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Abstract

In this dissertation we investigate the underlying mechanisms for double ionisation

in atoms and frustrated double ionisation in multi-centre molecules. We first study

the main mechanisms that underlie non-sequential double ionisation in atoms that

are driven by near-single-cycle intense laser fields. Unlike long laser pulses, short

ones allow for an easier comparison between theory and experiment. We compare

several very recently measured experimental quantities for strongly-driven Ar with

our computational results and find good agreement. Next, we investigate double

ionisation, frustrated double ionisation, frustrated single ionisation in two-electron

triatomic molecules. We compare our computational results for the sum of the ki-

netic energies of the final ion fragments for double ionisation and for frustrated

double ionisation with experimental results. We find very good agreement, par-

ticularly for frustrated double ionisation. Moreover, we find that, as for diatomic

molecules, two pathways prevail in frustrated ionisation of two-electron triatomic

molecules. Only in one of these pathways electron-electron correlation plays an

important role. For non-sequential double ionisation, it is well established both

theoretically and experimentally that electron-electron correlation plays an impor-

tant role. However, this is not the case for frustrated double ionisation. We iden-

tify a scheme of two colour, orthogonally polarised laser fields that can control

the strength of the electron-electron correlation in frustrated double ionisation as a

function of the time delay between the two laser pulses. Therefore, based on our

proposed combination of laser pulses future experiments can demonstrate the role

of electron-electron correlation in frustrated double ionisation.



Acknowledgements

Foremost, I would like to express my greatest gratitude to my advisor Dr. Agapi

Emmanouilidou for all her extensive help all through my study at UCL and her

great advice and strong support for my academic career. Without her guidance and

persistent help, this dissertation would not have been possible. Her expertise and

patience guided me into the field of strong field physics. I have learned a lot in the

past four years in her group, not only the interesting physics of the projects, but also

the rigorous academic attitude. In addition, I would like to state my appreciation

for Dr. Hugh Price and Dr. Constantinos Lazarou for their help and great previous

works that helped me with my first steps into the projects I studied. Hugh’s passion

for these projects has influenced me a lot. I would also like to thank Henrry Banks,

Thomas Meltzer, and Dr. Arnau Casanovas for the illuminating discussions I had

with them during daily life. I have had a nice time at UCL. I also want to thank all

my friends in London and especially those in the Hawkridge House. I have enjoyed

life in London. Finally, my deepest appreciation to my family.



Contents

Abstract 3

Acknowledgements 4

List of Figures 11

List of Tables 12

List of Abbreviations 13

1 Introduction 14

1.1 Attosecond pulse generation and the three-step model . . . . . . . . 14

1.2 Background on atoms and molecules in strong laser fields . . . . . . 15

1.2.1 Non-sequential double ionisation in atoms . . . . . . . . . . 16

1.2.2 Frustrated double ionisation in molecules . . . . . . . . . . 19

2 Semi-classical model for molecules driven by intense laser fields 23

2.1 Initial conditions in the 3D semi-classical model . . . . . . . . . . . 24

2.1.1 Selecting the initial tunnel-time with importance sampling . 24

2.1.2 Initial conditions for the tunnel-ionising electron . . . . . . 25

2.1.3 Exit point in the field-lowered Coulomb barrier . . . . . . . 30

2.1.4 Initial conditions for the bound electron . . . . . . . . . . . 33

2.2 Propagation method . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2.1 Global regularisation of N-body problem . . . . . . . . . . 43



Contents 6

2.2.2 Electron tunnelling during time propagation . . . . . . . . . 45

3 Non-sequential double ionisation of atoms in near-single cycle pulses 46

3.1 Background on NSDI in atoms driven by near-single cycle pulses . . 47

3.2 Advantage of our 3D semi-classical model over previous models . . 48

3.3 3D semi-classical model for atoms and measurable quantities . . . . 49

3.4 NSDI and ionisation pathways . . . . . . . . . . . . . . . . . . . . 51

3.5 Distribution of the sum of the two electron momenta . . . . . . . . 55

3.6 Transition from strong to soft recollisions in correlated electron mo-

menta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.7 Asymmetry parameter . . . . . . . . . . . . . . . . . . . . . . . . 62

3.8 Correlated momenta and double ionisation pathways as a function

of CEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Two-electron triatomic molecules in intense laser fields 68

4.1 Frustrated double ionisation of strongly-driven D+
3 . . . . . . . . . 69

4.1.1 Method and initial molecular and field configuration . . . . 69

4.1.2 FDI and DI of strongly-driven D+
3 . . . . . . . . . . . . . . 71

4.2 Frustrated double and single ionisation of strongly-driven H+
3 . . . . 79

4.2.1 Method and initial molecular and field configuration . . . . 79

4.2.2 FDI and FSI in strongly-driven H+
3 . . . . . . . . . . . . . 80

4.2.3 Influence of molecular geometry on FDI . . . . . . . . . . 85

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Controlling electron-electron correlation with two-colour laser fields 88

5.1 Method and initial molecular and field configuration . . . . . . . . . 90

5.2 Probability of FDI as a function of the time delay . . . . . . . . . . 92

5.3 Momentum of the ionising electron in FDI as a function of the time

delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



Contents 7

5.4 Triatomic versus diatomic molecules . . . . . . . . . . . . . . . . . 96

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Conclusions 99

Appendices 103

A Dipole approximation 103

B Intensity of a laser field 105

C Focal volume effect 106

D Definition of the ionisation time of an electron during the time propa-

gation 108

E Interference effect in semi-classical models 110

Bibliography 113

List of Publications 131



List of Figures

1.1 Schematic illustration of the three-step model . . . . . . . . . . . . 15

1.2 Left panel: the correlated electron momenta distributions for double

ionisation in Ar; Right panel: the ion momentum distribution for

double ionisation in Ar. . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Correlated kinetic energies distribution of the excited neutral (H∗)

and ion (H+) fragment in the FDI of H2 . . . . . . . . . . . . . . . 19

1.4 Schematic illustration of enhanced ionisation in molecules . . . . . 20

1.5 Schematic illustration of the pathways A and B that lead to the for-

mation of H∗ in the FDI of H2 . . . . . . . . . . . . . . . . . . . . 21

2.1 The ionisation rate of H+
3 calculated with different methods as a

function of intensity for θ = 0 (left panel) and as a function of the

angle θ at an intensity of 3.5×1014 W/cm2 (right panel) . . . . . . 30

2.2 Illustration of the exit point for the initially tunnelling electron . . . 31

2.3 The configuration of the triatomic molecule we use to set-up the

micro-canonical distribution. . . . . . . . . . . . . . . . . . . . . . 36

2.4 Comparison of micro-canonical probability density and quantum

mechanical probability density of the electron position on the x-z

plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5 Comparison of micro-canonical probability density and quantum

mechanical probability density of the electron momentum on the

px-pz plane for all values of py. . . . . . . . . . . . . . . . . . . . . 41



List of Figures 9

3.1 Ratio of double to single ionisation probability as a function of in-

tensity for strongly-driven Ar . . . . . . . . . . . . . . . . . . . . . 52

3.2 Percentages of the direct and delayed pathways in DI as a function

of the field intensity for different tdi f f for strongly-driven Ar . . . . 55

3.3 Probability distribution of the sum of the two electron momentum

components parallel to the polarisation of the laser field for different

laser field intensities. For each intensity, the probability distribution

of the sum of the momenta of the delayed pathway and of the direct

pathway are also plotted for strongly-driven Ar . . . . . . . . . . . 56

3.4 Probability distribution of the sum of the two electron momentum

components parallel to the polarisation of the laser field for differ-

ent laser field intensities for strongly-driven Ar. The experimental

results are shown for comparison . . . . . . . . . . . . . . . . . . . 57

3.5 Comparison of the computed correlated electron momenta with ex-

perimental results both with and without accounting for the focal

volume effect for strongly-driven Ar. The computed results for the

different ionisation pathways are also presented . . . . . . . . . . . 58

3.6 Correlated electron momenta at an intensity of 0.85×1014 W/cm2

for two cases of the delayed ionisation pathway for strongly-driven

Ar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Distribution of the initial tunnelling and the recollision time for DI

at intensities of 1014 W/cm2, 3×1014 W/cm2 and 5×1014 W/cm2

for two different CEPs, φ = 15◦ and φ = 105◦ for strongly-driven Ar 61

3.8 Computed results of the asymmetry parameter at an intensity of

3.0×1014 W/cm2 as a function of the CEP for strongly-driven Ar . . 63

3.9 Asymmetry parameter A0 and offset phase φ0 as a function of inten-

sity for strongly-driven Ar . . . . . . . . . . . . . . . . . . . . . . 63

3.10 Comparison of the computed correlated electron momenta distribu-

tion with experimental results at an intensity of 0.85×1014 W/cm2

for different CEP for strongly-driven Ar . . . . . . . . . . . . . . . 64



List of Figures 10

3.11 Percentage contribution of the direct and delayed pathways as

a function of the CEP at an intensity of 0.85×1014 W/cm2 for

strongly-driven Ar . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 The laser field used in the computations for strongly-driven D+
3 . . . 70

4.2 The symmetric stretch vibrational levels and their probabilities for

the initial state of D+
3 employed in our computations of strongly-

driven D+
3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Intensity averaged KER distributions for FDI and DI for strongly-

driven D+
3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 The probability of FDI and DI as well as of the pathways A and B

as a function of the field strength for strongly-driven D+
3 . . . . . . 74

4.5 The angle of the velocity vector of D∗ in FDI and of D+ in DI with

respect to the laser field for parallel and perpendicular molecular

alignments for strongly-driven D+
3 . . . . . . . . . . . . . . . . . . 76

4.6 The weight of the lobes around 0◦ and 90◦ of Fig.4.5 for pathways

A and B of FDI for strongly-driven D+
3 . . . . . . . . . . . . . . . . 77

4.7 Left panel: the molecular configuration with respect to the laser

field used in our computations for strongly-driven H+
3 . Right panel:

the probabilities of FDI and DI as a function of the field strength . . 81

4.8 The probabilities of FDI and pathways A and B of FDI as a function

of the laser field strength for strongly-driven H+
3 . . . . . . . . . . . 81

4.9 Probability for over-the-barrier ionisation in FDI as a function of

the laser field strength for strongly-driven H+
3 . . . . . . . . . . . . 82

4.10 The sum of the final kinetic energies of the nuclei for two different

pulse envelopes of the laser field for strongly-driven H+
3 . . . . . . 83

4.11 The distribution of the sum of the final kinetic energies of the nuclei

for FDI at the time the bound electron tunnels for H+
3 and H2 at a

field strength of 0.06 a.u. . . . . . . . . . . . . . . . . . . . . . . . 84



List of Figures 11

4.12 FSI probability as a function of the laser field strength for strongly-

driven H+
3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.13 The sum of the final kinetic energies of the nuclei for FSI at laser

field strengths of 0.06 a.u. and 0.12 a.u. for strongly-driven H+
3 . . . 84

5.1 Panel (a): the FDI probability and the probabilities of pathways A

and B as a function of the time delay between the two laser fields in

the OTC scheme for strongly-driven D+
3 ; Panel (b): the distribution

of V max
12 as a function of the time delay for field strengths of 0.08

a.u. and 0.05 a.u. for the fundamental and the second harmonic

fields, respectively . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Top panels: the distribution of the electron momentum along the

polarisation axis of the fundamental field in the OTC scheme for

FDI (a1) and for pathways A (a2) and B (a3); Bottom panels: The

distribution of the time electron 1 tunnel-ionises during half cycles 1

and 2 for FDI (b1) and for pathways A (b2) and B (a3) for strongly-

driven D+
3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Half cycles 1 and 2 for the fundamental field in the OTC scheme

(a1) and its vector potential (a2). For strongly-driven D+
3 , for path-

way A, the distributions of ∆pE
z and ∆pC

z are plotted for half cycles

1 and 2 for ∆t =-0.3 T2ω (b1) and ∆t =-0.7 T2ω (b2). The distribu-

tion of pz is plotted for half cycles 1 and 2 for ∆t =-0.3 T2ω (b3)

and ∆t =-0.7 T2ω (b4). . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Panel (a): the FDI probability and the probabilities of pathways A

and B as a function of the time delay between the two laser fields in

the OTC scheme for strongly-driven H2; Panel (b): the distribution

of V max
12 as a function of the time delay for field strengths of 0.064

a.u. and 0.04 a.u. for the fundamental and the second harmonic

fields, respectively . . . . . . . . . . . . . . . . . . . . . . . . . . 96



List of Tables

4.1 The probabilities for FDI and DI as well as for pathways A and B of

FDI for H2 and H+
3 when driven by a linearly polarised laser field

at field strengths 0.04 a.u. or 0.06 a.u. . . . . . . . . . . . . . . . . 85

4.2 The probabilities for FDI and DI as well as for pathway A and B

of FDI for H2 and H+
3 when driven by linearly polarised fields with

different field strengths such that the ionisation probability is the

same for both molecules . . . . . . . . . . . . . . . . . . . . . . . 85



List of Abbreviations

1D One-dimensional
3D Three-dimensional
ADK Ammosov-Delone-Krainov
CEP Carrier-envelope phase
DI Double ionisation
EI Electron-impact ionisation
FDI Frustrated double ionisation
FSI Frustrated single ionisation
FVE Focal volume effect
HHG High harmonic generation
KER Kinetic energy release
MO-ADK Molecular Ammosov-Delone-Krainov
NSDI Non-sequential double ionisation
OTC Orthogonally polarised two-colour
RESI Recollision-induced excitation with subsequent field ionisation
SAE Single active electron
SI Single ionisation
WKB Wentzel-Kramers-Brillouin



Chapter 1

Introduction

Significant advances have been achieved in strong field physics since the inven-

tion of the laser in the middle of the last century [1]. One of the most important

ones is the generation of attosecond pulses [2–4]. Multi-electron dynamics takes

place on the attosecond time scale. Therefore, attosecond pulses can probe electron

motions[5, 6]. The ultimate goal is to use ultrafast laser pulses to control electronic

motion and chemical reactions, thus, impacting physics, chemistry and biology [7–

11].

1.1 Attosecond pulse generation and the three-step

model

In 2001, a train of pulses of attosecond duration [12] as well as the first single

attosecond pulse of 650 as [2] were realised. These pulses were generated based on

high harmonic generation (HHG). HHG was first observed by McPherson et al. [13]

and M. Ferray et al. [14] at the end of the 1980s. A surprising finding was that the

intensity of the high harmonics has a plateau over many orders of magnitude and

then falls abruptly to zero at an energy equal to Ecut−o f f = 3.17Up+Ip [13–15]. Up is

the average energy an electron can gain in the laser field, while Ip is the ionisation

energy. This cut-off energy can be understood in terms of the three-step model

proposed by Paul Corkum in 1993 [16]. This model has played a central role in
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generating attosecond laser pulses and in understanding multi-electron dynamics in

atoms and molecules in intense laser fields [16, 17]. It involves the following stages,

see Fig.1.1: (a) tunnelling ionisation, (b) propagation, and (c) recollision. In step

(a) a valence electron ionises to the continuum either by tunnelling ionisation or by

over-the-barrier ionisation when the Coulomb potential is lowered by the external

laser field. Then, in step (b) the initially ionising electron is accelerated by the

oscillating laser field and propagates in the continuum. When the field reverses its

direction, the electron has a certain probability to return to the parent ion. Finally,

in step (c) the electron can either recombine with the parent ion or recollide with the

bound electrons [16, 18]. In the former case, high harmonics are emitted [15, 19].

In the latter case, the returning electron transfers energy to the bound electrons,

leading to the excitation or direct ionisation of the electrons involved. In step (c)

the highest kinetic energy an electron has upon returning to the parent ion is 3.17

Up.

EE

z

Recombination

Multi-electron effects

Figure 1.1: Schematic illustration of the three-step model.

1.2 Background on atoms and molecules in strong

laser fields

We discuss the progress that has been achieved in the field of intense laser-

matter interactions in non-sequential double ionisation (NSDI) in atoms and in

frustrated ionisation in molecules. These phenomena will provide the background
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information to the results relevant to this dissertation.

1.2.1 Non-sequential double ionisation in atoms

For high intensities of the laser field, in double ionisation, the two electrons

are pulled away sequentially by the laser field. However, for intermediate intensi-

ties electron-electron correlation plays an important role in double ionisation (DI).

First evidence for NSDI was provided by experiments in the 1980s [20–23]. A

milestone for NSDI was the experiment in 1994 by Walker et al. [24] who per-

formed a measurement for single ionisation (SI) and DI of He in a 160 fs linearly

polarised laser pulse. The measurement was carried out over a range of 12 orders

of magnitude of the intensity. It was found that the DI yields for high intensities in

the region of 5×1015 W/cm2 to 1016 W/cm2 are consistent with sequential double

ionisation and agree with the results obtained using a single active electron (SAE)

approximation [25, 26]. The striking feature in this experiment is that for inter-

mediate intensities (1014 W/cm2 to 1015 W/cm2) the DI yields are many orders of

magnitudes higher than what is predicted by single active electron methods [25, 26].

The failure of these latter techniques to account for the measured DI yields for in-

termediate intensities suggests that electron-electron correlation is important in this

regime, thus, the term non-sequential double ionisation. NSDI has been observed

in many different atoms, for example, in He [22, 24, 27], Xe [28] and Ar [29], to

mention but a few.

Non-sequential double ionisation can be understood in terms of the recollision

picture [16]. During the recollision step, the returning electron transfers energy to

the bound electron, leading to DI. According to the three-step model, the recollision

step takes place at a zero of the electric field, i.e. when the electron momentum is

maximum. If both electrons are ionised soon after recollision takes place then the

two electrons escape with similar large momenta along or opposite the direction of

the laser field. This interpretation was first verified by Weber et al. and Moshammer

et al. in 2000 [30, 31], who measured and found that the ion momentum distribu-

tion along the polarisation direction of the laser field in Ar has two peaks. Further
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evidence for the underlying mechanisms of NSDI was provided by another exper-

iment by Weber et al. [32]. The latter measured the correlated electron momenta

distribution of the two emitted electrons along the polarisation direction of the laser

field in Ar. In Fig.1.2, the correlated electron momenta are shown for two inten-

sities. For the high intensity at 1.5×1015 W/cm2, the correlated electron momenta

have small values and are distributed in all four quadrants. For the intermediate

intensity at 3.8×1014 W/cm2, the correlated momenta are mainly distributed at the

first and third quadrant and have large values. This latter feature is consistent with

the recollision picture. However, even for the intermediate intensity, in Fig.1.2 it is

shown that there is a significant probability for the electrons to be emitted in oppo-

site directions occupying the second and fourth quadrants. It was thus concluded

that more than one mechanism underlying NSDI.

It is by now established that there are two major mechanisms contributing to

NSDI, i.e. the electron-impact ionisation (EI) [16, 31, 32] and the recollision-

induced excitation with subsequent field ionisation (RESI) [33, 34], alternatively

referred to as the direct and delayed ionisation [35], respectively. In EI, the bound

electron obtains sufficient amount of energy from the returning electron to ionise

to the continuum soon after recollision takes place. However, in RESI, the energy

transferred from the returning electron is only enough to promote the bound electron

to an excited state. Then, with further assistance from the laser field, the excited

electron is subsequently ionised at a maximum of the laser field. These two different

mechanisms result in different ion momentum distribution, or equivalently sum of

the electron momenta, along the laser polarisation direction, see the right panel of

Fig.1.2. In EI, the ion momentum distribution has two peaks away from the centre,

while in RESI it is centred around zero [32–34].

Most of the experiments employ multi-cycle laser pulses allowing for multiple

recollisions to occur before both electrons ionise. Multiple recollisions complicate

the electron dynamics and render the comparison with theory difficult. Recently,

however, kinematically complete experiments succeeded in confining NSDI to a

single laser cycle by using carrier-envelope phase (CEP)-controlled few- and near-
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RESI

EI

Figure 1.2: Left panel: the correlated electron momenta distributions along the polarisa-
tion direction of the laser field for double ionisation in Ar at different inten-
sities, taken from [32], Copyright (2000) by Nature Publishing Group; Right
panel: the ion momentum distribution along the polarisation direction of the
laser field corresponding to double ionisation events at different quadrants of
the left panel, taken from [34], Copyright (2001) by the American Physical
Society.

single-cycle pulses [36, 37]. These experiments with near-single-cycle pulses allow

for an easier comparison between theory and experiment. A numerical difficulty

concerning the comparison of theory and experiment is accounting for the focal vol-

ume effect (FVE) in theory, which will be discussed in Chapter .3 and in Appendix

C. It is an open question whether current classical models can accurately describe

the observables measured in near-single cycle experiments. This is a question we

address in this dissertation.

Describing NSDI in atoms driven by intense laser fields using fully ab-initio

quantum mechanical techniques is still a challenging task [38]. Classical models are

much faster than ab-initio calculations and have been very successful in describing

NSDI. They also provide significant insights into the mechanisms underlying cor-

related electron dynamics in strongly-driven atoms [35, 39–42].
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1.2.2 Frustrated double ionisation in molecules

Frustrated double ionisation (FDI) is one of the main processes that takes place

during the fragmentation of molecules when driven by intense laser fields. Mean-

while, FDI is a possible mechanism for creating Rydberg states in atoms [43]. In

frustrated ionisation, an electron first tunnel-ionises in the driving laser field. Then,

this electron, at the end of the laser field, does not have enough energy to escape and

it occupies an excited state of the parent ion [44]. This process was first observed by

T. Nubbemeyer et al. [44] in 2008 in the context of strongly-driven He. In FDI an

electron escapes and another occupies a Rydberg state at the end of the laser pulse.

FDI was observed for strongly-driven H2 [45] in 2009. The final fragments in FDI

for H2 are a neutral H atom with an electron in a Rydberg state (H∗), a H+ ion as

well as an electron in the continuum. In the experiment in Ref. [45], the correlated

kinetic energy distribution of the H∗ and H+ fragments was measured, see Fig.1.3.

Figure 1.3: Correlated kinetic energy distribution of the excited neutral (H∗) and ion (H+)
fragment in the FDI of H2, taken from [45], Copyright (2009) by the American
Physical Society.

In Ref. [45], it was conjectured that the mechanism underlying frustrated dou-

ble ionisation is as follows. An electron tunnel-ionises in the field-lowered Coulomb

potential and then it escapes fast to the continuum. Then, the remaining bound elec-

tron gains energy from the field in an enhanced-like ionisation process. However,

at the end of the laser field, this energy is not enough to ionise this second elec-
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tron and the initially bound electron remains captured in a Rydberg state. Enhanced

ionisation [11, 46–51] is a molecular effect taking place in intense laser fields. In

enhanced ionisation, at a critical distance of the nuclei, a double potential well is

formed such that it is easier for an electron bound to the higher potential well to

tunnel to the lower potential well and subsequently ionise, see Fig.1.4. FDI has also

R
c

E

Enhanced ionisation

e-

Figure 1.4: Schematic illustration of enhanced ionisation, in the context of a diatomic
molecule. Rc indicates the critical internuclear distance for enhanced ionisa-
tion.

been observed in other diatomic molecules, for instance, in Ar dimers [52, 53] and

N2 [54] as well as in triatomic molecules H+
3 and D+

3 [55–59].

Currently, quantum mechanical techniques can only address one electron in

triatomic molecules in two-dimensions [60]. One reason is that the strongly-driven

dynamics of two electrons and three nuclei poses an immense challenge for fully

ab-initio quantum mechanical calculations. Therefore, classical and semi-classical

models are very important in understanding the underlying mechanisms of FDI in

molecules driven by intense laser fields [61, 62]. Employing a three-dimensional

(3D) semi-classical calculation it has been shown in Ref. [61] that two major path-

ways contribute to FDI.

The two pathways contributing to FDI are labelled as A and B and are illus-

trated in Fig.1.5 in the context of H2. In the following, we refer to the electron that

tunnel-ionises through the Coulomb barrier in the initial state as electron 1 and to

the initially bound electron as electron 2. In pathway A, electron 1 tunnel-ionises,
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subsequently escaping very quickly. Electron 2 tunnel-ionises later and quivers in

the laser field. However, when the field is turned off, electron 2 does not have

enough drift energy to escape and occupies a Rydberg state instead. Therefore, in

pathway A the later ionisation step is “frustrated”. This pathway is the mechanism

that was conjectured to be the one responsible for FDI in the experimental work

in Ref. [45]. However, the semi-classical model predicts an additional mechanism

for FDI, namely, pathway B. In this latter pathway, electron 1 tunnel-ionises very

quickly, quivering in the field, while electron 2 tunnel-ionises and escapes after a

few periods of the laser field. When the laser field is turned off, electron 1 does not

have enough energy to escape and remains in a Rydberg state of the H atom instead,

i.e., the earlier ionisation step is “frustrated”. In pathway B, electron-electron cor-

relation is more important than in pathway A, since electron 1 returns to the parent

molecular ion and can transfer energy to electron 2 [61]. It is still an open question
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Figure 1.5: Schematic illustration of the pathways A (left panel) and B (right panel) that
lead to the formation of H∗ in the FDI of H2. In the panels, we show the
positions of electrons (blue and red lines) and nuclei (black lines) along the
polarisation direction of the laser field as a function of time. The final fragments
include a neutral H atom (H∗), a H+ ion and an ionised electron.

what are the main mechanisms underlying FDI in strongly-driven two-electron tri-

atomic molecules. Another open question is whether the two pathways of FDI in

two-electron molecules driven by intense laser fields can be separated experimen-

tally. These questions are addressed in this dissertation.
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In this dissertation, we investigate multi-electron dynamics in atoms and multi-

centre molecules driven by intense and infrared laser fields. In the first chapter, we

have discussed the achievements in the field of attosecond and strong-field science

focusing on non-sequential double ionisation in atoms and frustrated double ionisa-

tion in molecules. In Chapter 2, we discuss the state-of-the-art, three-dimensional,

semi-classical model we employ for our studies concerning two-electron multi-

centre molecules that are driven by intense laser fields. Specifically, we discuss

the initial phase space conditions for the two electrons and mention the techniques

we use for time propagation. In Chapter 3, we unravel the mechanisms that un-

derlie non-sequential double ionisation in atoms when driven by near-single-cycle,

intense laser fields. In addition, we compare our results for several observables

with recently obtained experimental results. In Chapter 4, we investigate the path-

ways that contribute to frustrated double and single ionisation in strongly-driven

two-electron triatomic molecules, such as D+
3 and H+

3 . In addition, we compare

our results for double and frustrated double ionisation for strongly-driven D+
3 with

experimental results. In Chapter 5, we identify a combination of perpendicularly

polarised laser pulses in order to control electron-electron correlation in frustrated

double ionisation in strongly-driven two-electron triatomic molecules. We conclude

in Chapter 6.



Chapter 2

Semi-classical model for molecules

driven by intense laser fields

As we have already discussed, semi-classical and classical models are essential

for understanding the interplay of electron and nuclear motion during the frag-

mentation of molecules in intense laser fields. In this chapter, we describe the

three-dimensional semiclassical model we employ to study ultrafast phenomena in

strongly-driven two-electron triatomic molecules.

The major steps involved in the semi-classical model we employ are: i) setting

up the initial conditions for the particles involved and propagating in time all the

particles by solving the relevant classical equations of motion. We first address the

initial conditions for the two electrons and the nuclei in a two-electron triatomic

molecule. We assume that one electron tunnels through the field lowered Coulomb

potential. It does so with a certain ionisation rate. In what follows we present the

rates we employ as well as the initial momentum and position we assign to this

electron (electron 1) once it emerges from the potential barrier. Regarding the other

initially bound electron (electron 2 ) we assign the initial position and momentum

of this electron using a micro-canonical distribution. We find this choice of initial

distribution results in very good agreement of our results and experiments [45, 59,

61, 63]. In addition, using important sampling in the time interval that the laser field

is switched on, we specify the time that electron 1 tunnel-ionises. This latter time

is also the time that we start the propagation in time. The ionisation rate is used
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as the importance sampling distribution; ii) time propagation for the two electrons

and the three nuclei solving the classical equations of motion for the Hamiltonian

of the strongly-driven five-body system. We solve the classical equations of motion

while we fully account for the Coulomb singularities; iii) accounting for tunnelling

of each electron during the time propagation. This aspect is important in order to

accurately account for the enhanced ionisation process [11, 46–51].

2.1 Initial conditions in the 3D semi-classical model

2.1.1 Selecting the initial tunnel-time with importance sampling

We start the time propagation at the time t0 that electron 1 tunnel-ionises. This

time can take any value in the time interval where the laser field is switched on. We

select this initial condition in a classical Monte-Carlo scheme [64–68] by generating

a uniform random number in the time interval that the laser field is switched on.

However, by doing so we generate initial times that are equally spread around time

intervals corresponding to small and large ionisation rates. Therefore, to improve

the efficiency of our computations, we select the initial time t0 using importance

sampling [69] with the ionisation rate as the distribution function. Generally, the

idea of using importance sampling to compute the integral

I =
∫

g(t)dt (2.1)

is instead of sampling the variable t is to sample W , where f (t)dt = dW , re-

expressing the integral as follows

I =
∫ g(t)

f (t)
f (t)dt =

∫ g(t)
f (t)

dW. (2.2)

f(t) is labeled as the “importance sampling distribution”. In our semi-classical

model, the importance sampling distribution is the ionisation rate Γ.

The steps involved in selecting t0 are as follows:
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1. computing Wmax by integrating the ionisation rate Γ(t) over the duration of

the laser field [ta, tb]:

Wmax =
∫ tb

ta
Γ(t)dt; (2.3)

2. Selecting a uniform random number W in the interval [0,Wmax]. The corre-

sponding initial time t0 is obtained by solving

W =
∫ t0

ta
Γ(t)dt. (2.4)

This process is repeated for a large number of times in order to accurately sample

the time interval where the laser field is switched on.

2.1.2 Initial conditions for the tunnel-ionising electron

2.1.2.1 Ionisation rate

We assume that, initially, electron 1 tunnel-ionises through the field lowered

Coulomb barrier. This is a quantum mechanical process. The ionisation rate has

been extensively addressed in the literature and has been formulated using semi-

classical models for atoms [25, 70] and molecules [71–73].

2.1.2.1.1 Ionisation rate for atoms: ADK theory

The Ammosov-Delone-Krainov (ADK) theory was formulated first for the ion-

isation rate of the hydrogen atom. It was then extended to describe other atoms by

using the effective principal and orbital quantum numbers [25]. In the ADK theory,

the ionisation rate for a field strength E is given by [25, 70, 74]:

Γ(E) = C2
n∗l∗N(l,m)

κ2

2

(
2κ3

E

)2n∗−|m|−1

exp
(
−2κ3

3E

)
(2.5)
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with

N(l,m) =
(2l +1)(l + |m|!)

2|m|(|m|)!(l−|m|)!
, (2.6)

C2
n∗l∗ =

[
1

2πn∗

(
4e2

n∗2− l∗2

)n∗(n∗− l∗

n∗+ l∗

)l∗+1/2
] 1

2

(2.7)

≈
(

2e
n∗

)n∗ 1
(2πn∗)1/2 for n∗� l∗, (2.8)

where e is Euler’s number, E is the field strength, κ =
√

2Ip and Ip is the ionisa-

tion potential of the atom under consideration. n∗ = Z∗√
2Ip

is the effective principal

quantum number while l∗ and m are the effective orbital quantum number and mag-

netic quantum number, respectively. The ADK ionisation rates compare well with

experimental results for atoms such as Kr, He, Ne, Xe and Ar, see Ref. [70, 75].

For high intensities where the Coulomb barrier is sufficiently suppressed so

that electron 1 escapes classically over-the-barrier, i.e. for the over-the-barrier inten-

sity regime, the ADK formula no longer agrees well with experimental results [76].

To correct the ADK ionisation rate for field strengths above a critical value

Eb =
κ4

16Qc
. (2.9)

a simple empirical method was proposed by Tong et al. in 2005 [77]:

ΓBSI(E) = Γ(E)exp
(
−α

Q2
c

Ip

E
κ3

)
, (2.10)

where Γ(E) is the ionisation rate given by the ADK theory. α is an empirical

parameter that has been computed by fitting Eq.2.10 to quantum mechanical rates

that are obtained using the single-active-electron approximation [77].

2.1.2.1.2 Ionisation rate for molecules: MO-ADK theory

An analytical expression for the ionisation rate of molecules was proposed

by C.D. Lin in 2002, termed as molecular ADK (MO-ADK) theory [71]. In this

derivation the molecular frame is denoted by (X , Y , Z). The electric field is consid-
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ered along the Z direction. Next, the wave-function of the ionising electron in the

molecular frame is expressed using the single-centre-expansion [78]

Ψ(r) = ∑
lm

Flm(r)Ylm(r̂) (2.11)

with m the magnetic quantum number and Ylm(r̂) the spherical harmonics. The

radial wave function in the asymptotic region satisfies

Flm(r→ ∞)≈ClmrQc/κ−1e−κr (2.12)

with Qc being the asymptotic Coulomb charge and with Clm parameters that are ob-

tained by fitting the wave function in the asymptotic region. The relevant ionisation

rate of the tunnelling electron is given by [79, 80]

Γ(E) = ∑
m

B2(m)

2|m||m|!
1

κ2Qc/κ−1

(
2κ3

E

)2Qc/κ−|m|−1

e−2κ3/3E , (2.13)

where E is the field strength and

B(m) = ∑
l
(−1)lClmQ(l,m) (2.14)

with

Q(l,m) = (−1)m

√
(2l +1)(l + |m|)!

2(l−|m|)!
. (2.15)

A general direction of the laser field defined in the lab fixed-frame (XL, YL, ZL), is

accounted for in the ionisation rate by defining the Euler angles between the lab

frame and the molecular frame. The Euler angles are R≡ (φ ,θ ,χ), where θ is the

angle between the axes ZL and Z; φ and χ denote the rotations around the Z axis

and the ZL axis, respectively. The general expression for the ionisation rate is given



2.1. Initial conditions in the 3D semi-classical model 28

by

Γ(E,R) = ∑
m′

|B(m′)|2

2|m′||m′|!
1

κ2Zc/κ−1

(
2κ3

E

)2Qc/κ−|m′|−1

e−2κ3/3E , (2.16)

with B(m′) expressed as

B(m′) = ∑
lm
(−1)lClmDl

m′,m(R)Q(l,m′) (2.17)

and the Wigner rotation matrix given by [79]

Dl
m′,m(R) = eim′φ dl

m′,m(θ)e
imχ . (2.18)

Note that in deriving Eq.2.16 the electron is assumed to ionise opposite to the di-

rection of the laser field [80].

2.1.2.1.3 A semi-classical ionisation rate for molecules

Another method to compute the ionisation rate for molecules was proposed by

Murray et al. in 2011 [73]. This method better accounts for the molecular structure.

In this method, the ionisation rate is expressed as [62, 73]

Γ(E,θ) = Γas(E)R(θ) (2.19)

with

Γas(E) = 2πκ
2C2

κ

(
2κ3

E

)2Qc/κ−1

exp
(
−2κ3

3E

)
(2.20)

R(θ) =

[
F0(θ)−

4E
3κ3 F2(θ)+

2E
3κ3 F3(θ)

]2

+
2E
9κ3 F2

1 (θ), (2.21)

where E is the instantaneous field strength, θ is the angle between the laser field and

the z axis in the molecular frame and Qc is the asymptotic charge. The coefficient Ck

is obtained by fitting the Dyson orbital [81] describing the tunnel-ionising electron
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to its asymptotic wave function

ψ(r,θ ,φ)≈Cκκ
3/2(rκ)Q/κ−1e−κrF(cosθ ,sinθ cosφ) (2.22)

where r, θ and φ are the spherical coordinates in the molecular frame. The

Dyson orbital is the overlap integral of the two-electron wave function of the

molecule with the one-electron wave function of the molecular ion. The function

F(cosθ ,sinθ cosφ) is chosen to best fit the angular dependence of the wave func-

tion at large distance r. The functions Fi(θ) (i = 0,1,2,3) are given by

F0(θ) = F(cosθ ,sinθ)

F1(θ) = Fv cosθ −Fu sinθ (2.23)

F2(θ) = Fu cosθ +Fv sinθ

F3(θ) = Fvv cos2
θ +Fuu sin2

θ −Fuv sin2θL

where Fv, Fu, Fvv and Fuu is the first and second order partial derivatives of F(u,v)

with respect to u and v, calculated at u = cosθ and v = sinθ . The function

F(cosθ ,sinθ cosφ) depends on the molecular orbital the electron occupies before

tunnelling.

To obtain F(cosθ ,sinθ cosφ), for instance, for the molecule H+
3 , the ground

state of H+
3 is approximated by a linear combination of 1s atomic orbitals [62]

Φ(r) ∝ e−κ|r−Ra|+ e−κ|r−Rb|+ e−κ|r−Rc|, (2.24)

where Ra, Rb and Rc indicate the positions of the nuclei of H+
3 . Taking the asymp-

totic expansion for r� R, with R the internuclear distances, it is found

F(cosθ ,sinθcosφ) ≈ 2cosh(κRcosθ/2)exp
(
−κRsinθcosφ/(2

√
3)
)

+exp
(

κRsinθcosφ/
√

3
)
. (2.25)

By fitting the Dyson orbital in the interval 3≤ r ≤ 6, 0≤ θ ≤ π and 0≤ φ ≤ 2π [62]
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Cκ is found equal to 0.139761.

A comparison of the ionisation rates of H+
3 obtained by the MO-ADK the-

ory [71] and by the method developed by Murray et al. [73] is shown in Fig.2.1 in

atomic units. Atomic units are used throughout this dissertation unless stated oth-

erwise. These rates are computed as a function of intensity for θ = 0 (left panel)

and as a function of the angle θ at an intensity of 3.5×1014W/cm2 (right panel). A

good agreement is found between the two methods for H+
3 .
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Figure 2.1: The ionisation rate of H+
3 calculated with the MO-ADK method [71] and

Ref. [73] as a function of intensity for θ = 0 (left panel) and as a function
of the angle θ at an intensity of 3.5×1014 W/cm2 (right panel).

2.1.3 Exit point in the field-lowered Coulomb barrier

Depending on the strength of the laser field, electron 1 either tunnel-ionises

through the field-lowered Coulomb potential, i.e. tunnelling intensity regime, or

escapes classically over the Coulomb barrier, i.e. over-the-barrier intensity regime.

For the tunnelling intensity regime, following the formulation in Ref. [62], we spec-

ify first the point where electron 1 exits through the potential barrier. We assume

that the electron always exits the potential barrier along the axis of the electric field.

Electron 1 can exit the potential barrier along the axis of the laser field but at dif-

ferent distances perpendicular to the electric field. We assume that electron 1 exits

along the axis that corresponds to the lowest maximum value of the potential bar-

rier. Once this perpendicular shift rs has been identified, then, we find the distance
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re in the direction opposite to the direction of the laser field that is determined by

solving

−
Nn

∑
i=1

eQi

r1,i
+Kee(r1)− re|E|+ Ip = 0, (2.26)

where r1 = −re
E
|E| + rs

E⊥
|E| , see Fig.2.2 and the subscripts i denotes the different

nuclei. Nn is the number of nuclei in the molecule, which is taken equal to two or

three. Qi is the charge of the nucleus i and r1i denotes the distance between the

nucleus i and electron 1. The integral Kee is given by

Kee(r1) =
∫

dr2
|Φ(r2)|2

|r1− r2|
(2.27)

and accounts for the Coulomb repulsion between the initially tunnel-ionising elec-

tron (electron 1) and the initially bound electron (electron 2). r2 is the position

vector of the initially bound electron. Once re is obtained the coordinates of the exit

point are given by

rtx = −resin(θ)+ rscos(θ)

rty = 0 (2.28)

rtz = −recos(θ)− rssin(θ),

where θ is the angle of the electric field with the z axis.

E

Z

X

θ

Y

rs

re

θ

Sweep

Figure 2.2: Illustration of the parallel (re)and perpendicular (rs) to the laser field compo-
nents of the exit point for electron 1.
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Regarding the initial momentum, we assume that electron 1 exits the potential

barrier with zero momentum along the direction of the electric field. For the direc-

tion perpendicular to the laser field, we assume that the momentum of electron 1

follows a Gaussian distribution [70, 82]:

w⊥(v⊥) =
κ

π

v⊥
E

exp
(
−

v2
⊥κ

E

)
. (2.29)

To fully define the components of the vertical component of the momentum, the

polar angle φ needs to be specified. The latter is generated as a uniform random

number in the interval [0,2π]. Moreover, for v⊥ we also generate a uniform ran-

dom number in the velocity interval where the distribution w⊥(v⊥) is non zero. The

above described distribution for the initial momentum of electron 1 has been re-

cently verified experimentally for strongly-driven Ar [83]. For the general case that

the electric field forms an angle θ with respect to the z axis the coordinates of the

initial momentum of electron 1 are given by

vtx = v⊥cos(φ)cos(θ)

vty = v⊥sin(φ) (2.30)

vtz = −v⊥cos(φ)sin(θ).

For the above-the-barrier intensity regime, electron 1 has enough energy to

escape over the field-lowered Coulomb barrier. Following the formulation in

Ref. [62], we assume that electron 1 initially starts at the position where the maxi-

mum of the potential barrier is located, r1max. Moreover, we assume that it ionises

with energy equal to the difference between the first ionisation energy Ip of the

molecule and the maximum value of the potential barrier:

∆E = Ip−
Nn

∑
i=1

eQi

r1max,i
+Kee(r1max)− remax |E|, (2.31)

where r1max is the position of the barrier maximum. Thus, the amplitude of the
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initial momentum of electron 1 is given by

vovb =
√

2∆E. (2.32)

We also assume that electron 1 escapes with momentum in the direction opposite to

the laser field which, assuming the electric field is along the z axis, is given by

v′ovbx = v′ovbcos(φ)
√

1−ϑ 2

v′ovby = v′ovbsin(φ)
√

1−ϑ 2 (2.33)

v′ovbx = v′ovbϑ ,

where φ ∈ [0,2π] is the azimuthal angle in spherical coordinates and ϑ ∈ [−1,0]

is the polar angle restricted in the direction opposite to the electric field. Uniform

random numbers in these intervals are assigned to these angles for the initial state of

electron1. For a general direction of the laser field the initial momentum of electron

1 is given by:

vovbx = v′ovbxcos(θ)+ v′ovbzsin(θ)

vovby = v′ovby (2.34)

vovbz = v′ovbzcos(θ)− v′ovbxsin(θ).

2.1.4 Initial conditions for the bound electron

We assume that the initially bound electron is described by a one-electron

micro-canonical distribution

f (r,p)∝ δ

[
−Ip−

p2

2
−V

]
(2.35)

where V is the Coulomb potential of the bound electron with respect to the nu-

clei. One electron micro-canonical distributions have been previously developed

for atoms [84], for diatomic molecules [85]. These distributions have been used to
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describe the initial state for studies of particle impact induced fragmentation [84, 85]

and for ionisation processes in two-electron atoms and diatomic molecules driven

by intense laser fields [35, 39, 42, 61, 86–88]. A one-electron micro-canonical dis-

tribution for triatomic molecules has been recently developed by Lazarou and Em-

manouilidou [89]. In what follows we first present the one-electron micro-canonical

distribution for diatomic molecules, since it is used as the basis to develop the one-

electron micro-canonical distribution for triatomic molecules, which we present af-

terwards.

2.1.4.1 Micro-canonical distribution for diatomic molecules

A micro-canonical distribution for diatomic molecules was developed by R.

E. Olson et al. in 1989 [85]. In what follows we describe the one-electron micro-

canonical distribution for diatomic molecules since it is used as a stepping stone to

derive in the next section the one-electron micro-canonical distribution for triatomic

molecules. We denote the position vectors of the two nuclei A and B by RA =(
0,0,−RAB

2

)
and RB =

(
0,0, RAB

2

)
and the inter-nuclear distance by RAB. We denote

the position vector of the electron by r and the distances of the electron from the

nuclei A, B by rA = |r−RA|, rB = |r−RB|. We then define the confocal elliptical

coordinates ξ and η using the nuclei A and B as the foci of the ellipse, that is,

ξ =
1

RAB
(rA + rB) (2.36)

η =
1

RAB
(rA− rB), (2.37)

where ξ ∈ [1,ξmax], η ∈ [−1,1]. The third coordinate φr = arctan( y
x) ∈ [0,2π] is

the angle between the projection of the position vector r on the x-y plane and the

positive x axis; it thus defines the rotation angle around the axis that goes through

the nuclei A and B. The potential of the electron in the presence of the nuclei A and

B which have charges QA and QB, respectively, is given by

V (rA,rB) =−
QA

rA
− QB

rB
. (2.38)
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This potential is expressed in terms of the confocal elliptical coordinates as follows

V (ξ ,η) = − 2
RAB

(QA +QB)ξ − (QA−QB)η

ξ 2−η2 . (2.39)

Note that the energy is given by E = p2/2+V . The electron momentum in terms

of the confocal elliptical coordinates is expressed as follows

px =
√

2(E−V (ξ ,η))cos(φp)
√

1−ν2
p,

py =
√

2(E−V (ξ ,η))sin(φp)
√

1−ν2
p, (2.40)

pz =
√

2(E−V (ξ ,η))νp,

where φp ∈ [0,2π] and νp ∈ [−1,1] define the momentum p in spherical coordi-

nates.

Transforming from (r,p)→ (ξ ,η ,φr;E,νp,φp), the Jacobian determinant is

given by

J =

(
RAB

2

)3√
2(−Ip−V (ξ ,η))(ξ 2−η

2), (2.41)

resulting in the following micro-canonical distribution:

f (ξ ,η ,φr;E,νp,φp) ∝ Jδ (−Ip−E) (2.42)

=

(
RAB

2

)3√
2(−Ip−V (ξ ,η))(ξ 2−η

2)δ (−Ip−E) .(2.43)

Integrating f (ξ ,η ,φr;E,νp,φp) over E ∈ (−∞,0), φp and νp we find

ρ (ξ ,η)∝

 (ξ 2−η2)
√
−Ip−V (ξ ,η) −Ip ≥V

0 −Ip <V.
(2.44)

To set up the initial conditions, we find ξmax so that p2

2 = −Ip−V (ξ ,η) ≥ 0.

We then find the maximum value ρmax of the distribution ρ (ξ ,η). To create initial

conditions using the one-electron micro-canonical distribution we implement the
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following steps:

1. Generate the uniform random numbers ξ ∈ [1,ξmax], η ∈ [−1,1] and χ ∈

[0,ρmax].

2. Accept the generated values as initial conditions if ρ (ξ ,η)> χ , otherwise

reject these values.

3. Repeat the above process.

2.1.4.2 Micro-canonical distribution for triatomic molecules

In this section, we describe the one-electron micro-canonical distribution for-

mulated by C. Lazarou and A. Emmanouilidou for a general one-electron triatomic

molecule [89].
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Figure 2.3: The configuration of the triatomic molecule we use to set-up the micro-
canonical distribution.

We denote the positions of the nuclei by RA = (0,0,−RAB/2), RB =

(0,0,RAB/2) and RC = (xC,0,zC), and the inter-nuclear distances by RAB, RBC and

RAC. The coordinates of the nucleus C are expressed in terms of the inter-nuclear

distances as follows

zC =
R2

AC−R2
BC

2RAB
(2.45)

xC = ±

√
R2

AC−
(

R2
AC−R2

BC +R2
AB

2RAB

)2

. (2.46)
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We denote the position vector of the electron by r and the distances of the electron

from the nuclei A, B and C by rA = |r−RA|, rB = |r−RB| and rC = |r−RC|,

respectively. The configuration of the one-electron molecule used to derive the

micro-canonical distribution is shown in Fig.2.3. We then define the confocal ellip-

tical coordinates ξ and η as

ξ =
1

RAB
(rA + rB) (2.47)

η =
1

RAB
(rA− rB), (2.48)

where ξ ∈ [1,ξmax], η ∈ [−1,1]. The third coordinate φr = arctan( y
x)∈ [0,2π] is the

angle between the projection of the position vector r on the x-y plane. The potential

of the electron in the presence of the nuclei A, B and C with charges QA, QB and

QC, is given by

V (rA,rB,rC) =−
QA

rA
− QB

rB
− QC

rC
. (2.49)

This potential is then expressed in terms of the confocal elliptical coordinates as

follows

V (ξ ,η ,φ) = − 2
RAB

[
QA

ξ +η
+

QB

ξ −η
+QC

(
(ξ 2 +η

2−1)− 4zC

RAB
ξ η−

4xC

RAB
cos(φ)

√
(ξ 2−1)(1−η2)+

4(x2
C + z2

C)

R2
AB

)− 1
2

. (2.50)

As for the diatomic case, the electron momentum in terms of the confocal elliptical

coordinates is expressed as follows

px =
√

2(E−V (ξ ,η ,φ))cos(φp)
√

1−ν2
p,

py =
√

2(E−V (ξ ,η ,φ))sin(φp)
√

1−ν2
p, (2.51)

pz =
√

2(E−V (ξ ,η ,φ))νp,

Transforming from (r,p)→ (ξ ,η ,φr;E,νp,φp), the Jacobian determinant
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takes the form

J =

(
RAB

2

)3√
2(−Ip−V (ξ ,η ,φ))(ξ 2−η

2). (2.52)

Thus, the one-electron micro canonical distribution is given by

f (ξ ,η ,φr;E,νp,φp) ∝ Jδ (−Ip−E) (2.53)

=

(
RAB

2

)3√
2(−Ip−V (ξ ,η ,φ))(ξ 2−η

2)δ (−Ip−E) .(2.54)

Integrating f (ξ ,η ,φr;E,νp,φp) over E ∈ (−∞,0), φp and νp we find

ρ (ξ ,η ,φ)∝

 (ξ 2−η2)
√
−Ip−V (ξ ,η ,φ) −Ip ≥V

0 −Ip <V.
(2.55)

The distribution ρ goes to zero when the electron is placed on top of either nu-

cleus A or B and it is thus well-behaved in these cases. However, when the

electron is placed on top of nucleus C, i.e. when r→ RC, ρ (ξ ,η ,φ)→ ∞.

We eliminate this singularity by introducing an additional transformation. Set-

ting ξ = ξC = (RAC +RBC)/RAB, φ = 0 and expanding ρ(ξc,η ,0) around ηC =

(RAC−RBC)/RAB, we find

ρ(ξC,η ,0) ∝
1

|η−ηC|1/2 , (2.56)

where ξC and ηC are the values of ξ and η , respectively, when the electron is

placed on top of nucleus C. To eliminate the singularity in Eq.2.56, we introduce

a new variable t with tγ = η−ηC. So the limit of t is tmin =−(1+ηc)
1/γ and

tmax = (1−ηc)
1/γ . Then the total Jacobian determinant for both transformations is

J = 2
1
γ
−4

γ(RAB)
3|tγ−1|

√
2(−Ip−V (ξ ,η ,φ))

(
ξ

2− (tγ +ξC)
2) . (2.57)
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The new distribution takes the form

ρ (ξ , t,φ) ∝

 |t
γ−1|

(
ξ 2− (tγ +ξC)

2)√P(ξ , t,φ) P≥ 0

0 P < 0,
(2.58)

with

P(ξ , t,φ) = −Ip−V (ξ , t,φ) (2.59)

= −Ip +
2

RAB

[
QA

ξ + tγ +ηC
+

QB

ξ − tγ −ηC
+

QC

(
(ξ 2 +(tγ +ηC)

2−1)− 4zC

RAB
ξ (tγ +ηC)−

4xC

RAB
cos(φ)

√
(ξ 2−1)(1− (tγ +ηC)2)+

4(x2
C + z2

C)

R2
AB

)− 1
2
]
. (2.60)

Since η ∈ [−1,1], tγ and t take both negative and positive values and there-

fore, if we choose one γ for all values of η , γ must be odd. Moreover, to

avoid the singularity when the electron is placed on top of nucleus C, γ must be

such that tγ−1/tγ/2→ 0, i.e., γ ≥ 2. Combining the above two conditions, yields

γ = 3,5,7, .... The new distribution ρ(ξ , t,φ) goes to zero when the electron is

placed on top of nucleus C, i.e. when ξ = ξC, t = 0 and φ = 0,2π .

To set up the initial conditions, we find ξmax so that p2

2 = −Ip−V (ξ , t,φ) ≥

0 and equivalently P(ξ , t,φ) ≥ 0. We then find the maximum value ρmax of the

distribution ρ (ξ , t,φ). To create initial conditions using the one-electron micro-

canonical distribution we implement the following steps:

1. Generate the uniform random numbers ξ ∈ [1,ξmax], t ∈ [−tmin, tmax], φ ∈

[0,2π] and χ ∈ [0,ρmax].

2. Accept the generated values as initial conditions if ρ (ξ , t,φ)> χ , otherwise

reject these values.

3. Repeat the above process.

Following the above described formulation, we obtain the initial conditions

of the electron with respect to the origin of the coordinate system as shown in
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Fig.2.3. To obtain the initial conditions for the position of the electron with re-

spect to the centre of mass of the triatomic molecule, r′, in terms of the ones with

respect to the origin, r, we shift the coordinates by r′ = r−Rcm, where Rcm is given

by (Xcm,0,Zcm) with

Xcm =
mCxc

mA +mB +mC
(2.61)

Zcm =
Rab(mB−mA)/2+mCzc

mA +mB +mC
, (2.62)

with mA, mB and mC the masses of the nuclei.

2.1.4.3 Comparison of quantum mechanical calculation and micro-

canonical distribution

Finally, using the one-electron micro-canonical distribution that we have for-

mulated above, we compute the position and momentum probability densities of the

initially bound electron for H+
2 and H2+

3 . We do so for the ground state of H2 and

H+
3 with the internuclear distances 1.4 a.u. and 1.65 a.u. [90], respectively. The ion-

isation potentials for H+
2 and H2+

3 are 1.28 a.u. and 1.93 a.u., respectively, obtained

using the quantum chemistry package MOLPRO [91].

First, in the top panels of Fig.2.4, we plot the probability density of the posi-

tion of the electron on the x-z plane for y = 0. We compare this micro-canonical

distribution with the quantum probability density in the bottom panels for H+
2 and

H2+
3 . That is, to obtain the quantum probability density, we plot |Ψ(x,0,z)|2, where

Ψ(r) is the quantum mechanical wave function for the molecules, which is obtained

using MOLPRO. It shows that the two probability densities of the electron position

compare well. However, the micro-canonical probability density underestimates the

electron density between the nuclei while it overestimates the one around the nuclei.

In addition, using the micro-canonical distribution, for all values of the electron

momentum component along the y-axis, py, we plot the probability density of the

electron momentum on the px-pz plane in the top panels of Fig.2.5. We compare
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Figure 2.4: Top panels: the micro-canonical probability density (ρCM) of the electron po-
sition on the x-z plane for y = 0 for H+

2 and H2+
3 ; Bottom panels: the quantum

mechanical probability density (ρQM) of the electron position on the x-z plane
for y = 0 for H+

2 and H2+
3 .

Figure 2.5: Top panels: the micro-canonical probability density (ρCM) of the electron mo-
mentum plotted on the px− pz plane for all values of py; Bottom panels: the
quantum mechanical probability density (ρQM) of the electron momentum on
the px-pz plane for all values of py.
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this distribution with its quantum mechanical analog ρQM(px, pz). The latter is

plotted in the bottom panels of Fig.2.5. To obtain ρQM(px, pz), we, first, compute

the quantum mechanical wave function in momentum space

Φ(p) =
1

(2π)3/2

∫
Ψ(r)e−iprdr, (2.63)

and we, next, integrate over py

ρ
QM(px, pz) =

∫
∞

−∞

|Φ(p)|2d py. (2.64)

The plots in Fig.2.5 show that the two probability densities for the electron momen-

tum compare well. However, the micro-canonical probability density overestimates

the higher values of the electron momentum. It is consistent with the result in

Fig.2.4, where the micro-canonical probability density overestimates the electron

position around the nuclei.
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2.2 Propagation method

The technique we use to propagate in time was described in detail in Ref. [62]

and references therein. Briefly, this 3D propagation technique accounts for the accu-

rate treatment of the Coulomb singularity. This is an essential component of an ac-

curate classical treatment, since classically an electron can come infinitely close to

the nucleus. The main steps in the 3D propagation technique that we employed for

our calculation are i) formulating the equations of motion for the five-body Hamil-

tonian in a strong laser field using the global regularisation scheme described in

Ref. [92]; ii) using a time transformed leapfrog propagation technique in conjunc-

tion with the Bulirsch-Stoer method.

2.2.1 Global regularisation of N-body problem

The global regularisation scheme is described as follows [92]. The Hamilto-

nian of an N-body system interacting with the laser field is expressed as

H =
N

∑
i=1

pi
2

2mi
+

N−1

∑
i=1

N

∑
j=i+1

QiQ j

|ri− r j|
−

N

∑
i=1

QiE(t) · ri. (2.65)

The new coordinates involve the relative coordinates qi j and the corresponding con-

jugate momenta ρρρ i j:

qi j = ri− r j (2.66)

ρρρ i j =
1
N

(
pi−p j−

mi−m j

M
〈ρρρ〉
)
, (2.67)

where 〈ρρρ〉= ∑
N
i=1 pi, M = ∑

N
i=1 mi. Inversely, we obtain

ri =
1
M

N

∑
j=i+1

m jqi j−
1
M

i−1

∑
j=1

m jq ji + 〈q〉 (2.68)

pi =
N

∑
j=i+1

ρρρ i j−
i−1

∑
j=1

ρρρ ji +
mi

M
〈ρρρ〉, (2.69)
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where 〈q〉 = 1
M ∑

N
i=1 miri. The fictitious particle corresponding to each i j pair of

particles is defined with the new index k

k(i, j) = (i−1)N− i(i+1)
2

+ j (i < j). (2.70)

So the total number of fictitious particles are K = N(N−1)
2 . With this notation, equa-

tions (2.68) and (2.69) take the form

ri =
K

∑
k=1

aik
m j

M
qk + 〈q〉 (2.71)

and

pi =
K

∑
k=1

aikρρρk +
mi

M
〈ρρρ〉 (2.72)

with aim = 1 and a jm =−1 when m= k(i, j), otherwise, ai j = 0. So the Hamiltonian

in new coordinates is expressed as

H =
K

∑
k,k′=1

Tkk′ρρρkρρρk′+
1

2M
〈ρρρ〉2 +

K

∑
k=1

Uk

qk
−

(
K

∑
k=1

Lkqk +
N

∑
i=1

Qi〈q〉

)
·E(t) (2.73)

with

Tkk′ =
N

∑
i=1

aikaik′

2mi
, Uk = QiQ j (2.74)

and

Lk =
Qim j−Q jmi

M
. (2.75)

So the equations of motion in regularised coordinates are given by

dqk

dt
= 2

K

∑
k′=1

Tkk′ρρρk′,
d〈q〉

dt
=

1
M
〈ρρρ〉, (2.76)
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and

dρρρk
dt

=
Ukqk

q3
k

+LkE(t),
d〈ρρρ〉

dt
=

N

∑
i=1

QiE(t). (2.77)

2.2.2 Electron tunnelling during time propagation

In our propagation method, we also allow for each electron to tunnel. This

is essential for our 3D semi-classical model to accurately describe the enhanced

ionisation process [46–50], see section 1.2.2. To allow for tunnelling, we use the

Wentzel-Kramers-Brillouin (WKB) approximation [93] with the transmission prob-

ability given by

Ttun ≈ exp
(
−2
∫ rb

ra

√
2(Vtun(r, ttun)−Etun)dr

)
. (2.78)

Vtun(r, ttun) is the potential along the field direction of each electron. Etun is the

energy of the electron at the time of tunnelling ttun. ra and rb are the tunnelling

points and exit point, respectively.



Chapter 3

Non-sequential double ionisation of

atoms in near-single cycle pulses

Non-sequential double ionisation in intense near-infrared laser fields is a funda-

mental process with electron-electron correlation playing a key role [16, 94, 95].

Considerable information regarding NSDI has been obtained from kinematically

complete experiments, i.e., the momenta of the escaping electrons and ions are

measured in coincidence [96]. Most of these experiments employ multi-cycle laser

pulses allowing for multiple recollisions to occur before both electrons ionise. Mul-

tiple recollisions complicate the electron dynamics and render the comparison with

theory difficult. Recently, however, kinematically complete experiments succeeded

in confining NSDI to a single laser cycle by using carrier-envelope phase-controlled

few- and near-single-cycle pulses [36, 37]. These experiments with near-single-

cycle pulses allow for an easier comparison between theory and experiment. In this

Chapter, we compare our 3D semi-classical model [42] for strongly-driven atoms

with experimental results for near-single-cycle pulses [97].
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3.1 Background on NSDI in atoms driven by near-

single cycle pulses

To interpret the double ionisation spectra of driven Ar measured using near-

single-cycle laser pulses, a simple one-dimensional (1D) classical model was put

forth [37, 97, 98]. This model relies on the assumption that the dominant path-

ways of double ionisation are, for small and intermediate intensities, delayed non-

sequential ionisation and, for higher intensities, sequential ionisation. For strongly-

driven Ar, intermediate intensities refer to the intensity range from 2×1014 W/cm2

to 4×1014 W/cm2. This model neglects the contribution of another major pathway

of double ionisation, namely, direct ionisation as well as the Coulomb potential.

This 1D model did not achieve a quantitative agreement with the complete set of

available experimental data over the whole intensity range. Delayed ionisation—

also referred to as recollision-induced excitation with subsequent field ionisation,

RESI [33, 34], and direct ionisation are two main pathways of NSDI. An interest-

ing finding of these near-single cycle experiments was that the correlated momenta

components of the two escaping electrons along the direction of the laser field have

a cross-shaped pattern for an intensity around 1014 W/cm2 [37, 97, 98]. A cross-

shaped correlated electron momenta pattern due to the delayed double ionisation

mechanism was previously identified in the context of strongly-driven He at an in-

tensity of 9×1014 W/cm2 and for a wavelength of 400 nm [99]. In a cross-shaped

correlated electron momenta pattern the double ionisation probability is the high-

est when the component of the momentum along the direction of the laser field is

very small for one electron while it takes a wide range of values for the other elec-

tron, see the experimental correlated electron momenta at 1014 W/cm2 in Fig.3.5.

In the context of strongly-driven Ar, the above described 1D model attributed the

cross-shaped pattern of the correlated electron momenta to the delayed pathway of

double ionisation [97, 98]. A quantum mechanical calculation, which neglects the

Coulomb potential, was used to refine the contribution of the delayed pathway of
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double ionisation to the cross-shaped correlated electron momenta pattern [100].

This calculation identified the key role that the symmetry of the excited state plays

in the final shape of the correlated momenta.

3.2 Advantage of our 3D semi-classical model over

previous models

Using our 3D semi-classical model [42], NSDI of Ar is studied when Ar

is driven by 750 nm near-single-cycle laser pulses at intensities ranging from

0.85×1014 W/cm2 to 5×1014 W/cm2. All Coulomb forces and the interaction of

each electron with the laser field are fully accounted for. Moreover, when analysing

the numerically obtained doubly-ionised events, no assumptions are made regarding

the prevailing mechanism of double ionisation and we use no free parameter. This

is not the case for the 1D model [97]. In addition, the Coulomb singularity is fully

accounted for using regularised coordinates [101]. This is an advantage over mod-

els which soften the Coulomb potential [102]. Previous successes of this 3D model

include identifying the mechanism responsible for the fingerlike structure in the

correlated electron momenta [42], which was predicted theoretically [38] and was

observed experimentally for He driven by 800 nm laser fields [103, 104]. Moreover,

this model was used to investigate direct versus delayed pathways of NSDI for He

driven by a 400 nm laser field while achieving excellent agreement with fully ab-

initio quantum mechanical calculations [35]. Using this model, in what follows,

several observables are computed for different intensities of strongly-driven Ar.

These observables are the sum of the two electron momentum components along

the direction of the polarisation of the laser field and the double differential prob-

ability of the two electron momentum components along the polarisation direction

of the laser field, i.e. the correlated electron momenta. Furthermore, the amplitude

and the phase of the asymmetry parameter that determines the difference of the ions

escaping with positive versus negative momentum along the polarisation direction

of the laser field are computed as a function of the carrier-envelope phase and the
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intensity.

Previously obtained experimental results over the whole intensity range [37,

97, 98] are in better agreement with the computed results obtained using the 3D

semi-classical model rather than with the computed results obtained with the 1D

model in Ref. [97]. Throughout this chapter the computed results are compared with

the experimental results that were recently published in and adopted from Ref. [97]

where the data acquisition and analysis is described in detail. Briefly, CEP stable

laser pulses with a full-width-half-maximum pulse duration of 4 fs and a centre

wavelength of 750 nm are focused onto a cold-gas jet of argon atoms inside a reac-

tion microscope. There, the momenta of ions and electrons generated in the laser

focus via strong field ionisation are recorded in coincidence as a function of the

intensity and of the CEP of the laser pulse. The CEP is measured with a precision

of roughly 200 mrad. Motivated by the good agreement we find between theory and

experiment, the strength of the 3D semi-classical model in fully accounting for the

electron dynamics is utilised to identify the prevailing pathway of double ionisation

as a function of intensity. In addition, for a small intensity around 1014 W/cm2, the

dependence of the double ionisation pathways on CEP is computed using the 3D

semi-classical model. Finally, the transition from strong to soft recollisions is iden-

tified as the main reason for the experimentally observed escape of the two electrons

with opposite momenta at higher intensities [88].

3.3 3D semi-classical model for atoms and measur-

able quantities

The 3D semi-classical model employed is formulated in the framework of the

dipole approximation (see Appendix A) [42]. The initial state in the 3D model

entails one electron tunnelling through the field-lowered Coulomb potential with

the ADK formula [70]. To obtain the tunnel ionisation rate for Ar, in the ADK

formula the first ionisation energy of Ar, i.e. Ip1 = 0.579 a.u. and the effective
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charge Z = 1 are used. The exit point of the tunnel-ionised electron is along the

direction of the laser field and is computed using parabolic coordinates [105]. The

remaining electron is initially described by a micro-canonical distribution [64]. In

what follows, the initially tunnelling and bound electrons are denoted as electrons

1 and 2, respectively. The weight of each classical trajectory i that we propagate in

time is given by

Wi =W 1
i ·W 2

i , (3.1)

where

W 1
i ∝

(
1

|E(t0)|

)2n∗−1

exp
(
− 2κ3

3|E(t0)|

)
(3.2)

is the ADK ionisation rate [70] at the time t0 of tunnel-ionisation, see section

2.1.2.1.1. n∗ is the effective principal quantum number given by Ip1 = Z2/2n∗2.

W 2
i is the weight for electron 1 to have a transverse velocity equal to v⊥ at the time

t0, see section 2.1.3:

W 2
i ∝

v⊥
|E(t0)|

exp
(
−

v2
⊥κ

|E(t0)|

)
. (3.3)

t0 is the time electron 1 tunnel-ionises through the field-lowered Coulomb potential.

The laser field is linearly polarised and is given by

E(t) = E0e

(
−2ln2

(
t

tFWHM

)2
)

cos(ωt +φ)ẑ, (3.4)

where τ = 4 fs is the full-width-half-maximum pulse duration, ω=0.061 a.u (750

nm) is the frequency, E0 is the strength and φ is the CEP of the laser field. The

tunnel-ionisation time is selected as a uniform random number in the interval (-

2τ ,2τ) where the laser field in Eq.3.4 is switched on. The time propagation is

determined by the three-body Hamiltonian of the two electrons with the nucleus

kept fixed. During the time propagation we fully account for the Coulomb singu-
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larity [42]. In addition, we assume that each electron is interacting with the nucleus

with charge Z = 2. The double and single ionisation probabilities are given by

PDI =
∑

NDI
i Wi

∑
N
i Wi

(3.5)

PSI =
∑

NSI
i Wi

∑
N
i Wi

(3.6)

where NDI , NSI and N are the numbers of doubly-ionised, singly-ionised and all

events, respectively.

3.4 NSDI and ionisation pathways

For the results presented in what follows, the intensities considered range from

0.85×1014 W/cm2 to 5×1014 W/cm2. At 0.85×1014 W/cm2, 12 CEPs are consid-

ered ranging from φ = 15◦ to φ = 345◦ in steps of 30◦. For all other intensities, 24

CEPs are considered ranging from φ = 0◦ to φ = 360◦ in steps of 15◦. For each φ ,

at 1014 W/cm2, 1.4×1014 W/cm2, 2×1014 W/cm2, 3×1014 W/cm2, 4×1014 W/cm2

and 5×1014 W/cm2 the doubly-ionised events obtained are 1.5×104, 5×104, 105,

1.8×105, 3×105 and 6×105, respectively. For the results presented regarding to-

tal double ionisation the average has been taken over all CEPs for each intensity.

From the above, it is clear that the computations required, particularly for the lower

intensities, are challenging, since, it is time-consuming to obtain enough doubly-

ionised events that render the statistical error very small for each intensity and for

each of the 12 or 24 CEPs. The intense computations required is the reason results

are obtained for seven intensities in the range from 0.85×1014 W/cm2 to 5×1014

W/cm2. Using the results obtained at these seven intensities an average over the fo-

cal volume is performed [106] to directly compare with experiment. It is, however,

noted that computations at a larger number of intensities are needed to account more

accurately for the focal volume effect, see Appendix C for details. For the results

presented, it is stated explicitly when focal volume averaging is included and when

it is not.
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In Fig.3.1, the ratio of double to single ionisation probability is computed as a

function of the laser intensity and compared to the experimental results [97]. It is

found that the computed ratio of double to single ionisation probability reproduces

well the overall pattern of the observed ratio. The computed ratio is found to be

at most a factor of two smaller than the observed ratio and by a factor of 3.5 when

the focal volume effect is accounted for. This difference possibly suggests that

the effective charge of Z = 2 used to model the attractive Coulomb potential in

the 3D semi-classical model during time propagation overestimates the Coulomb

attraction.

1 2 3 4 5 6
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10
-2

Figure 3.1: Ratio of double to single ionisation probability as a function of intensity. Exper-
imental results [97] are denoted by dark blue squares and light blue crosses and
computed results are presented by a solid line with black circles when the focal
volume effect is not accounted for and by a dashed-line with triangles when the
focal volume effect is accounted for. The difference in the two experimental
sets results from slightly different averaging over the focal volume [97].

Once the doubly-ionised events are obtained using the 3D semi-classical

model, an analysis of the classical trajectories is performed in time in order to

identify the contribution of the direct and the delayed pathway of NSDI as a

function of the laser intensity. The main two double ionisation energy transfer

pathways are identified by using the time difference between the recollision time

trec and the ionisation time (see Appendix D) of each electron t i
ion, with i = 1,2,

for each doubly-ionised classical trajectory. The recollision time is defined as

the time of minimum approach of the two electrons and is identified by the max-
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imum in the electron pair potential energy. The ionisation time (see Appendix

D) for each electron is defined as the time when the sum of the electron’s ki-

netic energy (using the canonical momentum) and the potential energy due to

the electron’s interaction with the nucleus becomes positive and remains positive

thereafter. The canonical momentum of an electron is given by p−A, with A

the vector potential. The ionisation time of electron 1 is, thus, not necessarily

the time t0 this electron tunnel-ionises at the start of the time propagation. This

energy is referred to as compensated energy and was introduced in Ref. [107],

see Appendix D for details. A doubly-ionised trajectory is labeled as delayed

or direct depending on the time differences t1
ion− trec and t2

ion− trec. Specifically,

|t1
ion− trec|< tdi f f & t2

ion < t1
ion (3.7a)

|t2
ion− trec|< tdi f f & t1

ion < t2
ion (3.7b)

Direct

t1
ion− trec > tdi f f & t2

ion− trec < tdi f f (3.8a)

t2
ion− trec > tdi f f & t1

ion− trec < tdi f f (3.8b)
Delayed

t1
ion− trec > tdi f f & t2

ion− trec > tdi f f (3.9) Double Delayed

where tdi f f is a positive arbitrary parameter. The percentage of doubly-ionised

events labeled as delayed or direct, out of all doubly-ionised events, depends on our

choice of the time difference tdi f f . These percentages are given by

Rα
DI =

∑
Nα

DI
i Wi

∑
NDI
i Wi

, (3.10)

where Nα
DI is the number of α labelled doubly-ionised events, with α denoting the

direct or delayed events. Thus, the probability of doubly-ionised events labeled as

delayed or direct, out of all events, is given by

Pα
DI = Rα

DIPDI. (3.11)
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tdi f f should not be chosen neither very large, such as 1/4 T, or very small such as

1/40 T. Choices in between are reasonable and lead to similar trends of the two

prevailing pathways of double ionisation. This is shown in Fig.3.2 where the per-

centages of direct and delayed doubly-ionised events are plotted for tdi f f equal to

1/10 T, 1/20 T and 1/40 T as a function of the intensity of the laser field. It is found

that the contribution of the direct and the delayed pathways to double ionisation as

a function of intensity displays general trends that do not significantly depend on

the choice of tdi f f . Both the direct and the delayed pathways of double ionisation

significantly contribute at all intensities. Thus, the direct pathway can not be ne-

glected as was done in previous models. The direct pathway contributes the most

for intermediate intensities. In Fig.3.2, at a high intensity above 4×1014 W/cm2,

it is shown that the contribution of the direct pathway of double ionisation starts

decreasing. At this high intensity a transition from strong to soft recollisions takes

place, as discussed in the following. It is found that double delayed events con-

tribute no more than 15% for the smallest intensity even when the time difference is

chosen small and equal to 1/40 T. tdi f f = 1/10 T is chosen for the results presented

in this work. We find that with this choice of tdi f f the distributions of the sum of the

two electron momentum components along the polarisation direction of the laser

field for the direct and the delayed pathways of double ionisation are the closest to

what is expected from Ref.[34]. That is, the former distribution dips while the latter

one peaks around zero.

We find that different results are obtained if instead of the compensated energy

the energy of each electron is used to identify the ionisation time. Namely, one

finds that at an intensity of 0.85×1014 W/cm2 almost all classical trajectories are

identified as double delayed. This was the conclusion in Ref. [36]. Using the actual

energy to identify the ionisation time at an intensity of 3×1014 W/cm2 results in

the direct pathway of double ionisation still only contributing 20%. However, this

is not a reasonable result. At 3×1014 W/cm2 3.17 Up is equal to 50 eV which is

much higher than the second ionisation energy of Ar. Moreover, the recollision at

this intensity is strong, which is discussed in the section for the correlated electron
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Figure 3.2: Percentages of the direct (blue circles) and the delayed (red triangles) path-
ways of DI as a function of laser field intensity for tdi f f = 1/10 T (solid lines),
tdi f f = 1/20 T (dashed lines) and tdi f f = 1/40 T (dotted lines). The FVE is not
accounted for.

momenta as a function of intensity, and so the direct pathway of double ionisa-

tion should contribute significantly. Thus, the compensated energy is employed to

identify the ionisation time in this work which leads to both the direct and delayed

pathway being the main pathways of double ionisation in agreement with Ref. [102]

for the smallest intensity.

3.5 Distribution of the sum of the two electron mo-

menta

In Fig.3.3, the probability distributions of the sum of the two electron momen-

tum components along the polarisation direction of the laser field are presented for

intensities from 0.85×1014 W/cm2 to 5×1014W/cm2. In Fig.3.3, the contribution

of the direct and the delayed pathways of double ionisation to the probability dis-

tribution of the sum of the momenta is also shown; the focal volume effect is not

accounted for. It is found that the distribution of the delayed pathway is concen-

trated around zero while of the direct pathway is a doubly-peaked distribution, as

expected from Ref.[34]. The direct pathway’s probability distribution of the sum of

the momenta is the broadest one. Therefore, including only the delayed pathway of

double ionisation would result in a narrower distribution of the sum of the momenta
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Figure 3.3: Probability distribution of the sum of the two electron momentum components
parallel to the polarisation of the laser field (black solid lines) for laser field
intensities from 0.85×1014 W/cm2 to 5×1014W/cm2. For each intensity, the
probability distribution of the sum of the momenta of the delayed pathway (red
dotted lines) and of the direct pathway (blue dashed lines) are also plotted.
The FVE is not accounted for. Each probability distribution is divided by its
maximum value.

than the observed one. Indeed, the 1D model described in Ref.[97] which accounts

only for the delayed pathway of double ionisation results in a narrower probability

distribution of the sum of the momenta than the observed one.

In Fig.3.4, the experimental results for the probability distribution of the sum

of the momenta in Ref.[97] are compared with one set of computed results that

account for the focal volume effect (black dashed lines) and one that does not (black

solid lines). It is found that the computed results are in good agreement with the

observed ones. Specifically, it is found that, for each intensity, the computed sum of

the electron momenta extends over a range that is very similar to the experimental

one. For instance, for an intensity of 0.85×1014 W/cm2, the computed sum of the

momenta extends over a range from roughly -2 a.u. to 2 a.u., while, for an intensity

of 5×1014 W/cm2, it extends from -4 a.u. to 4 a.u.; for both intensities these ranges

are in agreement with the experimental results [97]. It is noted that a difference of

the computed probability distributions of the sum of the electron momenta with the
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Figure 3.4: Probability distribution of the sum of the two electron momentum components
parallel to the polarisation of the laser field for laser field intensities from
0.85×1014 W/cm2 to 5×1014W/cm2. The computed results with the FVE not
accounted for are denoted by black solid lines and when it is accounted for by
black dashed lines; the blue crosses denote the experimental results [97]. Each
probability distribution is divided by its maximum value.

experimental ones is that the computed ones have smaller values around zero. This

is more so the case for the computed results that account for the focal volume effect.

This difference suggests that the current 3D model underestimates the contribution

of the delayed pathway of double ionisation.

3.6 Transition from strong to soft recollisions in cor-

related electron momenta

For intensities ranging from 0.85×1014 W/cm2 to 5×1014W/cm2, the com-

puted correlated electron momenta, i.e. the double differential probability of the two

electron momentum components along the polarisation direction of the laser field,

with the focal volume effect accounted for are plotted and compared to the measured

ones in Fig.3.5. We find that at all intensities, but particularly at smaller ones, there

are fewer doubly-ionised events with both momenta being close to zero than in the
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Figure 3.5: First row: measured correlated electron momenta [97]. Second row: computed
correlated electron momenta for all double ionisation events with the FVE ac-
counted for. Third row: computed correlated electron momenta for all double
ionisation events with the FVE not accounted for. Fourth row: correlated elec-
tron momenta for the direct pathway of double ionisation with the FVE not
accounted for. Fifth row: correlated electron momenta for the delayed pathway
of double ionisation with the FVE not accounted for. Sixth row: correlated
electron momenta for the double delayed pathway of double ionisation with
the FVE not accounted for. The sum of the fourth row plus the fifth row plus
the sixth row is equal to the third row. Each double differential distribution is
divided by its maximum value.

experimentally obtained correlated electron momenta [37, 97]. In Fig.3.5, we also

plot the computed correlated electron momenta for all doubly-ionised events and for

the direct and the delayed double ionisation pathways without accounting for the fo-

cal volume effect. Each double differential distribution is divided by its maximum

value. At intermediate intensities of 2-4×1014 W/cm2, as in the observed correlated
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Figure 3.6: Correlated electron momenta at an intensity 0.85×1014 W/cm2 for the delayed
pathway of double ionisation for the case when the electron that ionises second
is electron 2 (a) and electron 1 (b). Each double differential distribution is
divided by its maximum value.

electron momenta in Ref.[97], the computed correlated electron momenta transition

to a well-known pattern [32, 34]. This pattern involves both electrons escaping in

the same direction either parallel or antiparallel to the laser field, thus, giving rise to

a much higher probability density in the first and third quadrants of the correlated

electron momenta, rather than the second and fourth ones. We find that this pattern

is due to the direct pathway of double ionisation which is the prevailing one at in-

termediate intensities of 2-4×1014 W/cm2. This pattern is due to strong recollisions

where the two electron momentum components along the direction of the laser field

are both determined from the vector potential at times just larger than the recolli-

sion time. Thus, both electrons escape with similar momenta in the direction along

the polarisation of the laser field. We also find that at these intermediate intensities

the pattern of the correlated electron momenta for the delayed pathway of double

ionisation is more spread out over all four quadrants and has a significant number of

doubly-ionised events with both electron momenta close to zero, as expected from

Ref.[34].

At smaller intensities of 0.85×1014 W/cm2 and 1014 W/cm2, the computed cor-

related electron momenta resemble but do not quite have the cross-shaped pattern of

the measured results [37, 97], see Fig.3.5. The main difference is that the computed

correlated electron momenta have fewer doubly-ionised events with both electron

momenta being close to zero. At these small intensities, we find that the direct path-
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way of double ionisation involves mainly events with both electrons escaping in the

same direction either parallel or antiparallel to the laser field, however, the electron

momenta are not as equal as at intermediate intensities. At small intensities, we

also find that the delayed pathway involves mainly doubly-ionised events with both

electrons escaping in the opposite direction, with magnitudes of the electron mo-

menta that are more asymmetric than for the direct pathway of double ionisation.

The cross-shaped pattern is better reproduced by the delayed double ionisation path-

way, see Fig.3.5. Indeed, this pathway does not have as many doubly-ionised events

with equal magnitude of the components of the electron momenta along the direc-

tion of the laser field as the direct pathway does. In addition, we find that 63% of

the events labelled as delayed doubly-ionised satisfy the conditions in Eq.3.8 (b)

while 37% satisfy the conditions in Eq.3.8 (a). That is, for the majority of delayed

doubly-ionised events the initially bound electron is the one that ionises last follow-

ing recollision. We find that the correlated electron momenta when the tunnelling

electron ionises second in the delayed doubly-ionised events (37%) resemble more a

cross-shaped pattern than the correlated electron momenta when the initially bound

electron ionises second (63%), see Fig.3.6.

A less known pattern is that observed experimentally and retrieved compu-

tationally with the 3D semi-classical model for intensities above 4×1014 W/cm2,

see Fig.3.5. For these higher intensities, it is found that the two electrons escape

mostly with opposite momenta for a significant number of doubly-ionised events.

To identify the reason for this shift in the correlated electron momenta, in Fig.3.7

, the time electron 1 tunnel-ionises, t0, and the recollision time, trec, are plotted for

three different intensities, namely, 1014 W/cm2, 3×1014 W/cm2 and 5×1014 W/cm2

and for two different CEP’s, namely, φ = 15◦ and φ = 105◦ for each intensity. The

tunnelling time of electron 1 is found to be close to the times corresponding to

the extrema of the laser field for all three intensities. However, the distribution of

the recollision time is found to shift from times corresponding roughly to zeros of

the laser field for an intensity of 1014 W/cm2 to times corresponding to the ex-

trema of the laser field for an intensity of 5×1014 W/cm2. The transfer of energy
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Figure 3.7: Probability distribution of the tunnelling time t0 of electron 1 (blue line) and of
the recollision time trec (red line) for intensities 1014 W/cm2, 3×1014 W/cm2

and 5×1014 W/cm2 and for two different CEPs, φ = 15◦ and φ = 105◦, for each
intensity. Similar results hold for all other CEPs. Grey line denotes the laser
field. The light blue arrows indicate the mapping of a tunnelling-time peak to a
recollision-time peak.

from electron 1 to electron 2 is much smaller for the soft recollisions. For these

higher intensities, where soft recollisions prevail, the momentum of electron 1 is

mostly determined from the vector potential at the tunnelling time. The momentum

of electron 2 is determined by the vector potential shortly after recollision takes

place which is roughly half a laser cycle after electron 1 tunnel-ionises. As a re-

sult, the two electrons escape mostly with opposite momenta. This mechanism of

soft recollisions for higher intensities was first identified in a theoretical study of

strongly-driven N2 with fixed nuclei [88]. For the delayed pathway of double ion-

isation, this opposite momenta pattern, demonstrated with much higher probability

density in the second and fourth quadrants of the correlated electron momenta, sets

in at lower intensities of 3×1014 W/cm2, see Fig.3.5. For the direct pathway this

opposite momenta pattern sets in at higher intensities of 5×1014 W/cm2. This is

consistent with a smaller transfer of energy taking place from electron 1 to electron

2 at the recollision time in the delayed pathway compared to the energy transfer in

the direct pathway.
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3.7 Asymmetry parameter

The asymmetry parameter [97]

A(I,φ) =
R+

DI(I,φ)−R−DI(I,φ)
R+

DI(I,φ)+R−DI(I,φ)
(3.12)

is computed as a function of the intensity I and the CEP (φ ). R+
DI(I,φ) and R−DI(I,φ)

denote the percentage of doubly-ionised events with ions escaping with positive

and negative momentum, respectively, along the direction of the polarisation of the

laser field. Since in the 3D semi-classical model the nucleus is fixed, R+
DI(I,φ) and

R−DI(I,φ) correspond to the percentage of double ionisation events where the sum

of the two electrons’ momentum components along the direction of the laser field

polarisation are negative and positive, respectively. For each intensity, A(I,φ) is

fitted with the sinusoidal function

A(I,φ) = A0(I)sin(φ +φ0(I)), (3.13)

In Fig.3.8, we illustrate at 3×1014W/cm2 how the sinusoidal function in Eq.3.13

fits our computed results for A(I,φ) with A0 = 0.42 and φ0 = 46◦. The computed

results show that for a given intensity the percentage of doubly-ionised events with

ions escaping with positive versus negative momentum changes as a function of the

CEP.

In a manner similar to the one illustrated in Fig.3.8, we obtain the computed

asymmetry amplitude A0(I) and offset phase φ0(I) at other intensities. The com-

puted A0(I) and offset phase φ0(I) are plotted in Fig.3.9 (a) and (b), respectively,

and compared with two sets of experimentally obtained asymmetry parameters [97].

The comparison shows that the 3D semi-classical model reproduces well the de-

creasing pattern of A0 and the increasing pattern of φ0 with increasing intensity.

However, the computed values for these asymmetry parameters are higher than the

ones obtained from the experimental results. Smaller values of A0 correspond to a
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Figure 3.8: The simulation results (blue circles) of the asymmetry parameter A(I,φ) at
I=3.0×1014 W/cm2 as a function of φ . The sinusoidal function used to fit the
computed results is denoted with a red solid line.
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Figure 3.9: Asymmetry parameters A0 (a) and offset phase φ0 (b) as a function of intensity.
The computed results for all doubly-ionised events when the focal volume ef-
fect is not accounted for are denoted by black solid lines with circles and when
it is accounted for by black dashed lines with triangles. The delayed and di-
rect pathways are denoted by red solid lines with triangles and blue solid lines
with circles, respectively. For the direct and delayed pathways, the FVE is not
accounted for. Experimental results[97] are denoted by light blue crosses and
dark blue squares.

more spread out pattern of the correlated electron momenta. Thus, the larger values

of A0 of the computed results are consistent with the computed correlated electron

momenta having less doubly-ionised events with sum electron momenta close to

zero compared to the measured ones. Moreover, in Fig.3.9 (a) and (b) the asymme-

try parameters are plotted for each of the main two pathways of NSDI. It is shown

that for both pathways the asymmetry parameter φ0(I) has a similar pattern. The

asymmetry parameter A0(I) for the delayed pathway is generally smaller. This is

consistent with the correlated electron momenta of the delayed pathway having a
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more spread out pattern in all four quadrants than the correlated electron momenta

of the direct double ionisation pathway, as we have seen in the previous section.

Since A0(I) is smaller for the delayed pathway of double ionisation, the fact that

the computed values of A0(I) are larger than the measured ones could be due to the

fact that the 3D semi-classical model underestimates the contribution of the delayed

pathway. We have reached a similar conclusion when discussing the distribution of

the sum of the electron momenta.

3.8 Correlated momenta and double ionisation path-

ways as a function of CEP

Figure 3.10: Correlated momenta at intensity 0.85×1014 W/cm2 for φ ranging from 15◦ to
165◦ with a step of 30◦. The relevant experimental results from Ref. [108] are
shown for comparison. Each distribution is divided by its maximum value.

In what follows, the dependence of the correlated momenta on the CEP is in-

vestigated at an intensity of 0.85×1014 W/cm2. In Fig.3.10, the correlated momenta

are plotted for φ ranging from 15◦ to 165◦ with a step of 30◦. The bin size of the

CEP is chosen to be larger than 200 mrad, which is the experimental precision of the

CEP, and large enough in order to get good statistics. For data analysis, all events

are selected for which one electron has been detected in coincidence with an Ar2+

ion. The momentum of the second electron, which is not detected for most events, is

calculated from conservation of momentum. Both the data and the computed results

are symmetrised with respect to the bottom-left-to-top-right diagonal in order to ac-
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Figure 3.11: Percentage contribution of the direct and the delayed pathways of DI as a
function of the CEP at an intensity of 0.85×1014 W/cm2.

count for the two electrons being indistinguishable. Moreover, due to the symmetry

of the Hamiltonian, when φ → φ +180◦ then p→−p. This symmetry is respected

by the computed results. In the experimental results, there is a small deviation from

this symmetry. This deviation arises from artifacts of the electron spectrometer and

false coincidences. For each CEP, in the top right half of the correlated electron

momenta plot the impact of false coincidences is stronger than in the bottom left

half. For CEP ranging from 195◦ to 345◦ the correlated electron momenta plots

have more doubly-ionised events in the top right half. Thus, in Fig.3.10, we com-

pare the computed results with the measured correlated electron momenta which are

more accurate, i.e. for CEP ranging from 15◦ to 165◦ where the correlated electron

momenta have more doubly-ionised events in the bottom left half.

A good agreement is found between the computed and the experimental results

for CEP ranging from 15◦ to 165◦ given the experimental uncertainty of 200 mrad

in the CEP. Specifically, the computed correlated momenta correctly reproduce the

overall observed pattern for each individual CEP. A difference between the com-

puted and the experimental results is that the former results have less doubly-ionised

events with both electron momenta close to zero suggesting that the computations

overestimate the contribution of the direct pathway. To better illustrate the change

of the correlated momenta pattern as a function of the CEP plotted in Fig.3.10, in

Fig.3.11 the percentage of the direct and delayed pathways of double ionisation are

plotted as a function of the CEP. At an intensity of 0.85×1014 W/cm2 the delayed
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pathway has the largest contribution for CEPs φ = 45◦ and φ = 225◦, while it has

the smallest for CEPs φ = 165◦ and φ = 345◦. In Fig.3.10, a comparison of the

correlated momenta between φ = 45◦ and φ = 165◦ shows that there is a higher

probability density for both electrons to ionise with the same large momentum,

with both electrons escaping in the direction that is opposite to the electric field,

for φ = 165◦ than for φ = 45◦. This is indeed consistent with the direct ionisation

pathway having a larger contribution for φ = 165◦ than for φ = 45◦ as shown in

Fig.3.11. From Fig.3.11, it is found that the contribution of each of the two main

pathways of double ionisation varies roughly by 20% as a function of the CEP for

the smallest intensity of 0.85×1014 W/cm2.
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3.9 Conclusions

Using a 3D semi-classical model we have investigated the dependence of dou-

ble ionisation observables on the intensity and on the carrier-envelope phase of a

near-single-cycle near-infrared laser field employed to drive Ar. The good agree-

ment of the computed results with recent experiments employing near-single-cycle

laser pulses [37, 97, 108], adds to previous successes of this 3D model in identifying

features of non-sequential double ionisation of two-electron atoms when driven by

many-cycle laser pulses [35, 42, 99]. We have found that a difference between the

computed and the experimental results is a lower value of the distribution of the sum

of the two electron momentum components along the direction of the polarisation

of the laser field and of the correlated electron momenta around zero. This seems

to suggest that the current 3D model overestimates the Coulomb attraction of each

electron from the nucleus. Future studies can improve on the 3D model for many

electron atoms such as Ar by using more accurate effective potentials for the time

propagation. Moreover, we have demonstrated that the main pathways of double

ionisation, that is, the direct and the delayed pathways, both significantly contribute

at all intensities currently under consideration. Furthermore, we have investigated

the prevalence of the direct versus the delayed pathway as a function of the CEP for

an intensity of 0.85×1014 W/cm2 and it was shown that the results obtained are con-

sistent with features of the observed correlated electron momenta [108]. Finally, a

previously-predicted in the context of a strongly-driven fixed-nuclei N2 unexpected

anti-correlation momentum pattern at higher intensities [88], is observed experi-

mentally in the context of strongly-driven Ar [97] and also reproduced in the current

work for strongly-driven Ar by a near-single-cycle laser field. We have shown that

this anti-correlation pattern is due to soft recollisions with recollision times close to

the extrema of the laser field.



Chapter 4

Two-electron triatomic molecules in

intense laser fields

In this chapter, we explore frustrated double ionisation and double ionisation of

strongly-driven D+
3 and H+

3 using the 3D semi-classical model presented in Chap-

ter 2. So far, D+
3 and H+

3 are the only multi-centre molecules, where frustrated

ionisation has been studied in benchmark experiments [55, 57, 59] and discussed

using classical models [109, 110]. These latter classical models, however, do not

allow for tunnelling during the propagation. Thus, the 3D semi-classical model we

use offers a significant advantage over previous computations in describing frus-

trated ionisation in molecules. First, in section 4.1, we present results for frustrated

double ionisation and double ionisation during the break-up of D+
3 driven by intense

laser fields. Comparing our results for FDI and DI with experimental results [59],

we find a good agreement for the distribution of the kinetic energy release (KER).

Then, in section 4.2, we present a detailed study of the properties of frustrated dou-

ble ionisation and frustrated single ionisation (FSI) for the ground state of H+
3 when

driven by intense laser fields. These results for driven H+
3 are compared with results

for driven H2.
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4.1 Frustrated double ionisation of strongly-driven

D+
3

In this section, we investigate frustrated double ionisation of D+
3 when driven

by an intense, linearly polarised, near-infrared (800 nm) laser field. We show that

our result for the distribution of the kinetic energy release for FDI is in good agree-

ment with the experimental result in Ref. [59]. Moreover, even though FDI is gen-

erally associated with tunnel-ionisation, we show that for increasing field strengths

the mechanism underlying FDI is over-the-barrier ionisation instead. We also show

that for strongly-driven D+
3 one of the two pathways contributing to FDI [111] has

a trace in the angular distribution of the ion fragments and, very importantly, this

trace can potentially be observed experimentally.

4.1.1 Method and initial molecular and field configuration

In our model we employ a linearly polarised laser field of the form

E(t) = E0(t)cos(ωt)ẑ

E0(t) =

 E0 0≤ t < 10T

E0 cos2 ω(t−10T )
8 10T ≤ t ≤ 12T ,

(4.1)

with E0(t), T and ω the envelope, the period and the frequency, respectively, of the

laser field. We take ω=0.05675 a.u. (800 nm). In the following, we consider only

two cases of planar alignment, i.e. one side of the equilateral, molecular triangle is

either parallel or perpendicular to the ẑ-axis. We create the initial condition in the

region for φ0 = ωt0 in the interval ∈ [−π/2,π/2], see Ref. [62]. An illustration of

the field is shown in Fig.4.1.

To compare with the experimental results [55, 59] we take the initial state of
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Figure 4.1: The laser field used in the simulation. It consists of 10 full laser cycles with 2
turn-off cycles. The red dashed lines indicates the initial sampling region.
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Figure 4.2: The symmetric stretch vibrational levels of D+
3 and the relevant probabilities

(inset panel), from Ref. [112]. The internuclear distances R are obtained by
interpolating the potential energy curves from Ref. [113].

the D+
3 molecule to be the one created via the reaction [55, 59]

D2 +D+
2 → D+

3 +D. (4.2)

This initial state consists of a superposition of symmetric stretch vibrational states

v = 1− 12 [112, 113], each with a triangular configuration. Tunnel ionisation is

very sensitive to variations of the ionisation potential and known to preferentially

ionise larger internuclear separations [114, 115]. Thus, we assume that most of the

D+
3 ionisation occurs at the outer classical turning point of the vibrational levels.

The turning point varies from 2.04 a.u. (v = 1) to 2.92 a.u.(v = 12) [112, 113]. The

probabilities of these vibrational levels are shown in Fig.4.2, taken from Ref. [112].

The internuclear distances are obtained by interpolating the potential energy curves
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from Ref. [113]. We find the first and second ionisation potentials of the relevant 12

vibrational states using the quantum chemistry software Molpro [91]. For the ini-

tial state of D+
3 in the laser field, we assume that one electron (electron 1) escapes

either by tunnelling or over-the-barrier ionisation in the field-lowered Coulomb po-

tential [62], depending on the field strength and the vibrational state. As men-

tioned in Chapter 2, we use a tunnelling rate given by the semi-classical formula

in Ref.[73]. If electron 1 escapes by tunnelling then its transverse to the laser field

velocity distribution is a Gaussian [25, 70], while its velocity parallel to the laser

field is assumed to be zero, see section 2.1.3. We assume that the other electron

is initially bound (electron 2). Its initial state is described by the micro-canonical

distribution as described in section 2.1.4.2. Since an initial pre-dissociation does

not significantly modify the ionisation dynamics [62], we simplify our model by

initialising the nuclei at rest for all vibrational levels.

The propagation of our model system is performed as described in section

2.2. We allow for tunnelling of each electron during the propagation in time. This

is essential in order for our model to accurately describe the enhanced ionisation

process [47–51].

4.1.2 FDI and DI of strongly-driven D+
3

We now consider DI and FDI of strongly-driven D+
3 . DI refers to the formation

of three D+ ions and two escaping electrons. FDI refers to the formation of a neutral

excited fragment D∗, two D+ ions and one escaping electron. Previous experiments

on strong-field ionisation of D+
3 measured, among other observables, the kinetic

energy release, i.e., the sum of the kinetic energies of the ion fragments [59]. To be

able to compare the experimental KER with the KER from our simulation we need

to account for the intensity averaging in the focal volume [11, 116], see Appendix

C for details.

We first compute the KER distribution for a process α =FDI,DI as a function
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of the intensity of the laser field as follows

Pα(I,KER) =
∑

v,φ0

PvPα(φ0,v, I,KER)Γ(φ0,v, I)

∑
v,φ0

PvΓ(φ0,v, I)
, (4.3)

where Pα(φ0,v, I,KER) is the probability to obtain a KER from a vibrational state

v, for an initial phase of the laser field φ0 = ωt0, and for a laser field intensity I.

I = 1/2cε0E2
0 , where c is the speed of light and ε0 is the vacuum permittivity, see

Appendix B. The initial phase φ0 corresponds to the starting point of the propa-

gation. Γ(φ0,v, I) is the tunnel-ionisation rate computed using the semi-classical

formula in Ref. [73] and Pv is the percentage of the vibrational state v in the initial

state produced following the reaction generating D+
3 [112].

Following the formulation in [11, 116] we compute the KER distribution for a

laser peak intensity Imax as follows

Pα(Imax,KER) =
∫ Imax

0

Pα(I,KER)
I

dI. (4.4)

In practice, in Eq.4.4 we integrate only over the intensities which significantly con-

tribute to the process α . To find the lower limit of these intensities we compute the

ionisation probability for an intensity I and a vibrational state v, which for small

values of the ionisation probability is given by

Γ(v, I) = 1− exp
(
−
∫ t f

ti
Γ(ωt,v, I)dt

)
≈
∫ t f

ti
Γ(ωt,v, I)dt (4.5)

with the integration over the duration of the laser pulse. For the laser pulse and

all the vibrational states of the triatomic molecule we currently consider, we find

that the ionisation probability of D+
3 is very small for field strengths less than 0.06

a.u. Therefore, only field strengths above 0.06 a.u. contribute to the observed KER

distributions.

We now compare the computed intensity-averaged KER distributions with the

measured ones [59] for a peak field strength of 0.56 a.u., which corresponds to the
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experiment’s intensity of 1.1×1016 W/cm2 [59]. We find that the KER distributions

for FDI for both currently considered alignments of the molecule relative to the

laser field direction of polarisation are very similar; the same holds for the KER

distributions of DI. We therefore expect that any other planar alignment of molecule

and laser field polarisation will not significantly change the KER distributions. We

plot the KER in Fig. 4.3 only for the parallel alignment. Since ionisation processes

can be influenced by the shape of the laser field [117, 118], we have computed

the KER for parallel alignment also for a Gaussian envelope laser field. We find

that the shape of the KER plotted in Fig. 4.3 using the laser field in Eq. 4.6 is

in complete agreement with the shape of the KER using a Gaussian envelope laser

field. We find that for FDI the computed KER distribution is in good agreement

with the experimental one, see Fig. 4.3 (a). Both distributions peak at 21 eV, while

the computed KER distribution has a wider tail towards higher field strengths. In

the experimental data of the single ionisation channel (Fig.4.3 (a)) an additional

peak at ≈8 eV is present. This peak is likely due to the bond softening [119] of

an intermediate D+
2 in the experiment. Our model does not include this mechanism

and hence, does not show this peak.

The agreement is not as good for the KER distribution for DI shown in Fig.

4.3 (b): the computed distribution peaks at 31 eV while the experimental one peaks

at 24 eV. It is possible that our model overestimates the DI probability for high field

strengths, see discussion for Fig.4.4. Indeed, when we consider a smaller peak field

strength of 0.2 a.u. we find that the intensity averaged KER distributions for FDI and

DI, shown in Fig. 4.3 (c) and (d), respectively, are both in better agreement with

the experimental ones at the higher intensity. We note, that our results compare

better with experiment than previously obtained classical results [109, 110]. In

those previous simulations the KER distributions for DI peak at considerably higher

energies.

To find the upper limit of intensities that contribute to the KER distributions in

Fig. 4.3, we analyse in Fig.4.4 the FDI and DI probabilities as a function of the laser

field strength. In this context, probability is the number of FDI or DI events relative
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Figure 4.3: Intensity averaged KER distributions for FDI and DI for Imax corresponding to
a field strength of E0 =0.56 a.u., (a) and (b), and of E0 =0.2 a.u., (c) and (d).
The grey dashed lines show the relevant experimental results from [59]. Our
results and the experimental ones for DI and FDI have been normalised to 1.
Note that the experimental results in (a) and (c) have two peaks; it is the area
under the higher energy peak that has been normalised to 1.
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Figure 4.4: The probability (a) for FDI and DI and (b) for pathways A and B of FDI as
a function of the field strength E0. The smallest strength of the laser field we
consider in this figure is E0 = 0.02 a.u.

to the number of initialised trajectories. At each intensity we ran enough trajectories

to obtain at least 16,000 FDI events and at least 50,000 DI events. Therefore, the

statistical error of these results is very small.

Fig.4.4 (a) shows that the DI probability increases quickly as a function of the

field strength reaching already a probability of 99.2% at a field strength of 0.38 a.u.

Thus, all field strengths up to the peak intensity of 0.56 a.u. contribute significantly
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to the intensity averaged KER distribution for DI in Fig.4.3 (b). On the other hand,

Fig.4.4 shows that the FDI probability reaches a maximum of 11.1% at an interme-

diate field strength of 0.08 a.u. and then decreases to 0.3% at a field strength of 0.56

a.u. Combined with the 1/I factor in Eq.4.4, we find that only field strengths up to

roughly 0.32 a.u. contribute significantly to the intensity-averaged KER distribution

for FDI in Fig.4.3 (a).

We now focus on describing in detail the FDI process for D+
3 . Similar to the

case of H2 in [61] we identify two pathways that can lead to FDI, see section 1.2.2.

In the following we refer to the initially tunnel-ionised electron as electron 1 and to

the initially bound electron as electron 2. In pathway A, electron 1 escapes, while

electron 2 tunnel-ionises later while the laser field is on and is eventually recap-

tured to a highly-excited state of a D atom. In pathway B, electron 1 is eventually

recaptured to a highly excited state of D, while electron 2 tunnel-ionises later but

eventually escapes. We find that the distribution of the inter-nuclear distances at

the time electron 2 tunnel-ionises peaks around 3 a.u. for D+
3 . It is mainly after

electron 2 tunnel-ionises that the nuclei rapidly dissociate, since tunnel-ionisation

of electron 2 reduces the screening of the nuclei. We find that the distribution of

sum of the kinetic energy of the nuclei at the time electron 2 tunnels is peaked at

0 eV. It, then, follows that the KER distribution for FDI should peak at 3 (number

of nuclei)/3 (most probable nuclear distance for Coulomb explosion) a.u. which is

27.2 eV. Indeed, we find the peak of the computed KER distribution for FDI to be

around 21 eV. This value is smaller than 27 eV as expected since one electron in

FDI events remains bound screening the Coulomb repulsion of the nuclei.

In Fig.4.4 (b) we show that the probability of pathway B of FDI reaches a max-

imum of 6.9% at a field strength of 0.14 a.u. and then decreases fast, reaching less

than 1% at a field strength of 0.2 a.u. The dominance of pathway B at intermedi-

ate intensities is due to electron-electron correlation being much more prominent

for these intensities [88]. Electron-electron correlation was shown to be more im-

portant for pathway B compared to pathway A also for strongly-driven H2 [111].

This is to be expected since in pathway B electron 1, following tunnel-ionisation,
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later returns to the ion and interacts with electron 2. In addition, we find that, for

D+
3 , at high intensities, the probability for pathway A of FDI decreases at a much

slower rate than the probability of pathway B, see Fig.4.4 (b). The reason is that

in pathway A electron 2 tunnels after gaining energy in a frustrated enhanced ion-

isation process, i.e., electron 2 gains energy from the field in the same way as in

an enhanced ionisation process [46–50] but electron 2 eventually does not escape.

For higher intensities electron correlation plays a less important role compared to

enhanced ionisation. Hence, the probability for pathway A reduces at a smaller rate

than the probability for B.

Next, we identify the prevalent ionisation mechanism leading to FDI in D+
3 .

Specifically, we determine the probability of over-the-barrier ionisation, POBI . In

our notation POBI not only refers to the permanent ionisation of electron 2 in path-

way B but also includes the temporary ionisation of electron 2 in pathway A before

it is being recaptured into an excited D∗ state. We find that POBI is around 9% for a

field strength of 0.08 a.u. increasing to 87% at 0.56 a.u. However, for field strengths

above 0.32 a.u., the probability of FDI events reduces significantly, see Fig.4.4 (a).

Therefore, after integrating over field strengths up to 0.56 a.u., using Eq.4.4, we

find that over-the-barrier ionisation accounts for 21% of FDI events. Thus, tunnel-

ionisation dominates FDI.
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Figure 4.5: The angle of the velocity vector of D∗ in FDI (a) and of D+ in DI (b) with
respect to the laser field for parallel (black) and perpendicular (red) molecu-
lar alignments. The field strength is 0.08 a.u. (c) The initial state geometric
configuration of D+

3 with respect to the laser field.
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Figure 4.6: The weight of the lobes around 0◦ and 90◦ for pathway A (a) and B (b) for
different initial velocity of electron 1.

Finally, we identify a feature of the break-up dynamics of the strongly-driven

triatomic that is a signature of pathway B and can potentially be observed experi-

mentally. In Fig.4.5 (a)/(b) we plot for FDI/DI the angle χ of the velocity of D∗/D+

with respect to the laser field for a field strength of 0.08 a.u. for the two alignments

of the molecule with respect to the laser field considered. We find that, as for DI,

for FDI the angular distribution has a three-lobe structure. The three-lobe struc-

ture we obtain for DI is in agreement with previous experiments [59]. For FDI we

cannot provide a direct comparison with experiment since the analysed data in [59]

includes the angular distribution of all single ionisation events D++D++D, i.e., FDI

events as well as bond softening events that yield the low KER peak in Fig. 4.3

(a) and (c). For FDI, we find that the three lobes in Fig.4.5 (a) do not have equal

weight as is the case for DI in Fig.4.5 (b). Specifically, the lobe around 0◦ has a

2% higher weight than the other two lobes for perpendicular alignment and the lobe

around 90◦ has a 2% less weight than the other two lobes for parallel alignment in

Fig.4.5 (a). With respect to the initial state geometry of the nuclei of D+
3 in Fig.4.5

(c), this means that the electron that finally stays bound in FDI gets attached for

parallel alignment more to either nucleus A or B rather than C while for perpendic-

ular alignment to nucleus C. This difference is reasonable since frustrated enhanced

ionisation takes place mainly between the nuclei that are more parallel to the field,

A and B for parallel alignment and A and C or B and C for perpendicular align-

ment. We find that this small difference in the weight of the lobes is present in both

pathways A and B.
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We find that the probability of the electron that finally remains bound in FDI to

get attached to different nuclei varies significantly as a function of the initial velocity

of the tunnelling electron. For pathway A as a function of the initial velocity of

electron 1, we find that the probability for electron 2 to get attached to nucleus

C is between 1.5 % and 2 % smaller/larger than the probability to get attached

to nuclei A and B for parallel/perpendicular alignment. Thus, the probability of

electron 2 to get attached to nuclei A, B and C is not sensitive to the initial velocity

of electron 1. However, we find that for pathway B the probability for electron 1

to get attached to nuclei A, B and C varies with the initial velocity of electron 1 in

the direction perpendicular to the field. Namely, for parallel alignment, we find that

it is for small initial velocities of electron 1 that the probability of electron 1 to get

attached to nucleus C differs the most from the probability of getting attached to

nuclei A or B; the probability to get attached to nucleus C is roughly 7 % smaller.

For perpendicular alignment, we find again that it is for small initial velocities of

electron 1 that the probability of electron 1 to get attached to nucleus C differs the

most from the probability of getting attached to nuclei A or B; the probability to

get attached to nucleus C is roughly 7 % larger. Expressing the above differences in

terms of the lobes of the angular distribution of FDI it means that, for pathway B,

for very small initial velocities of electron 1 the lobe around 90◦ has 7 % less weight

than each of the other two lobes of parallel polarisation while the lobe around 0◦

has 7 % more weight than each of the other two lobes of perpendicular polarisation.

Thus, if the initial velocity of electron 1 can be probed experimentally then one

would observe a significant difference in the weight of the lobes around 0◦ and 90◦

that is due to pathway B. We illustrate the latter in Fig.4.5. In Fig.4.5 (a), we show

that in pathway A the difference in weight between the lobes around 0◦ and 90◦ is

small and insensitive to the initial velocity of electron 1. In contrast, in Fig.4.5 (b),

we show that for pathway B the difference in weight between the lobes around 0◦

and 90◦ is very sensitive to the initial velocity of electron 1 and is large for small

initial velocities.
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4.2 Frustrated double and single ionisation of strongly-

driven H+
3

In this section, we study frustrated ionisation of strongly-driven H+
3 from its

ground state. The inter-nuclear distance of the equilateral configuration of H+
3 in

its ground state is 1.65 a.u. [90]. This distance is smaller from the inter-nuclear dis-

tance of the initial state we consider for our study of strongly-driven D+
3 . In what

follows, we investigate three different processes that take place through Coulomb

explosion during the fragmentation of H+
3 , when the molecule is driven by a near-IR

intense laser field. Specifically, we study: i) double ionisation where the final frag-

ments are three H+ ions and two escaping electrons; ii) frustrated double ionisation

where the final fragments are a highly excited neutral fragment H∗, two H+ ions

and one escaping electron; iii) frustrated single ionisation where the final fragments

are two highly excited neutral fragments H∗ and one H+ ion. We mainly focus on

FDI and FSI and investigate their dependence on the intensity of the laser field. For

FDI we also study its dependence on the geometry of the initial molecular state. We

do the latter by comparing our results for the driven diatomic H2 with our results

for the driven triatomic H+
3 .

4.2.1 Method and initial molecular and field configuration

The linearly polarised laser field we employ in our studies for driven H+
3 is the

same as the one described in Eq.4.1 and illustrated in Fig.4.1:

E(t) = E0(t)cos(ωt)ẑ

E0(t) =

 E0 0≤ t < 10T

E0 cos2 ω(t−10T )
8 10T ≤ t ≤ 12T ,

(4.6)

We take the initial state to be the ground state of H+
3 with the nuclei forming an equi-

lateral triangle with an inter-nuclear distance R=1.65 a.u. [90]. In our simulations,
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we take the three nuclei A, B and C to be on the x-z plane. In addition, we simplify

our model by considering the nuclei initially at rest. We note that for Ip1 = 1.208

a.u. we find that the threshold field strength E0 for over-the-barrier ionisation is

0.178 a.u. If the instantaneous field strength at the time we start the propagation is

smaller than the threshold field strength for over-the-barrier ionisation, we assume

that one electron (electron 1) tunnels in the field-lowered Coulomb potential with

a tunnelling rate given by the semi-classical formula in [73]. The tunnel electron

emerges from the potential barrier with zero velocity along the direction of the laser

field and with a velocity that follows a Gaussian distribution in the direction per-

pendicular to the laser field [70]. If the instantaneous field strength at the time we

start the propagation corresponds to the over-the-barrier intensity regime, then we

assume that electron 1 tunnel ionises at the maximum of the field lowered Coulomb

potential. We take the kinetic energy of electron 1 to be equal to the difference

between the first ionisation energy and the maximum of the field-lowered Coulomb

potential, for details see [62]. For both below- and over-the-barrier ionisation of

electron 1 in the initial state, we describe the initial state of the initially bound

electron (electron 2) using the one-electron micro-canonical distribution [89], see

section 2.1.4.2.

4.2.2 FDI and FSI in strongly-driven H+
3

We consider a laser field polarised along one side of the equilateral triangle,

see Fig.4.7 (a). In Fig.4.7 (b), we plot the DI and FDI probabilities as a function of

the laser field strength. We vary the laser field strength from 0.04 a.u. up to 0.18

a.u., that is up to a field strength just above the threshold value for over-the-barrier

ionisation. In this context, probability is the number of DI, FDI and FSI events

relative to the number of initialised trajectories. We find that DI is the dominant

process at E0=0.18 a.u. with a probability of 69.4%. The FDI probability reaches a

maximum of 9.5% at E0 = 0.12 a.u. and reduces to 5.2% at E0 = 0.18 a.u.

Focusing on FDI during the fragmentation of strongly-driven H+
3 from its

ground state, we find that two main pathways, A and B, contribute to FDI. We
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Figure 4.7: Left panel: The initial configuration of H+
3 relative to the polarisation direction

of the laser field. The laser pulse is linearly polarised and aligned along one of
the sides of the triatomic molecule. Right panel: The DI and FDI probabilities
as a function of the laser field strength E0. The lowest laser field strength in (b)
is E0 = 0.04 a.u.

have previously identified these two pathways in our studies of FDI during the frag-

mentation of strongly-driven H2 from its ground state [61] and of strongly-driven

D+
3 from a state other than its ground state in section 4.1.

Fig.4.8 shows that for intermediate strengths of the laser field below the over-

the-barrier ionisation threshold, pathway B is the dominant pathway of FDI. Fig.4.8

also shows that pathway A’s contribution to FDI increases with increasing field

strength. At E0 = 0.18 a.u. both pathways have the same probability. These results

are not surprising since, in strongly-driven molecules, electron-electron correlation

is more important for intermediate strengths of the laser field, while enhanced ioni-

sation becomes more prominent with increasing strength of the laser field.
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Figure 4.8: The probability of FDI, pathway A and B as a function of the laser field
strength. The lowest laser field strength is E0 = 0.04 a.u.

Next, we investigate whether tunnel-ionisation is the underlying mechanism of
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Figure 4.9: POBI as a function of the laser field strength. The lowest laser field strength is

E0 = 0.04 a.u.

FDI, as it was first suggested in [120]. Specifically, we check whether the tunnel

or over-the-barrier ionisation is the underlying mechanism of FDI. By over-the-

barrier ionisation in FDI, we refer to electron 2 reaching an excited state without

tunnelling in pathway A or to electron 2 escaping by over-the-barrier ionisation in

pathway B. We denote by POBI the fraction of FDI over-the-barrier ionisation events

out of all FDI events. As shown in Fig.4.9, POBI increases from 3.7% at E0=0.04

a.u. to 14.6% for E0=0.18 a.u. This increase of POBI is due to over-the-barrier

ionisation becoming more prominent with increasing strength of the laser field. We

have obtained similar results for the contribution of the over-the-barrier ionisation

mechanism in FDI for D+
3 .

In Fig.4.10 (a), we plot the KER distribution for FDI for three different laser

field strengths for the laser pulse defined in Eq.4.6. In Fig.4.10 (b), we plot the KER

distribution for FDI for three different laser field strengths for a Gaussian envelope

laser pulse with full width at half maximum of 40 fs. Comparing Fig.4.10 (a) and

(b) shows that the KER distributions have the same shape for both pulses. We find

that with increasing strength of the laser field the peak of the KER distribution shifts

to higher values, namely, from 23 eV at E0 =0.06 a.u. to 31 eV at E0 =0.18 a.u.

This increase is consistent with the nuclei Coulomb exploding earlier in time and at

smaller inter-nuclear distances for higher strengths of the laser field.

Previously, both for the fragmentation of strongly-driven H2 from its ground

state [62] and of strongly-driven D+
3 from a superposition of states with inter-

nuclear distances larger than the inter-nuclear distance of the ground state, we have
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Figure 4.10: Panel (a): the KER distributions for FDI at laser field strengths of 0.06 a.u.,
0.12 a.u. and 0.18 a.u. (a) is plotted using the laser pulse defined in Eq. 4.1
and (b) is plotted using a Gaussian envelope laser pulse with tFWHM=40 fs.

found that the peak of the KER distributions can be roughly estimated as follows.

We first compute the most probable distance of the nuclei at the time electron 2

tunnels, Rtun. For the above-mentioned previous studies, this is also the time when

Coulomb explosion of the nuclei mostly sets in. As a result, we found that the KER

distributions peak roughly at 1/Rtun for H2 and at 3/Rtun for D+
3 . We find that this is

not quite the case for strongly-driven H+
3 when driven from its ground state. Specif-

ically, in Fig.4.11 , we plot the sum of the kinetic energies of the ions at the time

electron 2 tunnels for strongly-driven H+
3 (a) and H2 (b) at E0 = 0.06 a.u. We show

that the distribution of the sum of the kinetic energies of the nuclei for H+
3 peaks

around 10.5 eV, see Fig.4.11 (a), while for H2 the distribution peaks around 1.5 eV,

see Fig.4.11 (b). Thus, for H+
3 the nuclei have already acquired a significant amount

of kinetic energy by the time electron 2 tunnels unlike H+
2 . This is reasonable since

one electron screens more effectively two rather than three nuclei. For H+
3 frag-

menting from its ground state, to roughly estimate where the KER distribution for

FDI peaks we have to add 3/Rtun+10.5= 25.3 eV; we have substituted Rtun = 5.5 a.u.

which we obtain from our simulations. Indeed, we find that the KER distribution

for FDI peaks at 23 eV, see Fig.4.11, which is slightly less than 25.3 eV, since for

FDI the electron that is recaptured screens the Coulomb explosion of the nuclei.

Next, we address FSI where two highly excited neutrals are formed:

H+
3 → H?+H?+H+.
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Figure 4.11: The distribution of the sum of the kinetic energies of the nuclei for FDI at the
time electron 2 tunnels for (a) H+

3 and for (b) H2 at E0 =0.06 a.u.
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Figure 4.12: FSI probability as a function of the laser field strength. The lowest laser field
strength is E0 = 0.04 a.u.

10 20 30 40
0

0.05

0.1

0.15

KER (eV)

E0=0.06 a.u.

(a)

 

 

FDI

FSI

10 20 30 40
0

0.05

0.1

0.15

KER (eV)

E0=0.12 a.u.

(b)

 

 

FDI

FSI

Figure 4.13: KER distributions for FSI at laser field strengths of 0.06 a.u. and 0.12 a.u.
The KER distributions for FDI are also presented for comparison.

In Fig.4.12, we show that the FSI probability reaches a maximum probability of

0.4% at E0 = 0.08 a.u. and then reduces fast with increasing field strength reaching

0.06% at E0 = 0.18 a.u. This is consistent with a higher strength of the laser field

resulting in a higher probability for an electron to ionise. Thus, FSI is a process

roughly 20 times less likely than FDI. A similar conclusion was reached in previous
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studies of FSI in the context of strongly-driven H2 [111]. As for FDI, we plot

the KER distributions for FSI for different laser field strengths, see Fig.4.13. We

find that the KER distributions for FSI peak at similar energy values as the KER

distributions for FDI.

4.2.3 Influence of molecular geometry on FDI

Molecule E0(a.u.) Γ(I) FDI (%) Pathway A (%) Pathway B (%) DI (%)
H2 0.04 4.0×10−5 9.6 2.9 6.7 24.4
H+

3 0.04 2.0×10−21 3.2 1.3 1.9 7.5
H2 0.06 0.03 9.4 3.2 6.1 39.5
H+

3 0.06 1.5×10−12 5.5 1.8 3.7 15.2

Table 4.1: The probabilities for FDI and DI as well as the pathways A and B of FDI for H2
and H+

3 in a linearly polarised laser field at field strengths 0.04 a.u. or 0.06 a.u.

Molecule E0(a.u.) Γ(I) FDI (%) Pathway A (%) Pathway B (%) DI (%)
H2 0.04 4.0×10−5 9.6 2.9 6.7 24.4
H+

3 0.10 1.5×10−5 9.4 3.0 6.3 33.3
H2 0.06 0.03 9.4 3.2 6.1 39.5
H+

3 0.15 0.04 8.7 2.8 5.8 58.3

Table 4.2: The probabilities for FDI and DI as well as the pathways A and B of FDI for H2
and H+

3 in a linearly polarised laser field. The laser field strengths are chosen so
that the two molecules have similar ionisation probability Γ(I).

In what follows, we investigate whether a different molecular geometry affects

the FDI probability. We do so, by comparing our results for FDI for the diatomic

H2 with the triatomic H+
3 . First, we consider that both molecules are driven by

a linearly polarised laser field of the same laser field strength. The laser field is

aligned with one side of the molecules. In Table 4.1, we show the results for laser

field strengths of 0.04 a.u. and 0.06 a.u. We find that the FDI probability is much

larger for H2. This result is not surprising. It is easier to ionise an electron in

the diatomic molecule, since both molecules are driven with the same laser field

strength while the ionisation energies of H+
3 are much larger than those of H2. The
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first and second ionisation energies of H+
3 are Ip1 =1.2079 a.u. and Ip2 =1.9300

a.u., respectively, while for H2 Ip1 =0.5669 a.u. and Ip2 =1.2843 a.u.

Next, we compare the FDI probability for both molecules when the ionisation

probability Γ(I) is the same. The ionisation probability is obtained by integrating,

over the duration of the laser pulse, the ionisation rate Γ(t, I) for a laser pulse inten-

sity I:

Γ(I)≈
∫ t f

ti
Γ(t, I)dt. (4.7)

In Table 4.2, we present the FDI probability for H2 and H+
3 when Γ(I) is of the

order of 10−5 and 10−2. We find that when Γ(I) is the same for both molecules the

FDI probability is also roughly the same. Moreover, we find that the probability for

pathway B of FDI is for both molecules larger than the probability for pathway A of

FDI. The above results suggest that the molecular geometry does not significantly

affect the FDI probability.
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4.3 Conclusions

Concluding, in section 4.1, using a 3D semi-classical calculation where the

Coulomb singularity is fully accounted for, we have shown that our results for the

KER distribution for FDI of the strongly-driven D+
3 agree well with experimental

results. We have also found that the underlying mechanism for FDI switches from

tunnel to over-the-barrier ionisation with increasing field strength. It would be in-

teresting if future experiments identify the asymmetry in the angular distribution of

the D∗ fragment for FDI events which we have shown to be a signature of pathway

B of FDI.

Moreover, in section 4.2, we have studied the FDI and FSI in strongly-driven

H+
3 from its ground state. We have shown that the distribution of the kinetic energy

release of the nuclei for FDI peaks at a higher energy than the one roughly estimated

from the Coulomb explosion of the nuclei at the time the bound electron tunnel-

ionises. The reason is that by the time the bound electron tunnel-ionises the nuclei

have already acquired a significant amount of kinetic energy. As we have shown,

this is not the case for strongly-driven H+
2 when it is fragmenting from its ground

state. In addition, we have shown that FSI is a more rare process compared to FDI

which is a significant process with probability 10%. Finally, we have shown that the

FDI probability is not significantly influenced by the different molecular geometry

of H2 and H+
3 .



Chapter 5

Controlling electron-electron

correlation with two-colour laser

fields

In theoretical studies of strongly-driven two-electron diatomic and triatomic

molecules, two pathways of FDI have been identified [111], see discussion in

Chapter 4. Electron-electron correlation has been shown to be important, primarily,

for one of the two pathways of FDI. It is well accepted that electron-electron corre-

lation underlies a significant part of double ionisation in strongly-driven molecules,

i.e. non-sequential double ionisation [49, 121]. However, the electron-electron

correlation in FDI has yet to be accessed experimentally.

In this chapter, we propose a road for future experiments to identify the im-

portant role of electron-electron correlation in FDI by employing orthogonally po-

larised two-colour (OTC) laser fields. We identify the parameters of OTC laser

fields that best control the relevant pathway for electron-electron correlation in FDI.

We demonstrate traces of attosecond control of electron motion in space and time

in two observables of FDI as a function of the time-delay between the fundamental

800 nm and the second harmonic 400 nm laser field. We show that, together, the

FDI probability and the momentum of the escaping electron along the fundamental

laser field bear clear signatures of the turning on and off of electron-electron cor-

relation. The 3D semi-classical model presented in Chapter 2 is employed for the



89

simulation.

Two-colour laser fields have been shown to be an efficient tool for controlling

electron motion [122, 123] and for steering the outcome of chemical reactions [124–

126]. Other applications include the field-free orientation of molecules [127–129],

the generation of high-harmonic spectra [130–132] and probing atomic and molec-

ular orbital symmetry [133–135].
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5.1 Method and initial molecular and field configura-

tion

We employ the initial state of D+
3 that is accessed experimentally via the reac-

tion [55, 59]

D2 +D+
2 → D+

3 +D (5.1)

as discussed in section 4.1. It consists of a superposition of triangular-configuration

vibrational states ν = 1−12 [55, 112]. We assume that most of the D+
3 ionisation

occurs at the outer classical turning point of the vibrational levels [114, 115]. The

turning point varies from 2.04 a.u. (v = 1) to 2.92 a.u. (v = 12). We initialise

the nuclei at rest for all vibrational levels [62]. The combined strength of the two

laser fields is within the below-the-barrier ionisation regime. The initial time t0 is

selected using importance sampling [136] in the time interval the two-colour laser

field is present, see section 2.1.1. The ionisation rate [73], see section 2.1.2.1.3, is

then used as the importance sampling distribution.

The OTC laser field we employ is of the form

E(t,∆t) = Eω f (t)cos(ωt)ẑ+E2ω f (t +∆t)cos[2ω(t +∆t)]x̂ (5.2)

with

f (t) = exp

(
−2ln2

(
t

τFWHM

)2
)
, (5.3)

with ω = 0.057 a.u. for commonly used Ti:sapphire lasers at 800 nm. Tω and

T2ω are the corresponding periods of the fundamental and second harmonic laser

fields, polarised along the ẑ- and x̂-axis, respectively. τFWHM = 40 fs is the full-

width-half-maximum. ∆t is the time delay between the ω−2ω pulses. We consider

Eω = 0.08 a.u., since for this field strength pathway B of FDI, where electron-
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electron correlation is present, prevails over pathway A—4.8% versus 3.6%, see

section 4.1.

To compute the FDI probability as a function of the time delay ∆t of the ω−2ω

pulses, we use

PFDI(∆t) =
∑ν ,i PνΓ(∆t,ν , i)PFDI(∆t,ν , i)

∑ν ,i PνΓ(∆t,ν , i)
, (5.4)

where i refers to the different orientations of the molecule with respect to the z-

component of the laser field. We consider only two cases of planar alignment, that

is, one side of the equilateral, molecular triangle is either parallel or perpendicular

to the ẑ−axis. Γ(∆t,ν , i) is given by

Γ(∆t,ν , i) =
∫ t f

ti
Γ(t0,∆t,ν , i)dt0, (5.5)

where the integration is over the duration of the OTC field. Γ(t0,∆t,ν , i) is the

ionisation rate at time t0 for a certain molecular orientation i, vibrational state ν and

time delay ∆t. Pν is the percentage of the vibrational state ν in the initial state of

D+
3 [112]. PFDI(∆t,ν , i) is the number of FDI events out of all initiated classical

trajectories for a certain molecular orientation i, vibrational state ν and time delay

∆t. Due to the challenging computations involved, we approximate Eq. 5.4 using

the ν = 8 state of D+
3 . This approximation is justified, since we find that the ν = 8

state contributes the most in the sum in Eq. 5.4. We obtain very similar results for

the ν = 7,9 states, which contribute to the sum in Eq. 5.4 less than the ν = 8 state

but more than the other states.
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5.2 Probability of FDI as a function of the time delay

In Fig.5.1(a), for E2ω = 0.05 a.u., we plot the FDI probability as a function

of the time delay for ∆t ∈ [0,T2ω ]. The results are periodic with T2ω/2. We find

that the FDI probability changes significantly with ∆t. This change is mainly due to

pathway B with probability that varies from 1.2% at ∆t =-0.2, -0.7 T2ω to 6.7% at

∆t =-0.4, -0.9 T2ω . In contrast, the probability of pathway A changes significantly

less varying from 2.4% to 3.7%. For E2ω <0.05 a.u., the probability of pathway B

varies less than for E2ω = 0.05 a.u.

Figure 5.1: (a) The FDI probability and the probabilities of pathways A and B and (b) the
distribution of V max

12 are plotted as a function of ∆t for Eω = 0.08 a.u. and E2ω =
0.05 a.u. In (a) the arrows on the right indicate the corresponding probabilities
when E2ω = 0 a.u.

Control of electron-electron correlation in double ionisation in atoms has been

demonstrated through the free parameters ∆t and E2ω of OTC laser fields [137–

141]. The time-delay between the laser fields can significantly affect the time and

the distance of the closest approach of the returning electron [122]. For FDI, this

is demonstrated in Fig.5.1(b). For each classical trajectory labelled as FDI, we

compute the maximum of the Coulomb potential energy 1/|r1− r2|, V max
12 . Then,

we plot the distribution of V max
12 as a function of ∆t. The minimum values of V max

12

correspond to electron 1 being at a maximum distance from the core, i.e. minimum

electron-electron correlation. Comparing Fig.5.1(a) with (b), we find that these

minima occur at the same ∆ts, where the FDI probability and the probability of
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pathway B is minimum, i.e. at ∆t =-0.2, -0.7 T2ω .

5.3 Momentum of the ionising electron in FDI as a

function of the time delay

The probability of each FDI pathway as well as V max
12 are not experimentally

accessible quantities. To demonstrate the presence of electron-electron correlation

in FDI, in addition to the sharp change of the FDI probability with ∆t, we need

one more experimentally accessible observable. This observable should bare clear

signatures of the prevalence of pathway A at the ∆ts where the minima of the FDI

probability occur, i.e. at ∆t =-0.2, -0.7 T2ω . We find that such a FDI-observable is

the change of the momentum of the escaping electron along the polarisation direc-

tion of the fundamental (ω) laser field, pz, with ∆t.

Figure 5.2: The distribution of pz for FDI (a1) and for pathways A (a2) and B (a3) are plot-
ted as a function of ∆t. For each ∆t, the distribution of pz for FDI is normalised
to 1 while for pathways A and B it is normalised with respect to the total FDI
probability. The distribution of the time electron 1 tunnel-ionises during half
cycles 1 and 2 for FDI (b1) and for pathways A (b2) and B (b3) is plotted as a
function of ∆t. For each ∆t, the distribution of t0 in (b1)-(b3) is normalised to
1. tmax is plotted with white dots (appear as white lines) in (b2) and (b3).

In Fig.5.2(a1) we plot the distribution of pz as a function of ∆t for one period
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of the results, that is, in the interval ∆t ∈ [−0.7T2ω ,−0.2T2ω ] in steps of ∆t = 0.1

T2ω . We find that the distribution of pz has a V-shape. It consists of two branches

that have a maximum split at ∆t =-0.7 T2ω , with peak values of pz around -0.85 a.u.

and 0.85 a.u. The two branches coalesce at ∆t =-0.3 T2ω , with pz centred around

zero. Moreover, FDI events with electron 1 tunnel-ionising during half cycles with

extrema at nTω (n/2Tω ) contribute to the upper (lower) branch of the distribution of

pz. n takes both positive and negative integer values. We find that half cycles 1 and

2, see Fig.5.3(a1) and (a2), with extrema at 0 and T/2 of the Eω laser field, respec-

tively, contribute the most to the momentum distribution of pz. Thus, it suffices to

focus our studies on half cycles 1 and 2.
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Figure 5.3: Half cycles 1 and 2 for Eω (a1) and its vector potential (a2). For pathway A, the
distributions of ∆pE

z and ∆pC
z are plotted for half cycles 1 and 2 for ∆t =-0.3

T2ω (b1) and ∆t =-0.7 T2ω (b2). The distribution of pz is plotted for half cycles
1 and 2 for ∆t =-0.3 T2ω (b3) and ∆t =-0.7 T2ω (b4).

First, we investigate the change of the distribution of the time electron 1 tunnel-

ionises t0 with ∆t, see Fig.5.2(b1). When the second harmonic (2ω) field is turned

off, t0 is centred around the extrema of half cycles 1 and 2 (not shown). However,

when the 2ω-field is turned on, depending on ∆t, electron 1 tunnel-ionises at times

t0 that are shifted to the right or to the left of the extrema of half cycles 1 and 2, see

Fig.5.2(b1). Moreover, we find that t0 shifts monotonically from the lowest value

of the shift at ∆t = −0.3 T2ω to its highest value at ∆t = −0.7 T2ω . We find that

this change of t0 is due to the monotonic change with ∆t of the time tmax when the
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magnitude of the OTC laser field is maximum. That is, for each ∆t, we compute the

time tmax when the laser field in Eq. 5.3 is maximum. tmax is also the time that the

ionisation rate is maximum. We plot tmax for half cycles 1 and 2 in Fig.5.2(b2) and

(b3). We compare tmax with the distribution of t0 for pathways A and B. We find

tmax to be closest to the distribution of t0 for pathway A. Indeed, only when electron

1 is the escaping electron will the time electron 1 tunnel-ionises be roughly equal to

the time the ionisation rate is maximum. In pathway B it is electron 2 that escapes.

Thus, the time t0 must be such that both the ionisation rate and the electron-electron

correlation efficiently combine to ionise electron 2.

Next, for pathway A, we explain how the two brunches of the distribution of

pz split when t0 shifts to the right of the extrema of half cycles 1 and 2 (∆t=-0.7

T 2ω ) or coalesce when t0 shifts to the left (∆t =-0.3 T2ω ). we compute the changes

in pz of the escaping electron 1 due to the ω-field as well as due to the interaction

of electron 1 with the core. These momentum changes are given by

∆pE
z (∆t, t0) = −

∫
∞

t0
Eω(t)dt (5.6)

∆pC
z (∆t, t0) =

∫
∞

t0

(
3

∑
i=1

Ri− r1

|r1−Ri|3
+

r1− r2

|r1− r2|3

)
· ẑdt, (5.7)

with Ri the position of the nuclei. Using the times t0 for the events labeled as

pathway A, we plot the probability distributions of ∆pE
z and of ∆pC

z at ∆t =-0.3

T2ω and at ∆t =-0.7 T2ω in Fig.5.3(b1) and (b2), respectively. We find that, for

both ∆ts, the distribution of ∆pC
z peaks at positive (negative) values of ∆pC

z when

electron 1 tunnel-ionises during half cycle 1 (2). Indeed, during half cycle 1 (2),

electron 1 tunnel-ionises to the left (right) of the field-lowered Coulomb potential.

Then, the force from the core acts along the positive (negative) ẑ-axis resulting

in the distribution ∆pC
z peaking around positive (negative) values for half cycle 1

(2). We find that the contribution of the electron-electron repulsion term is small

compared to the attraction from the nucleus in ∆pC
z . In contrast, the distribution of

∆pE
z peaking at positive or negative values of ∆pE

z depends on whether t0 shifts to

the right or to the left of the extrema of half cycles 1 and 2, i.e. it depends on ∆t.
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For ∆t=-0.3 T2ω , when t0 shifts to the left of the extrema of half cycles 1 (2), the

vector potential is positive (negative) resulting in the distribution of ∆pE
z peaking

at negative (positive) values of ∆pE
z . Similarly, for ∆t=-0.7 T2ω , the distribution of

∆pE
z peaks at positive (negative) values of ∆pE

z for half cycle 1 (2).

In Fig.5.2(b3) and (b4), we plot the distributions of the final momentum pz,

which is given by ∆pE
z +∆pC

z +pz,t0 . The distribution of the component of the initial

momentum of electron 1, pz,t0 , has a small contribution to pz and is not shown. In

Fig.5.3(b3), for ∆t =-0.3 T2ω , we show that the distributions of pz for half cycles

1 and 2 are similar and peak at zero. They give rise to the two branches of the

distribution pz coalescing in Fig.5.2(a2) and (a1). In Fig.5.3(b4), for ∆t =-0.7 T2ω ,

we find that the distributions of pz for half cycles 1 and 2 are quite different with

peaks at 0.85 a.u. and -0.85 a.u., respectively. They give rise to the split of the

two branches of the distribution pz in Fig.5.2(a2) and (a1). Unlike pathway A, for

pathway B the distribution of pz as a function of ∆t in Fig.5.2(a3) is very broad.

The reason is that electron 2 has time to interact with the core since it tunnel-ionises

after a few cycles of the laser field.

5.4 Triatomic versus diatomic molecules

Figure 5.4: (a) and (b) similar to Fig.5.1(a) and Fig.5.2(a1), respectively, for H2.

Finally, we show that a similar level of control of electron-electron correla-

tion with OTC fields can not be achieved for H2. We choose Eω = 0.064 a.u. so
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that Eω for H2 and D+
3 has the same percentage difference from the field strength

that corresponds to over-the-barrier ionisation. We choose E2ω =0.04 a.u. so that

Eω /E2ω is the same for both molecules. We show in Fig.5.4(a) that, for all ∆ts, the

FDI probability significantly reduces when the 2ω-field is turned on. Indeed, its

maximum value is 2.7% compared to 6.8% for E2ω = 0 a.u. In contrast, in D+
3 the

FDI probability changes from 8.5% without 2ω-field to a maximum value of 10.5%

for E2ω = 0.05 a.u. We find that the FDI probability as well as the probability of

pathway B do not significantly change with ∆t. In addition, the two branches of the

V-shaped distribution pz of the escaping electron are not as pronounced in Fig.5.4(b)

as for D+
3 . The results in Fig.5.4 are obtained when the inter-nuclear axis of H2 is

parallel to Eω . We find similar results for a perpendicular orientation, however, for

E2ω = 0 a.u., the FDI probability is almost zero. The much lower FDI probabil-

ity for H2 when the 2ω laser pulse is switched on shows that the laser pulse that

is perpendicularly polarised to the molecular axis drives away a large percentage

of the electrons that would otherwise remain in Rydberg states if E2ω = 0. How-

ever, for D+
3 , this effect is counteracted by the stronger attractive force an electron

experiences due to the presence of a third nucleus in a triangular configuration.
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5.5 Conclusions

In conclusion, we have shown that control of electron-electron correlation in

FDI can be achieved employing OTC fields in D+
3 . We have found that the FDI

probability changes sharply with the time-delay between the two laser fields. More-

over, we have identified a split in the distribution of the final momentum of the

escaping electron that takes place at time-delays where the FDI probability is mini-

mum. We have shown this split to be a signature of the absence of electron-electron

correlation. It then follows that electron-electron correlation is present for the time-

delays, where the FDI probability is maximum. Future experiments can employ our

scheme to demonstrate the importance of electron-electron correlation in FDI.



Chapter 6

Conclusions

In this dissertation, we discuss phenomena in strongly-driven atoms and two-

electron multi-centre molecules where electron-electron correlation plays an im-

portant role. Such phenomena are non-sequential double ionisation in atoms and

frustrated double ionisation in molecules. For our studies we have employed so-

phisticated 3D semi-classical models that are accurate and compare well with ex-

periments and quantum mechanical calculations. These models are much faster

than quantum mechanical calculations and very importantly these models offer a

physical picture of the mechanisms that underly NSDI and FDI.

We have first studied non-sequential double ionisation in Ar when driven by

near-single-cycle intense and infrared laser fields. We have investigated NSDI for a

range of intensities. For small intensities, we have found that our results agree over-

all well but do not exactly reproduce a cross-shaped structure in correlated electron

momenta distributions that was experimentally identified by recent experimental

results. Moreover, we find that at these small intensities both the main double ion-

isation pathways, the direct and the delayed, contribute to non-sequential double

ionisation. Previous studies assumed that only the delayed pathway contributes

to NSDI. For these small intensities, we also study how the contribution of the

two major pathways of NSDI changes as a function of the carrier-envelope phase

of the ultrashort laser pulse. We obtain correlated electron momenta as a func-

tion of the carrier-envelope phase that are close to the experimental results. We

also find that the width of the experimentally obtained sum of the electron mo-
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menta along the polarisation direction of the laser field is well reproduced by our

computations. A difference between our results and the experimentally obtained

ones is that our computations underestimate the double ionisation events with very

small electron momenta. Most probably this implies that our model for Ar overes-

timates the Coulomb attraction and, thus, more accurate effective potentials need

to be employed in future calculations. For high intensities, we also find that our

computational results for the correlated electron momenta reproduce well a previ-

ously experimentally unseen pattern where the electrons escape opposite to each

other along the polarisation direction of the laser field. This pattern was previously

identified for high intensities for the strongly-driven nitrogen molecule with fixed

nuclei and was attributed to sort recollisions. We also find that, for high intensities,

soft recollisions in strongly-driven Ar lead to an anti-correlation pattern. It will be

interesting to include interference effects in future double ionisation studies. Such

effects have already been considered in single ionisation of strongly-driven atoms,

see Appendix E.

Next, we have investigated double and frustrated double ionisation in strongly-

driven two-electron triatomic molecules. For strongly-driven D+
3 , we have com-

pared our results for the distributions of the sum of the final kinetic energies of the

nuclei for double and for frustrated double ionisation with experimental results. The

initial state of D+
3 is not the ground state but the one that can be experimentally re-

alised. It corresponds to a superposition of vibrational states with inter-nuclear dis-

tances larger than the inter-nuclear distance of the ground state. Fully accounting for

the focal volume effect, we have found a very good agreement between our compu-

tations and the experimental results for frustrated double ionisation. The agreement

is not as good for double ionisation, with our distribution of the sum of the final

kinetic energies of the nuclei peaking at a higher energy. We have found that this

latter feature can most probably be attributed to our 3D semi-classical model over-

estimating the probability for double ionisation. Moreover, for double ionisation, a

very good agreement was found between our computations and experimental results

for the distribution of the angle between the velocity vector of either of the three nu-
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clei and the polarisation direction of the laser field. We have also studied frustrated

double and frustrated single ionisation for strongly-driven H+
3 from its ground state.

We have shown that for frustrated double ionisation the distribution of the sum of

the final kinetic energies of the nuclei can not be accounted for solely from the

Coulomb explosion of the nuclei at the time the initial bound electron ionises. We

have found the reason to be that for strongly-driven H+
3 the nuclei have acquired

significant kinetic energy already by the time the initially bound electron ionises.

We have found this not to be the case for strongly-driven H2. We have attributed the

difference to the initially bound electron screening less efficiently the three nuclei

in H+
3 compared to the two nuclei in H+

2 . In addition, we have found that the prob-

ability for frustrated double ionisation in H+
3 and H+

2 is roughly the same when the

two molecules are strongly-driven by laser pulses with different field strengths cor-

responding to the same ionisation probability. Thus, the molecular geometry does

not seem to play a significant role concerning the probability of frustrated double

ionisation in a linearly polarised laser field. Moreover, we have shown that, for in-

termediate intensities, frustrated single ionisation is a much less probable process

compared to frustrated double ionisation in strongly-driven two-electron molecules.

We have shown that two pathways underlie frustrated double ionisation in two-

electron triatomic molecules. These pathways have been previously theoretically

identified in strongly-driven two-electron diatomic molecules. We have found that

in one pathway, A, the initially bound electron gains energy from the laser field in

an enhanced-like ionisation process, tunnel-ionises and finally remains bound in a

Rydberg state of one of the ions. The other electron that initially tunnel-ionises es-

capes fast. In pathway B, the electron that initially tunnel-ionises returns to the core

and finally remains bound in a Rydberg state in one of the ions. The initially bound

electron gains energy from the laser field in an enhanced-like ionisation process but

also through electron-electron correlation from the electron that returns to the core.

We have found that electron-electron correlation plays a much more important role

in pathway B. However, while it is well established by theory and experiment that

electron-electron correlation underlies non-sequential double ionisation, this is not
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the case for frustrated double ionisation. Given that frustrated double ionisation in

molecules is more important a mechanism than non-sequential double ionisation,

with roughly a probability of 10% out of all possible ionisation events, it is impor-

tant for future experiments to establish the presence of electron-electron correlation

in frustrated double ionisation. We have therefore provided a road map for future

experiments how to establish electron-electron correlation by using two-colour laser

fields that are perpendicular polarised to each other. We have shown that two mea-

surable quantities as a function of the time delay between the two laser fields are

enough to establish the presence of electron-electron correlation. The first quantity

is the probability of frustrated double ionisation as a function of the time delay.

We have found that this probability has significant minima, which according to our

analysis, correspond to a very small contribution of pathway B to frustrated double

ionisation. Moreover, we have shown that the ionising electron momentum along

the direction of the laser field exhibits a striking V-pattern as a function of the time

delay. We have shown that this V-shape pattern can be solely attributed to pathway

A. Very interestingly it is related to the time of tunnel ionisation in the initial state.

While in the presence of the fundamental field, i.e. higher field strength, this tunnel-

ionisation time in the initial state is centred around the extrema of the laser field,

when both pulses are on this tunnel ionisation time shifts to the right or to the left

of the extrema of the laser field depending on the time delay. We have shown that

the combined effect of the shift of the tunnel-ionisation time and the Coulomb in-

teraction with the nucleus of the escaping electron gives rise to this striking V-shape

pattern. Future studies can consider different combinations of laser fields in order

to achieve better control of frustrated double ionisation in multi-centre molecules.



Appendix A

Dipole approximation

A classical electromagnetic field in vacuum is described by the electric and mag-

netic fields E(r, t) and B(r, t) that satisfy Maxwell’s equations without sources.

E(r, t) and B(r, t) are expressed as

E = −∇φ − ∂A
∂ t

(A.1)

B = ∇×A. (A.2)

where φ(r, t) and A(r, t) are the scalar and vector potential, respectively. These

equations are invariant under the classical gauge transformations

A′ = A+∇F (A.3)

φ
′ = φ − ∂F

∂ t
, (A.4)

where F is a real, differentiable function of r and t.

When kr� 1, then, we can apply the dipole approximation; k = 2π/λ and λ

is the wavelength of the laser field. In this approximation, the vector field has no

space dependence, i.e. A(r, t)∼= A(t) and Eq.A.3 and A.4 take the form

E(t) = −dA(t)
dt

(A.5)

B = ∇×A(t) = 0. (A.6)
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Furthermore, to obtain the length gauge, F(r, t) is set to equal to −A(t) · r and

Eq.A.3, A.4 takes the form

A′ = 0 (A.7)

φ
′ =

∂A
∂ t
· r =−E(t) · r. (A.8)

As a result, a Hamiltonian in the dipole approximation

H = ∑
i

1
2mi

(pi +QiA′)2 +∑
i< j

QiQ j

|ri− r j|
+∑

i
Qiφ

′
i , (A.9)

in the length gauge takes the form

H = ∑
i

pi
2

2mi
+∑

i< j

QiQ j

|ri− r j|
−∑

i
QiE(t) · ri, (A.10)

where the subscript i refers to different electrons and nuclei. Qi is the charge of

particle i. Eq.A.10 is the Hamiltonian we normally employ in our calculation.



Appendix B

Intensity of a laser field

A monochromatic laser field on the x-z plane, in the dipole approximation, is usually

expressed as

E(t) = E0 [cos(ωt +φ)ẑ+ εsin(ωt +φ)x̂] , (B.1)

with E0 the strength, ε the ellipticity and ω the angular frequency, respectively, of

the field. f (t) is the envelope of the laser field. φ is the carrier-envelope phase. The

intensity of the laser field is defined as:

I =
ω

2π

∫ 2π/ω

0
ncε0E2(t)dt

=
ω

2π

∫ 2π/ω

0
ncε0E2

0
[
cos2(ωt +φ)+ ε

2sin2(ωt +φ)
]

dt

=
1
2

ncε0(1+ ε
2)E2

0 , (B.2)

where n is the refractive index (n=1 in the vacuum) and ε0 is the vacuum permittiv-

ity. For a linearly polarised laser field (ε = 0) the intensity takes the form

I =
1
2

ncε0E2
0 . (B.3)



Appendix C

Focal volume effect

The focal volume effect that arises from the laser field being spatially inhomoge-

neous in the focal area has to be accounted for in computations in order to directly

compare with the experiment. Next, we briefly outline the method that is following

Ref. [106] in order to account for focal volume effect. The experimentally observed

yields of an ion for a specific peak intensity I0 is given by

S(I0) =
∫ I0

0
P(I)

[
−∂V (I0, I)

∂ I

]
dI, (C.1)

where P(I) is the probability of producing an ion at intensity I and V (I0, I) is the

volume occupied when the intensity is between I and I0. We consider the intensity

of a Gaussian laser beam given by [106, 142]

I(r,z) = I0

(
w0

w(z)

)2

exp
(
− 2r2

w2(z)

)
(C.2)

with

w(z) = w0

√
1+
(

z
zR

)2

(C.3)

zR =
πw2

0
λ

, (C.4)

where 2w0 is the beam waist, zR is the Rayleigh length, λ is the length of the wave.

To obtain the focal volume effect at z = 0, we compute the volume corresponding



107

to the area perpendicular to the z axis. This is given by

V (I0, I) =
∫

rdrdθ

=
∫ 2π

0

∫ r(I,z)

0
rdrdθ

= π[r(I,0)]2 =
1
2

πω
2
0 ln
(

I0

I

)
, (C.5)

where r(I,z) is decided by Eq.C.2

r(I,z) =

1
2

ω
2
0

[
1+
(

z
zR

)2
]

ln

I0

I
1

1+
(

z
zR

)2




1
2

. (C.6)

Substitute the V (I0, I) from Eq.C.5 into Eq.C.1 we obtain

S(I0) =
∫ I0

0
P(I)

[
−∂V

∂ I

]
dI

=
1
2

πω
2
0

∫ I0

0

P(I)
I

dI. (C.7)



Appendix D

Definition of the ionisation time of an

electron during the time propagation

During the analysis of the doubly-ionised events we obtain for strongly-driven

atoms, we identify the ionisation time of each electron during the time propagation.

To calculate this ionisation time for each electron, we employ the compensated en-

ergy which was introduced in Ref. [66, 107]. The change of velocity due to the

electronic field E(t) is obtained by

∆v(t) =−
∫ t

t0
E(t)dt, (D.1)

where t0 is the start time of the propagation. Then the compensated energy is defined

as [107]

Ec(t) = V (t)+
1
2
[v(t)−∆v(t)]2 . (D.2)

In the case when the electronic field is given by E(t) = E0cos(ωt)ẑ, we get [107]

∆v(t) = −E0

ω
[sin(ωt)− sin(ωt0)] ẑ = ∆vzẑ, (D.3)

Ec(t) = V (t)+
1
2
[
v2

x + v2
y +(vz−∆vz)

2] . (D.4)

Note that, in the case that V (t) = 0, the compensated energy Ec is constant and

positive. Thus in our calculation, we define the ionisation time as the time when the
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compensated energy becomes positive and stay positive for the remaining time in

the propagation.



Appendix E

Interference effect in semi-classical

models

Interference effects in semi-classical models have been previously addressed in

Ref. [143, 144]. A Monte Carlo method that also accounts for interference effects

has been implemented in Ref. [145]. A more accurate Monte Carlo method that

accounts for interference effects has been developed in Ref. [146]. In what follows

we briefly describe this latter model.

The propagator between the initial state (ra, ta) and final state (rb, tb) is ex-

pressed as [147]

K(rb, tb;ra, ta) = 〈rb|e−iHt |ra〉. (E.1)

The semi-classical approximation of this propagator is given by

KSC(rb, tb;ra, ta) = 〈rb|e−iHt |ra〉SC

=

(
1

2πi

) 3
2

∑
j

[
det
(
−∂ 2S(rb, tb;ra, ta)

∂ ra∂ rb

)] 1
2

eiS(rb,tb;ra,ta), (E.2)

where the substitute j is over all classical trajectories.

S(rb, tb;ra, ta) =
∫ tb

ta
L(p,r)dt, (E.3)

where L = T −V are the Lagrangian of the electron. Keeping only the exponential
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term, we approximate it by

KSC(rb, tb;ra, ta) = ∑
j

eiS(rb,tb;ra,ta). (E.4)

Accounting for the phase of each trajectory before the exit point , we obtain

KSC(rb, tb;ra, ta)exp(iIpta) = ∑
j

ei[S(rb,tb;ra,ta)+Ipta]. (E.5)

The trajectories that interfere are those with same final energy, where the ionising

electron has the same final momentum. Therefore, the relevant propagator can be

obtained from Eq.E.5 by a Flourier transformation

KSC(pb, tb;ra, ta)exp(iIpta) = ∑
j

ei[S(rb,tb;ra,ta)−pbrb+Ipta] ≡∑
j

eiΦ. (E.6)

Φ is given by [146]

Φ(pb, tb;ra, ta) =−
∫ tb

ta
[r · ṗ+H(r,p)]dt−para + Ipta. (E.7)

For the case when the Hamiltonian is given by

H(p,r) =
p2

2
− Q

r
+E(t) · r, (E.8)

Then

Φ =−
∫

∞

t0

(
p2

2
− 2Q

r

)
dt−p0r0 + Ipt0, (E.9)

where the start time is assumed to be t0, the infinity is taken to be the final time.

Next, we split up the time propagation into two intervals form the start of

propagation time t0 to the end of laser pulse t f and from t f to the infinity of time,

while in the later interval the system is conservative. By doing so one finds that the
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phase for trajectory j is given by

Φ j(t0,p0) = −p0 · r(t0)+ Ipt0−
∫ t f

t0

[
p2

2
− 2Q

r

]
dt +Φ

C
f (t f ) (E.10)

Φ
C
f (t f ) ≈ −Q

√
b
[

lng+arcsinh
(

r(t f ) ·p(t f )

g
√

b

)]
(E.11)

with

b =
1

2E f
(E.12)

g =
√

1+2E f L2
f , (E.13)

where E f is the energy of the ionising electron at the end of the laser pulse and

L f = r(t f )×p(t f ) is the angular momentum.

Therefore, the ionisation probability for a final momentum p is given by

P(p) =

∣∣∣∣∣N(p)

∑
j

√
w j(t0,p0)e

iΦ j(t0,p0)

∣∣∣∣∣
2

(E.14)

with w j(t0,p0) the weight of the trajectory j for an electron tunnel-ionising with

momentum p0 at time t0 in the initial condition and N(p) the number of electrons

with final momentum p.
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[123] M. Richter, M. Kunitski, M. Schöffler, T. Jahnke, L. P. H. Schmidt, and

R. Dörner. Ionization in orthogonal two-color laser fields: Origin and

phase dependences of trajectory-resolved Coulomb effects. Phys. Rev. A,

94:033416, Sep 2016.

[124] D. Ray, F. He, S. De, W. Cao, H. Mashiko, P. Ranitovic, K. P. Singh,

I. Znakovskaya, U. Thumm, G. G. Paulus, M. F. Kling, I. V. Litvinyuk, and

C. L. Cocke. Ion-energy dependence of asymmetric dissociation of D2 by a

two-color laser field. Phys. Rev. Lett., 103:223201, Nov 2009.

[125] H. Li, D. Ray, S. De, I. Znakovskaya, W. Cao, G. Laurent, Z. Wang, M. F.

Kling, A. T. Le, and C. L. Cocke. Orientation dependence of the ionization

of co and no in an intense femtosecond two-color laser field. Phys. Rev. A,

84:043429, Oct 2011.

[126] X. Gong, P. He, Q. Song, Q. Ji, H. Pan, J. Ding, F. He, H. Zeng, and J. Wu.

Two-dimensional directional proton emission in dissociative ionization of

H2. Phys. Rev. Lett., 113:203001, Nov 2014.

[127] S. De, I. Znakovskaya, D. Ray, F. Anis, Nora G. Johnson, I. A. Bocharova,

M. Magrakvelidze, B. D. Esry, C. L. Cocke, I. V. Litvinyuk, and M. F.

Kling. Field-free orientation of CO molecules by femtosecond two-color

laser fields. Phys. Rev. Lett., 103:153002, Oct 2009.

[128] E. Frumker, C. T. Hebeisen, N. Kajumba, J. B. Bertrand, H. J. Wörner,

M. Spanner, D. M. Villeneuve, A. Naumov, and P. B. Corkum. Oriented ro-

tational wave-packet dynamics studies via high harmonic generation. Phys.

Rev. Lett., 109:113901, Sep 2012.

[129] I. Znakovskaya, M. Spanner, S. De, H. Li, D. Ray, P. Corkum, I. V. Litvinyuk,

C. L. Cocke, and M. F. Kling. Transition between mechanisms of laser-

induced field-free molecular orientation. Phys. Rev. Lett., 112:113005, Mar

2014.



BIBLIOGRAPHY 128

[130] I. J. Kim, C. M. Kim, H. T. Kim, G. H. Lee, Y. S. Lee, J. Y. Park, D. J. Cho,

and C. H. Nam. Highly efficient high-harmonic generation in an orthogonally

polarized two-color laser field. Phys. Rev. Lett., 94:243901, Jun 2005.

[131] L. Brugnera, F. Frank, D. J. Hoffmann, R. Torres, T. Siegel, J. G. Underwood,

E. Springate, C. Froud, E. I. C. Turcu, J. W. G. Tisch, and J. P. Marangos.

Enhancement of high harmonics generated by field steering of electrons in a

two-color orthogonally polarized laser field. Opt. Lett., 35(23):3994–3996,

Dec 2010.

[132] L. Brugnera, D. J. Hoffmann, T. Siegel, F. Frank, A. Zaı̈r, J. W. G. Tisch,

and J. P. Marangos. Trajectory selection in high harmonic generation by

controlling the phase between orthogonal two-color fields. Phys. Rev. Lett.,

107:153902, Oct 2011.

[133] N. Dudovich, O. Smirnova, J. Levesque, Y. Mairesse, M. Yu. Ivanov, D. M.

Villeneuve, and P. B. Corkum. Measuring and controlling the birth of at-

tosecond XUV pulses. Nat. Phys., 2(11):781–786, Nov 2006.

[134] D. Shafir, Y. Mairesse, D. M. Villeneuve, P. B. Corkum, and N. Dudovich.

Atomic wavefunctions probed through strong-field light-matter interaction.

Nat Phys, 5(6):412–416, Jun 2009.

[135] X. Gong, C. Lin, F. He, Q. Song, K. Lin, Q. Ji, W. Zhang, J. Ma, P. Lu,

Y. Liu, H. Zeng, W. Yang, and J. Wu. Energy-resolved ultrashort delays of

photoelectron emission clocked by orthogonal two-color laser fields. Phys.

Rev. Lett., 118:143203, Apr 2017.

[136] R.Y. Rubinstein and D.P. Kroese. Simulation and the Monte Carlo Method.

Wiley Series in Probability and Statistics. Wiley, 2016.

[137] Y. Zhou, Q. Liao, Q. Zhang, W. Hong, and P. Lu. Controlling nonsequential

double ionization via two-color few-cycle pulses. Opt. Express, 18(2):632–

638, Jan 2010.



BIBLIOGRAPHY 129

[138] Y. Zhou, C. Huang, A. Tong, Q. Liao, and P. Lu. Correlated electron dynam-

ics in nonsequential double ionization by orthogonal two-color laser pulses.

Opt. Express, 19(3):2301–2308, Jan 2011.

[139] L. Chen, Y. Zhou, C. Huang, Q. Zhang, and P. Lu. Attosecond-resolved elec-

tron emission in nonsequential double ionization. Phys. Rev. A, 88:043425,

Oct 2013.

[140] L. Zhang, X. Xie, S. Roither, Y. Zhou, P. Lu, D. Kartashov, M. Schöffler,
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