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Oscillatory Reinstatement Enhances Declarative Memory
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Declarative memory recall is thought to involve the reinstatement of neural activity patterns that occurred previously during encoding.
Consistent with this view, greater similarity between patterns of activity recorded during encoding and retrieval has been found to predict
better memory performance in a number of studies. Recent models have argued that neural oscillations may be crucial to reinstatement
for successful memory retrieval. However, to date, no causal evidence has been provided to support this theory, nor has the impact of
oscillatory electrical brain stimulation during encoding and retrieval been assessed. To explore this we used transcranial alternating
current stimulation over the left dorsolateral prefrontal cortex of human participants [n � 70, 45 females; age mean (SD) � 22.12 (2.16)]
during a declarative memory task. Participants received either the same frequency during encoding and retrieval (60 – 60 or 90 –90 Hz) or
different frequencies (60 –90 or 90 – 60 Hz). When frequencies matched there was a significant memory improvement (at both 60 and
90 Hz) relative to sham stimulation. No improvement occurred when frequencies mismatched. Our results provide support for the role of
oscillatory reinstatement in memory retrieval.
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Introduction
Declarative memory recall is thought to involve the reinstate-
ment of neural activity patterns that occurred previously during
encoding (Norman and O’Reilly, 2003; Teyler and Rudy, 2007).
In agreement with this model, greater similarity between patterns
of activity recorded during encoding and retrieval tends to pre-

dict better memory performance (Polyn et al., 2005; Johnson et
al., 2009; Gordon et al., 2014). Recent models, drawing on new
findings (Sederberg et al., 2007a; Wimber et al., 2012), have ar-
gued that neural oscillations may be crucial to reinstatement
(Watrous and Ekstrom, 2014). However, to date, no causal evi-
dence has been provided to support this theory, nor has the im-
pact of oscillatory electrical brain stimulation during encoding
and retrieval been assessed.

We now report causal evidence in support of the oscillatory
reinstatement hypothesis. We took advantage of the potential
capacity of transcranial alternating current stimulation (tACS) to
entrain oscillations (Zaehle et al., 2010; Helfrich et al., 2014a).
Gamma and theta oscillations have been shown to have a mech-
anistic role in memory formation (Sederberg et al., 2003, 2007b),
linking memory formation to cellular mechanisms of learning
(Jutras and Buffalo, 2010), and coordination of hippocampus
with other brain areas (Fell et al., 2001; Colgin, 2011; for review
see, Igarashi et al., 2014). We focused on gamma oscillations
because tACS has been shown to enhance gamma oscillations
(Strüber et al., 2014; Helfrich et al., 2014b), whereas tACS at other
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Significance Statement

Recent neurobiological models of memory have argued that large-scale neural oscillations are reinstated to support successful
memory retrieval. Here we used transcranial alternating current stimulation (tACS) to test these models. tACS has recently been
shown to induce neural oscillations at the frequency stimulated. We stimulated over the left dorsolateral prefrontal cortex during
a declarative memory task involving learning a set of words. We found that tACS applied at the same frequency during encoding
and retrieval enhances memory. We also find no difference between the two applied frequencies. Thus our results are consistent
with the proposal that reinstatement of neural oscillations during retrieval supports successful memory retrieval.
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lower frequencies has been shown to have
mixed effects on oscillatory power (Ve-
niero et al., 2015). Additionally, as com-
pared with theta band which has a
narrower frequency band (4 –7 Hz),
gamma band have a wide frequency range
of 30 –120 Hz, which gave us the flexibility
of selecting two frequencies that are sepa-
rate enough (i.e., 60 and 90 Hz). We
applied tACS to the left dorsolateral pre-
frontal cortex (DLPFC) of participants
during a declarative memory task. The left
DLPFC was targeted due to past research
showing successful modulation of declar-
ative memory by electrical brain stimula-
tion (Javadi and Walsh, 2012; Javadi et al.,
2012; Manenti et al., 2013; Sandrini et al.,
2014; Zwissler et al., 2014). Participants
received either the same frequency during
encoding and retrieval (congruent group)
or different frequencies (incongruent
group). In a separate session, one week apart, sham stimulation
was applied during encoding and retrieval. The order of sham
and stimulation sessions was counter balanced across partici-
pants. Memory accuracy in this session was used as the baseline
to compare with memory accuracy in the active-stimulation
session.

Materials and Methods
Participants. Seventy healthy native English speaking adults [45 females,
age mean (SD) � 22.12 (2.16)] took part in two experimental sessions.
They were randomly assigned to one of four conditions based on the
frequency of tACS administered during encoding and retrieval. Congru-
ent groups were 60 – 60 (n � 17) and 90 –90 (n � 18), and incongruent
groups were 60 –90 (n � 17) and 90 – 60 (n � 18). For example, 60 –90
indicates an incongruent condition with 60 Hz tACS during encoding
and 90 Hz tACS during retrieval (Fig. 1d).

All participants were naive to the study, English first language speak-
ers, and right-handed yielding a laterality quotient of at least �50 on the
Edinburgh Handedness Inventor (Oldfield, 1971). All participants had
normal or corrected-to-normal vision, and all were screened to exclude
those with a history of neurologic trauma or psychiatric disorder. No
participant was taking any centrally acting medications. All participants
gave their written informed consent in accordance with the Declaration
of Helsinki and the guidelines approved by the Ethical Committee of
University College London.

Transcranial alternative current stimulation. tACS (neuroConn DC
Brain Stimulator Plus, neruoCare) was administered via two 5 � 7 cm 2

saline-soaked surface sponge electrodes. One electrode was placed over
the left DLPFC (F3 according to the 10 –20 international system for EEG
electrode placement) and one electrode over the left wrist. The left
DLPFC was stimulated because both functional neuroimaging and brain
stimulation data indicate it plays a prominent role in memory processing
of written words (Blumenfeld and Ranganath, 2006; Staresina and
Davachi, 2006; Murray and Ranganath, 2007; Javadi and Walsh, 2012;
Javadi et al., 2012; Javadi and Cheng, 2013; for reviews of prefrontal
interactions in long-term memory, see Simons and Spiers, 2003; Blu-
menfeld and Ranganath, 2007).

tACS was delivered during both encoding and retrieval phases with 1.5
mA peak-to-peak amplitude and 1 s ramp up and down. Stimulation was
delivered either at 60 or 90 Hz. These specific gamma frequencies were
chosen because they both fall in the high gamma range (60 –140 Hz), they
are not resonant harmonics of one another, and there is a reasonable
separation between them. This ensured that when stimulating at one of
these frequencies the effect on the other frequency was minimized.

In both encoding and retrieval phases of one session, participants were
stimulated for 15 min or 16 s for active (60 – 60, 90 –90, 60 –90, and
90 – 60) and sham stimulation conditions, respectively.

Stimuli. A bank of 590 words was extracted from The MRC psycholin-
guistic database (Coltheart, 1981). Words with high valence or similar
meanings were excluded. Given that participants were instructed to
visualize the words, highly familiar and easily imaginable words were
selected. The words were controlled for the number of letters [mini-
mum � 3, maximum � 8, mean (SD) � 4.89 (1.24)], number of syllables
[minimum � 1, maximum � 2, mean (SD) � 1.49 (0.50)], printed
familiarity [mean (SD) � 552.54 (34.75)], concreteness [mean (SD)
580.60 (34.06)], and imaginability [mean (SD) � 581.73 (33.20)]. For
each participant, the words used differed on each day.

Procedure. Each participant took part in 2 experimental days: one
active stimulation and one sham stimulation, 1 week apart. Active and
sham stimulation days were counterbalanced across participants. Partic-
ipants were told that they both days would follow the same procedure
and task. Each day consisted of encoding and retrieval phases and a 1.5 h
retention interval in which participants stayed in the laboratory. During
this time they watched episodes of a TV series while refraining from
alcohol, caffeine, and smoking (Fig. 1a). Participants were aware that
they would be tested on their memory performance in the retrieval
session.

Behavioral tasks began 5 min after the onset of stimulation. In the
encoding phase 100 words were presented one at a time (0.6 s) followed
by an exclamation mark presented for 4.4 s which was designated as the
memorization period. Words were separated by a 1 s fixation cross (Fig.
1b). During the retrieval phase, previously presented words were ran-
domly interleaved with 100 new words and presented one at a time.
Participants were asked to judge whether the presented word was old
(studied during the encoding phase) or new (Fig. 1c). The retrieval ses-
sion was self-paced, but participants were told to work as swiftly as they
could without sacrificing accuracy.

Stimulus presentation and response recording was conducted using
MATLAB v2013b (MathWorks) and the Psychophysics Toolbox v3
(Brainard, 1997). SPSS v21 (IBM Lead Technologies) was used to carry
out statistical analysis on the data.

Control study. To investigate whether participants in the incongruent
condition could discriminate between the two stimulation frequencies,
we ran a control study. Eighteen participants [10 female, mean age
(SD) � 23.42 (3.18)] took part in this study. During a randomized se-
quence of stimulation episodes (either 60 or 90 Hz), participants were
asked to judge whether the stimulation was the “same” or “different”
from the previous episode. Stimulation setup was similar to the main
study, except it was delivered for only 30 s, followed by a 2 min rest.
This was repeated nine times resulting in eight responses (no judg-

Figure 1. a, Procedure of an experimental day. b, Procedure of the encoding phase. c, Procedure of the recognition phase. d,
Solid and dashed lines represent congruent and incongruent conditions, respectively. Participants took part in two sessions with
either active or sham stimulation conditions. e, Protocol of the control study, showing a sample sequence of the two stimulation
protocols. With the exception of the first episode of stimulation, after each stimulation episode participants were asked to judge
whether the last episode was the “same” or “different” to the previous one. The combination of stimulation and rest was repeated
nine times in total, yielding eight comparisons. The order was pseudorandomly arranged such that there were four comparisons
where stimulation was at the same frequency and four that were different.
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ment was made after the first session as there was no comparison). See
Figure 1e for an example stimulation sequence.

Statistical data analysis. Response accuracy and reaction time were re-
corded for data analysis. Trials with response times �200 and �5000 ms
were removed from analysis (0.128% of whole data).

We analyzed the data based on accurate responses for old and new
words, as well as d�. d� itself was calculated as z(Hits) � z(False Alarms).
To determine whether left DLPFC tACS modulated memory perfor-
mance we calculated the difference in performance between active and
sham stimulation conditions (“percentage accuracy difference” for per-
centage accuracy and “d� difference” for d�). We used performance dif-
ference because it provides measure of how much each individual was
affected by the stimulation, thus accounting for variation between sub-
jects in their sham session performance. Three 2 � 2 ANOVAs were
conducted with frequency at the first and second sessions (60 and 90 Hz)
as independent factors, and difference in percentage accuracy for old and
new words, and d� difference as dependent factors in each ANOVA. Post
hoc one-sample t tests were run to compare percentage accuracy differ-
ence and d� difference with zero in different groups. Effect sizes partial-�
squared for ANOVA and Cohen’s d are reported. Similar analyses were
conducted on response times.

Data from the control study was analyzed
using a one-sample t test comparing the mean
performance accuracy with chance level 50%.

Results
In this study tACS was applied over the
scalp above the left DLPFC of participants
in a frequency-specific manner during a
task involving encoding and delayed re-
trieval of written words. The ANOVAs
looking at percentage accuracy difference
for both old and new words, as well as d�
difference, revealed nonsignificant main
effects of frequency in the first and second
sessions, but a significant interaction ef-
fect (Table 1). Post hoc one-sample t tests
on percentage accuracy difference showed
significant differences for both of the
congruent conditions for old words, and
not for the conditions relating to new
words (Fig. 2; Table 2). Similar tests on d�
difference revealed that both congruent
stimulation groups showed a significant
enhancement in performance relative to
sham stimulation, but no significant effect
was present for either of the two incon-
gruent groups (Table 3).

Although tACS above the left DLPFC
appears to affect memory accuracy, no
such effects were found for reaction times
(RTs). Examining the differences between
mean RTs in active and sham conditions
for old and new words using two 2 � 2
ANOVAs revealed no significant main ef-

fects, nor significant interactions (all p values �0.200).
Analysis of the control study showed that performance was

not above chance level (t(17) � 1.22, p � 0.23). This nonsignifi-
cant difference shows that participants were not able to discrim-
inate between the two stimulation protocols.

Discussion
In summary, relative to sham stimulation, memory performance
(both when measured by percentage accuracy for old words and
d�) was significantly enhanced only when the same frequency was
applied at encoding and retrieval (at both 60 and 90 Hz), no
significant effects were observed when the frequency of stim-
ulation differed between encoding and retrieval. This effect
was specific to performance, with no improvement in reaction
times observed. Our analysis revealed that these effects were
specifically present when individual subject’s performance is
accounted for by using our within-subjects measure of perfor-
mance difference.

Figure 2. Performance (percentage correct for both old and new words) of the participants (within-subject design) in active and
sham stimulation conditions for (a) old and (b) new words. Paired-sample t tests comparing performance between active and
sham stimulation conditions. Circles represent individual data points. *p � 0.05.

Table 1. Summary of the 2 � 2 ANOVA with frequency of the 1st and 2nd sessions (60 and 90 Hz) as independent factors, and percentage accuracy difference (percentage
accuracy for the active � sham stimulation condition) for the old words and new words (separate), and d� difference (d� for the active � sham stimulation condition) as
dependent factors

Accuracy difference for old words, % Accuracy difference for new words, % d� difference

Effect F p �p
2 F p �p

2 F p �p
2

Main effect of 1st session 0.245 0.622 0.004 0.002 0.963 �0.001 1.631 0.206 0.024
Main effect of 2nd session 2.706 0.105 0.039 0.138 0.711 0.002 2.769 0.101 0.040
Interaction 11.681 0.001* 0.150 5.383 0.023* 0.75 9.974 0.002* 0.131

F(1, 70) for all effects. *p � 0.05.
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Using the capacity of tACS to entrain oscillations in the cortex
(Zaehle et al., 2010; Helfrich, Schneider et al., 2014) we test three
hypotheses: (1) application of oscillatory brain stimulation dur-
ing encoding and retrieval enhances memory, (2) memory per-
formance may be enhanced by specific stimulation frequencies,
and (3) the reinstatement of the same frequency is required across
encoding and retrieval for memory enhancement. Our first hy-
pothesis was motivated by the possibility that tACS provides a
similar enhancing effect on memory as transcranial direct current
stimulation (tDCS). This is based on evidence that both tDCS
and tACS can enhance working memory (Fregni et al., 2005;
Andrews et al., 2011; Jaušovec and Jaušovec, 2014) and that tDCS
can enhance declarative memory (Jacobson et al., 2012; Javadi
and Walsh, 2012; Javadi et al., 2012; Javadi and Cheng, 2013).
Thus, it seems plausible that tACS, like tDCS, may also generally
enhance declarative memory. Motivation for our second hypoth-
esis comes from evidence that power increases in certain gamma
frequency bands (30� Hz) have consistently been associated with
successful memory retrieval (Gruber et al., 2004; Osipova et al.,
2006; Sederberg et al., 2007a; Hanslmayr and Staudigl, 2014; for
review, see Düzel et al., 2010; Nyhus and Curran, 2010), suggest-
ing that certain frequencies of tACS may be more beneficial than
others. Our third hypothesis is based on recent models
(Hanslmayr and Staudigl, 2014; Watrous and Ekstrom, 2014)
that argue that frequency-specific reinstatement of oscillatory ac-
tivity from encoding during retrieval serves accurate memory
recall.

Our results help advance models of memory processing. Nu-
merous models have argued that the successful retrieval of past
experience involves a reinstatement of activity that previously
occurred during encoding (Norman and O’Reilly, 2003; Teyler
and Rudy, 2007). More recently several models have argued that
neural oscillations are central to this reinstatement process (Wa-
trous and Ekstrom, 2014; Watrous et al., 2015). Such models
build on mounting evidence that memory retrieval success is
related to the strength of the correlation between neural oscilla-
tions recorded during encoding and retrieval (Sederberget al.,
2007a; Wimber et al., 2012). However, it has been noted that
causal evidence for this process is lacking (Sederberg et al., 2007a;
Watrous et al., 2015). Thus, our evidence that oscillatory brain
stimulation (tACS) at the same frequency at encoding and re-

trieval leads to an enhancement of memory provides important
support for these theories. Neural recording studies showing os-
cillatory reinstatement demonstrate that the reinstatement can
occur very rapidly after cueing (Wimber et al., 2012), leading to
the suggestion that the reinstatement is part of the rapid retrieval
process, rather than post-retrieval processing. In this view, the
stimulation enhances memory by reinstating the encoding conditions
in the network of brain areas responsible for the reactivation of
the memory trace. This reinstatement may enhance processes
such as pattern completion (Staresina et al., 2012, 2016; Tompary
et al., 2016) where similar network level inputs are transmitted to
regions reconstructing the pattern of activity laid down at encod-
ing, such as is thought to occur in hippocampal area CA3 (Nor-
man and O’Reilly, 2003; Neunuebel and Knierim, 2014; Rolls,
2016). However, it is also possible that oscillatory reinstatement
aids memory performance by enhancing a post-retrieval process
where the oscillations help mediate interactions between differ-
ent brain areas (Watrous et al., 2013; Thakral et al., 2015). For
example, a potential mechanism might be that after the memory
trace is reactivated the reinstated oscillations from the time of
encoding provide extra neural context (specific network patterns
of activity) that improves the assessment of retrieved memory to
determine veracity of the memory. Future work will be required
to clarify such aspect of the models.

Our results showed that superior performance in the con-
gruent stimulation condition as compared with incongruent
stimulation condition was due to better recognition of old
stimuli (Table 2). This suggests the enhancement may be more
specific to retrieving the memory trace rather than enhancing
post-retrieval processes that allow new items to be rejected (Ja-
vadi and Walsh, 2012; Manenti et al., 2013; Chua and Ahmed,
2016). Given evidence of two distinct but interacting functional
systems for familiarity and novelty (Tulving et al., 1996; Viskon-
tas et al., 2006; Yassa and Stark, 2008; Kafkas and Montaldi, 2014)
another possibility is that the specific enhancement for “old”
judgements is due to an upregulation in the familiarity system. It
may be that targeting the DLPFC with our stimulation had this
effect due to the involvement of prefrontal regions in supporting
familiarity judgments (Tulving et al., 1996; Yassa and Stark, 2008;
Kafkas and Montaldi, 2014). Further research separating novel,
familiarity, and recollection would be useful to explore these
possibilities.

Our results provide a novel addition to research into state-
dependent learning, which has predominantly been investi-
gated via the application of drugs during encoding and retrieval
(Goodwin et al., 1969; Petersen, 1979; Kelemen and Creeley,
2003). Such prior work has shown that matching physiological
states during encoding and retrieval can enhance memory, but
there has been little attempt to manipulate the specific neural
mechanisms underlying state-dependent memory. By build-
ing on recent observations that tACS can entrain brain oscilla-
tions (Helfrich et al., 2014a), we were able to specifically test
model predictions (Watrous and Ekstrom, 2014; Watrous et al.,
2015) and the specificity of the entrainment. One possible out-
come from our results would have been that the state-dependent
induction of gamma oscillations is sufficient to enhance memory.
However we did not find this, rather we found that a precise
match in the exact gamma frequency used was required to induce
our memory enhancement, as predicted by models (Watrous and
Ekstrom, 2014). Our results cannot be explained by the subjective
discrimination between the two stimulation frequencies, as our
control study showed that participants were not able to judge
whether two consecutively delivered stimulations are the same or

Table 2. Summary of post hoc one-sample t test on percentage accuracy difference
(percentage accuracy for the active � sham stimulation condition) for the old and
new words separately

Accuracy difference for old
words, %

Accuracy difference for new
words, %

Condition, Hz t p d t p d

60 – 60; t(16) 2.815 0.012* 0.269 1.785 0.093 0.159
90 –90; t(17) 2.261 0.037* 0.210 1.515 0.148 0.011
60 –90; t(16) �1.737 0.102 0.173 �0.858 0.404 0.048
90 – 60; t(17) �0.411 0.686 0.108 �0.284 0.779 0.191

d, Cohen’s d effect size. *p � 0.05.

Table 3. Summary of post hoc one-sample t test on d�

Condition, Hz Active Sham t p d

60 – 60; t(16) 1.71 (1.04) 1.31 (0.94) 2.583 0.020* 0.403
90 –90; t(17) 1.85 (0.89) 1.50 (0.83) 2.705 0.015* 0.406
60 –90; t(16) 1.50 (0.99) 1.78 (1.11) �1.751 0.099 0.479
90 – 60; t(17) 1.80 (0.96) 1.66 (0.97) 0.957 0.352 0.043

The raw values of d� are shown as mean (SD).

d, Cohen’s d effect size. *p � 0.05.
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different. This supports the contention that impact of tACS is due
to alterations in brain oscillations rather than an awareness of
being in different states.

Previous studies have shown memory enhancement after
deep brain stimulation to the entorhinal cortex (Cheng and An-
derson, 2012; Suthana et al., 2012), transcranial magnetic stimu-
lation to scalp above the DLPFC (Turriziani et al., 2012) or
parietal cortex (Wang et al., 2014), and tDCS to the scalp above
DLPFC (Javadi and Walsh, 2012; Javadi and Cheng, 2013; for
reviews, see Spiers and Bendor, 2014; Spiers et al., 2017). Here
we extend such work to the relatively less studied application of
tACS, and in contrast to the majority of electrical stimulation
studies (Bestmann et al., 2015), we provide a test of a specific
neural mechanism— oscillatory reinstatement. Although our
stimulation protocol targeted the left DLPFC, it is important to
note that the relatively wide spatial extent of tACS means that
it may have had effected adjacent brain regions. In addition,
DLPFC has many connections with both cortical and subcortical
structures; therefore, although stimulation occurred here there
may have been effects at remote sites. As such, caution must be
taken when interpreting the specificity of our observed results to
the left DLPFC. One useful extension of our findings is to the
domain of memory consolidation, where a number of studies
have begun to explore the impact of oscillatory brain stimulation
during sleep (Marshall et al., 2006, 2011). In this context it is
possible that reinstatement of the gamma frequencies used in our
study may disrupt the endogenous slow-wave sleep period con-
solidation mechanisms leading to memory deficits and perhaps
the introduction of previous waking experiences into the post-
sleep dream reports through the reactivation of memory traces.
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