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Abstract: The methylation of U1498 located in the 16S ribosomal RNA of Escherichia coli is an

important modification affecting ribosomal activity. RsmE methyltransferases methylate specifically
this position in a mechanism that requires an S-adenosyl-L-methionine (AdoMet) molecule as

cofactor. Here we report the structure of Apo and AdoMet-bound Lpg2936 from Legionella

pneumophila at 1.5 and 2.3 Å, respectively. The protein comprises an N-terminal PUA domain and
a C-terminal SPOUT domain. The latter is responsible for protein dimerization and cofactor

binding. Comparison with similar structures suggests that Lpg2936 is an RsmE-like enzyme that

can target the equivalent of U1498 in the L. pneumophila ribosomal RNA, thereby potentially
enhancing ribosomal activity during infection-mediated effector production. The multiple copies of

the enzyme found in both structures reveal a flexible conformation of the bound AdoMet ligand.

Isothermal titration calorimetry measurements suggest an asymmetric two site binding mode. Our
results therefore also provide unprecedented insights into AdoMet/RsmE interaction, furthering our

understanding of the RsmE catalytic mechanism.
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Statement: The methylation of U1498 in the 16S rRNA, specifically mediated by RsmE methyltransferases, plays an important role
in protein synthesis. Here we report the structure of Lpg2936 from Legionella pneumophila and show that it is an RsmE-like enzyme.
The structures in the presence and absence of the AdoMet cofactor provide novel insights into the catalytic mechanism in RsmE-like
methyltransferases in general and that of Legionella in particular.
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Introduction

RNA methylation is an important modification of

the ribosome responsible for modulating ribosomal

activity. Methylation of specific bases in the ribo-

some subunits alters ribosomal RNA (rRNA) folding

and interactions with specific proteins, resulting in

global changes in levels of protein synthesis.1

The transfer of methyl groups to acceptor RNAs is

catalyzed by RNA methyltransferases (MTases),

enzymes that use S-adenosyl-L-methionine (AdoMet

or SAM) molecules as a source of methyl groups.

The AdoMet molecule is bound in a groove at the C-

terminus of the MTase and, during the methylation

process, is converted into adenosyl-homocystein

(AdoHcy). The concentration ratio AdoMet/AdoHcy

in the cell is therefore important for the regulation

of the enzymatic activity in MTases.2

All AdoMet MTases belong to the SPOUT

(SpoU-TrmD) superfamily that is conserved in bacte-

ria and eukaryotes.3 They appear either as individ-

ual enzymes in prokaryotes or as enzymatic domains

within larger multi-domain proteins in eukaryotes.4

Several determined structures belonging to the

SPOUT domain family of proteins confirmed the

conserved predicted fold of a three layered a/b fold

with a central b-sheet of 5–6 strands surrounded by

a-helices on each side and a conserved C-terminal

trefoil knot.3 All SPOUT members found to date

form dimers and even though different modes of

dimerization have been found, it appears that

domain dimerization is essential for substrate

binding and thus enzymatic activity.5 In general,

MTases target specific sites in the rRNA. Based on

amino-acid sequence conservation, MTases can be

thus grouped into functional classes such as the

ribosomal RNA small subunit methyltransferase A

(RsmA) class for the methylation of the m6
2A1518

and m6
2A1519, the RsmB class for m5C967, the

RsmC for m2G1207, or the RsmE class for the meth-

ylation of the m3U1498 (numbering according to the

E. coli 16S rRNA).2,6 Methylation of U1498 has been

shown to impact on ribosomal function and fidelity.

For example, a U1498G mutation affects the forma-

tion of the first peptide bond.6 Also, U1498 together

with other bases in ribosomal RNA helix 44 where

U1498 is located have been shown to be involved in

hygromycin B binding, supporting a role in the

response to antibiotics.7

Structurally the E. coli RsmE MTase displays a

dimeric two domain structure, a SPOUT catalytic

domain and a PUA (PseudoUridine synthase and

Archaeosine transglycosylase) RNA binding

domain.3,8 Likely homologues of RsmE have been

reported in several pathogenic bacteria including

Legionella pneumophila.1 Legionella bacteria utilize a

type IVb secretion system (T4bSS—also known as the

Dot/Icm Secretion System) to secrete several

hundreds of proteins, also known as effectors, into the

infected host organism.9 Effector proteins represent

about 10% of the entire L. pneumophila genome com-

prising of about 3000 genes;10 therefore ribosomal

activity and protein synthesis are expected to be

essential for the bacterium’s pathogenic mechanisms.

Here, we describe the 1.5 Å resolution structure

of the MTase Lpg2639 from L. pneumophila.

Comparison with similar structures suggests that

indeed Lpg2936 is an RsmE-like methyltransferase.

To further understand the catalytic mechanism of

this enzyme we determined the same structure in

complex with its AdoMet ligand at 2.3 Å resolution

and we characterized the interaction by isothermal

titration calorimetry (ITC). While previous struc-

tures of MTases bound to AdoMet exhibited partial

ordering of the ligand within its active site, the

structure presented here provides a complete view of

AdoMet-binding. Also, the results of the ITC experi-

ments reveal a unique two site binding mode with

different affinities. Overall, our study provides novel

insights into the catalytic mechanism in RsmE-like

methyltransferases in general and that of Legionella

in particular.

Results

Overall structures
Two structures of the L. pneumophila Lpg2936 were

determined: the apo (MTapo) and AdoMet-bound

structure (MTsam). The first was solved by molecu-

lar replacement using the YggJ methyltransferase

from Haemophilus influenzae (PDB ID 1nzx) as a

search model in space group P 21. The two dimers in

the asymmetric unit (AU) refined to a final R/Rfree

of 0.179/0.209 at a maximum resolution of 1.5 Å.

The MTsam structure was also determined by molec-

ular replacement using the MTapo structure as a

search model in space group I 2 and four dimers in

the AU. The MTsam structure was refined to a final

R/Rfree of 0.182/0.237 at a maximum resolution 2.3 Å

(Fig. 1 and Table I).

All monomeric chains are very similar both in

the MTapo and MTsam structures and they super-

impose with an overall root-mean-square deviation

(RMSD) in Ca atoms of 0.81 Å. Specifically, all eight

protomers in the MTsam structure align with an

average RMSD in Ca atoms of 0.51 Å while the four

MTapo protomers align with the eight MTsam proto-

mers with an average RMSD in Ca atoms of 0.60 Å,

with only minor conformational changes observed

near the active site (see below).

Functional domains of the methyltransferase

Each protomer in both MTapo and MTsam struc-

tures comprises two distinct domains, an N-terminal

domain (NTD; residues 1–75) and a C-terminal

domain (CTD; residues 76–244). The NTD forms a

2382 PROTEINSCIENCE.ORG Crystal Structure of the Legionella Effector Lpg2936

info:x-wiley/pdb/1nzx


twisted 5-strand b-sheet (b1-b5) with the larger

strands b4 and b5 located in the middle of the sheet.

The sole a-helix lies in the middle of a groove

formed by the twisted b-sheet (Fig. 1). This domain

is highly conserved among RsmE-like methyltrans-

ferases resembling a PUA domain, found in several

proteins in bacteria, archaea, and eukaryotic pro-

teins including Homo sapiens.11

The CTD belongs to the conserved superfamiliy

of SPOUT MTases, defined by the distinctive a/b

knot fold.1,3 This domain harbours the dimerization

and catalytic sites of the protein. The core of the

domain comprises a single b-sheet of six parallel

b-strands (b8–b80, b7, b6, b10, b9, b11) surrounded

by six a-helices of various length (Fig. 1). The loop

that connects the strand b11 and the C-terminal

a7 (b11/a7) forms a knot passing through the loop

b9/a5 (Fig. 1).

Even though NTD and CTD are clearly distin-

guishable, their relative orientation is invariant,

forming a highly conserved assembly found in all

RsmE-like structures (see below comparison with

similar structures). The interface between the NTD

and the CTD covers about 520 Å2 of surface area in

each domain and is supported by 12 H-bonds and 4

salt bridges, involving 13 residues from the NTD

and another 13 residues from the CTD (Fig. S1).

The interaction in the CTD is exclusively located at

the C-terminus of the helix a3 and the loop a3/b8

(residues 131–149), while for the NTD, residues

in strand b1 (particularly Arg7 and the highly con-

served Tyr9), and helix a1 (Glu25 and the conserved

His29) appears to play defining roles in the interface

(Figs. 2 and S1).

Only the SPOUT domain is involved in the

dimerization of the protein. The dimer interface is

formed by residues in a-helices a7, a2, loop b11/a7,

and at least partially in a-helices a3 and a5. The

dimerization interface area covers an area of 1480

Å2 which is more than 10% of the total surface area

in each monomer, suggesting a strong interaction

(Fig. 3). It is mediated by 28 H-bonds and 15 salt

bridges and several of them involve interactions

between main chain atoms from residues highly

conserved in all SPOUT methyltransferases (Figs. 2

and 3). In detail, the interactions between O

Arg76-NH1 Arg222, NZ Lys100-OE2 Glu227, NZ

Lys100-OG1 Thr228, OE1 Glu103-N Arg225, OE1

Glu103-OG1 Thr228, and NE2 Gln143-O Val223, are

symmetrically distributed at the distal ends of the

interface and they are highly conserved in similar

RsmE structures (Figs. 2 and 3). The core of the

interface is defined by hydrophobic residues mainly

located in a-helix a7. Arg222 located in the ligand

binding loop b11/a7, may play an important role,

both structural and catalytic as it interacts through

its side chain across the dimerization interface

and through its main chain with the bound ligand

(see below) (Figs. 2 and 3).

Comparison with similar structures

A search for similar structures in the Protein Data

Bank using the DALI server12 revealed 13 deposited

entries with very similar fold belonging to 10 bacte-

rial species. Higher scores (RSMD and Z-score) are

observed for the methyltransferase structures from

E. coli, a fully characterized RsmE (PDB ID 4e8b),13

from H. influenzae (PDB ID: 1nxz and 1vhy)14 and

from N. gonorrhoeae (PDB ID 5vm8). These struc-

tures align with the Lpg2936 structure with an

RSMD in Ca atoms of 1.5–1.6 Å; however, all 13

structures display very high similarity with

Lpg2936 having the same domain and dimerization

architecture. Structure based sequence alignment

using the most similar structures from seven

different bacteria species reveals (i) a highly con-

served C-terminal part of the sequence which forms

the ligand-binding site (see below) and (ii) conserved

key structural elements (including helix a3) involved

in the dimerization interface and PUA-SPOUT

domain interactions (Fig. 2).

Figure 1. Cartoon representation of the monomeric

Lpg2936. The N-terminal and C-terminal domains are

indicated as NTD and CTD and colored in lightblue and blue,

respectively. N and C-terminal residues of the chain as well

as the secondary structure elements are indicated. The

bound AdoMet molecule is represented as sticks. Two

orientations are shown rotated by 908.

Pinotsis and Waksman PROTEIN SCIENCE VOL 26:2381—2391 2383



AdoMet-binding pocket

A distinguishing feature of the structure presented

here compared to all other structures available in the

PDB is that density was observed for the entire

ligand and thus a complete model of AdoMet bound

to a MTase could be built for the first time [Fig.

4(A)]. The co-factor binding pocket of the Lpg2936

lies at the C-terminal part of the SPOUT domain.

Interactions with the ligand involve residues in three

conserved loops: two highly conserved ones, b10/a6

and b11/a7, and another only moderately conserved,

b9/a5 [Figs. 2 and 4(A)]. Binding of the AdoMet

ligand to the enzyme promotes conformational

changes in the loops b9/a5 and b10/a6, but none in

the b11/a7 loop, likely due to its involvement in the

dimer interface [Figs. 3(B) and 4(B)]. Minor confor-

mational changes are observed in the neighboring

loops b6/a2 and b7/a3, possibly as a result of the

b10/a6 loop movement [Fig. 4(B)]. To ascertain

whether the observed conformational changes are

due to ligand binding, and not crystal packing, we

examined all protein interfaces using the PDBePISA

server.15 Contacts with neighboring molecules in the

proximity of the active site were found only in the

MTsam structure and involved residues in the b9/a5

loop only in chain B. Since no such contact is

observed in any other chain, we conclude that crystal

packing does not affect ligand binding.

There are important conformational variations

in AdoMet-binding among the eight molecules of

MTase-AdoMet complexes in the asymmetric unit

[Fig. 4(C)]. Indeed, each AdoMet molecule can be

divided into two parts, one comprising the adenine

group which remains conformationally invariant and

the other comprising the rest of the molecule which

adopts widely different conformations [Fig. 4(C)].

The AdoMet invariant part is stabilized by four H-

bonds between the adenine group and main chain

atoms in the loop b11/a7 [Table II and Fig. 4(B)].

The variant part of the molecule encompasses the

ribose group which adopts two conformations, one

observed for the chains B, C, D, F, and H and one

observed for the chains A, E, and G. In all chains

except chain E there is at least one H-bond between

the hydroxyl groups of the ribose and the main

chain atoms of Leu173 and Gly196 in the b10/a6

loop [Table II and Fig. 4(C)]. The methionine moiety

is the most flexible part of the AdoMet molecule and

can be sorted into three different conformations

stabilized by three different groups of residues

Table I. Data collection and refinement statistics. Data for the higher resolution shell are shown in parenthesis

MTapo MTsam

Data Collection
Beamline ID30A (ESRF) P13 (EMBL/PetraIII)
Wavelength (Å) 0.9650 0.99999
Resolution Range (Å) 47.56–1.49 (1.57–1.49) 49.4–2.30 (2.36–2.30)
Space group P 21 I 2
Cell parameters a, b, c, b (Å, grad) 62.78, 144.78, 64.09, 100.13 104.48, 98.74, 225.78, 91.76
Total reflections 410,121 (53,587) 392,962 (19,939)
Unique reflections 173,267 (23,778) 101,902 (5,031)
Multiplicity 2.4 (2.3) 3.9 (4.0)
Completeness (%) 95.0 (89.3) 97.0 (97.2)
Mean I/Sigma(I) 10.6 (1.1) 4.3 (1.2)
Wilson B-factor (Å2) 21.6 43.0
Rmerge (%) 4.4 (75.2) 17.4 (99.6)
CC1/2 0.999 (0.725) 0.983 (0.481)

Refinement
Rwork/Rfree (%) 17.91/20.95 18.21/23.61
CCwork/CCfree 0.953/0.939 0.963/0.935
Protein atoms 7,850 15,309
Solvent molecules 1,201 585
Ligand molecules – 8 3 SAM

B-factor (Å2)
Protein 23.87 42.13
Solvent 37.86 39.64
Ligand (SAM) – 50.64

Ramachandran Plot
Favored (%) 98.23 96.36
Allowed (%) 1.56 3.33
Outliers (%) 0.21 0.31
Clashscore 3.82 7.69

Rmsd
Bonds (Å) 0.007 0.008
Angles (grad) 0.857 1.005
PDB code 5O95 5O96
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[indicated in Fig. 4(C) in green, blue, and red,

respectively), the most frequently encountered

observed in chains B, C, D, and H, while the two

others are observed in chains E and F and in chains

A and G, respectively [Fig. 4(C)]. For the first group,

there is a positional deviation of 0.4–0.6 Å for the

methyl-thioether group that results in a 2.0–2.5 Å

deviation for the carboxylic-acid part of the methio-

nine. This orientation exposes the methyl of the

methyl-thioether group towards a region formed by

residues Arg93, Glu198, and Arg225 which have

been suggested to be key residues for the interaction

with U1498.5 For the AdoMet’s methionine moieties

interacting with chains E,F and A,G the deviations in

Figure 2. Structure-based sequence alignment of Lpg2936 with similar RsmE methyltransferases from different bacteria. The

PDB codes are indicated next to the bacteria names. Identical residues are boxed in red background and conserved residues

are boxed and highlighted in red color. The secondary structure elements above the aligned sequences correspond to the

L. pneumophila structure. The black dots indicate the dimerization interface residues and the white dots the ligand binding

residues. The green dots indicate the residues involved in H-bonding with the adenine moiety of the AdoMet molecule.
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the ribose group are ranging from 0.5 to 1.0 Å and 1.0

to 1.5 Å, respectively, which results in conformational

changes up to 8 Å for the carboxylic part of the methio-

nine group. The three different conformations of the

AdoMet molecules (B,C,D,H—E,F—A,G) are further

stabilized by hydrophobic interactions involving the

AdoMet methionine moiety, which makes interactions

with protein residues that are partially conserved in

the three orientations.

Thermodynamic characterization of AdoMet

binding

To further understand the binding of the AdoMet

substrate to the Lpg2936 protein we used isothermal

titration calorimetry (ITC) to measure the binding

thermodynamics (Fig. 5). Even though the released

heat upon AdoMet binding to the protein was rela-

tively small, a clear two binding site model was best

fit to the experimental data, with a high first associ-

ation constant of Ka1 5 8.35 6 3.06 3 107 M21 and a

lower second one Ka2 5 7.08 6 0.93 3 105 M21. The

enthalpy (DH) values for the two binding sites were

2448.5 6 11.2 and 2249.7 6 5.75 cal�mol21 and the

entropies 34.7 and 25.9 cal�deg21�mol21, respectively

(Fig. 5). The first association constant is two orders

of magnitude higher compared to the values

observed for other methyltransferases such as the

RsmC16 and RlmI.17 However, both these enzymes

display a single binding site model for AdoMet with

Ka values of 2.09 3 105 and 3.4 3 105 M21, respec-

tively, which are very similar to the value for Ka2

observed in Lpg2936. E coli RsmE, like Lpg2936,

exhibits a sequential binding mode with similar Ka1

values but a significantly lower second association

constant.13 Stoichiometries estimated from ITC data

for the Lpg2936/AdoMet interaction is about 0.4 and

1.6 for the 1st and 2nd binding events, respectively.

This is unorthodox although a model invoking a first

high-affinity binding event followed by a second low-

affinity binding event impacting on the first one

might explain such observation. This remains to be

explored.

Discussion

In the current study, we report the structure of the

Lpg2936 from L. pneumophila in presence and

absence of its enzymatic substrate AdoMet. The

ligand free structure was determined at high resolu-

tion. The dimeric enzyme is similar to several struc-

tures of the RsmE-like fold including the archetypal

RsmE methyltransferase from E. coli and the

Rv2372 methyltransferase from M. tuberculosis.5,13

E. coli RsmE is known to methylate the m3U1498

position in the 16S ribosome RNA. Since Lpg2936

and U1498 are highly conserved across bacteria

(Figs. 2 and S2), it is very likely that Lpg2936 can

also function as an RsmE methyltransferase target-

ing the same base in the 16S rRNA of L.

pneumophila.

RNA methyltransferases react either with

unstructured RNA or ordered RNA in fully assem-

bled ribosomal structures. The RsmE enzymes

belong to the group of methyltransferases that act

almost exclusively in assembled 30S ribosome subu-

nits.18 A peak of activity in RsmE enzymes is

observed in the presence of NH4Cl pH 7–9 and

Mg21 which were shown to stabilize the 30S subu-

nit.19 It is therefore apparent that RsmE is depen-

dent on the presence of the majority of small

subunit ribosomal proteins to structure the RNA.18

On the other hand, the RsmE enzyme from M.

tuberculosis also methylates the E. coli ribosomal

Figure 3. The Lpg2936 dimer. (A) Cartoon representation of

the dimeric structure. One chain is colored as in Figure 1

while the second chain is colored in light orange and orange

indicating the NTD and CTD, respectively. The dimerization

interface is colored in white and the secondary structural

elements involved are labeled. The termini of the two chains

are also labeled and the AdoMet molecule is represented in

sticks representation. (B) Details of residues involved in the

dimerization interface. Color coding is as in panel A. The

residues involved in the H-bonding interface are labeled and

colored according to the chain they belong to and the

H-bonds are represented as dashed lines. Secondary

structure elements involved in the interface are also indicated.

The AdoMet molecules are represented as black sticks.
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RNA emphasizing the importance of sequence and

structural conservation both in the enzyme and

RNA sequences (Figs. 2 and S2), but also in the

overall tertiary RNA structure in the assembled

ribosomes.5,18 To better understand the RsmE/RNA

binding mode, we generated an electrostatic surface

representation for the Lpg2936/AdoMet dimer. As is

observed in other similar RsmE structures one face

of the dimeric enzyme is positively charged [Fig.

S3(A)] while the opposite side is negatively charged

[Fig. S3(C)]. Previous molecular modeling of an

RsmE enzyme with 16S RNA proposes that the

Figure 4. Interactions with AdoMet cofactor. (A) Cartoon and stick representation of the Lpg2936/AdoMet interactions from the

chain B. A composite omit map contoured at 1.0 r shows density for the entire AdoMet molecule (colored in green). Important

loops involved in binding are shown and labeled (see main text). Residues participating in the stabilization of Adenine and

Ribose moieties are shown in stick representation. H-bonds are indicated including the residues or atoms involved. (B)

Superposition of the apo (light blue) and AdoMet-bound (green) Lpg2936 structures. The AdoMet molecule and three residues

important in catalysis and mentioned in the text are shown as sticks representation. Secondary structure elements are labeled.

(C) Alignment of the AdoMet molecules in all eight Lpg2036/AdeMet structures. The AdoMet molecules were aligned using the

adenine moiety. Three different conformations were observed for the rest of the molecule, colored and indicated in green

(chains B,C,D,H), blue (chains E,F), and red (A,G). The conserved H-bond network stabilizing the adenine moiety is shown as

black-dashed lines. Interactions between the methionine moiety and the protein residues are grouped and colored according to

the different conformations of the ligand.

Table II. Summary of ligand-protein interactions. H-bonds are defined based on the criteria in the PISA server
(distance between donor and acceptor <3.9 Å).15 Error in coordinates from the Luzzati plot is 0.3 Å

Chain A B C D E F G H

N1-N L219 3.2 2.9 3.0 3.2 3.2 3.1 2.8 2.8
N6-O Gly220 2.9 2.8 3.0 2.8 3.0 3.0 2.8 3.1
N6-O Arg222 3.3 2.8 3.1 3.0 2.4 2.8 2.9 2.9
N7-N Leu224 3.5 3.0 3.1 3.0 2.9 3.1 3.1 3.1
O2’-O Leu173 – 2.4 2.4 3.0 3.8 2.3 3.4 2.7
O2’-N Gly196 – 3.2 3.7 3.4 – – – 3.3
O3’-N Gly196 3.3a 3.3 3.3 3.7 3.5 – 3.3 3.5
SD-O Leu224 3.8 3.4 3.3 3.5 – 3.4 3.6 3.4

a (N Gly200).
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observed charge distribution is essential in order to

direct helix 44 where U1498 is present towards the

catalytic center of the RsmE enzyme [Fig. S3(B)].5

In this model, Kumar et al. suggest that three con-

served residues (equivalent in Lpg2936 to Arg93,

Arg225 and Glu198) are involved in RNA binding

and possibly in catalysis. Remarkably all Arg93 and

Arg225 side chains in both structures (in total 12

chains) display the same conformation while the

side chain of Glu198 adopts different conformations

depending on the position of the AdoMet molecule

[Fig. 4(B)] (see next paragraph).

Previous attempts to crystallize an RsmE/Ado-

Met complex either failed or resulted to a truncated

ligand where its carboxylate moiety was missing as

in the case of the A. aeolicus structure (PDB ID

2egv), consistent with reports that AdoMet mole-

cules are unstable for in vitro experiments.20,21 For

the Lpg2936, however, all eight copies of the enzyme

in the asymmetric unit are fully occupied with the

AdoMet molecule. In all monomers, the adenine

group of the ligand forms a very conserved interac-

tion pattern with the enzyme and specifically with

residues in the loops b11/a7 and b10/a6 [Fig. 4(C)

and Table II]. On the other hand, the carboxylate

moiety of the ligand is found in three different

conformations randomly found within the dimers

[Fig. 4(C)]. Interestingly, in the chains B, C, D, and

H the methyl-group of the methyl-thioether group is

facing towards the residues Arg93, Arg225, and

Glu198, thus indicating that in these chains, Ado-

Met is observed in the most favorable conformation

to execute catalysis.5 The importance of the Arg225

is also highlighted in the E. coli RsmE (Arg223)

where an alanine mutation renders the enzyme

inactive.13

The ITC results presented here suggest that the

interaction between Lpg2936 and AdoMet is best

described as a two binding site model indicating two

non-identical binding sites. For the case of E. coli

RsmE, a sequential binding mode was proposed,13

also likely applicable to Lpg2936. These binding

modes are also consistent with the recent RsmE/

AdoMet structure from N. gonorrhoea where only

one of the two ligand binding sites in the dimeric

structure was occupied (PDB ID 5vm8). Neverthe-

less, even though this asymmetric pattern of binding

is observed for the Lpg2936, there are also signifi-

cant differences with the other two enzymes (E. coli,

N. gonorrhoea). In the case of the Legionella methyl-

transferase, the first association constant is signifi-

cantly higher than any one observed before in any

methyltransferase containing a SPOUT domain. The

second association constant in Legionella is at simi-

lar levels to values measured for one binding (sym-

metrical) site in other methyltransferases. These

values are in agreement with the fact that all eight

binding sites in the structure are occupied implying

a strong binding of AdoMet molecules. However, our

structure does not exhibit obvious conformational

differences between binding sites and therefore the

structural basis for two sites with widely different

affinities remains unclear.

The high association constants observed in the

Lpg2936 may also suggest a specific role of this

enzyme in the Legionella bacterium. A previous

report indicated a 5–10% translocation efficiency for

Lpg2936, suggesting that Lpg2936 might be a poten-

tial protein effector.10 The determined crystal struc-

ture however clearly suggests a RsmE fold and since

such enzymes require a very specific substrate only

present in bacterial 16S RNAs, it is highly unlikely

that Lpg2936 could target eukaryotic ribosomes. It

is therefore more plausible to envisage a role for

Lpg2936 within the Legionella bacterium, through

specific methylation of the Legionella 16S RNA sub-

unit during infection when large amount of protein

effectors need to be produced.

Figure 5. Isothermal titration calorimetric AdoMet binding to

Lpg2936. The raw data are presented on the top of the

panel, while the bottom panel displays the fit to the data.

The square dots indicate the experimental data (including

subtracted data from a blank measurement). The inset panel

displays the binding thermodynamic parameters obtained

using the Origin software with the Ka1 value representing the

first association constant and Ka2 the second association

constant.
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Materials and Methods

Cloning, expression, and purification of Lpg2936
The Lpg2936 DNA (AAU28982) encoding the wild

type protein was cloned in a pETM14 vector (EMBL)

using a PCR-based in-fusion HD cloning system

(Clontech Laboratories). The expression cassette

contained an N-terminal hexa-histidine tag followed

by a 3C protease cleavage site.

The recombinant protein was over-expressed in

the bacterial strain BL21(DE3) using a previously

described auto-induction protocol.22 The cells were

harvested by centrifugation (6000 g, 15 min) and

resuspended in a lysis buffer [25 mM Tris-HCl pH

7.5, 0.3 M NaCl, 5 mM b-mercaptoethanol (bME),

10 mM imidazole, 5% glycerol, a tablet of protease

inhibitors (Complete, EDTA-free by Roche)] to which

0.25 mg�mL21 lysozyme was added. Cells were lysed

in an EmulsiFlex-C3 homogeniser (Avestin) and the

crude extract was centrifuged at 50,000 g for 45

min. The supernatant was loaded onto a 5 mL

HisTrap column (GE Healthcare) equilibrated in the

lysis buffer. Washing steps were performed with

extended volumes of lysis buffer though the column

as well high salt buffer (25 mM Tris-HCl pH 7.5, 1

M NaCl, 5 mM bME, 10 mM imidazole, 5% glycerol).

After washing, a 5 mL lysis buffer was loaded in the

column containing in addition 0.04 mg�mL21 3C pro-

tease and left for 8 h to cleave the Histidine tag of

the overexpressed protein. The cleaved protein was

eluted with 10 mL lysis buffer, while any un-cleaved

protein was eluted with a 0.6 M imidazole contain-

ing lysis buffer. The protein was then concentrated

to a 3 mL volume and loaded onto a Superdex 200

16/60 column (GE healthcare) equilibrated with a

SEC-buffer (25 mM Tris-HCl pH 7.5, 0.15 M NaCl,

5 mM bME, 5% glycerol). A GSTrap FF 1 mL col-

umn was connected in line prior to the Superdex col-

umn to remove the 3C protease from the sample.

The protein was eluted in a single peak with an

apparent molecular weight of approximately 54 kDa,

matching the molecular weight of a dimer. Protein

quality was assessed by SDS-PAGE suggesting a sin-

gle band with protein purity better than 99%. The

protein was further concentrated to 20 mg�mL21 in

a SEC-buffer for crystallization screening.

Protein crystallization. Initial crystallization

screens were performed using the sitting-drop

vapor-diffusion technique at 168C by mixing 0.2 lL

of protein and precipitant at ratios 1:1 and 1:2. For

the Lpg2936/AdoMet crystallization, prior to setting

up the screenings, 0.37 mM (20 mg�mL21) of the pro-

tein were mixed at a molar ratio 1:5 with AdoMet

(50 mM stock solution in SEC-buffer, Sigma Aldrich,

cat # A7007). The protein was incubated with Ado-

Met for at least 6 h on ice and then used directly in

crystallization screens. For the unbound structure

crystals appeared after 3–5 days in several different

conditions and for the optically most promising of

them the crystals were further optimized using a

hanging drop vapor diffusion setup. The best crys-

tals were observed in a precipitant optimized from

the D2 condition of the Morpheus screen23 contain-

ing 0.02 M of each alcohol, 9% w/v PEG 8,000, 18%

v/v Ethylene glycol and 0.1 M MES/Imidazole buffer

pH 6.5. The protein crystals with the bound AdoMet

were directly obtained from the C1 condition of the

Morpheus screen containing 10% w/v PEG 20,000,

20% v/v PEG MME 550, 0.03 M of each sodium

nitrate, disodium hydrogen phosphate and ammo-

nium sulfate (NPS mixture), and 0.1 M MES/imidaz-

ole buffer pH 6.5. The harvested crystals were

directly cryo-cooled in liquid nitrogen.

Data collection and refinement

All data sets were collected at 100 K. Crystals of the

ligand-free protein were automatically measured at

the ESRF automated beamline ID30A-1/MASSIF-1

(Grenoble, France) and diffracted to a maximum res-

olution of 1.49 Å. The protein/AdoMet crystals were

measured at the PetraIII P13 beam-line (EMBL-

Hamburg/DESY, Germany)24 and diffracted to a

maximum resolution of 2.30 Å. All data sets were

indexed, processed and scaled using the XDS pack-

age25 (Table I).

The ligand-free methyltransferase crystals

belonged to the P 21 space group with a solvent con-

tent of 52.9% corresponding to four molecules per

asymmetric unit (AU). The structure was deter-

mined by molecular replacement using the HI0303

methyltransferase from Haemophilus influenzae as

a search model (PDB ID 1nzx).14 After several itera-

tions of rigid-body, maximum-likelihood and TLS

refinement using the PHENIX suite,26 manual

building and model inspection using COOT,27 a

model was obtained converging to a final Rwork/Rfree

of 0.1791/0.2095. All four chains in the model cover

the protein sequence starting from residues three or

four up to the very last C-terminal residue 244. The

model contains in addition 1201 water molecules.

The AdoMet bound crystals belonged to the I 2

space group with a solvent content of 53.6% corre-

sponding to eight molecules per AU. All eight chains

were determined by molecular replacement using

the unbound structure as a search model. Extra dif-

ference density at the C-terminus of each chain was

interpreted as an AdoMet molecule and it was built

in COOT. After several iterations of refinement and

manual building using the same strategy as for the

AdoMet free protein, a model was obtained converg-

ing to a final Rwork/Rfree of 0.1821/0.2361. All chains

start from residues two or three and the amino acid

sequence is visible to all up to the final residue 244.

The model contains in addition 585 water molecules.
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Refinement statistics for both structures are

summarized in Table I.

Data analysis and bioinformatics
Analysis of the protein-protein interfaces was per-

formed by the on-line server PDBePISA(EMBL-

EBI).15 Structural alignment (Ca alignment) of the

Lpg2936 models with known PDB entries and

sequence alignment and assignment of secondary

structural elements were performed by PDBe-

FOLD.28 Representation of sequence alignments

(shown in Fig. 2) using the output of PDBeFOLD

was performed by the ESPript server.29 Molecular

visualization of the crystal structures was done by

PyMOL (https://pymolwiki.org/).

Isothermal titration calorimetry

ITC was applied to quantitatively determine the

binding affinity of Lpg2936 to AdoMet. For the titra-

tion experiments, the purified protein was dialyzed

overnight against a buffer containing 50 mM

HEPES pH7.5, 0.15 M NaCl, 5% (v/v) glycerol,

2 mM MgCl2, and 2 mM b-mercaptoethanol. The

AdoMet ligand was dissolved in the same buffer as

the protein. The ITC experiments were carried out

using a MicroCal VP-ITC calorimeter (Malvern) at

228C using 500 lM AdoMet in the injector and 36.5

lM Lpg2936 (quantified in the dimeric form) or

buffer in the sample cell. Before measurements all

samples were thoroughly degassed. Injection vol-

umes of 10 lL per injection were used for each mea-

surement, and the consecutive injections were

separated by 5 min to allow the peak to return to

the baseline. The heat of dilution was estimated by

the last four injections after subtracting the blank

titrations. The final integrated data were fitted

using a two binding site model as implemented in

the MicroCal Origin 7.0 software package (Origin-

Lab Corp.).
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