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Abstract

Background: Brain injury survivors often present upper-limb motor impairment affecting the execution of
functional activities such as reaching. A currently active research line seeking to maximize upper-limb motor
recovery after a brain injury, deals with the combined use of functional electrical stimulation (FES) and mechanical
supporting devices, in what has been previously termed hybrid robotic systems. This study evaluates from the
technical and clinical perspectives the usability of an integrated hybrid robotic system for the rehabilitation of
upper-limb reaching movements after a brain lesion affecting the motor function.

Methods: The presented system is comprised of four main components. The hybrid assistance is given by a passive
exoskeleton to support the arm weight against gravity and a functional electrical stimulation device to assist the
execution of the reaching task. The feedback error learning (FEL) controller was implemented to adjust the intensity
of the electrical stimuli delivered on target muscles according to the performance of the users. This control strategy
is based on a proportional-integral-derivative feedback controller and an artificial neural network as the feedforward
controller. Two experiments were carried out in this evaluation. First, the technical viability and the performance of
the implemented FEL controller was evaluated in healthy subjects (N = 12). Second, a small cohort of patients with
a brain injury (N = 4) participated in two experimental session to evaluate the system performance. Also, the overall
satisfaction and emotional response of the users after they used the system was assessed.

Results: In the experiment with healthy subjects, a significant reduction of the tracking error was found during the
execution of reaching movements. In the experiment with patients, a decreasing trend of the error trajectory was
found together with an increasing trend in the task performance as the movement was repeated. Brain injury
patients expressed a great acceptance in using the system as a rehabilitation tool.

Conclusions: The study demonstrates the technical feasibility of using the hybrid robotic system for reaching
rehabilitation. Patients’ reports on the received intervention reveal a great satisfaction and acceptance of the hybrid
robotic system.

Trial registration: Retrospective trial registration in ISRCTN Register with study ID ISRCTN12843006.
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Background
Upper limb hemiparesis is one of the most common
consequences after a brain injury accident [1]. This
motor impairment has an adverse impact on the quality
of life of survivors since it hinders the execution of activ-
ities of daily living. From the rehabilitation perspective,
it is widely accepted that high-intensity and repetitive
task-specific practice is the most effective principle to
promote motor recovery after a brain injury [1, 2]. How-
ever, traditional rehabilitation treatment offers a dose of
movement repetition that is in most cases insufficient to
facilitate neural reorganization [3]. In response to these
current clinical shortcomings, there is a clear interest in
alternative rehabilitation methods that improve the arm
motor functionality of brain injury survivors.
Hybrid robotic systems for motor rehabilitation are a

promising approach that combine the advantages of ro-
botic support or assistive devices and functional elec-
trical stimulation (FES) technologies to overcome their
individual limitations and to offer more robust rehabili-
tation interventions [4]. Despite the potential benefits of
using hybrid robotic systems for arm rehabilitation, a re-
cent published review shows that only a few hybrid sys-
tems presented in the literature were tested with stroke
patients [4]. Possible reasons could be the difficulties
arising from the integration of both assistive technolo-
gies or the lack of integrated platforms that can be easily
setup and used.
End-effector robotic devices combined with FES repre-

sent the most typical hybrid systems used to train reach-
ing tasks under constrained conditions [5–7]. With
these systems, patients’ forearms are typically restricted
to the horizontal plane to isolate the training of the
elbow extension movement. The main advantage of this
approach is the simplicity of the setup, with only 1 De-
gree of Freedom (DoF). However, to maximize the treat-
ment’s outcomes and achieve functional improvement it
is necessary to train actions with higher range of motion
(> 1 DoF) and functional connotations [8, 9]. Yet, the
complexity for driving a successful movement execution
in such scenarios requires the implementation of a ro-
bust and reliable FES controller.
The appropriate design and implementation of FES

controllers play a key role to achieve stable and robust
motion control in hybrid robotic systems. The control
strategy must be able to drive all the necessary joints to
realize the desired movement, and compensate any dis-
turbances to the motion, i.e. muscle fatigue onset as well
as the strong nonlinear and time-varying response of the
musculoskeletal system to FES [10, 11]. Consequently,
open-loop and simple feedback controllers (e.g.
proportional-integral-derivative -PID-) are not robust
enough to cope with these disturbances [8, 12]. Mead-
more et al. presented a more suitable hybrid robotic

system for functional rehabilitation scenarios [13]. They
implemented a model-based iterative learning controller
(ILC) that adjusts the FES intensity based on the track-
ing error of the previously executed movement (see [13,
14] for a detail description of the system). This iterative
adjustment allows compensating for disturbances caused
by FES. Although this approach addresses some of the
issues regarding motion control with FES, it requires a
detailed mathematical description of the musculoskeletal
system to work properly. In this context, unmodeled dy-
namics and the linearization of the model can reduce
the robustness of the controller performance. Also, the
identification of the model’s parameters is complex and
time consuming, which limits its applicability in clinical
settings [11, 12].
The Feedback Error Learning (FEL) scheme proposed

by Kawato [15] can be considered as an alternative to
ILC. This scheme was developed to describe how the
central nervous system acquires an internal model of the
body to improve the motor control. Under this scheme,
the motor control command of a feedback controller is
used to train a feedforward controller to learn implicitly
the inverse dynamics of the controlled system on-line
(i.e. the arm). Complementary, this on-line learning pro-
cedure also allows the controller to adapt and compen-
sate for disturbances. In contrast with the ILC, the main
advantage of this strategy is that the controller does not
require an explicit model of the controlled system to
work correctly and that it can directly learn the non-
linear characteristic of the controlled system. Therefore,
using the FEL control strategy to control a hybrid ro-
botic system can simplify the setup of the system consid-
erably, which makes easier to deploy it in clinical
settings as well as personalize its response according to
each patient’s musculoskeletal characteristics and move-
ment capabilities. The FEL has been used previously to
control the wrist [16] and the lower limb [17] motion
with FES in healthy subjects; but it has not been tested
on brain injury patients. In a previous pilot study, we
partially showed the suitability of the FEL scheme in hy-
brid robotic systems for reaching rehabilitation with
healthy subjects [18]. However, a rigorous and robust
analysis has not been presented neither this concept has
not been tested with motor impaired patients.
The main objective of this study is to verify the usabil-

ity of a fully integrated hybrid robotic system based on
an FEL scheme for rehabilitation of reaching movement
in brain injury patients. To attain such objective two-
step experimentation was followed. The first part con-
sists of demonstrating the technical viability and learning
capability of the developed FEL controller to drive the
execution of a coordinated shoulder-elbow joint move-
ment. The second part consists of testing the usability of
the platform with brain injury patients in a more
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realistic rehabilitation scenario. For this purpose, we
assessed the patients’ performance and overall satisfac-
tion and emotional response after using the system.

Methods
In this section, we present the hybrid robotic system for
the rehabilitation of reaching movement in patients with
a brain injury. The system focuses on aiding users to
move their paretic arm towards specific distal directions
in the space. During the execution of the reaching task,
the FEL controller adjusts the intensities of the electrical
stimuli delivered to target muscles in order to aid the
subjects in tracking accurately the target paths.

Description of the hybrid rehabilitation platform for
reaching rehabilitation
Figure 1 shows the general overview of the developed
platform. This rehabilitation platform is composed of
four main components: the hybrid assistive device
(upper limb exoskeleton + FES device); the high-level
controller (HLC); the visual feedback and; the user
interface.
The hybrid assistance is given by the upper limb exo-

skeleton, Armeo Spring® (Hocoma, Switzerland) and the
IntFES stimulator (Technalia, Spain). The Armeo is a
passive exoskeleton aimed at supporting the arm weight
against gravity. Also, the exoskeleton delimits the work-
space, bounding the movements to a controlled area.

Since stroke patients suffer typically from an over-
activity of flexor muscles of the arm and a loss in activity
of the triceps, anterior deltoids and finger extensor mus-
cles [13, 19], the FES is delivered through biphasic elec-
trical pulses at the triceps and the anterior deltoid
muscles.
The HLC is implemented in a PC104 architecture run-

ning under xPC Target® operating system (The Math-
Works Inc.) for real-time operation. This component
estimates the arm joint position, generates the reference
trajectory (from the initial position to the target) and ex-
ecutes the control algorithm to command the FES inten-
sity delivered at target muscles.
Figure 1b shows the visual feedback interface, which is

integrated into the platform to guide and encourage the
user to accomplish the rehabilitation task. In order to
present users an intuitive and easy to understand
visualization paradigm, geometrics blocks were used to
represent the arm movement on the screen and guide
the rehabilitation session. Thus, the user’s arm move-
ment is represented by a green circle, where the x- and
y-axis indicate the movements of the elbow and shoul-
der joints, respectively. The blue cross represents the
reference trajectory that users should follow. This cross
moved from an initial position (grey circle) to the final
position (red square).
At the end of each trial, the performance of the task is

calculated and shown to the user, who is in turn
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Fig. 1 a General overview of the presented hybrid robotic platform for reaching rehabilitation. b Visual feedback provided to the users. The
green ball represents the actual arm position, the blue cross is the reference trajectory, the initial and final position are represented by the gray
ball and red square respectively. c Interface for system configuration
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instructed to maximize this result throughout the ses-
sion. The performance is estimated from the difference
between the generated signal reference and the current
position of the controlled joints (see Eq. 4). This score is
also used to change the color of the ball during the task
execution. This way, the system provides an augmented
feedback, which allows users to monitor their perform-
ance during the movement. The ball turns green if the
performance is excellent (80% or more), yellow if it is
good (between 60 and 80%), orange if it is moderate (be-
tween 40 and 60%) and red when it is poor (40% or
less).
Lastly, a user interface (Fig 1c) is integrated into the

architecture allowing the easy configuration of the ther-
apy parameters, i.e. trained right/left arm, FES parame-
ters, tracking reference velocity and range of
movements. Both interfaces (visual feedback and user
configuration) were coded and implemented using cus-
tom made Matlab methods.

FES-based controller design
Human arm position
Figure 2a depicts the rotation axes of angular position
transducers embedded in the exoskeleton. With these
transducers, the angular position of the human arm
joints can be inferred considering the following assump-
tions: i) there is a fixed parallel arrangement between
the arm and the exoskeleton segments l1 and l2 (Fig. 2b);
ii) the stimulation of the anterior deltoids produces a
moment on an axis that is fixed with respect to the
shoulder (axis Ø2), and the stimulation of the triceps
produces a moment on the axis that is orthogonal to
both the forearm and the upper arm (axis Ø5). Hence,
the vector Ø = [Ø1, Ø2, Ø3, Ø4, Ø5], representing the
human arm position, is defined by implementing the
same objective transformation fully described in [20, 21].

Feedback error learning implementation
The main goal of the FES-based controller is to adjust the
intensity of the electrical stimuli provided on specific mus-
cles to achieve a precise control of motion. For such pur-
pose, the FEL algorithm modulated the pulse width (PW)
of the electrical pulse delivered at the anterior deltoids
and triceps muscles between 50 and 450 μs. The fre-
quency of the stimulation was 40 Hz and a constant pulse
amplitude was used. The amplitude was adjusted accord-
ing to the motor response and comfort of each user.
In this work, two FEL controllers were implemented

(one for each joint, shoulder and elbow). Each controller
consisted of a PID feedback controller combined with an
artificial neural network (ANN) arranged as feedforward
control (Fig. 3). The ANN provides a way for the con-
troller to learn a non-linear inverse model of the arm.
Thus, it is assumed that the learned dynamic covers
both, the musculoskeletal responses to the FES and the
effects of the shoulder-elbow inter-joint biomechanical
coupling. Contrary to past solutions (e.g. ILC [13]), there
is no need to take into account this coupling explicitly
facilitating the implementation of the controller. This
learning process in the ANN occurs by using the output
of the PID controller as the correction factor. While the
inverse dynamic has not been learned, the PID controller
is the main contributor of the control action with a
small influence from the ANN. As the movement is re-
peated and the inverse dynamic is learned, the contribu-
tions to the control action are gradually inverted. In the
end, the ANN drives the execution of the reaching task
while the PID controller compensates only for unknown
or unlearned dynamics of the system (e.g. unexpected
muscle responses to FES) [16].
A PID controller with an additional inner loop that

prevents the integral term to windup was implemented.
This additional loop was introduced because only posi-
tive output values generate muscle activations (FES as-
sistance) while negative values are ineffective. However,
negative values are required for the FEL to learn, which
could lead to windup the integral term. Thus, the modi-
fied PID controller is given by eq. 1:

u tð Þ ¼ ke tð Þ þ kd
de tð Þ
dt

þ
Z

kie tð Þ þ ktes tð Þð Þ ð1Þ

where e(t) represents the error trajectory; es(t) is the
difference between the PID output and the output of the
saturator; and k, kd, ki and kt are the constant parame-
ters for the proportional, derivative, integral and the
anti-windup terms. To guarantee the correct perform-
ance of the PID controller, these parameters were ad-
justed using the Ziegler and Nichols method of the
averaged movement responses in healthy subjects.

a) b)
Fig. 2 Kinematic representation of the rotation axes. a Exoskeleton
θ = {θ1, θ2, θ3, θ4, θ5}. b Human arm Ø = {Ø1, Ø2, Ø3, Ø4, Ø5}
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The implemented feedforward loop relies on a three-
layer ANN (nine input, nine hidden and one output
node). A sigmoid function was used to activate neurons
in the hidden layer while a linear function was used to
activate the output neuron. The inputs to the ANN are
the desired angular position, velocity and acceleration
profiles, from time n to n + 2, which result in 9 inputs.
These profiles were calculated beforehand (see Eq. 2)
and normalized in the range of −1 to 1. The learning
process was active along the execution of each move-
ment using the gradient descent algorithm [22]. The
ANN size and topology were chosen based on previous
studies [16, 18, 23]. In this regard, the ANN size was set
as the minimum number of nodes ensuring a proper
performance of the system.
The muscular response to FES depends on several factors,

such as the placement of the electrodes over the skin and
changes in human motor physiology [24]. To avoid bias be-
tween inter-session data, the experiments were carried out
without previous knowledge of the musculoskeletal system.
Thus, the weights of the ANN were initialized to small ran-
dom values close to zero at the start of all sessions.

Reference generator
Studies in the field of motor control showed that arm
reaching movements tend to follow a homogeneous pat-
tern across subjects [25]. This pattern is based on a
straight path of the hand with smooth and bell-shaped
velocity profile. Therefore, to generate such tracking ref-
erence, the minimum jerk trajectory method described
by Flash and Hogan was implemented [26]. This refer-
ence has been successfully used in previous rehabilita-
tion robotic devices [25].
Eq. 2 shows the analytical expression used to derive

the position reference required at the input of the FEL
control algorithm:

∅ r;i ¼ ∅ s
i þ ð∅ f

i −∅
s
iÞ 10

t
d

� �3

−15
t
d

� �4

þ 6
t
d

� �5
� �

ð2Þ

Øi
s and Øi

f represent the initial and target angles of the
i-joint respectively, d is the movement total duration
and t is the current time with 0 ≤ t ≤ d. The velocity
and acceleration profiles can be inferred by the first and
second time derivatives of eq. 2.

Participants and evaluation protocol
All participants received oral and written information
about the details of the experiment, and signed a con-
sent form to participate and publish the data collected
from the experimentation. All experimental protocols
followed the Declaration of Helsinki and were approved
by the Clinical Ethics Committee of the Centro Superior
de Estudios Universitarios La Salle, Universidad Autón-
oma de Madrid (CSEULS-PI-106/2016).
The system was assessed with two different experi-

ments. Only healthy subjects participated in the first ex-
periment. This experiment was conceived to test the
technical viability of the proposed hybrid rehabilitation
system and to verify the learning capability (arm dy-
namic model) of the FEL controller to successfully drive
the arm following the desired shoulder-elbow coordi-
nated trajectory with FES (see Experiment 1). The sec-
ond experiment was designed to test the usability of the
proposed hybrid robotic system in a realistic rehabilita-
tion scenario with brain injury patients (see Experiment
2). Therefore, two sessions with a greater number of
arm movements than experiment 1 were planned.

Experiment 1
For the first experiment, 12 healthy subjects (7 males, 1
left-handed and aged 27.1 ± 2.78 years old) were re-
cruited. Each participant took part in a single evaluation

a) b)
Fig. 3 a Block diagram of the FES-based Feedback Error Learning (FEL) controller. b Artificial Neural Network used as feedforward loop. Ør;

_Ø r ; €Ø r

represent the desired angular position, velocity and acceleration respectively; Øh is the measured position of the human arm; e(n) is the error position;
μff, μfb are the control signal generated for the feedback and feedforward controllers respectively; μt is the total assistance; μts is the assistance at the
output of the saturator; eu is the difference between μts and μt
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session. Before starting the experiment, the exoskeleton
was adjusted to the arm’s dimensions of the subject. The
gravity support level was regulated in such a way that
the arm was kept about their thigh in the horizontal
plane. Surface electrodes (Pals platinum - rectangle
5 × 5 cm) were attached to the anterior deltoids and tri-
ceps muscles. Then the maximum pulse amplitude was
determined by increasing gradually the current of the
stimulator until a motor response was observed with a
comfortable stimulation level perceived by the partici-
pant. During this procedure, the PW of the stimulation
signal was fixed at 450 μs. To define the maximum
range of movement and determine the target position,
the maximum electrical stimulation intensity to both
muscles was simultaneously applied and the resulting
movement was recorded. After analyzing the recording
data, the target position was defined as the maximum
articular angle achieved at each joint (shoulder and
elbow). These maximum angles were used in the mini-
mum jerk function (Eq. 2) to generate user-specific ref-
erence trajectories.
After this initial procedure, the participants performed

twelve reaching movements driven by the FEL control-
ler. During the execution of these movements, partici-
pants were asked to let the FES move their arm and to
avoid activating any muscle voluntary. For this test, the
visual feedback interface was disconnected. So, the par-
ticipants did not receive any information about the
movements. In all trials, a period of three seconds was
used to drive the arm from the starting position to the
target. Between movements, the participants had a rest-
ing period of approximately 10 s to reduce the effects re-
lated to muscle fatigue.

Experiment 2
For this experimentation stage, patients with brain injury
who met the following inclusion criteria were recruited:
patients older than 18 years old, with more than
6 months from the brain injury, with hemorrhagic, is-
chemic stroke or traumatic brain damage, with cognitive
capabilities to follow instructions, with response to elec-
trical stimulation in affected upper-limb muscles.

Subjects with any implanted metal in the affected
upper limb and with a history of epilepsy episodes
and/or pregnancy were excluded from the experiment.
Three chronic stroke and one traumatic brain injury
subjects (age 35 ± 13.09, full details are provided in
Table 1) were recruited. None of the patients had
prior experience with rehabilitation therapies based
on FES or robotic devices.
The functional examination of patients was done using

three scales: the functional independence measure (FIM)
(ranged from 18 to 126) [27], the Barthel index (ranged
from 0 to 100) [28], and the upper limb part of Motricity
Index (ranged from 0 to 25) [29]. Patients participated in
one evaluation and two experimental sessions. The
evaluation session was aimed to assess patients’ condi-
tions, verify their response to FES and explain to them
the system operation. The experimental sessions were
carried out a week later with a separation of 48 h be-
tween them. In these sessions, patients had to perform a
tracking task with their affected arm following a refer-
ence presented on a screen in front of them. After each
movement execution, patients were instructed to place
their arm back in the initial position and rest for ap-
proximately 10 s before starting a new movement. Simi-
larly to the experiment 1, the stimulation was delivered
at the anterior deltoids and the triceps and the same ini-
tial procedure was followed to define the FES maximum
intensity and the range of movement.
On the first day, the session was composed of 5

assisted runs of 8 movements each, plus one additional
run of 3 unassisted (without FES) movements. In the
second session, participants carried out 8 assisted runs
(8 movements) and one unassisted run (3 movements).
Thus, a total of 40 and 56 assisted movements were
performed on the first and second sessions, respect-
ively. At the start of each session, the feedforward
model was reset.
On the pre-session (a week before the experimental

sessions) patient P4 presented good response with no
discomfort to FES. Nevertheless, on the first experimen-
tal session, he reported experiencing discomfort on the
arm when FES was applied. This discomfort could be

Table 1 Description of patients participating in the study

Patient Gender Age
(years)

Diagnosis Affected
side

Time since injury (months) BI FIM motor subscale ULMI

P1 Male 52 Ischemic
stroke

Left 13 98 85 25

P2 Female 37 Hemorrhagic
stroke

Left 15 91 84 25

P3 Female 30 Traumatic brain injury Left 12 95 90 23.5

P4 Male 21 Ischemic
stroke

Left 12 61 66 25

FIM functional independence measure, BI Barthel index, ULMI upper limb part of motricity index
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associated to an increase in hypersensitivity during those
days. As consequence, the system could not be used with
this subject and he was excluded from the experimental
sessions.

Data analysis
Experiment 1
The efficacy of the system to assist in the execution of
the reaching movement was assessed using the root
mean squared error (RMSE) for each controlled joint (Ø2

and Ø5). The assistance supplied by the controller was
quantified relative to the maximum electrical stimula-
tion. This metric was calculated by dividing the norm of
the controller output (PW) by the norm of the max-
imum stimulation that could be supplied (450 us). Com-
plementary, the FEL capability for learning the inverse
dynamic of the controlled limb was assessed using the
power ratio (PR), (Eq. 3).

PRff ¼
PN

k¼1 PffPN
k¼1 Pfb þ

PN
k¼1 Pff

� 100 ð3Þ

In this equation, the Pff and Pfb are the square value of
stimulation intensity (output power) of the ANN and
the PID controller, respectively. The PRff represents the
proportion of the ANN output relative to the total con-
troller actuation command. This value should be close
to 100% when the ANN has learnt the inverse dynamic
of the controlled limbs.
The inter-joint coordination between the shoulder and

elbow joints (Ø2 and Ø5) throughout the execution of
reaching movements was assessed using the index of the
temporal coordination (TC-index) presented in [30].
This single parameter was proposed to evaluate the tem-
poral coordination between adjacent joints involved in
the reaching movement. In brief, to suppress tremor-like
oscillation in the angular velocity a recurrent exponen-
tial smoothing algorithm to the joint velocity was ap-
plied: Vi + 1 = aVi + (1-a)vi, where vi is the angular
velocity, Vi is the smoothed value of velocity, and a is a
smoothness coefficient. The a parameter value was set
to 0.75 based on previous evidence [30]. Subsequently, a
temporal angle (T angle) was calculated as the angle
formed between the downward vertical and a line from
the origin (placed at the initial position) to successive
data points along the velocity-angle plot (ordinate = angu-
lar velocity; abscissa = angular displacement). Finally,
the TC-index was defined as the difference between the
elbow and shoulder T angles at each time throughout
the reaching movement. Here, the root mean squared of
the TC-index difference between the generated reference
and the arm trajectories was calculated to evaluate the
capability of the FEL controller to improve the inter-
joint coordination.

The mean values of the RMSE, FES intensity, PRff and
the TC-index were calculated across subjects to observe
the evolution of these values along the twelve trials exe-
cuted. Additionally, the RMSE and the PRff at each joint
(shoulder and elbow), and the TC-index score of all
users (n = 12) on trials one, four, eight and twelve were
compared independently using the Friedman’s ANOVA
test. Only these trials were selected in order to gain stat-
istical power and considering the symmetry distribution
of these trials with respect to the number of repetitions
performed. A post hoc analysis of these metrics was con-
ducted applying a Bonferroni correction for significance
level (fixed at p < 0.0083) and using the Wilcoxon
signed-rank tests.

Experiment 2
For the experimentation with brain injury subjects, the
RMSE at the assisted joints (Ø2 and Ø5) was averaged
for each run and user. The trend of these errors was cal-
culated applying the best-fitting linear regression across
the RMSE data of all subjects. A total of 4 linear curves
were generated for each combination of subjects, session
and joint. Similarly, the PRff of the FEL controller was
averaged for each user and session over the executed
run to visualize its evolution along the sessions.
The index of the task performance displayed on the

user’s screen during the execution of the task is also ana-
lyzed. The following steps were followed to calculate this
metric (see Eq. 4). First, the Euclidian distance between
the reference trajectory and the actual assisted joint an-
gles during FES application was calculated. Then, the ac-
tual Euclidian distance was divided by the maximum
distance (reference trajectory vs initial position). This re-
sult was subtracted from 1 and multiplied by 100, where
a performance of 100 corresponded to perfect tracking.

Performance ¼ 1−
PT

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið∅ r2;i−∅ 2;iÞ
p 2 þ ð∅ r5;i−∅ 5;iÞ

2

PT
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið∅ r2;i−∅ 2;1Þ
p 2 þ ð∅ r5;i−∅ 5;1Þ2

0
@

1
A� 100 ð4Þ

In this equation, T is the duration of the movement,
Ør,i is the reference trajectory and Øi represents the
shoulder and elbow joint angles, respectively. The trend
of the performance was estimated applying the best-
fitting linear regression across the data of all subjects.
Two linear curves were generated, each corresponding
to one of the two sessions.
In order to analyze the importance of the system’s

adaptive assistance to accomplishing accurate reaching
movement and to improve the inter-joint coordination,
the execution of the unassisted run (3 trials without
FES) was compared with the last 3 trials of the final
assisted run (with FES). The task’s performance and the
TC-index (explained in previous section) were used to
compare both conditions. Differences were assessed
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using the Friedman’s test. Additionally, the post hoc ana-
lysis with Wilcoxon signed-rank tests was conducted
with Bonferroni correction, resulting in a significance
level of p < 0.0083.
The satisfaction of the patients after participating in

the experimental sessions was assessed using the Quebec
User Evaluation of Satisfaction with Assistive Technol-
ogy 2.0 (QUEST). QUEST is an evaluation specifically
designed to measure satisfaction with a broad range of
assistive technology devices in a structured and stan-
dardized way [31]. The scoring method rated from 1
(not satisfied at all) to 5 (very satisfied). Complementa-
rily, the users’ affective experience with the hybrid sys-
tem throughout the sessions was evaluated using the
Self-Assessment Manikin (SAM). This scale is a non-
verbal pictorial assessment technique that directly mea-
sures the pleasure, arousal, and dominance associated
with a person’s affective reaction to a wide variety of
stimuli [32]. All patients were asked to fill both satisfac-
tion surveys after completing the last session.

Results
Experiment 1
Figure 4 shows a representative example of the FEL op-
eration with one healthy volunteer. The tracking error
for shoulder and elbow joints during the first and twelfth

trials is depicted in Fig. 4a. In this case, the achieved
RMSE in the first trial (blue line) was 4.3° and 8.6° for
the shoulder and elbow respectively. While in trial 12,
the tracking error was reduced to 0.8° and 3.5° for each
joint respectively. Figure 4b depicts the output signal
(stimulation PW) of the FEL controller. The first row
represents the applied stimulation PW during the first
movement attempt. In this case, the total assistance
(black line) is mostly overlapped with the contribution
of the feedback controller (in red), resulting in a PRff

(contribution of ANN in blue) of 19% and 10% for
shoulder and elbow assistances, respectively. The contri-
bution of each controller is swapped on trial 12 as
depicted in the second row of the same figure. At this
point, the feedforward contribution increased, with a
PRff of 98 and 99% for each joint, while the feedback
controller was only compensating for disturbances.
Figure 5a shows the mean of the normalized RMSE

score with respect to the first trial across subjects over
the 12 reaching trials and their correspondent standard
error (shaded areas). A final score of 0.47 and 0.41 for
each joint respectively was achieved at the last trial
(12th movement), indicating an error reduction of more
than 50% with respect to the first trial execution. When
analyzing tracking accuracy for the first, fourth, eighth
and twelfth trials (values shown in Table 2), the

a)

b)
Fig. 4 A representative example of the FEL controller performance for user 1. a The tracking error during trial 1 (blue) and trial 12 (red) for
shoulder (left) and elbow (right) joints. b The output signal (pulse width -PW-) of the feedback error learning controller during the first (upper
row) and twelfth (lower row) movement execution. Feedback (red) is the control signal given by the feedback controller; Feedforward (blue)
represents the control action of the feedforward controller; Total (black) corresponds to the total control signal (PW)
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Friedman’s ANOVA test revealed that the RMSE along
these trials differed significantly in both joints, with
χ2(3) = 14.7, p = 0.002 and χ2(3) = 21.5, p < 0.001 for
shoulder and elbow joints respectively. The post hoc
analysis (results on Table 3) uncovered that for both
joints, the RMSE value for trial four, eight and twelve
were significantly reduced when compared with the trial
one. The differences between trials four, eight and twelve
were not significant in any joints.
The FES intensity, expressed as a percentage of the max-

imum stimulation, applied at shoulder and elbow joints
over the twelve trials execution is shown in the Fig. 5b.
Here, the total assistance is given by the contribution of the
feedforward (dark gray area) and feedback (light gray area)
controllers, which are measured using the PR score. In both
joints, it can be observed that the PRff is increased as the
movement is repeated (dark gray area), while the output of

the feedback loop (PRfb) is decreased (light gray area). The
statistical test found that the PRff at trials one, four, eight
and twelve (values shown in Table 2) differed significantly
in both joints, with χ2(3) = 29.5, p < 0.01 for shoulder and
χ2(3) = 32.7, p < 0.001 for the elbow. The post hoc multiple
comparison showed that in both joints, the contribution of
the feedforward controller (PRff) at trials four, eight and
twelve increased significantly when compared with the
value at the first trial and the twelfth trial with respect to
the fourth (results of post hoc analysis are shown in
Table 3). At the elbow joint, the PRff value for trial eight
was also significantly higher than the fourth trial, but not at
the shoulder joint. No significant differences were observed
between trials eight and twelve in any joints.
The normalize RMS evolution of the TC-index between

the reference and the arm trajectories considering the
shoulder and elbow joints during the execution of reach-
ing movements is presented in Fig. 6. It can be also ob-
served that the inter-joint coordination index is reduced
across the executed movements. Although the statistical
test did not find significant differences between trials one,
four, eight and twelve (χ2(3) = 6.7, p = 0.08), the final score
of the TC-index (0.7 ± 0.4) shows an improvement 30%
with respect to the first trial (see last column of Table 2).

Experiment 2
Performance results
Figure 7a illustrates the evolution of the RMSE as func-
tion of the executed run for each subject, joint and

a)

b)
Fig. 5 a Mean values of the normalized root mean squared error (RMSE, black line) and its standard error (gray shaded areas) across healthy
subjects, corresponding to the shoulder (left) and elbow (right) joints. Dotted lines denote significance difference between trials. b Mean values
of provided FES intensity, represented as a percent of the maximum stimulation intensity, across subjects. Light gray and dark gray areas depict
the contribution of the feedforward (ufb) and feedback (uff) loop to the total FES intensity, measured with the power ratio (PR)

Table 2 Mean and standard deviation values across healthy
subjects

RMSE [°] Power Ratio [%] Normalized
RMS
TC-index

Shoulder (Ø2) Elbow (Ø5) Shoulder (Ø2) Elbow (Ø5)

Trial 1 5.9 ± 2.3 12.1 ± 3.9 6.9 ± 7.9 8.22 ± 4.7 1

Trial 4 3.5 ± 2.7 6.5 ± 4 80.7 ± 17.1 86.3 ± 14.2 0.93 ± 0.31

Trial 8 2.9 ± 3.7 5.3 ± 1.7 92.8 ± 13.9 94.5 ± 10.4 0.83 ± 0.46

Trial 12 3.2 ± 3.6 4.9 ± 3.1 95.6 ± 7.3 96.9 ± 5.3 0.70 ± 0.38

RMSE root mean squared error, RMS root mean square, TC-index temporal
coordination index
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session. The estimated linear fitting curves at the shoul-
der resulted in slopes of −0.38 for session one, and −0.1
for session two. These results represent an average
RMSE reduction from 4° to 2.9°. While the fitting for the
elbow presented a slope of −1.07 and −0.2 for each ses-
sion respectively, which corresponds to a decrease in the
RMSE value from 7.3° to 4.5°. Figure 7b shows the evo-
lution of the PRff over the runs for each participant,
muscle and session (blue, red and green curves). Add-
itionally, the corresponding average values across sub-
jects and its corresponding standard deviation are
represented (black lines). At the shoulder joint, the PRff

presented an average value across subjects of
58.3 ± 33.1% and 44.8 ± 26.2% on the first run for ses-
sion one and two respectively. This value has increased
to 89.5 ± 13.4% and 89.1 ± 10.1% on the second run for
each session respectively. No important differences were
observed on the remaining runs. For the elbow joint, the
PRff value at the elbow presented an increasing trend
with an average value across subjects of 59.4 ± 13.2%
and 62.9 ± 18.3% on the first run for session one and
two respectively. This value was increased to 99.4 ± 0.3%
and 95.2 ± 6.9% on the second run for each session, and
it achieved a final value of 99.6 ± 0.2% and 99.8 ± 0.1%
on the last executed run of each session respectively.
Figure 8 depicts the corresponding averaged tracking

performance for each run during session one and two.

The black lines represent the trend of these values for
each session. In both cases (session 1 and 2), the linear
curves present positive slopes (0.06 for session one and
0.02 for session two) indicating an increase in perform-
ance from 56% to 82%, and from 69% to 84% for each
session, respectively.
Figure 9a shows the quantitative comparison of the

task’s performance when the movement was carried out
with and without FES. This picture illustrates the aver-
age values of the task’s performance across all users,
where the error bars represent the standard error. The
Friedman’s ANOVA reveals a significant difference be-
tween conditions (χ2(3) = 22.2, p < 0.001). The post host
confirm that in both session, the task’s performance was
significantly better when participants carried out the
reaching task with FES assistance (session one:
81.4 ± 9% and session two: 84.2 ± 9%) than when par-
ticipant performed the task without FES (sessions one
44.4 ± 18.9% and two 35.3 ± 25.8%), with p = 0.008,
r = −0.63 for the first and p = 0.004, r = −0.68 for the
second session respectively. No significant difference
was found in the score between neither the unassisted
task nor the assisted task on different sessions, meaning
that both conditions (assisted and unassisted) did not
change between sessions. The RMS values of the TC-
index between reference and the arm trajectories (shoul-
der and elbow) for the assisted and the unassisted runs
across subjects are depicted in Fig. 9b. Although the exe-
cution of reaching movement without FES presented
worst inter-joint coordination (higher RMS of the TC-
index difference between the reference and the arm tra-
jectory) in both sessions, the statistical test did not find
significant differences between these values and the
achieved with FES.

Satisfaction assessment
Table 4 shows the results of the satisfactions scales.
In the QUEST questionnaire, the system obtained a
high evaluation score in all the items. This assess-
ment reveals an overall average score of 34.67 over
the 35 points. The SAM survey scored an overall
average value of 9 in pleasure, 8.33 in dominance,
while the arousal item was set slightly over the mid-
dle of the scale with a value of 5.33.

Table 3 Results of the Wilcoxon post hoc test

RMSE PR

1st vs 4th trial 1st vs 8th trial 1st vs 12th trial 1st vs 4th trial 1st vs 8th trial 1st vs 12th trial 4th vs 8th trial 4th vs 12th trial

Shoulder (Ø2) p = 0.002
r = −0.62

p = 0.005
r = −0.57

p = 0.003
r = −0.6

p < 0.001
r = −0.71

p < 0.001
r = −0.71

p < 0.001
r = −0.71

p > 0.008 p = 0.002
r = −0.62

Elbow (Ø5) p = 0.001
r = −0.67

p < 0.001
r = −0.71

p < 0.001
r = −0.71

p < 0.001
r = −0.71

p < 0.001
r = −0.71

p < 0.001
r = −0.71

p = 0.005
r = −0.57

p < 0.001
r = −0.71

Bonferroni correction for multiple comparison established the level of significant at p < 0.0083. p: level of significance; r: effect size; RMSE root mean squared
error, PR power ratio

Fig. 6 Evolution of the root mean square error of the temporal
coordination (TC) index between the generated reference and arm
trajectories. Shaded area represents standard error
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Discussion
This study evaluated the usability of a hybrid robotic
system for the rehabilitation of reaching movements in
patients with upper limb motor impairment due to a
brain injury. The proposed hybrid platform integrates
several subsystems bringing about a comprehensive self-
contained tool. The system provided an adaptive assist-
ance through the implementation of the FEL controller.
This is the first time that the FEL algorithm was inte-
grated in a hybrid robotic system to assist in two simul-
taneous muscles during the execution of a functional

a) b)

Fig. 7 a Evolution of the root mean square error (RMSE) averaged for each run. The first column represents the RMSE for session one divided in
shoulder (top) and elbow (bottom), while the second column depicts the error for session two. The black lines represent the calculated linear
regression for each combination of subject, muscle and session. b Evolution of the PRff for each subject. The black line represents averaged PRff
across subjects and its corresponding standard error. The first column represents the PRff for session one divided in shoulder (top) and elbow
(bottom), while the second column depicts the value corresponding for session 2

Fig. 8 Averaged tracking performance for each run corresponding
to session one and two. The black lines represent the linear fitting
regression across subjects

a)

b)

Fig. 9 a Mean task’s performance across subjects considering the
last assisted and the unassisted runs. The error bars represent the
standard error; b Mean root mean squared (RMS) of the temporal
coordination index (TC-index) differences between the generated
reference and the arm trajectories across subjects considering the
last assisted and the unassisted runs. The error bars represent the
standard error. Asterisks indicate significant differences
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task such as reaching. It is also the first time the FEL
has been tested with brain injury patients using a hybrid
robotic system for upper limb rehabilitation.

Technical viability and system performance
Experiment 1 was aimed at showing that proposed hybrid
robotic system is able to drive the execution of reaching
movements by activating the shoulder and elbow joints
simultaneously using only FES. Healthy subjects were asked
to refrain from activating their muscles voluntary and let
the FES move their arm. In this experiment, the capacity of
the FEL controller to learn from the tracking errors in
order to adjust the control action according to the individ-
ual responses to FES was demonstrated. The significant re-
duction of the RMSE at both joints (Fig. 5a, lines in black)
confirms an improvement of the tracking accuracy as the
movement is repeated. The shaded areas in dark gray
depicted in Fig. 5b denote the significant increase of the
PRff measures in the controlled joints (Ø5 and Ø2), showing
the learning process of the controller. Furthermore, as no
significance was found for RMSE after the fourth trial and
in the PRff after the eight trial with the healthy participants,
it can be suggested that the FEL only requires a few move-
ment examples to attain a stable and appropriate
assistance.
Similar behavior was demonstrated in Experiment 2

with brain injury participants. In this experiment, brain
injury patients were asked to realize the movement ac-
tively while the FES provided the activation needed for
the patient to complete the task. The negative slopes of
the linear fitting curves derived from the RMSE values
over the two sessions (Fig. 7a) show a trend towards a
reduction of the error as the tracking task was repeated.
This improvement was translated in an enhancement of

the performance score fed back to the users (Fig. 8). In
general, an improvement in the performance of the tasks
from 62.5% to 83% (averaged from both sessions) was
achieved. The PRff values after the second executed run
also presented important higher score than the first run
in both joints. The score obtained during the execution
of the task with and without FES assistance revealed the
difficulty of patients to carry out the required reaching
movement without FES (see Fig. 9). The average task’s
performance of the users during the execution of the
assisted reaching task (82.8%, averaged from both ses-
sions) was twice of the value obtained without assist-
ance. Therefore, the results confirmed that the hybrid
assistance improved significantly the task’s performance
by adapting the delivered FES intensity according to the
patients’ needs and capabilities, helping them to
complete the tracking movements.
When looking at the effect of the FEL controller to the

inter-joint coordination during the execution of reaching
movement, from experiment 1 can be observed an im-
provement of the shoulder-elbow coordination through-
out the trials execution (see Fig. 6). However, this
improvement did not result into a significant improve-
ment when compared with the first trial. Similarly, ex-
periment 2 showed that assisted movement resulted in
better inter-joint coordination than the movement per-
formed without assistance (without FES). These results
suggest the capability of the FEL controller to learn the
shoulder-elbow inter-joint biomechanical coupling.
Freeman et al. in [14] presented the use of ILC to con-

tinuously adapt the FES intensity during reaching move-
ments in a similar hybrid robotic system. This algorithm
was tested with healthy subjects performing ten repeti-
tions of a given task. The RMSE reported in their study

Table 4 Satisfaction score for all patients

P1 P2 P3 Mean

Quest. How satisfied are you with the system features?

1. The dimensions (size, height, length, width) of your assistive device? 5 5 5 5

2. The weight of your assistive device? 5 5 5 5

3. The easy in adjusting (fixing, fastening) the parts of your assistive device? 5 5 5 5

4. How safe and secure your assistive device is? 5 5 5 5

5. How easy it is to use your assistive device? 5 5 5 5

6. How comfortable your assistive device is? 4 5 5 4.67

7. How effective your assistive device is (the degree to which your device meets your needs)? 5 5 5 5

SAM assessment.

1. Pleasure 9 9 9 9

2. Arousal 5 6 5 5.33

3. Dominance 9 9 7 8.33

QUEST Quebec User Evaluation of Satisfaction with Assistive Technology 2.0, SAM Self-Assessment Manikin. QUEST scale: 5 (very satisfied), 4 (satisfied), 3 (more or
less satisfied), 2 (not very satisfied) and 1 (not satisfied at all). SAM depicts the pleasure, arousal and dominance dimension with a graphic character arrayed along
a continuous nine-point scale
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was, on average for the first six trials, 9.69° ± 9.22° and
12.54° ± 9.87 for shoulder and elbow angles, respectively.
In comparison, the approach presented here achieves an
overall tracking error of 3.2° ± 3.6° for the shoulder and
4.9° ± 3.1° for the elbow after 12 trials in the experiment
with healthy subjects (n = 12). These improvements
could be attributed to the FEL capability of learning a
more precise inverse dynamics model of the non-linear
musculoskeletal characteristics of the arm [16, 33].
Therefore, the proposed FEL system represents a robust
and reliable strategy to tackle the subject’s individual dif-
ferences and the necessity of a complex model describ-
ing the arm dynamic for 3D movement [13, 14] (e.g.
identifying the model’s parameters, and errors in the
model due to unmodelled dynamics and model
linearization).
Model-based controllers typically require the defin-

ition of multiple parameters before their use, resulting in
time-consuming tasks and requiring one or more add-
itional sessions prior to the intervention [7, 13, 34].
Moreover, due to the physiological changes occurring
over the days, a re-calibration procedure is often re-
quired to maintain the performance of these approaches
[34]. Unlike model-based systems, the FEL strategy do
not need a user-specific model nor a previous model,
the algorithm is always learning and adapting in real
time. With the approach proposed here, there is no need
to adjust any parameters within one session, between
sessions or between patients, which provides great ro-
bustness to the rehabilitation, especially if it is to be used
by clinical (non-technical) operators.

User satisfaction
The users’ perception when dealing with FES or robotic
technologies for upper extremity rehabilitation is
scarcely reported in the literature. Nevertheless, if a sys-
tem is not found useful and motivational, it will be used
less frequently and adherence will be an issue [35]. In
this regard, QUEST user’s satisfaction scale reported
great satisfaction with the system in all items, since most
scores reached a value of 5 over 5. The SAM scale re-
sults related to pleasure and arousal showed scores of 9
and 5,33 ± 0,58, respectively, suggesting that patients
were satisfied with the use of the system. The result of
dominance shows that patients perceived high level of
control (9/10) while using the system. A low score in
dominance may be interpreted as a marker of patients’
feeling of being controlled or submissive, adopting a
passive attitude.
Patients’ motivation has been shown to be an import-

ant predictor of long-term changes in quality of life and
rehabilitation outcomes [36]. The QUEST and SAM as-
sessments suggest that patients found the system

attractive, and they adopted an active attitude without
feeling under pressure or stressed.

Limitations of the study
Due to the complexity of the shoulder movement during
the execution of reaching movements in unconstrained
space [37], bigger variability in the PRff metric are ob-
served at this joint when compared with the elbow. This
effect is more noticeable with brain injury patients (see
Fig. 7b). This larger variation can be attributed to a
more varying response at the shoulder joint to FES. As
no mechanical assistance is provided during the move-
ment execution, these differences can be explained by
the amount of electrical current required at the shoulder
to lift the arm up. Meadmore et al. observed similar lim-
itations in [13]. Therefore, the use of mechanical devices
with active actuator could result in a more consistent re-
sponse at the shoulder joint. Still, the development of an
optimally shared control between the FES and the mech-
anical assistance are needed [4].
The use of the proposed system could be limited by

different condition of a patient. In the present study, the
participant P4 had to be excluded from the experiment
due to a change in his perception of FES, possibly due to
a hypersensibility experienced throughout the experi-
mental sessions. Therefore, special attention should be
paid to requirements for participant selections refining
the inclusion criteria. Certainly, the guidance given by
Huang et al. in [38] can be followed, where it was sug-
gested that patients with medium level (suggested by
Fugl-Meyer Assessment and Motor Assessment Scale
score) of motor skills are preferred when considering
robot-based rehabilitation therapies. Alternatively, active
exoskeleton could be considered to reduce the needed
FES stimulation intensity. With such a system, the exo-
skeleton assistance can be reduced progressively to in-
crease the FES stimulation and promote voluntary
movement.
The results reported in this study are based on a re-

duced number of patients and sessions. As the potential
rehabilitation benefits of the present hybrid robotic sys-
tem is out of the scope of this study, it is necessary to
conduct a larger clinical study involving more patients
and sessions.

Conclusion
A hybrid robotic system for rehabilitation of reaching
movement was presented. The system is comprised of sev-
eral subsystems that cooperatively carry out the rehabilita-
tion exercise. A feedback error learning controller
was integrated into the platform to learn the inverse dy-
namic model of the arm and adjust the level of assistance
according to the user capabilities. The usability of the hy-
brid system has been proved through the experiments
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carried out with healthy participants and patients with a
brain injury. The study demonstrated the capability of
FEL scheme to assist the execution of reaching move-
ments in 3D space. Patients’ reports on the received inter-
vention revealed a great satisfaction and acceptance of the
hybrid robotic system. These results support the idea that
complementing rehabilitation with the hybrid system pro-
posed here may be useful to increase the dosage of therapy
and to augment patient’s engagement and motivation dur-
ing the rehabilitation process.
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