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Abstract

In the field of neuroimaging, Bayesian modelling techniques have been largely adopted

and recognised as powerful tools for the purpose of extracting quantitative anatomical

and functional information from medical scans. Nevertheless the potential of Bayesian

inference has not yet been fully exploited, as many available tools rely on point estima-

tion techniques, such as maximum likelihood estimation, rather than on full Bayesian

inference.

The aim of this thesis is to explore the value of approximate learning schemes, for

instance variational Bayes, to perform inference from brain and spinal cord MRI data.

The applications that will be explored in this work mainly concern image segmentation

and atlas construction, with a particular emphasis on the problem of shape and intensity

prior learning, from large training data sets of structural MR scans.

The resulting computational tools are intended to enable integrated brain and spinal

cord morphometric analyses, as opposed to the approach that is most commonly adopted

in neuroimaging, which consists in optimising separate tools for brain and spine mor-

phometrics.
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1

Introduction

The demand for automated image processing tools has increased dramatically over

the last few years. This has been happening in parallel to the collection of large digital

data sets, which is a prominent feature of the most recent phase of the information era.

Interestingly, the exponential increase in data storage capacity and in processing

speed of computers are not sufficient to explain the phenomenon that is nowadays known

as the big data revolution. Certainly, the availability of larger computational resources

is a crucial factor, but it could not by itself sustain and motivate the collection of such

massive volumes of data if there was not a concurrent effort towards the development of

improved statistical and computational methods for data processing (Wu et al., 2014b).

In fact, the expensive process of collecting new data becomes truly profitable only when

tools are available to analyse and discern hidden patterns in the data themselves.

In the field of medical imaging, such a process has been further encouraged by

the constantly improving performance of imaging devices. As a result, algorithms for

medical image processing are currently expected to be able to extract information in

an automated manner, so as to allow fast, quantitative and repeatable analyses in

research as well as in clinical practice. Typical examples include image segmentation,

registration, reconstruction and classification algorithms.

Medical image computing problems are addresses in this thesis from a Bayesian mod-

elling perspective. In such a framework, mathematical models have to be formulated,

fitted to the observed data, and compared for model selection (MacKay, 1992). There-

fore, from a conceptual point of view, the development of image processing methods

is indeed the search for the best models to represent imaging data. This last aspect

11



might be sometimes overlooked, in spite of being the fundamental question underlying

all probabilistic data science problems.

A number of advantages derive from the choice of relying on probabilistic modelling

techniques. These include the possibility of describing uncertainty and noise in the data,

the opportunity to make predictions and infer unknown quantities from experimental

observations (Ghahramani, 2013), as well as the chance of comparing models to select the

one that is most explanatory of the observed data (MacKay, 1992). On the other hand,

exploiting the potential of full Bayesian inference is typically challenging both from a

mathematical and computational point of view, thus often requiring the adoption of

approximate inference schemes.

The central topic of this thesis is the application of variational Bayesian learning

techniques to model structural neuroimaging data sets. The main fields of application

are: image segmentation, image registration and atlas construction. Moreover, as op-

posed to much of the work done so far in neuroimaging, a systemic vision is proposed,

to demonstrate that different parts of the central nervous system, such as the brain and

the spinal cord, can be effectively represented within a single modelling framework.

1.1. Image segmentation

In computer vision the term image segmentation refers to the task of partitioning a

digital image into subsets consisting of pixels, or voxels, that share common properties,

such as colour, intensity or membership of the same object. The development of image

segmentation techniques is generally motivated by the need to perform some form of

object, or structure, recognition task, in a fast and automated manner. Therefore

applications range over a wide spectrum. Nonetheless, among these, medical imaging

applications are among the ones which have received the most attention over the last few

years, because of the significant impact they can have on medical research and clinical

practice.

There are, in fact, a number of clinical applications where image segmentation could

potentially be very useful. They include both diagnostic procedures, for example lesion

or tumour detection (Mustaqeem et al., 2012), and therapeutic interventions, such as

treatment or surgical planning (Gering et al., 1999). Moreover, in medical research, im-
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age segmentation algorithms have been recognised as particularly valuable in the field

of neuroimaging, where they can be used, for example, as processing tools in the con-

text of studying normal and pathological variability of brain anatomy (Ashburner and

Friston, 2000), as well as for the purpose of mapping functional activations (Maldjian

et al., 2003).

Particularly in medical imaging, where manual annotation of the data requires ex-

tensive training of the raters, the primary scope of using automated segmentation tools

is to make the analyses less time consuming and more reproducible. However it has

also been shown that, especially by exploiting simultaneously different image contrasts,

the results of automated image segmentation can provide more accurate information

compared to simple visual inspection (Bezdek et al., 1992).

A wide range of algorithmic methods have been exploited so far to perform medical

image segmentation, among which are, clustering algorithms (Chuang et al., 2006),

probabilistic generative models (Ashburner and Friston, 2005), multi-atlas segmentation

(MAS) methods (Aljabar et al., 2009), region growing techniques (Pohle and Toennies,

2001), deformable contour models (He et al., 2008) and deep neural networks (Zhang

et al., 2015b), just to provide some of the most relevant examples. An extensive review

of the methods for medical image segmentation can be found in Norouzi et al. (2014);

Pal and Pal (1993); Pham et al. (2000); Setarehdan and Singh (2012); Sharma and

Aggarwal (2010). The work presented in this thesis is mainly set in the framework

of probabilistic atlas-based methods, where in particular the term atlas refers to prior

probabilistic maps encoding tissue composition.

1.1.1. Probabilistic tissue classification from MRI data

When analysing neuroimaging data, it is very helpful to partition the brain into different

tissue types. This processing step often represents the first stage for performing brain

volumetric and morphometric analyses, which are extremely valuable in research and

potentially for clinical practice (Ashburner and Friston, 2000; Giorgio and De Stefano,

2013). In fact, quantifying neural tissue volume not only has a major role for unravelling

the mechanisms underlying neurodegenerative and psychiatric disorders, but can also

significantly help in disease diagnosis and treatment planning or monitoring (Mazzara
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(a) CT (b) PET

Figure 1.1: Examples of CT (a) and PET (b) brain scans

et al., 2004).

For healthy subjects, the tissues of interest are typically gray matter, white matter

and cerebrospinal fluid, while for patients, additional classes may be defined, such as

tumour, oedema or necrosis (Moon et al., 2002; Prastawa et al., 2004). For this pur-

pose, MRI is usually the most convenient imaging modality to work with, as, without

using ionising radiation, it provides excellent soft tissue contrast and good signal to

noise ratio, compared to other imaging techniques. For example, CT yields very good

contrast between bone and soft tissue but is generally inadequate for correctly differen-

tiating tissues within the brain (Loubele et al., 2006). In the case of PET, which is a

functional rather than structural imaging technique, tissue segmentation is quite chal-

lenging due to poor spatial resolution, low signal to noise ratio, together with scatter

and signal attenuation effects (Boellaard, 2009). Examples of CT and PET brain scans

are depicted in Figure 1.1. Moreover magnetic resonance imaging opens up the possi-

bility of enhancing contrast between specific tissues simply by adjusting the acquisition

parameters (Figure 1.2).

As a result, a lot of work has been done to develop algorithms that are capable of

automatically identifying tissue types from MRI data. Most of these methods rely on

the contrast between the intensities of different tissues to assign a tissue label associated

with each voxel. The problem can be effectively solved from a probabilistic generative

modelling point of view. Essentially, this requires learning the intensity distributions of

the tissues of interest. Once such distributions have been estimated the unknown tissue

labels can be inferred making use of Bayes’ rule. More precisely, if a parametric repre-

sentation of the intensity distributions is adopted, where Θ denotes a set of parameters,
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(a) T1w (b) T2w (c) PDw

Figure 1.2: Examples of MRI contrasts obtained by varying the scanning parameters. The

three panels report a T1-weighted (a) a T2-weighted (a) and a PD-weighted (a) scan.

the probability of voxel j belonging to tissue k can be computed as

p(zj = k|xj ,Θ) =
p(zj = k,xj |Θ)∑K
k=1 p(zj = k,xj |Θ)

=
p(zj = k)p(xj |zj = k,Θ)∑K
k=1 p(zj = k)p(xj |zj = k,Θ)

, (1.1)

where xj indicates the observed image intensity at location j and zj is a discrete latent

(unobserved) variable encoding class memberships. From this expression, it is clear that

the crucial point is learning an optimal model of the observed intensities, which allows

computing the conditional probabilities p(xj |zj ,Θ).

Various approaches have been proposed so far by different authors. In particular

different parametrisations might be adopted, as well as different learning techniques. A

widely used strategy consist in modelling the likelihoods of observed data (conditional

probabilities of the data given the labels) as Gaussian distributions, that is to say

p(xj |zj = k,Θ) ∼ N (µk,Σk) , (1.2)

where µk and Σk are the mean vector and covariance matrix of tissue class k. This

naturally leads to a finite Gaussian mixture model (GMM), where data points (i.e.

voxels intensities) are assumed to be statistically independent. Some authors (see for

example Bricq et al. (2008); Held et al. (1997); Kapur et al. (1998); Van Leemput et al.

(1999a); Warfield et al. (2004)) have argued that such a class of models might be lacking

spatial constraints to enforce the piecewise homogeneity of tissue labels. A very well

studied strategy to address this issue consists in introducing Markov random field priors

to ensure spatial coherence (Cross and Jain, 1983). This approach is particularly useful

for increasing robustness to noise, therefore it might become essential at very low signal
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to noise ratios (SNR) or in the presence of artifacts.

Despite being very well suited to perform intensity-based tissue segmentation, MRI

data is often corrupted by artifacts that make the tissue classification task non-trivial.

Among these, thermal noise, intensity non-uniformity and partial volume effects are

probably the most common. These phenomena cause the intensity distributions of dif-

ferent tissues to partially overlap, thus making the classification problem more challeng-

ing (Zhang et al., 2001). Fortunately, one of the big advantages deriving from adopting

a probabilistic perspective is that prior population-based anatomical knowledge can be

easily incorporated within such models, for example in the form of smooth average-

shaped tissue probability maps (Xu et al., 2014), thus helping to alleviate the above

mentioned problems. Additionally, specific artifact correction strategies are available

(Shattuck et al., 2001; Sled et al., 1998).

1.1.2. Modelling intensity inhomogeneities

Intensity inhomogeneities, in MR images, are smooth variations of intensity, which are

not caused by random noise (Figure 1.3). Such a phenomenon is very common and

occurs for multiple reasons. Among these, the most relevant ones are the inhomogene-

ity of the static (B0), radio-frequency (B1) and gradient fields, the non-uniformity of

detector sensitivity and electrodynamic interactions between the magnetic field and the

scanned object (RF penetration and standing wave effects) (Lewis and Fox, 2004; Ra-

japakse and Kruggel, 1998). Additional minor causes are: eddy currents driven by the

switching of the gradient fields, mistuning of the RF coil and bandwidth filtering of the

data (Mazziotta et al., 2001).

At low field strengths the imperfect spatial homogeneity of the static field B0 is

the main cause of these slow intensity variations. At higher MR field strengths the

contribution of B0 diminishes while other effects, such as tissue dependent distortions

produced by MR gradients, start to become more significant (Ganzetti et al., 2016).

This type of artifact, can rarely make visual interpretation of the scans harder but,

most importantly, strongly affects the results of quantitative MR analyses. Figure 1.4

shows, for example, the very poor results produced by a tissue classification algorithm

based on Gaussian mixture models (Ashburner and Friston, 2005) after having disabled
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(a) (b) (c)

Figure 1.3: MR image corrupted by intensity inhomogeneities (a), bias field (b) and corrected

image (c).

the bias correction option.

According to the RF field mapping theory, intensity inhomogeneities can be modelled

as a multiplicative bias (Ganzetti et al., 2016). This assumption is largely accepted, so

most retrospective intensity inhomogeneity correction methods try to estimate a low

frequency field that, once multiplied by the data, will compensate for the distortion.

Methods where the bias is decomposed into a multiplicative and an additive component

have also been proposed (Likar et al., 2001), even if the additive component is most

often neglected, unless the data has been log transformed.

Many computational methods have been proposed to correct inhomogeneities in MR

data (Ashburner and Friston, 2005; Brinkmann et al., 1998; Guillemaud and Brady,

1997; Lewis and Fox, 2004; Likar et al., 2001; Mihara et al., 1998; Rajapakse and

Kruggel, 1998; Sled et al., 1998; Styner et al., 2000; Tustison et al., 2010; Van Leemput

et al., 1999d; Wang et al., 1998). The techniques exploited by such methods include:

non-parametric non-uniform intensity normalisation (N3/N4) (Sled et al., 1998; Tusti-

son et al., 2010), Fourier domain filtering (Haselgrove and Prammer, 1986), histogram

matching (Wang et al., 1998), homomorphic filtering (Guillemaud, 1998), information

theoretic approaches based on entropy minimisation (Likar et al., 2000), generative mod-

els of image intensity distributions (Ashburner and Friston, 2005; Van Leemput et al.,

1999d).

Empirical methods for bias correction based on measures of the inhomogeneity field

(obtained for example on phantoms) such as in Tincher et al. (1993) have become less

widely used over the past few years, due to their impractical nature as well as to the

low validity of the assumption that the bias is subject independent.
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(a) (b) (c)

Figure 1.4: MR image corrupted by intensity inhomogeneities (a) and the resulting gray (b)

and white (c) matter segmentations, produced with the segmentation algorithm implemented

in the SPM12 software by disabling the bias correction option.

1.2. Spatial normalisation

When working with medical images, it is very often desirable to bring different indi-

vidual scans into a common anatomical space. This task is often referred to as spatial

normalisation, or registration, and it represents an essential processing step for a wide

range of applications. From a very general perspective, the reason for this is that data

acquired from different subjects cannot directly be compared without mapping individ-

ual anatomies into some form of or reference space, where morphological and functional

correspondences are more likely.

This is, for example, a critical step in the context of functional neuroimaging studies,

where common activation patterns across subjects are sought (Orchard et al., 2003).

Other applications include atlas-based segmentation techniques (Cabezas et al., 2011),

the realignment of scans of the same subject acquired at different times (Jenkinson et al.,

2002), as well as the cross-sectional or longitudinal modelling of structural differences,

or changes (Ashburner et al., 2003; Kipps et al., 2005; Scahill et al., 2003).

Due to its broad range of applications, the topic of medical image registration has

been widely explored over the past few years. Numerous approaches and processing

tools have been proposed and compared. For an extensive survey see Sotiras et al.

(2013). Nevertheless many questions remain to be answered, especially when it comes

to the biophysical plausibility and interpretability of the results.

Broadly speaking, the process of registering a set of images typically involves:
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(a) subject 1 (b) subject 2

(c) subject 1

normalised

(d) subject 2

normalised

Figure 1.5: Example of spatially normalised images.

• Defining a spatial transformation model

• Identifying an objective function and a suitable optimisation strategy

• Selecting an interpolation strategy to resample the images at the locations speci-

fied by the underlying deformation model

A number of options are available with respect to each of the three points listed

above. Therefore many alternative methods can be designed, which differ in the strategy

adopted for at least one of such points.

With regard to the modelling of spatial transformations, there is a large number of

available approaches, which can be broadly divided in global affine and local non-rigid

methods (Lester and Arridge, 1999). The first ones allow only a limited number of

degrees of freedom (typically from 6 to 12), while the second can be extremely highly

dimensional and include up to a maximum of 3N free scalar parameters, with N equal

to the number of voxels constituting the image (Modersitzki, 2004).

Affine transformations, which permit translation, rotation, scaling and skewing, are

intrinsically global and cannot model local structural properties, unless a piecewise

approach is adopted. On the contrary, non-rigid methods belonging to the second group
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are local in the sense that they can capture morphological differences at a much smaller

spatial scale. Approaches of this second type can be further subclassified depending on

how the deformations are modelled, or parametrised. In particular, two broad categories

can be identified. The common feature of the methods belonging to the first one is the

introduction of a small displacement field that is added to the identity transform in order

to map between different anatomies. Instead, methods of a second sort aim at capturing

larger shape variations, while preserving topological properties and, to do so, they rely

on the construction of diffeomorphic deformation fields, essentially by integrating a

velocity field over multiple time points (Ashburner, 2007; Joshi et al., 2004; Rueckert

et al., 2006; Vercauteren et al., 2009).

The second crucial point is identifying a suitable objective function. This generally

requires choosing a distance metric to quantify the similarity between two, or multiple,

images. With respect to this, the choice of the the metric strongly depends on whether

the images were acquired with the same or with different modalities. In the first case,

because the scans share similar intensity distributions, suitable distance measures can be

estimated based on voxel-wise intensity differences. Indeed, the most common solution

for intra-modality registration involves computing the sum of the squared differences

(SSD) as a similarity metric. Alternatively, local normalised cross-correlation can also

be used (Avants et al., 2008), which is invariant to linear transforms of the intensities.

On the contrary, in the case of inter-modality registration, using SSD-based objective

functions is not a viable option. In such cases, information theoretic approaches are more

suitable, as they allow quantification of the amount of information shared by images,

without relying on the difference between intensities, which in this case is not informative

for measuring image similarity. In particular mutual information (MI) represents the

most commonly adopted metric (Maes et al., 1997, 2003; Wells et al., 1996; Zitova and

Flusser, 2003). Approaches based on the concept of image self-similarity have also been

proposed (Heinrich et al., 2012).

Unfortunately, optimising the coordinate transformation just by minimising a dis-

tance metric is not feasible in practice, because the registration problem is inherently

ill-posed, with non-unique and unstable solutions. As a result additional constraints

(regularisation) have to be introduced (Hill et al., 2001). The regularising term is usu-

ally incorporated in the objective function together with the matching (similarity) term,
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so as to restrict the space of possible solutions. Only in a limited number of cases, for

example when the transformation space is very low dimensional, the problem is implic-

itly regularised without having to add an explicit penalty term. Most regularisers are

computed as combination of L2 norms of the derivatives of the displacement and can be

interpreted according to physical (most commonly mechanical) models (Burger et al.,

2013; Sorzano et al., 2005). Examples include elastic, diffusion- and curvature-based

regularisers. In addition to assuring a well-posed mathematical framework, regulari-

sation is also exploited to enforce biophysical plausibility of the transformations. For

example it might be reasonable to use known biomechanical properties to constrain

the deformations (e.g. impose a local rigidity constraint in the presence of bony struc-

tures etc.). Topology preservation is also a desirable property, commonly enforced by

restricting the space of solutions to locally invertible transformations.

Another aspect, which has to be taken into account to solve image registration prob-

lems, is how to interpolate images. In fact, digital images are discrete, sampled versions

of an underlying continuous signal. Therefore, whenever a spatial transformation is

applied, it is necessary to resample such a continuous signal at new locations specified

by the transformation model. Most common interpolation schemes are linear (Lehmann

et al., 1999) and spline interpolation (Hou and Andrews, 1978). These methods, in spite

of the different nomenclature, belong indeed to the same family, as the linear approach

is equivalent to first order B-spline interpolation. Nevertheless they can differ very much

in computational complexity and time (Parker et al., 1983). The choice of a suitable

interpolation scheme, however, does not only depend on computational convenience. In

fact, it has been shown that different interpolation strategies can impact the accuracy

of registration. For example, some interpolation approaches can cause the presence of a

high number of spurious local optima in the objective function, thus compromising its

smoothness and making the optimisation more challenging (Tsao, 2003). Another factor

to be taken into account is that higher order interpolation might not always preserve

existing constraints on image intensities; that’s why, for instance, linear approaches

are more suitable to interpolate probability maps, which are bounded in a probability

simplex.
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Figure 1.6: Example of probabilistic brain atlas. From left to right gray matter, white matter

and cerebrospinal fluid tissue probability maps are illustrated.

1.3. Atlas-based methods: a link between

image segmentation and registration

A great number of segmentation algorithms make use of prior information in the form of

probabilistic atlases 1 (Ashburner and Friston, 2005; Fischl et al., 2002; Yeo et al., 2008).

Indeed, as opposed to purely intensity driven clustering methods (Gerig et al., 1992),

atlas-based strategies allow accurate differentiation of structures that have similar (i.e.

overlapping) intensity distributions, in spite of belonging to different tissue types, or

structures. Additionally, by incorporating prior anatomical knowledge, robustness to

noise and imaging artifacts is increased (Pham et al., 2000). Further robustness is often

achieved by introducing contextual information via Markov random fields (Bricq et al.,

2008; Van Leemput et al., 1999b).

Figure 1.6 illustrates, as an example, a set of probabilistic templates of gray matter,

white matter and cerebrospinal fluid. Atlases of this sort are widely used to perform

automated tissue classification in neuroimaging (Ashburner and Friston, 2005; Bricq

et al., 2008; Cabezas et al., 2011; Van Leemput et al., 1999b).

Other types of atlases, which, rather than tissue labels, carry cytoarchitectonic labels

on an average-shaped anatomy (Fan et al., 2016), can instead be used to parcellate

1The term atlas is widely used in medical image computing. However, depending on the particular

framework, atlases can encode different types of information. In the remaining chapters of this thesis

the term atlas will refer to average-shaped tissue probability maps that indicate the prior probability of

finding each tissue type at every location in a reference anatomical coordinate system. This approach

should not be confused with the multi-atlas framework for image segmentation, which instead makes

use of a set of labelled images of individual subjects, also referred to as atlases.
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organs into different functional or structural areas. Atlases of these sort can even encode

information on the intensity distributions relative to different anatomical structures, so

as to ensure higher robustness and better classification performance (Fischl et al., 2002).

An example of a brain atlas with cortical and subcortical region labels is provided in

Figure 1.7.

In order to make use of such a priori information, atlas-based segmentation algo-

rithms rely on the knowledge, or estimation, of a spatial transformation, which brings

the template in register with a new individual image (Ashburner and Friston, 2005).

The underlying idea being that, when an atlas is warped to match an individual scan,

structural and functional correspondences are ensured (Figure 1.8).

A similar principle is at the basis of the so called multi-atlas segmentation (MAS)

techniques. The main difference between these and conventional probabilistic atlas-

based methods, which will be extensively explored throughout this thesis, is that, in

the case of multi-atlas segmentation, information encoded in the training data is not

summarised in a single population-based atlas. Instead, each training sample, consisting

of a single subject image with an associated manual segmentation, constitutes an atlas,

which is warped onto unseen individual scans (Klein et al., 2005). Propagation and then

fusion of the labels provided by each atlas allows a single segmentation of the test data to

be attained (Heckemann et al., 2006; Langerak et al., 2010). For a comprehensive review

of multi-atlas segmentation strategies see Iglesias and Sabuncu (2015). Interestingly,

probabilistic formulations of the label fusion problem have also been proposed (Iglesias

et al., 2013b; Sabuncu et al., 2010).

The crucial point here is that image segmentation and registration problems are

intrinsically interdependent. Nevertheless they are often solved as individual tasks. For

instance, the most common approach is to first register a target image to one, or mul-

tiple, templates and, in a second processing step, obtain tissue labels by manipulation

of the anatomical information encoded in the atlas(es).

From a theoretical point of view this corresponds to formulating two separate models.

A first one to find morphological correspondences, which typically does not take into

account the unknown tissue labels of the test image, and a second one that, making

use of the deformation field estimated in the previous step, enables the estimation of

anatomical labels. In spite of providing acceptable results, approaches of this sort are
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Figure 1.7: Example of brain atlas for anatomical and functional parcellation (Fan et al., 2016).

(a) (b) (c)

Figure 1.8: Example of gray matter tissue probability map overlaid on an individual scan.

Axial (a), coronal (b) and sagittal (c) views.
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somehow suboptimal (Ashburner and Friston, 2005). In fact, when the second step has

been solved, the acquired information on tissue composition or structure location could

be exploited to further refine the estimated spatial transformation (Mahapatra and Sun,

2012), which would in turn help to improve the results of the second (segmentation)

step. In other words, it would be more convenient, and more accurate at the same time,

to formulate exhaustive mathematical models, capable of capturing simultaneously both

shape and tissue composition. Indeed, methods of this sort have already been explored

by a number of authors (Ashburner and Friston, 2005; DAgostino et al., 2006; Pohl et al.,

2006; Xiaohua et al., 2004b; Yezzi et al., 2001) and the results of their experiments seem

to indicate that solving simultaneously image segmentation and registration tasks can

provide more accurate solutions, compared to decoupling of the two problems (Pohl

et al., 2006).

For this reason, joint modelling techniques should always be preferred, in spite of

being potentially more computationally expensive, compared to tools that only solve

one sub-problem at a time, due to the higher number of parameters to be estimated and

to the greater complexity of the underlying models. Such drawbacks are in fact most

often manageable with the computational resources available these days. Moreover they

are counterbalanced by an increased reliability of the results, as well as by the practical

convenience of solving multiple tasks within a single algorithmic framework (Ashburner

and Friston, 2005).

1.3.1. Probabilistic tissue template construction

In its most simplistic implementation, the construction of average-shaped tissue prob-

ability maps involves averaging a number of individual segmentations, or label maps,

after they have been spatially normalised. This indicates that the processes of seg-

menting images and generating atlases are intrinsically related in a circular manner,

as to produce accurate segmentations it is desirable to have an adequate atlas and to

construct a representative atlas it is necessary to have a set of accurately segmented

images.

It is therefore natural to try to solve both problems simultaneously. For this pur-

pose, one natural solution consist in trying to enforce, in a mathematical form, the fact
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that individual segmentations are realisations of a stochastic process governed by a prior

anatomical model, which can be inferred from a large data set of individual observations.

Along this line, the works of Bhatia et al. (2007) and Ribbens et al. (2010) provide inter-

esting probabilistic formulations, relative to the problem of groupwise tissue template

construction.

A considerable part of the work presented in the following chapters relies on the

idea that, with a single hierarchical generative model of MR data, it is possible to cap-

ture morphological variability across a homogeneous population in the form of average-

shaped probabilistic atlases. In particular, in the spirit of Ashburner and Friston (2005),

it will be assumed that image intensities are drawn from multivariate Gaussian mixture

distributions, with the incorporation of spatially varying tissue priors, which are un-

known but, as the following chapters will illustrate, can be learned directly from large

multispectral MR data sets by fitting generative latent variable models.

This approach, which will be explored in detail in the remainder of this thesis,

defines a general computational framework, which could serve to learn representative

and unbiased priors, for many different populations. Therefore, it could also open up

the possibility of extending well-established image processing techniques to the analysis

of data sets that are currently considered difficult to deal with, due to the lack of

appropriate prior models (e.g. data relative to particular age groups, as well as animal

or pathological data).

1.4. Bridging the gap between brain and spine

imaging

As anticipated in the previous section, the work presented in this thesis aims to explore

the potential of Bayesian generative modelling techniques to learn anatomical priors

from cross-sectional imaging data sets. Given its generality, such a methodological

framework could in principle be exploited to solve a diverse range of medical image

computing problems. However the application studied in this thesis regards primarily

the development of computational tools to process within a single modelling framework
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both brain and spinal cord MR data 2. This is a rather unexplored research topic, as

the most common approach adopted in neuroimaging consists in optimising different

tools either for brain or spinal cord data. As a result, these two applications remain

hard to integrate in practice, due to the lack of a common processing framework.

In addition, it should be noted that there exists a technical gap between brain and

spine imaging. In fact, incredible effort has been put by the neuroscientific community

into the development of computational techniques to enable morphometric brain stud-

ies. Such tools have been extensively tested, validated and improved during the past

twenty five years, both for healthy subjects (Avants et al., 2011a; Ghosh et al., 2010;

Gronenschild et al., 2012; Išgum et al., 2015; Klein et al., 2009; Wenger et al., 2014)

and pathological populations (Ghosh et al., 2010; Pereira et al., 2010; Popescu et al.,

2012; Wang et al., 2007), and are now easily accessible for researchers working on brain

imaging data (Ashburner, 2007; Ashburner and Friston, 2005; Avants et al., 2011b; Cox,

1996; Fischl, 2012; Klein et al., 2010; Smith et al., 2004).

In the meanwhile, the progress in the field of spinal cord MR imaging has been

slower. This is in part due to numerous challenges in the process of data acquisition

(Cohen-Adad et al., 2011; Wilm et al., 2007), which have made large spinal cord imaging

studies impractical and therefore less appealing compared to brain imaging experiments.

In fact, many of the technical challenges encountered is spine MRI are directly related to

the peculiar anatomy and to the geometrical properties of the spinal cord (Cohen-Adad

et al., 2011; Lycklama et al., 2003). For example, the small cross-sectional area of the

cord, whose diameter is around 1 cm, together with its large rostrocaudal extension (ap-

proximately 45 cm), make the image acquisition process much more challenging than in

conventional brain MRI. In particular, achieving high resolution in the transverse plane

(at least 1 mm × 1 mm) becomes crucial and, as a result, the amount of data that

needs to be collected in order to cover long spinal portions can become incredibly large.

In fact, the field of view (FOV) typically spans the entire body width, to minimise the

impact of aliasing effects, which otherwise would need to be controlled using spatial

suppression pulses to eliminate the signal from regions outside the FOV. Additionally,

2The PhD project discussed in this thesis was funded according to UCL Impact studentship scheme

in partnership with Balgrist University Hospital in Zurich, which is a world leading institution for

clinical research on traumatic spinal cord and musculoskeletal injuries.
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the periodic pulsation of the cerebrospinal fluid (CSF), together with respiration, intro-

duces motion artifacts, which need to be minimised in the acquisition phase or corrected

during post-processing (Mohammadi et al., 2013; Taber et al., 1998). These are just

some of the main difficulties encountered in spinal cord MRI. Additional issues can for

example arise when imaging patients with orthopaedic implants (Petersilge et al., 1996;

Rudisch et al., 1998).

Such a gap between brain and spinal cord imaging techniques is maybe among

the reasons why not much research has been conducted on the development of image

processing algorithms for spinal cord data, as opposed to the large effort invested into

the design of processing solutions for brain scans.

In particular, many of the publicly available automated processing tools, which per-

form well on brain images, either are not applicable or have a poorer performance at the

cord level (De Leener et al., 2016). As a result, most of the analyses performed on spinal

cord images still require large amounts of manual editing (e.g. manual identification of

the cord centre or manual delineation of the cord and its internal structure) (Horsfield

et al., 2010; Yiannakas et al., 2012).

Bridging the gap between brain and spinal cord imaging will require further ad-

vance in both image acquisition and image processing techniques. Indeed, a number of

research groups are currently working on the development of dedicated tools to analyse

spinal cord MR data (a brief survey on their work will be presented the following sec-

tion of this chapter). However, such tools are still hard to assimilate with brain image

processing methods, while in principle it would be very helpful for the neuroimaging

community to have a common modelling framework capable of handling simultaneously

the diverse challenges presented by brain and spinal cord images, thus allowing to per-

form integrated brain and spine morphometric analyses. The potential impact of having

general computational frameworks to deal with the entire central nervous system is in-

credibly promising. In fact, numerous studies have already shown that spine MRI may

help in differential diagnosis and disease progression monitoring, as opposed to solely

using brain MRI scans (Bot et al., 2004; Freund et al., 2016; Losseff et al., 1996). Such a

problem will be addressed in the remaining chapters, by exploiting hierarchical genera-

tive models of MR data. In particular, the line adopted in this work consists in keeping

the mathematical formulation of such models as unified and general as possible, so as
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to ensure maximal generalisation capability.

1.5. Spinal cord imaging and volumetry: the

state-of-the-art

The spinal cord is a long and thin cylindrical structure of the central nervous system

and it constitutes the main pathway for transmitting information between the brain and

the rest of the body. Its peripheral region is constituted by white matter tracts, which

contain sensory and motor axons, both ascending and descending, while the central

region is formed by three grey matter columns containing nerve cell bodies. Just like

the brain, the spinal cord is a major site of traumatic injury (Huber et al., 2015) and it

can be affected by a number of neurodegenerative diseases, such as multiple sclerosis,

amyotrophic lateral sclerosis, transverse myelitis and neuromyelitis optica (Rocca et al.,

2015).

Understanding the degenerative processes underlying these pathologies represents

a crucial step towards the development of effective therapeutic interventions, as well

as towards the identification of sensitive and selective diagnostic criteria. In particular,

quantification of spinal cord tissue loss (i.e. atrophy) has been regarded over the past two

decades as a promising biomarker (Filippi et al., 1996; Freund et al., 2013a; Grabher

et al., 2015; Kidd et al., 1993; Losseff and Miller, 1998; Losseff et al., 1996), which

could potentially help in monitoring disease progression, predicting clinical outcome and

understanding the mechanisms underlying neurological disability (e.g. demyelination,

inflammation, axonal or neuronal loss), in a number of conditions that affect the central

nervous system both at the brain and spinal cord level, such as multiple sclerosis (MS)

and traumatic spinal cord injury (SCI) (Bakshi et al., 2005; Freund et al., 2013a,b;

Grossman et al., 2000; Miller et al., 2002).

Neuroimaging techniques, particularly MRI, represent the most effective tools to

investigate non-invasively and in vivo the structure and function of the spinal cord,

both in physiological and pathological conditions. Figure 1.9 illustrates two examples

of brain and cervical cord MR scans.

Unfortunately, spinal cord MRI is not immune from technical challenges. Some of
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Figure 1.9: Examples of brain and cervical cord MR scans

them are intrinsic to MR imaging, such as the presence of intensity inhomogeneities,

while others arise from the peculiar anatomy of the cord itself, for instance from its small

cross-sectional area (Grossman et al., 2000; Stroman et al., 2014; Wheeler-Kingshott

et al., 2014). Nevertheless, spinal cord imaging using MR techniques has improved

significantly over the past few years, especially with the introduction of phased-array

surface coils and fast spin-echo sequences (Stroman et al., 2014).

For spinal cord imaging studies, delineating the cord represents the first step before

assessing atrophy or detecting any other morphometric change, or difference. This indi-

cates that there is an urgent need not only for automated algorithmic solutions dedicated

to spinal cord tissue classification and image registration (Chen et al., 2013; De Leener

et al., 2017; Fonov et al., 2014; Levy et al., 2015; Taso et al., 2014; Van Uitert et al.,

2005), but also for large, systematic and reproducible validation studies to objectively

assess the performance of such tools (Prados et al., 2017).

Not surprisingly, the first methods that appeared in the literature to perform spinal

cord image segmentation and the subsequent volumetric analyses were based on semi-

automated algorithms. Among these, one of the earliest is described in the work of

Coulon et al. (2002), where they introduce an algorithm for fitting a cylindrical cubic

B-spline surface to MR spinal cord images, which requires the user to provide a set of

landmarks that will define the medial axis of the initial surface.
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Later on, few other semi-automated solutions have been presented by Van Uitert

et al. (2005) and Horsfield et al. (2010). In particular, Van Uitert et al. (2005) proposed

a semi-automated segmentation technique based on level set methods, which was prelim-

inary validated only on 2D data. The method of Horsfield et al. (2010) is instead based

active surface models and it was validated on T1-weighted images of healthy controls

as well as MS patients acquired at 1.5 T. In both cases, the user has to approximatively

mark the cord centre, so as to provide a reliable initialisation of the algorithm.

Only recently have fully automated spinal cord segmentation methods started to be

proposed. Chen et al. (2013) introduced a fuzzy c-means algorithm with topological

constraints to segment the cervical and thoracic spinal cord from MR images. Their

method relies on a statistical atlas of the cord and the surrounding CSF, which is

constructed from five manual segmentations. Instead, De Leener et al. (2014) proposed

a fully automated method for delineating the contour of the spinal cord, in T1- and

T2-weighted MR images, by warping of a deformable cylindrical model.

The first significant effort to define and introduce a standard anatomical space for

spinal cord neuroimaging studies relates to the work of Fonov et al. (2014), who devel-

oped a standard stereotactic space for spinal cord imaging data, between the vertebral

levels of C1 and T6 (MNI-Poly-AMU template).

Their template is generated using the image registration algorithm presented in

Avants et al. (2008) and includes a T2-weighted average image, together with proba-

bilistic gray and white matter maps. Such tissue probability maps were developed by

Taso et al. (2014), via automated registration of manually labelled MRI scans of 15

subjects.

Within the approach presented by Fonov et al. (2014), registration of new subjects

into the MNI-Poly-AMU template space is obtained in a semi automated fashion. To

further parcellate the spinal cord into different fiber tracts, Levy et al. (2015) generated

a single slice spinal cord white matter template, obtained from digitalisation of existing

anatomical atlases (Gray, 2009). Such a template has then been registered to MNI-

Poly-AMU space.

The work of Fonov et al. (2014); Levy et al. (2015); Taso et al. (2014) constitutes an

important step towards the development of robust and reliable tools for analysing struc-

tural spinal cord data. Indeed, having a common anatomical framework can potentially
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allow the comparison of results obtained by different research groups on different data

sets, thus speeding up the progress of spinal cord imaging research.

Nevertheless, there is still a crucial limitation that has not been addressed: the tools

that they have designed are optimised for spinal cord MR images and therefore they

neglect the brain to the same extent to which most brain image processing environments

neglect the spinal cord. As a result, integrating brain and spinal cord morphometric

analyses is not yet feasible with their approaches.

1.6. Contribution of this thesis and sum-

mary of remaining chapters

The main contribution of this thesis is the formulation of a general Bayesian modelling

framework, which exploits variational inference techniques to capture the variability of

both shape and intensity across large data sets of MRI scans. In fact, the work presented

here embraces the vision of Ashburner and Friston (2005) and expands the hierarchical

structure of their generative model so as to allow learning of both average-shaped tissue

probability maps and intensity priors from observed cross-sectional imaginga data sets.

While in principle the proposed approach could have many potential applications in the

field of medical imaging, this thesis focuses primarily on neuroimaging applications, with

particular emphasis on the problem of developing an integrated processing framework

for both brain and spinal cord image data.

Chapter 2 introduces, first, the very general principles underlying generative and

discriminative modelling techniques, then presents an overview of some of the possi-

ble applications of probabilistic generative models to solve medical image processing

problems.

Chapter 3 describes the generative model of MR neuroimaging data that constitutes

the theoretical foundation of this thesis. The method is based on a spatially varying

Gaussian mixture model (GMM) that includes unknown, average-shaped tissue prob-

ability maps (TPMs), which can be learned from the observed data. Model fitting is

performed via both maximum likelihood and maximum a posteriori techniques.

Experiments to test the performance of the framework introduced in Chapter 3 are

32



illustrated in Chapter 4. In particular, fully unsupervised and semisupervised learn-

ing are compared, along with different deformation models. Test data consist of both

synthetic brain data and real brain and spinal cord data.

Chapter 5 presents some background concepts on the theory of variational Bayesian

inference and introduces a modelling and algorithmic framework that applies the vari-

ational Bayes approach to medical image segmentation problems. This approach can

alleviate some of the limitations of maximum likelihood and maximum a posteriori

estimation, with no significant increase of the computational cost. Additionally, a pro-

cedure is described, which allows learning of empirical intensity priors from large MR

data sets, thus increasing the robustness of the proposed tools, which are validated on

both synthetic and real brain MR scans.

In Chapter 6, the variational approach introduced in the previous chapter is ex-

tended, in order to derive a semisupervised groupwise atlas construction framework,

where morphological variability is modelled by means of diffeomorphisms. Application

of such a framework to simultaneously perform brain and spinal cord morphometric

analyses is explored, with validation experiments performed on real and synthetic MR

images, mostly from publicly available databases.

Chapter 7 concludes this thesis, with a general discussion on the contribution of the

presented work, on its limitations, as well as on possible directions for future work.

33



2

Generative models in medical

imaging

2.1. Introduction

This chapter describes the fundamental concepts underlying generative modelling tech-

niques. These are compared to the principles behind discriminative methods and the

advantages and limitations of the two approaches are discussed.

A general overview of the possible applications of generative models to solve medical

image analysis problems is also presented.

2.2. Generative versus discriminative mod-

els

By definition, generative models are statistical models that explicitly represent the

probability distribution from which the observed (i.e. measured) data is assumed to be

drawn. In other words, they capture the stochastic process underlying data generation,

by means of probabilistic inference. This typically requires the introduction of unob-

served random variables, referred to as latent variables, which correspond to hidden

states of the modelled system (Bishop et al., 2007).

Having denoted the observed data by x and the hidden, or latent, data by z, the
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core of a generative model is in its definition of the joint probability distribution p(x, z),

which fully encodes the data generation process (Bishop, 2006).

Introducing a generic parametric representation, governed by a vector of parameters

θ, the likelihood of the complete (i.e. observed and unobserved) data can be expressed

as

p(x, z|θ) = p(x|z,θ)p(z|θ) , (2.1)

by making use of the product rule of probability theory.

Additionally, a prior probability distribution on the model parameters p(θ) can be

incorporated, to give

p(x, z,θ) = p(x, z|θ)p(θ) = p(x|z,θ)p(z|θ)p(θ) . (2.2)

By applying Bayes’ rule it is possible to compute the posterior probability distri-

bution of the unobserved latent variables and model parameters, given the observed

data

p(z,θ|x) =
p(x, z,θ)

p(x)
=

p(x, z,θ)∫ ∫
p(x, z,θ′)dθ′dz

. (2.3)

Indeed, this is usually one of the main quantities of interest for solving machine learning

problems, since z commonly encodes an unknown property of the observed data (e.g.

class labels) that the experimenter is trying to make predictions on (Bishop, 2006).

Equation 2.3 essentially indicates that the posterior probability over the unknown

latent variables and model parameters is proportional to the joint distribution p(x, z,θ),

as the term p(x), referred to as evidence, does not depend on the unobserved variables.

Performing exact inference on z would require computing the posterior distribution

p(z|x), which can be evaluated by marginalising p(z,θ|x) across the parameter space,

as follows

p(z|x) =

∫
p(z,θ|x)dθ =

∫
p(x, z,θ)dθ∫ ∫
p(x, z,θ′)dθ′dz

=

∫
p(z|θ,x)p(θ|x)dθ . (2.4)

Unfortunately, the integrals in equations (2.4) and (2.3) are most often intractable in

analytical form and too complex to solve numerically (Bishop, 2006). However, for many

applications it is quite reasonable to assume that the posterior distribution p(θ|x) is
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very peaked around its mode and therefore well approximated by a Dirac delta function

centred on the maximum a posteriori estimate θMAP .

With this assumption

p(z|x) =

∫
p(z|θ,x)p(θ|x)dθ ≈ p(z|θMAP ,x) , (2.5)

where

θMAP = arg max
θ

p(θ|x) , (2.6)

that is to say, an approximate posterior probability on the hidden data z can be com-

puted making use of point estimates of the model parameters, obtained by maximising

the posterior p(θ|x). In particular, since

p(θ|x) =
p(x,θ)

p(x)
=

∫
p(x, z,θ)dz∫ ∫
p(x, z,θ′)dθ′dz

, (2.7)

maximising p(θ|x) with respect to θ is equivalent to maximising the joint probability

distribution p(x,θ).

As opposed to generative models, discriminative models do not represent the joint

probability distribution of x, z and θ. Instead, they make use of pairs of observed data

vectors x̄ = {xi} and training hidden labels z̄ = {zi}, to compute the probability of the

labels given the input features and the model parameters p(z̄|x̄,θ).

The posterior p(θ|x̄, z̄) can then be expressed as

p(θ|x̄, z̄) =
p(z̄|x̄,θ)p(θ|x̄)

p(z̄|x̄)
=

p(z̄|x̄,θ)p(θ|x̄)∫
p(z̄|x̄,θ)p(θ|x̄)dθ

, (2.8)

where p(θ|x̄) is a prior on model parameters, as in (2.2).

For making predictions on unseen test data x, the following posterior needs to be

computed p(z|x, x̄, z̄), by integrating out the model parameters, as follows

p(z|x, x̄, z̄) =

∫
p(z|x,θ)p(θ|x̄, z̄)dθ . (2.9)

Similarly to equations (2.3) and (2.4), also equations (2.8) and (2.9) involve the

computation of integrals which are likely to be computationally very challenging. As

a result MAP approximations are often preferred to a fully Bayesian learning scheme

(Bishop et al., 2007).
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A non-exhaustive list of discriminative techniques commonly used in machine learn-

ing includes logistic regression (Hosmer Jr et al., 2013), support vector machines (Hearst

et al., 1998), linear regression (Neter et al., 1996), artificial neural networks (Yegna-

narayana, 2009) and random forests (Breiman, 2001).

It has been shown that discriminative models can achieve very high predictive per-

formance, as long as abundant training data is available. For instance, Jordan (2002)

compared discriminative and generative learning as represented by logistic regression

and naive Bayes to conclude that, for increasing training size, discriminative methods

have a lower asymptotic prediction error, which they reach more slowly though, com-

pared to generative techniques.

In other words, the main limitation of discriminative models is that they cannot be

trained on unlabelled data (Bishop et al., 2007), thus making their performance heavily

dependent on the number of labelled training examples.

This is unfortunately limiting the application of discriminative techniques for med-

ical image analysis, since the availability of training labels is often quite scarce (Koch

et al., 2015), as compared to the large amount of unlabelled data (Schmah et al., 2008).

Therefore, as opposed to other fields of data science, where discriminative methods are

now consolidated, in medical imaging these types of model have only recently started

to be proposed (Ciresan et al., 2012; Fung and Stoeckel, 2007; Hoi et al., 2009; Li et al.,

2006; Ronneberger et al., 2015; Yi et al., 2009; Zhang et al., 2015b), and nevertheless, ad

hoc data augmentation strategies are often necessary to ensure success of these methods

(Ciresan et al., 2012; Ronneberger et al., 2015).

With respect to that, generative models offer an interesting advantage, which derives

directly from the fact that they explicitly model the relationship between observed and

latent data, that is the possibility of augmenting the training set with unlabelled images.

If no manual or ground truth labels are used for training of the model, the resulting

computational learning scheme is said to be unsupervised. In the opposite case, that is

to say when all training examples are provided with output labels, learning is instead

fully supervised. Hybrid training strategies are also available, which combine labelled

and unlabelled data, in a semisupervised fashion (Bishop et al., 2007; Kingma et al.,

2014; Zhu, 2006).

However, the dichotomy between generative and discriminative models does not nec-
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Figure 2.1: Prediction error as a function of model complexity. Qualitative illustration of the

trade off between variance and bias from Friedman et al. (2001).

essarily imply that the two methods are mutually exclusive. There is, in fact, strong

interest in the scientific community towards learning techniques that can combine the

two approaches, thus yielding trade off solutions (Batmanghelich et al., 2012; Bosch

et al., 2008; Jaakkola et al., 1999; Lasserre et al., 2006; McCallum et al., 2006; Raina

et al., 2003), which ideally would provide more accurate predictions than pure gen-

erative approaches, with a lower amount of required labelled data, compared to pure

discriminative methods. For instance, a possible approach involves synthesising data

using a generative model and exploiting it to enhance the classification performance of

a discriminative algorithm (Enzweiler and Gavrila, 2008). From a general perspective,

such an effort could be seen as a possible way to cope with the bias-variance dilemma

(Figure 2.1), which is a well known question arising in all classification problems, where

simplistic models have poor predictive performance due to a high bias (underfitting),

while overly complex models loose accuracy due to the high variance of their predictions

(overfitting) (Bouchard and Triggs, 2004).

2.3. Generative models in MR imaging

Generative models have been widely adopted to represent structural MRI data (Allas-

sonnière et al., 2006; Ashburner and Friston, 2005; Cardoso et al., 2015; Gooya et al.,

2012; Iglesias et al., 2011, 2012a; Lê et al., 2015; Maji and Bruchez, 2012; Menze et al.,

2010; Pohl et al., 2006; Rajapakse and Kruggel, 1998; Sabuncu et al., 2010; Sharma
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et al., 2001; Sudre et al., 2015; Van Leemput et al., 2001; Wu et al., 2014a; Zhang and

Fletcher, 2014; Zhang et al., 2001). In this framework, the most natural formulation con-

siders voxel intensity values as observed data and voxel labels as hidden variables. Such

labels can indicate tissue composition, membership of an anatomical structure or pres-

ence of a physiological or pathological feature. These models provide a very convenient

framework for the development of automated image processing algorithms. Applica-

tions that have been explored so far include image segmentation, image registration,

contrast synthesis and atlas construction. Hybrid generative and discriminative models

have also been proposed (Batmanghelich et al., 2012; Tu et al., 2008), as an attempt to

simultaneously maximise predictive performance and biological interpretability.

2.3.1. Generative models for image segmentation

Many generative models in medical imaging rely on learning a parametric (or non-

parametric) probability density representation of the observed intensities. This is a

relevant research problem, especially in MR imaging, since the observed image intensities

are far from being standardised but depend heavily on the pulse sequence and acquisition

parameters. Therefore, being able to capture the statistical properties of the observed

data (see Figure 2.2 for an example of MR T1-weighted scan with its associated intensity

histogram) and possibly relate them to the properties of previously seen data, is a critical

question for the development of powerful MR image processing algorithms.

In this context, mixture models are particularly useful as they provide a natural

framework for capturing the tissue specific properties of MRI signal intensities, by as-

sociating each mixture component, or a small number of them, to a specific tissue class.

The Gaussian mixture model (GMM), in particular, has become established as a classi-

cal modelling framework for the quantitative analysis of MRI signal intensities. In fact,

it represents a general and flexible approach to fit the intensity distribution of images

and, for the same reason, it has been used profusely in computer vision, to model natu-

ral color images as well as video sequences (Belongie et al., 1998; Delignon et al., 1997;

Friedman and Russell, 1997; Gupta and Sortrakul, 1998; Nikou et al., 2010).

Gaussian mixture models have a direct and rather intuitive application in medi-

cal image processing for the implementation of automated segmentation algorithms to
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Figure 2.2: Intensity histogram (a) of an MRI scan of the head (b)

identify tissue types or delineate anatomical structures. The accuracy and validity of

such tools has been studied extensively, not only for classifying healthy brain tissues

(Ashburner and Friston, 2005; Iglesias et al., 2012a; Liang et al., 1992; Rajapakse and

Kruggel, 1998; Van Leemput et al., 1999c) but also for brain lesion and tumor seg-

mentation (Menze et al., 2015; Prastawa, 2003; Sudre et al., 2015; Van Leemput et al.,

2001).

Figure 2.4 shows the graphical representation of a simple Gaussian mixture model

that could be used to segment MR images. The model in panel (a) makes use of global

mixing proportions π, meaning that for every voxel j the prior probability of that

voxel belonging to a certain tissue class does not depend on its spatial location. This

assumption is normally too uninformative for imaging data, as there is a strong prior

belief on where specific labels are more likely to occur. Therefore, many probabilistic

segmentation methods make use of spatially varying mixing proportions πj (Ashburner

and Friston, 1997; Lorenzo-Valdés et al., 2004), as in panel (b) of Figure 2.4.

These local tissue weights encode population-specific information on anatomical vari-

ability; therefore they are often referred to as probabilistic atlases or tissue probability

maps (Figure 2.3).

Another way of encoding prior anatomical information for solving image segmenta-

tion problems is provided by the so called multi-atlas label fusion framework (Rohlfing

and Maurer, 2005; Wang et al., 2013). In this case rather than encoding information

on anatomical variability in the form of probabilistic maps, the idea is to use a set of

labelled images (atlases) as training examples in order to estimate the unknown labels
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Figure 2.3: Example of probabilistic brain atlas generated as part of the International Con-

sortium for Brain Mapping (ICBM) project (Mazziotta et al., 2001, 1995). From left to right

gray matter, white matter and cerebrospinal fluid tissue probability maps are illustrated.

of the test data. For this purpose spatial (anatomical) correspondences between train-

ing and test data have to be estimated first and then used to propagate the training

labels and intensities onto the test images. It should be noted that this algorithmic

framework was not originally conceived as a probabilistic model fitting scheme (Rohlf-

ing and Maurer, 2005), nevertheless probabilistic generative interpretations of this type

of techniques have been proposed recently (Iglesias et al., 2012a; Sabuncu et al., 2010).

The number of tissue classes to be included in a generative model of MR data depends

on the anatomical region as well as on the imaging modality. For brain imaging, the

tissue types that are mostly of interest are gray matter, white matter and cerebrospinal

fluid (at least for healthy subjects). However additional classes must also be included to

model bone, soft tissues and air in the background as well as inside anatomical cavities,

while pathological tissue types, such as tumour or lesion, may be added for patients

data. Within the Gaussian mixture framework, an intuitive choice would be to associate

each tissue class with one single Gaussian, however it turns out that for many tissues

the distribution of intensities is more complex, due to both biological properties and

and partial volume effects (Cardoso et al., 2011), therefore multiple Gaussians should

generally be used to represent each tissue type, so that each tissue class is itself modelled

as a Gaussian mixture (Ashburner and Friston, 2005).

The problem of how to determine the optimal number of Gaussian components is

a typical model selection problem, where overly complex models should be avoided to

prevent overfitting, while simplistic models might not be able to capture all the relevant

patterns in the data, thus introducing large biases. Different model selection strategies

have been proposed to solve this problem, such as the Bayesian information criterion

41



Λk

µk

K

π zj

xj

N

(a)

Λk

µk

K

πj zj

xj

N

(b)

Figure 2.4: A simple graphical Gaussian mixture model for image segmentation. Large filled

circles indicate the observed data (image intensities X). Unfilled circles represent unobserved

random variables (latent variables Z, which encode class memberships, and model parameters

Θ). The observed intensities are assumed to be drawn from a Gaussian mixture distribution

consisting of K components with means {µk}k=1,...,K and covariance matrices {Σk}k=1,...,K .

The model in panel (a) uses global mixing proportions π, as opposed to that in panel (b),

which has local mixing weights {πj}j=1,...,N .

(BIC) (Sudre et al., 2015), the minimum message length (MML) criterion (Wu et al.,

2003), the alternating kernel and mixture (AKM) method (Priebe and Marchette, 2000).

Such a topic will be discussed in greater detail in Chapter 5, where it will be shown how

the variational Bayes framework can be exploited to automatically select the optimal

number of classes.

2.3.2. Generative models for image registration and

atlas construction

Image registration and atlas estimation problems can also be formulated in Bayesian

generative framework (Allassonnière and Kuhn, 2010; Allassonnière et al., 2007; Ash-

burner and Friston, 2009; Risholm et al., 2010; Van Leemput, 2009; Zhang and Fletcher,

2014; Zhang et al., 2013; Zöllei et al., 2007a). In fact, optimal deformation fields, which

align multiple images to an unbiased group average, can be elegantly obtained as MAP

estimates within a Bayesian inference setting. In such a case, the negative log likelihood
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function of the data (image intensities) acts as a dissimilarity or distance metric, while

priors on the deformations implement the regularisation, so as to encourage smooth-

ness of the spatial transformations. The resulting log posterior function is therefore a

Bayesian equivalent of the classical energy objective functions, which have been thor-

oughly used to solve image registration problems.

In particular, under the hypothesis of independent and identically distributed Gaus-

sian noise, the corresponding Gaussian likelihood function leads to the sum of squared

differences (SSD) distance metric (Zhang et al., 2013), which is commonly used to esti-

mate templates having the same image contrast as the training data. Furthermore the

work of Zöllei et al. (2003) demonstrates that the mutual information objective function

for image registration (Maes et al., 1997) has a local optimum about the point of correct

alignment under a generative latent variable model of the observed intensities.

Formulations of this sort have been proposed both in the small deformation (Allas-

sonnière and Kuhn, 2010; Loic le Folgoc, 2016; Risholm et al., 2010; Simpson et al.,

2015, 2012; Zöllei et al., 2007a) and diffeomorphic setting (Vialard et al., 2012; Zhang

and Fletcher, 2014; Zhang et al., 2013).

Within such models, the variables encoding the deformation fields are treated as

unobserved random variables, which should ideally be integrated out from the model

by marginalisation (Risholm et al., 2010; Zhang et al., 2013). In fact, the performance

of common mode approximations has been questioned for image registration problems,

especially in heavy noise conditions (Allassonnière et al., 2007; Iglesias et al., 2012b).

Unfortunately, integration under the true posterior of the deformations is a particularly

challenging task, due to the lack of analytical solutions and to the high dimensionality

of non-linear deformation models (Allassonnière and Kuhn, 2010). The effectiveness

of sampling techniques, like Markov chain Monte Carlo methods (MCMC), to solve

such problems has been investigated in Allassonnière and Kuhn (2010); Iglesias et al.

(2013c); Risholm et al. (2010); Zhang et al. (2013), but further work needs to be done

in order to make such techniques computationally convenient, compared to standard

MAP methods.

Lately some authors have proposed generative mixture models (Allassonnière and

Kuhn, 2010; Zhang et al., 2015a) to simultaneously solve the problems of template

construction and image clustering. This requires the incorporation of additional latent

43



random variables, encoding a cluster label for each observed image. In other words,

each observed image is considered to be generated by applying a stochastic deformation

field to a template image, drawn from a set of morphometrically distinct templates.

2.3.3. Other applications of generative models

One of the advantages of generative modelling techniques is that a single model might

be suitable for solving multiple processing tasks, without the need to design task specific

models, which will have, by definition, poor generalisation capability. An interesting

example can be found in Cardoso et al. (2015), where the authors show how the same

generative model of multimodal MR data can be exploited for both segmentation and

image synthesis applications with minimal adjustments.

Along the same line, performing the correction of intensity inhomogeneities together

with image segmentation in a probabilistic generative setting has become established as

standard practice within the neuroimaging community (Ashburner and Friston, 2005;

Greenspan et al., 2006; Peng et al., 2006; Pohl et al., 2005; Van Leemput et al., 1999d;

Wells III et al., 1996; Zhang et al., 2001).

These types of method, which are implemented in a number of publicly available im-

age processing softwares (Ashburner and Friston, 2005; Fischl, 2012; Smith et al., 2004),

have proved effective and computationally convenient (Hou, 2006). They typically in-

tegrate the bias estimation procedure within an expectation-maximisation framework,

where the computations to obtain class labels (i.e. segmentations) and intensity distribu-

tion parameters (e.g. Gaussian mixture parameters) are interleaved with optimisation

of the bias, in an iterative fashion. Moreover it should be noted that constraints to

enforce smoothness of the estimated non-uniformity fields can be easily incorporated

in such a Bayesian framework, through the introduction of appropriate prior models

(Ashburner and Friston, 2005).

Interestingly, it has recently been shown that also a widely used, non-probabilistic

bias correction scheme, N3 (Sled et al., 1998), can be interpreted as the implementation

of a generative model of MRI data (Larsen et al., 2015).
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2.4. Summary

In this chapter, the general principles behind generative and discriminative modelling

techniques have been discussed. Additionally, some of the possible applications of gen-

erative models in medical imaging have been introduced.

The following chapter will present in detail a generative model of MR neuroimaging

data, which can be used to solve the problem of constructing probabilistic, average-

shaped tissue templates from large cross-sectional data sets.
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3

A Bayesian framework for groupwise

atlas construction

3.1. Introduction

This chapter will introduce the modelling framework that constitutes the foundation

of the work within this thesis. Such a model represents MR imaging data from a

generative perspective, for the purpose of capturing the variability of both shape and

image intensity across large MRI data sets.

The most direct application of this framework is related to the construction of

anatomical tissue probability maps, which is a problem that arises naturally in medical

image computing, for example when structural data is used to perform group morpho-

metric analyses.

The topic of template construction and its importance for medical imaging appli-

cations will be introduced in Section 3.2 from a general point of view. Section 3.3

instead will present details on the mathematical formulation of the model underlying

the proposed method, whereas the computational strategy adopted to estimate the

model parameters and the resulting algorithm will be discussed in Section 3.4.

Finally, the main limitations of the presented work will be discussed in Section 3.5,

along with possible directions for future work, some of which will be explored in the

following chapters.
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3.2. Constructing anatomical atlases: moti-

vations and challenges

The impressive growth of interest towards neuroscience that has occurred during the last

fifty years has been accompanied and sustained by massive collection of neuroscientific

data, ranging from the molecular and cellular scales to the macroscopic level. In this

context of neuroscientific information proliferation, imaging techniques have been widely

exploited for the in vivo investigation of brain anatomy and physiology (Mazziotta et al.,

1995), due to their non- (or minimally) invasive nature. As a result, the development of

tools for the automated processing, or mining, of neuroimaging data has become, and

remains, a critical research topic.

Among the challenges that arise when working with neuroimaging data, there is one,

which is nearly ubiquitous, that is having to deal with wide morphological variability

across individuals, as well as across populations (Toga and Thompson, 2000).

In functional imaging studies, this translates into the necessity to map common

functional activation sites onto individual anatomical scans (DeYoe et al., 1994). More

generally, inter-subject anatomical variability represents a crucial factor to be taken into

account when performing statistical group analyses or comparing experimental results

coming from different laboratories for meta-analysis (Laird et al., 2011; Mazziotta et al.,

2001).

For this reason, the neuroimaging community has put considerable effort into the

construction of digital brain atlases, whose natural application is to provide a population-

based stereotactic space, for spatially normalising data, whenever there is a need to

compensate for individual shape differences (Ashburner and Friston, 2000; Friston et al.,

1995; Mechelli et al., 2005).

Nevertheless, this fact is not just a drawback for the neuroimaging community. In-

deed, if it is possible to construct models that allow to compensate for shape differ-

ences, this means that the same models of imaging data can be used to investigate

intra-population anatomical variability and inter-population shape variations (Thomp-

son et al., 2000; Xu et al., 2014). Analyses of this sort could eventually serve to answer

clinically relevant questions, for example by offering decisional support for distinguishing
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Figure 3.1: Non-linear ICBM 152 (International Consortium for Brain Mapping) T1-, T2-

and PD-weighted models. The templates include also T2 relaxometry maps, tissue probability

maps and a lobe atlas. Additional information can be found at http://www.loni.usc.edu/

atlases .

normal anatomical features from pathological ones.

From a technical point of view, another interesting aspect is that, when an atlas

is warped to match data of a single subject, any form of information stored in the

atlas, which might regard for example tissue composition (Ashburner and Friston, 2005),

cytoarchitecture (Eickhoff et al., 2005), vascular architecture or neurochemical content,

is automatically projected onto the particular individual anatomy (Thompson et al.,

2000). This is, for instance, the very general principle behind the many atlas-based

segmentation methods developed during the past few decades (Aljabar et al., 2009;

Cuadra et al., 2004; Lawes et al., 2008).

Atlas-guided computerised segmentation is indeed well established, as a technique

to perform tissue or structure classification, in an automated fashion. The validity and

robustness of the currently available tools has been investigated and assessed by many

authors (Cabezas et al., 2011; Collins and Evans, 1997; Wang et al., 2005).

With respect to this, a fundamental question arises though, as to how an ideal atlas

should be constructed. This is in fact far from being a purely theoretical problem, as

the atlas generation procedure directly impacts segmentation or classification results.

A quantitative evaluation of the influence of atlas construction and selection methods

on the performance of segmentation algorithms can be found in Aljabar et al. (2009);

Avants et al. (2010); Rohlfing et al. (2004); Zöllei et al. (2007b).

A number of approaches have been proposed so far to address the problem of con-

structing population-based atlases (Ashburner and Friston, 2009; Avants and Gee, 2004;
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Bhatia et al., 2004; De Craene et al., 2004; Guimond et al., 2000; Joshi et al., 2004;

Ribbens et al., 2010; Shattuck et al., 2008; Thompson and Toga, 1997; Van Leemput,

2009; Wang et al., 2005; Xu et al., 2014). A critical aspect, as recognized in many

previous works, is that of avoiding a bias in the shape of the template (Lorenzen et al.,

2005), a circumstance which typically occurs when a reference anatomy is chosen a pri-

ori (Thompson et al., 2000). Such an issue is commonly solved by introducing a hidden

reference space and by formulating the optimisation problem in terms of a simultaneous,

groupwise estimation of the set of transformations that minimise a distance measure be-

tween the atlas and the individual images (Balci et al., 2007; Bhatia et al., 2004; Joshi

et al., 2004; Mahapatra, 2013), while ensuring that the warps are as small as possible

(Avants et al., 2010).

As with most image registration problems, additional constraints (i.e. regularisation)

on the deformations have to be introduced in order to preserve as many topological

properties as possible (Simpson et al., 2012; Stefanescu et al., 2004). From a probabilistic

perspective this is equivalent to preventing or penalising implausible and overly complex

solutions.

Various similarity measures, as well as different deformation models have been pro-

posed by different authors. Moreover some works aim at constructing templates that

represent an average shape (Avants and Gee, 2004) or an average shape and inten-

sity (Ashburner et al., 1999; Bhatia et al., 2004; Guimond et al., 2000; Joshi et al.,

2004; Sabuncu et al., 2008), while others provide methods for estimating probabilistic

tissue maps (Ashburner and Friston, 2009; De Craene et al., 2004; Kuklisova-Murgasova

et al., 2011; Petrovic et al., 2007; Ribbens et al., 2010; Shattuck et al., 2008; Van Leem-

put, 2009; Xu et al., 2014). Exemplars of brain atlases, created as an initiative of the

International Consortium for Brain Mapping (ICBM), are illustrated in Figure 3.1

Finally, a research topic, which is closely related to the construction of anatomical

atlases, is the problem of structural image clustering, whose aim is to identify subgroups

of individuals sharing common morphological features. Such a problem was explored,

for instance, in the work of Sabuncu et al. (2008) and Ribbens et al. (2010), but will

not be addressed in this thesis.

49



3.3. Generative groupwise model of MR data

The remainder of this chapter will present a computational framework that can serve to

learn tissue probability maps (TPMs) from large data sets of multispectral MR images.

The method relies on the formulation of a single generative groupwise model, where

observed image intensities are assumed to be drawn from Gaussian mixture distribu-

tions. In particular, the standard Gaussian mixture model is adapted in order to in-

corporate unknown deformable tissue priors, which can be learned from training data,

either in a completely unsupervised or in a semisupervised manner. Intensity non-

uniformity correction is also performed, within the same framework, by modelling the

bias field as a combination of low spatial frequency basis functions.

In practice, the method introduced here will enable tissue classification (i.e. segmen-

tation), atlas construction, bias field correction and image registration to be performed

simultaneously in the same computational framework.

Treating image segmentation and registration within a single statistical model is

an approach that has already been explored by a number of authors (Ashburner and

Friston, 2005; DAgostino et al., 2006; Pohl et al., 2006; Wyatt and Noble, 2003; Xiaohua

et al., 2004a; Xu et al., 2014; Yezzi et al., 2001). Indeed, numerous experimental findings

support the underlying hypothesis that solving the two problems in a coupled manner

benefits the results of both (Ashburner and Friston, 2005; DAgostino et al., 2006; Pohl

et al., 2006). An additional advantage is that methods developed according to this

unifying perspective tend to be general and powerful enough to deal with a wider range

of applications, compared to most bottom up approaches.

Nonetheless integrated approaches of this sort have been mainly exploited for the

processing of individual images rather then in the context of groupwise prior learning.

The algorithms proposed in Bhatia et al. (2007); Petrovic et al. (2007); Ribbens et al.

(2010); Riklin-Raviv et al. (2010) are among the few ones that extend this approach to

the modelling of population data, for the purpose of constructing average-shaped tissue

templates.

Estimation of optimal model parameter is formulated, in this chapter, as a mixed

maximum likelihood (ML) and maximum a posteriori (MAP) problem. Therefore, an

expression for the joint probability of the data and the model parameters will be derived
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in following paragraphs of this section, whereas the optimisation scheme, adopted for

maximising such probability function, will be illustrated in Section 3.4.

3.3.1. Distribution of image intensities

Each image is treated as function of space fj : Ωj → R, where the domain Ωj is a

compact subset Ωj ⊂ R3. If different image contrasts are available for the same subject

then fj : Ωj → RD, with D equal to the number of imaging modalities.

Let us first consider data of one subject and let us denote by xj a D-dimensional

vector of signal intensities at voxel j, with j ∈ {1, . . . , N}. As demonstrated by numer-

ous works in the relevant literature (Ashburner and Friston, 2005; Iglesias et al., 2012a;

Liang et al., 1992; Rajapakse and Kruggel, 1998; Van Leemput et al., 1999c; Zhang

et al., 2001), such intensities can be modelled as being drawn from a Gaussian mixture

distribution of K components, having mean vectors Θµ = {µ1, . . . ,µK} and covariance

matrices ΘΣ = {Σ1, . . . ,ΣK} .

Such an assumption is valid only for large signal-to-noise ratios (SNR). At lower SNR

(i.e. when the ratio between signal intensity and noise standard deviation approaches

one), the magnitude of the MR signal can no longer be modelled by a Gaussian prob-

ability density function but becomes Rician distributed instead (Aja-Fernández and

Tristán-Vega, 2013). This results from the non-linear nature of the transformation ap-

plied to compute image magnitudes from the raw complex data, which, in the absence

of MR signal, consists of Gaussian noise with zero mean and uncorrelated real and

imaginary parts (Gudbjartsson and Patz, 1995). In regions where signal is zero, such

as the air-filled background, noise can be modelled by a Rayleigh distribution, which is

a special case of the Rician distribution.

Having denoted by πk the prior probability of any signal intensity, irrespective of

its value and location, being generated from class k, the joint probability of observing

xj and voxel j belonging to class k, can be computed, by making use of Bayes’ rule, as

follows

p(xj , zjk = 1) = πk N (xj |µk,Σk) =

K∏
c=1

[πc N (xj |µc,Σc)]
zjc , (3.1)

where zj is a K-dimensional discrete latent variable, encoding class memberships, whose
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scalar components are equal to

zjc =


1, if c = k .

0, otherwise .

(3.2)

A model of this sort can be applied to each image of a cross-sectional data set that

includes M subjects, under the assumption that data acquired from different individuals

have different intensity distributions, due to the lack of consistency of conventional MR

signal intensities across different scans (Jovicich et al., 2009). As a result, for each

subject i, with i ∈ {1, . . . ,M}, different mean vectors {µi1, . . . ,µiK} and covariance

matrices {Σi1, . . . ,ΣiK} have to be introduced.

A standard Gaussian mixture model would make use of global mixing proportions

Θπ = {π1, . . . , πK} as in equation (3.1). On the contrary, the approach adopted in

this chapter involves defining local, unknown mixing coefficients, that is to say, for each

voxel j and class k, a spatial tissue prior πjk ∈ [0, 1] is introduced, which represents

the prior probability of any signal, at a spatial location indexed by j, being drawn from

class k.

Thus, neglecting for now the problem of template warping in order to account for

individual anatomical differences, and assuming that all data points are independent,

the log likelihood function for the entire data set can be written as

J = log

M∏
i=1

N∏
j=1

p (xij |Θπ,Θµ,ΘΣ) =

M∑
i=1

N∑
j=1

log

(
K∑
k=1

πjk p (xij |µik,Σik)

)
. (3.3)

3.3.2. Modelling intensity non-uniformities

As discussed Chapter 1, an artifact very commonly found in MR images is the one

referred to as intensity non-uniformity, or bias field. It consist of a smooth, low frequency

signal that does not originate from magnetic tissue properties but instead is caused

by factors such as the inhomogeneity of the radio frequency pulse, the disuniformity

of reception coil sensitivity, eddy currents induced by field gradients, as well as the

electromagnetic interaction between the scanned object and the RF field (Sled and

Pike, 1998).

As a result, any intensity-based model of MRI data should take into account the

presence of such a distortion. This is particularly important for automated segmentation

52



methods. Many studies have in fact demonstrated that the accuracy of segmentation

algorithms can be considerably enhanced when a correction for intensity non-uniformity

is applied (Ashburner and Friston, 2005; Dawant et al., 1993; Held et al., 1997).

Therefore, for each subject i, a multiplicative bias vector field b(βi) is introduced,

where βi encodes a set of parameters. Each of the D components of the bias represents

a non-uniformity field, which corrects the image of the corresponding channel, and is

modelled as the exponential of a linear combination of three dimensional discrete cosine

transform (DCT) basis functions. Only a small number of low frequency basis functions

are considered, in order to ensure spatial smoothness of the resulting field.

Equation (3.1) can therefore be rewritten as

p(xij , c = k) = det (Bij) πjkN (Bijxij |µik,Σik) , (3.4)

where Bij = diag (bj (βi)) and bj(βi) is a D-dimensional vector denoting the bias at

voxel j for subject i.

The objective function J in (3.3) becomes instead

J =

M∑
i=1

N∑
j=1

log

(
det(Bij)

K∑
k=1

πjk p (Bijxij |µik,Σik)

)
. (3.5)

3.3.3. Deformable anatomical priors

To account for anatomical variability, the prior class membership probabilities, denoted

by {πj}j=1,...,N , can be warped, in order to match the morphology of each subject.

Thus, from a modelling point of view, the Gaussian mixing proportions become, for

every subject, functions of a different coordinate mapping, which specifies correspon-

dences between the voxel centres of that subject’s volume and a set of locations in the

space of the atlas.

Each of such coordinate transformations is controlled by a vector of parameters

a, so that, for a population of M subjects, all the mappings together define a set

Θa = {a1, . . . ,aM}.

Many transformation models have been explored to solve medical image registration

problems (McInerney and Terzopoulos, 1996) and potentially all of them could be in-

tegrated in the modelling framework that is being presented. As to be expected, the

choice on what family of models to prefer is dependent, to some extent, on the type of
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application. For example, the number of degrees of freedom of the deformations should

vary according to the amount of morphological variability present in the data (Denton

et al., 1999), which is in turn dependent on the represented anatomical structure, as well

as on the homogeneity of the population of interest, in terms of age, ethnicity, health

status etc.

The availability of computational resources and time is also a non-negligible factor.

Obviously, very complex representations, which are likely to provide more accurate re-

sults, will most often require a longer processing time and a larger memory cost (Wollny

and Kruggel, 2002). In particular, it should be noted that this aspect is particularly

relevant for those technological solutions that are intended for integration in the clinical

routine, as speed and robustness become priorities in that situation (Otake et al., 2012;

Rueckert et al., 2016).

Different deformation models are explored and compared in this thesis. In partic-

ular, the formulation presented in this chapter makes use of affine transformations in

combination with a non-linear small deformation model.

Rigid body and affine transformations

Rigid body and affine transformations are linear functions that map between two spaces

while preserving straight lines and planes. Indeed, rigid body transforms are a subset

of affine transforms, with a lower number of degrees of freedom (in three-dimensional

space six instead of twelve). Therefore, the mathematical treatment of these two types

of transformations is, except for a different number of free parameters, very similar

(Jenkinson and Smith, 2001).

Let us first define the identity transform on a continuous domain Id : Ω→ Ω

Id(y) = y, ∀y ∈ Ω (3.6)

where Ω is a compact subset of R3.

Since digital images can be thought of as continuous functions, sampled on a discrete

domain, the following notation 1 will be used to indicate the coordinates of the geometric

1Throughout this manuscript different font styles will be used to distinguish continuous and discrete

vector fields. For instance, y is a discrete field obtained by sampling of the continuous field y.
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centre of each voxel j

yj =
[
yj,1 yj,2 yj,3

]T
. (3.7)

An affine transformation ∆ : Ω → Ω is fully described by a transformation matrix

T(a), parameterised by a ∈ R12, so that

∆(yj) = y′j(a) = T(a) ·

yj

1

 , (3.8)

where y′j identifies the location, in the space of the moving image, which corresponds to

yj in the static (i.e. target) image. It should be noted that, for the model adopted in

this work, the moving images are the tissue probability maps, while the target images

are the individual scans. Moreover, T(a) is constructed as the exponential map of a

matrix Q(a) ∈ ga(3 ) (Ashburner and Ridgway, 2013), where ga(3 ) represents the Lie

algebra 2 of the 3D affine group GA(3).

Q(a) =


a7 a6 + a10 −a5 + a11 a1

−a6 + a10 a8 a4 + a12 a2

a5 + a11 −a4 + a12 a9 a3

0 0 0 1

 . (3.9)

For matrix Lie groups, the exponential map coincides with matrix exponential, there-

fore T(a) can be computed as

T(a) = exp (Q(a)) =

∞∑
k=0

(Q(a))k

k!
. (3.10)

The parameters controlling a rigid body transform are {a1, a2, a3} for the transla-

tional component and {a4, a5, a6} for the rotational component, while affine transforma-

tions also allow zooms, governed by {a7, a8, a9}, and shears, controlled by {a10, a11, a12}.

Such a formulation, by using the concept of matrix exponential and exponential map,

permits linear treatment of the parameters, which are defined in a vector space tangent

to the identity element of the group. In turn this allows a rigorous mathematical defi-

nition of the notions of shape average and shape distance (Woods, 2003). For instance,

2Any Lie group (smooth, differentiable manifold) G can be associated with a Lie algebra g, which is

a tangent vector space that captures the local structure of the group. In the case of real matrix groups,

the Lie algebra g consists of those matrices Q for which exp(xQ) ∈ G for all real numbers x, where exp

is the exponential map.
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within this framework, unbiasedness of a group average requires that the set of affine

parameters across a population sum up to zero.

Having introduced affine deformable tissue priors, the log likelihood function of

equation (3.5) must be reformulated as follows

J =

M∑
i=1

N∑
j=1

log

(
det(Bij)

K∑
k=1

πk(y′j(ai)) p (Bijxij |µik,Σik)

)
. (3.11)

In particular, the computation of πk(y′j(ai)) requires two stages. First the set of

transformed coordinate vectors {y′j}j∈{1,...,N} must be evaluated, according to equation

(3.8), then the discrete tissue priors {πk}k=1,...,K have to be be interpolated and resam-

pled. In the work presented here a trilinear interpolation scheme is adopted. In fact, as

opposed to higher order approaches, the linear approach ensures that the warped tissue

priors satisfy the following constraint

∀i ∈ {1, . . . ,M}, ∀j ∈ {1, . . . , N}, ∀k ∈ {1, . . . ,K},

πk(y′j(ai)) ∈ [0, 1] ∧
K∑
k=1

πk(y′j(ai)) = 1 ,
(3.12)

as long as the tissue probability maps are normalised in their native space parametri-

sation.

Non-linear small deformations

Affine transformations are low dimensional deformation models, which allow compen-

sating for the variability in object positioning (via translations and rotations) and for

limited global shape and size differences (via zooming and shearing).

For an accurate matching of anatomical structures, which are generally non-rigid and

morphologically variable across individuals, or within the same subject in the presence

of physiopathological dynamical processes, the affine approach is most often inadequate,

in spite of being robust and efficient from a computational point of view (Crum et al.,

2014). With respect to this, evidence will be provided in the next chapter, where the

results of affine template construction experiments will indicate the need to resort to

higher order models for the purpose of simultaneously aligning brain and spinal cord

data. Indeed, even for capturing solely pose and size variations, the affine model is

not sufficient in this case, as it is not capable of encoding head flexion and extension

movements.
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A class of higher order non-linear deformation models, which have been widely ex-

ploited in the field of medical image processing, for the purpose of image alignment, are

the so called small deformation models (Johnson and Christensen, 2002).

A small deformation field φ : Ω→ Ω is defined as

φ(y) = Id + u(y) , (3.13)

with Ω ∈ R3 and ||u|| � ε, ∀y ∈ Ω . In other words, the mapping φ is obtained by

adding a small vector field u to the identity transform Id.

Even though larger deformation fields would in principle produce lower registration

residuals, the constraint ||u|| � ε cannot be relaxed with such a simple additive model,

as described by equation (3.13), without sacrificing biophysical plausibility of the warps

(Christensen et al., 1996). In fact, assuming that u is not a constant vector field,

only for sufficiently small displacements, the following model constitutes an acceptable

approximation to compute inverse deformation fields

ψ(y) = φ−1(y) ≈ Id − u(y) , (3.14)

that is to say

φ ◦ψ = (Id + u) ◦ (Id − u) ≈ Id ≈ (Id − u) ◦ (Id + u) = ψ ◦ φ , (3.15)

where ◦ denotes the composition operation.

The larger the displacement fields, the less accurate the approximation in equations

(3.14) and (3.15) become. The reason why invertibility is such a highly desirable prop-

erty in the context of medical image registration (Chun and Fessler, 2008) is primarily

that non invertible deformation fields, in addition to being less elegant mathematical

objects, can disrupt topological properties, for example by causing folds or tears, and to

introduce modelling biases, by capturing certain deformation trajectories systematically

better than others, for instance sensitivity might be higher to detect shrinkage rather

than growth effects, or vice versa (Cachier and Rey, 2000).

For this reason, application of almost all non-linear registration techniques must be

preceded by an initial affine, or at least rigid body, alignment step. In fact, even within

large deformation settings, such as the LDDMM framework (Beg et al., 2005), higher

computational stability and faster convergence can be ensured if the input data is in
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rough alignment prior to model estimation. In alternative, an overall deformation model

can be defined

ξ(y) = T(a) ·

y + u(y)

1

 , (3.16)

by composing a discrete small non-linear deformation field u and an affine transfor-

mation, which can be jointly optimised, so as to make sure that optimal alignment is

achieved by means of the smallest possible non-linear displacement field u. The model

of equation (3.16) is adopted both in this chapter and in the following one. With such

an approach the data does not need to be affine registered prior to model fitting and the

resulting algorithm can be applied with minimal pre-processing of the input scans. In-

deed, the only pre-processing step that might be required is intra-subject coregistration

of the different modalities, which here are assumed to be already in alignment.

3.3.4. Regularising the model

One of the advantages from adopting a Bayesian modelling perspective is that prior

knowledge on the variability of model parameters can be easily incorporated by mak-

ing use of Bayes’ rule. This involves defining suitable prior probability distributions,

which summarise information acquired through previous experiments, or observations,

and inform during the process of statistical inference when new experimental data is

analysed.

Point estimates of model parameters can therefore be obtained by maximising the

posterior probability distribution p(Θ|X) ∝ p(X|Θ)p(Θ), with p(X|Θ) being the like-

lihood of the observed data and p(Θ) the prior term. This approach is well known as

maximum a posteriori (MAP) estimation, and it results in a trade-off between maximis-

ing adherence of the model to the experimental data, as in a pure maximum likelihood

fashion, and finding solutions that agree as much as possible with the priors.

From a numerical programming perspective, such an approach is equivalent to pro-

viding the objective function with an additional penalty term, whose function is to pre-

vent unreasonable or undesirable parameter values (Williams, 1995). In other words,

maximum a posteriori estimation is a regularised form of maximum likelihood and there-

fore it becomes essential to solve ill-posed mathematical problems, which in the context

of data modelling most often arise as inverse problems, while additionally improving
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numerical stability (Davies and Anderssen, 1986).

Intensity non-uniformity field

With regard to intensity non-uniformities, the underlying assumption that the bias field

is a low spatial frequency, smooth signal can for example be enforced by introducing a

regularisation term R based on the squared euclidean norm of the Laplacian of the bias

(Fan et al., 2003)

R =

∫
Ω

‖∆yb‖2 dy =

∫
Ω

(
D∑
l=1

( 3∑
d=1

∂2bl

∂yd
2

)2
)

dy , (3.17)

where b : Ω → RD is a continuous D-dimensional vector field, whose components, in-

dexed by l ∈ {1, . . . , D}, represent intensity non-uniformities for each imaging modality.

An equivalent discretised version of equation (3.17) can be derived by first sampling

b over a regular lattice, to give the discrete vector field b and then making use of a finite

difference approximation to compute the second derivatives. Having denoted by Lb a

sparse Toeplitz matrix representing the discrete three dimensional Laplacian operator,

R can be expressed as

R =

D∑
l=1

‖Lbbl‖2 =

D∑
l=1

(Lbbl)
TLbbl =

D∑
l=1

bTl LTb Lbbl . (3.18)

The sparse matrix Lb con be obtained as

Lb = Dz ⊗ Iy ⊗ Ix + Iz ⊗Dy ⊗ Ix + Iz ⊗ Iy ⊗Dx . (3.19)

where Ix, Iy and Iz are identity matrices of appropriate size while Dx,Dy and Dz

represent one dimensional discrete differential operators, which allow computing central

difference approximations of the second derivatives along the three Cartesian axes. The

symbol ⊗ indicates the Kronecker product.

For the model of intensity inhomogeneities adopted here, which uses discrete cosine

transform (DCT) basis functions, the regularisation term can be expressed as a function

of the bias field parameters by

R(Θβ) =

D∑
l=1

M∑
i=1

βTilΦ
TLTb LbΦβil =

1

2

D∑
l=1

M∑
i=1

βTilΣ
−1
β βil , (3.20)

where Θβ = {βi}i=1,...,M with i being an index over subjects and Φ is a matrix of three

dimensional DCT basis functions. Such a matrix, given the separable nature of the
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Figure 3.2: Prior precision matrix (a) for implementing a Gaussian regularisation of the bias

field, which penalises the Euclidean norm of the Laplacian, and its corresponding sparsity

pattern (b).

discrete cosine transform, can be obtained as follows

Φ = φz ⊗ φy ⊗ φx , (3.21)

with φx,φy,φz representing matrices of one dimensional basis functions.

The regularisation matrix Σ−1
β , which is illustrated in Figure 3.2, in a Bayesian

setting would be interpreted as a prior precision matrix. In fact, the quadratic form

in (3.20) is equivalent, except for the presence of an additive constant, to the negative

logarithm of a multivariate normal distribution. The computation of Σ−1
β can be carried

out much more efficiently if the high dimensional quadratic form ΦTLTb LbΦ is further

expanded by exploiting the mixed product property of the Kronecker product, to give

the following lower dimensional decomposition

Σ−1
β = φTz Dz

TDzφz ⊗ φ
T
yφy ⊗ φ

T
xφx + φTz φz ⊗ φ

T
y Dy

TDyφy ⊗ φ
T
xφx+

φTz φz ⊗ φ
T
yφy ⊗ φ

T
z Dz

TDzφz + 2φTz Dz
Tφz ⊗ φ

T
y Dyφy ⊗ φ

T
xφx+

2φTz Dz
Tφz ⊗ φ

T
yφy ⊗ φ

T
x Dxφx + 2φTz φz ⊗ φ

T
y Dy

Tφy ⊗ φ
T
x Dxφx .

(3.22)

In other words, this is equivalent to assuming that the a priori probability distribu-

tion of the bias field parameters is a multivariate normal distribution N (0,Σβ) . With

such a model however it is not possible to control the stiffness of the bias.
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Deformation models

In the context of image registration, which is an inherently ill-posed problem (Fischer

and Modersitzki, 2008; Modersitzki, 2004), the main purpose of regularisation is to en-

force biophysical plausibility of the deformation fields. Indeed, this is a very complex

and multidisciplinary research topic, which acts like a bridge between mathematical

and biological sciences, given the impact that regularisation has on the biological inter-

pretability of image registration results, especially around areas of low intensity contrast

(Ciardo et al., 2013; Fischer and Modersitzki, 2008). Therefore, a lot of research has

been conducted to determine suitable mathematical formulations, capable of preserv-

ing the topology of anatomical structures, while realistically capturing the underlying

morphometric changes (Ashburner, 2007; Christensen and Johnson, 2001; Noblet et al.,

2005).

Rigid models represent probably the only exception, since in that case having a

penalty term is not strictly necessary, given the explicitly constrained nature of the

transformations. For affine models instead, a simple Gaussian regularisation, that is

to say assuming that the vector of parameters is a priori normally distributed, a ∼

N (0,Σa) , helps to prevent implausible scaling and skewing and at the same time it

benefits numerical stability during the optimisation process.

The prior model adopted in the remainder of this chapter to regularise non-linear

deformations is heavily based on the work of Ashburner (2007), even if it should be noted

that the parametrisation adopted here is based on a small deformation approach, as

opposed to the diffeomorphic formulation of Ashburner (2007). However, irrespectively

of the particular form of regularisation adopted, the objective function of equation (3.11)

can be reformulated as the logarithm of a joint probability, to give

F(Θ) = log p(Θβ ,Θa,Θu|X,Θπ,Θµ,ΘΣ)

= log [p(X|Θπ,Θµ,ΘΣ,Θβ ,Θa,Θu)p(Θβ)p(Θa)p(Θu)]

= log p(X|Θπ,Θµ,ΘΣ,Θβ ,Θa,Θu) + log p(Θβ) + log p(Θa) + log p(Θu)

= J (Θ) +R(Θ) + const ,

(3.23)

with J (Θ) being the log likelihood of the observed data. Here the entire parameter

set has been denoted by Θ = {Θπ,Θµ,ΘΣ,Θβ ,Θa,Θu} with {Θπ,Θµ,ΘΣ} representing

the Gaussian mixture parameters (i.e. mixing proportions, means and covariances),
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Figure 3.3: Directed acyclic graph representing the generative model discussed in this chapter.

Filled circles indicate the observed data while unfilled circles represent unobserved random

variables (latent variables Z, which encode class memberships, and model parameters Θ).

Blue dots correspond to fixed hyperparameters, which are not estimated during model fitting.

Θβ the bias field parameters, Θa and Θu the affine and small deformation parameters

respectively. A directed acyclic graph corresponding to the generative model presented

in this chapter is illustrated in Figure 3.3.

3.4. Model fitting

As to be expected, given the complexity of the model presented here, finding a closed

form solution to the problem of maximising F (or J ) is not possible. In principle, this

would involve solving the system of equations obtained by differentiating F with respect

to Θ and setting these derivatives to zero. In practice though, even for the canonical

Gaussian mixture model, explicit solutions of the maximum likelihood (or maximum

a posteriori) problem do not exist. For such a model, parameter estimation can be

performed very efficiently using the expectation-maximisation (EM) algorithm, which
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is an optimisation strategy that combines an elegant probabilistic formulation, highly

stable convergence and, quite often, a relatively low computational cost (Dempster et al.,

1977). The main idea behind the EM algorithm is to optimise a log likelihood function

in an iterative manner, by alternating between estimating a posterior distribution on

the unobserved variables (E-step) and maximising (M-step) a lower bound on the log

likelihood with respect to the model parameters.

For the model introduced in this chapter, the problem is slightly more complex

as the Gaussian mixture, bias field and deformation parameters cannot be estimated

simultaneously in a pure EM fashion. In cases of this sort, a natural approach consists

in trying to reduce the complexity of an intractable optimisation problem by replacing it

with multiple, simpler subproblems, corresponding to conditional estimations. In other

words, since the model parameters strongly depend on one another, it is convenient to

adopt a computational scheme that breaks down the problem into a number of separate

constrained optimisations. This involves partitioning the parameter set into subsets and

iteratively updating each one of them, while keeping the others fixed at their current

estimates.

A general optimisation scheme, which relies on this sort of strategy, has been rigor-

ously formulated in Meng and Rubin (1993), within an expectation-maximisation frame-

work. The resulting algorithm is named expectation-conditional-maximisation (ECM),

since it replaces a complicated maximisation step with a series of conditional optimi-

sations, and, interestingly, it possesses convergence properties very similar to those of

the EM algorithm. The ECM framework constitutes actually a special case of the gen-

eralised EM (GEM) algorithm. In fact, the GEM approach, rather than maximising a

lower bound on the log likelihood during the M-step, seeks instead parameter values

that improve such a lower bound, without necessarily maximising it (Neal and Hinton,

1998).

The computational scheme that will be presented in detail in the remainder of this

section is indeed an ECM algorithm and it can be summarised by the following pseu-

docode (Algorithm 1)
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Input: A cross-sectional data set of MR images X

Output: Estimates of model parameters Θ̂

1 begin

2 initialise model parameters Θ;

3 while objective function F has not converged do

4 for each subject i do

5 for iter = 1..., In do

6 E-step:

7 compute sufficient statistics;

8 M-step:

9 update {µi1, . . . ,µiK} ;

10 update {Σi1, . . . ,ΣiK};

11 for iter = 1..., Iβ do

12 update βi;

13 end

14 for iter = 1..., Itera do

15 update ai;

16 end

17 for iter = 1..., Iteru do

18 update ui;

19 end

20 end

21 end

22 update {π1, . . . ,πK};

23 end

24 end

Algorithm 1: optimisation algorithm for generating population-based tissue proba-

bility maps
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3.4.1. Estimating the Gaussian mixture parameters

As discussed above, the parameters of a Gaussian mixture model can be conveniently

estimated using the expectation-maximisation (EM) scheme. The EM algorithm is a

general optimisation technique, which can be used to find maximum likelihood (or maxi-

mum a posteriori) solutions, for probabilistic models that make use of latent variables to

explain the observed data. In the case of Gaussian mixtures, latent variables {zj}j∈1,...,N

are used to encode membership of the observed data points {xj}j∈1,...,N with respect

the K model components. Therefore zj can be expressed as a K-dimensional binary

variable.

As anticipated, the likelihood function J = log p(X|Θ) cannot be maximised in

closed form, but interestingly, the optimisation problem becomes considerably easier

if, instead of considering the likelihood of the observed data, the problem is shifted

towards maximising the joint probability of the observed and unobserved variables,

given the model parameters (Bishop, 2006). The EM algorithm takes advantage of

this circumstance, by defining a lower bound L on the objective function J , which

is computed making use of the complete data log likelihood. Therefore, it yields a

much easier optimisation. In practice, this leads to an iterative computational scheme,

which loops over generating a lower bound, given the current estimates of the model

parameters, and updating the parameters, by assigning them values that maximise the

current lower bound.

To derive such a lower bound L, let us first decompose the likelihood function, as

follows

log p(X|Θ) = log p(X,Z|Θ)− log p(Z|X,Θ) . (3.24)

If an arbitrary distribution q(Z) over the set of latent variables Z is introduced, the

previous equality can be reformulated as

log p(X|Θ) =
∑
Z

q(Z) log p(X,Z|Θ)−
∑
Z

q(Z) log p(Z|X,Θ) , (3.25)

or equivalently as

log p(X|Θ) =
∑
Z

q(Z) log

(
p(X,Z|Θ)

q(Z)

)
+
∑
Z

q(Z) log

(
q(Z)

p(Z|X,Θ)

)
. (3.26)

The second term on the right end side of equation (3.26) is the Kullback-Leibler diver-
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gence 3 DKL(p‖q) between q(Z) and the posterior distribution over the latent variables

p(Z|X,Θ).

Since DKL(q‖p) ≥ 0, equation (3.26) is the proof that a lower bound4 on the likeli-

hood function is given by

L(q,Θ) =
∑
Z

q(Z) log

(
p(X,Z|Θ)

q(Z)

)
, (3.27)

where the same result could have also been derived from

log p(X|Θ) = log
∑
Z

p(X,Z|Θ) = log
∑
Z

q(Z)

(
p(X,Z|Θ)

q(Z)

)
≥
∑
Z

q(Z) log

(
p(X,Z|Θ)

q(Z)

)
,

(3.28)

by applying Jensen’s inequality.

The EM algorithm is an iterative procedure, consisting of two stages. In the first

one, namely E-step, the functional L is maximised with respect to the function q(Z).

A closer examination of equation (3.26) should indicate that this variational opti-

misation problem is almost straightforward. In fact, since the log likelihood does not

depend on q(Z), and since the Kullback-Leibler divergence is non-negative, maximising

L(q,Θ(n)), with respect to q(Z), corresponds to minimising the Kullback-Leibler diver-

gence between q(Z) and the posterior distribution p(Z|X,Θ(n)), where n indicates the

current iteration. A global maximum of the lower bound occurs, in particular, when

DKL(p‖q) = 0. Therefore the solution of the E-step, at iteration n, is given by

q(n+1)(Z) = p(Z|X,Θ(n)) . (3.29)

In the subsequent M-step, a new lower bound L(q(Z)(n+1),Θ) is maximised with respect

to Θ, that is to say

Θ(n+1) = arg max
Θ

∑
Z

p(Z|X,Θ(n)) log

(
p(X,Z|Θ)

p(Z|X,Θ(n))

)
. (3.30)

It is easy to prove that

Θ(n+1) = arg max
Θ
Q(Θ,Θ(n)) , (3.31)

3The Kullback-Leibler divergence is a non-negative information theoretic measure that indicates the

proximity of two probability distributions, nonetheless, because of its non-symmetric nature, it should

not be considered as a proper distance metric.
4Such a lower bound also plays a crucial role in the neuroscientific theory of active inference (Friston,

2010), where it is referred to as variational free-energy.
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with

Q(Θ,Θ(n)) =
∑
Z

p(Z|X,Θ(n)) log p(X,Z|Θ) . (3.32)

The function Q(Θ,Θ(n)) represents the expectation of the log likelihood of the complete

data {X,Z}, under the posterior probability distribution of the latent variables, which

was computed in the previous E-step.

For the generative model presented in this chapter the E-step involves computing

the posterior distribution of the tissue labels, given the observed image intensities and

the current estimates of the model parameters Θ(n), that is

q(n+1)(zij) = p(zij |xij ,Θ(n)) = p(zijk = 1|xij ,Θ(n))

=

K∏
c=1

(
p(xij , zij |Θ(n))∑
z p(xij , zij |Θ(n))

)zijc

$
K∏
c=1

(γijk)
zijc .

(3.33)

where

zijc =


1, if c = k .

0, otherwise .

(3.34)

The joint probability of xij and zij can be computed making use of Bayes’ rule

p(xij , zij |Θ(n)) = p(zij |Θ(n)
π ,Θ(n)

a ,Θ(n)
u ) p(xij |zij ,Θ(n)

µ ,Θ
(n)
Σ ,Θ

(n)
β ) , (3.35)

where Θπ denotes the tissue priors, Θµ and ΘΣ the Gaussian means and covariances, Θβ

the bias field parameters, Θa and Θu the affine and non-linear deformation parameters

respectively.

Recalling that prior probabilities over the latent variables are given by

p(zij |Θ(n)
π ,Θ(n)

a ,Θ(n)
u ) =

K∏
c=1

(
π(n)
c (y′j(ai,uij))

)zijc
, (3.36)

and that the conditional distribution of the observed image intensities, given the hidden

labels, is equal to

p(xij |zij ,Θ(n)
µ ,Θ

(n)
Σ ,Θ

(n)
β ) =

K∏
c=1

(
det(Bij) N (Bijxij |µ(n)

ic ,Σ
(n)
ic )
)zijc

, (3.37)

it is easy to prove that

γijk =
det(Bij) π

′
jk p (Bijxij |µik,Σik)∑K

c=1 det(Bij)π′jc p (Bijxij |µic,Σic)
, (3.38)
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where, to unclutter notation, the superscripts indicating iteration number have been

omitted and πk(y′j(ai,uij)) has been denoted by π′jk.

It should be noted that the prior (3.36) and posterior (3.33) probability distributions

of zij take the same functional form.

For the entire dataset, the distribution q(Z) is computed by

q(Z) = p(Z|X,Θ) =

M∏
i=1

N∏
j=1

K∏
k=1

(γijk)zijk (3.39)

In the following M-step the parameters are updated, by maximising the expecta-

tion of the complete data log likelihood with respect to the posterior distribution of

the latent variables. As already discussed, for the problem addressed here, the M-step

can be conveniently broken down into multiple conditional sub-stages. That is to say,

first the values of the bias field and deformation parameters are kept fixed to their cur-

rent estimates and the Gaussian mixture parameters are computed. Secondly, the new

Gaussian mixture parameters are retained, as well as the deformations, and the lower

bound is maximised with respect to the bias field parameters. Finally, the deformation

parameters are updated.

The log likelihood function for the complete data can be easily obtained from (3.35),

under the assumption that data points corresponding to different voxels are independent,

to give

log p(X,Z|Θ) =

M∑
i=1

N∑
j=1

K∑
k=1

zijk

(
log
(
det(Bij) π

′
jk p (Bijxij |µik,Σik)

))
. (3.40)

The expected value of {zij}i,j under the estimated variational posterior distribution

q, is given by

Eq[zijk] = 0 · (1− q(zij)
∣∣
zijk=1

) + 1 · q(zij)
∣∣
zijk=1

= γijk , (3.41)

with γijk often being referred to as responsibility of class k for the observed data xij .

Finally, the expectation of the complete data log likelihood, which must be max-

imised in the M-step, can be computed as follows

Q(Θ) =

M∑
i=1

N∑
j=1

K∑
k=1

γijk

(
log
(
det(Bij)π

′
jk p (Bijxij |µik,Σik)

))
. (3.42)
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Differentiating with respect to µik

∂Q
∂µik

=
∂

∂µik

 N∑
j=1

γijk
{

log
[
det(Bij)π

′
jk p (Bijxij |µik,Σik)

]}
=

∂

∂µik

 N∑
j=1

γijk {log [N (Bijxij |µik,Σik)]}


=

N∑
j=1

γijkΣ
−1
ik (Bijxij − µik) ,

(3.43)

and solving
∂Q
∂µik

= 0 , (3.44)

gives the following closed form solution

µik =

∑N
j=1 γijk(Bijxij)∑N

j=1 γijk
, (3.45)

which represents the update rule for the Gaussian means.

Similarly for the covariance matrices, setting

∂Q
∂Σik

= 0 , (3.46)

and solving with respect to Σik, gives

Σik =

∑N
j=1 γijk(Bijxij − µik)(Bijxij − µik)T∑N

j=1 γijk
. (3.47)

Computing an update expression for the mixing proportions {πk}k=1,...,K requires

first the complete data log likelihood (3.42) to be transformed into the atlas coordinate

space. Because this is an integral function over the native domains of the M images,

the change of variable does not involve just a simple substitution, but also a scaling of

the integrand by the determinant of the Jacobian matrix of the coordinate transforma-

tion. In particular, having denoted the spatially normalised responsibilities by γ′ijk and

making use of a Lagrange multiplier to enforce the constraint

∀j,
∑
k

πjk = 1 , (3.48)

the following update rule can be derived (Ashburner and Friston, 2009; Bishop, 2006)

πjk =

∑M
i=1 γ

′
ijk det(Jξ

−1

j )∑M
i=1

∑K
c=1 γ

′
ijc det(Jξ

−1

j )
, (3.49)
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where

γ′ijk = γik(ξ−1(yj)) , (3.50)

and

ξ(y) = (∆(ai) ◦ (Id + ui)) , (3.51)

while Jξ
−1

j is the Jacobian tensor field of ξ−1 evaluated at voxel j.

In summary in the M-step, the Gaussian mixture parameters can be updated making

use of the observed data, through the following sufficient statistics, given by zeroth, first

and second order moments, weighted by the responsibilities each tissue class

Nik =

N∑
j=1

γijk ,

mik =

N∑
j=1

γijkBijxij ,

Sik =

N∑
j=1

γijk(Bijxij)(Bijxij)
T .

(3.52)

3.4.2. Estimating the bias field

Estimation of the bias field parameters can be performed by constraining the Gaussian

mixture parameters {Θπ,Θµ,ΘΣ} and the deformation parameters {Θa,Θu} to remain

fixed at their current estimates while the bias field parameters Θβ get updated.

Within a maximum likelihood formulation, this involves finding, for each i ∈ {1, . . . ,M},

an estimator β̂
ML

i such that

β̂
ML

i = arg max
βi
J (X,Θ) , (3.53)

with

J (X,Θ) =

M∑
i=1

N∑
j=1

log

(
det(Bij)

K∑
k=1

π′jk p (Bijxij |µik,Σik)

)
. (3.54)

Similarly for maximum a posteriori estimation, the aim is to maximise the following

F(X,Θ) = J (X,Θ) + log p(Θβ) + const , (3.55)

with respect to Θβ .
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Rather than computing ML (or MAP) estimators by direct maximisation of J (or

F), the EM approach provides an alternative strategy, which consist in iteratively op-

timising a lower bound L on J (or F), as defined in (3.27), by maximisation of the

auxiliary function reported in (3.42), with respect to Θβ .

Unfortunately, as opposed to the Gaussian mixture parameters, in the case of the

bias field, optimising L instead of J , does not make the problem tractable in closed

form, therefore numerical optimisation techniques must be exploited. The Levenberg-

Marquardt (LM) algorithm is the scheme that has been mainly explored in this work,

as it possesses the interesting property of providing a trade off between the gradient

descent method, which is highly convergent but rather slow, and the Gauss-Newton

method (Bertsekas, 1999), which converges much faster, but only if the initial estimate

is reasonably close to a stationary point and if the Hessian matrix is not ill-conditioned

(Marquardt, 1963; Moré, 1978).

It should be noted that, when using gradient based techniques, the conventional ML

and EM approaches differ primarily in the form of the Hessians, as the initial gradients

are the identical, due to the fact that the lower bound is tangent to the log likelihood

function. In practice, for the model presented here, the Hessians of the lower bound

were found to be better-behaved computationally. In addition, performing an E-step,

that is regenerating the lower bound, every couple of Levenberg-Marquardt iterations

ensures fast convergence, even if the optimisation is not performed directly on the log

likelihood function.

Having denote by H the Hessian matrix of L and by g its gradient vector, applying

the LM algorithm involves iteratively updating βi by

β
(n+1)
i = β

(n)
i − (H(β

(n)
i )− λβIβ)−1g(βi

(n)) , (3.56)

where Iβ represents an identity matrix of suitable dimensions and λβ is a damping

parameter, which can be automatically adjusted at every iteration, to modulate the

trade off between gradient descent (λβ →∞) and Gauss-Newton (λβ → 0).

If the bias fields of the single channels (imaging modalities) are assumed to be

independent, the first derivative of L with respect to the l-th component of the bias is

given by

∂L
∂bijl

=
1

bijl
− xijl

K∑
k=1

γijk
xijl bijl − µikl

σ2
ikl

, (3.57)
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while the second derivative can be computed as

∂2L
∂b2

ijl

= −

(
1

b2
ijl

+ x2
ijl

K∑
k=1

γijk
σ2
ikl

)
. (3.58)

Since bijl is modelled as

bijl = exp

(
P∑
p=1

βilp Φjp

)
, (3.59)

with P equal to the number of basis functions and Φjp indicating the value of the p-th

basis function at voxel j, the derivatives of the bias with respect to βil are given by

∂bijl
∂βil

= bijl Φj , (3.60)

∂2bijl
∂β2

il

= bijl Φj (Φj)
T . (3.61)

Finally the gradient that must be used in the update rule (3.56) is, for the ML case

gML(βil) =
∂L
∂βil

=

N∑
j=1

∂L
∂bijl

· ∂bijl
∂βil

=

N∑
j=1

Φj

(
1− xijl bijl

K∑
k=1

γijk
xijl bijl − µikl

σ2
ikl

)
,

(3.62)

and for the MAP case

gMAP (βil) = gML(βil)−Σ−1
β βi . (3.63)

While the Hessian can be computed by

HML(βil) =
∂2L
∂β2

il

=

N∑
j=1

∂2L
∂b2

ijl

· ∂bijl
∂βil

·
(
∂bijl
∂βil

)T
+

∂L
∂bijl

· ∂
2bijl
∂β2

il

. (3.64)

or by

HMAP (βil) = HML(βil)−Σ−1
β , (3.65)

for the ML and MAP approaches respectively.

Finally it should be noted that, while for the model presented here, which operates

in the native intensity domain, the problem of updating the bias field parameters cannot

be solved in closed form, this is not true if the data is log-transformed prior to model

fitting (Van Leemput et al., 1999a). In such a case in fact, the dependency of the

objective function on the bias field, which becomes additive rather than multiplicative,

turns out to be quadratic. The question on which parametrisation is best-suited to

represent medical image data is not explicitly explored in this thesis though.
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3.4.3. Estimating affine deformations

A similar Levenberg-Marquardt approach can be used to optimise the affine deforma-

tion parameters {a1, . . . ,aM} during each M-step. The resulting update rule can be

expressed as follows

a
(n+1)
i = a

(n)
i − (H(a

(n)
i )− λaIa)−1g(a

(n)
i ) . (3.66)

For the MAP problem the gradient vector is equal to

gMAP (ai) = gML(ai)−Σ−1
a ai , (3.67)

where the nth component of gML(ai) is given by

gML
n (ai) =

N∑
j=1

K∑
k=1

γijk
π′jk

·
∂π′jk
∂ain

, (3.68)

Similarly, for the 12× 12 Hessian matrix

HMAP (ai) = HML(ai)−Σ−1
a , (3.69)

where each element HML
n,m(ai) is computed making use of the following semidefinite

approximation of the second derivatives of L

HML
n,m(ai) = −

N∑
j=1

K∑
k=1

γijk
π′2jk
·
∂π′jk
∂ain

·
∂π′jk
∂aim

. (3.70)

To evaluate expression (3.70), the derivatives of the warped tissue priors π′k, with

respect to the deformation parameters ai, must be obtained. For this purpose, it is

convenient to exploit the chain rule for composed functions, to give

∂π′jk
∂αim

=

3∑
r=1

4∑
c=1

(
∇
[
πk(y′j)

])T · ∂y′j
∂Trc(ai)

· ∂Trc(ai)

∂αim
, (3.71)

where y′j is the vector of coordinates mapping from voxel j of image i into the space of the

template. The first term on the right hand side of (3.71) represents the gradient of the

k-th warped tissue probability map, evaluated at y′j . The second term is the derivative

of the coordinate vector y′j , with respect to the transformation matrix element Trc.

Finally, Trc(ai) must to be derived with respect to the deformation parameter aim, by

making use of expression (3.10).
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An equivalent matricial representation of equation (3.71) can be obtained, by ex-

ploiting the relationship in (3.16), to give

∂π′jk
∂aim

=

∇ [πk(y′j)
]
⊗

yj + uij

1

T

· vec

(
∂T(ai)

∂aim

)
, (3.72)

where ⊗ indicates the Kronecker product. Alternatively, quasi-Newton or pseudo-

Newton approaches, which directly compute inverse Hessian approximations, could have

been explored to solve this optimisation problem.

3.4.4. Estimating non-linear small deformations

Similarly, for the estimation of the non-linear small displacement fields, gradient-based

techniques represent well suited optimisation strategies. For this purpose, the following

gradient of the lower bound can be used

gMAP (ui) =

K∑
k=1

γik ⊗ gπik − Luui , (3.73)

where at each voxel j the vector field gπik takes a value given by

gπijk = (T(αi))
T ∇

[
log πk(y′j)

]
, (3.74)

and Lu is a differential operator used to compute the penalty term.

As for the optimisation problems described previously, the rate of convergence can

be greatly increased, compared to a simple gradient descent approach, by taking into

account the second derivatives of the objective function (Klein et al., 2007).

In particular, by assuming that

∂2πk
∂uil∂uim

= 0 ,∀ l,m ∈ {1, 2, 3} , (3.75)

a positive semidefinite approximation to the Hessian of L can be computed, as follows

HMAP (ui) = −
K∑
k=1

γik ⊗Hπ
ik − Lu , (3.76)

where Hπ
ik is a tensor field such that, at voxel j

Hπ
ijk = (T(ai))

T ∇
[
log πk(y′j)

] (
∇
[
log πk(y′j)

])T
T(ai) . (3.77)

Due to the high dimensionality of the parametrisation of the displacement fields

{ui}i=1,...,M it is not possible to solve this optimisation problem by numerical matrix
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inversion, as indicated in the previous examples, since this would be prohibitively ex-

pensive from a computational point of view. One approach is to treat the problem as

a partial differential equation problem, which for instance can be solved via multigrid

solvers (Ashburner, 2007; Modersitzki, 2004). Alternatively, an approximated inverse

of the Hessian can be computed, without having to evaluate second order derivatives,

by using only the gradient information (Nocedal, 1980).

3.5. Limitations ML and MAP estimation

The method presented in this chapter relies on maximum likelihood and maximum a

posteriori estimation techniques to fit a joint statistical model of shape and intensity

to structural imaging data. Both approaches are indeed commonly used for many and

diverse data modelling problems. Nevertheless they suffer from a number of limitations,

that could, at least potentially, be overcome in a fully Bayesian framework.

A first problem has to do with the fact that, in practice, most log likelihood or

log posterior functions are multimodal. As a result, many ML and MAP estimation

algorithms, such as gradient-based approaches and the EM algorithm, are quite sensitive

to the initialisation of parameters, with a considerable chance of getting trapped in a

local optimum, if such an initialisation is not properly tuned (Ueda et al., 2000).

Apart from that, which represents a computational issue that can be mitigated by

using specific optimisation techniques, such as simulated annealing (Goffe et al., 1994)

or genetic algorithms (Sekhon and Mebane Jr, 1998), there is also a crucial theoretical

point that makes ML and MAP methods suboptimal. That is the fact that both of them

do not provide the full posterior distribution of the model parameters Θ, but return

instead point estimates. In other words, information on the posterior uncertainty in the

estimates of Θ is missing, which means that for making predictions on unseen data x̂,

given a training data set X, it is necessary to resort to the following approximation

p(x̂|X) =

∫
p(x̂|X,Θ)p(Θ|X)dΘ ≈ p(x̂|X,ΘMAP ) , (3.78)

where the true posterior p(Θ|X) is replaced by a delta Dirac function centred on the

mode ΘMAP .

This often results in the occurrence of overfitting, as well as in the difficulty to

75



perform model comparison (Draper, 1995). Overfitting, in particular, is a phenomenon

that is very difficult to avoid within the maximum likelihood framework. In fact, when

a model that is overly complex (i.e. flexible) is fit to training data via ML estimation,

very high values of the likelihood function can typically be obtained. Nevertheless the

generalisation performance of such a model to unseen test data, as well as its predictive

capability, might be extremely poor because, most likely, noise has also been fit, together

with signal. In such a case however, the attained likelihood value is not an indicator of

whether the observed data has been overfitted or not.

Moreover, for the particular case of Gaussian mixture models, extreme cases of

overfitting can occur because the log likelihood function has a number of singular points.

At these points its value goes to infinity, because at least one component of the mixture

degenerates to a Dirac delta function centred on one of the observed data points (Bishop,

2006). From a computational point of view this causes the optimisation to fail or become

dangerously unstable. In other words, maximisation of the log likelihood function for

Gaussian mixture models is an ill-posed problem, because the objective function is

unbounded from above (Biernacki and Chrétien, 2003).

Many of the problems associated with ML overfitting can be addressed within a

maximum a posteriori framework. In this case the problem is regularised by penalising

implausible parameter values and this, in general, also ensures greater computational

stability. Anyway the MAP framework does not solve the problem of allowing different

models (m) to be compared for the purpose of model selection. In fact, the value

taken by the posterior probability at its mode p(Θ̂MAP |X,m) cannot be directly used

to determine which model possesses optimal complexity, because, in such a way, overly

complex models would be favoured. For example, if Gaussian mixture models, with

different number of components (K), were trained via MAP estimation, monotonically

increasing values of the log posterior should be expected for larger values of K.

In situations of this sort, cross-validation represents a principled way of assessing

the optimal structure of the model (Corduneanu and Bishop, 2001). Nevertheless per-

forming an exhaustive cross-validation study can be extremely expensive, for various

reasons. First of all, the space of the models, in which the search has to be conducted,

is generally too large to be thoroughly explored within a reasonable computational time.

Secondly, for big data sets, the amount of computation might become prohibitive, even
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if the number of compared models is kept rather low.

Model selection criteria, such as the Bayesian information criterion (BIC) or the

Akaike information criterion (AIC), provide a much less expensive solution to the prob-

lem of model comparison. Since such methods are very easily applicable (e.g. no

integrals or inverse matrices have to be computed), they have been widely used for

many data modelling problems. Nevertheless they suffer from the limitation of being

approximate and, therefore, only valid under a number of assumptions, which regard

for example the sample size and distribution of the data (Kuha, 2004). Some authors

also question their consistency (Bozdogan, 1987), which, particularly for the problem

of determining the optimal order of mixture models, has been shown to be quite poor

(Celeux and Soromenho, 1996; Titterington et al., 1985).

In principle, the above mentioned limitations of ML and MAP estimation could be

overcome by computing the evidence of the model, also known as marginal likelihood,

which is defined as

p(X|m) =

∫
p(X|Θ,m)p(Θ|m) dΘ =

p(X|Θ,m)p(Θ|m)

p(Θ|X,m)
. (3.79)

Essentially, this would require integrating the same objective function used in maximum

a posteriori estimation, over the entire parameter space. By doing so, models whose

complexity exceeds the optimal trade-off between fitting and overfitting the observed

data, will attain lower values of the marginal likelihood. Unfortunately the computations

that have to be carried out to evaluate the evidence are usually intractable and therefore

approximation strategies have to envisaged. One of these strategies, namely Variational

Bayes, will be applied in Chapter 5 to solve image segmentation problems. Such an

approach relies on analytical approximations and is in contrast with another broad

family of approximate inference schemes, which rely on sampling techniques to compute

intractable integrals (Rubin, 1976).

3.6. Summary

This chapter has presented a modelling framework for the probabilistic interpretation

of structural MR data, using Gaussian mixture latent variable models and deformable,

average-shaped tissue priors, which can be learned directly from large imaging data
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sets. A modified EM algorithm has been presented to estimate maximum likelihood,

or maximum a posteriori, solutions. Experiments performed by applying the presented

framework to real brain and spinal cord data will be described in Chapter 4, by com-

paring fully unsupervised versus semisupervised learning strategies.

The deformation model proposed in this chapter combines affine transformations and

a small deformation non-parametric approach. Even if such a model allows to capture

local shape differences at a small scale level, the results described in Chapter 4 will

suggest that this approach is not optimal for encoding large shape variations from the

group mean. For this reason a large deformation mapping approach will be discussed

and validated in Chapter 6.

Finally, in the last section of the present chapter some limitations associated with ML

and MAP estimation techniques have been outlined, such as the difficulty in preventing

overfitting and in quantifying the uncertainty relative to point parameter estimates. Full

Bayesian inference has already been indicated in this chapter as a possible framework to

address such problems. This topic will be further developed and discussed in Chapter 5,

where a variational Bayes approach will be adopted to fit generative models to the

intensity distributions of MR data sets.
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4

Unsupervised vs semisupervised

template learning

4.1. Introduction

This chapter will present a series of experimental results, obtained by applying the

method introduced in Chapter 3 to both real and synthetic MRI data, for the purpose

of assessing its performance, in a fully unsupervised learning framework, as well as in

a semisupervised setting. The potential and limitations of the two approaches will be

discussed, particularly for the purpose of classifying anatomical tissues, from MRI data.

4.2. Learning with or without supervision?

From a machine learning perspective, generative models, such as the one introduced

in the previous chapter, represent a natural framework for unsupervised learning, since

they allow inferring the latent structure of the data, without relying on training outputs,

or on any other form of feedback from the environment (Ghahramani, 2004). Indeed,

from a general statistical perspective, unsupervised learning can be thought of as the

process of building a representation of the data, by means of estimating the probability

density distribution that the inputs are drawn from. This information can then be

used for a number of processing tasks, among which classification and dimensionality

reduction are probably the most well studied examples.
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Such a framework is antithetic to the notion of supervised learning, which, on the

contrary, indicates the process of learning, from a set of training input and output pairs,

how to assign correct outputs to new input data, for the purpose of making choices and

predictions, in a fully automated manner (Bishop, 1995). A crucial theoretical difference

is that these last methods, as opposed to the first ones, do not necessarily need to capture

the mechanisms underlying data generation, as long as they can effectively discriminate

among different outputs.

A third machine learning strategy is known as reinforcement learning and it includes

all those schemes where a machine receives an error, or reward, signal from the envi-

ronment, in response to a set of output actions. In this case the goal is to learn what

choices have to be made in order for the reward to be maximised, but without being

explicitly informed about the desired output values (Sutton and Barto, 1998).

The choice on what learning scheme is the best cannot be answered independently

from the nature of the problem, which the algorithm is trying to solve. For instance,

supervised generative methods have the advantage of providing a direct mapping be-

tween inputs and user-defined outputs, which makes their results somewhat more inter-

pretable, especially for real life applications. Unsupervised schemes can instead help to

understand the system that is generating the observed data, but given the absence of

a predefined output target, classification accuracy might sometimes be sacrificed. The

question on interpretability is also a crucial topic in the field of discriminative machine

learning (Caruana et al., 2015; Sturm et al., 2016; Vellido et al., 2012), where the va-

lidity of the rules learnt during model training is intrinsically harder to assess than in

generative machine learning.

While, in principle, fully supervised learning schemes would be attractive for solving

medical imaging problems, in practice their applicability is often limited by the amount

of available training data. This is indeed a common scenario in many machine learning

domains. In fact, since there is often a stronger motivation for collecting data rather

than for labelling it, many research fields suffer from the existence of a disproportion

between the amount of labelled and unlabelled data (Goldman and Zhou, 2000). In

such a scenario, it has been hypothesised that the predictive accuracy of fully super-

vised algorithms, in the case where only few training examples are available, might be

increased by incorporating unlabelled data into the learning framework, thus resorting
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to a semisupervised approach (Chapelle et al., 2006; Filipovych et al., 2011; Zhu, 2006).

4.3. Unsupervised template learning

The set of experiments presented in this section were conducted by applying the algo-

rithmic scheme introduced in Chapter 3 to cross-sectional data sets of head and neck

scans, acquired with different MR imaging modalities. Training of the model was per-

formed in a fully unsupervised manner, that is to say without relying on any labelled

data, while different deformation models were compared, namely affine and non-linear

small deformations.

4.3.1. Affine tissue templates

The first set of experiments were performed to assess the performance of the presented

method in a simple affine registration setting. For the purpose of model training, T1-,

T2- and PD-weighted images of fifty subjects were randomly selected from the freely

available IXI brain data base (http://brain-development.org/ixi-dataset). The selected

subjects were scanned at Guys Hospital in London using a Philips 1.5T system with

the scanning protocols detailed in Table 4.1. The resolution of all the scans equals

0.94 × 0.94 × 1.2 mm3, with sagittal orientation for the T1-weighted scans and axial

orientation for the T2- and PD-weighted images. The average age within the selected

sample is 50.8 years and the population consists of twenty-two males and twenty-eight

females. No preprocessing of the data was performed, except for resampling the T2-

and PD-weighted data in the same coordinate space as the T1-weighted scans, whereas

model parameters were initialised as follows

• Twelve classes were included in the Gaussian mixture model, with such a number

being chosen purely based on empirical evidence. Initial estimates of the intensity

mean vectors and covariance matrices were obtained by performing a K-means

clustering analysis on the intensity distribution of a subject, randomly selected

from the training database (Biernacki et al., 2003). The tissue probability maps

{πk}k=1...K instead, were initially assumed to be flat spatial priors (πjk = πk =

1
K ) .
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Table 4.1: MRI acquisition parameters relative to the data from the IXI database used to

construct the templates presented in this chapter.

Scanning Parameters T1w T2w PDw

Repetition Time (ms) 9.813 8178.34 8178.34

Echo time (ms) 4.603 100 8

Phase Encoding Steps 192 187 187

Echo Train Length 0 16 16

Reconstruction Diameter (mm) 240 240 240

Flip angle (◦) 8 90 90

• To model the bias field, only the first five lower frequency DCT basis functions

where used, along each of the three Cartesian axes, to give a total of 53 three

dimensional basis functions. Initial estimates of the bias field parameters were set

to zero.

• The affine transformation parameters were all set equal to zero, thus initialising

the coordinate mappings as identity transforms.

Figure 4.1 illustrates an example of intensity non-uniformity correction, performed

by the presented algorithm. Coronal, sagittal and axial views of the twelve generated

tissue probability maps are illustrated in Figure 4.2 and Figure 4.3. An average-shaped

T1-weighted template is also shown in Figure 4.4, which was obtained as an arithmetic

average of the intensities of the training data, after having bias corrected, spatially

normalised and linearly rescaled the images in the same intensity range (between zero

and five hundred and twelve).

Predictive accuracy

In order to quantitatively evaluate the performance of the presented method, the pre-

dictive power of the underlying probabilistic model was tested on a set of unseen images,

adopting a holdout validation scheme. The aim of such an experiment was to assess the

extent to which the population-based templates, generated with the presented method,
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Figure 4.1: Example of bias field correction performed by the presented algorithm. The original

scan is depicted in panel (a), while the corrected image and estimated bias field are reported

in panels (b) and (c) respectively.

are representative of unseen test data.

For this purpose, the estimated affine tissue probability maps were used as de-

formable spatial priors within a Gaussian mixture model, to fit the intensity distribu-

tions of twenty five test images obtained from the IXI database, after having removed

randomly located blocks, of 10× 10× 10 voxels, from each image.

Gaussian mixture model parameters Θ̂ = {µ̂, Σ̂} were estimated making use of the

EM algorithm, after having affine registered the tissue probability maps to the test

images. Then, the likelihood of the missing intensities {X(m)
i }i=1,...,M , given Θ̂, was

computed, for each image i, as

p(X
(m)
i |Θ̂,π) =

N(m)∏
j=1

(
K∑
k=1

πjk N (x
(m)
ij |µ̂k, Σ̂k)

)
. (4.1)

The performance of the presented method was compared against that of a pub-

licly available algorithm for groupwise image registration (Modat et al., 2010) based on

mutual information (MI) (Maes et al., 1997). In this case, a comparable measure of pre-

dictive accuracy can be derived by computing the likelihood of missing data, from the

joint histogram of the T1-weighted template generated with the MI-based algorithm,

and the warped test data, by

p(X(m)|Av) =

N(m)∏
j=1

H(aj ,x
(m)
j )∑

xH(aj ,x
(m)
j )∆x∆aN (a)

=

N(m)∏
j=1

h(aj ,x
(m)
j )∑

x h(aj ,x
(m)
j )

, (4.2)
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Figure 4.2: Coronal, sagittal and axial views of six out of the twelve tissue probability maps

generated with the method described in Chapter 3, using a subset of the freely available IXI

dataset and a simple affine deformation model.
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Figure 4.3: Coronal, sagittal and axial views of six out the twelve tissue probability maps

generated with the method described in Chapter 3, using a subset of the freely available IXI

dataset and a simple affine deformation model.
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Figure 4.4: Coronal, sagittal and axial views of an average-shaped T1-weighted image generated

with the presented groupwise algorithm.

where H and h denote the heights of the unnormalised and normalised histograms

respectively, N (a) indicates the number of observed data points and ∆x∆a equals the

bin area.

It should be noted that, while the two models compared here have fairly different

complexity, the fact that predictive accuracy is evaluated on missing (i.e. unseen) test

data should implicitly allow to control for the effect of model complexity when assessing

the performance of the two approaches. The results of this model cross-validation, which

are summarised in Figure 4.5 and table 4.2, seem to indicate that the approach adopted

in this work exhibits higher predictive performance, compared to groupwise mutual

information modelling. Nonetheless the presented method yields larger variability in

test accuracy, which supposedly indicates high sensitivity of the method to registration

accuracy. This is indeed a well know limitation of probabilistic atlas-based modelling

approaches (Iglesias and Sabuncu, 2015; Yeo et al., 2008).
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Figure 4.5: Distributions of predictive performance measures obtained for the method presented

in Chapter 3 and for a freely available groupwise registration algorithm based on mutual in-

formation. Squares indicate the average log likelihood of test data, while error bars represent

standard deviations.

Table 4.2: Distributions of predictive accuracy, evaluated as the log likelihood of unseen test

data, for the model introduced in Chapter 3, as compared to a mutual information based

approach.

Training Testing

GMM GMM MI

Mean −4.05× 10+5 −4.32× 10+5 −4.83× 10+5

Standard deviation 5.12× 10+4 1.11× 10+5 3.74× 10+4
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Segmentation accuracy

Another way of assessing the validity of the presented framework is by means of eval-

uating the tissue classification accuracy attained when the generated tissue probability

maps are used as priors, within atlas-based segmentation methods, to identify tissue

types in unseen test data. In fact, even if incorporating such test scans in the training

data set used for constructing the templates would improve classification accuracy, the

generalisation capability of the proposed framework can only be assessed if the test

data is not exploited during training. For this purpose, the tissue probability maps

illustrated in Figures 4.2 and 4.3 were tested in combination with the segmentation

algorithm implemented in SPM12 (Ashburner and Friston, 2005) to segment synthetic

brain data produced by the BrainWeb MR simulator (Cocosco et al., 1997; Collins et al.,

1998; Kwan et al., 1999). For this purpose the tissue probability maps containing gray

and white matter were manually identified.

While in principle unsupervised learning of the tissue priors might not be the most

suitable framework for this type of analyses, due to the difficulty of differentiating tis-

sues with overlapping intensity distributions, in practice, this seems to affect mainly the

neck region (see Figure 4.2), at least when using multimodal training data such as in

these experiments. Therefore reliable brain tissue classification accuracy measures could

be obtained for the Brainweb data, which does not include the neack. In particular, seg-

mentation accuracy was quantified by computing the Dice similarity coefficients1 (DSC)

between the estimated gray and white matter maps and the ground truth provided by

the underlying anatomical model of the simulated data.

Results are reported in Figure 4.6 where the DSC are plotted for different noise levels

(3%, 5% and 7% of the brightest image intensity). Solid lines correspond to the results

obtained when using T1- and T2-weighted simulated scans, while dotted lines refer to

the similarity measures attained with a single modality (T1-weighted). Results indicate

that high segmentation accuracy can be obtained by using the tissue priors estimated

with the presented method, moreover they suggest that the use of multi-spectral data

guarantees higher robustness to noise, as opposed employing only T1-weighted data,

which yields a linear decrease of accuracy for increasing noise levels. However, in the

1The Dice score over two sets A and B is defined as DSC = 2
|A∩B|
|A|+|B| .
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Figure 4.6: Segmentation accuracy obtained on synthetic data, when using the affine templates,

generated by the proposed methods, as tissue priors within the segmentation algorithm imple-

mented in SPM12. Dice score coefficients of gray and white matter are reported for different

noise levels. The experiments were performed on T1-weighted data, as well as on multispectral

data consisting of T1- and T2-weighted images.

presence of little noise corrupting the data (3%) the same multi-modal approach exhibits

lower segmentation accuracy for both gray and white matter, compared to the case

in which only T1-weighted data is available. This effect might be due to the poorer

contrast between gray and white matter in T2-weighted as opposed to T1-weighted

scans, in combination with the presence of partial volume effects, which the proposed

model does not account for. In fact, this directly affects the accuracy of the estimates

of the Gaussian parameters, for instance by inducing overly large eigenvalues of the

covariance matrices, in particular for white matter. The same effect however might be

concealed at higher noise levels.

4.3.2. Non-linear tissue templates

The experiments reported in the previous section have shown that by means of affine

deformations it is possible to capture global shape and size differences across individuals

and that templates built with such an approach could be used to perform atlas-based

brain segmentation.

Nevertheless, the intrinsic limitation of the affine model, that is its inability to cap-

ture higher dimensional shape features, makes it unsuitable to perform morphometric

analyses in a domain, such as that of human anatomy, where cross-sectional and lon-
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gitudinal variability is so large and multidimensional (Bookstein, 1996; Denton et al.,

1999; Rueckert et al., 2003).

For this reasons, the framework introduced in Chapter 3 was further tested in a non-

linear deformation setting, in particular by means of implementing a small deformation

modelling scheme, as described in Section 3.3.3.

Training data, for these experiments, was the same subset of the IXI database se-

lected for generating the affine templates described in the previous sections, so as to

facilitate a comparison of the two schemes. Initialisation of the Gaussian, bias, and

affine model parameters was as in Section 4.3.1, while the additional non-linear small

displacement fields were initialised as zero-valued vector fields.

Figure 4.7 shows some of the tissue probability maps obtained by fully unsupervised

training on T1-weighted data. As to be expected, these results indicate that non-linear

image registration, in spite of being more computationally expensive, is much more

powerful for encoding shape variability, thus yielding sharper tissue probability maps.

However, it should also be noted how training on a single imaging modality (e.g. T1-

weighted) is confronted with the difficulty of discriminating tissues with overlapping

intensity distributions, such as bone and cerebrospinal fluid (CSF) in these examples.

With respect to this, acquiring multivariate training data is certainly an effective strat-

egy to enhance classification accuracy. For instance, the results reported in Figure 4.8

show how adding T2- and PD-weighted data to the training set ensures more accurate

cortical gray matter and CSF delineation. Unfortunately though, especially in a clinical

setting it is not always possible to collect multiple scans for each subject, therefore sim-

ply relying on augmenting the dimensionality of the training data might not necessarily

be a viable or convenient option.

Segmentation accuracy

As for the affine tissue probability maps described in Section 4.3.1, segmentation accu-

racy achieved using the non-linear probabilistic templates illustrated in Figure 4.8 was

evaluated on synthetic Brainweb data, by providing them as tissue priors within the

segmentation algorithm implemented in SPM12.

Results are reported in Figure 4.9 where the Dice score coefficients are plotted for

different noise levels (3%, 5% and 7% of the brightest image intensity). Solid lines
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Figure 4.7: Non-linear tissue probability maps obtained by unsupervised training on T1-

weighted data.
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Figure 4.8: Non-linear tissue probability maps obtained by unsupervised training on T1-, T2-

and PD-weighted data, together with T1- and T2-weighted average-shaped images (bottom

row).
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correspond to the results obtained when using T1- and T2-weighted simulated scans,

while dotted lines refer to the similarity measures attained with a single modality (T1-

weighted).

Further evaluation experiments of the presented modelling framework in a non-linear

deformation setting will be presented in the remainder of this chapter by exploiting a

semi-supervised learning scheme (Zhu, 2006). In fact, by allowing to include few anno-

tated examples in the training data, such an approach provides a much more convenient

framework for model evaluation, by allowing direct comparison between the results of

model fitting and the available ground truth.

4.4. Semisupervised template learning

The experiments reported in the previous section have outlined, with practical exam-

ples, some advantages and intrinsic limitations of unsupervised generative learning from

neuroimaging data sets. In particular, it has been shown that discriminating anatomical

structures with a solely intensity-driven approach might be a non-trivial task, depending

on the available image contrasts. A possible strategy to ameliorate the problem consists

in incorporating in the training data a number of labelled examples, so as to implement

a semisupervised generative learning scheme. In fact, fully supervised learning is often

impractical, due to the expensive cost of defining reliable labelling protocols and gen-

erating expert manual annotations (Klein and Tourville, 2012), while semisupervised

learning might provide a convenient trade-off solution, to simultaneously exploit the
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Figure 4.10: Example of manually annotated MR brain data from the OASIS database.

potential of the two approaches, but without having to generate very large volumes of

annotated data, as indicated in Koch et al. (2015).

4.4.1. Brain templates

To test the performance of the modelling framework described in Chapter 3 in a semisu-

pervised setting, a series of experiments were performed, making use of data from the

OASIS (Open Access Series of Imaging Studies) database, which is publicly available

for download from the web site http://www.oasis-brains.org.

The OASIS project is aimed at making MRI data sets of the brain freely available

to the scientific community and it provides T1-weighted scans of four hundred and

sixteen adults, aged between eighteen and ninety six, one hundred of which were diag-

nosed with very mild to moderate Alzheimer’s disease, before or during the time of the

study (Marcus et al., 2007). Additionally, for thirty five nondemented subjects, com-

plementary brain labels were generated and made public by Neuromorphometrics, Inc.

(http://Neuromorphometrics.com) under academic subscription. Such labels provide

a fine parcellation of cortical and non-cortical structures, for a total of 139 labels across

the brain (see Figure 4.10 for a single slice exemplar and Appendix E for a list of the

labels).

In order to perform model fitting in a semisupervised fashion, all the available brain

labels were grouped to form three tissue classes, corresponding respectively to corti-

cal gray matter, subcortical gray matter and white matter. More details on how the

training labels were used to generate ground truth tissue segmentations are provided in

Appendix E. The data set was then split into a training group, including seventeen ran-
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domly selected subjects and a test group, consisting of the remaining eighteen subjects.

Labels of the training data were provided as known latent variables in the process of

model fitting, whereas labels of the test data were not used during training, but only for

subsequent cross-validation analyses. The total number of tissue classes was set equal

to twelve, with three classes corresponding to the training labels, as defined above. In

principle more than one Gaussian could have been used for each training tissue class,

however in practice having only one Gaussian per label was found to provide a con-

venient trade-off between accuracy and computational complexity. For the unlabelled

voxels, it was assumed that the data could have been generated from any of the twelve

tissue classes.

Figure 4.11 shows the cortical and subcortical gray matter tissue probability maps,

resulting from applying the groupwise algorithmic framework introduced in Chapter 3

to the ensemble of training and test data. It should be noted that such a discrimination

between cortical and subcortical gray matter would have not been possible, in a fully

unsupervised framework, by training the model only on T1-weighted data and without

introducing an a priori anatomical model.

Segmentation accuracy

To perform a quantitative evaluation of the presented framework, in terms of tissue

classification accuracy, the ground truth test labels were compared to the tissue class

membership probabilities, as automatically estimated by the algorithm during semisu-

pervised model fitting. In particular, Dice score coefficients were computed, after having

applied a threshold of 0.5 to the resulting probabilistic segmentations. In such a man-

ner, as opposed to computing MAP labels, voxels where class membership probabilistic

estimates are highly uncertain are not taken into account.

Results are plotted in Figure 4.12, for the three neural tissue types, and they indicate

that high tissue classification accuracy can be obtained for both cortical gray matter

and white matter, in spite having only one imaging modality available for training, by

exploiting the presented modelling framework in a semisupervised learning setting.

However classification accuracy turned out to be lower for subcortical gray matter

structures. Most probably, this has to be attributed to the fact that such nuclei are in

close proximity to white matter and that some of them (e.g. the lateral nuclei of the
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(a) (b)

Figure 4.11: Gray matter cortical and subcortical tissue templates (a) obtained with a semisu-

pervised approach and two individual label maps after spatial normalisation (b).
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Figure 4.12: Segmentation accuracy obtained with the semisupervised approach presented in

this chapter to model test data from the OASIS database. For each boxplot, the central mark

indicates the median, the edges of the box are the 25th and 75th percentiles, the whiskers

extend to the most extreme data points, while outliers are indicated by red dots.
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thalamus) share with white matter very similar intensity distribution. Possibly, getting

closer to a fully supervised scheme, by increasing the ratio of training versus test data,

together with using multiple Gaussian components to model such a class, might have

ensured higher classification accuracy. Indeed, it has been shown that fully supervised

Bayesian models of shape and appearance (Patenaude et al., 2011), as well as multi-atlas

label fusion techniques (Aljabar et al., 2007; Heckemann et al., 2006), can perform well

for segmenting subcortical structures. Additionally, the work of Powell et al. (2008)

and Milletari et al. (2016) seems to indicate that some discriminative classification

techniques, such as artificial convolutional neural networks (Yegnanarayana, 2009) and

support vector machines (Hearst et al., 1998), could also represent suitable strategies.

Registration accuracy

The presented modelling framework was also evaluated in terms of groupwise regis-

tration accuracy attained across different brain structures. For this purpose, since

no ground truth is available for the unknown average-shaped brain anatomy, overlap

measures were computed between each pair of spatially normalised test images, thus

resulting in 153 pairwise overlap measures for each of the 139 anatomical labels.

Results are summarised in figures 4.13, 4.14 and 4.15. As to be expected, registra-

tion performance is highly dependent on the considered brain region. Larger and less

morphologically variable structures, such as the brainstem and the cerebellum exhibit

high groupwise overlap, whereas poorer group alignment is obtained for small cortical

regions, as a result of significant inter-subject variability. In addition, the presence of

negative outliers indicates that the method might not be sufficiently robust, particularly

in the presence of significant shape deviations from the estimated average anatomy. Few

cases of registration failure were caused by an overly large initial positioning mismatch,

which the algorithm failed to compensate for in the absence of a rigid pre-alignment

step. These results should be compared against those obtained in Chapter 6, on the

same data set, but adopting instead the Large Deformation Diffeomorphic Metric Map-

ping (LDDMM) framework (Beg et al., 2005). This approach, in fact, in addition to

representing morphometric variability in a more mathematically sound fashion, enables

to encode larger deformations while incurring lower chances of breaking the underlying

topology (Rueckert et al., 2006; Younes, 2010), as opposed to the small deformation set-
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ting. This is a desirable property for the sake of estimating average-shaped anatomical

models and the results reported in Chapter 6 will demonstrate how this in turn yields

significantly higher groupwise label overlap.

4.4.2. Spinal cord templates

Additional experiments were performed on high resolution cervical MR data, to test

the applicability of the presented framework to spinal cord imaging data. For this pur-

pose twenty healthy subjects were scanned at Balgrist University Hospital with a 3T

Skyra MRI scanner (Siemens Healthcare, Erlangen, Germany). A 3D high-resolution

optimised T2*-weighted multi-echo sequence (MEDIC) was applied to acquire five vol-

umes of the cervical cord around the vertebral level of C2/C3. Each volume consisted

of twenty contiguous slices acquired in the axial-oblique plane and was obtained with a

resolution of 0.25× 0.25× 2.50mm3. The following parameters were used: field of view

(FOV) of 162× 192mm2, matrix size of 648× 768, repetition time (TR) of 44 ms, echo

time (TE) of 19 ms, flip angle α = 11◦, and readout bandwidth of 260 Hz per pixel.

After data acquisition, the five volumes of each subject were averaged in the space do-

main to increase signal to noise ratio (SNR). Figure 4.16 shows orthogonal sections of

two of such averaged volumes.

The spinal cord gray matter was manually segmented in all twenty images by four

different expert raters. The segmentations of ten subjects were used as training data,

in a semisupervised learning setting with a total number of six Gaussian components,

while the remaining ones were used as ground truth for validation. Majority voting

label fusion (Heckemann et al., 2006) was performed on the labels provided by the four

experts and, for classes that obtained the same number of votes, equal probabilities

were assigned.

Figure 4.17 shows an average-shaped T2*-weighted image overlaid with the resulting

gray and white matter spinal cord templates. Closeup views of the tissue probability

maps are shown in Figure 4.18. When warping such templates to segment individual

data a trilinear interpolation scheme was adopted, even if more sophisticated approaches

could have been explored to exploit and enforce the cylindrical symmetry of the cord.

The manual labels of the test data were used to compute different accuracy metrics.
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Figure 4.13: Distribution of pairwise overlap measures attained by the presented algorithm

across different brain regions. For each boxplot, the central mark indicates the median, the

edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme

data points, while outliers are indicated by gray crosses.
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Figure 4.14: Distribution of pairwise overlap measures attained by the presented algorithm

across different brain regions. For each boxplot, the central mark indicates the median, the

edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme

data points, while outliers are indicated by gray crosses.
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Figure 4.15: Distribution of pairwise overlap measures attained by the presented algorithm

across different brain regions. For each boxplot, the central mark indicates the median, the

edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme

data points, while outliers are indicated by gray crosses.
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Figure 4.16: Orthogonal sections of two high resolution cervical MR volumes.

(a) (b)

(c) (d)

Figure 4.17: Gray and white matter spinal cord templates overlaying an average-shaped T2*-

weighted image at different cervical levels between C2 (a) and C3 (d).
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(a) (b) (c)

Figure 4.18: Gray matter, white matter and cerebrospinal fluid templates of the cervical cord.

(a) (b) (c)

Figure 4.19: Individual gray matter segmentations of the cervical cord produced by the pre-

sented algorithm.
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First of all, Dice score coefficients were computed to assess the amount of volumetric

overlap between the automated and manual segmentations (Crum et al., 2006). The

mean Euclidean surface distance was evaluated as an indicator of the contour mismatch

between the two set of segmentations. Finally the skeletonized median distance, which

compares thinned versions of the segmentations (Zhang and Suen, 1984), was used to

assess global shape similarity.

Results are reported in Figure 4.20, for each of the four raters, while examples of in-

dividual automated segmentations are illustrated in Figure 4.19. It should be noted that

results of these analyses were submitted to the Gray Matter Spinal Cord Segmentation

Challenge held in 2016 during the 24th ISMRM annual meeting. Additional information

on the challenge and its results can be found in Prados et al. (2017) or at the web page

http://cmictig.cs.ucl.ac.uk/niftyweb. In particular, the method that achieved

the best results in terms of Dice scores is the DEEPSEG method, which is based on the

deep 3D convolutional encoder network with shortcut connections proposed by Brosch

et al. (2016). However, the performance of the six evaluated algorithms was found to

be significantly variable, depending on the selected accuracy metric. For instance, the

approach presented here, in spite of having obtained significantly lower Dice scores com-

pared to DEEPSEG, achieved much better results when evaluated in terms of maximal

contour distance between manual and automated segmentations (i.e. Hausdorff surface

distance). Thus, different methods might be more suitable for different applications.

The generative framework proposed in this thesis is particularly convenient to perform

statistical volumetric and morphometric analyses, which instead might be harder to

implement using some of the competing techniques evalauted in Prados et al. (2017).

4.5. Summary

This chapter has illustrated some of the potential applications of the Bayesian mod-

elling framework introduced in Chapter 3 to analyse neuroimaging data. In particular,

the method has been applied to publicly available MR data sets of both the brain and

the spinal cord, to construct average-shaped tissue probability maps. Unsupervised

and semisupervised learning methods have been tested and compared, so as to evaluate

advantages and limitations of the two approaches. The presented results suggest that

104

http://cmictig.cs.ucl.ac.uk/niftyweb


Rater 1 Rater 2  Rater 3 Rater 4
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
S

C

Rater 1 Rater 2  Rater 3 Rater 4
−0.5

0

0.5

1

1.5

2

2.5

M
E

A
N

 S
U

R
F

A
C

E
 D

IS
T

A
N

C
E

 (
m

m
)

Rater 1 Rater 2  Rater 3 Rater 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
K

E
LE

T
O

N
IZ

E
D

 M
E

D
IA

N
 D

IS
T

A
N

C
E

 (
m

m
)

Figure 4.20: Distributions of accuracy metrics obtained by comparing the spinal cord gray

matter segmentations produced by our algorithm to the manual labels generated by four trained

human raters.

semisupervised learning is effective for differentiating tissue types whose intensity dis-

tributions substantially overlap, which is inherently very difficult to achieve in a fully

unsupervised generative framework. This property is particularly valuable when multi-

modal data sets are not available. However, segmentation accuracy for the subcortical

nuclei was found to be significantly lower than for cortical gray matter, which indicates

that a fully supervised framework might be more suitable for discriminating anatomical

structures that are in close proximity but exhibit very low image contrast.

Similarly, the behaviour of different deformation models, namely affine and small

non-linear deformations, has been explored. Indeed, both models are somewhat subop-

timal for the purpose of encoding anatomical shape variability, the first being too low

dimensional, and the second not allowing to model large deviations from the average

anatomy without sacrificing smoothness of the transformations and therefore topology

preservation. Such limitations will be explicitly addressed in Chapter 6, by exploiting

the large deformation diffeomorphic metric mapping (LDDMM) framework, which, in

spite of introducing additional mathematical and computational complexity, is a much

more powerful framework to represent anatomical shapes.

Chapter 5 instead will introduce a variational scheme to perform Bayesian inference

on Gaussian mixture models applied to MRI data and will illustrate some of the advan-

tages of this approach, compared to model fitting by point estimation techniques, such

as maximum likelihood or maximum a posteriori estimation, which were both adopted

in this chapter.
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5

Variational inference for medical

image segmentation

5.1. Introduction

In this chapter, the general principles underlying variational Bayesian inference are in-

troduced, together with a computational framework that applies the variational Bayes

(VB) approach to fit a generative Gaussian mixture model to the intensities of neu-

roimaging data. In particular, such a model is used to solve medical image segmentation

problems and validated on both simulated and real brain MRI data.

5.2. Advantages and challenges of Bayesian

inference

Many widely used image segmentation algorithms rely on probabilistic modelling tech-

niques to fit the intensity distributions of images. These methods commonly operate by

means of unsupervised clustering algorithms and assume that the data are drawn from

mixture distributions, with different mixture components being associated to different

tissue types (Ahmed et al., 2002; Chuang et al., 2006; Lee et al., 2008; Sfikas et al.,

2007). In particular, Gaussian mixture models (GMM) have been extensively adopted

as they provide a flexible and computationally efficient framework, which can be easily
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applied to solve the problem of automatically partitioning images into homogeneous

regions (Dugas-Phocion et al., 2004; Greenspan et al., 2006; Guillemaud and Brady,

1997; Moon et al., 2002; Noe and Gee, 2001; Van Leemput et al., 1999b; Wells III et al.,

1996; Woolrich et al., 2009; Zhang et al., 2001).

Intensity-based segmentation tools of this sort have been developed profusely over

the past twenty years. Most of them either rely directly on an explicit Bayesian formula-

tion, or exhibit an implicit probabilistic interpretation. Nevertheless almost all of them

are based on maximum likelihood (ML) or maximum a posteriori (MAP) estimation of

the model parameters (Ashburner and Friston, 2005; Greenspan et al., 2006; Kovacevic

et al., 2002; Liang et al., 1994; Lorenzo-Valdés et al., 2004; Rajapakse and Kruggel,

1998; Van Leemput et al., 2003; Wyatt and Noble, 2003; Xiaohua et al., 2004b; Zhang

et al., 2001), without exploiting the full potential of Bayesian inference.

Indeed, ML or MAP techniques often ensure mathematical tractability and sufficient

segmentation accuracy for many applications. Nonetheless there is still a crucial theoret-

ical point that makes these methods somewhat suboptimal, regardless of their practical

convenience, which is that they just provide point estimates of the model parameters

instead of full posterior probability distributions. In other words, information is missing

on the posterior uncertainty in estimating unobserved variables, and this often results

in the occurrence of overfitting as well as in the inability to perform model comparison

(Attias, 1999). In practice, this also means that explicit confidence measures cannot

be directly obtained for the estimated parameters, which is a significant drawback for

potential clinical applications, where the risk of error or failure needs to be accurately

assessed and quantified.

On the other hand, full Bayesian inference has been poorly explored in the field

of medical image segmentation, in spite of a promising potential, which was shown

for example by Woolrich and Behrens (2006) and Tian et al. (2011). The reason for

this is most probably related to the computational challenges that arise when trying to

evaluate the model evidence or the posterior probability distributions over the model

parameters. In fact, very often and also for relatively simple models, integrating out all

the unobserved variables turns out to be intractable in analytical form. On the other

hand, numerical integration is generally impractical because either the dimensionality

or the complexity of the problem would make the necessary computational resources
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prohibitive for real world applications.

One approach for dealing with the mathematical difficulties that arise in Bayesian

inference is to make use of stochastic techniques to sample from the probability distri-

butions that are of interest (Andrieu et al., 2003). In particular, Markov Chain Monte

Carlo (MCMC) methods can provide rather accurate solutions at the expenses of a long

processing time. As to be expected, the time required to reach convergence increases

with the size of the data set. The result of this being the fact that, for large-scale prob-

lems, sampling techniques can become computationally impracticable. For example, the

work of Iglesias et al. (2012b) is one among few attempts (da Silva, 2009; Fan et al.,

2007; Kato, 2008) to exploit stochastic sampling methods to integrate out model pa-

rameters in the context of medical image segmentation. Their atlas-based segmentation

approach takes into account the uncertainty in estimating coordinate mappings between

individual test images and the reference anatomy. However, they report a running time

of the sampling of approximately three hours, for a small anatomical structure like the

hippocampus, which indicates that this approach might still be unfeasible outside the

context of research.

A second family of approaches is based on introducing analytical approximations

(Tierney and Kadane, 1986). For instance, one possibility is to approximate an un-

known posterior probability distribution by an unnormalised Gaussian, centred at the

mode of the actual posterior, or at one of the modes, if the distribution is multimodal.

This is a general mathematical method (Fulks and Sather, 1961), known as Laplace

approximation, which, in the context of probabilistic inference, overcomes many of the

limitations of sampling techniques, since the number of required computations is much

lower in this case. Nevertheless, depending on how different the actual posterior dis-

tribution is from a Gaussian, the method might provide a poor approximation. In

particular the underlying Gaussian assumption might become inadequate for points

that are far from the mode of the probability density function (Geisser et al., 1990).

Variational Bayes (VB) represents an alternative way of obtaining approximate so-

lutions to inference problems. It relies on analytical approximations, as the Laplace

method, and likewise it is much less computationally expensive than MCMC. However,

the VB framework is more general and flexible than the Laplacian approach because,

even if it usually constrains the posterior distributions to have a specific form or factor-
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ization (for the sake of computational convenience), such posteriors are not necessarily

forced to be Gaussian. In other words, variational Bayesian inference permits finding a

trade off between allowing sufficient complexity of the estimated posteriors and ensuring

computational tractability. Stochastic variational algorithms have also been proposed

(Hoffman et al., 2013).

Even if the estimated posteriors will almost never be exact, variational methods have

proved to be more convenient than standard ML or MAP techniques, since, for a similar

computational cost, they significantly alleviate the problems related to overfitting, which

are intrinsic to the other methods. In other words, variational techniques open up the

possibility of learning the optimal model structure (the one with highest generalisation

capability) without performing ad-hoc cross-validation analyses (Attias, 1999; Bishop,

2006; Corduneanu and Bishop, 2001). Another interesting aspect of working within a

VB framework is that it leads to a more general formulation of the EM algorithm, which

has the same convergence properties and higher computational stability. For example,

one significant limitation of ML estimation for mixture models, which is automatically

addressed in a VB setting, is the presence of singular points of the likelihood function,

which have to be avoided during optimisation to ensure numerical stability.

So far, very few authors have explored the applicability of the variational Bayes

framework to perform medical image segmentation. Among them are Woolrich and

Behrens (2006), who exploited variational inference to fit spatial mixture models to

medical imaging data, while automatically tuning the parameter controlling regularisa-

tion, and Tian et al. (2011), who proposed an algorithm for segmenting brain MR data,

which combines variational Bayes and genetic algorithms.

This chapter introduces an extension of the tissue classification algorithm presented

by Ashburner and Friston (2005) and publicly distributed as part of the SPM12 soft-

ware. Specifically, the maximum likelihood approach, adopted in Ashburner and Friston

(2005) to estimate the Gaussian mixture parameters, is replaced by a Bayesian inference

scheme, relying on variational approximations.

This approach, first of all, increases the robustness of the method, if suitable in-

tensity priors are introduced, thus reducing significantly the chance of the algorithm

failing to converge due to a mismatch or misregistration of the tissue probability maps

with the individual scans. A second aspect that will be illustrated is how the fun-
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damental problem of determining optimal model complexity, that is, in this case, the

number of Gaussian components, can be effectively addressed in a variational setting.

Such a framework, in fact, implicitly implements an automatic relevance determina-

tion scheme, where redundant mixture components are automatically pruned out of the

model (Bishop, 2006). Finally, a parametric empirical Bayes approach will be presented,

which can serve to learn informative intensity priors from sufficiently large data sets.

5.3. Background on variational Bayes

Variational Bayesian inference can be formulated as a maximisation problem. Let us

consider the marginal log likelihood (i.e. log model evidence), log p(X), given by

log p(X) = log

∫
p(X,Υ) dΥ , (5.1)

where X indicates the observed data and Υ = {Z,Θ} is a set of unobserved variables

(model parameters Θ and latent variables Z).

After introducing a distribution q(Υ) over the unobserved variables, the log evidence

in (5.1) can be re-expressed as

log p(X) =

∫
q(Υ) log p(X) dΥ

=

∫
q(Υ) log

{
p(X,Υ)

p(Υ|X)

}
dΥ

=

∫
q(Υ) log

{
p(X,Υ)

q(Υ)
· q(Υ)

p(Υ|X)

}
dΥ

=

∫
q(Υ) log

{
p(X,Υ)

q(Υ)

}
dΥ +

∫
q(Υ) log

{
q(Υ)

p(Υ|X)

}
dΥ .

(5.2)

which is a decomposition of log p(X) that holds for any q(Υ).

The second integral in the last line of (5.2) is the Kullback-Leibler divergence

DKL(q‖p) between q(Υ), which is a variational approximating posterior, and p(Υ|X),

which is the true posterior distribution (Bishop, 2006).

Since DKL(q‖p) ≥ 0, the first integral in the last line of (5.2) defines a lower bound

L(q) on the logarithm of the model evidence

log p(X) ≥ L(q) =

∫
q(Υ) log

{
p(X,Υ)

q(Υ)

}
dΥ . (5.3)
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The previous statement can also be derived from (5.1) by applying Jensen’s inequality.

In summary equation (5.2) can be rewritten as (Tzikas et al., 2008)

log p(X) = L(q) +DKL(q‖p) . (5.4)

DKL(q‖p) is always non-negative and, in particular, it is equal to zero if and only

if q(Υ) = p(Υ|X). In such a case the variational posterior is an exact solution and the

lower bound is exactly equal to the evidence. In all the other cases, DKL(q‖p) > 0 and

L(q) < log p(X), which means that q(Υ) is an approximate posterior.

In summary, the inference problem can be solved by maximising the functional L(q)

with respect to the distribution q(Υ), which is equivalent to minimising the Kullback-

Leibler divergence between the variational and the true posterior distribution. It should

be noted that the approach adopted here constitutes a generalisation of the scheme

described in Section 3.4.1, which corresponds to the standard expectation-maximisation

(EM) framework. In fact, in the case that is considered here, variational posterior

distributions are introduced not only on the latent variables but also on the model

parameters.

The lower bound on the model evidence (negative variational free energy) can be

further decomposed as

L(q) =

∫
q(Υ) log p(X|Υ)dΥ +

∫
q(Υ) log

{
p(Υ)

q(Υ)

}
dΥ . (5.5)

This shows that the lower bound comprises a likelihood term which is equal to the

expected value of the log likelihood log p(X|Υ) under the variational posterior q(Υ)

L1 =

∫
q(Υ) log p(X|Υ)dΥ = EΥ

[
log p(X|Υ)

]
, (5.6)

and a regularising term which is the negative Kullback-Leibler divergence beetween the

approximating posterior q(Υ) and the prior distribution over the unobserved variables

p(Υ) (Attias, 1999)

L2 =

∫
q(Υ) log

{
p(Υ)

q(Υ)

}
dΥ = −DKL(q‖p0) . (5.7)

This last term penalizes overly complex or implausible models (Occam factor).

While in principle no constrains are placed on q(Υ), a commonly adopted strategy

consists in restricting the space of q(Υ) so as to ensure mathematical tractability, which
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also means that DKL(q‖p) > 0, or, in other words, that q(Υ) 6= p(Υ|X). In particular,

it is often convenient to assume that q(Υ) factorizes into a product of terms (Parisi and

Zamponi, 2010), each one involving just a subset of Υ (mean field theory)

q(Υ) =

S∏
s=1

qs(Υs) . (5.8)

In such a case, the lower bound depends on the generic factor qŝ(Υŝ) as follows (Bishop,

2006)

L(qŝ) =

∫
qŝ
∏
s6=ŝ

qs log

{
p(X,Υ)

qŝ
∏
s6=ŝ qs

}
dΥ

=

∫
qŝ Es6=ŝ[log p(X,Υ)]dΥŝ −

∫
qŝ log qŝdΥŝ + const

= −DKL(qŝ ‖ p̂(X,Υŝ)) + const ,

(5.9)

with

p̂(X,Υŝ) ∝ exp(Es6=ŝ[log p(X,Υ)]) . (5.10)

Equation (5.9) shows that the optimal form of the factor qŝ(Υŝ) corresponds to the

one that minimises the Kullback-Leibler divergence between qŝ(Υŝ) and p̂(X,Υŝ) as

defined in (5.10). Therefore qŝ(Υŝ) = p̂(X,Υŝ).

It should be noted that this solution is not analytical, since the different factors have

optimal forms that depend on one another. As a result, the natural approach for solving

this variational optimisation problem consist in iteratively updating each factor given

the most recent forms of the other ones. This leads to a scheme that turns out to be

very similar to the structure of the EM algorithm (Bishop, 2006; Tzikas et al., 2008).

For some complex models, a fully Bayesian treatment of all unobserved variables

might still be extremely impractical, if not impossible, even when variational approxi-

mations are used. However, one other advantage from adopting a VB approach is that

its generality allows it to be combined with standard MAP and ML techniques in a

unified and principled framework. If one of the subsets {Υs}s=1,...,S of the unobserved

variables cannot be treated in a fully Bayesian manner, it is still possible to obtain MAP

point estimates of the corresponding parameters. Such values are computed in a way

that is a generalisation of the M-step in the EM algorithm. In particular, the function

that needs to be optimised is the expectation of the logarithm of the joint probability of
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X and Υ, E[log p(X,Υ)]. The main difference from the EM algorithm for ML, or MAP,

estimation is that, in the VBEM case, expectations are computed not only over the

latent variables of the model but also over all the model parameters that are described

in terms of a full posterior distribution. In such a case however, as opposed to a fully

Bayesian approach, the main disadvantage is that, since some unobserved variables can-

not be integrated out to compute the evidence, model selection cannot be performed by

comparison of the marginal likelihood, especially if the compared models have different

complexity.

5.4. Data model

Let X denote the observed data, that is to say the intensities corresponding to D images

of the same subject acquired with different modalities. The signal at voxel j can then

be represented by a D-dimensional vector xj ∈ RD, with j ∈ {1, . . . , N}.

Along the same line adopted in Chapter 3, the distribution of xj can be modelled

as a multivariate Gaussian mixture, consisting of K clusters, parametrised by mean

vectors {µk}k=1,...,K and covariance matrices {Σk}k=1,...,K .

Moreover it is assumed here that the K Gaussians are partitioned into T subsets,

corresponding to different tissue types. Let {Ct}t=1,...,T denote these subsets, with⋃T
t Ct = {1, . . . ,K}. This means that each tissue t ∈ {1, . . . , T} is itself represented by

a Gaussian mixture, consisting of Kt components, with
∑
tKt = K.

The prior probability of each voxel belonging any of the T tissue types is computed

making use of a probabilistic anatomical atlas, indicated by {πt(y)}t=1,...,T , where y is

a continuous coordinate vector field. Such an atlas, which is considered as precomputed

throughout this chapter rather than being estimated from the data as in Chapter 3, is

warped non-linearly, exploiting a coordinate mapping φ(y), to give {πt(φ(y))}t=1,...,T .

A small deformation model is adopted here, parametrised by a discrete displacement

field Θu = {uj}j=1,...,N . In the meanwhile, it is assumed, for simplicity, that the images

have already been affinely registered.

The tissue priors are allowed to be rescaled by a set of weights {wt}t=1,...,T to

accommodate individual differences in tissue composition. This approach offers some

additional flexibility for matching the priors to the individual data, by allowing a small
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amount of erosion or dilation of the tissue probability maps. Finally, a set of parameters

{gk}k=1,...,K denotes the normalised weights of the different Gaussians associated with

one tissue type, so that

∀t ∈ {1, . . . , T} :
∑
k∈Ct

gk = 1. (5.11)

As a result, having introduced a set of binary latent variables Z, the probability of

Z given the tissue priors Θπ = {πt}t=1,...,T , the weights Θw = {wt}t=1,...,T , the mixing

coefficients Θg = {gk}k=1,...,K and the deformation parameters Θu, is given by

p(Z|Θπ,Θw,Θg,Θu) =

N∏
j=1

K∏
k=1

(
gk

πt(yj ,uj)wt∑T
s πs(yj ,uj)ws

)zjk
,

=

N∏
j=1

K∏
k=1

(
π′jk
)zjk ,

(5.12)

where t ∈ {1, . . . , T} : k ∈ Ct and all data points have been assumed independent. It

should be noted that Θπ is known a priori, while Θw, Θg and Θu have to be estimated

from the observed data X.

To correct for intensity non-uniformity artifacts, a multiplicative D-dimensional bias

field, denoted by {bj(Θβ)}j=1,...,N , is introduced, where Θβ is a vector of parameters.

Each of the D components of the bias is modelled as the exponential of a linear combi-

nation of discrete cosine transform basis functions (Ashburner and Friston, 2005).

The conditional distribution (i.e. class conditional density) of the observed inten-

sities given the latent variables, the Gaussian parameters {Θµ,ΘΣ} and the bias field

parameters Θβ , can be expressed as in Chapter 3, to give

p(X|Z,Θµ,ΘΣ,Θβ) =

N∏
j=1

K∏
k=1

(
det(Bj)N (Bjxj |µk,Σk)

)zjk , (5.13)

with Bj = diag(bj).

The joint probability of all the random variables, conditioned on the mixing propor-

tions, which will serve to compute the variational lower bound, is given by

p(X,Z,Θµ,ΘΣ,Θβ ,Θu|Θπ,Θw,Θg) =

p(X|Z,Θµ,ΘΣ,Θβ)p(Z|Θπ,Θw,Θg,Θu)p(Θµ,ΘΣ)p(Θu)p(Θβ) , (5.14)

where, as opposed to the ML approach of Chapter 3, priors on the means and covariances

of the different classes have been introduced, which are modelled by conjugate Gaussian-
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Figure 5.1: Directed acyclic graph representing the generative Gaussian mixture model adopted

in this work for the purpose of segmenting neuroimaging data into tissue types. Large filled

circles indicate the observed data (image intensities X). Unfilled circles represent unobserved

random variables (latent variables Z, which encode class memberships, and model parameters

Θ). Solid dots denote fixed hyperparameters. The observed intensities are assumed to be drawn

from a Gaussian mixture distribution consisting of K components with means {µk}k=1,...,K

and covariance matrices {Σk}k=1,...,K . Intensity non-uniformities are modelled through a mul-

tiplicative bias field parametrised by Θβ . A smooth anatomical atlas set {πt}t=1,...,T is mapped

onto the individual data by means of the deformation vector field encoded in {uj}j=1,...,N .
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Wishart distributions

p(Θµ,ΘΣ) =

K∏
k=1

p(µk|Σ−1
k )p(Σ−1

k ) , (5.15)

with

p(µk|Σ−1
k ) = N (µk|m0k, β

−1
0k Σk) , (5.16)

p(Σ−1
k ) =W(Σ−1

k |W0k, ν0k) . (5.17)

Such a choice is algebraically convenient, as it leads to posterior distributions having

the same functional form as the priors (see Appendix A for a more detailed presentation

of conjugate Gaussian-Wishart priors). The hyperparameters governing such priors will

be indicated, in the remainder of this chapter, as

Φ0 = {β0k,m0k, ν0k,W0k}k=1,...,K . (5.18)

The terms p(Θu) and p(Θβ) represent prior probability distributions over the defor-

mation and bias field parameters. Their function is to regularise the solution obtained

through model fitting by penalising improbable parameters values. In doing so, they

ensure greater physical plausibility of the resulting non-uniformity and deformation

fields, while also improving numerical stability. Here the same regularisation scheme

described in Ashburner and Friston (2005) is adopted. The question of how to determine

the optimal amount of regularisation is beyond the scope of this work and therefore is

not addressed here. Interestingly, such a problem could also be solved in a variational

inference framework, as shown in Loic le Folgoc (2016); Simpson et al. (2015, 2012).

Given the model described above, a variational lower bound on the marginal likeli-

hood p(X,Θβ ,Θu|Θπ,Θw,Θg) can be computed as

L =
∑
Z

∫∫
q(Z,Θµ,ΘΣ) log

{
p(X,Z,Θµ,ΘΣ,Θβ ,Θu|Θπ,Θw,Θg)

q(Z,Θµ,ΘΣ)

}
dΘµdΘΣ .

(5.19)

To make the problem tractable, it is convenient to assume that the variational dis-

tribution q(Z,Θµ,ΘΣ) factorizes as q(Z,Θµ,ΘΣ) = q(Z)q(Θµ,ΘΣ), so that

L =
∑
Z

∫∫
q(Z)q(Θµ,ΘΣ) log p(X|Z,Θµ,ΘΣ,Θβ)dΘµdΘΣ

+
∑
Z

∫∫
q(Z)q(Θµ,ΘΣ) log

{
p(Z|Θπ,Θw,Θg,Θu)p(Θµ,ΘΣ)

q(Z)q(Θµ,ΘΣ)

}
dΘµdΘΣ

+ p(Θβ) + p(Θu) .

(5.20)
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The described probabilistic model can be represented by a directed acyclic graph,

as shown in Figure 5.1.

5.5. Model learning

The statistical model described in the previous section can be fit to neuroimaging data

by means of an iterative learning scheme, which constitutes a generalisation of the

expectation-maximisation (EM) algorithm for maximum likelihood estimation.

In this instance, the aim is to obtain a variational posterior distribution q(Z)q(Θµ,ΘΣ),

maximum a posteriori estimates of {Θu,Θβ} and maximum likelihood estimates of

{gk}k=1,...,K and {wt}t=1,...,T .

5.5.1. Variational E-step

Similarly to the EM algorithm, its variational generalisation, namely variational Bayes

expectation maximisation (VBEM), can be decomposed into two main steps, a varia-

tional E-step (VE) and a variational M-step (VM). In the first VE-step, the functional

L of equation (5.19) is maximised with respect to the posterior factor q(Z) over the

latent variables (Bishop, 2006). Making use of (5.10) it is possible to derive

q(Z) ∝ exp
(

log p(Z|Θπ,Θw,Θg,Θu)

+ EΘµ,ΘΣ
[log p(X|Z,Θµ,ΘΣ,Θβ)]

)
,

(5.21)

and, having defined

log ρjk = log p(Z|Θπ,Θw,Θg,Θu) + EΘµ,ΘΣ
[log p(X|Z,Θµ,ΘΣ,Θβ)] , (5.22)

it follows that

q(Z) ∝
N∏
j=1

K∏
k=1

(ρjk)zjk . (5.23)

Normalising of this variational posterior distribution gives

q(Z) =

N∏
j=1

K∏
k=1

(
ρjk∑K
c=1 ρjc

)zjk
=

N∏
j=1

K∏
k=1

(γjk)
zjk . (5.24)
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The quantity ρjk can be computed from (5.22) to give

ρjk = exp
(

log π′jk −
D

2
log(2π) +

1

2
EΣk

[
log |(Σk)−1|

]
−1

2
Eµk,Σk

[
(Bjxj − µk)TΣ−1

k (Bjxj − µk)
])
.

(5.25)

The expectations that appear in (5.25) have to be computed with respect to the current

estimate of the variational posterior distribution on {µk}k=1,...,K and {Σk}k=1,...,K ,

which will in turn be updated during the subsequent VM-step (see Appendix A for

further details on how to compute these expected values under a Gaussian-Wishart

distribution).

The class probability vectors {γj}j=1,...,N , which are evaluated during the VE-step

represent expectations of the latent variables, with respect to their posterior variational

distribution (i.e. responsibilities). They can be used to compute the following sufficient

statistics of the observed data (Bishop, 2006), which will serve during the VM-step, as

explained in the following section

s0k =

N∑
j=1

γjk ,

s1k =

N∑
j=1

γjkBjxj ,

S2k =

N∑
j=1

γjk(Bjxj)(Bjxj)
T .

(5.26)

It should be noted that the computational complexity of this VE-step is identical to

that of the E-step in the standard EM algorithm for Gaussian mixture model fitting, as

derived in Chapter 3.

5.5.2. Variational M-step

During the VM-step, an approximate solution for the posterior distribution q(Θµ,ΘΣ)

is derived. Making again use of equation (5.10) gives

q(Θµ,ΘΣ) ∝ exp

{
N∑
j=1

K∑
k=1

γjk logN (Bjxj |µk,Σk)+

K∑
k=1

log p(Θµ,ΘΣ)

}
. (5.27)

It can be proved (see Appendix B) that the posterior distribution on the means

and covariances of the different classes takes the same form as the corresponding prior
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(Bishop, 2006), that is

q(Θµ,ΘΣ) =

K∏
k=1

q(µk|Σ−1
k )q(Σ−1

k ) , (5.28)

with

q(µk|Σ−1
k ) = N (µk|mk, β

−1
k Σk) , (5.29)

q(Σ−1
k ) =W(Σ−1

k |Wk, νk) . (5.30)

The hyperparameters that govern these posterior distribution are

Φ = {βk,mk, νk,Wk}k=1,...,K , (5.31)

and they can be computed as a function of the prior hyperparameters and the sufficient

statistics, obtained in the previous VE-step, as follows (see Appendix B for the detailed

mathematical derivation)

βk = β0k + s0k ,

mk =
β0km0k + s1k

β0k + s0k
,

W−1
k = W−1

0k + S2k +
β0ks0km0km

T
0k

β0k + s0k
− s1ks

T
1k

β0k + s0k

− β0ks1km
T
0k

β0k + s0k
− β0km0ks

T
1k

β0k + s0k
,

νk = ν0k + s0k .

(5.32)

The point estimates of the mixing proportions {gk}k=1,...,K within each tissue type

and of the tissue weights {wt}t=1,...,T can instead be updated by means of the following

ML estimators

gk =
s0k∑
c∈Ct s0c

, (5.33)

wt =

∑
k∈Ct s0k

N∑
j=1

πt(yj ,uj)∑T
s=1 πs(yj ,uj)ws

. (5.34)
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5.5.3. Computing the lower bound

The lower bound of equation 5.19 can be easily evaluated, once the sufficient statistics

and the variational posterior distributions have been computed (Bishop, 2006), by

L = EZ,Θµ,ΘΣ [log p(X|Z,Θµ,ΘΣ,Θβ)] + EZ[log p(Z|Θπ,Θw,Θg,Θu)]

+EΘµ,ΘΣ [log p(Θµ,ΘΣ)] + log p(Θu) + log p(Θβ)

−EZ[log q(Z)]− EΘµ,ΘΣ
[log q(Θµ,ΘΣ)] , (5.35)

with

EZ,Θµ,ΘΣ

[
log p(X|Z,Θµ,ΘΣ,Θβ)

]
=

1

2

K∑
k=1

s0k E
[

log |Σ−1
k |
]
−D log(2π)− D

βk

− 1

2

K∑
k=1

s0kνkm
T
kWkmk

− 1

2

K∑
k=1

νk Tr(WkS2k − 2s1km
T
kWk)

+

N∑
j=1

K∑
k=1

γjk log |Bj | . (5.36)

EZ[log p(Z|Θπ,Θw,Θg,Θu)] =

N∑
j=1

K∑
k=1

γjk log π′jk . (5.37)

EΘµ,ΘΣ [logp(Θµ,ΘΣ)] =

+
1

2

K∑
k=1

{
Dlog

β0k

2π
−Dβ0k

βk

}
+2KlogBW (W0k,ν0k)

−
K∑
k=1

{
νk
2

Tr
(
(W−1

0k +β0k(mk−m0k)(mk−m0k)T )Wk

)
+E
[
log|Σ−1

k |
]
(ν0k−D)

}
. (5.38)

EZ[log q(Z)] =

N∑
j=1

K∑
k=1

γjk log γjk . (5.39)
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EΘµ,ΘΣ [log q(Θµ,ΘΣ)] =

K∑
k=1

{
1

2
D

(
log

βk
2π
− 1− νk

)
+ logBW (Wk, νk)

+ E
[

log |Σ−1
k |
](1

2
νk −D

)}
. (5.40)

The term BW (W , ν) in equations (5.38) and (5.40) indicates the normalising con-

stant of a Wishart distribution parametrised by W and ν.

5.5.4. Estimating the bias field and the deformations

In order to estimate optimal parameters to represent the bias and the deformation

fields, the lower bound of equation (5.35) has to be maximised, at each iteration of

the algorithm, with respect to the parameters Θβ and Θu, respectively. A closed form

solution does not exist in this case, so recourse to numerical optimisation techniques

cannot be avoided.

The two optimisation problems can be formalised as follows

Θ̂β = arg max
Θβ

{
EZ,Θµ,ΘΣ

[
log p(X|Z,Θµ,ΘΣ,Θβ)

]
+ log p(Θβ)

}
,

Θ̂u = arg max
Θu

{
EZ

[
log p(Z|Θπ,Θw,Θg,Θu)

]
+ log p(Θu)

}
.

(5.41)

Along the same line of Chapter 3, the problem is addressed here by making use of

gradient-based optimisation techniques, such as the Gauss-Newton method (Bertsekas,

1999), or the Levenberg-Marquardt method (Moré, 1978), which are robust and fast

converging strategies. This involves computing the first and second derivatives of L with

respect to Θβ and Θu. The resulting update rules are not significantly different from the

ones reported in Chapter 3, except for having to compute additional expectations with

respect to the Gaussian posteriors, therefore further mathematical details are omitted

here.

Additionally, since the registration problem is formulated by means of a very high

dimensional parametrisation, a multigrid scheme, with the same implementation de-

scribed in Ashburner (2007), is used to solve numerically the Gauss-Newton update of

Θu.
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5.5.5. Empirical Bayes learning of intensity priors

The hyperparameters Φ0 should reflect prior beliefs on how signal intensities are likely to

be distributed within each tissue type. Having adopted a Gaussian-Wishart parametri-

sation, the following hyperparameter setting ensures minimally informative and yet

proper (i.e. integrable) priors

β0k = 0.01 ∧ ν0k = D − 0.99 =⇒ p(µk,Σk) ' const . (5.42)

With such a choice, the posterior distributions of the Gaussian parameters {Θµ,ΘΣ}

would essentially be determined by fitting of the data, similarly to the maximum like-

lihood framework, and the regularising term of the lower bound (see equation (5.7))

would reduce to the entropy of the posterior distributions.

On the contrary, choosing more informative priors can potentially increase the ro-

bustness of the algorithm by enforcing plausibility of the estimated posteriors and, at

the same time, ensure faster convergence. However, defining pertinent priors is a non-

trivial task, as ideally such priors should summarise information inferred from previously

acquired data, rather than simple subjective beliefs. In other words, an appropriate hy-

perparameter configuration should be learned directly from large data sets, rather than

arbitrarily set a priori (Lawrence and Platt, 2004; Raina et al., 2006; Seeger, 2002)

Interestingly, the hierarchical model described so far defines a natural framework

for estimating empirical priors. In fact, supposing that posteriors {qi(Θµ,ΘΣ)}i=1,...,M

have been estimated for a population of M subjects, the following lower bound on the

marginal likelihood can be maximised with respect to the prior distribution p(Θµ,ΘΣ)

L =

M∑
i=1

∑
Z

∫∫
qi(Zi,Θµ,ΘΣ)

× log

{
pi(Xi,Zi,Θµ,ΘΣ,Θβ ,Θu|Θπ,Θw,Θg)

qi(Zi,Θµ,ΘΣ)

}
dΘµdΘΣ .

(5.43)

Additionally, since the functional form of this distribution is parametric and known

(Gaussian-Wishart), standard non-linear optimisation techniques can be exploited to

find maximum likelihood estimates of the hyperparameters Φ0.

Indeed, the lower bound of equation (5.43) can be expressed as a function of Φ0, as
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follows

L(Φ0) =

m∑
i=1

∫ ∫
qi(Θµ,ΘΣ) log p(Θµ,ΘΣ) dΘµdΘΣ + const

=
1

2

M∑
i=1

K∑
k=1

{
E
[

log |Σ−1
ik |
]
(ν0k −D)

− νk Tr(W−1
0k Wik + β0k(mik −m0k)(mik −m0k)TWk)

}

+
M

2

K∑
k=1

D log
β0k

2π
−D

M∑
i=1

K∑
k=1

β0k

βik

+ 2M

K∑
k=1

logBW (W0k, ν0k) + const ,

(5.44)

where BW indicates the normalising constant of a Wishart distribution. The first and

second derivatives of L(Φ0), which are useful to solve this optimisation problem using

gradient-based techniques, are reported in Appendix C.

In practice, a convenient strategy for learning intensity priors consists in, first, initial-

ising the hyperparameters so as to obtain weak priors, secondly, estimating the posterior

distributions for a population of M subjects, finally, optimising L with respect to Φ0.

The estimates of the hyperparameters Φ0 can then be further refined by using these

empirical priors to re-estimate the posteriors and so on, thus leading to an iterative

learning scheme, as illustrated by Algorithm 2.

5.6. Experimental results

This section will present a series of experiments that were performed to assess the

validity of the proposed approach and to explore some of its properties and potential

applications. The results presented in 5.6.1 were produced making use of synthetic data

while the ones described in 5.6.2 were obtained on real, publicly available, MRI data.

5.6.1. Experiments on synthetic data

The performance of the variational algorithm presented in the previous section was first

evaluated making use of simulated data produced by the Brainweb MRI simulator (Co-

cosco et al., 1997; Collins et al., 1998; Kwan et al., 1999). To assess the accuracy of
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Input: a data set consisting of MR image intensities X of M subjects

Output: posterior estimates of hyperparameters {Φi}Mi=1; MAP estimates of

parameters {ui,βi}Mi=1; ML estimates of parameters {gi,wi}Mi=1

1 begin

2 initialise {Φ0, {βi,ui, gi,wi}Mi=1};

3 for it = 1, . . . , In do

4 for each subject i do

5 for subit = 1, . . . , Im do

6 VE-step:

7 evaluate qi(Z), (equation 5.25);

8 VM-steps:

9 (1) update Φi, (equation 5.32);

10 (2) update {gi,wi}, (equations 5.33 and 5.34);

11 Bias update

12 for itβ = 1, . . . , Iβ do

13 update βi, (Section 3.4.2);

14 end

15 Deformations update

16 for itu = 1, . . . , Iu do

17 update ui, (Section 3.4.4);

18 end

19 end

20 end

21 Update intensity priors

22 for itΦ = 1, . . . , IΦ do

23 update Φ0, (Appendix C);

24 end

25 end

26 end

Algorithm 2: optimisation algorithm for joint segmentation and intensity prior learn-

ing from cross-sectional MR data sets.
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brain tissue classification, twenty synthetic T1-weighted scans of healthy adult subjects

(Aubert-Broche et al., 2006) were generated with the following MR simulation param-

eters: SFLASH (spoiled FLASH) sequence with TR=22 ms, TE=9.2 ms, flip angle=30

deg and 1 mm isotropic voxel size. Noise in these simulated scans has a standard devi-

ation equal to 3% of the brightest image intensity, while no intensity inhomogeneities

are present.

Such volumes were segmented using the algorithm presented in the previous section,

after having set the following hyperparameter values, so as to obtain weakly informative

intensity priors (WIP). This choice in fact permits quantifying the accuracy of the

proposed method in the most general case, that is to say when no reliable information

is available on the distribution of tissue intensities.

β0k = 0.1,

m0k =
1

N

N∑
j=1

xj ,

ν0k = D − 0.9,

W−1
0k =

1

N

N∑
j=1

(xj −m0k)(xj −m0k)T .

(5.45)

The tissue probability maps distributed with the SPM12 software were used as priors,

with a number of Gaussian components for each tissue type equal to that used in SPM12

with the default settings.

The resulting segmentations were compared to the anatomical models used to gen-

erate the data by computing Dice similarity coefficients (DSC). Results, which are re-

ported in Figure 5.2, indicate that the presented method can segment gray and white

matter with an accuracy that is at least equal to that of some widely used, state-of the-

art segmentation tools, such as the ones provided with SPM (Ashburner and Friston,

2005), FSL (Zhang et al., 2001) and Freesurfer (Fischl et al., 2004), whose performance

was assessed in (Klauschen et al., 2009). In addition, Dice score coefficients attained

by SPM12 on the same data were computed and reported in Figure 5.2 for comparison.

For these experiments, both the proposed algorithm and the segmentation method im-

plemented in SPM12 were applied after having down-sampled the data every 3 mm to

reduce the run time.

The Brainweb database also provides multi-modality MR data, even if, in this case,

125



Gray Matter White Matter
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

D
S

C

 

 

********

VB
ML

Figure 5.2: Dice similarity coefficients (DSC) between the gray and white matter segmenta-

tions produced by the presented algorithm (VB) and the underlying ground truth, for twenty

simulated T1-weighted scans. DSC obtained with the ML algorithm provided with SPM12 are

also reported for comparison. For each boxplot, the central mark indicates the median, the

edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme

data points, while outliers are indicated by red stars. Asterisks indicate statistically significant

differences, assessed by means of paired t-tests with a significance threshold of 0.05.

only one anatomical model is available. To test the performance of the proposed al-

gorithm in segmenting multispectral data, T1-weighted and T2-weighted volumes were

simulated from the available anatomical model, with pulse sequence parameters re-

ported in table 5.1 and then segmented with the same hyperparameter setting used for

the previous experiment. To examine the behaviour of the algorithm with respect to

noise, the analyses were repeated with three different levels of noise in the data (3%,

5% and 9% of the brightest intensity).

Results, which are summarised in Table 5.2, indicate that the presented method

can successfully handle multi-modality data sets and that, even if the use of a single

modality (e.g. T1-weighted) already ensures accurate segmentations, the availability

of scans with different contrast can provide additional robustness to noise. A similar

behaviour is exhibited by the ML algorithm provided with the SPM software (Table 5.2).

However, comparison of the accuracy attained by the two methods indicates that the

variational approach provides significantly better results, as assessed by means of a

paired t-test performed on the entire set of scores, with a significance threshold of 0.05.

This simulated data was also used to assess the validity of bias field correction, as
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Table 5.1: Simulation parameters selected to generate the synthetic data which was used

to evaluate the accuracy of the presented VB algorithm in segmenting multispectral data.

SFLASH and DSE indicate respectively a spoiled fast low angle shot and a dual spin echo

sequence.

Sequence TR (ms) Flip angle (deg) TE (ms) Bias field

T1w SFLASH 18 30 10 20%
Modality

T2w DSE LATE 3300 90 35,120 20%

Table 5.2: Dice similarity coefficients between the ground truth tissue labels and the segmen-

tations produced by the presented algorithm (VB) and by the ML implementation provided

with the SPM software. The experiments were performed on simulated normal brain scans

(T1- and T2-weighted) for three different noise levels.

Maximum Likelihood (ML)

Noise level 3% 5% 9%

Modality T1w T1w and T2w T1w T1w and T2w T1w T1w and T2w

GM 0.93 0.90 0.91 0.90 0.87 0.88
Tissue

WM 0.95 0.95 0.93 0.94 0.88 0.89

Variational Bayes (VB)

Noise level 3% 5% 9%

Modality T1w T1w and T2w T1w T1w and T2w T1w T1w and T2w

GM 0.92 0.92 0.92 0.92 0.87 0.89
Tissue

WM 0.95 0.96 0.94 0.94 0.89 0.90

performed by the proposed method. To do so, Pearson’s correlation coefficients were

computed between the estimated non-uniformity fields and the ground truth. Results

are shown in table 5.3, where the correlation coefficients attained by SPM ML-based

segmentation algorithm are also reported. As to be expected the two methods perform

quite similarly in estimating the non-uniformity field. In fact, they rely on the same

parametrisation and optimisation of the bias. Nevertheless, because the accuracy in

correcting intensity inhomogeneities depends heavily on how reliable the estimates of the

Gaussian parameters are, the proposed algorithm, which takes into account the posterior

uncertainty of such estimates, can outperform the maximum likelihood approach when

noise in the data increases.

The presented method was implemented in MATLAB and, when subsampling the

data every 3 mm, required a run time, for each individual segmentation, of approxi-
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Table 5.3: Pearson’s correlation coefficients between estimated and ground truth bias fields for

the presented VB method and for SPM ML method.

Noise level 3% 5% 9%

Algorithm VB ML VB ML VB ML

T1w 0.83 0.83 0.84 0.82 0.68 0.61
Modality

T2w 0.88 0.88 0.89 0.89 0.88 0.70

mately 3 min 30 s, on a Quad-Core PC at 3.19 GHz with 12 GB RAM.

Learning GMM priors

Among the advantages of the variational framework, which is exploited here, is the fact

that, like MAP estimation, it allows incorporating priors on the parameters modelling

the intensity distribution of brain (and potentially non-brain) tissues. This form of a

priori knowledge acts conjointly with the shape information carried by the tissue prob-

ability maps, thus ensuring additional robustness. The use of different intensity priors

leads to differences in the estimated posteriors and segmentations, in the sense that the

algorithm will try to simultaneously maximise the model fit, that is the likelihood of

the data, while minimising the divergence between the prior and posterior probability

distributions.

Determining suitable priors for each application, that is to say tissue or imaging

modality, is a fundamental question. However, it should also be noted that the need

to define priors does not limit the applicability of the method if compared to standard

maximum likelihood techniques. In fact, whenever no information is available on what

priors it is most convenient or correct to use, it is always possible to resort to mini-

mally informative priors, which would simply let the algorithm determine the posterior

distributions that explain the data best, given the assumption that all parameter set-

tings, within the admissible parameter space, are equally (or almost equally) probable

a priori.

As explained in Section 5.5.5 the variational framework presented in this chapter can

be exploited to learn empirical priors on the Gaussian mixture parameters from large

cross-sectional data sets. The efficacy of this procedure is demonstrated here using

the same set of simulated T1-weighted scans employed for the previous experiments.
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In particular, priors were learned relative to the intensities of gray and white matter

(with one Gaussian component per tissue type), by first collecting posterior probability

distributions for all of the subjects in the data set and then maximising the functional

of equation (5.44) with respect to Φ0. This optimisation problem was solved making

use of a Gauss-Newton scheme, by iterating over optimising the priors and updating

the posteriors so as reduce the chance of finding suboptimal solutions.

Results are depicted in Figure 5.3, which reports the estimated Gaussian priors on

the mean intensity of gray (5.3a) and white (5.3b) matter. These should be compared

to the modes of the corresponding posteriors, which are marked in the same figure by

red crosses. The proposed empirical Bayes learning scheme captures very precisely the

information encoded in the variational posteriors. In particular the more the posteriors

are peaked and the more they overlap, the more informative the priors will be. If one or

more posteriors have higher variance, this uncertainty will be directly reflected in the

empirical priors, which will become less informative. This is the reason why the priors

shown in Figure 5.3 are broader for gray than for white matter (in spite of a similar

distribution of the modes), as the gray matter posteriors have higher variance compared

to white matter.

The true means are also shown in Figure 5.3, marked by blue crosses. For white

matter, they are extremely consistent with the estimated posterior means. In fact,

for this data set, the presented algorithm exhibits higher accuracy in segmenting white

matter than gray matter (see Figure 5.2). A slightly higher discrepancy emerges between

the true and estimated gray matter mean intensities, which also explains the relatively

lower accuracy in classifying gray matter tissue.

Robustness to misregistration and atlas-free segmentation

All atlas-based segmentation methods rely heavily on the accuracy in estimating the

deformations mapping from the atlas to the individual volumes. Solving the segmenta-

tion and registration problems within a single modelling and computational framework

has been widely accepted as a powerful and effective strategy in order to ensure the

success of both processing tasks, additionally to being a theoretically principled ap-

proach (Ashburner and Friston, 2005; DAgostino et al., 2006; Pohl et al., 2006; Xiaohua

et al., 2004b; Yezzi et al., 2001). Nonetheless, it is possible to encounter cases in which
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Figure 5.3: Priors over the mean intensities of gray (a) and white (b) matter. The priors

were learned from a synthetic data set consisting of 20 T1-weighted scans generated with

the Brainweb MR simulator. The Gaussian curves show the estimated priors, while crosses

represent the true (blue) and estimated (red) tissue means. The estimated means correspond

to the modes of the posterior distributions computed by the proposed VB algorithm.
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(a) Aligned template (b) Misaligned template

Figure 5.4: To test the robustness of the algorithm to misregistration, the tissue probabil-

ity maps were deliberately shifted from their optimal positioning (a) by imposing a 7.5 mm

translation in each direction, as illustrated in (b).

aligning the template to an individual scan turns out to be particularly difficult, due

for example to a poor initialisation of the deformations or to the presence of anatomical

features, for instance pathological ones, which the atlas does not capture. In such cases

segmentation accuracy can be strongly affected by misregistration errors.

Introducing priors over the intensity distribution parameters is a convenient and

reliable solution to cope with these difficulties. In fact, it can help to prevent implausi-

ble parameter estimates, whenever registration errors are misleading the model fitting

process. To demonstrate this property, the synthetic data set consisting of twenty T1-

weighted scans was split into a training and a test subset, of ten volumes each. The

first ten images were processed by the proposed variational algorithm to learn empirical

intensity priors, as explained in 5.6.1. Secondly, the remaining test images were seg-

mented making use of these priors, while registration failure was simulated by imposing

a 7.5 mm shift of the atlas from its optimal alignment configuration in each of the three

Cartesian directions (Figure 5.4).

The accuracy of the resulting segmentations was finally assessed by computing Dice

overlap coefficients. Results are illustrated in Figure 5.5. Here the performance of

the presented method, used in combination with the empirical priors, is compared to

that of the same algorithm with uninformative priors, as well as to that of a maximum

likelihood method, as implemented in SPM12.

As to be expected the maximum likelihood method and the variational method

with uninformative priors do not perform very differently, except for the fact that the
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Figure 5.5: Accuracy of the presented variational algorithm obtained on synthetic data in

the presence of registration errors. The performance of the VB algorithm with empirical

informative priors (blue) is compared to that of the same algorithm with uninformative priors

(red) and to the ML approach, as implemented in SPM12 (black).

ML algorithm shows higher variance of the results. On the contrary, when using the

priors learned from the training data, the accuracy in segmenting gray and white matter

increases significantly, yielding simultaneously lower variance of the overlap measures.

Examples of gray matter segmentations obtained with the ML approach and with the

VB method using informative priors are shown in Figure 5.6. These results confirms

that variational Bayesian inference can augment the robustness of standard maximum

likelihood algorithms, while providing a general and flexible computational framework,

which could be applied to many real world problems, by learning appropriate priors

from available training data.

As an additional proof of validity, an atlas free version of the presented algorithm was

also implemented and tested on the same synthetic data. This purely intensity-based

framework in not expected to achieve segmentation accuracy, or reliability, comparable

to that of the full, atlas driven method. However, the fact that, even in the absence of

tissue probability maps, fairly accurate segmentations can be obtained (see Figure 5.7),

demonstrates again the soundness of the presented algorithm.
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(a) (b) (c)

Figure 5.6: Example of gray matter segmentation obtained on a simulated T1-weighted scan

(a) in the presence of misregistration between the data and the template, using a ML approach

(b) and a VB approach with informative intensity priors (c).
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Figure 5.7: Dice similarity coefficients between the gray and white matter segmentations pro-

duced by the presented algorithm in an atlas free setting and the underlying ground truth, for

twenty simulated T1-weighted scans.
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5.6.2. Experiments on real data

The previous experiments, performed on simulated data, have demonstrated and quan-

tified the accuracy of the presented method for segmenting brain tissues from MRI

volumes. In fact, due to the availability of the underlying ground truth, working with

synthetic data is especially convenient for the objective of testing new techniques and

for the comparison of their performance to that of the methods that have become es-

tablished as current state-of-the-art. Nonetheless, simulated data is intrinsically less

complex than the data encoded in any real scan, from a biological point of view, as

well as in terms of signal and noise properties. Therefore it is important to asses the

behaviour of image processing tools also on real data.

For this reason, this section presents a series of experiments performed on real MRI

data from two publicly available data sets: the OASIS (http://www.oasis-brains.

org) and the IXI (http://brain-development.org/ixi-dataset) databases. Such

experiments provide further evidence regarding the accuracy of the proposed method

for segmenting brain tissues and illustrate some of its distinctive properties, which derive

from adopting a variational inference scheme.

Assessing segmentation accuracy

The performance of the proposed segmentation algorithm was assessed on real data,

making use of T1-weighted scans from the cross-sectional OASIS database (Marcus

et al., 2007). In fact, manual labels, provided by Neuromorphometrics, Inc. (http:

//Neuromorphometrics.com) under academic subscription, are available for a small

subset of this data set consisting of 35 subjects.

The data was processed by the presented segmentation algorithm, whose perfor-

mance was compared to the SPM12 segmentation software. Figure 5.8 summarises the

distributions of Dice coefficients for gray and white matter, which were obtained by

comparing the manual labels with the segmentations produced by the proposed VB

method using minimally informative priors and by SPM ML algorithm. For both tissue

types, the presented variational approach yields a statistically significant increase in

segmentation accuracy, compared to the maximum likelihood framework.

As to be expected, the Dice scores are generally lower, compared to the experi-
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Figure 5.8: Dice scores computed between the manual labels provided by Neuromorphometrics

for a subset of the OASIS data set and the gray and white matter segmentations obtained with

the proposed VB method, using minimally informative priors, and with SPM ML algorithm.

ments performed on synthetic data. This is due to the more complex nature of real

MRI signals. Additionally, the subset of the OASIS database that was used for this

experiment comprises few scans of elderly subjects with severe atrophy and abnormal

signal intensities, which explains the presence of negative outliers in the distribution of

accuracy scores. Finally, when evaluated directly against manual labels, the accuracy

attained by automated segmentation techniques depends quite heavily on the proto-

col adopted for manually annotating the data. For instance, in the data labelled by

Neuromorphometrics, gray matter labels often include also a few CSF voxels.

Additional validation experiments were performed using data from the freely avail-

able IXI brain database (http://brain-development.org/ixi-dataset/), which, as

opposed to the OASIS database, includes multiple modalities, in particular T1-, T2-

and PD-weighted images of healthy adult subjects, acquired in three different sites,

with different scanning systems. Ground truth segmentations are not available for such

a data set. However, in this case, as opposed to the previous experiments, the aim is to

illustrate some of the properties and advantages of the proposed method, rather than

providing explicit accuracy measures.
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Determining model complexity

One of the most significant advantages of variational inference over maximum likelihood

estimation is its intrinsic capability of containing the effects of overfitting (Attias, 1999;

Bishop, 2006). In the case of mixture models this allows, for instance, determining

the optimal number of components (K) without performing cross-validation, which is

usually rather demanding for the amount of computation, as well as for the amount of

data, that it requires (Bishop, 2006).

Indeed, the question of selecting model complexity has often been overlooked in the

framework of medical image segmentation: throughout the literature, the most common

way of handling the choice on the number of classes, is to manually tune K, based on

visual inspection of the segmentations and/or intensity histograms. Clearly, this is too

arbitrary and subjective for even being considered as a model selection strategy.

Instead, the proposed method implements an implicit automated relevance determi-

nation (ARD) scheme, where, if the number of Gaussians is set to a value that is higher

than the optimal one, the redundant components will be automatically pruned out of

the model (Corduneanu and Bishop, 2001; Tzikas et al., 2008), as their responsibilities

{γjk}j=1,...,N are quickly driven to zero by the algorithm. This follows from adopting

a variational lower bound to approximate the marginal likelihood, which causes overly

complex models, that is to say models with additional clusters that do not significantly

help to explain the observed data, to be implicitly penalised (Attias, 1999). A similar

behaviour is inherently impossible to reproduce within model fitting strategies that do

not take into account estimation uncertainty, such as the maximum likelihood frame-

work.

This property is illustrated making use of the scans of one subject included in the IXI

database. In particular, the data depicted in figures 5.9a, 5.9b and 5.9c was processed by

the presented VB algorithm, after having set five Gaussians for each of the tissue types

of interest. At convergence, only two components survived for gray matter, one for white

matter, three for CSF, two for bone and four for soft tissues, as shown in Figure 5.10.

The plots reported in Figure 5.11 illustrate how the posterior densities over the mean

intensity of white matter evolve during model learning and, in particular, how four

irrelevant components are reverted to their prior distributions, which in this case are
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(a) T1w (b) T2w (c) PDw

(d) GM (e) WM (f) CSF

Figure 5.9: Axial slices of T1-weighted (a), T2-weighted (b) and PD-weighted (c) scans and

resulting gray matter (d), white matter (e) and cerebrospinal fluid (f) segmentations obtained

with the variational algorithm described in this chapter.

uninformative. In a similar setting, ML or MAP algorithms would have simply found

the best fit to the data, making use of all the available components, but the optimal

number of Gaussians would have had to be determined a priori, through some form of

model comparison.

Learning informative GMM priors via intensity normalisation

One of the difficulties of working with conventional (i.e. non-quantitative) MRI data

is the lack of a standardised intensity scale (Nyúl et al., 2000). With respect to the

work presented here, this makes it difficult to define, or learn, intensity priors that

can effectively generalise to unseen data. Indeed, even for images of a single data set,

comprising volumes acquired with the same scanner and protocol, the distribution of

intensities across subjects might be poorly consistent.

Unsurprisingly, when trying to learn intensity priors using real MR data, one is

directly confronted with the problem of normalising signal intensities. For instance, if

fifty randomly selected T1-weighted scans from the IXI data set, acquired in the same
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Figure 5.10: Contour plot of the intensity distributions of gray matter, white matter, cere-

brospinal fluid, bone and soft tissue obtained for one subject included in the IXI data set,

overlaid on the joint histogram of the T1- and T2-weighted images. The optimal number of

components is determined automatically by the presented VB algorithm.
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(b) Iteration 3
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(c) Iteration 7
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(d) Last iteration

Figure 5.11: Posterior densities over the mean intensity of white matter, at different iterations

of the presented algorithm, showing non-relevant components being reverted to their prior

distributions.
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Figure 5.12: Collection of individual posteriors on the mean T1-weighted intensity of gray

(a) and white (b) matter, obtained from 50 subjects included in the IXI database. Without

performing any intensity normalisation the resulting empirical priors (black curves) are poorly

informative.

site and with the same scanner, are processed with the proposed variational algorithm

to estimate intensity priors, as described in Section 5.5.5, the empirical priors turn out

to be weakly informative, as they properly reflect the uncertainty due to the variability

of the intensity scales (see Figure 5.12). The situation would be even worse if the MR

volumes were acquired with different scanners or sequences (only quantitative imaging

techniques would virtually be immune from such a problem).

Nonetheless, the generative model presented here can also be exploited to address

the problems associated with the non-standardised nature of MRI signals. In fact,

assuming that the parameter controlling the constant component of the bias field is not
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heavily penalised by the regularisation, the zeroeth order DCT basis function can serve

to compensate for the variability in intensity scaling, as long as informative intensity

priors are introduced in the model. Furthermore, here the effect of having an additional

global scaling parameter is explored. Such a parameter can be optimised within the

same learning scheme presented earlier in this chapter and, in particular, this can be

formalised as a maximisation problem, where the aim is to maximise the following term

(L2) contributing to the lower bound

L2 =

∫∫
q(Θµ,ΘΣ|Θgs) log

{
p(Θµ,ΘΣ)

q(Θµ,ΘΣ|Θgs)

}
dΘµdΘµ

= −DKL(q(Θµ,ΘΣ|Θgs)‖p(Θµ,ΘΣ)) ,

(5.46)

which corresponds to minimising the KL divergence between the intensity priors and

the approximating posteriors. The problem can be solved using non-linear, gradient-

based optimisation techniques, by computing the first and second derivatives of L2(Θgs)

with respect to the global scaling parameters Θgs. By iterating over updating the

empirical priors and estimating the scaling factors for the individual scans, it is possible

learn informative intensity priors, as illustrated in Figure 5.13, while automatically

compensating for the inconsistency of MRI signal intensities.

Naturally, such a procedure requires accurate estimates of the intensity distribution,

bias and deformation parameters for each individual, that is to say, the problems of

learning priors and estimating individual posteriors are inherently related in a circular

manner. As a result, for particularly critical data sets, e.g. pathological data, which

often exhibit larger anatomical variability, the Bayesian framework described in this

chapter might not be able to provide informative priors, due to the lack of a sufficient

number of samples or to poor initial estimates of the model parameters. Nonetheless,

in such cases, the presented computational framework, which represents a coherent

generalisation of some state-of-the-art segmentation algorithms that rely on ML model

fitting, could be applied with minimally informative intensity priors and yet it would

outperform ML estimation, as indicated by the experiments presented in Section 5.6.2.
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Figure 5.13: Collection of individual posteriors on the mean T1-weighted intensity of gray (a)

and white (b) matter, after including a global rescaling parameter, which is optimised as part

of the same generative modelling framework presented in the previous sections. The estimated

priors (black curves) are now much more informative than the ones depicted in Figure 5.12.
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5.7. Summary

This chapter has shown that variational Bayes represents a viable and effective frame-

work for performing atlas-based medical image segmentation, in spite of not having been

thoroughly exploited so far in such a field. In fact, the variational Gaussian mixture

model presented in this chapter, which is an extension and a generalisation of the model

adopted in Chapter 3, was tested on both synthetic and real MRI data to demonstrate,

first of all, how the proposed framework can provide accurate segmentation results at

an equivalent computational cost compared to ML or MAP implementations. In addi-

tion, some of advantages deriving from adopting a fully Bayesian formulation, such as

the possibility of automatically determining optimal model complexity and quantifying

the uncertainty of model parameter estimates, have been illustrated using neuroimaging

data. Finally, an empirical Bayes learning scheme has been presented, which can serve

to estimate informative intensity priors, thus ensuring even greater robustness of the

proposed modelling approach, for instance in the presence of misregistration between

individual data and the warped templates.

However, as opposed to the line defined both in Chapter 3 and Chapter 4, the ap-

proach adopted in this chapter consists in treating the tissue probability maps as fixed

hyperparameters, rather than as random variables to be inferred from the observed data.

This was a design choice, which was made so as to enable a direct comparison between

ML and VB approaches, by validating the proposed variational algorithm against the

widely used ML implementation distributed with the SPM software (Ashburner and

Friston, 2005). In the next chapter, the VB scheme introduced here will be combined

with the groupwise generative perspective of Chapter 3. Furthermore, a diffeomorphic

modelling framework will be exploited, which is more suitable than the small deforma-

tion approach adopted in this chapter for the purpose of capturing modes of anatomical

variability (Cootes et al., 2004; Fletcher et al., 2004).
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6

Generative diffeomorphic atlas

construction from brain and spinal

cord MRI data

6.1. Introduction

This chapter will focus on the potential and on the challenges associated with the devel-

opment of an integrated brain and spinal cord modelling framework for the processing

of MR neuroimaging data.

The aim of the work presented here is to demonstrate how a hierarchical generative

model of imaging data, which captures simultaneously the distribution of signal inten-

sities and the variability of anatomical shapes across a large population of subjects, can

serve to quantitatively investigate, in vivo, the morphology of the central nervous sys-

tem (CNS). This can be achieved by processing simultaneously information related to

the different compartments of the CNS, such as the brain and the spinal cord, without

having to resort to organ specific solutions (e.g. tools optimised only for the brain, or

only for the spine), which are inevitably harder to integrate.
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6.2. Data model

Along the line already delineated in Chapter 3, the work presented here investigates the

potential of a general and comprehensive modelling framework whose aim is to interpret

large data sets of MRI scans from a Bayesian generative perspective. This is achieved

by building on the modelling elements introduced in the previous chapters, which are

further developed here and integrated in one single algorithmic framework. Specifically,

the aim is to demonstrate the validity of such a generative approach for the purpose of

performing simultaneous brain and spinal cord morphometric analyses from MRI data

sets. In doing so, a strategy is outlined on how to overcome some of the limitations of

most currently available image processing tools for neuroimaging, whose performance

has been optimised on the brain at the expense of the spinal cord (indeed the spinal

cord is frequently neglected tout court by such tools). For this reason, the imaging data

that will be used for validation in this chapter, consist of a large set of multimodal

head and neck MRI scans, acquired at different sites, with different imaging systems

and scanning protocols.

Let us consider a population of M subjects belonging to a homogeneous group,

from an anatomical point of view, and let us assume that D image volumes of different

contrast are available for each subject.

As seen in the previous chapters, from a generative perspective, the image intensities

X = {Xi}i=1,...,M , which constitute the observed data, can be thought of as being

generated by sampling from D-dimensional Gaussian mixture probability distributions,

after non-linear warping of a probabilistic anatomical atlas. Such an atlas carries a

priori anatomical knowledge, in the form of average-shaped tissue probability maps,

while from a mathematical modelling point of view, it encodes local (i.e. spatially

varying) mixing proportions Θπ = {πj}j=1,...,N of the mixture model, with j being an

index set over the N template voxels.

6.2.1. Tissue priors

Since each image voxel j ∈ {1, . . . , Ni}, for each subject i ∈ {1, . . . ,M} is considered

as being drawn from K possible tissue classes, the following prior latent variable model
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defines the probability of finding tissue type k, at a specific location j (i.e. centre of

voxel j), in image i, prior to observing the corresponding image intensity signal

p(zijk = 1|Θπ,Θw,Θu) =
wik πk(ξi(yj))∑K
c=1 wic πc(ξi(yj))

, (6.1)

or equivalently

p(zij |Θπ,Θw,Θu) =

K∏
k=1

(
wik πk(ξi(yj))∑K
c=1 wic πc(ξi(yj))

)zijk
. (6.2)

Class memberships, for each subject and each voxel, are encoded in the latent vari-

able zij , which is a K-dimensional binary vector. {πk}k=1,...,K are scalar functions of

space πk : Ωπ → R, common across the entire polulation, which satisfy the constrain

K∑
k=1

πk(y) = 1 , ∀y ∈ Ωπ ⊂ R3 , (6.3)

with y being a continuous coordinate vector field, as opposed to yj , which indicates

discrete coordinates sampled at the centre of voxel j. Global weights Θw = {wi}i=1,...,M

are introduced to further compensate for individual differences in tissue composition.

In equation (6.1), ξi denotes a generic spatial transformation, parametrised by Θu,

which allows projecting prior information onto individual data, with ξi : Ωi → Ωπ being

a continuous mapping from the domain Ωi ⊂ R3 of image i, into the space of the tissue

priors Ωπ ⊂ R3. Since digital image data for subject i is a discrete signal, defined on

a tridimensional grid of Ni voxels, the mapping ξi needs to be discretised as well, on

the same grid, by sampling it at the centre of each voxel j = {1, . . . , Ni}, to give the

discrete mapping {ξi(yj)}j=1,...,N that appears in (6.1).

As opposed to the modelling approach described in Chapter 5, where the tissue priors

were considered as fixed and known a priori quantities, here the tissue probability maps

are treated as random variables, whose point estimates or full posteriors can be inferred

via model fitting, along the same line of Chapter 3.

For this purpose, a finite dimensional parametrisation needs to be defined. Typically,

whenever a continuous function needs to be reconstructed from a finite sequence, it is

possible to formulate the problem as an interpolation that makes use of a finite set of

coefficients and continuous basis functions. Since the priors {πk}k=1,...,K are bounded

to take values in the interval [0, 1] on the entire domain Ωπ (see equation (6.3)), not
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all basis functions are well suited here. Linear basis functions, besides being quite a

computationally efficient choice, have the convenient property of preserving the values of

{πk}k=1,...,K in the interval [0, 1], as long as the coefficients are also in the same interval.

Such coefficients belong to the discrete set Θπ = {πj}j=1,...,N of K-dimensional vectors,

with

K∑
k=1

πjk = 1, ∀j ∈ {1, . . . , N} . (6.4)

They can be learned directly from the data, as it will be shown in the following section.

Additionally, prior distributions on the parameters {πj}j=1,...,N can be introduced

(Bishop, 2006), which are particularly useful both to ensure computational stability, by

preventing the logarithm of the tissue priors from diverging to infinity, and to obtain

smoother templates around the edges of the field of view, where less observed data is

available. Dirichlet priors are the most convenient choice here, since they are conjugate

to multinomial forms of the type in (6.2)

p(πj) = Dir(πj |α0) = C(α0)

K∏
k=1

παk−1
jk , (6.5)

where the normalising constant is given by

C(α0) =
Γ(ᾱ)

Γ(α1) . . .Γ(αk)
, (6.6)

with Γ(·) being the gamma function and

ᾱ =

K∑
k=1

αk . (6.7)

6.2.2. Diffeomorphic image registration

The generative interpretation of imaging data that this thesis relies on involves warping

an average-shaped atlas to match a series of individual scans. Such a problem, that is to

say template matching via non-rigid registration, has been largely explored in medical

imaging, mainly for solving image segmentation or structural labelling problems, in an

automated fashion (Ashburner and Friston, 2005; Bajcsy et al., 1983; Bowden et al.,

1998; Christensen, 1999; Chui et al., 2001; Iglesias et al., 2012a; Joshi et al., 2004; Khan

et al., 2008; Pluta et al., 2009; Shen and Davatzikos, 2004; Warfield et al., 1999).
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Indeed, the modelling of spatial mappings between different anatomies can be ap-

proached in a variety of manners, depending on the adopted model of shape and on

the objective function (i.e. similarity metric and regularisation) that the optimisation

is based on, thus leading to a variety of algorithms with remarkably different properties

(Denton et al., 1999; Klein et al., 2009; Penney et al., 1998).

The work presented in this chapter is formulated according to the Large Deformation

Diffeomorphic Metric Mapping (LDDMM) framework (Younes, 2010), as opposed to the

material included in the previous chapters, which is based on affine and small non-linear

deformations.

In the so called small deformation setting, a mapping φ : Ω→ Ω is defined as

φ(y) = y + u ,∀y ∈ Ω ⊂ R3 , (6.8)

where u is a displacement vector field, belonging to an adequate Hilbert space1 H of

smooth, compactly supported vector fields on Ω , equipped with a scalar product 〈 ·, ·〉H .

The inverse map φ−1 is approximated by

φ−1(y) = y − u . (6.12)

Such a first order (linear) approximation can be acceptable for small displacements

u, but as the norm ||u||H = 〈u ,u 〉1/2H grows larger, the invertibility of φ is no longer

guaranteed. For this reason, a more convenient way of parametrising large deforma-

tions φ is by means of composing a series of sufficiently small deformations (ideally

infinitesimally small) of the type in equation (6.8) (Trouvé, 1998).

In the LDDMM framework the transformations mapping between the source images

1A Hilbert space H is a complete inner product space, where an inner product is a map 〈·, ·〉 :

H × H → C , which associates each pair of vectors in the space with a scalar quantity. In particular

given x,y,z ∈ H and a, b ∈ C

〈ax + by,z〉 = a〈x,z〉+ b〈y,z〉 , (6.9)

〈x,x〉 ≥ 0, and 〈x,x〉 = 0⇔ x = 0 , (6.10)

〈x,y〉 = 〈y,x〉 . (6.11)

An inner product naturally induces a norm by ||x|| = 〈x,x〉1/2, therefore every inner product space

is also a normed vector space (Dieudonné, 2013).

147



and the target image are assumed to belong to a Riemannian manifold 2 of diffeomor-

phisms. A diffeomorphism φ : Ω → Ω is a smooth differentiable map (with a smooth

differentiable inverse φ−1) defined on a compact, simply connected domain Ω ⊂ R3.

One way of constructing transformations belonging to the diffeomorphic group Diff(Ω)

is to solve the following non-stationary transport equation (Joshi and Miller, 2000)

d

dt
φ(y, t) = u(φ(y, t), t), φ(y, 0) = y, t ∈ [0, 1] , (6.13)

where u(φ(y, t), t) ∈ H is a time dependent, smooth velocity vector field, in the Hilbert

space H.

The initial map, at t = 0, is equal to the identity transform φ(y, 0) = y, while the

final map, endpoint of the flow of the velocity field u, can be computed by integration

on the unitary time interval t ∈ [0, 1] (Beg et al., 2005).

φ(y, 1) =

∫ 1

0

u(φ(y, t))dt+ φ(y, 0) . (6.14)

Following from the theorems of existence and uniqueness of the solution of par-

tial differential equations (p.d.e.), the solution of (6.13) is uniquely determined by the

velocity field u(φ(y, t)) and by the initial condition φ(y, 0).

A diffeomorphic path φ is not only differentiable, but also guaranteed to be a one-

to-one mapping. Such qualities are highly desirable for finding morphological and func-

tional correspondences between different anatomies without introducing tears or fold-

ings, which would violate the conditions for topology preservation (Christensen, 1999).

Additionally, the diffeomorphic framework provides metrics to quantitatively evaluate

distances between anatomies or shapes. It should also be noted that diffeomorphisms

are locally analogous to affine transformations (Avants et al., 2006).

In practice, finding an optimal diffeomorphic transformation to align a pair, or a

group, of images involves optimising an objective function (e.g. minimising a cost func-

tion), in the space H of smooth velocity vector fields defined on the domain Ω. The

2A Riemannian manifold, in differential geometry, is a smooth manifold M equipped with a Rieman-

nian metric (inner product). In particular, the Riemannian metric Gp on the n-dimensional manifold

Mn defines, for every point p ∈ M , the scalar product of vectors in the tangent space TpM , in such

a way that given two vectors x,y ∈ M , the inner product Gp(x,y) depends smoothly on the point p.

The tangent space represents the nearest approximation of the manifold by a vector space (Warner,

2013).
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required smoothness is enforced by constructing the norm on the space H through a dif-

ferential operator Lu (Beg et al., 2005), such that a quantitative measure of smoothness

can be obtained via

R(u) = ||Luu||2L2 , (6.15)

where u is a discretised version of u.

The form of the cost function will depend on how the observed data is modelled.

For the work presented here, groupwise alignment is achieved via maximisation of the

following variational objective function

E(Θu) =EZ[log p( Z |Θπ,Θw,Θu)] + log p(Θu) + const

=

M∑
i=1

Ni∑
j=1

K∑
k=1

γijk log

(
wikπk(φi(yj))∑K
c=1 wic πc(φi(yj))

)
− 1

2

M∑
i=1

||Luui||2L2 + const ,

(6.16)

where Z = {Zi}i=1,...,M is the set of latent variables across the entire population,

{γij}i,j = {E[zij ]}i,j are K-dimensional vectors of posterior belonging probabilities,

Θπ indicates the coefficients used to parametrise the tissue priors {πk}k=1,...,K and Θw

denotes a set of individual tissue weights {wi}i=1,...,M for rescaling the tissue probability

maps. The coordinate mappings {φi}i=1,...,M are encoded in the parameter set Θu,

which consists of M vectors of coefficients {ui}i=1,...,M , containing 3 × Ni elements

each. Such coefficients can be used to construct continuous initial velocity fields via

trilinear, or higher order, interpolation.

A procedure known as geodesic shooting (Allassonnière et al., 2005; Ashburner and

Friston, 2011; Beg and Khan, 2006; Miller et al., 2006; Vialard et al., 2012) is applied,

within the work presented here, to compute diffeomorphic deformation fields from corre-

sponding initial velocity fields. Such a procedures exploits the principle of conservation

of momentum (Younes et al., 2009), which is given by mt = L†uLuut, with L†u being

the adjoint of the differential operator Lu, to integrate the dynamical system governed

by (6.13) without having to store an entire time series of velocity fields. The implemen-

tation adopted here relies on the work presented in Ashburner and Friston (2011).

The posterior membership probabilities {γij}i,j that appear in (6.16) can be com-

puted by combining the prior latent variable model introduced in 6.2.1 with a likelihood

model of image intensities, which will be described in subsection 6.2.4, thus leading to
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a fully unsupervised learning scheme.

Alternatively, when manual labels are available, binary posterior class probabilities

can be derived directly from such categorical annotations, without performing inference

from the observed image intensity data. In particular, if all input data has been manu-

ally labelled, then the resulting algorithm would implement a fully supervised learning

strategy, while, if only some of the data has associated training labels, a hybrid ap-

proach can be adopted, which would fall into the category of semisupervised learning,

as discussed in Chapter 4.

6.2.3. Combining diffeomorphic with affine registra-

tion

Anatomical shapes are very high dimensional objects. The diffeomorphic model de-

scribed in the previous subsection can account for a significant amount of shape vari-

ability in the observed data.

Nevertheless, it is still convenient, mainly for computational reasons, to combine such

a local, high dimensional shape model with global, lower dimensional transformations,

such as rigid body or affine transforms. In fact, by beginning to solve the registration

problem from the coarsest deformation components (e.g. rigid body or affine), it is

possible to ensure that the subsequent diffeomorphic registration starts from a good

initial estimate of image alignment, that is to say closer to the desired global optimum.

This makes the optimisation problem faster to solve and at the same time it reduces

significantly the rate of registration failure (Modersitzki, 2004). Indeed, it is relatively

common for non-linear registration algorithms to fail in the presence of a large trans-

lational or size mismatch between the reference and the target images (Jenkinson and

Smith, 2001).

A possible parametrisation that combines affine and diffeomorphic transformations

is

ξi(y) = Ti φi(y) + ti, ∀y ∈ Ωi , (6.17)

where ξi(y) is the resulting mapping from image of subject i into the template space.

Such a mapping is obtained by affine transforming the diffeomorphic deformation field
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φi. The transformation matrix Ti encodes nine degrees of freedom (rotation, zoom-

ing and shearing) and, like in Chapter 3, is computed via an exponential map Ti =

exp(Qi(ai)) with Qi(ai) ∈ ga(3), where ga(3) is the Lie algebra for the affine group

in three dimension GA(3) and ai is a vector of nine parameters. Translations are

modelled by the vector ti ∈ R3. The entire set of affine parameters is denoted as

Θa = {ai, ti}i=1,...,M .

6.2.4. Intensity model

From a general probabilistic perspective, classification of tissue types based on MR

signal intensities requires a model of the observed data that is capable of capturing the

probability of occurrence of each signal sample value xij , provided that the true labels

are known. In other words, the problem breaks down into defining suitable conditional

probabilities p(xij |zijk = 1), for each k = {1, . . . ,K} and then applying Bayes’ rule to

infer the posterior class probabilities.

The model adopted here is the same employed throughout this thesis, where image

intensity distributions are represented as Gaussian mixtures. As in Chapter 5, the un-

known mean µik and covariance matrix Σik of each Gaussian component k, for subject

i, are governed by Gaussian-Wishart priors.

Correction of intensity inhomogeneities is also performed within the same modelling

framework and it involves multiplying the uncorrected intensities of each image volume

by a bias field, which is modelled as the exponential of a weighted sum of discrete cosine

transform basis functions. Such an approach is conceptually equivalent to scaling the

probability distributions of all Gaussian components by a local scale parameter, which

is the bias itself, such that

p(xij |zijk = 1,µik,Σik,Θβ) = det(diag(bij)) N (diag(bij) xij |µik,Σik) (6.18)

= N (xij |µ̂ik, Σ̂ik) , (6.19)

with

µ̂ik = (diag(bij))
−1
µik ,

Σ̂ik = (diag(bij))
−1

Σik (diag(bij))
−1

,
(6.20)

where Θβ denotes the set of bias field parameters and bij is a D-dimensional vector

representing the bias for subject i at voxel j.
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Figure 6.1: Graphical representation of the model adopted for the work presented in this

chapter. Observed variables {xij} are represented by a filled circle. Latent variables {zij}

as well as model parameters are depicted as unfilled circles. Blue solid dots correspond to

hyperparameters. The so called plate notation is adopted to indicated repeated variables.

Symbols referring to all variables and parameters are listed in table 6.1.

6.2.5. Graphical model

A graphical representation of the model adopted in this chapter is depicted in Figure 6.1,

while a legend of the symbols used to indicate the different variables can be found in

table 6.1.

Given such a model, it is possible to define the following variational objective func-

tion L, which constitutes a lower bound on the logarithm of the marginal joint proba-

bility p( X ,Θβ ,Θa,Θu,Θπ|Θw), such that

log p( X ,Θβ ,Θa,Θu,Θπ|Θw) ≥ L (6.21)
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Symbol Meaning

xij Observed image intensity at voxel j of image i.

zij Vector of latent class membership probabilities.

πj Tissue priors at voxel j.

µik Mean intensity of class k for subject i.

Σik Covariance of intensities for class k and subject i.

W0k Scale matrix of Wishart prior distribution on Λk = (Σk)−1.

ν0k Degrees of freedom of Wishart prior distribution on Λk.

m0k Mean of Gaussian prior distribution over µk

β0k Scaling hyperparameter of Gaussian prior distribution over µk

α0 Hyperparameter governing the Dirichlet prior on π.

Θβ Bias field parameters.

µβ Prior mean of bias parameters.

Σβ Prior covariance matrix of bias parameters.

Θa Affine transformation parameters.

µa Prior mean of affine transformation parameters.

Σa Prior covariance matrix of affine transformation parameters.

wi Weights for rescaling the tissue priors.

uij Initial velocity at voxel j for subject i.

Lu Differential operator to compute penalty on ui.

N Number of image voxels.

K Number of Gaussian mixture components.

M Number of subjects.

Table 6.1: List of mathematical symbols used in this chapter.
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and

L =
∑
Z

∫∫
q( Z ,Θµ,ΘΣ) log

{
p( X , Z ,Θµ,ΘΣ,Θπ,Θβ ,Θa,Θu|Θw)

q( Z ,Θµ,ΘΣ)

}
dΘµdΘΣ

=EZ,Θµ,ΘΣ [log p( X | Z ,Θµ,ΘΣ,Θβ)] + EZ[log p( Z |Θπ,Θw,Θu,Θa)]

+ EΘµ,ΘΣ [log p(Θµ,ΘΣ)] + log p(Θπ) + log p(Θβ) + log p(Θa) + log p(Θu)

− EZ[log q( Z )]− EΘµ,ΘΣ [log q(Θµ,ΘΣ)] ,

(6.22)

where the expectations indicated as EZ and EΘµ,ΘΣ are computed with respect to varia-

tional posterior distributions q(·) on the latent variables Z and on the Gaussian means

and covariances {Θµ,ΘΣ}, respectively. Optimisation of L, which provides optimal pa-

rameter and hyperparameter estimates, will be discussed in the following section.

6.3. Model fitting

The model described in the previous section can be fit to data sets of MR images by

combining a variational expectation-maximisation (VBEM) algorithm with gradient-

based numerical optimisation techniques.

Indeed, the VBEM algorithm described in Chapter 5 is well-suited for solving the

problem discussed here since it allows estimating variational posterior distributions on

the Gaussian mixture parameters, under the assumption that q( Z ,Θµ,ΘΣ) factorizes

as q( Z )q(Θµ,ΘΣ) (Bishop, 2006).

Optimisation of the bias field parameters Θβ can be performed via non-linear numer-

ical techniques. Here the problem is solved using the Gauss-Newton method (Bertsekas,

1999), so as to maximise the objective function in (6.22) with respect to Θβ . The result-

ing implementation is very similar to the one described in Chapter 3 therefore further

details are omitted here.

The following subsections instead will provide a more detailed description of the

algorithmic scheme and the relative computations useful for learning the average-shaped

tissue templates Θπ = {πj}j=1,...,N and for estimating the set of initial velocity fields

Θu = {ui}i=1,...,M , as well as the set of affine parameters Θa = {ai}i=1,...,M , for the

entire population.
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6.3.1. Updating the tissue priors

At each iteration of the algorithm the tissue priors Θπ = {πj}j=1,...,N need to be

updated, given the current estimates of all the other parameters, which are kept fixed

for each individual in the population.

Considering only the terms in (6.22) that depend on Θπ gives the following objective

function, which has to be maximised with respect to Θπ

Lπ = EZ[log p( Z |Θπ,Θw,Θu,Θa)] + log p(Θπ) + const

=

M∑
i=1

∫
y∈Ωi

K∑
k=1

γik(y) log

(
wikπk(ξi(y))∑K
c=1 wic πc(ξi(y))

)
dy + log p(Θπ) + const .

(6.23)

It should be noted that the parameters Θπ that need to be estimated are defined on

the domain of the template Ωπ, rather than on the individual spaces {Ωi}i=1,...,M . For

this reason equation (6.23), which is a sum of integrals on the native domains, needs to

be mapped to Ωπ, by inverting the warps {ξi}i=1,...,M , to give

L′π =

M∑
i=1

∫
y∈Ωπ

K∑
k=1

det

(
∂ξ−1

i

∂y

)
γik(ξ−1

i (y)) log

(
wikπk(y)∑K
c=1 wic πc(y)

)
dy + log p(Θπ) + const ,

(6.24)

where the determinants of the Jacobian matrices of the deformations are included to

preserve volumes after the change of variables.

Finally equation (6.24) needs to be discretised on a regular voxel grid, whose centres

have coordinates {yj}j=1,...,N , to give

L′π =

M∑
i=1

N∑
j=1

K∑
k=1

det(Jξ
−1

ij ) γik(ξ−1
ij ) log

(
wikπjk∑K
c=1 wic πjc

)
+ log p(Θπ) + const , (6.25)

where Jξ
−1

ij is obtained by sampling from the corresponding continuous Jacobian deter-

minant field

ξ−1
ij = ξ−1

i (y)|y=yj , (6.26)

det(Jξ
−1

ij ) = det

(
∂ξ−1

i (y)

∂y

)∣∣∣∣
y=yj

, (6.27)

πjk = πk(y)|y=yj . (6.28)
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The prior term p(Θπ) is given by the following Dirichlet distribution

p(Θπ) =

N∏
j=1

Dir(πj |α0) = C(α0)

N∏
j=1

K∏
k=1

πα0k−1
jk . (6.29)

Maximising equation (6.25) is a constrained optimisation problem, subject to

K∑
k=1

πjk = 1 , ∀j ∈ {1, . . . , N} (6.30)

A closed form solution could be easily found if the rescaling weights w were all equal

to one. In such a case

L′π =
M∑
i=1

N∑
j=1

K∑
k=1

det(Jij) γik(ξ−1
ij ) log (πjk) +

N∑
j=1

K∑
k=1

(α0k − 1) log p(πjk) + const ,

(6.31)

which could be maximised under the constraint (6.30) making use of Lagrange multi-

pliers (Falk, 1967), to give

πjk =
Njk + α0k − 1∑K

k=1(Njk + α0k)−K
, (6.32)

with Njk =
∑M
i=1 det(Jij) γik(ξ−1

ij ).

This solution would provide maximum a posteriori point estimates of Θπ = {πj}j=1,...,N .

However for this problem, it would also be possible to derive a full variational poste-

rior distribution, which, like its prior, would take a Dirichlet form, with parameters

αj = α0 +Nj .

Unfortunately, when rescaling of the tissue priors by {wi}i=1,...,M is allowed the

optimisation problem becomes more complex. The strategy adopted here consists in

finding an approximate solution to the unconstrained optimisation problem by setting

the derivatives of the objective function in (6.25) to zero

∂L′π
∂πjk

=

M∑
i=1

(
det(Jξ

−1

ij ) γik(ξ−1
ij )

(
1

πjk
− wik∑K

c=1 wicπjc

))
+
α0k − 1

πjk
= 0 . (6.33)

Solving with respect to πjk, under the simplifying assumption that the term
∑K
c=1 wicπjc

can be treated as a constant, which is valid if the weights are sufficiently close to one,

gives

π̄jk =
Njk + α0k − 1∑M

i=1

det(Jξ−1

ij ) γik(φ−1
ij )wik∑K

c=1 wicπjc

. (6.34)
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Such a solution is then projected onto the constraining hyperplane, by preserving

the same tissue proportions at each voxel

πjk =
π̄jk∑K
c=1 π̄jc

. (6.35)

Experimental testing of this strategy indicated that it gave a constant improvement

of the objective function at a relatively cheap computational cost. Alternatively, nu-

merical constrained optimisation techniques (Powell, 1978) could have been exploited

to solve the template update problem, at the expenses of a slightly longer processing

time.

6.3.2. Computing the deformation fields

Groupwise image alignment is achieved by optimisation of the variational objective func-

tion defined in (6.22), with respect to the parameters used to compute the deformations.

This is equivalent to adopting the following image matching, or similarity, term

D = EZ[log p( Z |Θπ,Θw,Θu,Θa)]

=

M∑
i=1

∫
y∈Ωi

K∑
k=1

γik(y) log

(
wikπk(ξi(y))∑K
c=1 wic πc(ξi(y))

)
dy ,

(6.36)

which, working on discretised image grids, becomes

D =

M∑
i=1

Ni∑
j=1

K∑
k=1

γijk log
wikπk(ξij)∑K
c=1 wicπc(ξij)

=

M∑
i=1

Ni∑
j=1

K∑
k=1

γijk log
wikπ

′
jk∑K

c=1 wicπ
′
jc

, (6.37)

with

ξij = ξi(y)|y=yij , (6.38)

π′jk = πk(ξi(y))|y=yij . (6.39)

The penalty term for this groupwise image registration problem is instead given by

R = Rdif +Raf = log p(Θu) + log p(Θa) = −1

2

M∑
i=1

(
||Luui||2L2 + aTi Σ−1

a ai
)

+ const ,

(6.40)

with ui being a 3×Ni dimensional vector of parameters used for representing the initial

velocity field of image i and ai encoding twelve affine deformation parameters used to

compute the transformation in (6.17).
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Updating the initial velocities

For each image i in the data set, updating the corresponding initial velocity field, given

the current estimates of the templates, involves optimising the following objective func-

tion

E(i)
dif = D(i) +R(i)

dif =

Ni∑
j=1

K∑
k=1

γijk log
wikπk(ξij)∑K
c=1 wicπc(ξij)

− 1

2
||Luui||2L2 , (6.41)

with respect to ui, under the following deformation model

ξij = ξi(yij) = Ti φi(yij) + ti , (6.42)

where φi is a diffeomorphism computed via geodesic shooting (Ashburner and Friston,

2011) from the corresponding initial velocity field ui.

Here image registration is solved via Gauss-Newton optimisation, which requires

computing both the first and second derivatives of the objective function (Hernandez

and Olmos, 2008). A line search scheme is used to determine the optimal step size,

which turned out to ensure faster convergence compared to the Levenberg-Marquardt

scheme adopted in Chapter 3. This leads to a very high dimensional inverse problem,

which unfortunately cannot be solved via numerical matrix inversion, since this would

be prohibitively expensive from a computational point of view. The approach adopted in

this work consists in treating this optimisation as a partial differential equation problem,

which can efficiently be solved using multigrid methods (Modersitzki, 2004). The same

full multigrid implementation as in Ashburner (2007) is adopted.

In particular, the gradient of the matching term D with respect to ui is given by

∂D(i)

∂ui
=

K∑
k=1

γijk
∂

∂ui

(
log

wik πk(ξi)∑K
c=1 wic πc(ξi)

)

=

K∑
k=1

γijk

(
gπk −

K∑
c=1

wic πc(ξi)∑K
c=1 wic πc(ξi)

gπc

)
,

(6.43)

which, making use of
∑K
k=1 γijk = 1 , can be rewritten as

∂D(i)

∂ui
=

K∑
k=1

(
γik −

wik πk(ξi)∑K
c=1 wic πc(ξi)

)
gπk , (6.44)

where gπk is computed, at each voxel j, by

gπjk =
(
Ti,J

ξ
ij

)T
∇ [log (πk(ξij))] , (6.45)
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and Jξi indicates the Jacobian matrix of ξij .

An approximate positive semidefinite Hessian of D can instead be computed by

discarding the second derivatives of the logarithm of tissue priors

∂2

∂y2 log

(
wik (πk(ξi(y)))∑K
c=1 wic (πc(ξi(y)))

)
= 0 ,∀y ∈ Ωi (6.46)

to give

∂2D(i)

∂ui
2 =

(
K∑
k=1

wik πk(ξi)∑K
c=1 wic πc(ξi)

gπk

)(
K∑
k=1

wik (πk(ξi))∑K
c=1 wic (πk(ξi))

gπk

)T

−
K∑
k=1

wik πk(ξi)∑K
c=1 wic πc(ξi)

gπk (gπk )
T
.

(6.47)

This ensures that each Gauss-Newton step is taken in the correct direction.

The first and second derivatives of the penalty term R are also required to solve this

optimisation problem

∂R(i)
dif

∂ui
= −Lu

†Luui , (6.48)

∂2R(i)
dif

∂ui
2 = −Lu

†Lu . (6.49)

Finally, all the gradients and Hessians reported above are used within a Gauss-

Newton optimisation scheme, to update the estimates of the initial velocity fields, as

follows

uiteri = uiter−1
i − (H)−1g , (6.50)

where

g =
∂D(i)

∂ui
+
∂R(i)

dif

∂ui
, (6.51)

and

H =
∂2D(i)

∂ui
2 +

∂2R(i)
dif

∂ui
2 . (6.52)

Updating the affine parameters

Similarly to the strategy outlined above for the diffeomorphisms, the affine parameters,

for each image i, can also be updated (i.e. optimised), so as to maximise of the following

objective function

E(i)
af = D(i) +R(i)

af =

Ni∑
j=1

K∑
k=1

γijk log
wikπk(ξij)∑K
c=1 wicπc(ξij)

− 1

2
aTi Σ−1

a ai , (6.53)
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with respect to ai.

The gradients and Hessians, which are useful in this case are reported below.

In particular, for the matching term the following derivatives need to be computed

∂D(i)

∂ai
=

Ni∑
j=1

K∑
k=1

(
γijk −

wik πk(ξij)∑K
c=1 wic πc(ξij)

)
gπjk , (6.54)

where gπjk is defined as

gπjk = BT
i ([φij , 1]⊗∇ [log (πk(ξij))]) , (6.55)

with

BT
i =

∂Si
∂ai

, (6.56)

and

Si =

Ti ti

0 1

 . (6.57)

∂2D(i)

∂a2
i

=

Ni∑
j=1

(
K∑
k=1

wik πk(ξij)∑K
c=1 wic πc(ξij)

gπjk

)(
K∑
k=1

wik (πk(ξij))∑K
c=1 wic (πk(ξij))

gπjk

)T

−
Ni∑
j=1

K∑
k=1

wik πk(ξij)∑K
c=1 wic πc(ξij)

gπjk
(
gπjk
)T

.

(6.58)

Gradients and Hessians of the penalty term are instead given by

∂R(i)
af

∂ai
= −Σ−1

a ai , (6.59)

∂2R(i)
af

∂a2
i

= −Σ−1
a . (6.60)

6.4. Experimental results

6.4.1. Template construction

Data

The modelling scheme and the resulting algorithm illustrated in this chapter were used to

construct average-shaped brain and cervical spinal cord templates, from a multivariate
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(i.e. multichannel) data set of structural MR images of the head and the neck.

The input data was obtained from three different databases, two of which are freely

accessible for download, thus ensuring that the results presented here could readily be

compared to those produced by competing algorithms for medical image registration or

segmentation.

First data set

The first data set consists of thirty five T1-weighted MR scans from the OASIS

(Open Access Series of Imaging Studies) database (Marcus et al., 2007). The data is

freely available from the web site http://www.oasis-brains.org, where details on the

population demographics and acquisition protocols are also reported. Additionally, the

selected thirty five subjects are the same ones that were used within the 2012 MICCAI

Multi-Atlas Labelling Challenge (Landman and Warfield, 2012).

Second data set

The second data set consists of scans of twenty healthy adults, acquired at Univer-

sity Hospital Balgrist with a 3T scanner (Siemens Magnetom Verio). Magnetisation-

prepared rapid acquisition gradient echo (MPRAGE) sequences, at 1 mm isotropic

resolution, were used to obtained T1-weighted data, while PD-weighted images of the

same subjects were acquired with a multiecho 3D fast low-angle shot (FLASH) sequence,

within a whole-brain multi-parameter mapping protocol (Helms et al., 2008; Weiskopf

et al., 2013).

Third data set

The third and last data set comprises twenty five T1-, T2- and PD-weighted scans

of healthy adults from the freely available IXI brain database, which were acquired at

Guy’s Hospital, in London, on a 1.5T system (Philips Medical Systems Gyroscan Intera).

Additional information regarding the demographics of the population, as well as the

acquisition protocols, can be found at http://brain-development.org/ixi-dataset.

The complete data set therefore consists of eighty multispectral scans of healthy

adults, obtained with fairly diverse acquisition protocols and using scanning systems
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produced by different vendors.

Unfortunately, not all the three modalities of interest (T1-, T2- and PD-weighted)

are available for all of the subjects. To circumvent the difficulties arising from the

presence of missing imaging modalities, without neglecting any of the available data

(indeed deletion of entries with missing data is still, in spite of its crudity, a common

statistical practice), the Gaussian mixture modelling approach discussed in Chapter 5

was generalised by introducing an additional variational posterior distribution over the

missing data points.

In practice, the resulting variational EM scheme iterates over first estimating an

approximated posterior distribution on the unknown image intensities, secondly up-

dating the sufficient statistics of the complete (observed and missing) data and finally

computing variational posteriors on the Gaussian mixture parameters. Additional com-

putational details relative to this strategy are provided in Appendix D.

In practice, even if the presence of missing data slows down the convergence of the

inference algorithm, with this approach it was possible to fit the generative groupwise

model described in this chapter to the entire data set, in spite of having different imaging

modalities available from the different acquisition sites. This is indeed a very common

scenario in real life medical imaging problems, therefore it should be actively addressed

by processing or modelling solutions that claim to be applicable to large population

data (van Tulder and de Bruijne, 2015).

Manual brain labels are available for all images in data set one. Such labels have been

generated and made public by Neuromorphometrics, Inc. (http://Neuromorphometrics.

com) under academic subscription and they provide a fine parcellation of cortical and

non-cortical structures, for a total of 139 labels across the brain. A list of all the labelled

structures and their average volume across the population is reported in Appendix E.

Part of this label data was used for training of the model while the remaining was left

out for testing and validation. In particular, brain labels of twenty out of the thirty five

OASIS subjects were used to create gray and white matter ground truth segmentations,

which were then provided as training input for semisupervised model fitting.

Similarly, spinal cord manual labels were created for forty subjects (twenty from data

set two and twenty from data set three). Such labels were randomly split in half for

training and half for subsequent test analyses. Due to the limited resolution of the data
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it was not possible to manually delineate gray and white matter within the spinal cord.

For this reason, each voxel classified as spinal cord in the training data was allowed to

be assigned either to the gray or to the white matter tissue classes, based on the fit of

its intensity value to the underlying Gaussian mixture model.

Analogously, in spite of having defined only one gray matter training label, two

distinct gray matter classes were introduced in the mixture model (top two rows in

Figure 6.2), to best capture the corresponding distribution of image intensities, which

is poorly represented by a single Gaussian component, as opposed to the distribution

of white matter intensities. Also in this case, membership probabilities of the labelled

training data were computed by combining the available labels with the intensity model.

Tissue templates and intensity priors

The tissue probability maps obtained by applying the modelling framework presented

in this chapter to the data set described above are depicted in Figure 6.2. The total

number of tissue classes used for this experiment is equal to twelve but three classes,

representing air in the background, are not shown. In principle it would have been

possible to automatically estimate the optimal number of Gaussian components, as in

chapter 5. However, due to the size of the data set used here, setting an initial number

of components higher than the unknown optimal one was found to be too onerous from

a computational point of view. In particular, Figure 6.2 shows how one of the two gray

matter classes (first row) best fits the subcortical nuclei and also includes voxels affected

by partial volume effects at the interface between gray and white matter, while the

second one (second row) is more representative of cortical structures, with the presence

of partial volume effects generated by the juxtaposition of gray matter and CSF. The

third row in Figure 6.2 shows the white matter class, which also includes most of the

brainstem and the spinal cord.

The remaining tissue classes were estimated in a purely unsupervised way. Therefore

a non-ambiguous anatomical interpretation is not straightforward.

Tissue class four (fourth row) mainly contains CSF, even if other tissues are present,

especially in the neck area. This should be attributed to the lack of CSF training

labels as well as to a poor multivariate coverage of the cervical region in the available

data. In fact, data from the OASIS set is truncated around the first cervical vertebra.
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The T1-weighted scans of the IXI data set cover up the C2/C3 vertebral level, but

the corresponding T2- and PD-weighted scans do not extend beyond the brainstem.

Indeed, only the data from the second database (Balgrist hospital) provides more than

one modality covering up to around the fourth cervical vertebra. In this case though,

additional difficulties arose from poor inter-modality alignment of the data, a problem

which turned out to be particularly severe in the cervical region and that could not be

compensated for by rigid realignment (i.e. coregistration), due to the non-linearity of

the changes in head positioning. Such problems, which occur rather commonly when

working with medical image data, can significantly affect the performance of model

fitting, therefore an interesting direction for future work could be the introduction of

intra-subject deformation fields within the modelling framework presented in this thesis.

Bone tissue is also not easily identifiable from the data available for this experiment,

but it could have potentially been much better extracted by incorporating some CT

scans into the training data.

Fat and soft tissues are mainly represented in the last two classes (bottom two rows

in Figure 6.2).

Figure 6.3 illustrates a three-dimensional rendering of the average-shaped brain and

spinal cord (6.3a), obtained by extracting a boundary surface from the sum of the gray

and white matter tissue classes, as well as a three-dimensional model of the white matter

class (6.3b). A T1-weighted template, obtained by linear averaging of the spatially

normalised and bias corrected data, is reported instead in Figure 6.4.

The empirical Bayes learning procedure, introduced in the previous chapter (see

Section 5.6.1), to estimate suitable prior distributions on the parameters of the Gaussian

mixture model, was applied here to the same data that was used to construct the

templates. Some of the results are summarised in figure 6.5, which reports the estimated

empirical prior distribution on the mean intensity of gray and wite matter in T1- and

PD-weighted data, with overlaid contour plots showing some of the individual posteriors

(randomly selected across the entire population).

Such results indicate that the proposed empirical Bayes learning scheme can serve

to capture, not only the variability of mean tissue intensity across subjects, for each of

the modalities of interest, but also the amount of covariance between such modalities.

Information of this sort can potentially be used in a number of different frameworks, for
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Figure 6.2: Head and neck tissue probability maps obtained by applying the presented group-

wise generative model to a multispectral data set comprising scans of eighty healthy adults,

from three different databases.
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(a) (b)

Figure 6.3: Average shaped brain and spine three-dimensional rendering, obtained by surface

extraction of the sum of gray and white matter tissue classes (a), together with a 3-D rendering

of the white matter prior model (b).

solving problems such as tissue segmentation, pathology detection or image synthesis.

Validity of groupwise registration

The performance of groupwise registration achieved by the presented algorithm was

assessed by computing pairwise overlap measures for all possible couples of spatially

normalised test images (i.e. the images provided with ground truth labels, which had

not been used for training of the model). The Dice score coefficient was chosen as a

metric of similarity.

Results are summarised in figures 6.6, 6.7 and 6.8, where the accuracy of the algo-

rithm presented here is compared to that achieved by the method described in Avants

et al. (2010), whose implementation is publicly available, as part of the Advanced nor-

malisation Tools (ANTs 1.9) package, through the web site http://stnava.github.

io/ANTs/. Indeed, the symmetric diffeomorphic registration framework implemented in

ANTs has established itself as the state-of-the-art of medical image non-linear spatial

normalisation (Klein et al., 2009).

A number of options can be customised within the template construction frame-
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Figure 6.4: T1-weighted average-shaped template obtained by linear averaging of spatially

normalised individual scans.
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Figure 6.5: Prior distributions over the mean intensity of gray and white matter in T1- and

PD-weighted data.
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Table 6.2: Options selected to perform groupwise registration with ANTs, using the

antsMultivariateTemplateConstruction script provided with the ANTS package.

Option Value

Similarity Metric Cross-correlation (CC)

Transformation model Greedy SyN (GR)

Initial rigid body yes

N4 Bias Correction yes

Number of resolution levels 4

Number of iterations 100× 70× 50× 10

Gradient step 0.2

Number of template updates 4

work distributed with ANTs. The experiments, whose results are reported here, were

performed using only T1-weighted scans since the package does not handle the pres-

ence of missing data, with the settings recommended for brain MR data in the software

documentation, which are also reported in table 6.2. Additionally, the data was not

skull-stripped prior to model fitting.

Results of this validation analyses indicate that the method presented here, in spite

of not being as accurate as ANTs for aligning some subcortical brain structures (e.g.

thalamus, putamen, pallidum and brainstem), can provide significantly better overlap

when registering cortical regions, as assessed by means of paired t-tests with a signifi-

cance threshold of 0.05 and without correcting for multiple comparisons. No statistically

significant differences were found between the two methods, with respect to registra-

tion of the spinal cord. This results should also be compared to the ones reported in

Chapter 4 (see Figure 4.13 and Figure 4.14), which were obtained on a subset of the

data used here (data set one only), in a ML setting, as opposed to the VB approach

exploited in this chapter, and with a small deformation model rather than a diffeomor-

phic one. Not only does the model adopted in this chapter outperform the previous

one in terms of mean accuracy but it exhibits much higher robustness, as indicated by

the dramatic decrease in the number of negative outliers. Most of the cases of registra-
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tion failure observed with the model presented in Chapter 3 corresponded to scans that

were largely misaligned with the initial group average. For such images, due to a poor

initialisation of model parameters, the optimisation algorithm got prematurely stuck

in a local maximum. As indicated in Chapter 5 however, the introduction of intensity

priors ensures much higher robustness to misregistration and this, in combination with

a larger parametrisation of the deformations, explains the improvement in performance

obtained here.

Accuracy of tissue classification

The accuracy of tissue classification achieved by the method presented here was first

evaluated on test data, which was used to create the templates but without providing

manual labels for training of the model. Dice scores were computed to compare the

automated segmentations produced via semisupervised groupwise model fitting, with

the ground truth, obtained by merging all the gray and white matter brain structures

(labels) into two tissue classes respectively, and by considering the spinal cord as a third

separate class.

All probabilistic brain segmentations were thresholded at a value equal to 0.5, in

order to obtain binary label maps, directly comparable to the ground truth. To derive

binary spine segmentations instead, the sum of gray and white matter posterior belong-

ing probabilities was first computed in a subvolume containing the neck only, and then

thresholded at 0.5.

Results are summarised in Figure 6.9, which shows the distributions of Dice scores

obtained for brain gray matter, brain white matter and spinal cord.

Such results were then compared to those produced by the brain segmentation algo-

rithm implemented in SPM12, using the standard tissue probability maps distributed

with the software. Results of these analyses, which are summarised in Figure 6.10, in-

dicate that the population specific atlases constructed with the method presented here

enable higher tissue classification accuracy, at least for test data drawn from the same

population that the model was trained on but whose labels were not exploited for train-

ing. A potential source of bias in the results of this experiment is the fact that the test

data was actually employed for constructing the atlases, even though the corresponding

labels were not seen by the algorithm. However a more cautious k-fold cross-validation,
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Figure 6.6: Accuracy of groupwise registration achieved by the presented method, compared

to the performance of ANTs, for different neural regions. Stars indicate statistically significant

differences between the two methods, assessed by means of paired t-tests with a significance

level of 0.05.
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Figure 6.7: Accuracy of groupwise registration achieved by the presented method, compared

to the performance of ANTs, for different neural regions. Stars indicate statistically significant

differences between the two methods, assessed by means of paired t-tests with a significance

level of 0.05.
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Figure 6.8: Accuracy of groupwise registration achieved by the presented method, compared

to the performance of ANTs, for different neural regions. Stars indicate statistically significant

differences between the two methods, assessed by means of paired t-tests with a significance

level of 0.05.
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Figure 6.9: Brain and spinal cord segmentation accuracy of the presented method.

which would have required constructing numerous templates, was not feasible in this

case due to the expensive computational cost of groupwise model fitting, which for the

data set used here was around 160 hours on a Quad-Core PC at 3.19 GHz with 30 GB

of RAM.

6.4.2. Modelling unseen data

Further validation experiments were performed to quantify the accuracy of the frame-

work described in this chapter to model unseen data, that is to say data that was not

included in the atlas generation process.

Such experiments were performed on synthetic T1-weighted brain MR scans from

the Brainweb database (http://brainweb.bic.mni.mcgill.ca/).

Accuracy of bias correction

A healthy adult brain MR model was processed by means of the algorithm discussed

here, using the head and neck templates previously constructed as tissue priors. Dif-

ferent noise and bias field levels were added to the uncorrupted synthetic data, to test

the behavior of the proposed modelling scheme in different noise (1%, 3%, 7%) and bias

conditions (20% and 40%).
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Figure 6.10: Brain segmentation accuracy of the presented modelling framework compared to

SPM12. An equivalent comparison was not possible for the spinal cord, as the current SPM

templates do not handle neck data.

The noise in these simulated images has Rayleigh statistics in the background and

Rician statistics in the signal regions and its level is computed as a percent standard

deviation ratio, relative to the MR signal, for a reference tissue (Cocosco et al., 1997).

Regarding the bias field instead, 20% bias is modelled as a smooth field in the range

[0.9, 1.1] while 40% bias is obtained by rescaling of the 20% field, so as to range between

0.8 and 1.2 .

Table 6.3 reports the Pearson product-moment correlation coefficients between the

ground truth and the estimated bias fields, for the different bias ranges and noise levels.

Table 6.3: Pearson’s correlation coefficients between the ground truth bias fields and those

estimated by the presented algorithm, for simulated T1-weighted data.

Noise

1% 3% 7%

20% 0.86 0.86 0.70
Bias

40% 0.72 0.72 0.51
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Results indicate that the similarity between the estimated and true bias decreases for

more intense non-uniformity fields and higher noise levels. Indeed this is not surprising,

as the penalty term, which enforces smoothness of the bias field, has a greater impact

in determining the shape of the estimated bias when the non-uniformities have a larger

dynamic range, such as at higher field strengths (Vaughan et al., 2001). Nevertheless,

results reported in the following section will show how this increased mismatch between

the estimated and true bias does not seem to affect the accuracy of tissue segmentation.

On the other hand, the accuracy of bias correction is directly related to the amount of

noise corrupting the data, mainly due to how this affects the precision associated with

estimatation of the Gaussian mixture parameters. Results reported here are in line with

those presented in Chapter 5, using the probabilistic atlas publicly available in SPM12.

This confirms the accuracy of the proposed approach and indicate that the templates

learned with the model discussed in this chapter could be effectively integrated with

existing modelling tools for neuroimaging data.

Accuracy of tissue classification

For the same data, the accuracy of tissue classification was also evaluated by comparing

the similarity between the estimated gray and white matter segmentations and the

underlying anatomical model.

Results are reported in Figure 6.11, which shows the Dice score coefficients obtained

under different bias and noise conditions.

The Brainweb database has been extensively used in the neuroimaging community to

validate MR image processing algorithms. Therefore the results reported here should be

directly comparable to the performance of many brain segmentation techniques present

in the literature.

A potential framework for image synthesis

One of the potential applications of the generative model presented in this chapter is

related to the creation of synthetic images.

This is a research problem that has been approached with a variety of different

techniques, among which are compressed sensing (Roy et al., 2011), regression trees (Jog

et al., 2013), convolutional neural networks (Li et al., 2014), patch-matching algorithms
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Figure 6.11: Dice scores between the estimated and ground truth segmentations for brain white

matter (a) and brain gray matter (b), under different noise and bias conditions, for synthetic

T1-weighted data.

(Iglesias et al., 2013a), atlas-based fusion (Burgos et al., 2014), generative modelling of

MR intensity distributions (Cordier et al., 2016) and Bayesian estimation of the physical

quantities (i.e. relaxation times and proton density) that govern nuclear magnetisation

phenomena (Maitra and Besag, 1998; Maitra and Riddles, 2010).

Such synthetic images can be useful for a number of different purposes. For exam-

ple to alleviate the problems caused by the inconsistency of contrasts generated with

different scanning systems and acquisition protocols in the context of large multi centre

studies (Jovicich et al., 2009; Tofts, 1998), or to deal with missing data, without deleting

incomplete observations, by means of data imputation (Campos et al., 2015; van Tulder

and de Bruijne, 2015), or, just to provide another example, to augment data sets for

the training of image processing algorithms (Ronneberger et al., 2015).

Within the model adopted here, a missing data value xmis, corresponding for ex-

ample to the intensity of a non-acquired image contrast, can be estimated from the

observed data (i.e. acquired contrasts) xobs by

x̂mis = arg max
xmis

log p(xmis|xobs, Θ̂π, Θ̂β , Θ̂u) . (6.61)

In a variational Bayes setting, an approximated posterior distribution over the miss-
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ing data values can be computed as

log p(xmis|xobs, Θ̂π, Θ̂β , Θ̂u) '

Ez,Θµ,ΘΣ

[
log p(xobs,xmis, z,Θµ,ΘΣ, Θ̂π, Θ̂β , Θ̂u)

]
+ const =

Ez,Θµ,ΘΣ

[
log p(xobs,xmis|z,Θµ,ΘΣ, Θ̂β)

]
+ const =

K∑
k=1

γk Eµk,Σk

[
logN (xobs,xmis|µk,Σk, Θ̂β)

]
+ const ,

(6.62)

where {Θ̂π, Θ̂β , Θ̂u} denotes a set of model parameter estimates relative respectively to

the Gaussian mixing proportions, the bias field and the deformations, while γk is the

posterior belonging probability of tissue class k.

The expectations that appear in the last line of (6.62) are computed with respect to

posterior distributions on µk and Σk. Such posteriors should capture, for every tissue

type k, the patterns of (co)variability of image intensities across modalities. There-

fore, if the missing contrast is unobserved on the entire volume of interest, informative

intensity priors must be adopted. Additional mathematical details on how to perform

variational inference on Gaussian mixtures, in the presence of missing data, are reported

in Appendix D.

An example of a synthetic T2-weighted scan generated from a T1-weighted image

included the IXI data set, making use of the tissue probability maps and the empirical

intensity priors estimated from the training data sets described previously, is reported

in Figure 6.12, together with a true T2-weighted image of the same subject. Such an

example confirms that the proposed generative modelling framework could potentially

have an application for image synthesis. One limitation however is that the magnitude

of the covariance between different modalities in the intensity prior model is smaller

than the corresponding variances, thus causing the simulated data to lie very close to

the mean intensity value of the predominant tissue class at each voxel.

6.5. Summary

This chapter presented a general groupwise Bayesian modelling framework, which, in

spite of having a number of potential applications, is primarily intended to enable simul-

taneous morphometric analyses of the brain and the cervical cord, from cross-sectional
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(a) (b) (c)

Figure 6.12: Synthetic T2-weighted scan (c), generated from a T1-weighted volume (a) using

informative intensity priors, and corresponding ground truth (b).

MRI data sets. From a theoretical perspective, such a framework relies on variational

probability density estimation techniques to model the observed data (i.e. MR signal

intensities), by exploiting the VBEM framework introduced in Chapter 5. Additionally,

a hierarchical modelling perspective is proposed, where observations from a popula-

tion of subjects are integrated to construct both tissue probability maps and empirical

intensity priors, which can then serve to inform models of new data.

Shape modelling, in this case, is performed via groupwise diffeomorphic registration,

thus ensuring bijective (i.e. one-to-one) differentiable mappings between anatomical

configurations (Miller, 2004). Such an approach enables a rigorous mathematical en-

coding of anatomical shapes via deformable template matching (Christensen et al.,

1996), therefore providing a quantitative framework for the analysis of shape variation

and covariation.

Data for training the method was collected from three different databases, two of

which are publicly accessible to the research community. Results of validation exper-

iments performed both on training and unseen test data indicated that the presented

model is suitable to perform integrated brain and cervical cord morphometrics. Thus,

the proposed algorithm could represent a concrete solution to extract anatomical vol-

umetric and morphometric information from large neuroimaging data sets, in a fully

automated manner. At the same time it could provide outputs that might be readily

interpreted, for instance via statistical hypothesis testing, with the ultimate goal of
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comparing different populations, treatment effects etc. (Ashburner and Friston, 2000).

Finally, it was shown how the described framework also has potential for application

in the field of image synthesis. Even if such a topic was not extensively addressed in this

thesis, a proof of concept was provided, indicating the feasibility of such an approach.
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7

Conclusion

7.1. Contribution of this thesis

The work presented in this thesis has explored the potential of generative modelling

approaches to capture anatomical and morphological features from large structural MR

data sets. In particular, the proposed framework, which builds on the work of Ash-

burner and Friston (2005) to expand its hierarchical structure, allows combining image

registration, tissue classification, bias correction, atlas construction and intensity prior

learning in a single groupwise algorithm. This is achieved by formulating one compre-

hensive mathematical representation of the data, such that these individual processing

tasks can be conceived as interdependent elements within the same generative process.

With such a perspective, not only diverse image processing problems can be ad-

dressed in the same framework, thus leading to general and flexible computational so-

lutions, but each compartment of the mathematical model informs the others, resulting

in higher accuracy, compared to independent model fitting of the single components.

Additionally, different model fitting strategies, namely maximum likelihood estima-

tion, maximum a posteriori estimation and variational Bayes, have been implemented,

compared and, when convenient, integrated to find a trade-off between accuracy and

computational feasibility.

A number of experimental findings have been reported, mainly for the purpose of

evaluating the behaviour of the proposed approach to process brain and spinal cord

MR data, both in a fully unsupervised and semisupervised learning setting. Results
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(a) (b)

Figure 7.1: Brain and spine tissue probability maps of gray (a) and white (b) matter, con-

structed as described in Chapter 6.

of these analyses indicated the viability of integrated brain and spine morphometrics,

thus opening up a new perspective in computational neuroimaging, where the central

nervous system can actually be considered as an integrated structure and interactions

between its compartments, for instance brain and spine, can be inferred.

7.2. Limitations

There are a number of limitations associated with the work presented in this thesis.

A first crucial point is related to the amount of shape variability that the proposed

model can capture. Indeed, in spite of having adopted a large deformation approach

in Chapter 6, an intrinsic difficulty remains in modelling large shape variations that

deviate significantly from the average shape model, as built from the training data. In

such cases, finding a reasonable trade off between maximising image similarity and pre-

serving topology becomes especially challenging, thus increasing the chance of incurring

implausible warps or suboptimal local solutions (Crum et al., 2003).

A practical example of misregistration is provided in Figure 7.3. In this case, a sub-
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Figure 7.2: Example of brain and spine segmentation obtained by applying the modelling

framework described in Chapter 6. The image in panel (b) is partitioned into gray and white

matter (a).
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(a) (b)

Figure 7.3: Example of registration failure of an individual scan (a) to the templates described

in Chapter 6 (see Figure 6.2). Arrows indicate regions of severe misalignment in the warped

image (b).

ject with pronounced cervical extension (a) fails to be registered to the templates shown

in Figure 6.2, with the warped image (b) exhibiting an implausible spinal curvature and

shrinkage of the frontal lobe.

Additionally, not having modelled the presence of partial volume effects can induce

systematic misclassification of voxels that lie at the interface between different tissues. A

typical example encountered in neuroimaging regards those voxels containing a mixture

of white matter and cerebrospinal fluid, which in T1-weighted images tend to have

an intensity overlapping with that of gray matter structures, thus easily leading to

misclassification. Such a problem could be tackled, within the same mixture modelling

scheme adopted here, by representing each voxel as an unknown mixture of different

tissues, that is introducing continuous latent variables {zj}j=1,...,N , with zjk ∈ [0, 1]

rather than zjk ∈ {0, 1} (Heller et al., 2008). In such a way, the pure tissue case would

become just a special instance of a more general formulation (Van Leemput et al., 2003).

Alternatively, a more simplistic approach would involve introducing additional classes

to encode partial volume effects (Noe and Gee, 2001)

Another limitation is related to the difficulty of normalising intensity profiles across

images acquired with different systems or protocols, which can lead to systematic biases

(Weisenfeld and Warfteld, 2004). Results reported in the previous chapters indicated

that the proposed method is capable of handling a certain amount of variability in the

intensity scaling, by employing informative intensity priors and allowing a linear rescal-
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ing of the MRI signals. Nevertheless this remains a practical but perfectible solution,

which could potentially benefit from exploring alternative intensity transforms, so as

to increase robustness to acquisition dependent differences (Weisenfeld and Warfteld,

2004).

Finally, the model described here is generally unable to capture lesions or abnor-

malities, unless they are effectively represented in the training data, with consistent

patterns across the entire population, which happens rarely in neuropathology.

7.3. Future directions

In relation to the limitations outlined above, a number of potential directions for future

work arise. For instance, the difficulties induced by the inconsistency of MR signal

intensities could be tackled by directly embedding physical models of the MR signal

generation process into the proposed hierarchical Bayesian framework (Glad and Se-

bastiani, 1995), so as to derive an explicit model of how image intensities depend on

the MR scanning parameters. Not only would this allow creating synthetic MR images

corresponding to any combination of acquisition settings but, by including information

on the covariation between MR and CT signal intensities, it could also define a strategy

to obtain simulated CT images, photon attenuation maps or electron density maps,

which are necessary for example for attenuation correction in PET/MR reconstruction

(Burgos et al., 2013) or for accurate treatment planning in radiation therapy (Gudur

et al., 2014).

Another topic, which could potentially be explored as part of future work, concerns

the possibility of taking into account, within the proposed semi-supervised generative

modelling framework, the uncertainty inherent in the process of manual rating. For

such a purpose, posterior class probabilities could be computed by making use of the

categorical output of manual labelling together with an estimate of the rater sensitivity

and with a generative intensity model. In fact, the work of Warfield et al. (2004) has

shown that reliable sensitivity estimates can be inferred in an automated manner by

exploiting a probabilistic modelling scheme.

The medical imaging community has also shown considerable interest in deformable

shape models that are constrained so as to ensure that all generated shape instances are
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statistically plausible for a given anatomical object (Cootes et al., 1995; Rueckert et al.,

2003). For instance, active shape models, introduced by Cootes et al. (1995), describe

the shape of an object through the relative position of a set of landmarks or labelled

points, whose location is modelled by a mean plus a linear combination of a small

number of modes of variation (point distribution model). Such modes of variation are

computed via principal component analysis (PCA) on the deviations from the mean of

the coordinates of corresponding data points in different training samples, after having

accounted for positioning, orientation and size differences.

Such an approach is valid for landmark-based representations but not for more com-

plex shape models. To circumvent this limitation, principal geodesic analysis (PGA)

was introduced by Fletcher et al. (2004) as a generalisation of principal component

analysis, which is only applicable in Euclidean vector spaces (Wold et al., 1987), for the

purpose of describing geometric variability on curved manifolds. Analogously to PCA

in the Euclidean space, PGA seeks lower dimensional subspaces that best capture the

variability of data samples. In PCA these subspaces are linear subspaces. The corre-

sponding generalisation in the manifold setting is provided by the notion of geodesic

subspaces.

A PGA approach could be usefully incorporated in the shape modelling scheme

presented here so as to increase its robustness, while inferring principal modes of brain

and spine shape variability. Indeed, it has already been shown that such an approach

can be rigorously formulated in a Bayesian setting (Zhang and Fletcher, 2013), which

would be well suited for integration into the presented framework.

Another open research question is related to how models of healthy anatomy, such as

the one presented in this work, can be generalised to handle the presence of pathological

features. In this case additional challenges arise, since lesion morphology tends to exhibit

even larger variability compared to healthy tissues, thus requiring very large training

data sets in order to build informative priors of lesion shape, intensity, texture etc.

In a fully unsupervised setting, the simplest approach would involve treating lesions

as outliers (Freifeld et al., 2007), which would essentially require a physiological model

of intensity and shape variability for the tissues of interest, such as the one presented

in this work. The variational framework discussed in this thesis might as well be useful

for such a purpose, as it would allow to quantitatively evaluate the uncertainty relative
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to the estimates of the Gaussian mixture parameters, thus providing implicit criteria to

detect the presence of abnormal intensity patterns. On the other hand, for pathologies

that significantly alter anatomical shape but without affecting the Gaussian distribution

parameters, the use of informative intensity priors, as illustrated in Chapter 5 and

Chapter 6, should ensure better model fit compared to maximum likelihood techniques.

However, an approach of this sort is still likely to perform sub-optimally in the

absence of contextual or shape information, especially if the available data is not mul-

tispectral. For this purpose, the generative framework presented in this thesis might

only be useful when lesions tend to appear at similar spatial locations across different

subjects. In such a case, a factorisation model, extending the binary logistic regres-

sion approach of Tipping (1999) to the multinomial case, could be used to provide a

more flexible version of the prior information encoded in the tissue probability maps.

Otherwise, different forms of priors should be incorporated, for instance in the form of

Markov random fields to ensure spatial coherence (Schwarz et al., 2009) or by exploiting

statistical shape models (Shepherd et al., 2012) to encode information on lesion shape

variability. For instance, convolutional restricted Boltzmann machines have successfully

been used to learn pathological shape priors from manually annotated data (Agn et al.,

2016).

However, the fact that fully unsupervised generative learning tends to exhibit higher

asymptotic prediction error compared to discriminative classification techniques (Jor-

dan, 2002), might still hinder the application of generative models for capturing lesions,

since they are intrinsically harder to explain compared to healthy features. Therefore

an intuitive solution would be combining unsupervised learning methods, which can be

easily trained on large data sets, with supervised classification approaches, such as deep

neural networks, support vector machines or random forests (Havaei et al., 2017; Lao

et al., 2008; Vaidya et al., 2015; Zacharaki et al., 2009), which yield high predictive

performance but in some real life applications suffer from the limited availability of

labelled examples. Approaches of this sort to the problems of lesion segmentation and

computer assisted diagnosis have been explored, with encouraging preliminary results,

by Alex et al. (2017); Batmanghelich et al. (2012); Guo et al. (2015); Jerman et al.

(2015); Menze et al. (2016); Reddick et al. (1998); van Tulder and de Bruijne (2016).

Therefore further research progress in this direction should possibly be pursued.
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Appendix A

Gaussian-Wishart priors

The Gaussian-Wishart distribution is the conjugate prior of a multivariateD-dimensional

normal distribution with unknown mean µ and precision matrix Λ. Its probability den-

sity function is

p(µ,Λ|m, β,W , ν) = p(µ|Λ,m, β)p(Λ|W , ν)

= N (µ|m, (βΛ)−1)W(Λ|W , ν) ,
(A.1)

with

N (µ|m, (βΛ)−1) =
|βΛ|1/2

(2π)D/2
exp

{
−1

2
(µ−m)TΛ (µ−m)

}
, (A.2)

and

W(Λ|W , ν) = BW (W , ν)|Λ|
ν−D−1

2 exp

{
−1

2
Tr
(
W−1Λ

)}
. (A.3)

The normalising constant BW is given by

BW (W , ν) = |W |−ν/2
(

2νD/2πD(D−1)/4
D∏
i=1

Γ

(
ν + 1− i

2

))−1

, (A.4)

where Γ(·) is the gamma function

Γ(x) =

∫ ∞
0

ux−1e−udu . (A.5)

The expectation of the determinant of the precision matrix, which appears in equa-

tion 5.25 (VE-step), is equal to (Bishop, 2006)

E[log |Λ|] =

D∑
i=1

ψ

(
ν + 1− i

2

)
+D log 2 + log |W | , (A.6)
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where ψ(·) indicates the digamma function, which is the logarithmic derivative of the

gamma function

ψ(x) =
d

dx
log Γ(x) =

Γ′(x)

Γ(x)
. (A.7)

The following expectation has also to be computed during the VE-step

Eµ,Λ
[
(x− µ)TΛ (x− µ)

]
= Dβ−1 + ν(x−m)TW (x−m) . (A.8)
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Appendix B

Variational Gaussian mixtures: derivation of

the Gaussian-Wishart posterior update rules

Under the mean field theory assumption, a variational posterior on a subset of

parameters Υŝ can be computed by

qŝ(Υŝ) ∝ exp(Es6=ŝ[log p(X,Υ)]) . (B.1)

where the expectations are evaluated with respect to variational posteriors on the re-

maining sets {Υs}s6=ŝ.

For a Gaussian mixture probability distribution with conjugate Gaussian-Wishart

priors, this gives

q(Θµ,ΘΣ) ∝ exp

{
N∑
j=1

K∑
k=1

γjk logN (Bjxj |µk,Σk)+

K∑
k=1

log (N (µk|Σk)W(Σk))

}
,

(B.2)

where {Bj}j=1,...,N is a multiplicative field applied to the observations {xj}j=1,...,N .

From equation B.2 it is possible to obtain

log q(µk,Σ
−1
k ) = logN (µk|m0k, β

−1
0k Σk)

+ logW(Σ−1
k |W0k, ν0k)

+

N∑
j=1

γjk logN (Bjxj |µk,Σk) + const, (B.3)
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which can be expanded, to give

log q(µk,Σ
−1
k ) =− β0k

2
(µk −m0k)TΣ−1

k (µk −m0k)

− 1

2

N∑
j=1

γjk(Bjxj − µk)TΣ−1
k (Bjxj − µk)

+
1

2
log |Σ−1

k |+
ν0k −D − 1

2
log |Σ−1

k |

+
1

2

N∑
j=1

γjk log |Σ−1
k | −

1

2
Tr
(
(ΣkW0k)−1

)
+ const .

(B.4)

Let us first consider the terms containing µk

logq(µk|Σ−1
k ) =− 1

2

N∑
j=1

γjk

(
µTkΣ−1

k (Bjxj−µk)−(Bjxj)
TΣ−1

k µk

)

− β0k

2

(
µTkΣ−1

k (µk−m0k)−mT
0kΣ

−1
k µk

)
+const . (B.5)

Rearranging and grouping of the different terms gives

log q(µk|Σ−1
k ) = + µTkΣ−1

k

(
β0km0k +

N∑
j=1

γjkBjxj

)

− 1

2

(
β0k +

N∑
j=1

γjk

)
µTkΣ−1

k µk + const . (B.6)

Finally, by completing the square, the following result is obtained

q(µk|Σ−1
k ) = N (µk|mk, β

−1
k Σk) , (B.7)

with

βk = β0k +

N∑
j=1

γjk , (B.8)

and

mk =
β0km0k +

∑N
j=1 γjkBjxj

β0k +
∑N
j=1 γjk

. (B.9)

The posterior q(Σ−1
k ) can instead be computed by

log q(Σ−1
k ) = log q(µk,Σ

−1
k )− log q(µk|Σ−1

k ) , (B.10)
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to give

log q(Σ−1
k ) =− β0k

2
(µk −m0k)TΣ−1

k (µk −m0k)

− 1

2

N∑
j=1

γjk(Bjxj − µk)TΣ−1
k (Bjxj − µk)

− 1

2
Tr
(
(ΣkW0k)−1

)
+
ν0k −D − 1

2
log |Σ−1

k |

+
βk
2

(µk −mk)TΣ−1
k (µk −mk)

+
1

2

N∑
j=1

γjk log |Σ−1
k |+ const . (B.11)

Making use of the property uTAu = Tr(AuuT ) allows rewriting of q(Σ−1
k ) as

q(Σ−1
k ) =

1

2

N∑
j=1

(γjk + ν0k −D − 1) log |Σ−1
k |

− 1

2
Tr

{(
W−1

0k + β0k(µk −m0k)(µk −m0k)T

+

N∑
j=1

γjk(Bjxj − µk)(Bjxj − µk)T

− βk(µk −mk)(µk −mk)T
)
Σ−1
k

}
+ const . (B.12)

Finally, by substituting B.8 and B.9 into B.12, the following is obtained

q(Σ−1
k ) =W(Σ−1

k |Wk, νk) , (B.13)

where

νk = ν0k +

N∑
j=1

γjk , (B.14)

and

W−1
k = W−1

0k +

N∑
j=1

γjk(Bjxj)(Bjxj)
T −

(∑N
j=1 γjkBjxj

)(∑N
j=1 γjkBjxj

)T
β0k +

∑N
j=1 γjk

+
β0k

(∑N
j=1 γjk

)
m0km

T
0k

β0k +
∑N
j=1 γjk

−
β0k

(∑N
j=1 γjkBjxj

)
mT

0k

β0k +
∑N
j=1 γjk

−
β0km0k

(∑N
j=1 γjkBjxj

)T
β0k +

∑N
j=1 γjk

.

(B.15)
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Appendix C

Variational Gaussian mixtures: derivatives

of the lower bound with respect to the prior

hyperparameters

Given a population of M independent observations (e.g. scans of different subjects),

a lower bound on the marginal likelihood, for the Gaussian mixture model described in

Chapter 5, can be expressed as a function of the set of Gaussian-Wishart hyperparam-

eters Φ0 = {β0k,m0k,W0k, ν0k}k=1,...,K

L(Φ0) = EΘµ,ΘΣ
[log p(Θµ,ΘΣ)]

=

m∑
i=1

∫ ∫
qi(Θµ,ΘΣ) log p(Θµ,ΘΣ) dΘµdΘΣ + const

=
1

2

M∑
i=1

K∑
k=1

{
E
[

log |Σ−1
ik |
]
(ν0k −D)

− νik Tr(W−1
0k Wik + β0k(mik −m0k)(mik −m0k)TWik)

}

+
M

2

K∑
k=1

D log
β0k

2π
−D

M∑
i=1

K∑
k=1

β0k

βik

+ 2M

K∑
k=1

logBW (W0k, ν0k) + const ,

(C.1)

whereBW indicates the normalising constant of a Wishart distribution and {βik,mik,Wik, νik}k=1,...,K

is a set of posterior Gaussian-Wishart hyperparameters relative to observation (e.g. sub-

ject) i.

The lower bound in (C.1) can be expressed as a function of the hyperparameters
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{β0k}k=1,...,K as follows

L(β0k) =
MD

2
log

(
β0k

2π

)
− 1

2

M∑
i=1

{
D
β0k

βik

− β0kνik(mik −m0k)TWik(mik −m0k)

}

+ const , (C.2)

and the corresponding gradient and Hessian are given by

gβ=
MD

β0k
− 1

2

M∑
i=1

{
D

βik
−νik(mik−m0k)TWik(mik−m0k)

}
,

Hβ=−MD

2β2
0k

.

(C.3)

Similarly for {m0k}k=1,...,K we find that L(m0k) can be expressed as

L(mok)=
1

2

M∑
i=1

β0kνik(mik−m0k)TWik(mik−m0k)+const. (C.4)

The first and second derivatives are instead

gm = −
M∑
i=1

β0kνik(mik −m0k)TWik ,

Hm =

M∑
i=1

β0kνikWik .

(C.5)

The following indicates the dependency of L on the degrees of freedom of the Wishart

priors

L(ν0k) =

M∑
i=1

ν0k

2
E
[

log |Σ−1
ik |] +M log |W0k|−

ν0k
2

+M log

(
2
Dν0k

2 π
D(D−1)

4

D∏
d=1

Γ

(
ν0k + 1− d

2

))−1

+ const . (C.6)

In this case the gradient and Hessian can be computed by

gν =
1

2

M∑
i=1

E
[

log |Σ−1
ik |]

− M

2

{
log |W0k|+D log 2 +

D∑
d=1

ψ

(
ν0k + 1− d

2

)}
,

Hν = Mψ1

(
ν0k + 1− d

2

)
,

(C.7)
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where ψ(·) and ψ1(·) are the digamma and trigamma functions respectively, that is the

first and second logarithmic derivatives of the gamma function.

Finally for the Wishart scale matrices we find that

L(W0k) = Mν0k log |C0k|

− 1

2

M∑
i=1

νik Tr(CT
0kWikC0k) + const , (C.8)

where C0k is the Cholesky factor of W−1
0k

W−1
0k = C0kC

T
0k . (C.9)

The first and second derivatives are given by

gW = Mν0k diag(1/C11, . . . , 1/CDD)−
M∑
i=1

νikWikC0k ,

HW = −Mν0k diag(1/C2
11, . . . , 1/C

2
DD)−

M∑
i=1

νikWik . (C.10)

194



Appendix D

Variational Gaussian mixtures: inference of

missing data

The variational Bayes EM algorithm for fitting Gaussian mixture models, described

in Chapter 5, can be generalised to handle the case where some components of the

D-dimensional observation xj are missing.

Having denoted

xj =

oj

hj

 , (D.1)

with oj being the observed data and hj the missing data, the Gaussian likelihood

p(xj |zjk = 1,µk,Σk) can be expressed as

p(xj |zjk = 1,µk,Λk) = N

oj

hj

 ∣∣∣∣∣
µok
µhk

 ,

Λo,o
k Λo,h

k

Λo,h
k Λh,h

k

 , (D.2)

by making use of block matrix notation to partition the mean vector µk and the precision

matrix Λk.

In this case hj is treated as an unobserved random variable. Thus, in a variational

Bayes setting, an additional posterior factor can be introduced for each missing data

point hj to give

q(H,Z,Θµ,ΘΣ) = q(H)q(Z)q(Θµ,ΘΣ) = q(Z)q(Θµ,ΘΣ)

N∏
j=1

q(hj) . (D.3)

Making use of the general result in (5.10), an approximated posterior on the missing
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data point hj can be computed by

log q(hj) = EZ,Θµ,ΘΣ
[log p(xj , zj ,Θµ,ΘΣ|Θπ)] + const

= EZ,Θµ,ΘΣ [log p(zj |Θπ) + log p(xj |zj ,Θµ,ΘΣ) + log p(Θµ,ΘΣ)] + const ,

(D.4)

where Θπ denotes the mixing proportion parameter set, treated here via maximum

likelihood, and p(Θµ,ΘΣ) is a conjugate Gaussian-Wishart prior on the means and

covariances of the model.

Ignoring the terms independent from hj , equation (D.4) can be rewritten as

log q(hj) =

K∑
k=1

γjk EΘµ,ΘΣ
[logN (xj |µk,Σk)] + const

=
1

2

K∑
k=1

γjkh
T
j EΘµ,ΘΣ

[
Λh,h
k

]
hj

+

K∑
k=1

γjkh
T
j EΘµ,ΘΣ

[
Λo,h
k

] (
oj − EΘµ,ΘΣ

[µok]
)

−
K∑
k=1

γjkh
T
j EΘµ,ΘΣ

[
Λh,h
k

]
EΘµ,ΘΣ

[
µhk
]

+ const .

(D.5)

The previous equation indicates that the unobserved value hj is drawn from a

Gaussian mixture distribution with mixing proportions equal to the posterior (after

having observed oj) membership probabilities {γjk}k=1,...,K , while the Gaussian means

{njk}k=1,...,K and covariances {Pjk}k=1,...,K are given by

njk = EΘµ,ΘΣ

[
µhk
]

+
(
EΘµ,ΘΣ

[
Λh,h
k

])−1

EΘµ,ΘΣ

[
Λo,h
k

]
(EΘµ,ΘΣ [µok]− oj) , (D.6)

Pk = EΘµ,ΘΣ

[
Λh,h
k

]
. (D.7)

Given the posteriors q(Z) and q(H), the following sufficient statistics of X can be

computed

s1k =

∑N
j=1 γjkoj∑N
j=1 γjknjk

 , (D.8)

S2k =

∑N
j=1 γjkojo

T
j

∑N
j=1 γjkojn

T
jk∑N

j=1 γjknjko
T
j

∑N
j=1 γjk

(
nkn

T
jk + (Pk)−1

)
 . (D.9)

Once such sufficient statistics have been computed, they can be used to update the

Gaussian-Wishart posteriors q(Θµ,ΘΣ) in the exact same way as in equation (5.32).
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Such posteriors are in turn used to compute the expectations that appear in equations

(D.6) and (D.7).
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Appendix E

Brain parcellation protocol adopted by

Neuromorphometrics, Inc.

The following table reports a list of anatomical labels used for brain parcellation by

Neuromorphometrics (http://www.neuromorphometrics.com/). Ground truth labels

generated according to such a protocol are used in Chapter 4, Chapter 5 and Chapter 6

for both training and validation purposes. For each label the table reports the corre-

sponding tissue class (WM for with matter, sGM for subcortical gray matter, cGM for

cortical gray matter) and the average volume attained on a subset of the OASIS data

set (http://www.oasis-brains.org).

Table E.1: Brain parcellation protocol adopted by Neuromorphometrics, Inc. Labels, tissue

classes (WM for with matter, sGM for subcortical gray matter, cGM for cortical gray matter)

and average volumes across thirty five subjects form the OASIS database.

Region Tissue class Average volume (mm3)

Right Accumbens Area sGM 233

Left Accumbens Area sGM 257

Right Amygdala sGM 603

Left Amygdala sGM 636

Brain Stem WM 16220

Right Caudate sGM 2584

Left Caudate sGM 2560

Right Cerebellum Exterior cGM 43370

Left Cerebellum Exterior dGM 43689
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Right Cerebellum White Matter WM 10053

Left Cerebellum White Matter WM 10390

Right Cerebral Exterior cGM 105

Left Cerebral Exterior cGM 109

Right Cerebral White Matter WM 174708

Left Cerebral White Matter WM 170141

Right Hippocampus sGM 2524

Left Hippocampus sGM 2494

Right Pallidum sGM 1133

Left Pallidum sGM 1054

Right Putamen sGM 3457

Left Putamen sGM 3652

Right Thalamus Proper sGM 6779

Left Thalamus Proper sGM 7182

Right Ventral DC sGM 3621

Left Ventral DC sGM 3824

Cerebellar Vermal Lobules I-V cGM 2746

Cerebellar Vermal Lobules VI-VII cGM 1196

Cerebellar Vermal Lobules VIII-X cGM 1931

Left Basal Forebrain sGM 182

Right Basal Forebrain sGM 181

Right ACgG anterior cingulate gyrus cGM 2674

Left ACgG anterior cingulate gyrus cGM 3667

Right AIns anterior insula cGM 2785

Left AIns anterior insula cGM 3009

Right AOrG anterior orbital gyrus cGM 1121

Left AOrG anterior orbital gyrus cGM 1237

Right AnG angular gyrus cGM 6576

Left AnG angular gyrus cGM 6420

Right Calc calcarine cortex cGM 1782

Left Calc calcarine cortex cGM 1936

Right CO central operculum cGM 2464
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Left CO central operculum cGM 2225

Right Cun cuneus cGM 2787

Left Cun cuneus cGM 2567

Right Ent entorhinal area cGM 1037

Left Ent entorhinal area cGM 1024

Right FO frontal operculum cGM 1057

Left FO frontal operculum cGM 1033

Right FRP frontal pole cGM 2605

Left FRP frontal pole cGM 1951

Right FuG fusiform gyrus cGM 4508

Left FuG fusiform gyrus cGM 4535

Right GRe gyrus rectus cGM 1325

Left GRe gyrus rectus cGM 1432

Right IOG inferior occipital gyrus cGM 4201

Left IOG inferior occipital gyrus cGM 3966

Right ITG inferior temporal gyrus cGM 8132

Left ITG inferior temporal gyrus cGM 7824

Right LiG lingual gyrus cGM 4114

Left LiG lingual gyrus cGM 3997

Right LOrG lateral orbital gyrus cGM 1417

Left LOrG lateral orbital gyrus cGM 1580

Right MCgG middle cingulate gyrus cGM 2829

Left MCgG middle cingulate gyrus cGM 3052

Right MFC medial frontal cortex cGM 1187

Left MFC medial frontal cortex cGM 1285

Right MFG middle frontal gyrus cGM 12396

Left MFG middle frontal gyrus cGM 13346

Right MOG middle occipital gyrus cGM 3757

Left MOG middle occipital gyrus cGM 4375

Right MOrG medial orbital gyrus cGM 2399

Left MOrG medial orbital gyrus cGM 3007

Right MPoG postcentral gyrus cGM 430
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Left MPoG postcentral gyrus cGM 483

Right MPrG precentral gyrus cGM 1435

Left MPrG precentral gyrus cGM 1519

Right MSFG superior frontal gyrus cGM 4833

Left MSFG superior frontal gyrus cGM 4481

Right MTG middle temporal gyrus cGM 9994

Left MTG middle temporal gyrus cGM 9502

Right OCP occipital pole cGM 2366

Left OCP occipital pole cGM 1987

Right OFuG occipital fusiform gyrus cGM 2658

Left OFuG occipital fusiform gyrus cGM 2476

Right OpIFG opercular inferior frontal gyrus cGM 1842

Left OpIFG opercular inferior frontal gyrus cGM 1649

Right OrIFG orbital inferior frontal gyrus cGM 794

Left OrIFG orbital inferior frontal gyrus cGM 761

Right PCgG posterior cingulate gyrus cGM 2215

Left PCgG posterior cingulate gyrus cGM 2691

Right PCu precuneus cGM 6010

Left PCu precuneus cGM 6377

Right PHG parahippocampal gyrus cGM 1392

Left PHG parahippocampal gyrus cGM 1589

Right PIns posterior insula cGM 1452

Left PIns posterior insula cGM 1401

Right PO parietal operculum cGM 1170

Left PO parietal operculum cGM 1376

Right PoG postcentral gyrus cGM 4890

Left PoG postcentral gyrus cGM 5954

Right POrG posterior orbital gyrus cGM 1498

Left POrG posterior orbital gyrus cGM 1548

Right PP planum polare cGM 1029

Left PP planum polare cGM 1133

Right PrG precentral gyrus 8454
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Left PrG precentral gyrus cGM 7550

Right PT planum temporale cGM 978

Left PT planum temporale cGM 1168

Right SCA subcallosal area cGM 582

Left SCA subcallosal area cGM 635

Right SFG superior frontal gyrus cGM 9083

Left SFG superior frontal gyrus cGM 9218

Right SMC supplementary motor cortex cGM 3632

Left SMC supplementary motor cortex cGM 3707

Right SMG supramarginal gyrus cGM 5321

Left SMG supramarginal gyrus cGM 5443

Right SOG superior occipital gyrus cGM 2301

Left SOG superior occipital gyrus cGM 2231

Right SPL superior parietal lobule cGM 6351

Left SPL superior parietal lobule cGM 6441

Right STG superior temporal gyrus cGM 4844

Left STG superior temporal gyrus cGM 4521

Right TMP temporal pole cGM 5470

Left TMP temporal pole cGM 5321

Right TrIFG triangular inferior frontal gyrus cGM 1976

Left TrIFG triangular inferior frontal gyrus cGM 2402

Right TTG transverse temporal gyrus cGM 661

Left TTG transverse temporal gyrus cGM 708
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Publications

Journal Papers

Claudia Blaiotta, Patrick Freund, John Ashburner. A new probabilistic atlas of

the brain and cervical cord for SPM. (in preparation).

Claudia Blaiotta, Patrick Freund, Manuel Jorge Cardoso, John Ashburner. Gen-

erative diffeomorphic atlas construction from brain and spinal cord MRI data.

Neuroimage (under review), 2017.

Claudia Blaiotta, Manuel Jorge Cardoso, John Ashburner. Variational inference

for medical image segmentation. Computer Vision and Image Understanding,

2016.

Patrick Grabher, Claudia Blaiotta, John Ashburner and Patrick Freund. Relation-

ship between brainstem neurodegeneration and clinical impairment in traumatic

spinal cord injury. Neuroimage Clinical, 2017.

Ferran Prados, John Ashburner, Claudia Blaiotta, Tom Brosch, Julio Carballido-

Gamio, Manuel Jorge Cardoso, Benjamin Conrad, Esha Datta, Gergely David,

Benjamin De Leener and others. Spinal cord grey matter segmentation challenge.

Neuroimage, 2017.

Conference Proceedings

Claudia Blaiotta, Manuel Jorge Cardoso, John Ashburner. Variational inference

for image segmentation. MICCAI, Workshop on Bayesian and grAphical Models

for Medical Imaging, 2015.
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Claudia Blaiotta, Patrick Freund, Armin Curt, Manuel Jorge Cardoso, John Ash-
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its application to spinal cord image segmentation. Proceedings of the 24th Annual
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Patrick Grabher, Claudia Blaiotta, Armin Curt, John Ashburner and Patrick

Freund. Subcortical brainstem changes in the motor system in patients with

chronic spinal cord injury revealed by quantitative MRI protocols. Proceedings

of the 24th Annual Meeting of ISMRM, 2016.

Patrick Grabher, Claudia Blaiotta, Armin Curt, John Ashburner and Patrick Fre-

und. Subcortical brainstem changes in patients with spinal cord injury using

quantitative MRI protocols. Proceedings of Organization for Human Brain Map-

ping Annual Meeting, 2016.
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Héctor Allende. Evaluating imputation techniques for missing data in ADNI: A pa-

tient classification study. In Iberoamerican Congress on Pattern Recognition, pages

3–10. Springer International Publishing, 2015.

M Jorge Cardoso, Matthew J Clarkson, Gerard R Ridgway, Marc Modat, Nick C Fox,

Sebastien Ourselin, Alzheimer’s Disease Neuroimaging Initiative, et al. LoAd: A

locally adaptive cortical segmentation algorithm. Neuroimage, 56(3):1386–1397, 2011.

M Jorge Cardoso, Carole H Sudre, Marc Modat, and Sebastien Ourselin. Template-

based multimodal joint generative model of brain data. In Information Processing in

Medical Imaging, pages 17–29. Springer, 2015.

Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie El-

hadad. Intelligible models for healthcare: Predicting pneumonia risk and hospital

30-day readmission. In Proceedings of the 21th ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, pages 1721–1730. ACM, 2015.

211



Gilles Celeux and Gilda Soromenho. An entropy criterion for assessing the number of

clusters in a mixture model. Journal of Classification, 13(2):195–212, 1996.

Olivier Chapelle, Bernhard Schölkopf, Alexander Zien, et al. Semi-supervised learning.

MIT press Cambridge, 2006.

Min Chen, Aaron Carass, Jiwon Oh, Govind Nair, Dzung L. Pham, Daniel S. Reich,

and Jerry L Prince. Automatic magnetic resonance spinal cord segmentation with

topology constraints for variable fields of view. Neuroimage, 83:1051–1062, 2013.

Gary Christensen. Consistent linear-elastic transformations for image matching. In

Biennial International Conference on Information Processing in Medical Imaging,

pages 224–237. Springer, 1999.

Gary E Christensen and Hans J Johnson. Consistent image registration. IEEE Trans-

actions on Medical Imaging, 20(7):568–582, 2001.

Gary E Christensen, Richard D Rabbitt, and Michael I Miller. Deformable templates

using large deformation kinematics. IEEE Transactions on Image Processing, 5(10):

1435–1447, 1996.

Keh-Shih Chuang, Hong-Long Tzeng, Sharon Chen, Jay Wu, and Tzong-Jer Chen.

Fuzzy c-means clustering with spatial information for image segmentation. Comput-

erized Medical Imaging and Graphics, 30(1):9–15, 2006.

Haili Chui, Lawrence Win, Robert Schultz, James Duncan, and Anand Rangarajan.

A unified feature registration method for brain mapping. In Biennial International

Conference on Information Processing in Medical Imaging, pages 300–314. Springer,

2001.

Se Young Chun and Jeffrey A Fessler. Regularized methods for topology-preserving

smooth nonrigid image registration using B-spline basis. In 5th IEEE International

Symposium on Biomedical Imaging: From Nano to Macro, 2008, pages 1099–1102.

IEEE, 2008.

Delia Ciardo, M Peroni, M Riboldi, Daniela Alterio, G Baroni, and Roberto Orecchia.

The role of regularization in deformable image registration for head and neck adaptive

radiotherapy. Technology in cancer research & treatment, 12(4):323–331, 2013.

212



Dan Ciresan, Alessandro Giusti, Luca M Gambardella, and Jürgen Schmidhuber. Deep

neural networks segment neuronal membranes in electron microscopy images. In

Advances in Neural Information Processing Systems, pages 2843–2851, 2012.

Chris A Cocosco, Vasken Kollokian, Remi K-S Kwan, G Bruce Pike, and Alan C Evans.

Brainweb: Online interface to a 3D MRI simulated brain database. In Neuroimage.

Citeseer, 1997.

J Cohen-Adad, A Mareyam, B Keil, JR Polimeni, and LL Wald. 32-channel RF coil

optimised for brain and cervical spinal cord at 3T. Magnetic Resonance in Medicine,

66(4):1198–1208, 2011.

D. Louis Collins and Alan C. Evans. Animal: Validation and applications of nonlinear

registration-based segmentation. International Journal of Pattern recognition and

Artificial Intelligence, 11(08):1271–1294, 1997.

Louis Collins, Alex Zijdenbos, Vasken Kollokian, John Sled, Noor Kabani, Colin J

Holmes, and Alan C Evans. Design and construction of a realistic digital brain

phantom. IEEE Transactions on Medical Imaging, 17(3):463–468, 1998.

Timothy F Cootes, Christopher J Taylor, David H Cooper, and Jim Graham. Active

shape models-their training and application. Computer Vision and Image Under-

standing, 61(1):38–59, 1995.

Timothy F Cootes, Stephen Marsland, Carole J Twining, Kate Smith, and Christopher J

Taylor. Groupwise diffeomorphic non-rigid registration for automatic model building.

In European conference on computer vision, pages 316–327. Springer, 2004.
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Benjamin De Leener, Simon Lévy, Sara M Dupont, Vladimir S Fonov, Nikola Stikov,

D Louis Collins, Virginie Callot, and Julien Cohen-Adad. SCT: Spinal Cord Toolbox,

an open-source software for processing spinal cord MRI data. Neuroimage, 2016.
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et al. Hough-CNN: Deep learning for segmentation of deep brain regions in MRI and

ultrasound. arXiv preprint arXiv:1601.07014, 2016.

232



Marc Modat, Gerard R Ridgway, Zeike A Taylor, Manja Lehmann, Josephine Barnes,
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tration of biological images using vector-spline regularization. IEEE Transactions on

Biomedical Engineering, 52(4):652–663, 2005.

Aristeidis Sotiras, Christos Davatzikos, and Nikos Paragios. Deformable medical image

registration: A survey. IEEE transactions on medical imaging, 32(7):1153–1190, 2013.

Radu Stefanescu, Xavier Pennec, and Nicholas Ayache. Grid powered nonlinear image

registration with locally adaptive regularization. Medical Image Analysis, 8(3):325–

342, 2004.

Patrick W Stroman, Claudia Wheeler-Kingshott, M Bacon, Joseph Schwab, Rachel

Bosma, J Brooks, David Cadotte, Thomas Carlstedt, Olga Ciccarelli, Julien Cohen-

Adad, et al. The current state-of-the-art of spinal cord imaging: Methods. Neuroim-

age, 84:1070–1081, 2014.

Irene Sturm, Sebastian Lapuschkin, Wojciech Samek, and Klaus-Robert Müller. Inter-

pretable deep neural networks for single-trial EEG classification. Journal of neuro-

science methods, 274:141–145, 2016.

Martin Styner, Christian Brechbuhler, G Szckely, and Guido Gerig. Parametric estimate

of intensity inhomogeneities applied to mri. IEEE Transactions on Medical Imaging,

19(3):153–165, 2000.

Carole H Sudre, M Jorge Cardoso, Willem H Bouvy, Geert Jan Biessels, Josephine

Barnes, and Sebastien Ourselin. Bayesian model selection for pathological neuroimag-

ing data applied to white matter lesion segmentation. IEEE Transactions on Medical

Imaging, 34(10):2079–2102, 2015.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT

press, 1998.

241



Katherine H Taber, Richard C Herrick, Susan W Weathers, Ashok J Kumar, Donald F

Schomer, and L Anne Hayman. Pitfalls and artifacts encountered in clinical MR

imaging of the spine. Radiographics, 18(6):1499–1521, 1998.
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