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Abstract

This paper addresses the problems of disparity and optical flow partitioning based on the bright-

ness invariance assumption. We investigate new variational approaches to these problems with Potts

priors and possibly box constraints. For the optical flow partitioning, our model includes vector-

valued data and an adapted Potts regularizer. Using the notation of asymptotically level stable

functions we prove the existence of global minimizers of our functionals. We propose a modified

alternating direction method of minimizers. This iterative algorithm requires the computation of

global minimizers of classical univariate Potts problems which can be done efficiently by dynamic

programming. We prove that the algorithm converges both for the constrained and unconstrained

problems. Numerical examples demonstrate the very good performance of our partitioning method.

1 Introduction

An important task in computer vision is the reconstruction of three dimensional (3D) scenes from

stereo images. Taking a photo, 3D objects are projected onto a 2D image and the depth information

gets lost. If a stereo camera is used, two images are obtained. Due to the different perspectives there is

a displacement between corresponding points in the images which depends on the distance of the points

from the camera. This displacement is called disparity and turns out to be inversely proportional to the

distances of the objects, see Fig. 1 for an illustration. Therefore disparity estimation has constituted

an active research area in recent years. Global combinatorial optimization methods such as graph-cuts

[11, 36] which rely on a discrete label space of the disparity map and belief propagation [35, 61] were

developed as well as variational approaches [16, 20, 24, 32, 39, 40, 57, 60]. In particular, in [32] the
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Figure 1: Left and middle: Two images taken by a stereo camera. The shift between the images is
clearly visible. Right: True disparity encoded by different gray values which shows the depth of the
different objects in the scene. (http://vision.middlebury.edu/stereo/ image credits notice)

global energy function was also made convex by quantizing the disparity map and converting it into

a set of binary fields. Illumination variations were additionally taken into account, e.g., in [16, 19].

A stereo matching algorithm based on the curvelet decomposition was developed in [42]. With the

aim of reducing the computational redundancy, a histogram based disparity estimation method was

proposed in [41]. Further, methods based on non-parametric local transforms followed by normalized

cross correlation (NCC) [56] and rank-transforms [65] have been used. In this paper we are interested in

the direct disparity partitioning without a preliminary separate estimation of the disparity. Moreover

we want to avoid an initial quantization of the disparity map as necessary in graph-cut methods or

in [32]. We focus on a variational approach with a linearized brightness invariance assumption to

constitute the data fidelity term. The Potts prior described below will serve as regularizing term

which forces the minimizer of our functional to show a good partitioning.

Optical flow estimation is closely related to disparity estimation where the horizontal displacement

direction has to be completed by the vertical one. In other words, we are searching for vector fields

now and have to deal with vector-valued data. Variational approaches to optical flow estimation

were pioneered by Horn and Schunck [34] followed by a vast number of refinements and extensions,

including sophisticated data fidelity terms going beyond the brightness [7, 13, 31] and nonsmooth

regularizers, e.g., TV-like ones [2, 33] including also higher order derivatives [62, 63, 64] and nonlocal

regularizers [59], to mention only few of them. In general multiscale approaches have to be taken into

account to correctly determine larger and smaller flow vectors [1, 12, 23]. A good overview is given in

[7]. Recent comprehensive empirical evaluations [6, 29] show that variational algorithms yield a very

good performance. As for the disparity we deal with variational optical flow partitioning using the

brightness invariance assumption and a vector-valued Potts prior in this paper.
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The classical (discrete) Potts model, named after R. Potts [46] has the form

min
u

1

2
‖f − u‖22 + λ‖∇u‖0, (1.1)

where the discrete gradient consists of directional difference operators and ‖ · ‖0 denotes the `0 semi-

norm. Computing a global minimizer of the multivariate Potts model appears to be NP hard [11,

21, 55]. For univariate data this problem can be solved efficiently using dynamic programming [14,

27, 43, 58]. In the context of Markov random fields such kind of functionals were used by Geman

and Geman [30] and in [9]. In [37] a deterministic continuation method to restore piecewise constant

images was proposed. A stochastic continuation approach was introduced and successfully used for

the reconstruction of 3D tomographic images in [47]. The method and the theory were refined in [48].

Recently theoretical results relating the probability for global convergence and the computation speed

were given in [49].

There is also a rich literature on `0-regularized methods (without additional difference operator) in

particular in the context of sparsity and on various (convex) relaxation methods (also for data fidelity

terms with linear operators). Here we refer to the overview in [26]. Various approximations of the `0

norm were used in order to guarantee that the objective function has global minimizers; see, e.g., [17],

among others. Note that the local and the global minimizers of least squares regularized with the `0

norm were described in [44].

In this paper, we concentrate ourselves on the (non-relaxed) Potts functional. We apply the following

model:

min
u∈S

1

2
‖f −Au‖22 + λ‖∇u‖0, (1.2)

where S is a certain compact set, A a linear operator and ‖∇u‖0 a ’grouped’ or vector-valued prior

now. We prove the existence of a global minimizer of the functional using the notion of asymptotically

level stable functions [3]. For single-valued data a completely different existence proof was given in [54].

We apply an ADMM like algorithm to the general Potts model (1.2). Such algorithm was proposed

for the partitioning of vector-valued images for the Potts model (1.1) in [53]. It appears to be faster

than current methods based on graph cuts and convex relaxations of the Potts model. In particular

the number of values of the sought-after image u is not a priori restricted. Our algorithm is designed

for the model (1.2) which includes non invertible linear operators in the data fidelity term as well as

constraints. In the context of wavelet frame operators (instead of gradients) another minimization
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method for single-valued `0-regularized, constrained problems was suggested in [38, 66]. It is based on

a penalty decomposition and reduces the problem mainly to the iterative solution of `2 − `0 problems

via hard thresholding. Convergence to a local minimizer is shown in case of an invertible operator

A. However, note that in our applications both linear operators A1 and A have usually a nontrivial

kernel. To the best of our knowledge this is the first time that this kind of direct partitioning model

was applied for disparity and optical flow estimation.

The remaining part of the paper is organized as follows: Our disparity and optical flow partitioning

models are presented in Section 2. Section 3 provides the proof that the (vector-valued) general Potts

model has a global minimizer. Then, in Section 4 an ADMM like algorithm is suggested together

with the convergence proofs for the constrained and unconstrained models. Numerical experiments

are shown in Section 5. Finally, Section 6 gives conclusions for future work.

2 Disparity and Optical Flow Partitioning Models

In this paper we deal with gray-value images f : G → R defined on the grid G := {1, . . . ,M} ×

{1, . . . , N} and vector fields u = (u1, . . . , ud) : G → Rd, where d = 1 in the disparity partitioning

problem and d = 2 in the optical flow partitioning problem. Note that

u(i, j) = (u1(i, j), . . . , ud(i, j)) ∈ Rd, (i, j) ∈ G.

By ∇1, ∇2 we denote derivative operators in vertical and horizontal directions, respectively. More pre-

cisely we will use their discrete counterparts. Among the various possible discretizations of derivative

operators we focus on forward differences

∇1u(i, j) := u(i+ 1, j)− u(i, j), ∇2u(i, j) := u(i, j + 1)− u(i, j)

and assume mirror boundary conditions. Further we will need the ’grouped’ `0 semi-norm for vector-

valued data defined by

‖u‖0 :=
n∑

i,j=1

‖u(i, j)‖0, ‖u(i, j)‖0 :=

 0 if u(i, j) = 0d,

1 otherwise.
(2.1)
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Here 0d denotes the null vector in Rd. If d = 1 then ‖u‖0 is the usual `0 ’componentwise’ semi-norm

for vectors. For the partitioning of vector fields we will apply the `0 semi-norm not directly to the

vector fields but rather to ∇1u and ∇2u to penalize their spatial differences. In other words we use

‖∇u‖0 := ‖∇1u‖0 + ‖∇2u‖0 as Potts prior for vector-valued data.

Remark 2.1. To have a convenient vector-matrix notation we reorder images f and ul, l = 1, . . . , d

columnwise into vectors vec f and vecul of length n := NM . We address the pixels by the index set

In := {1, . . . , n}. If the meaning is clear from the context we keep the notation f instead of vec f . In

particular we will have ul ∈ Rn and u = (uT
1 , . . . , u

T
d)T ∈ Rnd. After columnwise reordering the forward

difference operators (with mirror boundary conditions) can be written as matrices

∇1 := Id ⊗ IM ⊗DN , ∇2 := Id ⊗DT
M ⊗ IN ,

where IN denotes the N ×N identity matrix,

DN :=



−1 1

−1 1

. . .

−1 1

0


∈ RN,N

and ⊗ is the tensor (Kronecker) product of matrices.

Using the indicator function of a set S defined by

ιS(t) =


0 if t ∈ S,

∞ otherwise,

we can address box constraints on u by adding the regularizing term ιSBox(u), where

SBox := {u ∈ Rdn : umin ≤ u ≤ umax}.

Both in the disparity and optical flow partitioning problems we are given a sequence of images. In this

paper we focus on two images f1 and f2 coming from (i) the appropriate left and right images taken,
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e.g., by a stereo camera (disparity problem), and (ii) two image frames at different times arising, e.g.,

from a video (optical flow problem). Then the models rely on an invariance requirement between

these images. Various invariance assumptions were considered in the literature and we refer to [7] for

a comprehensive overview. Here we focus on the brightness invariance assumption. In the disparity

model we address only horizontal displacements and consider in a continuous setting

f1(x, y)− f2(x− u1(x, y), y) ≈ 0. (2.2)

For the optical flow model we assume

f1(x, y)− f2

(
(x, y)− u(x, y)

)
≈ 0, u = (u1, u2). (2.3)

Using first order Taylor expansions around an initial disparity ū1, resp., an initial optical flow estimate

ū = (ū1, ū2), gives

disp. : f2(x− u1, y) ≈ f2(x− ū1, y)−∇1f2(x− ū1, y)(u1(x, y)− ū1(x, y)),

flow : f2

(
(x, y)− u) ≈ f2

(
(x, y)− ū)

)
− (∇1f2((x, y)− ū),∇2f2((x, y)− ū)

)
(u(x, y)− ū(x, y)).

To get an initial disparity we will use a simple block-matching approach with NCC as measure for the

block similarity, following the ideas in [16, 56]. Then the linearized invariance requirements (2.3) and

(2.2) become

disp. : 0 ≈ f1(x, y)− f2(x− ū1, y) +∇1f2(x− ū1, y)(u1(x, y)− ū1(x, y)),

flow : 0 ≈ f1(x, y)− f2

(
(x, y)− ū

)
+
(
∇1f2((x, y)− ū),∇2f2((x, y)− ū)

)
(u(x, y)− ū(x, y)).

Note that f2((x, y) − ū) is only well defined in the discrete setting if (i, j) − ū is in G. Later we will

see that our method to compute ū really fulfills this condition, thus we can carry over the continuous

model to the discrete setting without any modifications. Using a non-negative increasing function

ϕ : R≥0 → R, and considering only grid points (x, y) = (i, j) ∈ G the data term for the disparity

partitioning model becomes for example

∑
(i,j)∈G

ϕ
(
∇1f2(i− ū1, j)u1(i, j)− (∇1f2(i− ū1, j)ū1(i, j) + f2(i− ū1, j)− f1(i, j))

)
.
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In this paper we will deal with quadratic functions ϕ(t) := 1
2 t

2. Using the notation in Remark 2.1 our

partitioning models become with u = u1 in the disparity problem and u = (uT
1 , u

T
2 )T in the optical

flow problem:

disp. : Edisp(u) :=
1

2
‖A1u− b1‖22 + µ ιSBox(u) + λ (‖∇1u‖0 + ‖∇2u‖0) , (2.4)

flow : Eflow(u) :=
1

2
‖Au− b‖22 + µ ιSBox(u) + λ (‖∇1u‖0 + ‖∇2u‖0) , (2.5)

where µ ∈ {0, 1}, λ > 0, ‖ · ‖0 stands for the ’group’ semi-norm in (2.1) and

A1 := diag
(
vec
(
∇1f2(i− ū1, j)

))
, (2.6)

A :=
(
diag

(
vec
(
∇1f2((i, j)− ū)

))
, diag

(
vec
(
∇2f2((i, j)− ū)

)))
, (2.7)

b1 := vec
(
∇1f2(i− ū1, j)ū1(i, j) + f2(i− ū1, j)− f1(i, j)

)
,

b := vec
((
∇1f2((i, j)− ū),∇2f2((i, j)− ū)

)
ū(i, j) + f2((i, j)− ū)− f1(i, j)

)
. (2.8)

We are looking for minimizers of these functionals.

3 Global Minimizers for Potts Regularized Functionals

We want to know if the functionals in (2.4) and (2.5) have global minimizers. Both Edisp and Eflow

are lower semi-continuous (l.s.c.) and proper functionals. When µ = 1, the minimization of Edisp and

Eflow is constrained to the compact set SBox in which case (2.4) and (2.5) have global minimizers; see,

e.g., [4, Proposition 3.1.1, p. 82].

Next we focus on the case µ = 0. More general, we consider for arbitrary given A ∈ Rn,dn, b ∈ Rn and

p ≥ 1 functionals E : Rdn → R of the form

E(u) :=
1

p
‖Au− b‖pp + λ (‖∇1u‖0 + ‖∇2u‖0) , λ > 0. (3.1)

The existence of a global minimizer was proved in the case d = 1 in [54]. Here we give a shorter and

more general proof that holds for any d ≥ 1 using the notion of asymptotically level stable functions.

This wide class of functions was introduced by Auslender [3] in 2000 and since then it appeared that
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many problems on the existence of optimal solutions are easily solved for these functions. As usual,

lev (E, λ) := {u ∈ Rdn : E(u) ≤ λ} for λ > inf
u
E(u) ;

by E∞ we denote the asymptotic (or recession) function of E and

ker(E∞) := {u ∈ Rdn : E∞(u) = 0}.

The following definition is taken from [4, p. 94]: a l.s.c. and proper function E : Rdn → R ∪ {+∞}

is said to be asymptotically level stable (als) if for each ρ > 0, each real-valued, bounded sequence

{λk}k and each sequence {uk} ∈ Rdn satisfying

uk ∈ lev (E, λk), ‖uk‖ → +∞, uk
‖uk‖

→ ũ ∈ ker(E∞), (3.2)

there exists k0 such that

uk − ρũ ∈ lev (E, λk) ∀k ≥ k0.

If for each real-valued, bounded sequence {λk}k there exists no sequence {uk}k satisfying (3.2), then

E is automatically als.

In particular, coercive functions are als. It was originally exhibited in [5] (without the notion of als

functions) that any als function E with inf E > −∞ has a global minimizer. The proof is also given

in [4, Corollary 3.4.2]. We show that the discontinuous non-coercive objective E in (3.1) is als and

has thus a global minimizer.

Theorem 3.1. Let E : Rdn → R be of the form (3.1). Then the following relations hold true:

i) ker(E∞) = ker(A).

ii) E is als.

iii) E has a global minimizer.

Proof. i) The asymptotic function E∞ of E can be calculated according to [22], see also [4, Theorem

2.5.1], as

E∞(u) = lim inf
u′→u
t→∞

E(tu′)

t
.
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Then

E∞(u) = lim inf
u′→u
t→∞

1
p‖Atu

′ − b‖pp + ‖∇1(tu′)‖0 + ‖∇2(tu′)‖0
t

= lim inf
u′→u
t→∞

(
1

p
tp−1‖Au′ − 1

t
b‖pp +

‖∇1(tu′)‖0 + ‖∇2(tu′)‖0
t

)

=


0 if u ∈ ker(A),

+∞ if u 6∈ ker(A) and p > 1,

‖Au‖1 if u 6∈ ker(A) and p = 1,

and consequently ker(E∞) = ker(A).

ii) Let {uk}k satisfy (3.2) with uk ‖uk‖−1 → ũ ∈ ker(A) and let ρ > 0 be arbitrarily fixed. Below we

compare the numbers ‖∇νuk‖0 and ‖∇ν(uk − ρũ)‖0, ν = 1, 2. There are two options.

If (i, j) ∈ supp(∇1ũ) := {(i, j) ∈ G : ũ(i+ 1, j)− ũ(i, j) 6= 0d}, then

ũ(i, j)− ũ(i+ 1, j) = lim
k→∞

uk(i, j)− uk(i+ 1, j)

‖uk‖
6= 0d

and ‖uk(i, j)− uk(i+ 1, j)‖ > 0 for all but finitely many k. Therefore, there exists k1(i, j) such that

‖uk(i, j)− uk(i+ 1, j)− ρ(ũ(i, j)− ũ(i+ 1, j))‖0 ≤ ‖uk(i, j)− uk(i, j + 1)‖0 ∀k ≥ k1(i, j). (3.3)

If (i, j) ∈ G\supp(∇1ũ), i.e., ũ(i, j)− ũ(i+ 1, j) = 0d, then clearly

uk(i, j)− uk(i+ 1, j)− ρ(ũ(i, j)− ũ(i+ 1, j)) = uk(i, j)− uk(i+ 1, j). (3.4)

Combining (3.3) and (3.4) shows that

‖uk(i, j)− uk(i+ 1, j)− ρ(ũ(i, j)− ũ(i+ 1, j))‖0 ≤ ‖uk(i, j)− uk(i+ 1, j)‖0 ∀k ≥ k1(i, j)

and hence

‖∇1(uk − ρũ)‖0 ≤ ‖∇1 uk‖0 ∀k ≥ k1 := max{k1(i, j) : (i, j) ∈ G}. (3.5)

In the same way, there is k2 so that

‖∇2(uk − ρũ)‖0 ≤ ‖∇2uk‖0 ∀k ≥ k2. (3.6)
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By part i) of the proof we know that Aũ = 0n which jointly with (3.5) and (3.6) implies for all

k ≥ k0 := max{k1, k2} that

E(uk − ρũ) =
1

p
‖A(uk − ρũ)− b‖pp + λ(‖∇1(uk − ρũ)‖0 + ‖∇2(uk − ρũ)‖0)

=
1

p
‖Auk − b‖pp + λ(‖∇1(uk − ρũ)‖0 + ‖∇2(uk − ρũ)‖0)

≤ 1

p
‖Auk − b‖pp + λ(‖∇1uk‖0 + ‖∇2(uk)‖0) = E(uk).

Hence it follows by uk ∈ lev (E, λk) that uk − ρũ ∈ lev (E, λk) for any k ≥ k0. Consequently E is als.

Finally, iii) follows directly from [4, Corollary 3.4.2].

4 ADMM-like Algorithm

In this section we follow an idea in [53] to approximate minimizers of our more general functionals

Edisp and Eflow. Basically the problem is reduced to the iterative computation of minimizers of the

univariate classical Potts problem for which there exist efficient solution techniques using dynamic

programming [27]. Here we apply the method proposed in [58, 54]. We consider

min
u∈Rnd

{
F (u) + λ

(
‖∇1u‖0 + ‖∇2u‖0

)}
.

Clearly, we have

disp. (d = 1) : F (u) :=
1

2
‖A1u− b1‖22 + µ ιSBox(u), (4.1)

flow (d = 2) : F (u) :=
1

2
‖Au− b‖22 + µ ιSBox(u). (4.2)

For µ = 1 we have a (box) constrained problem; for µ = 0 an unconstrained one. In [53] partitioning

problems of vector-valued images with F (u) := 1
2‖u − b‖

2
2 were considered. In our setting a linear

operator is involved into the data term which is not a diagonal operator in the optical flow problem,

see (2.6), and in both cases (2.6) and (2.7) it has a non-trivial kernel. Further, we may have box

constraints in addition. The minimization problem can be rewritten as

min
u,v,w∈Rnd

{
F (u) + λ

(
‖∇1v‖0 + ‖∇2w‖0

)
subject to v = u, w = u

}
.
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To find an approximate (local) minimizer we suggest the following algorithm which resembles the

basic structure of an alternating direction method of multipliers (ADMM) [10, 28] but with inner

parameters η(k) which has to go to infinity.

Algorithm 1 ADMM-like Algorithm

Initialization: v(0), w(0), q
(0)
1 , q

(0)
2 , η(0) and σ > 1

Iteration: For k = 0, 1, . . . iterate

u(k+1) ∈ argmin
u

{
F (u) +

η(k)

2

(
‖u− v(k) + q

(k)
1 ‖

2
2 + ‖u− w(k) + q

(k)
2 ‖

2
2

)}
, (4.3)

v(k+1) ∈ argmin
v

{
λ‖∇1v‖0 +

η(k)

2
‖u(k+1) − v + q

(k)
1 ‖

2
2

}
, (4.4)

w(k+1) ∈ argmin
w

{
λ‖∇2w‖0 +

η(k)

2
‖u(k+1) − w + q

(k)
2 ‖

2
2

}
, (4.5)

q
(k+1)
1 = q

(k)
1 + u(k+1) − v(k+1), (4.6)

q
(k+1)
2 = q

(k)
2 + u(k+1) − w(k+1), (4.7)

η(k+1) = η(k)σ. (4.8)

Step 1 of the algorithm in (4.3) can be computed for our optical flow term F in (4.2) and µ = 0 by

setting the gradient of the respective function to zero. Then u(k+1) is the solution of the linear system

of equations

(ATA+ 2η(k)Idn)u = ATb+ η(k)
(
v(k) − q(k)

1 + w(k) − q(k)
2

)
.

For the disparity problem (4.1) we have just to replace A by A1 which is a simple diagonal matrix and b

by b1. For µ = 1 and the disparity problem, u(k+1) can be computed componentwise by straightforward

computation as

u(k+1) = max
{

min{u(k+ 1
2

), umax}, umin

}
,

where

u(k+ 1
2

) := (AT
1A1 + 2η(k)In)−1

(
AT

1 b1 + η(k)
(
v(k) − q(k)

1 + w(k) − q(k)
2

))
. (4.9)

For the optical flow problem and µ = 1 we have to minimize a box constrained quadratic problem for

which there exist efficient algorithms, see, e.g., [8]. In our numerical part the optical flow problem is

handled without constraints, i.e. for µ = 0. In this case, only the linear system of equations (4.9) has

to be solved.

The Steps 2 and 3 in (4.4) and (4.5) of the algorithm are univariate Potts problems which can be

solved efficiently in polynomial time. Here we apply the method proposed in [58, 54].
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Next we prove the convergence of Algorithm 1. Due to the NP hardness of the problem we can in

general not expect that the limit point is in general a (global) minimizer of the cost function. First

we deal with a general situation which involves our unconstrained problems (µ = 0). We assume that

any vector in the subdifferential ∂F of F fulfills the growth constraint

u∗ ∈ ∂F (u) ⇒ ‖u∗‖2 ≤ C(‖u‖2 + 1). (4.10)

It can be easily checked that F : Rdn → Rn with F (u) := 1
p‖Mu−m‖pp, p ∈ [1, 2] fulfills (4.10) for any

matrix M ∈ Rn,dn and m ∈ Rn. Note that the variable C stands for any constant in the rest of the

paper.

Theorem 4.1. Let F : Rdn → R ∪ {+∞} be a proper, closed, convex function which fulfills (4.10).

Then Algorithm 1 converges in the sense that (u(k), v(k), w(k)) → (û, v̂, ŵ) as k → ∞ with û = v̂ = ŵ

and (q
(k)
1 , q

(k)
2 )→ (0, 0) as k →∞.

Proof. By (4.6) we have

η(k)

2
‖q(k+1)

1 ‖22 =
η(k)

2
‖u(k+1) − v(k+1) + q

(k)
1 ‖

2
2

≤ λ‖∇1v
(k+1)‖0 +

η(k)

2
‖u(k+1) − v(k+1) + q

(k)
1 ‖

2
2

and by (4.4) further

η(k)

2
‖q(k+1)

1 ‖22 ≤ λ‖∇1(u(k+1) + q
(k)
1 )‖0 +

η(k)

2
‖u(k+1) − (u(k+1) + q

(k)
1 ) + q

(k)
1 ‖

2
2

≤ λ‖∇1(u(k+1) + q
(k)
1 )‖0

≤ λn.

By (4.7) and (4.5) we conclude similarly

η(k)

2
‖q(k+1)

2 ‖22 ≤ λn.

Hence it follows

‖q(k+1)
1 ‖22 ≤

2λn

η(k)
and ‖q(k+1)

2 ‖22 ≤
2λn

η(k)
, (4.11)
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which implies q
(k+1)
1 → 0 and q

(k+1)
2 → 0 as k →∞. Further, we obtain by u(k) − v(k) = q

(k)
1 − q(k−1)

1

that

‖v(k) − u(k)‖2 ≤ ‖q(k)
1 ‖2 + ‖q(k−1)

1 ‖2 ≤

√
2λn

η(k−1)
+

√
2λn

η(k−2)
≤ 2

√
2λn

η(k−2)

and analogously

‖w(k) − u(k)‖2 ≤ 2

√
2λn

η(k−2)
. (4.12)

For ε(k) := v(k) − u(k) − q(k)
1 + w(k) − u(k) − q(k)

2 we get by (4.11) - (4.12) that

‖ε(k)‖2 ≤ ‖q(k)
1 ‖2 + ‖q(k)

2 ‖2 + ‖v(k) − u(k)‖2 + ‖w(k) − u(k)‖2

≤

√
2λn

η(k−1)
+

√
2λn

η(k−1)
+ 2

√
2λn

η(k−2)
+ 2

√
2λn

η(k−2)
≤ 6

√
2λn

η(k−2)
, (4.13)

i.e., ‖ε(k)‖2 decreases exponentially. By Fermat’s theorem the proximum u(k+1) in (4.3) has to fulfill

0 ∈ ∂F (u(k+1)) + η(k)(u(k+1) − v(k) + q
(k)
1 + u(k+1) − w(k) + q

(k)
2 )

so that there exists p(k+1) ∈ F (u(k+1)) satisfying

0 = p(k+1) + η(k)(u(k+1) − v(k) + q
(k)
1 + u(k+1) − w(k) + q

(k)
2 )

= p(k+1) + η(k)(u(k) − v(k) + q
(k)
1 + u(k) − w(k) + q

(k)
2 ) + 2η(k)(u(k+1) − u(k))

= p(k+1) + η(k)ε(k) + 2η(k)(u(k+1) − u(k)).

Rearranging terms, taking the norm and applying the triangle inequality leads to

‖u(k+1) − u(k)‖2 ≤
‖p(k+1)‖2

2η(k)
+

1

2
‖ε(k)‖2. (4.14)

Since ‖x− y‖ ≥ ‖x‖ − ‖y‖ and by assumption (4.10) it follows

‖u(k+1)‖2 ≤
‖p(k+1)‖2

2η(k)
+

1

2
‖ε(k)‖2 + ‖u(k)‖2 (4.15)

≤ C‖u(k+1)‖2
2η(k)

+
C

2η(k)
+

1

2
‖ε(k)‖2 + ‖u(k)‖2.

Since C
2η(k)

→ 0 as k → ∞, there exists a K such that 1 < 1
1− C

2η(k)

≤ τ :=
√
σ for all k > K. Now

13



(4.15) implies

‖u(k+1)‖2
(

1− C

2η(k)

)
≤ C

2η(k)
+

1

2
‖ε(k)‖2 + ‖u(k)‖2

which gives for k > K the estimates

‖u(k+1)‖2 ≤ τ
C

2η(k)
+ τ

1

2
‖ε(k)‖2 + τ‖u(k)‖2

≤ τ C

2η(k)
+ τ

1

2
‖ε(k)‖2 + τ2 C

2η(k−1)
+ τ2 1

2
‖ε(k − 1)‖2 + τ2‖u(k−1)‖2

≤ τk+1−K‖u(K)‖2 +

k+1−K∑
j=1

Cτ j

2η(k+1−j) +

k+1−K∑
j=1

τ j

2
‖ε(k + 1− j)‖2

≤ τk+1
(
‖u(K)‖2 +

k+1−K∑
j=1

C

2η(k+1−j) +

k+1−K∑
j=1

1

2
‖ε(k + 1− j)‖2

)

and by the exponential decay of ‖ε(k)‖2 with η(k) further

‖u(k+1)‖2 ≤ Cτk+1.

Using this relation together with (4.10) and (4.8) in (4.14) we conclude

‖u(k+1) − u(k)‖2 ≤
‖p(k+1)‖2

2η(k)
+

1

2
‖ε(k)‖2

≤ C‖u(k+1)‖2
2η(k)

+
C

2η(k)
+

1

2
‖ε(k)‖2

≤ C2τk+1

2η(k)
+

C

2η(k)
+

1

2
‖ε(k)‖2

≤ C2

2η(0)σ
k−1
2

+
C

2η(k)
+ 3

√
2λn

η(k−2)
.

Thus, ‖u(k+1)−u(k)‖2 decreases exponentially. Therefore it is a Cauchy sequence and {u(k)}k converges

to some û as k →∞. Since q
(k)
1 → 0 and q

(k)
2 → 0 as k →∞ we obtain by (4.6) and (4.7) that {v(k)}k

and {w(k)}k also converge to û. This finishes the proof.

The assumptions in the next theorem fit to our constrained models (µ = 1), but are more general.

Theorem 4.2. Let F : Rdn → R∪{+∞} be any function which is bounded on its domain. Further as-

sume that (4.3) has a global minimizer. Then Algorithm 1 converges in the sense that (u(k), v(k), w(k))→

(û, v̂, ŵ) as k →∞ with û = v̂ = ŵ and (q
(k)
1 , q

(k)
2 )→ (0, 0) as k →∞.
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Proof. As in the proof of Theorem 4.1 we can show that (4.13) holds true for ε(k) := v(k) − u(k) −

q
(k)
1 + w(k) − u(k) − q(k)

2 . The quadratic term in (4.3) can be rewritten as

‖u− v(k) + q
(k)
1 ‖

2
2 + ‖u− w(k) + q

(k)
2 ‖

2
2 = 2〈u, u〉+ 2〈u, q(k)

1 − v(k) + q
(k)
2 − w(k)〉+ C

= 2‖u− u(k)‖22 − 2〈u, ε(k)〉+ C.

Thus, the first step of Algorithm 1 is equivalent to

u(k+1) ∈ argmin
u

{
F (u) + η(k)‖u− u(k)‖22 − η(k)〈ε(k), u〉

}
.

This implies

F (u(k+1)) + η(k)‖u(k+1) − u(k)‖22 − η(k)〈ε(k), u(k+1)〉 ≤ F (u(k))− η(k)〈ε(k), u(k)〉

and further

‖u(k+1) − u(k)‖22 ≤
F (u(k))− F (u(k+1))

η(k)
− 〈ε(k), u(k) − u(k+1)〉.

Using the boundedness of f and the Cauchy-Schwarz inequality leads to

‖u(k+1) − u(k)‖22 ≤
C

η(k)
+ ‖ε(k)‖2‖u(k) − u(k+1)‖2.

Since ε(k)→ 0 as k →∞, we conclude that ‖u(k) − u(k+1)‖2 is bounded so that

‖u(k+1) − u(k)‖22 ≤
C

η(k)
+ C‖ε(k)‖2.

Thus, ‖u(k) − u(k+1)‖2 is decreasing exponentially and {u(k)}k converges to some û as k →∞.

5 Numerical Results

In this section we present numerical results obtained by our partitioning approaches. The test images

for the disparity and the optical flow problems were taken from

• http://vision.middlebury.edu/stereo/ [50, 51, 52], and
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• http://vision.middlebury.edu/flow/ [6],

respectively. All examples were executed on a computer with an Intel Core i7-870 Processor (8M

Cache, 2.93 GHz) and 8 GB physical memory, 64 Bit Linux.

We compare our direct partitioning methods (2.4) and (2.5) via Algorithm 1 with a two-stage approach

consisting of i) disparity, resp. optical flow estimation, and ii) partitioning of the estimated values.

More precisely the two stage algorithm performs as follows:

i) In the first step, the disparity is estimated using the TV regularized model

min
u1∈SBox

{1

2
‖A1u1 − b1‖22 + ιSBox(u1) + α1‖ |∇u1| ‖1

}
(5.1)

with A1 and b1 defined by (2.6) and (4.6), respectively. Here |∇u1| stands for the discrete

version of

((
∂u1
∂x (x, y)

)2
+
(
∂u1
∂y (x, y)

)2
) 1

2

, i.e., we use the isotropic (“rotationally invariant”)

TV version. Such model was proposed for the disparity estimation in [16] and can be found with

e.g., shearlet regularized `1 norm in [25]. For estimating the optical flow we minimize

min
u

{1

2
‖Au− b‖22 + α1‖

√
|∇u1|2 + |∇u2|2‖1

}
, (5.2)

with A and b defined by (2.7) and (2.8), respectively. The global minimizers of the convex

functionals (5.1) and (5.2) were computed via the primal-dual hybrid gradient method (PDHG)

proposed in [15, 45]. Clearly, one could use other iterative first order (primal-dual) methods,

see, e.g., [18].

ii) In the second step the estimated disparity, resp. optical flow is partitioned by the method in [53]

which minimizes, e.g., for the disparity the functional

min
u1

{1

2
‖u1 − u1,est‖22 + α2(‖∇1u1‖0 + ‖∇2u1‖0)

}
,

where u1,est is the disparity estimated in the first step. For the approximation of a minimizer

we use the software package Pottslab http://pottslab.de with default parameters. Note that by

introducing weights w in the Potts prior the functional can be made more isotropic which leads

to a better “rotation invariance”, see [53].
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Figure 2: Results for the test images “Venus”. Left to right: original left image, ground truth,
partitioned disparity using the two stage algorithm (α1 = 0.005, α2 = 300), partitioned disparity
using the direct algorithm (λ = 2.5).

Next we comment on the direct partitioning implementation. Our partitioning models (2.4) and (2.5)

are based on the knowledge of initial values ū1 and ū for the disparity, resp., the optical flow. Here

we use a simple block matching based algorithm, see [16]. This method consists basically of a search

within a given range. For each pixel in the first image we compare its surrounding block with sur-

rounding blocks of pixels in the search range of the second image. The chosen block size is 7× 7. As

a similarity measure we use the normalized cross correlation [56]. Finally we apply a median filter to

the initial guess to reduce the influence of outliers. Since (i − ū1, j), resp. (i, j) − ū(i, j) are the grid

coordinates of the pixel in the second image corresponding to pixel (i, j) in the first image, we see that

f2(i− ū1, j), resp. f2((i, j)− ū) are really well defined grid functions. As parameters in Algorithm 1 we

choose η(0) = 0.01 and σ = 1.05. The algorithm is initialized with v(0) = w(0) = ū1 for the disparity

partitioning and v(0) = w(0) = ū for the flow partitioning; further q
(0)
i , i = 1, 2 are zero matrices. We

show the results after 100 iterations where no differences to subsequently iterated images can be seen.

We start with the disparity partitioning results. Figure 2 shows the results for the image “Venus”.

The true disparity contains horizontal and vertical structures so that our non isotropic direct approach

fits fine. It can compete with the more expansive two stage method. The main differences appear due

to the more or less isotropy of the models.

Figs. 3 and 4 show that our direct partitioning algorithm can qualitatively compete with the two

stage algorithm.

Next we show our results for the optical flow partitioning. The flow vectors are color coded with color

' direction, brightness ' magnitude). The ground truth flow field in the first example “Wooden” in

Fig. 5 prefers horizontal and vertical directions. As in the first disparity example our algorithm show

good results. In Fig. 6 and Fig. 7 we see that our direct method can compete with the more involved

17



Figure 3: Result for the images “Cones”. Left to right: original left image, ground truth, partitioned
disparity using the two stage algorithm (α1 = 0.005, α2 = 50), partitioned disparity using the direct
algorithm (λ = 0.5).

Figure 4: Result for the “Dolls” images. Left to right: original left image, ground truth, partitioned
disparity using the two stage algorithm (α1 = 0.01, α2 = 80), partitioned disparity using the direct
algorithm (λ = 1.5).

two stage approach. The main differences appear again due to the more isotropic approach in the two

stage model. Especially in Fig. 6 one can see that the flow field of the rotating wheel is partitioned

into rectangular instead of annular segments by our direct method. In the same figure, we show a

result where we have estimated the optical flow in Step 1 by the more sophisticated model in [13], for

the program code see http://lmb.informatik.uni-freiburg.de/resources/software.php. Step 2 was the

same. The result is only slightly different from those obtained by the previously described two stage

algorithm.

Figure 5: Result for the “Wooden” images, Left to right: first test image, ground truth, partitioned
optical flow using the two stage algorithm (α1 = 0.01, α2 = 150), partitioned optical flow by the direct
algorithm (λ = 0.5).
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Figure 6: Result for the test images “RubberWhale”. Top: first test image, ground truth, partitioned
optical flow by the direct algorithm (λ = 0.05) . Bottom: partitioned optical flow by the two stage
algorithm. Left: Two stage algorithm (α1 = 0.005, α2 = 7), Right: Two stage algorithm but with
Step 1 computed by the model in [13] (α2 = 7).

Figure 7: Result for the images “Hydrangea”. Left to right: ground truth, partitioned optical flow
by the two stage algorithm (α1 = 0.01, α2 = 35), partitioned optical flow by the direct algorithm
(λ = 0.15).
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6 Conclusions

In this paper we have proposed a new method for disparity and optical flow partitioning based on a

Potts regularized variational model together with an ADMM like algorithm. In case of the optical

flow it is adapted to vector-valued data. In this paper, we have only shown the basic approach and

further refinements are planned in the future. So we intend to incorporate more sophisticated data

fidelity terms. In particular illumination changes should be handled. We will make the model more

“rotationally invariant”. The simple introduction of weights and other differences as in [53] and in

several graph cut approaches is one possibility. The crucial part for the running time of the proposed

direct algorithm is the univariate Potts minimization. However, since the single problems are inde-

pendent of each other, they could be solved in parallel. Such parallel implementation is another point

of future activities. Further we want to incorporate multiple frames instead of just two of them in our

model. From the theoretical point of view, to establish just the convergence of an algorithm to a local

minimizer seems not to be enlightening since certain constant images are contained in the set of local

minimizers and we are clearly not looking for them. However, a better understanding of strict (local)

minimizers and the choice of initial values for the algorithm is interesting.
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[23] P. Dérian, P. Héas, C. Herzet, and E. Mémin. Wavelet-based fluid motion estimation. In A. Bruck-
stein, B. Haar Romeny, A. Bronstein, and M. Bronstein, editors, Scale Space and Variational
Methods in Computer Vision, volume 6667 of Lecture Notes in Computer Science, pages 737–748.
Springer Berlin Heidelberg, 2012.

[24] R. Deriche, P. Kornprobst, and G. Aubert. Optical-flow estimation while preserving its dis-
continuities: A variational approach. In Li, S., Mital, D., Teoh, E., Wang, H. (eds.) Recent
Developments in Computer Vision. Lecture Notes in Computer Science, Springer, Berlin, pages
69–80, 1996.

[25] J. H. Fitschen. Proximal splitting methods for the disparity estimation under illumunation vari-
ation. Bachelor Thesis, University of Kaiserslautern, 2013.

[26] M. Fornasier and H. Rauhut. Compressive sensing. In O. Scherzer, editor, Handbook of Mathe-
matical Methods in Imaging. Springer, 2nd edition, 2014.

[27] F. Friedrich, A. Kempe, V. Liebscher, and G. Winkler. Complexity penalized m-estimation.
Journal of Computational and Graphical Statistics, pages 201–224, 2008.

[28] D. Gabay. Applications of the method of multipliers to variational inequalities. In M. Fortin and
R. Glowinski, editors, Augmented Lagrangian Methods: Applications to the Solution of Boundary
Value Problems, chapter IX, pages 299–340. North-Holland, Amsterdam, 1983.

[29] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The kitti dataset. The
International Journal of Robotics Research, 32(11):1231–1237, 2013.

[30] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian restoration
of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6):721–741, Nov
1984.

[31] D. Hafner, O. Demetz, J. Weickert, and M. Reißel. Is the census transform good for robust optic
flow computation? In A. Kuijpers, K. Bredies, T. Pock, and H. Bischof, editors, Scale Space and
Variational Methods in Computer Vision, volume 7893 of Lecture Notes in Computer Science,
pages 210–221. Springer Berlin Heidelberg, 2013.

[32] S. Hiltunen, J. C. Pesquet, and B. Pesquet-Popescu. Comparison of two proximal splitting
algorithms for solving multilabel disparity estimation problems. In European Signal and Image
Processing Conference (EUSIPCO 2012), Bucharest, Romania, pages 1134–1138, 2012.
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