spoken 

syllables while in the scanner. These sequences were again manipulated for the three 

auditory speech signal characteristics used in Chapter 3: temporal regularity, phonemic 

spectral structure, and pitch sequence entropy.  Relative to healthy controls, patients 

with nfvPPA showed reduced activity in medial Heschl’s gyrus in response to any 

auditory stimulation and reduced activation of anterior cingulate and supplementary 

motor area in response to temporal irregularity. Semantic variant patients had reduced 

activation of caudate and anterior cingulate in response to increased entropy, while 

patients with logopenic variant PPA showed reduced activation of posterior superior 

temporal cortex to phonemic spectral structure. My findings here corroborate those 

reported in Chapter 3, suggesting that impaired processing of core speech signal 

attributes may drive particular PPA syndromes. 

4.2. Introduction 

In this Chapter, I use the same stimuli as outlined in Chapter 3 to further probe 

the nature of the auditory processing deficits delineated in that Chapter. To do so, I use 

functional MRI (fMRI) to identify the functional mechanisms subserving the behavioural 

signatures identified in the previous Chapter. fMRI has been used previously to 

delineate altered (including compensatory) patterns of cerebral activation in PPA cohorts 

relative to healthy controls (Vandenbulcke et al., 2005; Wilson et al., 2010a; Nelissen et 

al., 2011; Goll et al., 2012b). However, this technique has not been used to identify 

fundamental mechanisms of abnormal auditory information processing in PPA. Here, I 

used activation fMRI to deconstruct the functional neuroanatomy of speech signal 

processing in PPA into component neural mechanisms that process core attributes of 

speech signals. I again studied a cohort of patients representing all major PPA 

syndromes in relation to healthy older individuals, using the same experimental stimuli 



77 
 

as in the previous experiment. These sequences were again manipulated for three 

generic auditory speech signal characteristics relevant to previously documented 

neurolinguistic deficits in PPA syndromes: temporal regularity, phonemic structure, and 

entropy. 

In order to assess the effect of PPA syndromes on these generic mechanisms 

of speech signal analysis relatively uncontaminated by executive, working memory or 

other extraneous task demands (Hickok & Poeppel, 2007; Rauschecker & Scott, 2009), I 

adopted a passive listening paradigm with ‘sparse’ image acquisition (presentation of 

auditory stimuli interleaved with scanner noise). 

4.3. Key predictions 

 PPA syndromes have separable functional neuroanatomical signatures of 

abnormal speech signal decoding relative to healthy older individuals. 

 The functional substrates of isochrony and entropy processing lie within a 

distributed network including posterior temporal, cingulate and striatal structures 

that have previously been implicated in the analysis of auditory regularity and 

predictability (Griffiths & Warren, 2002; Overath et al., 2007; Ide et al., 2013; 

Cope et al., 2014). 

 The substrate of phoneme processing will lie within superior temporal cortex, 

previously implicated in the analysis of phonemic structure (Liberman & Mattingly, 

1989; Scott et al., 2000; Hickok & Poeppel, 2007; Rauschecker & Scott, 2009).
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4.4. Materials and methods 

4.4.1. Participants 

Participants for this study comprised 12 patients with nfvPPA (five female; 

mean age 70.9 years), nine patients with svPPA (three female; mean age 62.3 years), 

six patients with lvPPA (two female; mean age 62.7 years), and fifteen healthy older 

individuals (eight female; mean age 68.8 ± 4.5 years). Participant groups differed slightly 

to those reported in Chapter 3. Reduced numbers are reported for the healthy control 

and lvPPA groups due to problems with functional data acquisition. Two extra datasets 

were available for patients with nfvPPA; their structural scans were not suitable for 

inclusion in the VBM analysis due to inaccurate tissue segmentation, but their functional 

scans were of sufficient quality for inclusion in this analysis. Supplementary Table 1 

gives an overview of participants involved in the two studies. All participants were 

recruited in accordance with the general methods outlined in Section 2.1. Cerebrospinal 

fluid tau/ abeta profiles were available for five of the six patients with lvPPA, all of which 

were consistent with Alzheimer’s pathology based on local reference ranges (total tau: 

beta-amyloid 1-42 ratio > 1). All participants had a comprehensive general 

neuropsychological assessment. Demographic, clinical and neuropsychological 

characteristics of participant groups are summarised in Table 4.1.  

4.4.2. Experimental stimuli 

Stimuli were created in accordance with the description outlined in Section 

3.4.2. The stimulus manipulations are schematised in Figure 3.1, although for the 

purposes of this Experiment, they were manipulated factorially. Examples of the stimuli 

are included on the enclosed CD in Audio Files 4.1–4.2 (see Supplementary Table 2). 

Using these manipulations, eight types of experimental trials were created: i) 

isochronous - natural speech - high entropy; ii) isochronous - natural speech - low 

entropy; iii) isochronous - rotated speech - high entropy; iv) isochronous - rotated 

speech - low entropy; v) anisochronous - natural speech - high entropy; vi) 

anisochronous - natural speech - low entropy; vii) anisochronous - rotated speech - high 

entropy; viii) anisochronous - rotated speech - low entropy. Combining these trial types 
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allowed contrasts between the conditions representing a particular experimental 

manipulation while balancing for each of the other manipulations. 

4.4.3. Post-scan behavioural testing 

Post-scan behavioural testing was carried out in accordance with the 

description given in Section 3.4.3. Please note that these behavioural data have been 

partially presented in Chapter 3, albeit for slightly altered participant groups as outlined 

in Section 4.4.1. These are reprised here as an adjunct to the main results of interest: 

the functional neuroanatomical signatures. 

4.4.4. Functional MRI protocol 

4.4.4.1. Stimulus delivery 

During fMRI scanning, stimuli were presented in randomised order via a 

notebook computer running the Cogent v1.32 extension of MATLAB 

(www.vislab.ucl.ac.uk/cogent_2000.php). Each stimulus trial was triggered by the MR 

scanner on completion of the previous MR image acquisition in a sparse acquisition 

protocol. Stimuli were played binaurally via electrodynamic headphones (www.mr-

confon.de) at a comfortable listening level (at least 70dB). Twenty stimulus trials were 

administered for each of eight trial types (Figure 1): across trial types, the contrasts of 

interest were constructed by comparing conditions that differed in the speech signal 

parameter of interest (temporal regularity, 80 isochronous vs 80 anisochronous trials; 

phonemic structure, 80 natural vs 80 spectrally rotated trials; information content, 40 

high vs 40 low entropy trials, assessed separately for natural and spectrally rotated 

speech stimuli). In addition, there were 20 silent ‘rest’ trials, yielding a total of 180 trials 

for the experiment for each participant. Participants were instructed to lie quietly and 

listen to the sounds with eyes lightly closed; there was no in-scanner output task. 

4.4.4.2. Brain image acquisition 

Functional MRI scans were acquired using a 12-channel RF receive head coil 

on a 3T Siemens Tim Trio MRI scanner. The EPI sequence comprised 48 oblique 

transverse slices covering the whole brain (slice thickness 2mm, inter-slice gap 

1mm, 3mm in-plane resolution, slice TR/TE 70/30ms, echo spacing 0.5ms, matrix size 
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64 x 64 pixels, FoV 192 x 192mm, phase encoding (PE) direction anterior-posterior) with 

slice tilt -30
o
 (T>C). Sparse-sampling EPI acquisition with repetition time 11.36 seconds 

(corresponding to an inter-scan interval of eight seconds) was used to reduce any 

interaction between scanner acoustic noise and auditory stimulus presentations. One 

initial brain volume was acquired to allow equilibration of longitudinal T1 magnetisation 

and discarded from further analysis. A B0 field-map was also acquired (TR = 688ms; 

TE1 = 4.92ms, TE2 = 7.38ms, 3 x 3 x 3mm resolution, no interslice gap; matrix size = 80 

x 80 pixels; FoV = 240 x 240mm; phase encoding direction = A-P) to allow post-

processing geometric correction of EPI data for B0 field inhomogeneity distortions. 

To enable structural coregistration and comparison with activation data, 

volumetric brain MRI scans were also acquired for each participant using the procedures 

described in General Methods Section 2.7. 

4.4.5. Data analyses 

4.4.5.1. Analysis of clinical and background neuropsychological data 

All clinical and background neuropsychological data were analysed in 

accordance with the procedures outlined in Section 2.10.1.   

4.4.5.2. Analysis of fMRI data 

Functional MRI data were analysed using statistical parametric mapping 

software (SPM12; www.fil.ion.ucl.ac.uk/spm). During initial image preprocessing, the 

EPI functional series for each participant was realigned to the first image. Images were 

unwarped incorporating field-map distortion information (Hutton et al., 2002). All 

individual functional images were spatially registered to a group mean template image 

using the DARTEL toolbox (Ashburner, 2007) and then normalised to Montreal 

Neurological Institute (MNI) standard stereotactic space. To construct the group brain 

template, each individual T1 weighted MR brain image was first coregistered to the 

corresponding EPI series and segmented into grey matter, white matter and 

cerebrospinal fluid. Functional images were smoothed using a 6mm full-width-at-half-

maximum Gaussian kernel, with voxel volume 3x3x3mm. For visualisation of results, a 

study-specific mean structural brain image template was created using the strategy 
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outlined in Section 2.8. An explicit mask was created using the procedure depicted in 

Section 2.8. 

Preprocessed functional images were entered into a first-level design matrix 

incorporating the experimental conditions modelled as separate regressors convolved 

with the standard haemodynamic response function and also including six head 

movement regressors generated from the realignment process. For each participant, 

first-level t-test contrast images were generated for the main effects of auditory 

stimulation (any sound versus silence); temporal regularity (isochronous > 

anisochronous sequences); phonemic structure (natural speech > spectrally rotated 

speech); and fundamental signal information content (high entropy > low entropy 

sequences), separately for natural and spectrally rotated speech conditions (since the 

decoding of pitch pattern is likely a priori to differ for speech signals with dissimilar 

spectral structure). Both ‘forward’ and ‘reverse’ contrasts were assessed in each case. 

Contrast images for each participant were entered into a second-level full factorial model 

in which effects within each participant group and differences between patient and 

healthy control groups were explored using t-test contrasts.  

Contrasts were assessed after a cluster-defining threshold of p<0.001 

uncorrected, then at a cluster-level significance threshold of p<0.05 after family-wise 

error (FWE) correction for multiple comparisons over the whole-brain and at a peak-level 

significance threshold of p<0.05FWE within two pre-specified neuroanatomical regions of 

interest in each cerebral hemisphere, in line with neuroanatomical evidence from 

previous studies. Correlates of speech temporal regularity and sequence information 

content (entropy) processing were assessed within a region comprising posterior 

superior temporal gyrus and sulcus, planum temporale, dorsal striatum and anterior 

cingulate cortex (Griffiths & Warren, 2002; Overath et al., 2007; Ide et al., 2013; Cope et 

al., 2014); while correlates of phonemic processing were assessed within a more 

restricted subregion comprising planum temporale and posterior to mid superior 

temporal gyrus and sulcus (Liberman & Mattingly, 1989; Scott et al., 2000; Hickok & 

Poeppel, 2007; Rauschecker & Scott, 2009). Anatomical regions were obtained and 

edited to conform to the study-specific template brain image using the procedures 
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described in General Methods Section 2.9. Regions of interest are presented in Figure 

4.1. 

 

Figure 4.1. Anatomical regions of interest. The Figure shows representative sections 
of anatomical regions used for multiple voxel-wise comparisons corrections in region-of-
interest analyses based on prior anatomical hypotheses (see text). Bi-hemispheric 
regions of interest are rendered on sections of the average normalized brain template 
for the combined patient cohort. The left cerebral hemisphere is shown on the left on the 
coronal section and above in the axial section. For the contrast assessing phonemic 
processing, the anatomical region for small volume correction comprised left posterior 
superior temporal gyrus/sulcus and planum temporale (red areas). For the contrasts 
assessing temporal processing and sequence information (entropy) processing, the 
anatomical region of interest comprised this left superior temporal lobe region plus 
additional regions in right superior temporal lobe, striatum (caudate and putamen), and 
anterior cingulate cortex (red plus blue areas). 
 

For experimental contrasts of interest in analyses directly comparing the 

healthy control group with each patient group, linear regression models were used to 

assess any correlation of effect size (beta parameter) with performance on the 

corresponding post-scan behavioural task across the two groups. 

4.5. Results 

4.5.1. General participant characteristics 

Participant groups did not differ in terms of gender, handedness or educational 

attainment (all p>0.05; Table 4.1); the svPPA and lvPPA groups were on average 

significantly younger than the healthy control and nfvPPA groups (p<0.05). Patient 

groups did not differ for mean symptom duration and showed profiles of 

neuropsychological impairment in keeping with the respective syndromic diagnoses 

(Table 4.1). There were no significant differences in peripheral hearing function between 

participant groups (Table 4.1).  
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Table 4.1. Demographic, clinical and neuropsychological characteristics of 
participant groups 
 

 
Significant differences (p<0.05) from healthy control values are in bold; *significantly 
different from lvPPA group; 

†
significantly different (p<0.05) from nfvPPA group 

‡
significantly different from svPPA group. Reduced numbers of participants are 

indicated: 
a
n–1; 

b
n–2; 

c
n–3; 

d
n–4; 

e
n–5; 

f
n–6.  

4.5.2. Functional MRI data 

Significant neuroanatomical findings from the fMRI analysis are summarised in 

Table 4.2; Figure 4.2 shows statistical parametric maps and beta parameter estimates 

for key contrasts and conditions.  

Characteristic Controls nfvPPA svPPA lvPPA 

Demographic and clinical 
   

 

     No. (m:f) 7:8 7:5 6:3 4:2 

     Age (yrs) 68.8 (4.5) 70.9 (8.6) 62.3 (5.7)
†
 62.7 (5.8)

†
 

     Handedness (R:L) 14:1 10:2 8:1 5:1 

     Education (yrs) 16.4 (2.6) 14.8 (2.9) 14.9 (2.9) 14.3 (3.1) 

     MMSE (/30) 29.8 (0.4) 24.4 (5.2) 19.8 (9.3) 16.0 (8.8)† 

     Symptom duration (yrs) - 4.9 (2.6) 5.0 (2.7) 4.7 (1.6) 

     PTA best ear (N:Mild:Mod) 8:7:0 3:6:2
a
 5:3:0

a
 3:3:0 

General intellect: IQ 
   

 

     PIQ 126.7 (7.3)
 

84.5 (23.6)
a
 70.9 (7.3) 68.8 (20.9) 

     VIQ 126.1 (9.8) 97.0 (22.2) 101.4 (25.2) 86.0 (15.4) 

Episodic memory 
   

 

     RMT words (/50) 49.5 (0.9) 42.5 (6.8)
a
 35.3 (8.5)

b
 34.0 (11.9)

b
 

     RMT faces ( /50) 45.5 (2.9) 38.8 (5.8) 32.0 (5.9)
b†

 34.8 (7.4) 

Working memory     

     Digit span forward (max) 7.3 (1.0)
 

4.9 (1.1)
c
 6.2 (2.0) 3.0 (0.6) 

†‡
 

     Spatial span forward (max) 5.5 (1.0)
b
 4.3 (1.0)

d
 5.4 (0.9) 3.5 (0.8)

†‡
 

Executive skills 
   

 

     WASI Block Design (/71) 45.8 (12.4) 21.3 (18.5) 33.6 (23.3) 15.7 (16.4) 

     WASI Matrices (/32) 27.3 (2.3) 15.9 (8.7) 19.3 (10.5) 14.0 (6.7) 

     Digit span reverse (max) 5.7 (1.2) 3.0 (1.4)
c ‡

 4.4 (2.1) 1.8 (1.5)
‡ 

     Spatial span reverse (max) 5.6 (0.9)
b
 4.1 (1.6)

d
 4.7 (1.9) 3.0 (1.3)

‡
 

     Letter fluency (total) 17.4 (4.6) 5.5 (5.8)
f
 7.3 (6.3)

a
 2.2 (1.8)

a
 

     Category fluency (total) 25.3 (5.1) 10.7 (4.3)
e
 5.2 (5.7) 5.0 (3.5)

a†
 

     Trails A (s) 34.2 (5.3) 90.7 (49.4)
b ‡

 46.9 (19.3)
a
 126.2 (96.2)

‡
 

Posterior cortical skills 
   

 

     GDA calculation (/24) 14.7 (5.9) 5.0 (3.9)
d
 9.8 (8.8)

 
1.7 (5.9)‡ 

     VOSP object decision (/20) 18.9 (1.4) 15.2 (4.1)
a
 16.3 (3.2)

a
 16.7 (2.3) 

Neurolinguistic skills     

Auditory input processing     

     PALPA-3 ( /36) 35.8 (0.6)
b
 33.3 (3.2)

d 
32.0 (6.5) 31.2 (3.9) 

Word retrieval     

     GNT (/30) 26.3 (2.7)
 

15.6 (7.8)
a
 1.9 (4.6)† 4.7 (7.2)

†
 

     BNT (/30) 29.7 (0.7)
c
 20.6 (8.9)

e 
5.3 (7.1)†

 
9.3 (7.7)

† 

Comprehension     

     BPVS (/51) 49.5 (1.4) 42.1 (8.0)
 

9.6 (15.8)
a†

* 34.2 (14.7) 

     Concrete synonyms ( /25) 24.3 (0.9)
b
 21.1 (4.7)

c 
14.2 (3.2)*

†
 17.8 (3.1)

a
 

     Abstract synonyms ( /25) 24.4 (1.0)
b
 20.8 (5.0)

c
 15.5 (3.5)

a†
 15.8 (4.5)

a
 

     PALPA-55 sentences (/24) 23.7 (0.6)
d 

21.1 (4.2)
d 

19.4 (6.7)
 

13.7 (5.1)
† 

Speech repetition     

     Polysyllabic words (/45) 44.5 (0.9)
b 

27.7 (17.3)
f‡

 43.8 (1.6)
 

32.2 (7.0)
‡
 

     Short sentences (/10) 10.0 (0.0)
c
 5.0 (4.7)

f‡
 9.6 (0.7)

a
 3.5 (3.1)

a‡
 

Spelling     

     BST (/30) 26.8 (1.7)
b 

16.1 (9.3)
e
 11.5 (9.8)

a
 8.6 (5.7)

a
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Table 4.2. Summary of fMRI associations of speech signal processing across participant groups 
 

Group Domain Contrast Region Side Cluster  Peak (mm) t-score p-value 

  
   

(voxels) x y z 
  

Within groups  

Healthy controls  Auditory stimulation All sound > silence HG/ STG R 1352 54 -12 0 14.80 <0.001 

  
 

HG/  PT L 1424 -42 -24 6 14.54 <0.001 

   IFG R 45 54 27 18 4.73 0.049 

   IFG L 102 -45 30 12 4.70 0.001 

  Silence > all sound PCu R 58 21 -63 27 5.59 0.018 

 Temporal regularity Anisochronous > isochronous Post STG R 7 69 -30 9 4.25 0.049 

 Phonemic structure Natural  > rotated speech Post STG/ STS L 739 -60 -12 -3 10.38 <0.001 

  
 

Post STS/ Mid STG R 593 54 -30 3 8.01 <0.001 

   M1 L 69 -51 -6 48 7.97 0.006 

   M1 R 44 45 6 51 5.80 0.045 

 Entropy High > low entropy Caud
† 
 R 54 18 12 3 4.35 0.015 

nfvPPA  Auditory stimulation All sound > silence HG/ PT L 938 -60 -18 3 11.2 <0.001 

  
 

HG/ PT/ post STG/S R 936 63 -18 9 10.4 <0.001 

  Silence > all sound TPO R 50 42 -60 9 4.35 0.033 

 Temporal regularity Isochronous > anisochronous ACC/ SMA R 56 6 3 42 5.43 0.018 

 Phonemic structure Natural > rotated speech Post STS/ Mid STG L 275 -54 3 -12 6.26 <0.001 

   Post /Mid STS R 257 69 -18 -6 5.53 <0.001 

   IFG L 108 -57 18 12 4.95 <0.001 

   M1 R 52 51 0 48 4.93 0.023 

svPPA Auditory stimulation All sound > silence HG/ PT L 877 -45 -36 12 11.08 <0.001 

   HG/PT/Post STG/S R 867 63 -30 3 7.25 <0.001 
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  Silence > all sound Post ITS* R 62 54 -18 -21 4.40 0.013 

 Phonemic structure Natural > rotated speech M1 L 48 -51 3 48 6.53 0.032 

   Post STS R 132 57 -30 3 5.82 <0.001 

   Post STS/ Mid STG/S L 104 -63 -30 -3 5.68 0.001 

   SMA R 49 6 12 63 5.20 0.030 

   M1 R 67 48 0 45 4.97 0.007 

 Entropy High > low entropy OFC/IFG
‡
 R 83 39 57 -15 4.33 0.003 

  Low > high entropy DLPFC
‡
 R 64 18 39 39 4.81 0.012 

   ACC
‡
 L 13 -9 21 30 4.41 0.002 

   Caud
‡
 L 11 -21 -3 21 4.85 0.009 

lvPPA Auditory stimulation All sound > silence HG L 296 -39 -27 6 7.95 <0.001 

   HG/ PT/ Post STG/S*  R 641 63 -24 0 6.90 <0.001 

 Phonemic structure Rotated > natural speech DLPFC* L 76 -33 42 30 4.90 0.004 

Between groups 

Controls > 
nfvPPA 

Auditory stimulation  All sound > silence Medial HG R 48 39 -21 12 5.59 0.038 

 Temporal regularity Anisochronous > isochronous ACC R 16 6 3 42 4.65 0.014 

Controls > 
svPPA 

Entropy High > low entropy Caud
‡
 L 12 -21 -3 21 4.32 0.006 

   ACC
‡
 L 12 -9 21 30 5.08 0.004 

Controls > 
lvPPA 

Phonemic structure Natural > rotated speech Post STG/ STS* L 12 -60 -24 0 4.12 0.025 

 
Regional cerebral activations for contrasts of interest in each participant group and between control and patient groups are summarised (see text 
for details of contrasts). 

†
indicates that signal was driven by natural speech condition, or

 ‡
by spectrally rotated speech condition; *indicates region 

also the site of a local maximum in the VBM analysis of grey matter atrophy (see Table 3.3). Local maxima significant at p<0.05FWE cluster-level, 
corrected for multiple voxel-wise comparisons over the whole brain are in bold; other maxima are significant at p<0.05FWE peak-level corrected for 
multiple comparisons over prespecified anatomical regions of interest (see text and Figure 4.1).  
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Figure 4.2. Statistical parametric maps showing fMRI associations of speech signal 
processing across participant groups. Significant regional brain activations for contrast of 
interest are shown within healthy control and patient groups (left and middle image panels; T 
scores for relevant contrasts coded in colour bars) and between groups (significantly greater 
activation in healthy controls than the corresponding patient group; right image panels). 
Contrasts are coded as follows (see text for details): Temporal, anisochronous > 
isochronous conditions (within-controls; controls > nfvPPA), isochronous > anisochronous 
conditions (within-nfvPPA); Phoneme, natural > spectrally rotated speech conditions (within-
controls; controls > lvPPA), spectrally rotated > natural speech conditions (within-lvPPA); 
Entropy, high > low sequence entropy conditions (for natural speech conditions, within-
controls; controls > svPPA), low > high sequence entropy conditions (for spectrally rotated 
speech conditions, within-svPPA). Plots of condition effect size (mean beta parameter 
estimate ± standard error) are shown (right) for the group comparisons, based on data for 
peak voxels from the between-group contrasts (see Table 4.2) in anterior cingulate 
(temporal contrast), posterior superior temporal gyrus (phoneme contrast), caudate nucleus 
(entropy contrast, top) and anterior cingulate (entropy contrast, bottom).  
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4.5.2.1. Auditory stimulation 

Auditory stimulation (all sound conditions versus silence) produced extensive 

bilateral activation of Heschl’s gyrus and superior temporal gyrus in all participant groups (all 

p<0.05FWE over the whole brain). Certain participant groups showed a significantly greater 

effect of silence than auditory stimulation in posterior temporo-parietal cortices: the healthy 

control group showed this effect in precuneus, the nfvPPA group in right temporo-parieto-

occipital junction and the svPPA group in posterior inferior temporal sulcus (all p<0.05FWE 

over the whole brain). Auditory stimulation produced significantly greater activation of medial 

Heschl’s gyrus in the healthy control group than the nfvPPA group but no other significant 

group differences at the prescribed threshold (p<0.05FWE over the whole brain). 

4.5.2.2. Temporal irregularity 

Processing of temporal irregularity in speech signals (anisochronous versus 

isochronous conditions) was associated in the healthy control group with significant 

activation of right posterior superior temporal gyrus (p<0.05FWE within the pre-specified 

anatomical region of interest); while temporal regularity (isochronous versus anisochronous 

conditions) was associated in the nfvPPA group with significant activation of right anterior 

cingulate and supplementary motor cortices (p<0.05FWE over the whole brain; Figure 4.2). 

The effect of temporal irregularity was significantly greater for the healthy control group than 

the nfvPPA group in anterior cingulate cortex (p<0.05FWE within the pre-specified anatomical 

region of interest; Figure 4.2). Plotting parameter estimates for the temporal regularity 

contrast (Figure 4.2) revealed a relative deactivation to anisochronous syllable sequences in 

the nfvPPA group that was not present in the healthy control group. No other significant 

group correlates of temporal processing were identified. 

4.5.2.3. Phonemic structure 

The presence of phonemic structure (natural versus spectrally rotated phonemes) 

was associated with significant bilateral activation of lateral posterior to mid superior 

temporal gyrus and sulcus and more dorsal motor areas in the healthy control group, the 

nfvPPA group and the svPPA group (all p<0.05FWE over the whole brain; Figure 4.2). 

Conversely, the lvPPA group showed no activation in response to phonemic structure at the 
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prescribed threshold but rather significant activation of left dorsolateral prefrontal cortex in 

response to spectrally rotated speech (p<0.05FWE over the whole brain). The effect of 

phonemic structure in left posterior superior temporal cortex was significantly greater for the 

healthy control group than the lvPPA group (p<0.05FWE within the pre-specified anatomical 

region of interest), driven by increased activation in response to natural speech in healthy 

controls that was not present in patients with lvPPA (Figure 4.2). 

4.5.2.4. Entropy 

Increasing signal information content (high versus low sequence entropy) in 

natural speech sequences was associated with significant activation of right caudate nucleus 

in the healthy control group (p<0.05FWE over the whole brain; Figure 4.2); none of the patient 

groups showed a significant effect for this contrast while healthy controls showed no 

significant effect for spectrally rotated speech conditions at the prescribed threshold. 

However, for spectrally rotated speech conditions the svPPA group showed significant 

activation of right orbitofrontal cortex and inferior frontal gyrus in response to increasing 

signal information content (p<0.05FWE over the whole brain) and significant activation of right 

dorsolateral prefrontal cortex, left anterior cingulate and left caudate in response to reduced 

signal information content (low vs high sequence entropy; p<0.05FWE within the pre-specified 

anatomical region of interest, Figure 4.2). The effect of increasing signal information was 

significantly greater in the healthy control group than the svPPA group (p<0.05FWE within the 

pre-specified anatomical region of interest), driven by relative deactivation of left caudate in 

the high entropy condition and activation of anterior cingulate cortex in the low entropy 

condition in the patients with svPPA (Figure 4.2). 

4.5.3. Correlations of functional neuroanatomical with post-scan behavioural data 

Using the behavioural data reported in Chapter 3, performance on the test of 

phoneme processing was significantly positively correlated with peak activation of left 

superior temporal gyrus across the lvPPA and healthy control groups (t(19) = 4.08, p =.001, 

R
2
 = 0.47), though this was not significant within the lvPPA group (t(4) = 0.68, p = 0.53, R

2
 = 

0.10). Performance on the test of entropy processing was significantly inversely correlated 

with peak activation of left caudate (t(21) = 3.38, p = 0.003, R
2
 = 0.35) and left anterior 
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cingulate (t(21) = 3.42, p = 0.003, R
2
 = 0.35) across the svPPA and healthy control groups, 

though not significant within the svPPA group (t(6) = 1.62, p = 0.16, R
2
 = 0.30 in left caudate 

and t(6) = 0.94, p = 0.38, R
2
 = 0.13 in left anterior cingulate). There were no significant 

functional neuroanatomical correlations with performance on the temporal regularity 

processing test.  

4.6. Discussion 

In this study, I have corroborated and built upon the behavioural and structural 

neuroanatomical data presented in Chapter 3, here showing that the three major PPA 

syndromes are associated with distinctive functional neuroanatomical profiles of abnormal 

speech signal decoding relative to healthy older individuals. Compared directly with the 

healthy control group, patients with nfvPPA showed reduced activation of medial Heschl’s 

gyrus in response to auditory stimulation (across all sound conditions) and reduced 

activation of anterior cingulate cortex in response to temporal irregularity in speech signals. 

The svPPA group showed reduced activation of caudate and anterior cingulate in response 

to increased entropy (information content) in spectrally rotated speech. The lvPPA group 

showed reduced activation of posterior superior temporal cortex in response to phonemic 

spectral structure. These syndromic signatures are consistent with prior predictions 

concerning the informational components of speech signals that are most likely to be 

vulnerable in each PPA syndrome (Holland & Lambon Ralph, 2010; Rohrer et al., 2010b; 

Hsieh et al., 2011; Hailstone et al., 2012; Golden et al., 2015b; Hardy et al., 2015; Grube et 

al., 2016; Henry et al., 2016).  

Whilst not the key focus of the work presented in this Chapter, it is worth noting 

that performance on out-of-scanner tasks correlated with regional neural activation for the 

processing of phonemic structure and signal information content for the relevant syndromic 

(lvPPA and svPPA) groups relative to healthy controls:  functional neuroanatomical profiles 

may therefore underpin behavioural speech processing deficits in these syndromes, though 

the lack of correlation within the respective patient groups suggests that additional factors 

may drive individual performance variation.  

In the contrast assessing all auditory stimulation, all participant groups showed the 

anticipated extensive activation of primary and association auditory cortices (Binder et al., 
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2000; Scott et al., 2000; Griffiths & Warren, 2002; Dhamala et al., 2003; Greicius et al., 

2003; Dehaene-Lambertz et al., 2005; Liebenthal et al., 2005; Goll et al., 2012b). Only the 

nfvPPA group showed a profile of activation in response to any auditory stimulation that 

differed significantly from the healthy controls, in line with emerging evidence for deficits of 

early auditory perceptual processing in nfvPPA that may distinguish it from other PPA 

syndromes (Goll et al., 2010a; Maruta et al., 2014; Grube et al., 2016). 

For the processing of temporal irregularity in speech signals, more selective 

alterations emerged at group levels. The healthy control participants showed an activation 

profile in line with previous work in healthy individuals showing that auditory rhythmic 

variation engaged posterior superior temporal cortices (Griffiths et al., 1999; Rauschecker & 

Scott, 2009). None of the patient groups showed increased activation in response to syllable 

anisochrony, while patients with nfvPPA actually showed reduced activation to 

anisochronous relative to isochronous sequences in anterior cingulate and supplementary 

motor cortices. In the healthy brain, this medial prefrontal cortical region is engaged in 

speech syntax and prosody (Hertrich et al., 2016), while in nfvPPA a similar region has been 

implicated in the pathophysiology of both speech production and rhythm processing deficits, 

participating in a network including inferior frontal gyrus (Catani et al., 2013; Ballard et al., 

2014; Schaeverbeke et al., 2016; see Chapter 3). In light of emerging formulations linking 

temporal perceptual with output processes in the healthy brain (Warren et al., 2005) and in 

nfvPPA (Grube et al., 2016; Schaeverbeke et al., 2016), my finding here could signify a 

dysfunctional mechanism mediating the sensorimotor transformation of speech signals.  

For the detection of phonemic spectral structure, the healthy control group showed 

preferential activation of lateral posterior and mid superior temporal cortex for natural versus 

spectrally rotated speech. This region of association auditory cortex has been previously 

identified as an area critical to phoneme processing in the healthy brain (Liberman & 

Mattingly, 1989; Scott et al., 2000, 2009; Hickok & Poeppel, 2007; Rauschecker & Scott, 

2009; Leaver & Rauschecker, 2010; Obleser et al., 2010; Zhang et al., 2016). Neural 

processes in this region are likely to be essential for the disambiguation of speech from 

complex nonspeech sounds at the level of auditory object (i.e. phonemic) representation. 

These mechanisms are bihemispheric and left hemisphere specialization may be in part 
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directed by connectivity changes under linguistic tasks (Leaver & Rauschecker, 2010; 

Obleser et al., 2010; Markiewicz & Bohland, 2016; Zhang et al., 2016). This interpretation is 

consistent with the differential activation profiles shown by patient groups here: compared 

with healthy controls, the nfvPPA and svPPA groups showed relatively normal activation 

profiles, whereas the lvPPA group showed a significantly attenuated response to natural 

phonemes in the key superior temporal region, in accordance with the clinical deficits of 

phonological processing (Gorno-Tempini et al., 2008; Rohrer et al., 2010b; Hailstone et al., 

2012; Hardy et al., 2015; Grube et al., 2016; Henry et al., 2016) and related deficits of 

paralinguistic analysis (Rohrer et al., 2012) previously documented in lvPPA.  

Although I did not directly assess phonological working memory in this experiment, 

posterior superior temporal cortex plays an integral role in auditory working memory for 

phonemes and other auditory objects (Kumar et al., 2016), suggesting that the profile seen 

here is relevant to the phonological working memory impairment that is a defining feature of 

lvPPA (Gorno-Tempini et al., 2008, 2011). Clinically, phonological working memory deficits 

are a feature of nfvPPA as well as lvPPA (Rohrer et al., 2010b; Hailstone et al., 2012; Hardy 

et al., 2015; Henry et al., 2016). My findings suggest that these deficits may be underpinned 

by different mechanisms across the two syndromes, as the relevant experimental contrast 

isolated a stage of phonological object representation that is likely to be core to lvPPA, and 

not nfvPPA (Rohrer et al., 2010b). Importantly, this posterior superior temporal cortical 

region is contiguous with typical patterns of atrophy in lvPPA cohort studies (Gorno-Tempini 

et al., 2004, 2008; Rohrer et al., 2010b). Although care is needed when interpreting 

functional changes in the setting of regional structural atrophy, it is worth nothing that this 

differential activation pattern was driven by an attenuated response to natural (but not 

spectrally rotated) speech. This implies that the group-wise activation difference between 

controls and lvPPA patients was at least partly attributable to a functionally selective 

mechanism, rather than simply a nonspecific consequence of grey matter loss. 

In the healthy control, nfvPPA and svPPA groups, processing of natural speech 

was also associated with prefrontal and motor activation, consistent with obligatory 

engagement of the dorsal language processing network previously implicated in 

phonological processing (Warren et al., 2005; Hickok & Poeppel, 2007); see Figure 1.7. In 
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contrast, the lvPPA group showed a paradoxically enhanced response to spectrally rotated 

speech in dorsal prefrontal cortex. Reduced capacity to integrate spectrotemporal 

information into auditory object-level representations could potentially underpin both 

phonological and nonverbal auditory deficits in lvPPA (Goll et al., 2011; Rohrer et al., 2012; 

Golden et al., 2017), and may in fact be relatively specific to this syndrome, perhaps aligning 

lvPPA with the auditory apperceptive deficit seen in typical Alzheimer’s disease (Goll et al., 

2011; Golden et al., 2017). 

The healthy control and patient groups were further stratified by activation profiles 

in response to signal information content (entropy) in syllable sequences. In healthy control 

participants, increased entropy in natural speech signals engaged right caudate nucleus, 

corroborating previous work in the healthy brain implicating the striatum in the obligatory 

tracking of sequence entropy (Overath et al., 2007; Nastase et al., 2015) and more broadly, 

in the predictive and probabilistic encoding of speech and other stimuli (Haruno & Kawato, 

2005; Kotz et al., 2009; Geiser et al., 2012; Grahn & Rowe, 2013). The nfvPPA and lvPPA 

groups did not show any significant activation patterns in response to the entropy 

manipulation. While this null result should be interpreted with caution (given that no 

significant differences were identified in these syndromic groups relative to the healthy 

control group), sensitivity to the long-range structure of speech signals might plausibly be 

reduced in PPA syndromes characterized by impaired integration of auditory features 

unfolding over time (Hailstone et al., 2012; Rohrer et al., 2012; Golden et al., 2017). 

As predicted, a clearer profile of abnormal entropy processing was evident in the 

svPPA group, implicating a fronto-cingulo-striatal network that is associated with the 

processing of signal statistics in the healthy brain (Fan, 2014). Patients showed responses 

preferentially for the high entropy condition in inferior frontal cortex, which has shown to be 

sensitive to increasing uncertainty in speech signals (Nastase et al., 2014); and 

preferentially in the low entropy condition in caudate, dorsolateral prefrontal cortex: regions 

that have previously shown more complex responses to varying signal predictability 

(Nastase et al., 2014, 2015). In healthy participants, the anterior cingulate cortex has been 

implicated in the predictive coding and analysis of deviance in auditory and other stimuli 

(Kiehl et al., 2000; Magno, 2006; Lee et al., 2011; Ide et al., 2013). Importantly, however, the 
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response profile of the svPPA group differed from the healthy control group. Qualitatively, 

patients with svPPA showed sensitivity to entropy variation in spectrally rotated but not 

natural speech. Quantitatively, these patients showed lower overall sensitivity to increasing 

signal entropy due to a bidirectional profile of altered activation within the cingulo-striatal 

network. Damage to this network has previously been demonstrated in svPPA (Rohrer et al., 

2009c). The anterior cingulate cortex mediates widespread shifts in connectivity between 

distributed brain regions in the healthy brain (Crottaz-Herbette & Menon, 2006; Nastase et 

al., 2014, 2015), and my findings leave open the possibility that altered connectivity to the 

temporal lobe and other structures may have contributed to the behavioural correlate seen 

here.  

In terms of information processing, my results point to an essential operation in 

sensory signal analysis that is critically vulnerable in svPPA: the computation of coherent 

object concepts, here demonstrated in the auditory domain but likely to extrapolate to other 

modalities as well (Lambon Ralph et al., 2010). This goes beyond the moment-to-moment 

perceptual coding of sensory data and detection of ‘patterns’ to extract global statistical 

regularities in the signal. This signal information might then be used to determine 

membership of a sensory object category and to identify and predict correspondences 

between signals in different sensory modalities: a basic requirement for semantic concept 

formation and evaluation. Current models of semantic cognition emphasise the graded and 

predictive nature of object concepts, and the problem of integrating object information cross-

modally into coherent multi-modal concepts (Lambon Ralph et al., 2016). Based on my 

findings in svPPA here, I suggest that signal entropy may access a generic neural algorithm 

that computes and predicts sensory object attributes for further semantic analysis. In these 

terms, the lack of a differential effect of entropy conditions in the nonfluent nfvPPA and 

lvPPA syndromes would be consistent with a more fundamental impairment of pitch pattern 

analysis, while the differential entropy effect seen in svPPA could reflect a disproportionate 

deficit in computing object-level statistics in svPPA (Lambon Ralph et al., 2010; Hsieh et al., 

2011; Rohrer et al., 2012; Golden et al., 2015b, 2017). 

From a clinical perspective, the identification of pathophysiological mechanisms 

using fMRI has several implications. Functional MRI can identify aberrant increases as well 
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as reductions in cerebral activity (see Fig. 4.3) and functional alterations remote from the foci 

of atrophy (see Table 4.2): in the context of a clinical trial, incorporation of an activation fMRI 

limb might allow detection of dynamic therapeutic effects on working brain function that are 

not captured by conventional structural or even resting-state fMRI techniques. More broadly, 

fMRI provides a neuroanatomical grounding for behavioural measures (such as phonemic 

processing in lvPPA and entropy processing in svPPA) that correlate with brain network 

changes in particular syndromes: such surrogate behavioural measures could yield new, 

translatable biomarkers that both capture core pathophysiology and do not depend on 

conventional neurolinguistic tests. 

From a neurobiological perspective, this study has uncovered defective brain 

mechanisms for decoding auditory speech signal attributes (temporal structure, spectral 

structure, and information content) that are likely to underpin particular PPA syndromes 

(nfvPPA, lvPPA, and svPPA, respectively). Considered collectively, the findings suggest a 

common pathophysiological theme in these syndromes. Efficient decoding mechanisms in 

the healthy brain use fewer computational (physiological) resources in decoding less 

complex sensory signals (Overath et al., 2007): it is noteworthy that each of the PPA 

syndromes here (in the key contrast signifying that syndrome) reversed this normal pattern. 

This was most clearly the case for svPPA (in which “low information” [entropy] stimulus 

conditions evoked more activity in relevant brain regions), but analogous inefficiency may 

also account for the greater response to isochronous than anisochronous stimuli in nfvPPA 

and the loss of the processing advantage for natural speech in lvPPA.  

Reduced computational efficiency of cortical information processing may be 

pathophysiologically relevant to many neurodegenerative proteinopathies (Warren et al., 

2013): increased metabolic demands related to reduced efficiency may be a mechanism of 

neural network vulnerability in these diseases. Bayesian accounts of the brain as an engine 

for minimizing prediction errors about the world at large and disease effects on this 

predictive coding are gaining wide currency (Adams et al., 2013; O’Reilly et al., 2013; 

Barascud et al., 2016). In Bayesian terms, loss of computational efficiency in PPA 

syndromes might plausibly be associated with imprecise coding of speech and other 

auditory patterns and therefore less reliable detection of unexpected, deviant, or irregular 
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auditory events. It is noteworthy that the auditory cortical and prefrontal areas identified as 

differentially active in our patient groups participate in predictive sensory coding in the 

healthy brain (O’Reilly et al., 2013; Barascud et al., 2016). 

The work described in this Chapter has several limitations that suggest 

opportunities for future work. Combining neuroanatomical modalities might yield further 

perspectives on these issues: it is likely, for example, that the temporal signature of signal 

processing will be sensitive to the effects of PPA pathologies, and this could be captured 

using a technique such as magnetoencephalography (Wibral et al., 2011). My fMRI 

paradigm was based on passive listening: in future studies, it will be important to determine 

the extent to which the functional neuroanatomical profiles demonstrated here are 

modulated in the context of an output task. This speaks to the relevance of such profiles to 

the symptoms and capacities that patients exhibit in their everyday lives: further work is 

required to determine how functional neuroanatomy relates to neurolinguistic deficits and to 

measures of daily-life disease burden.  
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5. Delayed auditory feedback 

5.1. Chapter summary 

Chapters 3 and 4 focussed exclusively on speech perception, largely ignoring the interaction 

between speech perception and speech production. In this Chapter, I report on an 

experiment that manipulated the auditory feedback via which participants heard their own 

voices during spontaneous speech and reading aloud. I studied 41 patients (seven nfvPPA; 

eight svPPA; seven lvPPA; 11 tAD; eight bvFTD) and 13 healthy controls, and assessed the 

impact of delayed auditory feedback (DAF) relative to natural auditory feedback (NAF) on a 

number of speech production metrics. Healthy control participants and patients with svPPA, 

tAD and bvFTD were significantly affected by the DAF condition, speaking less fluently and 

with more errors, but those with nfvPPA and lvPPA were affected significantly less than 

healthy control participants. Sensitivity to DAF correlated with auditory phonemic 

discrimination ability in the healthy control participants, but not in a combined nfvPPA and 

lvPPA cohort. Results here must be interpreted with caution, as I had predicted a priori that 

the nonfluent patient groups would actually show sustained improvement under DAF. 

However, I suggest that these findings are consistent with previous research indicating that 

the two nonfluent PPA syndromes are associated with significant damage to the dorsal 

language pathway that is used to process and fine-tune auditory feedback for sensori-motor 

integration in the healthy brain.  

5.2. Introduction 

My thesis until this point has focussed almost exclusively on speech perception, 

neglecting production. However, the two are inextricably linked; see Figure 1.4 and the 

discussion in Section 1.2.1. During speech production in healthy individuals, auditory 

feedback provides sensory information that is consequently used to fine-tune vocal motor 

output, thought to involve a mechanism in posterior STG that links auditory vocal 

representations with articulation via the dorsal language pathway (Warren et al., 2005). 

Altering this auditory feedback dramatically affects speech production. In healthy 

volunteers subjected to a procedure known as delayed auditory feedback (DAF), whereby 
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the participant is asked to speak aloud while their own speech is played back to them with a 

slight delay (typically between 100-200ms), speech rate slows and errors increase (Stuart et 

al., 2002; Chon et al., 2013; Maruta et al., 2014; Yamamoto & Kawabata, 2014; Chesters et 

al., 2015; Cler et al., 2017). DAF has even been shown to alter birdsong in zebra finches 

(Fukushima & Margoliash, 2015) and to have an effect on auditory production beyond the 

domain of speech, such as in keyboard playing (Pfordresher et al., 2014). 

From a neurobiological perspective, altered auditory feedback (AAF, of which DAF 

is an example) has been associated with activity in bilateral STG (McGuire et al., 1996; 

Hirano et al., 1997) in healthy control participants. One study directly comparing delayed 

with natural auditory feedback when participants were asked to read a series of sentences 

found bilateral activation in STG and supramarginal gyrus, with additional left postcentral 

gyrus activation (Hashimoto & Sakai, 2003). Zheng and colleagues identified three functional 

networks that were differentially sensitive to AAF: the first encoding an error signal 

comprising right SMA, angular gyrus and bilateral cerebellum; the second a frontotemporal 

network sensitive to speech features of auditory stimulation; and the third a distinct 

functional pattern from the other two appearing to capture aspects of both (Zheng et al., 

2013). Broadly speaking, converging neuroanatomical evidence suggests that the dorsal 

language pathway underpins processing of auditory feedback, which allows for fine sensori-

motor retuning of subsequent speech production. (McGuire et al., 1996; Hirano et al., 1997; 

Hashimoto & Sakai, 2003; Warren et al., 2005; Zheng et al., 2013; Huang et al., 2016). 

Crucially, the speech errors (speech slowing and speech sound distortions) 

produced by healthy individuals under the influence of DAF have been equated to those 

observed in nfvPPA (Maruta et al., 2014), suggesting that nfvPPA may itself be associated 

with distorted speech input signal processing. In Section 1.1, I have also discussed at length 

the structural neuroanatomical profiles associated with nfvPPA and lvPPA, which are both 

characterised by damage to the dorsal language pathway, although more so in nfvPPA 

(Henry et al., 2016), and it is therefore possible that the language production problems 

associated with neurodegeneration to this pathway in nfvPPA/ lvPPA and DAF in healthy 

individuals are subserved by pathophysiological mechanisms that are not mutually 

exclusive.  
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In contradiction to the work showing that DAF negatively affects speech production 

in healthy individuals, DAF can actually improve speech output in stutterers (Andrews et al., 

1982; Lincoln et al., 2006; Foundas et al., 2013). DAF paradigms have previously been used 

in the context of stroke aphasia (Boller et al., 1978; Chapin et al., 1981), autism spectrum 

disorder (Lin et al., 2015), progressive supranuclear palsy (Hanson & Metter, 1980), and 

Parkinson’s disease (Downie et al., 1981; Huang et al., 2016), but to my knowledge, never in 

the context of nfvPPA. The mechanism by which DAF is purported to improve speech output 

is unknown, though it seems likely that the delay must allow for damaged cortex along the 

dorsal language pathway to process and benefit from the auditory feedback that is for some 

reason not possible under natural (i.e. instant) conditions. 

The speech output of patients with rapid, festinating speech phenotypes has been 

shown to benefit from short delays in the range of 50-100ms (Hanson & Metter, 1980; 

Downie et al., 1981). Here, given that nfvPPA is typically associated with a much slower rate 

of speech, I used a delay of 200ms, corresponding approximately to the duration of a 

syllable in conversational spoken English and shown to be associated with maximal fluency 

disruption in healthy individuals  (Stuart et al., 2002; Maruta et al., 2014; Max & Maffett, 

2015; Mitsuya et al., 2017). Asking participants to read aloud and produce spontaneous 

speech offer two alternative ways in which to assess their speech production. This is 

beneficial when considering that the PPA syndromes are differentially associated with 

reading impairments (Cipolotti & Warrington, 1995; Wilson et al., 2009; Gorno-Tempini et al., 

2011; Snowden et al., 2012), and ‘verbal adynamia’ – meaning lack of spontaneity of 

propositional speech – has been described in the context of bvFTD previously (Warren et 

al., 2003). Here, I compared reading aloud and producing spontaneous speech under 

conditions of DAF and natural auditory feedback (NAF) in patients with all major FTD and 

PPA syndromes, with reference to a group of healthy control participants and patients with 

typical Alzheimer’s disease. The key outcome measurements, defined on the basis of 

previous literature, were speech rate and error rate (Wilson et al., 2010b; Maruta et al., 

2014). 
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5.3. Key predictions 

 Healthy control participants will show significant impairment on reading and 

spontaneous speech tasks under DAF (Stuart et al., 2002; Maruta et al., 2014; Max & 

Maffett, 2015; Mitsuya et al., 2017). 

 Patients with nfvPPA and lvPPA will show the opposite result, speaking faster and 

with fewer speech errors under DAF than NAF (Wilson et al., 2010b; Maruta et al., 

2014; Henry et al., 2016). 

 Patients with svPPA, bvFTD, and tAD will show response profiles across conditions 

similar to that seen in the healthy control group (Stuart et al., 2002; Maruta et al., 

2014; Max & Maffett, 2015; Mitsuya et al., 2017). 
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5.4. Materials and methods 

5.4.1. Participants 

Seven patients with nfvPPA (four female; mean age 70.7 ± 10.4 (SD) years),eight 

patients with svPPA (three female; mean age 68.1 ± 7.0 years); and seven patients with 

lvPPA (one female; mean age 70.9 ± 8.6 years) were recruited in line with the procedures 

outlined in Section 2.1. A group of 11 patients with tAD (seven female; mean age 70.0 ± 8.8 

years), and a group of eight patients meeting consensus criteria (Rascovsky et al., 2007) for 

bvFTD (one female, mean age 65.6 ± 8.7 years) also participated in the study as disease 

control groups. Cerebrospinal fluid tau/ abeta profiles were available for four of the seven 

patients with lvPPA, all of which were consistent with Alzheimer’s pathology based on local 

reference ranges (total tau: beta-amyloid 1-42 ratio > 1). Thirteen healthy elderly individuals 

(seven female; mean age 68.4 ± 5.4 years) also participated in the study as a healthy control 

group. Demographic, clinical and basic neuropsychological data for all participants are 

summarized in Table 5.1. 

5.4.2. Experimental procedures 

All participants were asked to read a slightly reduced version of the “Rainbow 

passage” (Fairbanks, 1960) (see Figure 5.1) under conditions of DAF and NAF. The order in 

which they did this was counterbalanced across participants. Next, all participants were 

asked to describe the “Beach scene” (Warrington, 2010) (see Figure 5.1), again under 

conditions of DAF and NAF. The order here was again counterbalanced across participants. 

The DAF paradigm was created using MATLAB v 2014b with the Psychtoolbox 

extension (http://psychtoolbox.org/). I used a modified version of a master script (found at 

http://docs.psychtoolbox.org/BasicSoundFeedbackDemo), which records sound from the 

boom mic attached to the Sennheiser PC 350 SE headphones worn by all participants 

(48kHZ sampling rate), and plays this sound back via the headphones. Two versions of this 

script were used to create NAF and DAF conditions. For NAF, the audio recorded was 

played back to the participant with the shortest possible delay that was supported by the 

2015 MacBook Pro used to run the experiment (delay typically ~18ms, range 16-24ms); 

while for DAF, the audio recorded was played back with a 190ms delay added to the 
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minimum latency possible with the hardware set-up, resulting in total delay of ~200ms 

(range 190-210ms). Two experimenters collected the data for this study: I collected 65% of 

all speech samples, and another researcher collected the remaining 35%. All testing was 

performed in a quiet room, and all speech samples were recorded for offline analysis.  

5.4.3. Scoring of speech samples 

Speech samples were edited manually by myself (56% of samples) and another 

researcher (44% of samples) in Audacity to remove experimenter interruption, extraneous 

noises or pauses at the beginning or end of the recording (word-finding pauses were not 

removed).  We then listened carefully to each recording several times, assigning speech 

errors to several categories. An ‘omission’ was scored for the omission of a phoneme, e.g 

“rainbow” instead of “rainbows”. ‘Substitutions or misarticulations’ were scored if a phoneme 

was incorrectly articulated and/or replaced with a different phoneme, e.g. “retraction” instead 

of “refraction”. ‘Duplications or additions’ were scored if a phoneme was duplicated or added 

unnecessarily e.g. “sunlight-t” instead of “sunlight”. ‘Elongations’ were scored if a phoneme 

was judged to have been elongated beyond normal limits for the speaker, e.g. “horiiizon” for 

“horizon”. I included an additional category for dysfluencies, scored when a participant said 

“um” or “er” or an equivalent, and also scored grammatical errors in the spontaneous speech 

condition. The total number of words produced in each condition was manually counted, and 

the speech rate for each condition was calculated as the total number of words produced 

divided by the recording length in seconds. Error rates were calculated per hundred words 

(phw) by dividing the number of errors made by the number of words produced and then 

multiplying by a hundred, consistent with previous approaches (Wilson et al., 2010b). 

Of these many variables, I identified two on the basis of previous literature that 

would be of critical interest to examine here (Wilson et al., 2010b; Maruta et al., 2014): 

speech rate, defined by words per minute (wpm), and error rate, defined by number of 

speech errors of any kind per hundred words (phw). 
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Figure 5.1. Stimuli used in the DAF experiment. A) A reduced version of the Rainbow 
passage (Fairbanks, 1960) used in the reading conditions; B) The beach scene (Warrington, 
2010) used to generate spontaneous speech. 
 

5.4.4. Analysis of clinical and background neuropsychological data 

All analyses were carried out in accordance with details given in Section 2.9.1. 

5.4.5. Analysis of DAF and NAF data 

First, each patient group was assessed for within-group change from NAF to DAF 

for all possible variables, including speech rate and error rate, using one-tailed dependent-

samples t-tests.  



103 
 

Second, I focused specifically on my two dependent variables of critical interest: 

speech rate (wpm) and error rate (phw). Here, I ran a mixed ANOVA for each dependent 

variable, using two within-subject factors (feedback: natural vs delay; and task: reading vs 

spontaneous) and one between-subjects factor (diagnosis). 

Third, I created change variables for error rate and speech rate by taking total on 

the NAF condition away from total on the DAF condition, and compared each patient group 

to the control group using these new change scores as dependent variables in one-tailed 

independent-samples t-tests. For this set of analyses, I also used a combined nonfluent 

(nfvPPA plus lvPPA) cohort to account for the small n in both groups, and because as 

outlined in Section 6.1, there are theoretical reasons for aligning the two in terms of their 

speech phenotypes.  

Finally, I correlated change in speech rate and error rate from NAF to DAF with 

score on the PALPA-3 test of auditory input processing in the healthy control and combined 

nonfluent cohorts separately. All analyses were run for the reading and spontaneous speech 

conditions separately.  

5.5. Results 

5.5.1. Demographic and neuropsychological comparisons 

Groups did not differ overall in terms of age (F(1,53) = 0.05, p = 0.828), 

handedness (χ2 = 4.13, p = 0.659), gender (χ2 = 9.38, p = 0.153), peripheral hearing ability 

(χ2 = 10.30, p = 0.590) or education (F(1,53) = 1.11, p = 0.298). Patient groups did not differ 

in terms of symptom duration (F(1,40) = 3.42, p = 0.072) or MMSE score (F(1,40) = 0.40, p = 

0.529). Core demographic and neuropsychological characteristics for all patient groups are 

presented in Table 5.1. 
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Table 5.1. Demographic, clinical and neuropsychological characteristics of participant groups. 
 

Characteristic Controls nfvPPA svPPA lvPPA AD bvFTD 

Demographic and clinical 
      

    No. (m:f) 6:7 3:4 5:3 6:1 4:7 7:1 

    Age (yrs) 68.4 (5.4) 70.7 (10.4) 68.1 (7.0) 70.9 (8.6) 70.0 (8.0) 65.6 (8.7) 

    Handedness (R:L) 13:0 6:1 8:0 6:1 10:1 8:0 

    Education (yrs) 17.2 (1.7) 14.0 (2.4) 15.1 (2.9) 15.4 (2.5) 14.6 (1.7) 16.0 (3.1) 

    MMSE (/30)  29.8 (0.4) 23.4 (5.3) 24.4 (5.5) 18.7 (7.6) 17.1 (4.8) 17.1 (4.8) 

    Symptom duration (yrs) NA 3.3 (1.4)  5.6 (2.2) 3.9 (2.2) 5.5 (3.0) 6.5 (3.3) 

    PTA best ear (N:Mild:Mod) 3:8:0 1:4:1
a
 2:4:0

b
 2:2:2

a 
2:7:0

b
 1:5:2 

General intellect: IQ 
      

    VIQ 127.1 (6.0) 74.9 (18.8) 78.3 (14.1) 69.6 (15.5) 87.1 (14.9)
a
 96.8 (24.2) 

    PIQ 127.0 (13.8) 90.3 (21.5) 121.5 (15.0) 85.0 (14.0) 81.9 (18.4)
a
 106.3 (18.5) 

Episodic memory 
      

    RMT words (/50) 45.1 (11.0) 37.0 (6.2)
a
 32.3 (7.4)

a
 37.2 (10.0)

b
 15.3 (2.8)

a,
* 38.4 (10.5)

a
 

    RMT faces ( /50) 43.7 (4.6) 37.0 (4.0)
a
 35.6 (5.4)

a
 34.7 (9.0)

a
 17.7 (2.7)

a,
* 33.1 (10.1)

a
 

Working memory 
      

    Digit span forward (max) 7.1 (1.0) 4.9 (1.5) 6.6 (1.4) 4.3 (1.2)
a
 5.6 (1.4) 6.7 (1.5) 

    Spatial span forward (max) 5.6 (0.9)
a
 4.7 (1.3) 4.9 (0.9)

a
 3.3 (0.8) NA NA 

Executive skills 
      

    Digit span reverse (max) 4.8 (1.3) 2.5 (0.8)
a
 5.0 (1.9) 2.7 (0.8)

a
 3.6 (0.7)

a
 4.4 (1.2) 

    Spatial span reverse (max) 5.6 (0.9)
a
 3.6 (1.4) 5.0 (1.0)

a
 3.2 (1.0)

a
 NA NA 

    Letter fluency (total) 20.5 (5.5) 5.0 (5.2)
a
 10.3 (4.3) 5.3 (5.9)

c
 8.4 (4.2) 10.5 (4.8) 

    Category fluency (total) 24.8 (5.6) 9.4 (5.1) 21.1 (41.3) 5.5 (8.1)
a
 5.3 (3.0) 13.3 (8.5) 

    Trails A (s) 30.7 (8.2) 84.3 (38.1) 41.0 (21.9) 99.4 (38.2) 95.8 (37.0)
b
 38.3 (25.5) 

Posterior cortical skills 
      

    GDA calculation (/24) 15.8 (4.1) 5.8 (6.6)
b
 12.7 (7.4)

a
 1.8 (2.1)

c
 1.9 (1.0)

c
 10.9 (7.4) 
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    VOSP object decision (/20) 19.2 (1.0) 17.3 (1.8) 17.5 (1.6) 15.0 (2.9) 15.5 (2.3) 17.3 (3.6)
a
 

Neurolinguistic skills       

Auditory input processing       

     PALPA-3 (/36) 35.4 (0.3) 34.4 (1.0) 35.1 (0.3)
a
 33.0 (0.8)

a
 NA NA 

Word retrieval 
      

    GNT (/30) 26.9 (2.7) 15.0 (4.6) 1.0 (2.2) 6.2 (7.9)
b
 10.1 (8.4)

a
 15.3 (11.9) 

    BNT (/30) 29.3 (0.2) 22.3 (2.1) 7.4 (2.1)
a
 9.6 (3.3) NA NA 

Comprehension       

    BPVS (/51) 47.8 (6.3) 35.7 (8.4) 13.0 (15.6) 28.7 (16.2)
a
 38.3 (5.9)

a
 40.6 (10.0) 

    Concrete synonyms (/25) 24.7 (0.1) 18.0 (1.8)
a 

17.3 (1.5)
b 

18.3 (1.0)
a
 NA NA 

    Abstract synonyms (/25) 24.6 (0.3) 18.7 (2.1)
a
 16.7 (1.5)

b
 18.8 (1.6)

b
 NA NA 

    PALPA-55 sentences (/24) 23.9 (0.1) 17.9 (1.7) 22.3 (0.9)
a 

16.3 (2.0)
a 

NA NA 

Speech repetition       

    Polysyllabic words (/45) 44.8 (0.1) 36.3 (3.4) 44.0 (0.6)
a
 32.7 (3.1) NA NA 

    Graded sentences 9.6 (0.2) 4.0 (1.1) 8.3 (0.4)
a
 4.4 (0.9) NA NA 

Spelling       

     BST (/30) 26.3 (0.4) 15.6 (3.1) 15.9 (2.8)
a
 13.0 (3.0)

a
 NA NA 

 

Values in bold are significantly different from the control group. Reduced numbers of participants are indicated: 
a
n-1; 

b
n-2; 

c
n-3; 

d
n-4; 

e
n-6.  
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Table 5.2. Quantitative analysis of reading and spontaneous speech production across participant groups with natural and delayed auditory feedback 

 

The table shows performance of each participant group across reading and spontaneous speech conditions under natural and delayed auditory 
feedback. Speech rate is defined as words per minute; error rate is defined as errors per hundred words. Bold = significant within-group difference 
(p < 0.05). Note that numbers over 100 are reported without decimal places to aid visual interpretation. Cells highlighted green indicate the key 
metrics of interest.

  Control nfvPPA svPPA lvPPA tAD bvFTD 

Reading Natural Delayed Natural Delayed Natural Delayed Natural Delayed Natural Delayed Natural Delayed 

Time (s) 79.2 (3.2) 98.1 (6.6)
 

129 (29.5) 130 (39.1) 110 (12.9) 133 (11.5)
 

152 (18.5) 181 (21.4) 107 (10.0) 114 (8.6) 87.9 (7.7) 120 (18.5)
 

Total words  216 (0.5) 216 (0.9) 140 (38.2) 114 (38.5) 201 (14.7) 200 (16.9) 223 (2.0) 220 (6.0) 213 (14.6) 208 (14.9) 215 (0.8) 213 (1.3) 

Speech rate 166 (6.5) 139 (8.2)
 

59.7 (6.6) 48.6 (6.6) 116 (12.6) 96.2 (12.3)
 

93.7 (8.1) 78.7 (8.3)
 

123 (10.2) 110 (8.2) 154 (13.0) 124 (18.3)
 

Error rate  1.3 (0.3) 6.6 (1.6)
 

58.0 (17.3) 74.3 (21.7)
 

5.8 (1.8) 21.0 (8.6) 15.4 (5.1) 32.0 (15.1) 15.6 (4.5) 23.2 (7.4) 2.6 (0.8) 12.0 (5.8) 

  Omissions 0.4 (0.1) 0.5 (0.2) 20.1 (6.5) 32.8 (12.3)
 

0.7 (0.3) 3.3 (2.7) 2.0 (0.7) 6.8 (4.3) 2.9 (1.3) 4.7 (1.5) 0.6 (0.2) 2.0 (0.8) 

  Distortions  0.4 (0.1) 1.6 (0.4) 23.6 (11.1) 24.7 (7.9) 3.3 (1.6) 5.4 (2.3) 8.5 (4.1) 11.1 (5.1) 5.7 (1.6) 6.6 (1.8) 0.7 (0.3) 1.3 (0.5) 

  Additions  0.4 (0.1) 2.0 (0.7)
 

14.8 (4.4) 14.8 (7.7) 1.1 (0.3) 2.3 (0.7) 4.4 (1.6) 7.1 (1.7)
 

5.9 (1.6) 10.1 (4.8) 1.0 (0.3) 1.2 (0.6) 

  Elongations  0.1 (0.0) 2.5 (0.8) 0.5 (0.3) 2.5 (1.3) 0.7 (0.3) 10.1 (4.6) 0.4 (0.1) 7.1 (5.5) 1.2 (0.6) 1.8 (0.8) 0.3 (0.1) 7.5 (4.5) 

  Dysfluencies  0.0 (0.0) 0.0 (0.0) 3.0 (1.4) 3.0 (2.3) 0.1 (0.1) 0.1 (0.1) 0.4 (0.4) 1.1 (1.1) 0.4 (0.2) 0.2 (0.2) 0.0 (0.0) 0.0 (0.0) 

Spontaneous  
            

Time (s) 45.4 (5.6) 47.4 (6.7) 54.5 (14.9) 57.7 (11.7) 68.4 (15.5) 69.3 (13.5) 76.8 (18.5) 82.0 (17.7) 62.2 (7.1) 67.3 (8.0) 51.1 (8.0) 50.9 (9.4) 

Total words 104 (9.8) 101 (13.1) 40.5 (16.4) 41.2 (11.3) 129 (32.2) 113 (24.6) 102 (22.7) 114 (29.4) 118 (17.0) 107 (15.3) 105 (22.5) 95.9 (24.9) 

Speech rate 142 (6.2) 129 (5.5)
 

42.9 (7.0) 41.2 (4.0) 122 (14.9) 101 (9.5) 81.1 (6.8) 81.3 (6.0) 112 (7.0) 95.8 (7.1)
 

123 (18.5) 104 (15.5) 

Error rate  3.0 (0.8) 9.6 (1.7) 49.4 (20.7) 53.9 (18.2) 3.0 (1.5) 9.6 (5.4) 8.6 (1.8) 14.0 (3.9) 5.2 (1.4) 15.4 (4.1) 3.0 (1.1) 8.4 (2.9) 

  Omissions  0.1 (0.1) 0.0 (0.0) 4.7 (2.6) 8.6 (4.2) 0.4 (0.3) 0.5 (0.3) 0.5 (0.3) 1.2 (1.2) 0.3 (0.3) 0.8 (0.6) 0.1 (0.1) 0.4 (0.4) 

  Distortions  0.4 (0.2) 1.3 (0.4) 16.7 (6.6) 19.3 (8.2) 0.5 (0.3) 1.1 (0.3) 3.8 (1.9) 5.9 (2.6) 1.1 (0.4) 4.0 (1.0)
 

0.5 (0.3) 2.5 (1.6) 

  Additions  0.8 (0.3) 1.9 (0.6) 22.6 (17.9) 20.8 (11.8) 1.6 (1.1) 3.0 (1.7) 4.3 (1.7) 5.4 (1.4) 3.5 (1.1) 8.2 (3.0) 2.1 (1.2) 2.4 (1.1) 

  Elongations 1.8 (0.5) 6.3 (1.1)
 

5.3 (5.3) 5.2 (3.6) 0.6 (0.3) 5.0 (3.8) 0.0 (0.0) 1.5 (1.0) 0.2 (0.1) 2.5 (1.1) 0.3 (0.2) 3.2 (1.5) 

  Dysfluencies  3.0 (0.7) 1.9 (0.6) 14.3 (8.1) 8.6 (4.8) 4.1 (1.1) 4.1 (1.3) 7.0 (1.3) 6.9 (1.2) 4.6 (0.8) 7.0 (1.8) 5.9 (1.9) 5.0 (2.0) 

  Grammatical  0.3 (0.2) 1.0 (0.4)
 

5.3 (2.9) 8.1 (6.3) 1.0 (0.5) 2.3 (0.8) 3.7 (1.1) 4.0 (1.5) 1.5 (0.3) 2.6 (0.5) 1.3 (0.4) 1.0 (0.4) 
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5.5.2. Mixed within and between subject modelling of results 

Taking error rate as dependent variable, an ANOVA incorporating feedback 

(natural vs delayed) and task (reading vs spontaneous) as within-subject factors and 

diagnosis as a between-subject factor resulted in a significant main effect of feedback, 

F(1,45) = 19.51, p < 0.001, driven by more errors being made in the delayed condition. 

There was also a significant main effect of task, F(1,45) = 8.89, p = 0.005, with more errors 

being made in the reading condition than the spontaneous speech. There was also a 

marginally significant interaction between feedback and task, F(1,45) = 4.09, p = 0.049, 

driven by more errors being made under delayed feedback on the reading task. There was 

no interaction between task and diagnosis, F(5,45) = 1.43, p = 0.231, feedback and 

diagnosis, F(5,45) = 0.344, p = 0.883, or feedback, task and diagnosis, F(5,45) = 70.89, p = 

0.388. Here, there was a between-subjects main effect of diagnosis, F(5,45) = 7.3, p < 

0.001. 

Running the same model with speech rate as dependent variable, there was a 

significant main effect of feedback, F(1,45) = 36.12, p < 0.001, this time driven by faster 

speech in the natural feedback condition. There was a significant main effect of task, F(1,45) 

= 6.53, p = 0.014, driven by faster speech for reading rather than spontaneous speech. 

There was a significant interaction between feedback and task, F(1,45) = 4.81, p = 0.034, 

here driven by a greater reduction in speech rate for reading relative to spontaneous speech 

under delayed relative to natural feedback. There were no interactions between feedback 

and diagnosis, F(5,45) = 1.39, p = 0.211, diagnosis and task, F(5,45) = 1.16, p = 0.342, or 

diagnosis, task and feedback, F(5,45) = 1.09, p = 0.393. There was a between-subjects 

main effect of diagnosis, F(5,45 = 13.54, p < 0.001). 

5.5.3. Within-group differences under DAF relative to NAF 

 

Table 5.2 shows data on speech rates and errors for all participant groups. For 

reading, all groups spoke significantly slower under DAF relative to NAF (all p < 0.05), with 

the exception of the patient group with typical Alzheimer’s disease, which trended toward 

significance, t(10) = 1.57, p = 0.073. A different pattern was observed for spontaneous 
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speech: only control participants and patients with svPPA and tAD spoke slower under DAF. 

The difference in the bvFTD group bordered on significance, t(7) = 1.83, p = 0.055, whereas 

in the nfvPPA and lvPPA groups the differences did not approach statistical significance (t = 

0.28/ -0.03; p = 0.396/ 0.512, respectively). For error rate per hundred words (phw), all 

groups made significantly more errors under DAF in the reading condition, with the 

exception of those with lvPPA and bvFTD. Here, both differences trended toward 

significance (lvPPA: t(6) = -1.59, p =0.081; bvFTD: t(7) = -1.76, p = 0.061). In the 

spontaneous speech condition, only the healthy control, tAD and bvFTD groups made 

significantly more errors under DAF than NAF, although two of the three other groups all 

trended toward a significant difference (svPPA: t(7) = -1.67, p = 0.069; lvPPA: t(5) = -1.54, p 

= 0.092). In nfvPPA here, this difference was non-significant, t(5) = -0.34, p = 0.373.  

5.5.4. Between-group differences in sensitivity to DAF relative to NAF 

To account for the low n in the lvPPA and nfvPPA groups here, I ran analyses as 

planned comparing each patient group to controls separately, but also created a pooled 

nonfluent group comprising just the nfvPPA and lvPPA patients. This group was also 

compared directly with controls.  

Table 5.3 shows change in terms of words per minute and error rate between the 

NAF and DAF conditions, by participant group for spontaneous speech and reading 

separately. In the reading condition, nfvPPA patients showed change in terms of words per 

minute that was significantly less reduced relative to healthy controls, t(17) = -1.94, p = 

0.034. Conversely, however, these same patients also had a significantly higher change in 

error rate relative to healthy control participants, t(17) = -1.90, p = 0.037. There were no 

direct differences between the lvPPA and control groups (WPM: t(18) = -1.42, p = 0.087; 

error rate: t(18) = -1.45, p = 0.082), but the combined nonfluent patient cohort again showed 

significantly less change in words per minute in the reading condition relative to control 

participants, t(24) = -2.16, p = 0.02, and a marginally significant difference in error rate, t(24) 

= -1.68, p = 0.053. 

In terms of spontaneous speech, there were no differences between any patient 

group and control participants for change in error rate (all p > 0.05). Change in words per 

minute was significantly reduced in lvPPA compared to healthy controls, t(17) = -1.80, p = 
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0.045, and this was reflected in the combined patient cohort too, t(23) = -2.07, p = 0.025, 

though did not quite reach significance in the nfvPPA cohort alone, t(17) = -1.62, p = 0.062.  

Figure 5.2 shows change in words per minute from NAF to DAF for reading and 

spontaneous speech in the healthy control and combined nonfluent cohorts. Figure 5.3 plots 

change in error rates from NAF to DAF in the same groups.  

Table 5.3. Change on critical measures of speech production from NAF to DAF 
across participant groups. 
 

 
Control nfvPPA svPPA lvPPA tAD bvFTD 

Pooled 
nonfluents 

Reading 

Speech rate 
-27.6 
(5.4) 

-11.2 
(3.5) 

-19.9 
(7.0) 

-15.0 
(6.7) 

-12.3 
(7.8) 

29.8 
(10.3) 

-13.2 
(3.8) 

Error rate 
5.3 

(1.6) 

16.3 
(8.0) 

15.3 
(7.5) 

16.6 
(10.4) 

7.6 
(4.2) 

9.4 
(5.4) 

16.5 
(6.5) 

Spontaneous 

Speech rate 
-12.6 
(3.6) 

-1.7 
(6.2) 

-21.0 
(9.7) 

0.2 
(7.2) 

-16.3 
(4.8) 

-18.2 
(9.9) 

-0.7 
(4.5) 

Error rate 
6.5 

(2.1) 
4.5 

(13.2) 
6.6 

(3.9) 
5.3 

(3.5) 
10.2 
(3.2) 

5.4 
(2.7) 

4.9 
(6.5) 

 
The Table shows change in speech and error rates across participant groups under DAF 
relative to NAF, for reading and spontaneous speech separately. Bold = significantly 
different from healthy controls at p < 0.05. 
 
 

5.5.5. Correlation with auditory input processing 

In the healthy control group, change on each of the key measures outlined in Table 

5.3 was significantly correlated with score on the PALPA-3 task of auditory input processing: 

reading WPM, t(11) = 3.2, p = 0.10; spontaneous WPM, t(11) = 2.37, p =0.039; reading error 

rate, t(11) = -2.37, p = 0.039; spontaneous error rate, t(11) = -2.43, p = 0.036. In the 

combined nonfluent cohort, none of these same metrics correlated with auditory input 

processing: reading WPM, t(11) = -0.05, p = 0.962; spontaneous WPM, t(10) = -1.82, p = 

0.103; reading error rate, t(11) = -1.56, p = 0.150; spontaneous error rate, t(10) = 2.08, p = 

0.068. 
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Figure 5.2. Box plots showing change in words per minute (WPM) from DAF relative to 
NAF in healthy control and combined nonfluent cohorts. The boxes code the 
interquartile range and whiskers the overall range of values in each group; the horizontal line 
in each box represents the median. Values falling outside these ranges are indicated. 
*significantly different at p < 0.05. 
 
 

 
 
Figure 5.3. Box plots showing change in total error rate per hundred words from DAF 
relative to NAF in healthy control and combined nonfluent cohorts. The boxes code the 
interquartile range and whiskers the overall range of values in each group; the horizontal line 
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in each box represents the median. Values falling outside these ranges have been 
suppressed to aid visual interpretation.  
 

5.6. Discussion 

Here I have shown that DAF of 200ms is associated with significant deterioration 

of speech output (characterized by slower speech rate and higher error rate) in healthy 

control participants for reading and spontaneous speech. Different profiles emerged in the 

patient groups studied here, but crucially the two groups of cardinal interest, nfvPPA and 

lvPPA, did not improve on either of these metrics under DAF, contrary to the hypotheses I 

set out in section 5.3. 

The mixed ANOVA models incorporating diagnostic group as between-subject 

factor and feedback and task as within-subject factors suggested that performance across 

all diagnostic groups was negatively affected by delayed feedback, in terms of error rate and 

speech rate. However, this approach lacked sensitivity to detect changes across task 

(reading vs spontaneous) or feedback (delayed vs natural) within or between diagnostic 

groups. This represented the most principled way of analysing these data, and it is likely to 

have been ineffective due to small individual group numbers and huge variance within 

groups. 

There was, however, some suggestion that the lvPPA and nfvPPA patient groups 

may in fact show reduced sensitivity to the effects of DAF, especially in the spontaneous 

speech condition. Using t-tests as an alternative, it is worth noting that in comparing each 

patient group to the healthy control participants, only the lvPPA and nfvPPA (and pooled 

nonfluent cohort) groups emerged as statistically different in terms of change in the DAF 

condition relative to NAF. Here, the pooled nonfluent cohort of lvPPA and nfvPPA patients 

spoke at essentially exactly the same speech rate (<1 word per minute difference under 

DAF relative to NAF), while the control group spoke on average at 12.6 words per minute 

slower with DAF. The same pattern was observed in the reading condition: the pooled 

nonfluent cohort here spoke roughly 13 wpm slower under DAF, compared to the controls’ 

average speech rate reduction of 27.6 words per minute. Both of these differences were 

statistically significant (see Table 5.3; Figure 5.2). They should, however, be regarded with 

caution: error rates in the nonfluent groups increased for both reading and spontaneous 
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speech under DAF, though neither of these was significantly different to the change seen in 

the healthy control group.  

Nevertheless, Figure 5.2 suggests that individual participants in the nonfluent 

group might in fact show improved speech rate under DAF relative to NAF in the 

spontaneous speech condition. Examining individual change trajectories here, one patient 

with nfvPPA spoke ~24 words per minute faster under DAF than NAF, and two patients with 

lvPPA spoke more than 10 wpm faster with the delay. It would not be apposite to interpret 

change data from individual participants as anything more than qualitative, though I do note 

that the majority of ‘successes’ with DAF in previous studies have emerged in the context of 

single case work (Hanson & Metter, 1980; Downie et al., 1981). The nature of this 

improvement will need to be investigated, but there would be considerable interest in 

identifying factors that may predict patients with nfvPPA and lvPPA who show a benefit 

under DAF. 

The findings reported here corroborate previous research in healthy control 

participants (Stuart et al., 2002; Maruta et al., 2014; Max & Maffett, 2015; Mitsuya et al., 

2017), and suggest that dementia syndromes not underpinned by damage to the dorsal 

language network are affected similarly to healthy control participants (see the svPPA, 

bvFTD and tAD groups in Table 5.3). However, based on previous literature implicating 

dorsal language structures in using sensory information from auditory feedback to fine-tune 

vocal motor output (McGuire et al., 1996; Hirano et al., 1997; Hashimoto & Sakai, 2003; 

Zheng et al., 2013), and previous work showing that DAF can actually improve motor speech 

output (Hanson & Metter, 1980; Downie et al., 1981; Andrews et al., 1982; Lincoln et al., 

2006; Foundas et al., 2013) I had predicted that lvPPA and nfvPPA would show 

improvement under the influence of DAF. 

This hypothesis was not supported by the results presented in this Chapter, and 

one possible explanation is that developmental stammerers, late onset acquired focal 

vascular lesions, and late onset degenerative (i.e. nfvPPA/ lvPPA) cases represent very 

different dysfluency disorders of the language system, and consequently show different 

profiles of DAF sensitivity. In developmental cases, this could reflect longstanding 

compensatory structural reorganisation, and the focal lesion of a stroke is likely to represent 
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a very different proposition to the network-based dysfunction seen in the nonfluent PPA 

syndromes (see section 1.1.4 for more discussion of this point). As considered in the 

Introduction section of this Chapter, patients with rapid, festinating speech phenotypes in the 

context of progressive supranuclear palsy (Hanson & Metter, 1980) and Parkinson’s disease 

(Downie et al., 1981) have been shown to benefit from short delays in the range of 50-

100ms, but it is perhaps not surprising that the sensitivity seen in the nonfluent participants 

here is intrinsically different to that seen in other conditions. 

Although the finding that nfvPPA and lvPPA patients show reduced sensitivity to 

DAF should be regarded with some caution, it is still consistent with previous work 

suggesting that DAF impacts on motor speech output via the dorsal language pathway 

(Maruta et al., 2015), which is damaged insidiously in nfvPPA and lvPPA (Wilson et al., 

2010b; Henry et al., 2016). One possibility is that these syndromes are associated with net 

reductions of processing speed in damaged cortex along the dorsal language pathway, 

which disrupt sensori-motor integration here, which in turn means that the normal controls 

on speech output gained via normal auditory feedback are negated (Warren et al., 2005; 

Maruta et al., 2014). In the patient groups with svPPA, tAD and bvFTD, as well as the 

healthy control participants, DAF had a dramatic effect on speech production. In these 

groups, I suggest that the normal sensori-motor integration of auditory feedback into fine-

motor tuning of speech output was disrupted by DAF, consistent with previous reports in 

individuals with no damage to this language network (Stuart et al., 2002; Chon et al., 2013; 

Maruta et al., 2014; Yamamoto & Kawabata, 2014; Chesters et al., 2015; Cler et al., 2017).  

Intriguingly, while the changes in speech rate and error rate from NAF to DAF in 

the reading and spontaneous conditions were consistently significantly correlated with the 

PALPA-3 (Kay et al., 1992) auditory input processing task in the healthy control participants, 

none of these same scores were significantly correlated in the combined nfvPPA and lvPPA 

group. This task requires fine-grained discrimination of phonemically proximal minimal pairs, 

e.g. “mip” vs “nip”. It seems highly relevant that sensitivity to DAF in the control group was 

correlated with this measure, but not in the nonfluents. Taken together, this lack of a 

correlation in the nonfluent group lends support to the idea of deficient integration of auditory 

feedback, most likely due to damage along the dorsal language pathway, and may in itself 
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go some way to explaining the lack of sensitivity shown by this group here (Warren et al., 

2005; Maruta et al., 2014; Henry et al., 2016). 

There are, clearly, several limitations with the work presented in this Chapter. First, 

although my combined patient cohort comprised 41 unique individuals, the numbers in my 

main groups of interest, lvPPA and nfvPPA, were very small. A corollary of this is that these 

findings should be regarded as somewhat preliminary – future work will need to corroborate 

and extend the research presented here, ideally with neuroanatomical correlations. Second, 

one potentially important consideration is the length of the delay I opted to use in this 

experiment. Studies conducted with children have suggested that younger children may be 

less affected by DAF than older children, perhaps reflecting a higher degree of cortical 

plasticity that is diminished with age (Chase et al., 1961). Indeed, younger children aged 4-6 

show maximum disruption to fluency under a delay of around 500ms, while in children aged 

7-9, the maximal level for disruption is around 400ms (Chase et al., 1961). This contrasts 

with the 200ms delay that has been shown consistently to represent maximum disruption in 

older individuals (Stuart et al., 2002; Maruta et al., 2014; Max & Maffett, 2015; Mitsuya et al., 

2017). However, other research has suggested that perhaps the opposite is true, and that 

youngest children are in fact the most affected by DAF, with older children and adults 

becoming less reliant on NAF for sensori-motor retuning of speech output, reflecting 

increasing language mastery (Siegel et al., 1980). 

In this Chapter, I attempted to explore whether delaying auditory feedback in a 

cohort of patients with nfvPPA and lvPPA would improve speech output, using the key 

metrics of speech fluency and rate of errors. My results did not support this hypothesis, 

although there was a suggestion that these two groups may show reduced sensitivity to the 

effects of DAF. If this finding is replicated in larger cohorts, it could have important 

implications in terms of: i) our understanding of breakdown along the dorsal language 

pathway in nfvPPA and lvPPA; ii) tracking efficacy of treatments in these conditions, and iii) 

as an early, dynamic perceptual ‘stress-test’ that may be particularly sensitive relative to 

traditional cognitive measures in the earliest stages of these nonfluent syndromes. In my 

final experimental Chapter, I explore this idea of dynamic stress tests of the language 

network still further. 
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6. Processing of degraded speech stimuli 

6.1. Chapter summary 

In this Chapter, I focus more specifically on linguistic components of speech perception, 

using the paradigm of sinewave-degraded speech in a cohort of 27 patients with all three of 

the main syndromic variants of PPA relative to 11 patients with typical Alzheimer’s disease 

and 17 healthy controls. Sinewave speech represents a perceptual transformation that 

initially renders speech signals unintelligible, but that is spontaneously and rapidly adjusted 

to by the healthy brain. Here, participants were required to identify two different sinewave 

versions of speech stimuli: i) spoken three-digit numbers, and ii) spoken geographical 

locations. Behavioural task performance was then correlated with grey matter volume in a 

voxel-based morphometry analysis. Relative to healthy control participants, patients with 

nfvPPA and lvPPA showed deficient processing of sinewave speech signals: in the lvPPA 

group, this covaried with phonological working memory capacity, whilst in nfvPPA there was 

no such relationship with working memory. Patients with svPPA, by contrast, showed intact 

processing of the degraded speech tokens, but deficient integration of semantic knowledge. 

Neuroanatomical correlates of key behavioural signatures emerged along the dorsal and 

ventral streams proposed to underlie speech perception, and results are discussed in terms 

of residual plasticity for perceptual learning, syndromic stratification, and auditory processing 

deficits corroborating the picture presented in Chapters 3-5. 

6.2. Introduction 

The work presented in the previous two chapters provides support for the notion 

that all three major PPA syndromes are associated with deficits of auditory speech signal 

processing. As discussed in Chapter 1, speech perception represents a computationally 

demanding perceptual process: the listener must identify the speech signal from a 

cacophony of background noise, parsing it into an auditory object, and mapping this 

representation to lexical and conceptual representations (Griffiths & Warren, 2004; Hickok & 

Poeppel, 2007; Hardy et al., 2016). Decades of functional imaging research have increased 

our understanding of speech processing in the healthy brain (Scott et al., 2000; Hickok & 
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Poeppel, 2007), and it is widely accepted that early spectrotemporal analysis of heard 

speech takes place in posterior STG and PT, before diverging into a dorsal stream 

concerned with sensory/ phonological mapping to motoric representations, implicating 

fronto-temporo-parietal regions, and a ventral stream concerned with mapping sensory/ 

phonological representations to lexical conceptual representations, comprising medial and 

inferior temporal structures (Hickok & Poeppel, 2000, 2004, 2007; Warren et al., 2005). 

Given the clinico-anatomical pictures of the PPA syndromes, there is considerable interest in 

exploring speech signal processing in PPA. 

Importantly, speech perception is robust to gross distortions of the speech signal. 

Superimposing the temporal envelope of a speech signal onto a noise carrier (i.e. noise 

vocoding) does not destroy intelligibility (Shannon et al., 1995; Davis & Johnsrude, 2007). 

Sinewave speech (Remez et al., 1981) represents a different type of distortion: the major 

formants of the speech signal are tracked and replaced by sinewaves (see Figure 6.1), 

giving a percept of “whistled” tones that are initially not understood as speech. However, 

rapid perceptual learning of sinewave speech has been consistently documented (Remez et 

al., 1981, 1997, 1998, 2007; Liebenthal et al., 2001; Bent et al., 2011). A summary of 

research using sinewave speech manipulations is given in Table 6.1. Intriguingly, despite the 

dramatic distortions inherent to sinewave speech signals, listeners are still able to use the 

residual phonetic information to identify gender and even individual speakers (Fellowes et 

al., 1997; Remez et al., 1997; Sheffert et al., 2002; Gonzalez & Oliver, 2005). The fact that 

noise-vocoding and sinewave speech both remain highly intelligible to trained listeners, 

despite intrinsic and fundamental differences in the manipulations (noise-vocoded speech 

comprises entirely slowly-modulating broadband noises with minimal traces of speech 

formants, while sinewave speech lacks any broadband acoustic energy, but does retain the 

rapidly changing spectrotemporal cues of speech formants) suggest that healthy individuals 

are able to rely on automatic perceptual learning mechanisms even where traditional speech 

cues are degraded or totally absent (Davis & Johnsrude, 2007). Recent evidence suggests 

that perceptual learning of degraded speech stimuli is associated with automatic plasticity in 

primary auditory cortex, with an observable neurophysiological effect in the sub-second 

range (Holdgraf et al., 2016). 
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There are two complementary processes thought to underlie the automatic 

adaptation to initially unintelligible speech stimuli: perceptual learning, and top-down 

influence (Davis & Johnsrude, 2007). Perceptual learning refers to an automatic and rapid 

process of adaptation to a stimulus through experience of that stimulus: it is a process of 

familiarisation that occurs spontaneously in the healthy brain (Gibson, 1963). Higher-level, 

i.e. top-down influences on distorted speech perception improve perceptual adaptation to the 

degraded signal (Davis et al., 2005; Davis & Johnsrude, 2007; Hannemann et al., 2007; 

Obleser & Kotz, 2010, 2011; Sohoglu & Davis, 2016). In one such demonstration, Davis and 

colleagues showed that training healthy participants with clear nonword sentences produced 

no benefit on subsequent perception of noise-vocoded sentences, while those trained with 

English sentences did experience a boost in perceptual learning of the subsequent noise-

vocoded sentences (Davis et al., 2005). Parsimoniously, it seems likely that efficient 

processing of distorted speech requires two related systems: a) a phonological working 

memory (PWM) store to allow for perceptual retuning of the heard signal (i.e. perceptual 

learning); and b) top-down semantic interpretation of the signal.  

Here, I used the paradigm of sinewave speech to explore residual plasticity for 

perceptual learning of distorted speech signals in the vulnerable and disintegrating language 

networks of patients with major syndromes of PPA, referenced to a group of patients with 

typical Alzheimer’s disease and to healthy older individuals. I applied a sinewave 

manipulation to two different semantic categories of speech signals: three-digit numbers and 

geographical locations. Numbers represent a special class of semantic knowledge, and 

previous research has demonstrated that number knowledge is well-preserved relative to 

other categories in svPPA (Rossor et al., 1995; Crutch & Warrington, 2002; Domahs et al., 

2006; Julien et al., 2010). Similarly, knowledge of country and city names represents a 

special module of conceptual knowledge pertinent to geographical spatial encoding (Incisa 

Della Rocchetta et al., 1998; Crutch & Warrington, 2003, 2010) that may be less vulnerable 

to the anterior temporal lobe atrophy associated with svPPA than other semantic categories 

(Hoffman & Crutch, 2016).  

These manipulations were designed with the intention of a) stratifying performance 

across PPA syndromes and b) allowing me to consider differences between “bottom-up” 
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auditory perceptual processing of stimuli relatively devoid of specific semantic associations 

(numbers) versus “top-down” associative integration of semantic knowledge (geographical 

locations). The geographical locations stimuli were subdivided factorially to allow 

consideration of location category (cities vs countries), geographical relatedness (near vs 

far), and syllable length (bisyllabic vs trisyllabic). Given the importance of PWM in the 

decoding of degraded speech (Davis & Johnsrude, 2007), and its critical involvement in 

lvPPA (Gorno-Tempini et al., 2008, 2011; Rohrer et al., 2010b; Henry et al., 2016), I critically 

considered the impact of PWM capacity on performance on these tasks. 

With these manipulations, I was able to make certain key predictions about how 

each patient group would perform on each task, in paradigms designed to capture “bottom-

up” apperceptive vs “top-down” semantic/ predictive processing of degraded speech signal 

information. Performance on key behavioural measures here was taken forward into a voxel-

based morphometry analysis, allowing me to identify the critical neuroanatomical substrates 

required for performance of these tasks in PPA. 

6.3. Key predictions 

 Patients with lvPPA and nfvPPA would show bottom-up speech processing deficits 

corroborating results presented in Chapters 3-5 and previous evidence (Rohrer et al., 

2010b; Hailstone et al., 2012; Hardy et al., 2015; Grube et al., 2016; Henry et al., 

2016). 

 These deficits would be associated with corresponding neuroanatomical substrates in 

early speech areas including posterior superior temporal gyrus and planum temporale 

(Hickok & Poeppel, 2007; Gorno-Tempini et al., 2008; Rauschecker & Scott, 2009; 

Rohrer et al., 2010b; Henry et al., 2016). 

 Patients with svPPA would show rapid perceptual learning of the distorted speech 

signal, representing preserved cortex in these early auditory processing areas, but 

exhibit reduced top-down associative integration of semantic content (Lambon Ralph 

et al., 2010, 2016).    
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Table 6.1. Summary of previous literature using sinewave speech distortions. 

Authors 
(Year) 

Design Findings 

(Benson et 
al., 2006) 

n=25 (n=12 fMRI) healthy younger participants. Passive 
listening fMRI where participants heard either SWS phonemes 
or reversed SWS phonemes. 

Two brain regions, in bilateral STS, extending more posteriorly on the left 
activated more for the SWS condition. 

(Dehaene-
Lambertz et 
al., 2005) 

n=19 (fMRI), n=12 (ERP) healthy younger participants. 
Participants listened to SWS phonemes without explicitly being 
told they were speech sounds, and asked to perform a basic 
forced-choice task. Then they were told it was speech and 
asked to do it again. 

Behaviourally, explicit knowledge that sounds were speech improved 
accuracy. For the EEG, MMR response was faster for the speech condition, 
implying a more efficient network for speech processing. fMRI showed that 
the posterior temporal lobe along left STS was more activated in speech 
than non-speech condition, including left supramarginal gyrus. 

(Fellowes et 
al., 1997) 

n=79 healthy younger participants. In four experiments, 
listeners were asked to ascertain sex or identity of speakers in 
SWS. 

Results imply that perceivers can differentiate talkers as well as words from 
phonetic properties of speech. 

(Gonzalez & 
Oliver, 2005) 

n=111 healthy younger participants. Participants asked about 
gender and identity of a talker as a function of number of 
channels in spectrally reduced speech (SWS and noise-band), 
with between three and 16 channels. 

Participants were able to accurately detect gender and identity with just 
three SWS channels, implying that F0 and spectral properties of the natural 
voice provide strong cues for speaker and gender identity. 

(Hillenbrand 
et al., 2011) 

n=71, healthy younger participants. All participants were given 
a SWS vowel intelligibility test and then assigned to one of four 
training conditions: feedback, sentence transcription, triad 
(SWS-clear-SWS), irrelevant control (gender decision)  

All training improved accuracy, with the largest increase in the triad 
condition. Additional training produced significant improvements, but 
reached asymptote at around 74% (up from 55%). 

(Lee & 
Noppeney, 
2014) 

n=41 (n=21 musicians). All participants judged audiovisual 
synchrony of speech, SWS and music at 13 AV stimulus onset 
asynchronies. 

Musicians had narrower temporal integration windows for both music and 
SWS. Amount of practice significantly correlated with sensitivity to temporal 
misalignment. 



120 
 

(Lee & 
Noppeney, 
2011) 

n=31 healthy younger participants. Participants presented with 
SWS in visual, audio, and audiovisual modalities. 

Distinct patterns of activity identified for audio-visual speech perception 
along dorsal frontotemporal circuitry. 

(Loebach & 
Pisoni, 2008) 

n=155 healthy younger participants. Participants allocated to 
one of five conditions: modified rhyme test (MRT), phonetically 
balanced words, meaningful sentences, anomalous sentences, 
environmental sounds put through an 8-channel sinewave 
vocoder. All had explicit training and performed a pre- and 
post-training task. 

Participants trained on isolated words performed significantly better on the 
MRT than other groups. Participants trained on sentences (anomalous or 
meaningful) performed significantly better on anomalous sentences than 
other groups.  

(Loebach et 
al., 2008) 

n=78 healthy younger participants. Participants trained on 
SWS (8-channel) using transcription, talker identification, or 
gender identification tasks, incorporating pre- and post-training 
testing and high probability, low probability and anomalous 
sentences (as designated by the terminal word). 

On average, participants performed better on anomalous sentences than 
meaningful sentences. Participants in the talker ID and transcription 
conditions performed significantly better than participants in the gender ID 
condition, on post-test and generalization.  

(Remez et 
al., 1997) 

n=50, healthy younger participants. A series of three 
experiments indexing whether listeners could accurately 
identify individual speakers in SWS. 

Listeners must have been using phonetic information preserved in SWS in 
order to distinguish/ identify talkers. 

(Remez et 
al., 1998) 

n=138, healthy younger participants. Auditory (sinewave 
replicas of single formants in isolation) and visual signals 
(video of space talking) played in tandem and participants 
asked for coherence judgements. 

A sinewave replica of the second formant was more intelligible than any 
other formant. 

(Remez et 
al., 2001) 

n=46, healthy younger participants. Participants listened to two 
isolated 2nd-formant patterns in an S/D task. Then an isolated 
2nd-formant pattern followed by a SWS word and asked 
whether the pattern was a component of the word. 

Participants were unable to verify the auditory form of the 2nd formant in 
SWS, implying that SWS evokes auditory perceptual processing in which 
acoustic elements are bound together. 

(Remez et 
al., 2007) 

n=165, healthy younger participants. Participants listened to 
natural, SWS, and both reversed, spoken by 10 individual 
speakers with American or British accents. Sounds presented 
in pairs and participants had to rate the subjective likeness of 
the two talkers. 

Participants broadly accurate for natural and SWS conditions, implying 
perceptual similarity in a group of talkers is largely preserved over acoustic 
transformation to SWS. Accuracy in the reversed conditions significantly 
worse, though there was still some subjective similarity. 
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(Serniclaes 
et al., 2001) 

n=36 children, 19 dyslexics, 17 average readers. All children 
were given a same/ different paradigm for SWS phonemes, 
and SW nonspeech. 

Dyslexic children better at discriminating acoustic differences between 
stimuli belonging to same category - they were less categorical than average 
readers. 

(Sheffert et 
al., 2002) 

n=44, healthy younger participants. Over five experiments, 
listeners were trained to 70% accuracy to identify 10 individual 
talkers from natural, sinewave or reversed speech sentences. 

Talker-specific knowledge acquired during perceptual learning of sinewaves 
generalized to novel, natural, and sinewave sentences, i.e. listeners are able 
to abstract specific attributes of a talker's speech from sinewave - individual 
talker attributes are carried by segmental properties as well as vocal timbre. 

(Viswanatha
n et al., 
2014) 

n=62, healthy younger participants. Participants exposed to 
background noises comprising SWS, natural speech, and 
reversed version of both, looking at the irrelevant sound effect. 

SWS produced less of an effect than natural speech, suggesting that 
speech-like properties of background noise are important beyond changing 
state complexity for ISE. 
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6.4. Materials and methods 

6.4.1. Participants 

Nine patients with nfvPPA (six female; mean age 69.6 ± 9.2 (SD) years), 11 

patients with svPPA (four female; mean age 64.8 ± 7.2 years), seven patients with lvPPA 

(one female; mean age 66.3 ± 6.1 years), and 11 patients with tAD (six female; mean age 

69.7 ± 8.8 years) were recruited in line with the procedures outlined in Section 2.1. 

Cerebrospinal fluid tau/ abeta profiles were available for five of the seven patients with 

lvPPA, all of which were consistent with Alzheimer’s pathology based on local reference 

ranges (total tau: beta-amyloid 1-42 ratio > 1). Seventeen healthy elderly individuals (nine 

female; mean age 67.7 ± 5.2 years) also participated. Demographic, clinical and basic 

neuropsychological data for all participants are summarized in Table 6.2. 

6.4.2. Experimental stimuli 

All stimuli were recorded as digital wavefiles (sampling rate 44.1 kHz ) in a quiet 

recording booth at University College London using Audacity® software 

(www.audacityteam.org). Two lists of stimuli were recorded: a) three-digit numbers and b) 

geographical locations. The numbers were recorded by a young male speaker (myself) and 

locations were spoken by a young female speaker (SJR), both speaking with a standard 

southern English accent. Different speakers were used to mitigate against perceptual 

learning performance transferring automatically across tasks. Sinewave replicas of these 

“clear” recordings were made using Praat software (version 6.0.27; 

http://www.fon.hum.uva.nl/praat/) with a script written by Chris Darwin 

(http://www.lifesci.sussex.ac.uk/home/Chris_Darwin/Praatscripts/SWS). The script tracks 

and replaces the centre frequencies of three formants of the target stimulus with sinewave 

tones. A graphical depiction of the transformation is given in Figure 6.1, and examples of the 

stimuli are given on the enclosed CD in Audio Files 6.1–6.4 (see Supplementary Table 2). 

http://www.audacityteam.org/
http://www.fon.hum.uva.nl/praat/
http://www.lifesci.sussex.ac.uk/home/Chris_Darwin/Praatscripts/SWS
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Table 6.2. Demographic, clinical and neuropsychological characteristics of participant groups. 
 

 
Controls nfvPPA svPPA lvPPA AD 

Demographic and clinical 
     

     No. (M:F) 8:9 3:6 7:4 6:1 5:6 

     Age (yrs) 67.7 (5.2) 69.6 (9.2) 64.8 (7.2) 66.3 (6.1) 69.7 (8.8) 

     Handedness (R:L:A) 16:0:1 8:1:0 11:0:0 7:0:0 10:1:0 

     Education (yrs) 16.2 (2.6) 14.9 (3.3) 14.5 (3.2) 15.1 (2.3) 14.2 (1.8) 

     MMSE (/30) 29.7 (0.5) 24.4 (5.1) 23.3 (8.1) 18.4 (8.0) 18.0 (6.0) 

     Symptom duration (yrs) NA 3.6 (1.3) 5.2 (1.9) 3.3 (1.3) 6.1 (3.0) 

     PTA best ear (N:Mil:Mod) 4:11:0
b
 1:6:1

a
 4:6:0

a
 3:2:1

a
 2:6:0

c
 

General intellect: IQ 
     

     WASI Verbal IQ 127.6 (5.9) 76.4 (17.7) 67.5 (22.4) 60.6 (8.3) 91.8 (19.3) 

     WASI Performance IQ 121.7 (13.7) 100.3 (21.8) 110.1 (21.8) 79.4 (13.1) 84.7 (20.3)
a
 

Episodic memory 
     

     RMT Words (/50) 48.4 (1.9) 40.3 (7.3)
b
 33.4 (5.7)

d
 31.0 (7.3)

b
 15.7 (3.5)*

a
 

     RMT Faces (/50) 44.5 (4.4) 39.1 (4.0)
b
 35.0 (6.2)

c
 31.7 (5.2) 18.2 (3.2)*

a
 

Working memory 
     

     Digit span forward (max) 7.2 (1.0) 4.6 (1.4) 6.0 (1.3) 4.0 (1.3)
a
 5.8 (1.5) 

     Spatial span forward (max) 5.5 (0.8)
b
 4.8 (1.2) 5.5 (0.9) 3.3 (0.8) NA 

Executive skills 
     

     Digit span reverse (max) 5.1 (1.1) 3.0 (0.9)
a
 5.4 (2.1) 2.6 (0.9)

b
 3.8 (0.8)

a
 

     Spatial span reverse (max) 5.4 (0.9)
b
 3.8 (1.5) 5.2 (1.2) 3.0 (1.0) NA 

     Letter fluency (total) 18.4 (5.1) 6.2 (6.0) 10.2 (4.5)
a
 4.5 (6.5)

c
 9.9 (6.0) 

     Category fluency (total) 25.6 (5.4) 9.7 (4.9) 17.6 (37.2)
a
 5.0 (7.5) 6.3 (4.9) 

     Trails A (s) 31.8 (8.0) 71.3 (36.9) 45.1 (37.2) 79.2 (37.6)
b
 92.8 (40.6)

b
 

Posterior cortical skills 
     

     GDA Calculation (/24) 13.6 (4.1) 6.0 (6.4)
a
 15.0 (7.3)

b
 3.0 (2.2)

c
 3.4 (4.4)

c
 

     VOSP Object Decision (/20) 18.9 (1.0) 17.4 (1.9) 16.2 (3.1) 15.3 (2.6) 15.5 (2.3) 

Neurolinguistic skills      

Auditory input processing      

     PALPA-3 (/36) 35.1 (1.1)
b 

34.6 (2.3) 35.3 (1.0) 31.1 (5.2) NA 
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Significant differences (p<0.05) from healthy control values are indicated in bold. *AD patients were administered the short version of the RMT tasks so a 
direct comparison with healthy controls here was not possible. Reduced numbers of participants are indicated: 

a
n-1; 

b
n-2; 

c
n-3. 

 

Word retrieval      

     GNT (/30) 27.1 (2.5) 13.8 (4.8)
a
 1.2 (2.2)

e 
9.3 (10.3) 12.7 (9.2)

a
 

     BNT (/30) 29.4 (0.6)
b 

22.0 (5.0) 6.4 (5.2)
b 

9.9 (8.5) NA 

Comprehension      

     BPVS (/51) 48.3 (5.6) 33.3 (14.9) 9.5 (14.8) 29.3 (7.3) 40.1 (5.5)
a
 

     Concrete synonyms (/25) 24.5 (0.6)
b 

19.0 (4.2)
a 

16.6 (3.3)
d 

17.7 (2.8) NA 

     Abstract synonyms (/25) 24.5 (0.8)
b 

19.3 (4.5)
a 

15.6 (3.6)
d 

17.8 (4.0)
a 

NA 

     PALPA-55 (/24) 23.9 (0.4)
b 

19.1 (4.5)  22.3 (2.1)
c 

15.7 (4.9) NA 

Speech repetition      

     Polysyllabic words (/45) 44.8 (0.9)
b
 35.1 (3.6)

a
 48.9 (0.6) 34.5 (2.6) NA 

     Short sentences (/10) 9.7 (0.6)
b 

4.0 (2.9)
b 

7.8 (1.7)
b 

4.6 (2.2) NA 

Spelling      

     BST (/30) 26.6 (1.6)
b 

14.2 (8.0) 13.0 (7.5)
a 

13.0 (7.3)
a 

NA 
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Figure 6.1. Broadband time-frequency spectrograms of clear and sinewave stimuli. 
Naturally-spoken stimuli are shown in the top panels; corresponding sinewave replicas are 
displayed on the bottom panels. Frequency is depicted on the y-axis, in kilohertz (kHz) and 
time is depicted on the x-axis, in milliseconds (msec); the sinewave replica retains the centre 
frequencies of the formant contours but omits the spectral detail evident in natural speech.  
 

6.4.3. Design and procedure 

6.4.3.1. Numbers 

Number stimuli comprised 20 unique three-digit sinewave numbers and a separate 

list of 10 clear numbers. In both the test and clear conditions, each number was scored out 

of three; the participant was given one point for each correct digit. 

Participants were seated opposite me, and told that they would hear a series of 

three-digit numbers. In a training phase, I spoke a series of three-digit numbers aloud and 

asked the participant to write down or repeat the numbers; whichever the participant found 

easiest. Once I was confident that the participant had understood the task requirements, I 

gave the participant a pair of headphones and made sure that they were placed comfortably 

over their ears. Volume was set to a minimum level of 70dB for all participants and adjusted 

higher if required.  

At the start of the test phase, I said to the participant, “Now I’m going to play you 

some more numbers, but this time they’ve been distorted or changed so that they sound 

really quite strange. I want you to listen really carefully because over time you will get better 

at understanding what is being said. I’d like you to write down or repeat the number you 

think you hear, but it’s perfectly normal if at first you’re not sure: just put a question mark or 

say so and move on to the next number”. The order of the numbers within each list was 

randomised for each participant.  
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6.4.3.2. Locations 

Forty sinewave locations were played to participants, who were again required to 

transcribe or repeat the location that they heard. Half of the stimuli were geographically 

proximal to London (n=20; English cities, European countries), and half were relatively 

further away (n=20; American cities, countries from outside of Europe). I also manipulated 

syllable length factorially, so that half of the locations were bisyllabic and half were 

trisyllabic. After the test phase, participants were required to transcribe or repeat 16 “clear” 

locations that had been used as sinewave stimuli in the previous phase. To assess semantic 

knowledge of the geographical stimuli, a two-alternative forced-choice task was 

administered after the participant had completed the listening part of the experiment. 

The locations section always followed immediately after the numbers section had 

been completed. There was no practice phase for this task, and I ensured that each 

participant understood the task before commencing testing. I said to each participant, “This 

time, instead of hearing numbers, you’re going to hear the names of cities or countries being 

spoken aloud. The cities could be English or American, and the countries could be 

European, or from anywhere else in the world. I’d like you to write down or repeat the name 

of the city or country that you hear. To start with, these will be in the strange distorted 

sounds that we were using before, so again it’s a difficult task and don’t worry if you find it 

really hard at first”. After the listening part of the experiment, for each of the locations 

presented in sinewave speech, the participant was asked i) if it was a city or a country, and 

ii) if it was English/ American (for cities) or European/ not European (for countries), giving a 

total of 80 items.   

6.4.4. Analysis of clinical and background neuropsychological data 

Demographical, clinical, and background neuropsychological data for all 

participants were analysed in accordance with the approach outlined in Section 2.9.1.  

6.4.5. Analysis of sinewave data 

For the analysis of the experimental behavioural data in this Chapter, I used a 

series of multiple regression models repeated with and without certain key variables where 

appropriate.  
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6.4.5.1. Numbers 

For the numbers tasks, I ran four different main analyses: looking at total score on 

the clear and sinewave tasks separately, and learning rate and performance over time for 

the sinewave numbers only. The learning rate variable was calculated by taking score on 

items 1-5 away from score on items 16-20. Higher scores on this variable therefore reflected 

a higher rate of learning. The ‘standard’ model for each of these incorporated MMSE score 

as a measure of disease severity, digit span as a measure of phonological working memory 

and diagnosis: 

𝑦𝑖 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝛽(𝑀𝑀𝑆𝐸𝑖) + 𝛽(𝐷𝑖𝑔𝑖𝑡 𝑆𝑝𝑎𝑛𝑖) +  𝛽(𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠𝑖) + 𝜀𝑖 

Performance over time on this task was assessed using a repeated measures 

ANOVA that used score in four ‘bins’ of five items as a repeated measures variable that 

again covaried for MMSE and digit span.   

6.4.5.2. Locations 

For the locations task, the standard model included MMSE, digit span, score on 

the task assessing geographical knowledge and diagnosis:  

𝑦𝑖 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝛽(𝑀𝑀𝑆𝐸𝑖) + 𝛽(𝐷𝑖𝑔𝑖𝑡 𝑆𝑝𝑎𝑛𝑖) +  𝛽(𝐺𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑎𝑙 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝑖) +  𝛽(𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠𝑖) + 𝜀𝑖   

Running these same models with and without digit span allowed me to assess the 

effect of phonological working memory capacity on behavioural task performance. 

For the semantic control task assessing participants’ geographical knowledge, 

performance was compared in a simple regression model only incorporating overall score as 

dependent variable and diagnosis as independent variable, with planned comparisons 

assessing differences between the healthy control group and each patient group, and 

differences between the svPPA group and each other patient group. No covariates were 

included in this analysis as I wanted to assess ‘pure’ differences across groups, with a view 

to using this variable as a covariate in subsequent analyses. 

Finally, to compare performance on sinewave number and locations processing 

directly, I used the difference between scores on these two tasks (converted to percentages) 

as dependent variable in a model incorporating MMSE, geographical knowledge, clear 

number performance, forward digit span and diagnosis as independent variables. Again, I 

dropped forward digit span and clear number performance in a stepwise fashion.  
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6.4.6. Brain MRI Acquisition and VBM preprocessing 

Volumetric brain MR images were acquired for all patients in accordance with the 

general methods described in Section 2.6 and preprocessing for VBM was carried out in line 

with the methods described in Section 2.7. 

6.4.7. Analysis of neuroanatomical data 

I ran three separate major VBM analyses, using total score on the numbers task, 

learning rate on the numbers task, and total score on the locations task. The measure of 

learning rate on the sinewave numbers processing task was generated by taking score on 

items 1-5 away from score on items 16-20 in each participant. Higher scores here represent 

higher rate of perceptual learning. All three variables were included in separate full-factorial 

VBM analyses examining the interaction between diagnosis and behavioural task 

performance on voxel grey matter intensity in a model incorporating TIV and age as 

nuisance covariates for each patient group. I also incorporated forward digit span as a proxy 

for disease severity and to control for PWM capacity. SPMs were generated in accordance 

with the details outlined in Section 2.9.2.  

Here I used pre-defined regions of interest based on neuroanatomical predictions 

from previous studies (see Figure 6.2). I defined a posterior temporal lobe region, 

comprising posterior MTG, STG, and PT, all of which have been previously implicated in the 

processing of intelligible speech and in mapping meaning onto speech sounds (Dehaene-

Lambertz et al., 2005; Benson et al., 2006; Davis & Johnsrude, 2007; Hickok & Poeppel, 

2007; Leff et al., 2008; Price, 2010; Hartwigsen et al., 2017), a parietal region known to be 

involved in auditory short-term memory and rehearsal of speech, comprising SPL, angular 

gyrus, and SMG (Ravizza et al., 2004; Dehaene-Lambertz et al., 2005; Benson et al., 2006; 

Seghier, 2013; Hartwigsen et al., 2014; Clark et al., 2017), and a motor region consisting of 

IFG and precentral gyrus that has previously been implicated in creating a motoric/ 

somatotopic representation of speech as it would be produced (Tettamanti et al., 2005; 

Davis & Johnsrude, 2007; Takeichi et al., 2009; Obleser & Kotz, 2010; Wild et al., 2012; 

Specht, 2013).  
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Figure 6.2. Representative sections of neuroanatomical volumes used for VBM small-
volume corrections. Small volumes were derived from prior anatomical hypotheses (see 
text), and volumes were limited to the left hemisphere only. Each contrast was assessed 
within each small volume separately. Blue = IFG and precentral gyrus; red = SMG, angular 
gyrus and SPL; green = posterior MTG, posterior STG and PT. 
 

6.5. Results 

Background demographic, neuropsychological and clinical data for all participant 

groups are presented in Table 6.2. Results on the experimental tasks are presented in Table 

6.3. 

6.5.1. General participant characteristics 

Groups did not differ overall in terms of age (F(1,53) = 0.05, p = 0.822), 

handedness (χ2 = 5.89, p = 0.659), gender (χ2 = 5.39, p = 0.249), peripheral hearing ability 

(χ2 = 11.72, p = 0.164) or education (F(1,53) = 1.49, p = 0.228). Patient groups did not differ 

in terms of symptom duration (F(1,36) = 3.82, p = 0.059), but there was a significant main 

effect of diagnosis on MMSE score (F(1,36) = 6.12, p = 0.018) that was driven by lower 

scores in the lvPPA and tAD patient groups. Forward digit span differed significantly 

between groups (F(1,52) = 8.49, p = 0.005), driven here by reduced span lengths in the 

nfvPPA, lvPPA and tAD groups relative to the svPPA and healthy controls.  

6.5.2. Processing of clear speech numbers 

The initial model including forward digit span as a covariate was significant 

(F(6,45) = 10.07, p < 0.001, R
2
 = 0.573). This was driven by significantly worse performance 

in the nfvPPA group (t = -2.17, p =0.035). Dropping forward digit span as a covariate, the 

model remained highly significant (F(5,47) = 11.17, R
2 

= 0.543), and both the nfvPPA (t = -

3.07, p = 0.004) and lvPPA (t = -3.36, p = 0.002) groups performed significantly worse than 

controls (see Table 6.3), but did not differ significantly from one another, t = -0.63, p = 0.531.  
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Table 6.3. Group performance on experimental tasks 
 

 
The Table shows performance by participant group on the key experimental tasks of 
interest. *This variable was calculated by taking score on trials 1-5 away from score on trials 
16-20. 

†
Indicates variables that were used in the VBM analysis. Significant group differences 

are not coded here as several different models with different covariates were used to 
analyse each variable: please see text for details. 
 

6.5.3. Processing of sinewave speech numbers 

Given the group differences that emerged for the processing of clear speech 

numbers, performance on this task was incorporated into the standard model also covarying 

for forward digit span score and MMSE, with diagnosis as independent variable and overall 

score on the sinewave speech numbers task as dependent variable. This model was 

significant (F(7,43) = 19.86, p < 0.001, R
2
 = 0.764), and the nfvPPA group emerged as 

performing significantly worse than control participants (t = -2.18, p = 0.035). Running the 

model without including digit span as a covariate was still highly significant (F(6,45) = 28.78, 

p < 0.001, R
2
 = 0.793), and the nfvPPA group again emerged as the only group performing 

significantly worse than control participants (t = -2.88, p = 0.006). Finally, dropping forward 

digit span and performance on the clear numbers processing task from the model explained 

slightly less of the total variance (F(5,46) = 18.53, p < 0.001, R
2 

= 0.668), and the lvPPA 

group also emerged as significantly more impaired than the healthy controls (t = -2.60, p = 

0.012), as were the nfvPPA group again (t = -4.38, p < 0.001), although the difference 

between the two groups was not significant (t = -1.01, p = 0.317); see Figure 6.3A; Table 

6.3. 

 Controls nfvPPA svPPA lvPPA tAD 

Clear numbers (/30) 29.9 (0.0) 23.8 (0.9)
 

30.0 (0.0) 22.1 (1.4) 29.8 (0.1) 
†
Sinewave numbers (/60) 55.3 (0.6) 28.4 (2.9) 52.0 (1.0) 26.6 (4.0) 47.1 (0.8) 

     Trials 1-5 (/15) [Bin 1] 12.6 (0.7) 5.5 (8.4) 10.1 (1.0) 5.9 (2.1) 9.2 (0.8) 

     Trials 6-10 (/15) [Bin 2] 14.0 (0.3) 7.4 (1.4) 13.7 (0.6) 7.0 (2.4) 11.5 (1.1) 

     Trials 11-15 (/15) [Bin 3] 14.2 (0.2) 7.8 (1.8) 14.1 (0.5) 7.6 (2.4) 12.9 (0.4) 

     Trials 16-10 (/15) [Bin 4] 14.5 (0.2) 7.8 (1.9) 14.0 (0.5) 6.1 (1.8) 13.5 (0.4) 
†
Learning rate* 1.8 (0.6) 2.3 (1.4) 3.9 (1.1) 0.3 (0.9) 4.3 (0.9) 

Clear locations (/16) 16.0 (0.0) 14.7 (0.6) 15.9 (0.1) 14.1 (0.9) 16.0 (0.0) 
†
Sinewave locations (/40) 35.4 (0.7) 24.6 (3.0) 25.3 (1.4) 28.1 (1.8) 28.1 (1.8) 

     Near (/20) 18.6 (0.6) 16.1 (1.0) 16.0 (0.9) 13.0 (2.2) 17.4 (0.7) 

     Far (/20) 16.2 (0.5) 8.6 (4.5) 8.9 (0.9) 6.9 (2.3) 10.7 (1.3) 

     Bisyllabic (/20) 17.2 (0.4) 11.6 (1.2) 12.3 (0.7) 9.7 (2.2) 13.0 (0.9) 

     Trisyllabic (/20) 18.2 (0.4) 13.1 (1.9) 13.0 (1.2) 10.1 (2.4) 15.1 (1.0) 

Geographical knowledge (/80) 79.8 (0.1) 76.4 (1.7) 70.7 (3.4) 73.5 (2.4) 76.0 (0.8) 
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The interaction between diagnosis and change in score on the sinewave numbers 

task over time approached significance in a repeated measures model covarying for MMSE, 

clear numbers performance and forward digit span (F(12,138) = 1.73, p = 0.067). This was 

driven by a lack of improvement in performance over time in the lvPPA group: relative to 

score on the first five items (bin 1), scores in bins 2, 3, and 4 were significantly improved in 

each of the other diagnostic groups (all p < 0.05); the lvPPA group showed marginally 

improved performance in the third time bin relative to bin 1 (p = 0.045), but no other 

differences to baseline performance. Dropping clear numbers performance from this model 

did not change this pattern of results. Dropping forward digit span and clear number 

performance from the model led to a significant interaction between diagnosis and change in 

score over time (F(12,141) = 1.83. p = 0.048), and the pattern of performance over time 

within each group echoed the previous model; here, however, none of the timepoints in the 

lvPPA group reflected an improvement on baseline performance. Figure 6.3B shows raw 

performance over time by group, unadjusted for any covariates; data are also presented in 

Table 6.3. 

With regard to learning rates across participant groups, in the standard model 

covarying for MMSE and forward digit span, the overall model was not significant, F(6,44) = 

1.94, p = 0.095, R
2 

= 0.209. The control group had a rate of learning that appeared relatively 

modest (1.8 point improvement), reflecting the fact that they scored relatively highly on items 

1-5 compared to the other participant groups. To enable more meaningful interpretation of 

analyses, here I referenced each patient group to the AD participants as my 

neurodegenerative control cohort. No patient groups had a significantly lower rate than AD 

participants. The model incorporating MMSE, forward digit span and clear numbers 

performance was also not significant, F(7,43) = 1.64, p = 0.151, R
2 

= 0.211), and no patients 

had a significantly lower rate than AD participants. The next model, which did not included 

digit span or clear numbers performance, trended toward significance, F(5,46) = 2.38, p = 

0.054, R
2 

= 0.205, and here the lvPPA group were significantly worse than ADs (t = -2.26, p 

= 0.029).  
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Figure 6.3. Behavioural results on the sinewave numbers processing task. A) Bar 
charts depicting coefficients from three models regressing diagnostic group membership 
against overall performance on the sinewave numbers processing task across the testing 
session. All models covary for MMSE score, Model 1 additionally covaries for forward digit 
span and clear number processing performance; Model 2 covaries for forward digit span, 
and Model 3 does not covary for digit span or clear number performance. Zero represents 
performance of the healthy control group, and all other diagnoses are referenced to this; raw 
data for all participant groups are presented in Table 6.3. *significantly different from 
controls, p < 0.05. Error bars represent standard error. B) Line charts showing performance 
of each group on the sinewave numbers processing task, split into four time ‘bins’. Error bars 
have been omitted to aid visual interpretation; please see Table 6.3 for information on 
variance associated with each group and timepoint.  
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6.5.4. Processing of clear speech locations 

Overall performance on the clear locations task (see Table 6.3) assessed using 

the standard regression model was significant overall (F(7,44) = 4.12, p = 0.002, R
2
 = 

0.396). There were, however, no significant group differences between any of the patient 

groups vs healthy controls (all p > 0.05); this overall significance was explained by a main 

effect of digit span (t = 2.68, p = 0.010). Running the model again without including digit 

span again resulted in a significant overall model (F(6,46) = 4.01, p = 0.003, R
2
 = 0.343), 

and here both the nfvPPA (t = -2.20, p = 0.033) and lvPPA (t = -2.10, p = 0.041) groups were 

significantly impaired relative to healthy control participants, though not significantly different 

from one another (t = -0.41, p = 0.684). 

6.5.5. Performance on geographical knowledge control task 

Performance on the geographical knowledge control task was significantly affected 

by diagnosis (F(4,50) = 4.12, p = 0.006, R
2
 = 0.248). This was driven by significantly worse 

performances relative to healthy control participants in the lvPPA (t = -2.33, p = 0.024) and 

svPPA (t = -3.91, p < 0.001) groups. The svPPA participants were also significantly worse 

relative to patients with nfvPPA (t = -2.06, p = 0.044) and tAD (t = -2.09, p = 0.041). 

6.5.6. Processing of sinewave speech locations 

Performance on the sinewave speech locations task (see Table 6.3) assessed 

using the standard model was significant overall (F(7,43) = 13.65, p < 0.001, R
2
 = 0.690). 

This was explained by significantly worse performance in the svPPA group relative to 

healthy controls (t = -4.12, p < 0.001); no other patient groups differed significantly from the 

healthy control participants. Dropping forward digit span from the model was still highly 

significant (F(6,45) = 12.45, p < 0.001, R
2
 = 0.624), and here the nfvPPA (t = -3.03, p = 

0.004) and lvPPA (t = -2.23, p = 0.031) groups were affected in addition to the svPPA group 

(t = =2.71, p = 0.009). 

Next, I considered differential performance on locations that were more 

geographically proximal (English cities, European countries) relative to those that were 

further away (American cities, non-European countries). In a model covarying for forward 

digit span, MMSE, and performance on the geographical knowledge control task, using 
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difference between score on processing of near vs far locations as dependent variable, the 

overall model was significant (F(7,43) = 4.65, p < 0.001, R
2
 = 0.431). This was driven by 

significantly worse performance on the far vs near locations in the AD (t = 2.27, p = 0.028) 

and svPPA (t = 3.93, p < 0.001) groups, relative to the healthy controls.  

Finally, I considered differential performance for locations that were trisyllabic 

relative to those that were bisyllabic. In a model covarying for forward digit span, MMSE, and 

geographical knowledge, using difference between score on processing of trisyllabic vs 

bisyllabic locations as dependent variable, the overall model was not significant (F(7,43) = 

1.11, p = 0.375, R
2
 = 0.153).  

6.5.7. Differential processing of sinewave speech numbers vs locations 

The overall model incorporating MMSE, geographical knowledge, clear number 

performance, forward digit span and diagnosis was significant (F(8,41) = 9.28, p < 0.001, R
2
 

= 0.664). Only the svPPA group was significantly different to healthy controls here (t = 5.10, 

p < 0.001), reflecting much better performance on processing of sinewave numbers than 

locations.  

The model remained highly significant without including clear numbers 

performance (F(7,42) = 6.60, p < 0.001, R
2
 = 0.524), and here the svPPA group showed the 

same pattern of results as before (t = 4.40, p < 0.001), while in the nfvPPA group, a 

significant difference emerged (t = -2.26, p = 0.029), reflecting better performance on 

processing of sinewave locations than numbers.  

 The model remained significant after dropping digit span (F(6,44) = 8.28, p < 

0.001, R
2 

= 0.530), and the same group differences as in the previous model emerged. In 

follow-up t-tests assessing within-group differences here, the AD, control, and svPPA groups 

all performed significantly better on the numbers processing task (all p <0.05), while in the 

nfvPPA group there was a trend toward better performance in the processing of sinewave 

locations (p = 0.085). 
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Figure 6.4. Performance on the sinewave locations task. Box plot showing performance 
on processing of sinewave numbers (green) vs sinewave locations (navy); for display 
purposes, both variables have been converted to percentage scores. *difference between 
processing of sinewave numbers and locations significantly different to healthy controls, p < 
0.001. 
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6.5.8. Neuroanatomical data 

Statistical parametric maps of grey matter regions associated with performance on 

the sinewave speech processing tasks are shown in Figure 6.5; local maxima of grey matter 

change correlated with experimental psychoacoustic task performance are summarised in 

Table 6.4. 

No correlations emerged within any of the patient groups for overall score on the 

sinewave numbers task. However, improvement on the processing of sinewave numbers 

(i.e. learning rate) was positively associated with grey matter volume in left MTG in lvPPA 

and nfvPPA, more posteriorly in nfvPPA (p<0.05FWE within the pre-specified region of 

interest). The lvPPA group additionally showed a positive correlation with grey matter 

volume in left precentral gyrus (p<0.05FWE within the pre-specified region of interest). No 

correlations emerged at the specified threshold within the AD or svPPA groups here. 

Processing of sinewave locations was positively associated with grey matter 

volume in left MTG in AD (p<0.05FWE within the pre-specified region of interest), while 

performance on the same task was positively correlated with grey matter volume in left SMG 

in the svPPA patient group (p<0.05FWE within the pre-specified region of interest). No 

significant loci within the regions of interest specified emerged for the nfvPPA or lvPPA 

groups for this contrast. 

Table 6.4. Structural neuroanatomical associations of perceptual processing of 
sinewave speech in the patient groups. 
 

 
The Table summarises statistically significant positive associations between grey matter 
volume and the relevant sinewave speech processing measure (see text for details), 
based on a VBM analysis of brain MR images. All values were significant at p<0.05FWE 

within the prespecified neuroanatomical small volume correction in the left hemisphere 
(see Figure 6.2): 

a
comprised posterior STG, MTG and PT; 

b
comprised PrG and IFG; 

c
comprised

 
SMG, Angular gyrus, and SPL. 

  

Group Region 
Cluster (voxels) 

Peak (mm) t-value p-value 

  x y z   

Numbers       

     No correlates in any group       

Learning rate (numbers)       

     nfvPPA L MTG post
a 

31 -58 -36 -8 4.26 0.050 

     lvPPA L MTG mid
a 

19 -62 -18 -27 5.30 0.008 
 L PrG

b
 254 -14 -21 76 5.13 0.038 

Locations        

     AD L MTG mid
a
 72 -56 -16 -24 4.56 0.031 

     svPPA L SPL
c
 49 -20 -50 69 6.61 0.002 
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Figure 6.5. SPMs of sinewave speech processing 
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6.6. Discussion 

 
In this Chapter, I have demonstrated behavioural and neuroanatomical correlates 

of the defective analysis of degraded speech signals across all three major PPA syndromes, 

referenced to a neurodegenerative control group of patients with AD. Here, all groups 

showed some capacity for perceptual learning, but patients with lvPPA and nfvPPA showed 

deficient “bottom-up” apperceptive processing of sinewave speech, while patients with 

svPPA showed intact perception of the distorted speech stimuli, but impaired “top-down” 

associative/ predictive processing of degraded speech signal information, in line with models 

of degraded speech perception in the healthy brain (Davis & Johnsrude, 2003, 2007; 

Sohoglu et al., 2012; Sohoglu & Davis, 2016). Neuroanatomical correlates were identified for 

the slower perceptual learning rates seen in the nfvPPA and lvPPA groups in left MTG, and 

additionally in the left precentral gyrus in lvPPA only. For overall performance on the 

sinewave locations task, neuroanatomical correlates were identified again in left MTG in the 

AD group, and in left SPL for patients with svPPA. Taken together, the results presented in 

this Chapter substantiate the emerging picture of the two nonfluent PPA syndromes being 

associated with deficient early auditory perceptual processing.  

Deficient processing of clear speech numbers was observed in the nfvPPA cohort. 

This deficit remained even when covarying for auditory short-term memory performance, 

suggesting that the deficit here was separable to any phonological working memory 

problem. Patients with lvPPA were also impaired on this task, but here their deficits were 

accounted for by phonological working memory capacity, in line with previous reports on this 

syndrome (Gorno-Tempini et al., 2008; Wilson et al., 2010b).  

A similar syndromic pattern was observed for the processing of sinewave speech 

numbers: here, however, I covaried for clear number processing performance, so the deficit 

that emerged in the nfvPPA group was additional to the more basic processing of clear 

numbers alone. The lvPPA group, by contrast, only emerged as significantly impaired 

relative to controls on this task when the regression model did not incorporate digit span and 

clear numbers performance as covariates. The relationship with phonological working 

memory in this patient group is extremely important. The present data do not clarify whether 

the deficits seen here are completely attributable to phonological working memory capacity, 
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or if they reflect an interaction with phonological working memory as an aspect of dynamic 

phonological representation. Analogously, work on music perception and nonverbal sound 

processing in lvPPA and other dementia syndromes has suggested that phonological 

working memory impairment may account for early auditory processing deficits in these 

domains (Goll et al., 2010a; Golden et al., 2017). In lvPPA, one might argue that rather than 

phonological working memory capacity per se, it is this dynamic phonological representation 

system that is predominantly affected, going some way to explain the disparate constellation 

of symptoms such as phonemic paraphasias, repetition length effects, and word-finding 

pauses in these patients. Differentiating between capacity and representation in the context 

of lvPPA are beyond the scope of the present study, but suggest an exciting avenue for 

future research (see Section 7.3.1 for a further discussion of this point). 

Critically, however, there was evidence of at least some perceptual learning in all 

of the patient groups. Patients with svPPA showed remarkably quick adaptation to the 

degraded number speech tokens (though critically not the locations), while those with 

nfvPPA and lvPPA showed a slower rate of learning (see Figure  6.3). It is not clear why this 

improvement seemed to tail off in the lvPPA patients in the last trials on the task: I would 

have anticipated a linear profile of improvement, and I think it likely that the poorer 

performance in the fourth time bin here reflects fatigue or other confounding effects, rather 

than representing a key index of degraded speech signal decoding. The fact that both the 

nfvPPA and lvPPA groups did show perceptual learning and improvement over time (albeit 

at a much slower rate to that seen in AD, svPPA or healthy controls) does suggest a degree 

of residual plasticity within this vulnerable language network that may be targeted with future 

cognitive rehabilitation strategies. 

In terms of the task assessing processing of sinewave speech locations, only the 

patient group with svPPA emerged as significantly impaired relative to healthy control 

participants. Crucially, the patients with svPPA were impaired even after controlling for their 

background geographical knowledge of the sinewave locations, suggesting that this deficit 

was not merely driven by a pure semantic deficit. This category of knowledge was 

deliberately chosen to minimise any impact of more basic semantic impairment, and I would 

argue that the poor performance on this task reflects an inability in svPPA to use prior 
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knowledge (in this case, geographical knowledge) to determine the most probable 

interpretation of the distorted auditory stimulus: a deficit at the level of predictive pattern 

recognition. A similar Bayesian mechanism has been proposed for visual object perception 

(Kersten & Yuille, 2003), and Davis and Johnsrude argue that such a mechanism could 

support perceptual retuning to degraded speech stimuli by helping the speech system to 

adapt to novel and changing linguistic environments (Davis & Johnsrude, 2003). It is 

particularly noteworthy that the basic ‘bottom-up’ processing of sinewave speech was 

completely intact in the svPPA group, reflected by their healthy control-level performance on 

the sinewave numbers processing task (see Figure 6.2). This dissociation between 

performance on the degraded numbers and location stimuli echoes previous studies of 

short-term memory differences and verbal learning, which suggest that numerical cognition 

is relatively spared in svPPA (Jefferies et al., 2004). The patients’ inability to integrate 

semantic knowledge here could reflect a similar mechanism to that discussed in Chapter 4: 

an inability to compute coherent object concepts via sensory signal analysis (Lambon Ralph 

et al., 2010, 2016; Clark et al., 2017).  

Considering performance on processing of locations geographically proximal to 

London relative to those that were further away, participants with svPPA and tAD were 

significantly impaired relative to controls on locations that were more distant from London. 

This finding is broadly consistent with previous research implying that geographical 

knowledge is impaired in patients with AD (Beatty & Bernstein, 1989; Beatty & Salmon, 

1991). 

The patient groups with nfvPPA and lvPPA were also impaired on this sinewave 

locations processing task when the model did not incorporate forward digit span as a 

covariate. With regard to the nfvPPA patients’ performance here, accurate perception of 

these degraded speech stimuli is likely to be driven by two complementary processes: a 

‘bottom-up’ mechanism responsible for interpreting primitive grouping cues such as rhythm, 

and a ‘top-down’ experience-driven mechanism sensitive to the higher-level linguistic 

characteristics of speech (Davis & Johnsrude, 2007); based on my results here it seems 

plausible that both routes are affected in nfvPPA. This is consistent with previous work 

suggesting that patients with nfvPPA have a ‘double-hit’ of impaired bottom-up perceptual 
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processing and top-down predictive mechanisms (Cope et al., 2016). This explanation is 

parsimonious in accounting for the overall deficit in processing of sinewave speech numbers 

in nfvPPA, and the reduced rate of perceptual learning shown by the same patients over 

time.  

A similar neuroanatomical locus in MTG was identified in both the nfvPPA and 

lvPPA groups for the processing of sinewave numbers, and in the AD group for processing 

of sinewave locations. MTG has previously been implicated in the processing of meaningful 

speech (Hickok & Poeppel, 2004; Hall et al., 2005; Price, 2010), and prevailing evidence 

suggests that this region serves as an interface between sound-based representations of 

speech signals and widely distributed conceptual representations, i.e. it is a component of 

the ventral stream responsible for mapping sensory/ phonological representations to lexical 

conceptual representations (Démonet et al., 1992; Davis & Johnsrude, 2003; Hickok & 

Poeppel, 2004; Hall et al., 2005; Price, 2010). The correlation reported here for the learning 

rate on the sinewave numbers processing task could therefore go some way to accounting 

for the behavioural deficit seen in these patient groups, suggesting that the fundamental 

problem slowing the perceptual learning seen in the nonfluent patient groups was in 

mapping distorted speech signals to appropriate semantic constructs. 

However, it is somewhat surprising that no correlates in the lvPPA or nfvPPA 

groups were identified in STS/STG, given the plethora of evidence suggesting that both 

syndromes are associated with critical damage to this area of cortex (Rohrer et al., 2010b; 

Gorno-Tempini et al., 2011; Henry et al., 2016), and the role that this region is known to play 

in early spectrotemporal analysis of speech signals (Griffiths & Warren, 2002; Warren et al., 

2005; Hickok & Poeppel, 2007). One possibility is that inclusion of forward digit span in the 

VBM models accounted for variance associated with damage to these cardinal regions. 

Alternatively, as these critical temporo-parietal areas are considered as a focal point for 

atrophic profiles in nfvPPA and lvPPA, it is possible that a complete lack of variance here 

meant the regression models used in the VBM lacked sensitivity to correlate behavioural 

task performance with an area of uniform atrophy. It is plausible that PT should be 

completely engaged across all speech conditions: as discussed in Section 7.2, VBM allows 

for identification of regions that are critical for performance of a behavioural task. It seems 
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likely that using the same paradigm with different imaging methodologies (MEG/ fMRI) would 

yield complementary functional signatures along the STG/S. 

An additional neuroanatomical correlate was identified in the lvPPA group in left 

precentral gyrus. This area has previously been associated with atrophy in lvPPA 

(Ossenkoppele et al., 2015), and is typically thought to be a key node in the frontal-motor 

network for speech production that is likely to form part of the dorsal language network 

involved in sensory/ phonological mapping to motoric representations (Hickok & Poeppel, 

2007). Indeed, mounting evidence in the healthy brain suggests that speech motor circuitry 

is also recruited during speech perception: left precentral gyrus shows dissociable functional 

activation profiles reflecting phonetic distinctive features of passive listening to speech 

sounds (Pulvermuller et al., 2006). Similarly, functional connectivity to bilateral precentral 

gyri in healthy control participants is associated with improved performance on prosody 

intonation identification (Rota et al., 2011), and in dyslexia, abnormal activation patterns are 

seen in left precentral gyrus on phonological processing tasks (Corina et al., 2001). In the 

context of PPA, the same locus has previously been associated with deficits in tasks 

involving phonological perception and production (Wilson et al., 2010b; Henry et al., 2016). 

Additionally, this region is part of a network implicated in number cognition (Dehaene et al., 

1996; Venkatraman et al., 2005), and the numerical nature of this task may have 

overburdened the already damaged circuity here, although as discussed above this task did 

not require arithmetic or number cognition per se.  

The neuroanatomical correlate identified in the left SPL for performance on this 

task was slightly surprising, given that damage to this region is not often reported in the 

context of svPPA, although there are documented cases (Rossor et al., 2000). Furthermore, 

the function of the SPL is typically regarded as directing visuospatial attention (Caminiti et 

al., 1996; Vandenberghe et al., 2001). However, left SPL has previously been implicated in 

regard to language processing (Shapiro et al., 2006), and converging functional 

neuroimaging evidence from healthy controls and psychiatric patients suggests that this 

region may play a critical role in decoding distorted inputs, including speech signals (Bishop 

& Miller, 2009; Hill & Miller, 2010; Zheng et al., 2016). All of the patients in the svPPA group 

transcribed their responses by writing, and it is also possible that the anatomical association 
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in left SPL reflects impairment at the level of writing to dictation (Segal & Petrides, 2012). 

However, this would not explain the specificity of the deficit for the locations task relative to 

the numbers, and I think a more appropriate explanation is that this region represents a hub 

necessary for the integration of spectrotemporal auditory object properties with semantic 

constructs. 

The work presented in this Chapter has several limitations that suggest 

opportunities for future research. First, the sinewave manipulation I employed here was 

essentially binary: the stimuli were presented in clear speech, or sinewave speech. Recent 

research suggests that training procedures for degraded speech stimuli that start off with 

relatively little signal distortion may afford more opportunities for perceptual learning than 

conditions where severe distortions are presented immediately, as in my paradigm here 

(Gabay et al., 2017). Future work aimed at exploiting, and exploring residual plasticity in the 

nfvPPA and svPPA syndromes, should perhaps explore whether a graded approach to 

perceptual learning of distorted speech stimuli could alter the learning curves displayed in 

Figure 6.2. Second, whilst I have identified neuroanatomical loci that may be critical within 

the neurodegenerative syndromes included here for the processing of distorted speech 

stimuli, this approach provides no information as to the temporal signatures associated with 

sinewave speech processing in each disease. Magnetoencephalography (MEG) is emerging 

as one of the most sensitive markers of early cognitive dysfunction in neurodegenerative 

contexts (Josef Golubic et al., 2017), and the dynamic stimuli presented in this Chapter 

would be perfectly suited to MEG given the temporal and spatial sensitivity the technique 

now allows.  

Nevertheless, I think the findings reported here are exciting for three reasons: i) 

they corroborate and extend previous work suggesting a fundamental auditory perceptual 

processing deficit in the nfvPPA and lvPPA syndromes (Rohrer et al., 2010b; Hailstone et 

al., 2012; Golden et al., 2015b; Hardy et al., 2015; Grube et al., 2016; Henry et al., 2016); ii) 

they add support to the notion of svPPA representing a disease affecting associative-level 

processing, suggesting that the deficits seen here speak to a more fundamental mechanism 

of pattern recognition and coherent object formation (Bozeat et al., 2000; Lambon Ralph et 

al., 2010; Hsieh et al., 2011); and iii) they provide support for the notion of residual plasticity 
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within the damaged and disintegrating language network in nfvPPA. This represents a 

fundamentally new direction focussed on capacity rather than deficits that could have 

implications for development of novel biomarkers and future rehabilitation strategies. A 

refinement of the paradigm could represent a dynamic perceptual ‘stress test’ for each of the 

major PPA syndromes. 
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7. General discussion 

7.1. Summary of findings 

This thesis sought to characterise deficits in auditory signal decoding in PPA, and 

where possible to relate these behavioural deficits to underlying structural and functional 

neuroanatomy. Specific deficits were associated with the different PPA phenotypes: broadly 

speaking, nfvPPA and lvPPA were associated with ‘bottom-up’ early perceptual and 

apperceptive deficits, while impairments seen in svPPA were more attributable to ‘top-down’ 

associative deficits. Neuroanatomical correlates in the experiments detailed in Chapters 3, 4 

and 6 point towards a distributed fronto-temporo-parieto-subcortical network of regions 

within and beyond the canonical language networks that subserve these psychoacoustic 

processing deficits. 

The work of Chapter 3 corroborated previous findings suggesting that both nfvPPA 

and lvPPA are associated with impairments in early auditory perceptual processing (Bozeat 

et al., 2000; Goll et al., 2010a; Hailstone et al., 2011; Rohrer et al., 2012; Grube et al., 

2016), characterised here by dysfunction at the level of processing phonemic structure, 

signal information content (entropy), and temporal regularity, while patients with svPPA 

show impaired processing of phonemic spectral structure and entropy but not temporal 

regularity. In a combined VBM analysis of the FTLD-PPA groups, performance on the 

temporal regularity task was associated with grey matter volume in left supplementary motor 

area and right caudate, while phonemic processing correlated with grey matter in left 

supramarginal gyrus. It is worth noting that here I used stimuli designed to probe the generic 

“building blocks” of speech signals, addressing a more fundamental level of deficit/ 

mechanism than previous work, and specifically manipulating speech signal characteristics 

for the first time. 

Using similar stimuli in the context of fMRI, different functional neuroanatomical 

signatures were identified for each of the major PPA subtypes in Chapter 4. Separable 

patterns of activation were found relative to healthy controls: in nfvPPA in medial Heschl’s 

gyrus in response to any sound and in anterior cingulate in response to temporal irregularity; 

in svPPA in caudate and anterior cingulate in response to increased entropy; and in lvPPA in 
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posterior STG/STS in response to phonemic spectral structure. Together, the experiments 

detailed in Chapters 3 and 4 identify perceptual deficits for auditory processing of key 

components of speech signals, correlating these deficits with structural and functional 

neuroanatomical substrates across the PPA spectrum. 

The findings I present in Chapter 5 suggest that nfvPPA and lvPPA may be less 

susceptible to the effects of delayed auditory feedback – a transformation of normal auditory 

feedback that disrupts fluency, reduces speech rate and increases speech errors in healthy 

participants. These data should be regarded as preliminary and interpreted with a degree of 

caution, but do suggest that damage to structures in the dorsal language pathway may 

negate sensori-motor adaptation to normal auditory feedback, and could go some way to 

accounting for some aspects of the speech phenotype associated with both lvPPA and 

nfvPPA.  

Finally, in Chapter 6 I moved beyond the characterisation of fixed deficits to 

address dynamic processing and residual plasticity. Here, I used the paradigm of sinewave 

speech to degrade normal speech in a manner that requires rapid and spontaneous 

perceptual learning: a computationally demanding task that is even more taxing in patients 

with disintegrating language networks, and has wide potential relevance as a paradigm of 

“challenging listening conditions”. Here, patients with nfvPPA and lvPPA showed deficient 

“bottom-up” processing of sinewave speech signals, while patients with svPPA showed 

intact processing of degraded speech tokens, but deficient “top-down” integration of 

semantic knowledge. Neuroanatomical correlates for key behavioural signatures here were 

identified along the dorsal and ventral pathways of the language network. Critically, this 

experiment provided evidence of residual capacity for perceptual learning in all syndromes, 

but also allowed for differentiation by syndrome.  

7.2. Structure vs function: the differing contributions of VBM vs fMRI 

The relationship between structural neuroanatomy and functional neuroanatomical 

signatures is important given the use of these contrasting methodologies in this thesis: VBM 

in Chapters 3 and 6, and fMRI in Chapter 4. I would argue that VBM can be considered as 

an extension of lesion analysis methods that establish critical anatomical associations/ 

substrates/ mechanisms at network level, whereas fMRI delineates the networks engaged in 
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processing. As a corollary of this, VBM more closely indexes behaviour, while fMRI more 

closely tracks the underlying pathophysiology. Indeed, the functional activation profile shown 

in Chapter 4 by the nfvPPA group for anisochronous signals was not correlated with out-of-

scanner perceptual assessment of speech stimuli, and was moreover right-lateralized, 

perhaps indicating motor recoding of syllable timings or recruitment of a generic mechanism 

for the decoding of signal regularities (Nastase et al., 2014), underlining the fundamental 

difference here between VBM and fMRI. The key point is that the anatomical profiles 

delineated by VBM and fMRI need not necessarily converge, as in the data presented 

across Chapters 3 and 4. 

7.3. Impaired auditory signal decoding in PPA 

The work presented in this thesis corroborates the growing body of literature 

suggesting that the major PPA syndromes are characterised by nonverbal and meta-

linguistic auditory processing impairments (Bozeat et al., 2000; Goll et al., 2010a, 2010b, 

2011; Hailstone et al., 2011; Rohrer et al., 2012; Golden et al., 2015b, 2017; Grube et al., 

2016; Hardy et al., 2016). The four major experiments presented here suggest that these 

deficits stratify syndromic groups, and Figure 7.1 depicts an updated schematic 

representation of the dual streams model of speech perception (Hickok & Poeppel, 2000) 

that incorporates findings from this thesis. The model is replicated in triplicate with the critical 

node(s) for each syndrome highlighted in red. 
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Figure 7.1. Reproduction of Figure 1.4 with additional support from findings in this thesis. A) This model incorporates an additional stage of “statistical 
signal analysis”, and distinguishes between “phonological representation” and “phonological rehearsal” (all turquoise boxes). Pink boxes represent nodes in 
the proposed ventral stream, while those in blue represent the proposed dorsal stream (Hickok & Poeppel, 2007). The green box denotes the earliest stage of 
cortical speech processing, while the orange box depicts the widely distributed conceptual network. The model also incorporates the proposed link from 
articulation to auditory input, i.e. “auditory feedback” (Warren et al., 2005). Red boxes in panels B-D represent the level of impairment for a particular 
syndrome based on findings from this thesis. 
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7.3.1. The nature of the deficits seen in nfvPPA and lvPPA 

The clinical presentations of patients with either of the two nonfluent PPA 

syndromes can be very similar, especially in the early stages, perhaps explaining why lvPPA 

has only been recognised as a separate syndrome since the turn of the century (Gorno-

Tempini et al., 2004, 2008; Rohrer et al., 2010b). In this thesis, both patient groups showed 

deficient early perceptual analysis of incoming auditory signals consistent with deficits at the 

level of spectrotemporal processing (Figure 7.1): behavioural deficits were reported in 

Chapter 3 for the processing of temporal regularity, phonemic spectral structure and entropy. 

The deficit for entropy processing here I think is more likely to reflect a fundamental 

impairment of pitch pattern analysis than the computational mechanism discussed above in 

relation to svPPA. These early spectrotemporal deficits are broadly consistent with a large 

body of previous research (Bozeat et al., 2000; Goll et al., 2010a; Hailstone et al., 2011; 

Rohrer et al., 2012; Grube et al., 2016), although it is perhaps significant that the study by 

Grube and colleagues found no core auditory processing deficits in their (albeit small) 

sample of four patients with lvPPA. One possible explanation for this discrepancy is that 

Grube et al used completely non-linguistic stimuli: the auditory sequences I used in Chapters 

3 and 4 were all based on spoken syllables.  

This raises the possibility that the deficits I observed in lvPPA may reflect 

impairment at a different level to early spectrotemporal processing. Phonological working 

memory impairment is a defining feature of lvPPA (Gorno-Tempini et al., 2008; Rohrer et al., 

2010b; Henry et al., 2016), but it is possible that this is caused by a more basic problem at 

the level of dynamic phonological transcoding, so that these phonemic representations are 

malformed before they enter the so-called ‘phonological loop’ in classical models of working 

memory (Baddeley, 2010). It is possible that while early spectrotemporal processing is 

impaired in nfvPPA, it may be relatively unimpaired in lvPPA: my data do not allow for 

disentangling of spectrotemporal processing vs phonological representation given that my 

stimuli in Chapters 3 and 4 did have linguistic properties. However, it seems likely that 

across the different levels of spectrotemporal analysis, there is a core deficit at the level of 

temporal pattern processing.  
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Phonological working memory was clearly a critically important factor with regard 

to the deficit in processing degraded speech signals in lvPPA in Chapter 6: covarying for 

working memory meant that this group of patients did not emerge as significantly different to 

control participants on any of the sinewave speech tasks. What is unclear here is whether 

this reflects aberrant phonological rehearsal, representation, or (most likely), an interaction 

of the two. Parsimoniously, however, a deficit at the level of phonological representation in 

lvPPA could go some way to explaining the disparate constellation of leading symptoms, 

such as word-finding pauses, phonemic paraphasias, and repetition length effects.  

7.3.2. Signal analysis and computation of coherent object concepts in svPPA 

Evidence presented in Chapters 3-6 suggest that “bottom-up” early perceptual and 

apperceptive processing is intact in svPPA, but Chapters 3, 4, and 6 suggest that “top-down” 

associative integration is impaired. This is consistent with a plethora of previous evidence 

suggesting that svPPA is a disease of pan-modal conceptual degradation (Bozeat et al., 

2000; Hodges, 2000; Snowden, 2004; Knibb & Hodges, 2005; Garrard & Carroll, 2006; Luzzi 

et al., 2007; Piwnica-Worms et al., 2010; Goll et al., 2012b).  

The work presented in this thesis suggests that these deficits, at least in the 

auditory domain, may be attributable to an inability to compute coherent object concepts via 

auditory signal analysis. The model presented in Figure 7.1 proposes that patients have 

intact capacity for spectrotemporal analysis (reflecting largely spared cortex in the STG), but 

impaired ability to extract global statistical regularities from the auditory signal that are used 

to form and evaluate semantic concepts via the ventral stream (see Figure 7.1: this is 

necessarily bidirectional - generic conceptual degradation results in impaired concepts 

against which to evaluate these statistical properties). This was demonstrated partially in 

Chapter 3: patients with svPPA showed impaired ability to differentiate between sequences 

of high and low entropy, while the work presented in Chapter 4 suggested that this 

behavioural deficit was associated with functional signatures in a fronto-cingulo-striatal 

network likely to be relevant to predictive coding and minimising of uncertainty in the healthy 

brain (Kiehl et al., 2000; Magno, 2006; Lee et al., 2011; Ide et al., 2013; Fan, 2014; Nastase 

et al., 2014, 2015). Chapter 6 suggests that this account is pertinent to mapping sounds to 

meaning with regard to lexical stimuli. Here, when the stimuli to be decoded had limited and 
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specific semantic associations (numbers), perception was as good as in healthy control 

participants. However, when the computational demands were difficult (mapping the 

distorted token to a geographical location), a deficit emerged that was only partially 

attributable to the loss of conceptual knowledge intrinsic to this syndrome. It seems likely 

that in this study, patients with svPPA were able to form an accurate percept of the 

degraded speech token, but crucially in the presence of this sensory noise were not able to 

adequately integrate prior knowledge, i.e. they were not able to use statistical information 

present in the signal to predict plausible candidates for that token, and were therefore 

unable to match sound to meaning. These findings are consistent with recent work 

suggesting that patients with semantic aphasia may be affected at a level of ‘semantic 

integration’ – over and above object identification (Thompson et al., 2017). 

Broadly, this deficit at the level of pattern-matching across Chapters 3, 4 and 6, 

reflects inefficient formation of predictions. ‘Predictive coding’ describes the generation and 

updating of hypotheses predicting sensory input, the central driver being to minimise 

prediction error across hierarchically organised generative brain networks (Rao & Ballard, 

1999; Friston & Kiebel, 2009). This model has been used to explain perceptual learning of 

degraded speech in the healthy brain (Sohoglu & Davis, 2016), and my data imply that 

extraction of statistical regularities from incoming auditory signals is aberrant in svPPA, 

which results in inappropriate or malformed predictions, ultimately manifesting in deficient 

associative processing of incoming stimuli. Clearly, my results here are pertinent only to the 

auditory domain, but it seems plausible that this generic mechanism could reflect a key 

deficit in svPPA in computing statistics from incoming information in any sensory modality 

(Holland & Lambon Ralph, 2010; Lambon Ralph et al., 2016). 

7.3.3. Trans-syndromic effects 

Whilst a critical aim and indeed key finding of this thesis was in regard to 

stratification of the PPA phenotypes according to auditory processing deficits, there are 

certain commonalities in terms of mechanisms and processes that suggest a degree of 

unification across the three syndromes.  

The work I presented in Chapter 3 identified a common neuroanatomical profile 

associated with processing of the building blocks of speech signals that I used in this 
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experiment. Here, I found that temporal pattern processing was associated with grey matter 

volume in left SMA and right caudate in a combined group of svPPA and nfvPPA patients. 

Phonemic processing here correlated with grey matter in left SMG, while entropy processing 

correlated with grey matter volume in right putamen. The fundamental theoretical differences 

in VBM relative to fMRI are discussed briefly in Section 7.2, but it is worth also noting that 

my findings in the fMRI study presented in Chapter 4 suggested that a generic mechanism 

of cortical inefficiency might in fact underpin the psychoacoustic deficits observed in the 

previous Chapter. This pathophysiological ‘theme’ of inefficient decoding mechanisms is 

reflected by aberrant activation profiles in svPPA in response to low entropy stimuli, in 

nfvPPA in response to isochronous stimuli, and in lvPPA in response to phonemic structure. 

In Section 4.6, I argue that in Bayesian terms, loss of computational efficiency across the 

PPA syndromes might manifest in imprecise coding of speech signal attributes.  

Taken together, the findings here corroborate previous research suggesting that 

there is an interacting hierarchy of levels of spectrotemporal processing, with temporal 

pattern processing and early spectrotemporal analysis affected in nfvPPA, extraction of 

information content and statistical pattern processing affected in svPPA, and phonological 

transcoding or representation impaired in lvPPA. Crucially, however, these modular 

impairments occur within an interacting processing hierarchy, and ultimately manifest in 

common structural and neuroanatomical signals such as those depicted in Chapters 3 and 

4. A generic mechanism of residual plasticity for perceptual learning was observed across all 

PPA syndromes included in Chapter 6, suggesting that there are trans-syndromic patterns of 

adaptive perceptual learning, as well as trans-syndromic patterns of pathophysiological 

signatures of auditory signal decoding. 

7.4. Clinical translation 

7.4.1. Relating findings to patients’ day-to-day experiences 

My findings have clinical resonance in helping to account for the symptoms 

reported by patients with all PPA syndromes. These results may also have significance for 

clinical counselling: understanding why particular situations or environments represent 
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significant challenges can help with management of those situations as and when they 

occur. 

 Patients with lvPPA often report that they find it more difficult to hear other people 

talking in an environment with lots of background noise, and my research suggests that in 

addition to problems with auditory scene analysis associated with posteromedial default 

mode network dysfunction seen within the Alzheimer’s disease spectrum (Golden et al., 

2015a, 2015c), early perceptual deficits at the level of analysis of phonemic spectral 

structure is a concomitant issue for these patients. Auditory scene analysis has not been 

specifically studied across the PPA spectrum, but sinewave speech may tap into a relevant 

mechanism here.  

Nonfluent variant PPA is typically described as a speech output disorder, in terms 

of speech production and agrammatism, but patients often report that they find it much 

easier to understand information if it is presented visually, rather than verbally. This may 

also extent to increased reliance on lip-reading in these patients: my own impression is that 

during repetition tasks, patients with nfvPPA show worse performance if the experimenter 

covers their mouth when they give the target words. My results again support the idea that 

there is a core early auditory processing deficit associated with nfvPPA, which could have 

significant implications for cognitive assessment of patients: much test administration is 

currently performed verbally.  

My findings in regard to svPPA highlight the importance of top-down processing for 

disambiguating and accurately comprehending speech. The story emerging here suggests 

that although svPPA patients can reliably and accurately form percepts of speech stimuli, 

even under challenging listening conditions, top-down integration of associative conceptual 

knowledge may be impaired, meaning that patients are still unable to comprehend speech 

signals in noisy auditory environments.  

7.4.2. Syndromic stratification and disease tracking 

The essential aim of the work described in each of the experimental Chapters in 

this thesis has been to identify behavioural signatures of auditory processing specific to each 

of the three major PPA syndromes, and where possible to relate these signatures to 

underlying neuroanatomy. My work has shown that it is indeed possible to stratify patient 
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groups in this manner, suggesting that stimuli and paradigms of the kind I have used here 

could one day be used to aid diagnosis and stratification of syndromes. Each of the patients 

included in my studies were, by necessity, already diagnosed with one of the PPA 

syndromes: an exciting extension of the work presented here would be to see if ability to 

process degraded speech stimuli, for instance, could facilitate clinical diagnosis.  

 The PPAs are clinically, anatomically, and pathologically heterogeneous. 

Intrinsically different proteinopathies can give rise to the same clinical phenotype, as in 

nfvPPA (Josephs et al., 2006; Rohrer et al., 2011; Elahi & Miller, 2017), and stratification of 

proteinopathies in life will be of central importance as potential disease-modifying drug 

therapies emerge. Ultimately, the hope is that the research presented in this thesis will form 

the basis for identification of brain mechanisms that support auditory signal decoding to 

eventually stratify the specific neural architectures that underpin specific proteinopathies 

(Warren et al., 2013). 

There is a need for dynamic stimuli that can probe and ultimately overburden the 

vulnerable or failing language network right at the earliest stage of PPA – identification of 

syndromes at the very earliest stages is crucial, as brain dysfunction and atrophy are known 

to precede cognitive decline in neurodegenerative contexts (Jack & Holtzman, 2013; Rohrer 

et al., 2015). Procedures such delayed auditory feedback (Chapter 5) and sinewave speech 

processing (Chapter 6) could form the basis for future speech-based ‘stress tests’ to assess 

early language dysfunction and treatment response. There is also interest not only in 

syndromic stratification, but in identifying common biomarkers that cut across syndromes. 

Finally, novel tests based around auditory processing could be advantageous 

relative to traditional tests that rely on language, as these can transcend and cut across 

problems associated with different languages in different countries. Clinical trials in PPA are 

likely to require large, multicentre, international collaborations: using nonlinguistic 

instruments could be hugely beneficial here. 

7.4.3. Non-pharmacological interventions 

Cognitive therapies are gaining some traction in the context of PPA, but these 

typically centre on higher-level linguistic processes such as anomia (Bier et al., 2009; 

Savage et al., 2014), often in the context of transcranial direct current stimulation (Roncero 
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et al., 2017). Themes of this thesis may inform non-pharmacological interventions. The work 

presented in Chapter 5 suggests that DAF may improve rate of spontaneous speech in 

patients with nfvPPA and lvPPA, while results presented in Chapter 6 suggest that there is 

at least some capacity for residual plasticity even within the disintegrating language 

networks of patients with nfvPPA and lvPPA. If the perceptual learning for degraded speech 

stimuli shown in these patient groups can be harnessed and transferred to improved 

performance in terms of auditory word comprehension, this could form the basis for cognitive 

retraining therapies. 

7.5. Limitations 

The conclusions put forward here are inevitably subject to certain general 

limitations. First, although every chapter here reports on a cohort of at least 27 individual 

patients, the individual syndromic group sizes are small. This is a problem inherent to single-

centre cross-sectional work of this kind, especially in the context of PPA, which represents 

an extremely rare set of neurodegenerative syndromes. Larger patient cohorts, ideally 

recruited by collaborating specialist centres, and ideally with molecular and/ or 

histopathological correlation might enable further pathophysiological stratification of 

syndromes. 

Second, all of the experimental work presented in this thesis is cross-sectional. If 

any of the behavioural stimuli presented here are to emerge as cognitive/ auditory 

processing biomarkers there is a key need to use longitudinal study designs to assess their 

potential in detecting and tracking disease in individual patients across disease stages. 

Third, behavioural work of this kind, in patient groups characterised by 

comprehension deficits, is necessarily reductionist. The speech signal stimuli employed in 

Chapters 3 and 4, for instance, used an extremely restricted range of phonemic carriers: 

future work could explore the effect of a more representative set and examine the interaction 

of phoneme identity with other experimental parameters. Here, it would be advantageous 

also to consider cross-modal sensory inputs: in the real-world, we are rarely confronted by 

audio input without concurrent visual stimulation. 
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7.6. Future directions 

In light of the nosological difficulties that surround PPA, and mounting 

neuropsychological and functional and structural neuroanatomical evidence for nonverbal 

auditory processing deficits in these syndromes, it may be timely to re-evaluate the 

‘language-led’ dementias as more fundamental disorders of auditory signal decoding. Future 

research – work that I hope to undertake myself after my PhD – needs to investigate the 

precise nature of these auditory deficits. It is possible that some of the more dynamic stimuli 

presented here could be used as sensitive diagnostic clinical tests in the future, and it 

remains to be seen whether individual proteinopathies are associated with distinct auditory 

processing profiles in the PPA syndromes. This is an extremely exciting avenue for future 

work with clinical trials in PPA on the horizon. 

The differentiation between nfvPPA and lvPPA can be hard to make clinically. 

Ancillary molecular information from cerebrospinal fluid can be helpful in determining 

Alzheimer’s pathology – associated with lvPPA in the majority of cases (Rohrer et al., 2011; 

Spinelli et al., 2017) – but a significant minority of patients with nfvPPA have Alzheimer’s 

pathology (Rohrer et al., 2011). Work presented in Chapters 4 and 6 here suggests that 

there are behavioural and neuroanatomical differences between the syndromes relevant to 

processing of auditory speech signals, and a critical avenue for future research is to identify 

candidate markers that dissociate the syndromes with a higher degree of accuracy than is 

currently possible, alongside molecular and histopathological correlation. 

As noted throughout this thesis, there is considerable heterogeneity across PPA in 

terms of clinical presentation, neuroanatomy, and molecular pathology. Perhaps as many as 

40% of PPA patients do not meet current consensus criteria for any of the three variants 

(Sajjadi et al., 2012), though estimates do vary across centres (Rohrer et al., 2011; Spinelli 

et al., 2017). If, as argued here, the PPAs represent disorders of auditory signal decoding, 

rather than being language-led syndromes per se, it is possible that extensive phenotyping 

of auditory processing characteristics will be able to characterise this group of PPA not-

otherwise-specified (PPA-NOS) patients better than the current diagnostic criteria (Gorno-

Tempini et al., 2011). 
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9. Appendix 

Supplementary Table 1. Participation by participants across Chapters 
 

     
Chapter 

ID Group Age Gender Handedness 3 4 5 6 

1 Control 74 M R ✓ ✓ ✓ ✓ 

2 Control 67 M R ✓ ✓ ✓ ✓ 

3 Control 79 F R ✓ ✓ 
  

4 Control 59 F R ✓ ✓ 
 

✓ 

5 Control 66 M R ✓ ✓ 
 

✓ 

6 Control 68 F R ✓ 
   

7 Control 71 M R ✓ ✓ ✓ ✓ 

8 Control 66 F L ✓ ✓ 
  

9 Control 70 M R ✓ ✓ ✓ ✓ 

10 Control 70 M A ✓ ✓ ✓ ✓ 

11 Control 72 M R ✓ ✓ 
  

12 Control 67 F R ✓ ✓ ✓ ✓ 

13 Control 69 F R ✓ ✓ ✓ ✓ 

14 Control 67 F R ✓ ✓ 
  

15 Control 70 M R ✓ ✓ 
  

16 Control 71 M R ✓ ✓ 
  

17 Control 78 F R ✓ 
  

✓ 

18 Control 65 F R ✓ 
   

19 Control 71 F R ✓ 
 

✓ ✓ 

20 Control 69 M R 
   

✓ 

21 Control 66 F R 
  

✓ ✓ 

22 Control 57 M R 
  

✓ ✓ 

23 Control 71 F R 
  

✓ ✓ 

24 Control 71 F R 
   

✓ 

25 Control 57 F R 
  

✓ ✓ 

26 Control 73 F R 
  

✓ 
 

27 lvPPA 62 F R ✓ ✓ 
  

28 lvPPA 62 M R ✓ ✓ 
  

29 lvPPA 72 F R ✓ ✓ 
  

30 lvPPA 58 M R ✓ ✓ 
 

✓ 

31 lvPPA 66 M R ✓ 
 

✓ ✓ 

32 lvPPA 56 M R ✓ ✓ 
  

33 lvPPA 74 F R ✓ 
   

34 lvPPA 66 M L ✓ ✓ ✓ ✓ 

35 lvPPA 78 M R 
  

✓ ✓ 

36 lvPPA 67 M R 
  

✓ ✓ 

37 lvPPA 61 M R 
  

✓ ✓ 
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38 lvPPA 65 F R 
  

✓ ✓ 

39 lvPPA 86 M R 
  

✓ 
 

40 nfvPPA 56 M R ✓ ✓ 
  

41 nfvPPA 65 F R ✓ ✓ 
 

✓ 

42 nfvPPA 72 F R ✓ ✓ 
  

43 nfvPPA 63 M R 
 

✓ 
  

44 nfvPPA 71 M L ✓ ✓ 
  

45 nfvPPA 67 F R ✓ ✓ 
 

✓ 

46 nfvPPA 76 M R 
 

✓ 
  

47 nfvPPA 79 M R ✓ ✓ 
  

48 nfvPPA 83 M R ✓ ✓ 
  

49 nfvPPA 72 M R ✓ ✓ 
  

50 nfvPPA 84 F R ✓ ✓ 
  

51 nfvPPA 63 F L ✓ ✓ 
  

52 nfvPPA 84 F R 
  

✓ ✓ 

53 nfvPPA 70 M R 
  

✓ ✓ 

54 nfvPPA 74 F L 
  

✓ ✓ 

55 nfvPPA 63 F R 
  

✓ ✓ 

56 nfvPPA 55 F L 
  

✓ ✓ 

57 nfvPPA 64 F L 
  

✓ ✓ 

58 nfvPPA 82 F R 
  

✓ ✓ 

59 svPPA 59 F R ✓ ✓ ✓ ✓ 

60 svPPA 64 M R ✓ ✓ ✓ ✓ 

61 svPPA 57 F R ✓ ✓ ✓ ✓ 

62 svPPA 66 M R ✓ 
 

✓ ✓ 

63 svPPA 69 M L ✓ ✓ 
  

64 svPPA 71 M R ✓ ✓ ✓ ✓ 

65 svPPA 60 M R ✓ ✓ 
  

66 svPPA 63 F R ✓ ✓ 
 

✓ 

67 svPPA 65 M R ✓ ✓ 
 

✓ 

68 svPPA 60 M R 
 

✓ 
  

69 svPPA 64 M R 
   

✓ 

70 svPPA 70 M R 
  

✓ ✓ 

71 svPPA 51 M R 
   

✓ 

72 svPPA 78 F R 
  

✓ ✓ 

73 svPPA 74 M R 
  

✓ 
 

74 tAD 64 F R 
  

✓ ✓ 

75 tAD 63 F R 
  

✓ ✓ 

76 tAD 67 F R 
  

✓ ✓ 

77 tAD 62 M R 
  

✓ ✓ 

78 tAD 73 M R 
   

✓ 

79 tAD 74 F R 
  

✓ ✓ 

80 tAD 84 M R 
  

✓ ✓ 



176 
 

81 tAD 87 F R 
  

✓ ✓ 

82 tAD 65 F R 
  

✓ ✓ 

83 tAD 62 M R 
  

✓ ✓ 

84 tAD 66 M L 
  

✓ ✓ 

85 tAD 71 F R 
  

✓ 
 

86 bvFTD 65 M R 
  

✓ 
 

87 bvFTD 75 F R 
  

✓ 
 

88 bvFTD 58 M R 
  

✓ 
 

89 bvFTD 78 M R 
  

✓ 
 

90 bvFTD 53 M R 
  

✓ 
 

91 bvFTD 60 M R 
  

✓ 
 

92 bvFTD 63 M R 
  

✓ 
 

93 bvFTD 71 M R 
  

✓ 
 

 
Participants are ordered by group. The shaded boxes indicate which patient groups were not 
recruited to the experimental cohort represented by the column heading. A tick denotes that 
the participant was recruited to that experimental cohort. ID numbers are not sequential and 
serve no other purpose than to differentiate between participants and display the extent of 
overlap between studies. 
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Supplementary Table 2. Description of audio files on enclosed CD 
 

Track No. File name Description 

Chapter 3 

1 Audio File 3.1 Isochronous sequence “ab” 

2 Audio File 3.2 Anisochronous sequence “ab” 

3 Audio File 3.3 Low entropy sequence “fu” 

4 Audio File 3.4 High entropy sequence “fu” 

5 Audio File 3.5 Natural phonemic structure sequence “ba” 

6 Audio File 3.6 Rotated phonemic structure sequence “ba” 

Chapter 4 

7 Audio File 4.1 Natural, isochronous, high entropy sequence 

8 Audio File 4.2 Rotated, anisochronous, low entropy sequence 

Chapter 6 

9 Audio File 6.1 Sinewave speech number example 

10 Audio File 6.2 Clear speech number 

11 Audio File 6.3 Sinewave speech location example 

12 Audio File 6.4 Clear speech location 
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9.1. Division of labour 

 

The work described in this thesis was conducted by CJDH with assistance from other 

researchers based at the Dementia Research Centre, UCL. Contributors are detailed below. 

9.1.1. Chapter 3: Behavioural and neuroanatomical correlates of speech analysis 
 
Experimental design: CJDH, JDW 
Construction of tests: CJDH, JDW 
Data collection: CJDH, CRM, CNC, LLR, RLB, EVB 
Data analysis: CJDH 
 

9.1.2. Chapter 4: Functional neuroanatomy of speech signal decoding 
 
Experimental design: CJDH, JDW, JA 
Construction of stimuli: CJDH, JDW 
Data collection: CJDH, CRM, LLR, CNC, RLB, EVB 
Data analysis: CJDH, SO, JA, CF 
 

9.1.3. Chapter 5: Delayed auditory feedback 
 
Experimental design: CJDH, JDW, RLB 
Construction of tests: CJDH, RLB 
Data collection: CJDH, RLB, CM, LLR 
Data analysis: CJDH 
 

9.1.4.Chapter 6: Processing of degraded speech stimuli 
 
Experimental design: CJDH, JDW 
Construction of tests: CJDH, SJR 
Data collection: CJDH, RLB, CRM, LLR 
Data analysis: CJDH 
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