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Abstract—Objective: To propose and test a novel methodology
to measure changes in QT interval variability (QTV) unrelated
to RR interval variability (RRV) in non-stationary conditions.
Methods: Time-frequency coherent and residual spectra repre-
senting QTYV related (QTVrRRYV) and unrelated (QTVuRRYV) to
RRY, respectively, are estimated using time-frequency Cohen’s
class distributions. The proposed approach decomposes the non-
stationary output spectrum of any two-input one-output model
with uncorrelated inputs into two spectra representing the
information related and unrelated to one of the two inputs,
respectively. An algorithm to correct for the bias of the time-
frequency coherence function between QTV and RRYV is proposed
to provide accurate estimates of both QTVuRRYV and QTVrRRV.
Two simulation studies were conducted to assess the methodol-
ogy in challenging non-stationary conditions and data recorded
during head-up tilt in 16 healthy volunteers were analyzed.
Results: In the simulation studies, QTVuRRV changes were
tracked with only a minor delay due to the filtering necessary to
estimate the non-stationary spectra. The correlation coefficient
between theoretical and estimated patterns was > 0.92 even for
extremely noisy recordings (SNR in QTV = —10dB). During
head-up tilt, QTVrRRYV explained the largest proportion of QTYV,
whereas QTVuRRYV showed higher relative increase than QTV
or QTVrRRY in all spectral bands (P < 0.05 for most pairwise
comparisons).

Conclusion: The proposed approach accurately tracks changes
in QTVuRRYV. Head-up tilt induced a slightly greater increase in
QTVuRRY than in QTVrRRV.

Significance: The proposed index QTVuRRV may represent an
indirect measure of intrinsic ventricular repolarization variabil-
ity, a marker of cardiac instability associated with sympathetic
ventricular modulation and sudden cardiac death.

Index Terms—Time-frequency, Spectral Coherence, Heart rate
variability, QT variability, Cardiac Repolarization

I. INTRODUCTION

The temporal liability of ventricular repolarization is an im-
portant factor in arrhythmogenesis. Established pro-arrhythmic
substrates include beat-to-beat repolarization variability [1],
repolarization alternans [2], [3] and repolarization response
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to changes in heart rate [4]-[7]. Relevant information about
the spatio-temporal distribution of ventricular repolarization
can be non-invasively obtained from the analysis of the T-
wave in the surface ECG [8]. In particular, beat-to-beat QT
interval variability (QTV) is an established marker carrying
valuable information about ventricular patho-physiology [1].
Several studies have suggested that QTV is associated with
sympathetic ventricular outflow and susceptibility to malignant
ventricular arrhythmias [1], [9]-[13]. However, part of QTV
may be explained by RR interval variability (RRV), which is
related to QTV through the restitution properties [14]. In fact,
QTYV can be interpreted as the contribution of two components,
one related to RRV (QTVrRRV) and another unrelated to
RRV (QTVuRRYV) and associated with intrinsic ventricular
repolarization dynamics (VRD). Enhanced VRD is thought to
be due to abnormal ion channels dynamics involving calcium
[15] and potassium [16] regulation and their interaction with
[B-adrenergic (sympathetic) ventricular activity [15]-[17], and
has been shown to be relevant for arrhythmogenesis [15], [16],
[18]. Furthermore, the spectral content of QTVuRRV has been
suggested to be a marker of ventricular sympathetic activity
[19], which is also related to arrhythmic risk [10].

Previous techniques to remove the influence of RRV from
QTV have mainly utilized heart rate corrections [10], [20],
time-invariant multivariate autoregressive models [19]-[22] or
other model-based approaches [23]. However, these method-
ologies are unable to track the dynamic response to physical,
cognitive or autonomic challenges, which provides valuable
insight into cardiac and cardiovascular regulation and the
system’s ability to adapt. Therefore, there is a need for a
methodology that provides accurate and robust estimates of
the dynamic profile of QTVuRRV. The aim of this study is to
propose a novel framework for estimating QTVuRRV during
non-stationary conditions, therefore providing a non-invasive
assessment of VRD changes. The proposed methodology is
non-parametric and is based on multivariate quadratic time-
frequency (TF) analysis. It uses the TF coherence function to
separate the non-stationary spectrum of QTV into a spectrum
carrying information related to RRV and another one carrying
information unrelated to RRV, where the latter is assumed
to be an approximation of intrinsic VRD. Importantly, the
methodology includes an algorithm to correct for the bias of
the TF coherence to provide accurate estimates of QTVuRRV.



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING

A. General Model
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Figure 1. A: General two-input one-output model, with two uncorrelated

inputs. Sub-indices r/ and r2 denote components of x3(¢) related to inputs
x1(t) and z2(t), respectively. Similarly, sub-index u/ denotes the component
of z3(t) unrelated to inputs x1(t). B: Calibration model used to assess
and correct the TF coherence bias. C: Physiological model of QTV adapted
from (A). RRV: RR interval variability; QTV: QT interval variability; VRD:
Ventricular repolarization dynamics; QTVuRRV: QTV unrelated to RRV;
QTVrRRV and QTVrVRD represent QTV related to RRV and to intrinsic
VRD, respectively.

II. METHODS

A. Residual and coherent spectra

The methodology proposed in this paper is based on clas-
sical multiple-input single-output theory [24] and applies to
systems that can be interpreted as the contribution of two
single-input single-output models where inputs x; () and z(t)
are uncorrelated random processes (see Fig. 1A). In the general
time-invariant formulation, where stationarity is required, these
systems can be defined as:

23(t) = 23,1 () + 23,01 (t) = 231 (8) + T3,02(2) (1)
= hy(t) * x1(t) + ho(t) * 25(t) (2)

where * represents the convolution operator, h,(t) and h (%)
are linear impulse responses, and z3,,(t) and x3 ,(t) repre-
sent the components of the output that are related and unrelated
to x,(t), respectively. Note that by definition x3 ., () =
Z3.2(t). Since inputs z;(t) and x,(t) are assumed to be
uncorrelated, the auto-spectrum of the output is [24], [25]:

Ss3(f) = Sap1(f) + S5.02(f) = Ss01(f) + S5, (f) (3

and the spectrum of x3 ,;(t), so called residual or conditioned
spectrum [24], is:

SB,ul(f) = S33(f) - SS,rl(f) = (4)
= Sa3(f) — 73?1(]0)533(]‘1) =[1- '732,1<f)]533(f)

where s, (f) is the spectral coherence between the output
x3(t) and the input x,(¢), defined as [26]:

2 opy - alf)
’731(]0) - Sll(f)SSB(f)

where Ss; (f), with |Ss,(f)| = |S13(f)|, is the cross spectrum
between x;(t) and x3(t). The spectral coherence is equal to
1 when the two processes are linearly correlated and equal to
zero when they are uncorrelated. The expression vz, (f)Sss(f)
represents the so called coherent output spectrum, i.e. the
proportion of Ss3(f) coherent with the input spectrum Sy, (f).
Therefore, the spectral coherence acts as a filter that decom-
poses the output spectrum into coherent and residual parts with
respect to one of the two inputs. It is worth noting that (4)
offers the possibility of estimating the coherent and residual
spectra even if signals x3 ., (f) and x5, (f) are unknown, by
processing input x;(¢) and output z3(t) (Fig. 1A).

&)

B. Time-frequency approach

Spectral analysis is extended to the TF domain by means
of the quadratic Cohen’s class distributions as described in
previous studies [27], [28]. Briefly, auto and cross-spectra of
two non-stationary signals z(t) and y(t) are estimated as:

Su(t ) = //°° Gun (T, V) Ay (1, 0) 72" D dudr - (6)
A - TN o« T\ _jomut
AXy(Ta V) = /_C>O z (t + 5) Y (t - 5) e dt 7

where A, (7,v) is the narrow-band symmetric ambiguity
function of signals z(¢) and y(t), and ¢, (7, V) is an elliptical
exponential kernel defined in the ambiguity function domain

as [27]:
Gun(T,V) = exp{—w [(Vy) + (:)H (8)

The TF coherence distribution is defined as:
Sxx(t7 f)Syy<t7 f)

The low-pass filtering performed by the kernel in (8) is
necessary to remove the interference terms that characterize
all quadratic TF distributions and the Wigner-Ville distribu-
tion in particular [27]. The kernel function determines the
degree of filtering and interference-terms reduction, which
is particularly important in coherence analysis since reliable
coherence estimates are obtained only if interference terms are
completely removed [27]. The kernel therefore determines the
temporal and spectral resolution of the TF representations and,
as discussed in the next section, the bias of the TF coherence
estimates.

A2, (@t f) ©)



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING

C. Unbiased time-frequency coherence

Spectral and TF coherence estimators are known to be
biased [29]-[31], as they provide coherence estimates higher
than zero for uncorrelated signals. The bias depends on the
kernel function and is critically important because it directly
affects the coherent and residual spectra through the relation
shown in (4). The bias can be described by a function
G that maps the theoretical coherence values, 'y;‘;f(t, f), to
the estimated ones, Yy (t, f), as Yy (¢, f) = GV (t, f)).
Therefore, unbiased coherence estimates, 7., (¢, f), can be
estimated as:

Ty (8 ) = G (i (8, 1)) = 7/ (8 )

Function G is empirically derived by comparing estimated
and theoretical coherence values. A calibration model is used
to generate random processes x(t) and y(¢) characterized by
known theoretical coherence, v (¢, f), which is then com-
pared to the estimated coherence, 9., (¢, f). The calibration
model utilized in this paper is the two-input one-output model
(see Fig. 1B):

(10)

() = o(t) + n(t) = h(t) * z(t) + n(t) (1)
=Va- &) +VIi—a-&(t) (12)

where (12) is obtained from (11) by choosing A(t) to be equal
to the Dirac delta function, h(t) = §(¢), z(t) = a-& (t) and
n(t) = V1 — a-&(t), where & (t) and & (t) are two zero-mean
white Gaussian noises with unitary standard deviation, and a
is a scaling factor. For this model, the coherence function can
be theoretically obtained as [24]:

1
ref?

t,f) =
R e OV EN Y}
In practice, the function G describing the bias associated with
a particular TF kernel is empirically estimated as follows:

- Values of a; € [0,1] with 4 = {1,..., N}, are chosen to
cover the entire range of possible coherence values.

- For each value of a;, the model in (12) is used to
generate j = {1,..., M} processes {x;(t),n;(t),y;(t)}
and 42 (¢, f) is estimated. Then, the mean coherence
@ € R is obtained by averaging 42, (¢, f) in time,
frequency and among the M realizations.

- Function G is derived by comparing 47, ; with the
theoretical coherence values a;.

(13)

=a

The inverse function G~! is then used to correct for the bias
of any TF coherence function estimated with the same kernel
as shown in (10).

D. Physiological Model and Algorithm Implementation

Figure 1C shows how the general model described in (1) can
be modified to represent QTV as composed of QTVrRRV and
QTVuRRY, which are related to supra-ventricular and intrinsic
ventricular repolarization dynamics, respectively:

xqr(t) = hi(t) * xrr(t) + ha(t) * xyr(t) = (14)
= 2qr.rr(t) + Zorvr(t) = Tor.mr(t) + ToT urr (t)

In practice, it is not possible to measure zqr,rr(t) and
xqrvr(t) directly without interfering with normal cardiac
physiology. However, information about QTV related to VRD
can be obtained by removing from the QTV spectrum the part
related to RRV. These are the steps required for its estimation:
- Determine the kernel (8) that provides the most appro-
priate TF resolution for the analysis and at the same
time ensures that 0 < 4., (¢, f) < 1. Details on how
to determine the appropriate kernel’s parameters can be
found in [30], [32].
- Estimate function G associated with the specific kernel
as described in the previous section.
- Estimate the unbiased TF coherence between QTV and
RRV, Yqr.rr(t, f), as in (10).
- Estimate the TF spectrum of QTVuRRYV as:

SQT,uRR(t) f) = (1 - &éT,RR(t f)) SQT(t7 f)
where Sqr(t, f) is the TF spectrum of the QTV signal
TrQTv (t)

Instantaneous powers and coherence in a given spectral band
) are estimated as:

Por (1) = / St f)dfs A2 (1) = / 52,4, f) df

’ (16)
where Qp includes the following spectral bands: LF € [0.03—
0.15] Hz, HF € [0.15—0.40] Hz and TOT € [0.03—0.40] Hz,
while €, is a time-varying spectral band centered around the
frequency of the highest spectral peak of the cross spectrum
in LF and HF bands, respectively, and is used to provide a
robust measure of the coupling around the instantaneous LF
and HF frequencies.

15)

III. MATERIAL
A. Simulation study

The methodology was tested in two simulation studies.

a) Siml: The model in (12), represented in Fig. 1B, was
utilized to simulate the case where TF coherence between out-
put y(¢) and input x(t), *y;fz (t) = a(t), changes quickly over
time, therefore modulating the proportion of the output power
related and unrelated to input x(t), denoted as P, ,.(¢) and
P, .«(t), respectively. The temporal evolution of theoretical
trends .5 (t), Pr(t) and P (t) is shown as a continuous
line in Fig. 3. Note that a mixture of abrupt and fast changes
over an interval of 5 min is modeled to assess the methodology
in challenging non-stationary conditions.

b) Sim2: The physiological model in (14) (see also
Fig. 1C) was modified to simulate challenging conditions
where RRV and VRD change quickly as during an exercise
stress test. Noise was added to both RRV and QTV. The signal
representing RRV, zrr (), was a stochastic process generated
using a time-varying ARMA scheme that allows to generate
ARMA processes with controlled instantaneous central fre-
quencies and spectral amplitudes [33]. Here, each process is
composed of an AM LF and an AM-FM HF components as
described in Fig. 4A-B. The signal representing intrinsic VRD
was modeled as zyr(t) = ovr(t)€(t), where £(t) is a zero-
mean white Gaussian noise with unitary variance and oy (¢) is
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an amplitude modulation that determines the dynamic profile
of QTVuRRV. The standard deviation of RRV and QTV was
adjusted to that of real data (see next section) and set equal to
49.8 ms and 3.4 ms, respectively. Zero-mean white Gaussian
noise with different amplitude was added to both RRV and
QTYV. Six cases were considered, where the standard deviation
of the noise added to RRV was o™ = {0,0.5,1,2,3,4}
ms while that added to QTV was twice as big to account
for instability in the measurement of the end of the T-wave.
The transfer functions were assumed to be scaling factors
and QTVuRRV and QTVrRRV contributed equally to total
QTV. The instantaneous power of QTVuRRV, PJPT.x (1),
was estimated from the TF representations obtained from 250
realizations of the stochastic model. The relative error and
the correlation coefficients between theoretical and estimated
trends were calculated within an interval that excludes the first
and last 11.7 s (corresponding to the time resolution). For
the sake of comparison, the bias introduced to Pgf xx (t) by
adding noise to QTV and RRV was removed before correlation
and error calculations.

B. Autonomic test

The cardiovascular response to orthostatic challenge was
studied in 16 healthy volunteers (aged 29 + 3 years) using a
tilt table test. The protocol included early supine (ES) position
(4 min), head-up tilt to an angle of 70° (5 min), and late
supine (LS) position (4 min) as described in other studies [27],
[32]. 12-Lead ECG was recorded with a sampling frequency
of 1000 Hz. Customized algorithms were used to detect the
temporal occurrence of R-waves and T-end. The latter was
defined utilizing the tangent method. The QT interval was
approximated as the interval from the R-wave to the end of
the T-wave in lead V4. Ectopic beats and artifacts were rare.
When present, they were removed and the time series were
interpolated. RR and QT time series were interpolated at a
sampling frequency of 4 Hz, and the RRV and QTV signals,
xrr(t) and zqr(t), were obtained by high-pass filtering these
interpolated series with a cut-off frequency of 0.03 Hz.

C. Statistical Analysis

Group results are shown as mean =+ standard deviation for
normally distributed data, and as median + median abso-
lute deviation for non-normally distributed data. Correlation
was measured with the Spearman’s correlation coefficient.
Wilcoxon signed-rank test was used to assess statistical sig-
nificance and differences with P < 0.05 were considered
significant.

IV. RESULTS
A. Coherence bias correction

The bias of the TF coherence estimator whose Kkernel
provided a time and frequency resolution of 11.7 s and 0.039
Hz, respectively, is shown in Fig. 2. This was assessed using
the scheme described in Section II-C, generating 200 pairs of
input/output processes {z(t),y(t)} for each theoretical coher-
ence value q;. The estimation error was < 5% for coherence

A. Coherence before correction  B. Coherence after correction
1 s 1 /
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Figure 2. Time-frequency coherence bias correction. Top: Estimated co-
herence values as a function of theoretical values before (A) and after (B)
applying the proposed correction. Bottom: Estimated and theoretical residual
and coherent power before (C) and after (D) correction.

values > 0.75, but it rapidly increased for lower coherence
values, with an estimated zero-coherence level > 0.5. The esti-
mation error in the coherence function introduced a bias in the
power of the residual and coherent spectra as well (Fig. 2C).
The algorithm proposed for correcting the TF coherence bias
provided accurate coherence and power estimates with an
almost perfect agreement between theoretical and estimated
values (Fig. 2B,D).

B. Simulation Studies

Figure 3 shows the results of Sim1, which demonstrate that
the method for correcting for the TF coherence bias provides
accurate estimates. Mean trends of v[°"(¢), PO"(t) and
PIOT(t), calculated from mean TF representations obtained
from 100 realizations of the model in (12), are shown along
with their corresponding theoretical values. Before correcting
for the bias (panels on the left), estimated trends correlated
well with the theoretical patterns (correlation coefficients
> (0.96), but the relative estimation error was high, being equal
to 24% =+ 25% for 2" (t), 103% + 94% for P07 (t) and

Xy

—36%410% for POT (t) (mean = standard deviation). After
correcting for the bias (panels on the right), the correlation
coefficients only marginally improved to > 0.97 for all the
three indices, while the estimation error dramatically decreased
to —2% + 11% for 7} °"(t), 0% + 23% for PIO"(t) and
5% +18% for PFOF(t). This estimation error was mainly due
to a minor delay in tracking sudden changes (see Fig. 3).

Figure 4 shows the TF structure of the RRV signals utilized
in Sim2 (panels A-B), a representative example of simulated
RRV and QTV signals (panel C), theoretical and estimated
trends of QTVuRRYV in the absence of noise (panel D) and
when noise was added to both RRV and QTV (panel E).

Numerical results are shown in Table I. In the absence of noise,
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Table I
RESULTS OF SIM2: ¢: AMPLITUDE OF WHITE-GAUSSIAN NOISE ADDED TO RRV AND QTV AND ASSOCIATED WITH CORRESPONDING SNR. ACCURACY
IN TRACKING PTOTRR(t) IS ASSESSED BY: CORRELATION COEFFICIENT (1), MEAN (E\1), STANDARD DEVIATION (Esp), MEDIAN (E\VED) AND

QT,u

MEDIAN ABSOLUTE DEVIATION (E)\iap) OF THE DIFFERENCE BETWEEN ESTIMATED AND THEORETICAL TRENDS (EST-VS-THEO) AND BETWEEN
ESTIMATED TRENDS AND TRENDS DERIVED FROM THE TF SPECTRUM OF QT uRR (t) (EST-VS-OPTIMAL).

Param Est-vs-Theo Est-vs-Optimal
oRRV UISTV SNRrrv  SNRqTV r Enm Esp Emep Ewmap r EvM  Esp  EmeEp  Emap
(ms) (ms) (dB) (dB) (nu) (%) (%) (%) (%) (nu) (%) (%) (%) (%)
0.0 0.0 Inf Inf 099 10.57 35.65 -0.74 5.08 1.00 -1.89 6.19 0.56 1.46
0.5 1.0 40.0 7.6 099 12.64 36.88 0.72 4.64 1.00 -0.85 3.60 0.00 1.72
1.0 2.0 33.9 1.7 0.98 11.51 36.16 0.27 5.22 1.00 -2.87 4.74 -0.89 2.50
2.0 4.0 279 -4.4 0.95 12.79  38.71 -1.40 12.75 0.97 0.07 14.63 -3.10 7.23
3.0 6.0 24.4 -7.9 094 19.73 56.11 2.11 16.99 0.96 4.92 31.20 2.07 13.33
4.0 8.0 21.9 -10.4 092 12.78 77.37 2.03 16.16 094 -1.26 49.99 0.70 13.48
Before Bias Correction After Bias Correction < (A) .
Coherence Coherence E o~ @
1 1 0.4 SRR a
08 .08 g |L__-~ N8
S 0.6 § 0.6 R~ 0.2 <
3 S, o £
%‘?? 0.4 [T?\: 0.4 é o é -
0.2 02 0 60 120 180 240 300 0 60 120 180 240 300
0 0 ) )
0 60 120 180 240 300 0 60 120 180 240 300 Time (s) Time (s)

Coherent Power Coherent Power
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Residual Power

120 180 240 300 0 60
Residual Power

0 60

—~ 0.8
=
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53
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Figure 3. Results of Siml. Coherence, residual and coherent power before
(left) and after (right) correcting for the TF bias using the proposed methodol-
ogy. Solid and dashed lines represent theoretical and estimated mean values,
respectively. Shadowed areas represent standard deviation intervals.

the correlation coefficient between Pl T, () estimated using
the proposed methodology (continuous red line) and the the-
oretical trend obtained from its analytical formulation (dotted
line) was equal to 0.99, while the relative error was equal
to 10.57% = 35.65% (mean =+ standard deviation). The error
was almost entirely due to a delay in the tracking of the abrupt
changes of the theoretical trend of PJ{ T (t), which is due
to the TF smoothing necessary to estimate a time-varying
spectrum using a Cohen’s class distribution [27]. In fact,
the error decreased to —1.89% =+ 6.19% and the correlation
coefficient increased to 1.00 when comparing PJP7qr (1)
estimated using the proposed methodology with PO qr (1)
directly estimated from the TF spectrum of zqr wrr(t), Which
represents the optimal trend (bold dashed line). When adding
noise, the SNR was more than 32 dB lower in QTV than
in RRV, due to the imbalance between the power content of
the two signals and the higher instability in the detection of

QTV (ms)

24-88|

34/2 dB 28/-4 dB

- N
;NI/'\%/ /\\ I/

| NS

300

120 180 240

Time (s)

Figure 4. Results of Sim2. A-B: Instantaneous central frequencies and
amplitudes of ARMA processes mimicking RRV during exercise stress test.
C: Examples of stochastic processes representing RRV and QTV. D: Temporal
evolution of QTVuURRV in the absence of noise, with theoretical values
obtained from the analytical formulation of VRD (dotted line), theoretical
values estimated from the TF spectrum of xqT wrRr(t) (bold dashed line)
and QTVuRRV estimated from the mean residual TF spectrum (continuous
red line). E: Estimation of QTVuRRYV in the presence of noise, with SNR
ratio for RRV/QTV given in the legend. Vertical lines enclose the interval
considered for correlation and error calculations.

the T-end with respect to the R-peak (Table I). Nevertheless,
the correlation between the estimated and theoretical trends
remained > 0.92 for all cases, while the standard deviation of
the differences between the estimated and the optimal trends
was < 15% for QTV with SNR> —4 dB (Table I), but
increased for lower SNR.
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Figure 5. Results of the tilt table test. Temporal evolution of squared spectral
coherence. Panels on the left: Continuous line and shaded areas represent
median trends and median absolute deviation among patients, respectively.
Panels on the right: Circles and bars represent median and median absolute
deviation of the mean instantaneous squared coherence calculated within the
intervals represented by horizontal lines on the left hand side panels.

C. Autonomic Test

During the tilt table test, the correlation coefficient between
QTV and RRV was equal to 0.68 £ 0.14, and did not change
significantly between supine and head-up position. This sug-
gests that although RRV accounted for the largest part of QTV,
a substantial part of repolarization dynamics were not linearly
related to heart rate variability.

The median trend of the squared spectral coherence was
Yor.rr(t) > 0.50 in both LF and HF during the entire test
(Fig. 5), confirming the predominance of QTVrRRV with
respect to QTVuRRV. However, high inter-subject variability
was observed. During tilt, squared spectral coherence slightly
decreased with respect to the early supine position in both LF
(0.90 £ 0.05 vs 0.86 + 0.08, P = 0.21) and HF (0.80 £0.11
vs 0.69 + 0.17, P = 0.20), yet without reaching statistical
significance. Squared spectral coherence tended to be higher
in LF than in HF during both supine position (P = 0.05) and
tilt (P = 0.02).

Pqr urr(t) and Pyt g (t) showed a similar trend in all spec-
tral bands. Both coherent and residual power increased very
quickly after tilt and decreased more slowly towards baseline
values once the supine position was restored (Fig. 6). Changes
were more pronounced in Pgr ,grr(t) than in Pgr,rr(t).
Analysis of mean QTV power during supine position and
tilt (see intervals shown in Fig. 6) revealed that during tilt
QTV and QTVuRRYV significantly increased with respect to
early supine values in all spectral bands (P < 0.01), while
QTVIRRYV did not increase significantly in HF (Fig. 7A-C).
Interestingly, during tilt the relative increase in QTVuRRV
was greater than the relative increase in QTVrRRV or in
global QTV in all spectral bands (P ~ 0.05, see Fig. 7D-
F), with a ratio between tilt versus early supine values equal
to 2.19+1.2 for QTVuRRY, 1.95+0.7 for QTV, and 1.4540.7
for QTVIRRV (median 4+ median absolute deviation).
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Pqr,rR(t), and unrelated, PqT wrRRr(t), to RRV in LF, HF and TOT
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significant differences with respect to ES values. Bottom: Changes of Pqr(t),
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V. DISCUSSION

This paper presents a novel methodology to separate the
non-stationary spectrum of QTV into two parts, one locally
linearly coupled and another locally linearly uncoupled to
RRV. The methodology is based on Cohen’s class TF distribu-
tions and incorporates a novel algorithm to correct for the TF
coherence bias. The main results are: Two simulation studies
demonstrated that the methodology is robust and accurate,
and is able to track changes in QTV unrelated to RRV with
only a minor delay due to the TF filtering necessary to
estimate the non-stationary spectra. Correlation coefficients
between estimated and theoretical patterns were > 0.92 even
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for extremely noisy conditions. The analysis of ECG data
recorded during an autonomic test showed that the increase in
QTYV during tilt was driven by both QTYV related and unrelated
to RRV, with the latter showing the greatest relative increase
during tilt.

A. Methodological considerations

This is the first study to present a comprehensive description
of this methodology as a TF extension of classical multiple-
input single-output theory [24] and it includes a novel al-
gorithm to correct for the TF coherence bias. This extends
previous work where residual TF spectra and coherence were
applied to study cardio-respiratory and cardiovascular inter-
actions [28], [34], [35]. The bias correction proposed in this
paper is crucial to accurately estimate residual and coherent
spectra, because these are obtained by multiplying the output
spectrum by the squared TF coherence function. Spectral
coherence estimators are known to be biased [29]-[31]. This
has led to propose methodologies based on surrogate data
analysis to estimate a threshold for determining significant
levels of coherence [27], [29], [36]. However, to the extent
of our knowledge, this is the first paper to present a scheme
to estimate unbiased TF coherence functions. The proposed
scheme assumes that the bias depends on the estimator’s
parameters and is independent of the TF properties of the
signals. The results of the simulation studies support this
assumption. Previous studies on the interaction between QTV
and RRV have mainly utilized time-invariant autoregressive
models [19], [21], [22], [37] where RRV contributes to QTYV,
which in turn does not contribute to RRV. A recent study im-
plementing a network physiology approach to assess strength
and directionality of sino-atrial and ventricular interactions
found a strong causal link from RRV to QTV and a weak link
in the reverse direction [38]. This is in agreement with our
simple open-loop model, where QTV is the sum of intrinsic
repolarization and heart period dynamics.

It is worth noting that non-physiological variability due to in-
accurate measurement of ECG intervals would still be assigned
to one of these two components.

Model-free TF estimators have the advantage of not relying
upon the ability of an underlying model to capture the data
dynamics, but they mainly provide information related to
time-varying spectral power and coherence, while spectral
model-based approach can be used to infer directionality or
causality [36], [38]-[41]. A comparison with time-varying
autoregressive methods is beyond the scope of this paper, but
previous work has suggested that TF distributions may be more
accurate in tracking highly non-stationary dynamics [42], [43].
Finally, the methodology presented in this paper can be applied
to any dynamic system that can be described by a two-input
one-output model with uncorrelated inputs.

B. Physiological Considerations and Clinical perspective

The model presented in this paper decomposes QTV into
two components, one related and another unrelated to RRV.
Variations in QTV are therefore determined by the changes in
these two components, whose magnitude and direction depend

on changes in both the magnitude of QTV-RRV coherence and
global QTV. The component unrelated to RRV is assumed to
be due to intrinsic ventricular repolarization dynamics uncor-
related to RRV. Although heart rate and ventricular repolariza-
tion stem from different anatomical structures that may receive
independent autonomic stimulation, common drivers cannot be
excluded since respiratory and LF oscillations are common in
RRV and have also been observed in the human ventricular
repolarization [44], [45]. Although both RRV and QTV are
known to be affected by sympathetic modulation [1], the
degree of correlation between sympathetic outflow directed to
the sinoatrial node and the ventricles is unknown. Interestingly,
recent studies have shown that sympathetic activity can induce
LF oscillations in ventricular repolarization, part of which are
unrelated to RRV [46], with strong predictive value in post MI
patients [46], [47].

Enhanced intrinsic repolarization variability is thought to be
driven by imbalanced ion channel dynamics at the level of
the ventricular myocyte, including calcium [15] and potas-
sium [16] dynamics, which are modulated by sympathetic
nervous activity. A methodology that provides non-invasive
assessment of intrinsic VRD by measuring QTV unrelated
to heart rate variability may find applications in arrhythmic
risk stratification [1], [9], [13], [48] as well as in the non-
invasive assessment of sympathetic ventricular activity [19],
[49]. For instance, correlations between QTV and a direct
measure of sympathetic activity were observed in patients
with hypertension [50], while patients with heart failure and
spontaneous ventricular tachycardia have higher QTV than
control [51].

Passive tilt is an established model to study the autonomic
modulation of cardiac activity, since it induces a shift of
the sympathovagal balance toward sympathetic predominance
[49], [52]. Our results are in partial agreement with a previous
study where healthy volunteers underwent a graded head-
up tilt test with different tilt table inclinations [49]. In [49],
spectral coherence between QTV and RRV was higher in LF
than HF and only decreased in HF for tilting angle between
60 to 90. A longer duration of the head-up tilt phase (10 min
in [49]) may partially justify the fact that in the present study
the coherence showed a trend toward lower values during tilt
without reaching statistical significance.

Although the effect of adrenergic stimulation on ventricular
repolarization is well established [17], [53], its assessment
in patients is challenging, mainly due to the difficulty of
directly measuring sympathetic outflow to the ventricle. In a
recent study, muscle sympathetic nerve activity measured in
the peroneal nerve, one of the few established direct measures
of sympathetic activity, did not contribute significantly to
QTV during rest or head-up tilt at 40 degrees [22]. Own
to its prominent role in sudden cardiac death [46], [54], the
interaction between sympathetic modulation and repolarization
dynamics deserves further investigation.

C. Limitation and further studies
The proposed methodology does not account for any contri-

bution of respiration not mediated by respiratory sinus arrhyth-
mia, i.e. RRV in synchrony with respiration. In our approach,
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a three-input/one-output model including respiration cannot be
implemented due to the high correlation between respiration
and RRYV, which violates the assumption of uncorrelation be-
tween the inputs. To assess to which extent this limitation may
affect the results, further analysis was conducted including
the respiratory signal, which was simultaneously recorded
during the test (see Supplementary Document 1 for a detailed
discussion of the results). In brief, the coherence between
RRV and respiration was high and explained most of the
respiratory sinus arrhythmia variability (Supplementary Fig.
S1). In the respiratory spectral band, the coherence between
QTYV and RRV and between QTV and respiration were similar
and highly correlated (Supplementary Fig. S2 and S3A). Con-
sequently, QTVuRRV and QTV unrelated to respiration were
also similar and highly correlated (Supplementary Fig. S2B
and S3B). This suggests that QTV related to respiration but
not accounted for by respiratory sinus arrhythmia was small
as compared to the portion accounted for by respiratory sinus
arrhythmia. Therefore, although the proposed methodology is
not able to directly remove from QTV respiratory components
unrelated to RRYV, this limitation is expected to have little effect
on the results. Multi-lead strategies for ECG waves delineation
can reduce this source of variability [55], but in applications
where this component needs to be directly accounted for or
entirely removed, other techniques may be preferred [19].
The proposed methodology is linear and therefore unable to
capture and remove QTV dynamics non-linearly related to
RRV, which are known to be present [21]. Further studies
should assess to which extent this limitation affects the results
and compare or integrate the proposed methodology with those
able to capture these dynamics [1], [41], [56].

In this study, the same signal-independent kernel has been
used to estimate all TF representations. Future studies may
investigate whether better results could be achieved using
signal-dependent approaches [30] where the TF resolution
could be adjusted to the high inter-subject variability of repo-
larization dynamics, including rate-adaptation and autonomic
modulation.

VI. CONCLUSION

This novel methodology provides accurate dynamic assess-
ment of QTV unrelated to RRV, which may provide useful
information for assessing intrinsic ventricular repolarization
variability, an important marker of cardiac instability asso-
ciated with sympathetic ventricular modulation and sudden
cardiac death.

REFERENCES

[1] M. Baumert, A. Porta, M. A. Vos, M. Malik, J.-P. Couderc, P. Laguna,
G. Piccirillo, G. L. Smith, L. G. Tereshchenko, and P. G. Volders, “QT
interval variability in body surface ECG: measurement, physiological
basis, and clinical value: position statement and consensus guidance
endorsed by the european heart rhythm association jointly with the esc
working group on cardiac cellular electrop,” Europace, pp. 925-944,
2016.

[2] X. Zhou, A. Bueno-Orovio, M. Orini, B. Hanson, M. Hayward, P. Tag-
gart, P. D. Lambiase, K. Burrage, and B. Rodriguez, “In vivo and
in silico investigation into mechanisms of frequency dependence of
repolarization alternans in human ventricular cardiomyocytesnovelty and
significance,” Circ. Res., vol. 118, no. 2, pp. 266-278, 2016.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

M. Orini, B. Hanson, V. Monasterio, J. Martinez, M. Hayward, P. Tag-
gart, and P. Lambiase, “Comparative evaluation of methodologies for
t-wave alternans mapping in electrograms,” IEEE Trans. Biomed. Eng.,
vol. 61, no. 2, pp. 308-316, 2014.

J-M. Cao, Z. Qu, Y.-H. Kim, T.-J. Wu, A. Garfinkel, J. Weiss,
H. Karagueuzian, and P.-S. Chen, “Spatiotemporal heterogeneity in
the induction of ventricular fibrillation by rapid pacing: Importance of
cardiac restitution properties,” Circ. Res., vol. 84, no. 11, pp. 1318-1331,
1999.

J. Ramirez, M. Orini, A. Mincholé, V. Monasterio, I. Cygankiewicz,
A. Bayés de Luna, J. P. Martinez, E. Pueyo, and P. Laguna, “T-Wave
Morphology Restitution Predicts Sudden Cardiac Death in Patients With
Chronic Heart Failure,” Journal of the American Heart Association,
vol. 6, no. 5, p. €005310, 2017.

E. Pueyo, Z. Husti, T. Hornyik, I. Baczké, P. Laguna, A. Varr6, and
B. Rodriguez, “Mechanisms of ventricular rate adaptation as a predictor
of arrhythmic risk.” Am J Physiol Heart Circ Physiol, vol. 298, no. 5,
pp. H1577-87, 2010.

E. Pueyo, P. Smetana, P. Caminal, A. DeLuna, M. Malik, and P. Laguna,
“Characterization of QT Interval Adaptation to RR Interval Changes
and Its Use as a Risk-Stratifier of Arrhythmic Mortality in Amiodarone-
Treated Survivors of Acute Myocardial Infarction,” IEEE Trans. Biomed.
Eng., vol. 51, no. 9, pp. 1511-1520, 2004.

P. Laguna, J. P. Martinez, and E. Pueyo, “Techniques for Ventricular
Repolarization Instability Assessment From the ECG,” Proceedings of
the IEEE, vol. 104, no. 2, pp. 392415, 2016.

R. Varkevisser, S. C. Wijers, M. A. van der Heyden, J. D. Beekman,
M. Meine, and M. A. Vos, “Beat-to-beat variability of repolarization
as a new biomarker for proarrhythmia in vivo,” Heart Rhythm, vol. 9,
no. 10, pp. 1718-1726, 2012.

M. N. Niemeijer, M. E. van den Berg, M. Eijgelsheim, G. van Herpen,
B. H. Stricker, J. A. Kors, and P. R. Rijnbeek, “Short-term QT variability
markers for the prediction of ventricular arrhythmias and sudden cardiac
death: a systematic review,” Heart, vol. 100, no. 23, pp. 1831-1836,
2014.

L. G. Tereshchenko, B. J. Fetics, P. P. Domitrovich, B. D. Lindsay, and
R. D. Berger, “Prediction of ventricular tachyarrhythmias by intracardiac
repolarization variability analysis,” Circ Arrhythm Electrophysiol, vol. 2,
no. 3, pp. 276284, 2009.

G. Piccirillo, F. Moscucci, G. D’Alessandro, M. Pascucci, P. Rossi,
S. Han, L. Chen, S.-F. Lin, P.-S. Chen, and D. Magr, “Myocardial
repolarization dispersion and autonomic nerve activity in a canine
experimental acute myocardial infarction model,” vol. 11, no. 1, pp.
110-118, 2014.

M. B. Thomsen, P. G. A. Volders, J. D. M. Beekman, J. Matz, and
M. A. Vos, “Beat-to-Beat Variability of Repolarization Determines
Proarrhythmic Outcome in Dogs Susceptible to Drug-Induced Torsades
de Pointes,” J Am Coll Cardiol, vol. 48, no. 6, pp. 1268-1276, 2006.
M. Orini, P. Taggart, N. Srinivasan, M. Hayward, and P. D. Lambiase,
“Interactions between activation and repolarization restitution properties
in the intact human heart: In-vivo whole-heart data and mathematical
description,” PLoS ONE, vol. 11, no. 9, p. e0161765, 2016.

D. M. Johnson, J. Heijman, E. F. Bode, D. J. Greensmith, H. van der
Linde, N. Abi-Gerges, D. A. Eisner, A. W. Trafford, and P. G. A. Volders,
“Diastolic spontaneous calcium release from the sarcoplasmic reticulum
increases beat-to-beat variability of repolarization in canine ventricular
myocytes after S-adrenergic stimulation.” Circ. Res., vol. 112, no. 2,
pp. 246-256, 2013.

E. Pueyo, A. Corrias, L. Virdg, N. Jost, T. Szél, A. Varr6, N. Szen-
tandrassy, P. P. Ndndsi, K. Burrage, and B. Rodriguez, “A multiscale
investigation of repolarization variability and its role in cardiac arrhyth-
mogenesis,” Biophysical Journal, vol. 101, no. 12, pp. 2892-2902, 2011.
E. Pueyo, M. Orini, J. FE. Rodriguez, and P. Taggart, “Interactive effect
of beta-adrenergic stimulation and mechanical stretch on low-frequency
oscillations of ventricular action potential duration in humans,” J Mol
Cell Cardiol, vol. 97, pp. 93 — 105, 2016.

J. Heijman, A. Zaza, D. M. Johnson, Y. Rudy, R. L. M. Peeters,
P. G. A. Volders, and R. L. Westra, “Determinants of beat-to-beat
variability of repolarization duration in the canine ventricular myocyte:
a computational analysis.” PLoS computational biology, vol. 9, no. 8,
p. 1003202, 2013.

A. Porta, E. Tobaldini, T. Gnecchi-Ruscone, and N. Montano, “RT vari-
ability unrelated to heart period and respiration progressively increases
during graded head-up tilt,” Am J Physiol Heart Circ Physiol, vol. 298,
no. 5, pp. H1406-H1414, 2010.



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

M. Baumert, B. Czippelova, A. Porta, and M. Javorka, “Decoupling of
QT interval variability from heart rate variability with ageing,” Physiol.
Meas., vol. 34, no. 11, pp. 1435-1448, 2013.

R. Almeida, S. Gouveia, A. Rocha, E. Pueyo, J. Martinez, and P. Laguna,
“QT variability and HRV interactions in ECG: Quantification and
reliability,” IEEE Trans. Biomed. Eng., vol. 53, no. 7, pp. 1317-1329,
2006.

F. El-Hamad, E. Lambert, D. Abbott, and M. Baumert, “Relation
between QT interval variability and muscle sympathetic nerve activity
in normal subjects,” Am J Physiol Heart Circ Physiol, vol. 309, no. 7,
pp. H1218-H1224, 2015.

G. Valenza, M. Orini, L. Citi, A. Mincholé, E. Pueyo, P. Laguna, and
R. Barbieri, “Assessing real-time RR-QT frequency-domain measures of
coupling and causality through inhomogeneous point-process bivariate
models.” Conf Proc IEEE Eng Med Biol Soc., vol. 2014, pp. 6475-6478,
2014.

J. S. Bendat and A. G. Piersol, “Multiple-input/output relationships,” in
Random Data. John Wiley & Sons, Inc., 2012, pp. 201-247.

G. Baselli, A. Porta, and S. Cerutti, “Spectral decomposition in mul-
tichannel recordings based on multivariate parametric identification,”
IEEE Trans. Biomed. Eng., vol. 44, no. 11, pp. 1092-1101, 1997.

G. C. Carter, “Coherence and time delay estimation,” Proceedings of the
IEEE, vol. 75, no. 2, pp. 236-255, 1987.

M. Orini, R. Bailon, L. T. Mainardi, P. Laguna, and P. Flandrin, “Char-
acterization of dynamic interactions between cardiovascular signals by
time-frequency coherence.” IEEE Trans. Biomed. Eng., vol. 59, no. 3,
pp. 663673, 2012.

M. Orini, R. Bailon, P. Laguna, L. Mainardi, and R. Barbieri, “A
multivariate time-frequency method to characterize the influence of
respiration over heart period and arterial pressure,” EURASIP Journal
on Advances in Signal Processing, vol. 2012, no. 1, p. 214, 2012.

L. Faes, G. D. Pinna, A. Porta, R. Maestri, and G. Nollo, “Surrogate
data analysis for assessing the significance of the coherence function,”
IEEE Trans. Biomed. Eng., vol. 51, no. 7, pp. 1156-1166, 2004.

M. Orini, R. Bail6n, L. Mainardi, A. Mincholé, and P. Laguna, “Contin-
uous quantification of spectral coherence using quadratic time-frequency
distributions: error analysis and application,” Internat. Conf. Computers
in Cardiology, pp. 681-684, 2009.

K. Keissar, L. R. Davrath, and S. Akselrod, “Coherence analysis
between respiration and heart rate variability using continuous wavelet
transform,” Philos Trans A Math Phys Eng Sci, vol. 367, no. 1892, pp.
1393-1406, 2009.

M. Orini, P. Laguna, L. T. Mainardi, and R. Bail6n, “Assessment of the
dynamic interactions between heart rate and arterial pressure by the cross
time-frequency analysis.” Physiol. Meas., vol. 33, no. 3, pp. 315-331,
2012.

M. Orini, R. Bail6n, L. Mainardi, and P. Laguna, “Synthesis of HRV
signals characterized by predetermined time-frequency structure by
means of time-varying ARMA models,” Biomed Signal Process Control,
vol. 7, no. 2, pp. 141 — 150, 2012.

M. Orini, P. Taggart, and P. D. Lambiase, “A multivariate time-frequency
approach for tracking QT variability changes unrelated to heart rate
variability,” Conf Proc IEEE Eng Med Biol Soc., pp. 924-927, 2016.
D. Widjaja, M. Orini, E. Vlemincx, and S. Van Huffel, “Cardiorespira-
tory dynamic response to mental stress: A multivariate time-frequency
analysis,” Comput Math Methods Med, vol. 2013, p. 12, 2013.

L. Faes, A. Porta, and G. Nollo, “Testing frequency-domain causality in
multivariate time series,” IEEE Trans. Biomed. Eng., vol. 57, no. 8, pp.
1897-1906, 2010.

A. Porta, G. Baselli, E. Caiani, A. Malliani, F. Lombardi, and S. Cerutti,
“Quantifying electrocardiogram RT-RR variability interactions,” Med.
Biol. Eng. Comput., vol. 36, no. 1, pp. 27-34, 1998.

A. Porta, V. Bari, B. De Maria, and M. Baumert, “A network physiology
approach to the assessment of the link between sinoatrial and ventricular
cardiac controls,” Physiological Measurement, vol. 38, no. 7, pp. 1472—
1489, jun 2017.

L. Faes, G. Nollo, and A. Porta, “Information domain approach to
the investigation of cardio-vascular, cardio-pulmonary and vasculo-
pulmonary causal couplings,” Frontiers in Physiology, vol. 2, no. 0,
2011.

L. Faes, S. Erla, A. Porta, and G. Nollo, “A framework for assessing
frequency domain causality in physiological time series with instanta-
neous effects,” Philos Trans A Math Phys Eng Sci, vol. 371, no. 1997,
2013.

A. Porta and L. Faes, “Wiener-granger causality in network physiology
with applications to cardiovascular control and neuroscience,” Proceed-
ings of the IEEE, vol. 104, no. 2, pp. 282-309, 2016.

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

S. Pola, A. Macerata, M. Emdin, and C. Marchesi, “Estimation of
the power spectral density in nonstationary cardiovascular time series:
assessing the role of the time-frequency representations (TFR),” IEEE
Trans. Biomed. Eng., vol. 43, no. 1, p. 46, 1996.

M. Orini, R. Bailon, P. Laguna, and L. T. Mainardi, “Modeling and
estimation of time-varying heart rate variability during stress test by
parametric and non parametric analysis,” in Proc. Computers in Cardi-
ology, 2007, pp. 29-32.

B. Hanson, N. Child, S. Van Duijvenboden, M. Orini, Z. Chen, R. Coro-
nel, C. A. Rinaldi, J. S. Gill, J. S. Gill, and P. Taggart, “Oscillatory
behavior of ventricular action potential duration in heart failure patients
at respiratory rate and low frequency.” Front Physiol, vol. 5, p. 414,
2014.

S. van Duijvenboden, B. Hanson, N. Child, M. Orini, C. A. Rinaldi,
J. S. Gill, and P. Taggart, “Effect of autonomic blocking agents on the
respiratory-related oscillations of ventricular action potential duration
in humans.” Am J Physiol Heart Circ Physiol, vol. 309, no. 12, pp.
H2108-H2117, 2015.

K. D. Rizas, T. Nieminen, P. Barthel, C. S. Ziirn, M. Kihonen, J. Viik,
T. Lehtimiki, K. Nikus, C. Eick, T. O. Greiner, H. P. Wendel, P. Seizer,
J. Schreieck, M. Gawaz, G. Schmidt, and A. Bauer, “Sympathetic
activity-associated periodic repolarization dynamics predict mortality
following myocardial infarction,” J. Clin. Invest., vol. 124, no. 4, pp.
1770-1780, 2014.

K. D. Rizas, S. McNitt, W. Hamm, S. Massberg, S. Kéib, W. Zareba, J.-
P. Couderc, and A. Bauer, “Prediction of sudden and non-sudden cardiac
death in post-infarction patients with reduced left ventricular ejection
fraction by periodic repolarization dynamics: MADIT-II substudy.”
European heart journal, vol. 294, pp. 1240-1247, 2017.

M. C. Haigney, W. Zareba, P. J. Gentlesk, R. E. Goldstein, M. Illovsky,
S. McNitt, M. L. Andrews, and A. J. Moss, “QT interval variability
and spontaneous ventricular tachycardia or fibrillation in the Multicenter
Automatic Defibrillator Implantation Trial (MADIT) II patients,” J Am
Coll Cardiol, vol. 44, no. 7, pp. 1481-1487, 2004.

A. Porta, V. Bari, F. Badilini, E. Tobaldini, T. Gnecchi-Ruscone, and
N. Montano, “Frequency domain assessment of the coupling strength
between ventricular repolarization duration and heart period during
graded head-up tilt,” J. Electrocardiol., vol. 44, no. 6, pp. 662-668,
2011.

M. Baumert, M. P. Schlaich, E. Nalivaiko, E. Lambert, C. I. Sari, D. M.
Kaye, M. D. Elser, P. Sanders, and G. Lambert, “Relation between QT
interval variability and cardiac sympathetic activity in hypertension,” Am
J Physiol Heart Circ Physiol, vol. 300, no. 4, pp. H1412-H1417, 2011.
S. Nayyar, K. C. Roberts-Thomson, M. A. Hasan, T. Sullivan, J. Har-
rington, P. Sanders, and M. Baumert, “Autonomic modulation of repo-
larization instability in patients with heart failure prone to ventricular
tachycardia,” Am J Physiol Heart Circ Physiol, vol. 305, no. 8, pp.
H1181-H1188, 2013.

R. Furlan, A. Porta, F. Costa, J. Tank, L. Baker, R. Schiavi, D. Robertson,
A. Malliani, and R. Mosqueda-Garcia, “Oscillatory patterns in sympa-
thetic neural discharge and cardiovascular variables during orthostatic
stimulus,” Circulation, vol. 101, no. 8, pp. 886-892, 2000.

P. Taggart, P. Sutton, Z. Chalabi, M. R. Boyett, R. Simon, D. Elliott, and
J. S. Gill, “Effect of adrenergic stimulation on action potential duration
restitution in humans.” Circulation, vol. 107, no. 2, pp. 285-289, 2003.
K. Fukuda, H. Kanazawa, Y. Aizawa, J. L. Ardell, and K. Shivkumar,
“Cardiac innervation and sudden cardiac death,” Circ. Res., vol. 116,
no. 12, pp. 2005-2019, 2015.

M. Noriega, J. P. Martinez, P. Laguna, R. Bail6n, and R. Almeida,
“Respiration Effect on Wavelet-Based ECG T-Wave End Delineation
Strategies,” IEEE Trans. Biomed. Eng., vol. 59, no. 7, pp. 1818-1828,
jul 2012.

G. Valenza, M. Orini, L. Citi, A. Minchole, E. Pueyo, P. Laguna,
and R. Barbieri, “Assessing instantaneous QT variability dynamics
within a point-process nonlinear framework,” in 2014 8th Conference
of the European Study Group on Cardiovascular Oscillations (ESGCO).
IEEE, 2014, pp. 67-68.



