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Background: Respiratory diseases are mainly derived from acute and chronic inflammation of the alveoli and 

bronchi. The pathophysiological mechanisms of pulmonary inflammation mainly arise from oxidative damage  

that could ultimately lead to acute lung injury. Apigenin (Api) is a natural polyphenol with prominent anti-

oxidant and anti-inflammatory properties in the lung. Inhalable formulations that consist of nanoparticles (NPs) 

have several advantages over other administration routes, and therefore, this study investigated the application  

of apigenin-loaded bovine serum albumin nanoparticles (BSA-Api-NPs) for pulmonary delivery. 

Methods: Dry powder formulations of BSA-Api-NPs were prepared by spray drying and characterized by laser 

diffraction particle sizing, scanning electron microscopy, differential scanning calorimetry, and powder X-ray 

diffraction. The influence of dispersibility enhancers (lactose monohydrate and L-leucine) on the in vitro aerosol 

deposition using a next-generation impactor was investigated in comparison to excipient-free formulation. The 

dissolution of Api was determined in simulated lung fluid by using the Franz cell apparatus. The antioxidant  

activity was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH*) free radical scavenging assay.  

Results: The encapsulation efficiency and the drug loading were measured to be 82.61% ± 4.56% and  

7.51% ± 0.415%. The optimized spray drying conditions were suitable to produce particles with low residual 

moisture content. The spray-dried BSA-Api-NPs possessed good aerodynamic properties due to small and  

wrinkled particles with low mass median aerodynamic diameter, high emitted dose, and fine particle fraction.  

The aerodynamic properties were enhanced by leucine and decreased by lactose, however, the dissolution was 

reversely affected. The DPPH* assay confirmed that the antioxidant activity of encapsulated Api was preserved. 

Conclusion: This study provides evidence to support that albumin nanoparticles are suitable carriers of Api and  

the use of traditional or novel excipients should be taken into consideration. The developed BSA-Api-NPs are a 

novel delivery system against lung injury with potential antioxidant activity.  

Keywords: aerosol distribution, inhaled therapy, modeling, flavonoid  

Introduction  

RESPIRATORY DISEASES ARE THOUGHT TO BE mainly de- 
rived from acute and chronic inflammation of the alveoli  

and bronchi. The pathophysiological mechanisms of pul- 

monary inflammation arise from several factors, including  

oxidative damage due to cytotoxic mediators that may ulti-

mately lead to acute lung injury (ALI), acute respiratory  

distress syndrome, and cancer.(1) A growing body of scien-

tific data suggests that natural occurring compounds possess  
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preventive and therapeutic properties with inherent low 

toxicity.(2) Among phytochemicals, apigenin (Api; Fig. 1) is 

a promising candidate as a therapeutic agent, mainly due to 

its antioxidant and anti-inflammatory properties.(3–6) It has 

been demonstrated that Api has protective effects against 

bleomycin-induced lung fibrosis in rats, which is associated 

with its antioxidant and anti-inflammatory capacities.(7)
 

Another study provided evidence that Api was able to 

decrease oxidative stress and inflammation on paraquat-

induced ALI in mice(8) and reduced the pathological alter-

ations of pulmonary tissue in acute pancreatitis-associated 

ALI, therefore suggesting protection in the lung.(9) Fur-

thermore, Api has an anti-inflammatory effect owing to 

significant inhibition of proinflammatory cytokines, activa-

tor protein (AP-1), and cyclooxygenase-2 (COX-2) in hu-

man pulmonary epithelial cells(10) and in mice as well.(11)
 

However, Api has low water solubility (2.16 g/mL at pH 

7.5), and therefore, it was recently classified as Bio-

pharmaceutical Classification System (BCS) II drug.(12)
 

Encapsulation and delivery of phytoconstituents with 

health effects have attracted much attention in recent years. 

Developing a suitable carrier system is essential to improve 

the overall activity and reduce the possible toxicity of these 

agents.(13) Among the potential carrier systems, serum al-

bumin nanoparticles have notable advantages, including bio-

degradability, nonantigenicity, and cell-targeting ability.(14,15)
 

Moreover, albumin provides exceptional ligand binding 

capacity for various drugs owing to three homologous do-

mains with two separate helical subdomains.(16) Studies 

reported the successful incorporation of flavonoids into al-

bumin nanoparticles that can improve their stability(17) and 

antitumor activity.(18)
 

Pulmonary delivery of pharmacologically active ingredi-

ents is extensively studied due to prominent advantages over 

other delivery routes of administration.(19) The lungs have 

a large surface area, limited enzymatic activity, and high 

permeability; therefore, drugs can be delivered either locally 

for the treatment of respiratory diseases or systematically to, 

for example, avoid first-pass metabolism.(20) Dry powder 

inhaler products offer precise and reproducible delivery of 

fine drug particle fraction to the deep lung and recent studies 

have proved that these are more cost-effective than other 

products.(21) This noninvasive delivery route could be suit-

able for poorly water soluble drugs in nanoparticles with 

increased solubility.(22)
 

It is also well recognized that nanoparticles have benefits 

over other carriers in the micron scale such as controlled 

drug release, avoiding mucociliary clearance, and improved 

 

FIG. 1. Molecular structure of apigenin. 

deposition.(23,24) Albumin is naturally present in the body, as 

well as in the lung epithelium,(24) moreover, the body can 

absorb proteins into the bloodstream by transcytosis, which 

occurs deep in the lung and allows drug molecules to pass 

through cell membrane.(25) Therefore, the presence of bo-

vine serum albumin (BSA) in the nanoparticle system in-

creases membrane permeability and may facilitate epithelial 

cell uptake and translocation through the alveolar-capillary 

barrier of the lung.(26) It was proved that albumin nano-

particles have high biocompatibility in a wide dose range and 

remained longer in the lungs with low systemic exposure.(24)
 

Thus, encapsulation of apigenin into albumin nanoparticles 

would enhance its solubility and distribution in the lung. 

However, the formulation of dry powders with optimal 

aerodynamic properties for pulmonary drug delivery is 

challenging. Spray drying is a technique for manufacturing 

respirable dry powders in one step. During the process, the 

liquid phase is atomized into droplets that dry rapidly in the 

drying chamber due to compressed air. The process condi-

tions such as heat, flow rate, aspiration rate, and pump rate 

also determine the quality of the product. The thermal 

degradation caused by overheating can be avoided by the 

rapid evaporation of the solvent.(27) Hence, it is suitable for 

drying colloidal systems resulting in uniform particle mor-

phology. 

Nanoparticle delivery systems targeted to the lungs offer 

several advantages such as sustained release, increased local 

drug concentration, and targeted site of action.(28) Moreover, 

improved drug solubility, uniform dose distribution, and 

fewer side effects can be achieved, compared to conven-

tional dry powders. In general, respirable nanoparticles are 

embedded in microparticles in aerodynamic size range.(26)
 

The aim of this work was to develop a novel dry powder 

formulation against ALI caused by oxidative stress. The 

prepared albumin nanoparticles were characterized in terms 

of size, zeta potential, and drug loading; in addition, the 

fluorescence properties were investigated. Following this, 

the nanoparticles were spray dried with two types of ex-

cipients, namely a traditional lactose monohydrate and a 

novel amino acid, L-leucine. In vitro aerosol deposition 

patterns were determined in comparison to an excipient-free 

formulation using a next-generation impactor (NGI), and a 

dissolution test was performed in simulated lung fluid by 

using Franz cell apparatus. Laser diffraction particle sizing, 

morphology, and residual moisture content were measured 

along with the antioxidant activity. 

Materials and Methods 

Apigenin (Api) was purchased from (purity >99%) 

Hangzhou DayangChem Co., Ltd. (China). BSA powder 

(purity ‡98%), L-leucine, analytical-grade chloroform, ace-

tonitrile, and trifluoroacetic acid (TFA) were obtained from 

Sigma Aldrich Ltd. (Dorset, United Kingdom). Lactohale® 

LH 230 was supplied by Friesland Foods Domo (Amersfoort, 

The Netherlands). 2,2-Diphenyl-1-picrylhydrazyl (DPPHc) 

free radical was purchased from Sigma Aldrich (Darmstadt, 

Germany). For the solubility and drug release study, PBS 

buffer was purchased (Sigma Aldrich Ltd.) and modified 

simulated lung fluid with 0.02% (w/v) (mSLF) was prepared. 

All of the materials for the mSLF were purchased from 

Sigma Aldrich Ltd. 
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Preparation of BSA-NPs 

BSA nanoparticles were prepared using a nanoparticle 

albumin-bound technology with minor modifications.(29)
 

Briefly, 1000mg of BSA was dissolved in 50 mL of distilled 

water saturated with chloroform. Separately, 100mg of Api 

was dissolved in 3 mL of chloroform saturated with water and 

ultrasonicated for 10 minutes. These two solutions were mixed 

and ultrasonicated for 20 minutes with a probe-type sonicator 

(MSE Soniprep 150 Ultrasonic Processor; MSE Ltd., London, 

United Kingdom) on ice. After homogenization, the chloro-

form was evaporated by rotary evaporator (Rotavapor® R-10; 

BU¨ CHI Labortechnik AG, Flawil, Switzerland) at 25°C for 15 

minutes. The obtained nanoparticles were filtered through 

filter paper (0.45 m; Fisher Scientific Ltd., Loughborough, 

United Kingdom) and further spray dried. 

Characterization of BSA-Api-NPs 

Particle size and zeta potential analysis. The average 

particle size and polydispersity index (PDI) were determined 

by dynamic light scattering using Zetasizer Nano ZS instru-

ment (Malvern Instruments Ltd., Worcestershire, United 

Kingdom). Zeta potential of the particles was quantified with 

laser doppler velocimetry using the same instrument. All 

measurements were performed in triplicate (n = 3) at 25°C 

and presented as mean ± standard deviation. 

Determination of drug loading and encapsulation efficiency. 

To determine the amount of Api, 1 mL sample from the 

BSA-Api formulation was withdrawn and the apigenin 

content was determined in mg/mL by adding 5 mL of di-

methyl sulfoxide and methanol (DMSO:MeOH, 50:50% v/ 

v) and sonicated for 10 minutes. The exact concentrations 

were determined after filtration (0.22 m) by HPLC 1260 

(Agilent Technologies, Inc., Santa Clara, CA) using the 

reverse-phase C18 column (Phenomenex®, 250 x 4.6 mm, 4 

m) as the stationary phase. The temperature was set to 

25°C. The mobile phase consisted of 40% acetonitrile and 

60% water containing 0.1% (v/v) TFA. The system was run 

isocratically at the flow rate of 1.2 mL/min and the Api was 

detected at 340nm (tR=8.3). The injection volume was set 

to 10 L. A calibration curve was conducted by diluting 

stock solution (0.1 mg/mL) with R2 value of 0.999. 

The drug loading efficiency (DL, %) and encapsulation 

efficiency (EE, %) were calculated according to the equa-

tions (Eqs. 1 and 2), comparing the encapsulated Api con-

tent (mg/mL, Wencapsulated) to total nanoparticle system, which 

means the weighted amount of BSA and Api together (mg/mL, 

Wtotal) and the amount of Api (mg/mL, Wtheoretical) used in the 

formulations. 

Fluorescence spectroscopy. The fluorescence emission 

spectra of BSA and BSA-Api-NPs were measured with the 

Jobin Yvon-Horiba Fluoromax-3 (Paris, France) spectroflu-

orometer. The samples that contained the nanoparticles were 
diluted 10 times, and the fluorescence emission spectra were 

recorded between 300 and 450nm at 25°C where the exci-

tation wavelength was set to 285 nm. The data collection 
frequency was 0.5 nm and the integration time was 0.2 sec-
ond. The excitation slit was set at a bandpass width of 2 nm 
and the emission slit at 5 nm. Each spectrum was recorded 
three times and the mean values were calculated automati-

cally. The SPSERV V3.14 software (© Csaba Bagyinka, 

Institute of Biophysics, Biological Research Center of the 
Hungarian Academy of Sciences, Szeged, Hungary) was used 
for baseline correction, for five-point linear smoothing, and 
for the correction to the wavelength-dependent sensitivity 
changes of the spectrofluorometer. The subtraction of the 
Raman band at 390 nm was performed. 

To obtain the three-dimensional (3D) projections and 

contour maps of fluorescence spectra of the samples, the 

fluorescence emission was recorded from 265 to 450 nm 

using different excitation wavelengths from 250 to 310 nm 

with 10nm steps with the same instrument mentioned 

above. All emission scan ranges were set to start at least 

15 nm away from the corresponding excitation wavelengths. 

Other settings were similar as described above. Each spec-

trum was recorded three times and the mean values were 

calculated automatically. The 3D fluorescence spectra were 

visualized with the software SURFER Version 10 (Golden 

Software, Inc., Golden, CO). Spectra were combined to-

gether into a 3D surface data set with axes of excitation and 

emission wavelengths and fluorescence intensity. Data were 

also converted into two-dimensional contour maps. 

Spray drying of BSA-Api-NPs 

Spray drying of the BSA-Api formulations without ex-

cipient and in the presence of lactose monohydrate (50%, 

¨ 
w/w) and L-leucine (9%, w/w) was carried out in a BU CHI 

¨ 
290 Mini Spray Dryer (BUCHI Labortechnik AG, Flawil, 
Switzerland). The concentration of the excipients was with 
respect to the mass of the nanoparticles before spray drying. 
The following operating conditions were used based on pilot 

experiments: inlet temperature 120°C, approximate outlet 

temperature 65°C–70°C, the drying airflow 600 L/h, aspi-

ration rate 100% (35 m3/h), the nozzle diameter was 0.1mm, 
and the liquid feed rate was set to 5 mL/min. Each prepa-
ration was carried out in triplicate. Following spray drying, 
the powders were collected from the lower part of the cy-
clone and the collecting vessel, stored in tightly sealed glass 
vials under vacuum at room temperature. 

Characterization of spray-dried BSA-Api-NPs 

Determination of residual moisture. The moisture con-
tent of the spray-dried powders was measured by using Karl 
Fischer titration (Metrohm 758 KFD Titirino; Metrohm AG, 

Lichtenstein, Switzerland). For that purpose, -100 mg of 

the product was analyzed and the instrument was previously 
calibrated with 10 L distilled water. The evaluation was 
conducted in triplicate and the standard deviation calculated. 

Fourier transform infrared spectroscopy. Fourier trans-

form infrared spectroscopy (FT-IR) spectra of BSA-Api 

Wencapsulated 

DL (%) 1/4 
x100 (Eq: 1) 

Wtotal 

Wencapsulated 
EE (%) 1/4 __________________  x100 (Eq: 2) 

Wtheoretical 
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spray-dried samples were evaluated using a PerkinElmer 

Spectrum 100 FT-IR spectrometer equipped with Universal 

ATR (attenuated total reflectance) accessory (PerkinElmer, 

Inc., Waltham, MA). Approximately 2mg of the solid 

samples was placed between the plate and the probe. The 

spectra were recorded with three scans, in the frequency 

range between 4000 and 600 cm-1 and with a resolution of 

4 cm-1 at room temperature. The data were analyzed using 

the PerkinElmer Spectrum Express software. 

X-ray powder diffraction. X-ray powder diffraction 

(XRPD) diffractograms were obtained using an X-ray dif-

fractometer (MiniFlex600; Rigaku Corporation, Tokyo, 

Japan). The analyses were performed at room temperature 

and the samples were scanned from 2° to 40° 20 using a 

scanning speed of 2°/min with a step size of 0.05°. 

Differential scanning calorimetry analysis. The spray-

dried formulations were characterized by differential scanning 

calorimetry (DSC) (DSC Q2000 module; TA Instruments, 

New Castle, United Kingdom), which was calibrated using 

indium. Samples (3–5 mg) were weighed accurately and 

analyzed in sealed and pierced aluminum hermetic pans (TA 

Instruments). The pans were equilibrated at 25°C and then 

heated at a rate of 10°C/min in a range of 50°C–400°C. 

Aerosol particle size analysis and redispersibility in wa-

ter. The particle size analysis was conducted by using a 

Sympatec HELOS laser diffractometer (Sympatec GmbH 

System-Partikel-Technik, Clausthal-Zellerfeld, Germany). 

The powders were dispersed by compressed air (4–5 bar) 

into the measuring zone of the laser beam. The optical lens 

(0.45–87.5 jm size range) focused onto the detector to 

collect the diffracted light for calculation of size distribu-

tion. The values of 10th (D10), 50th (D50), and 90th (D90) of 

the cumulative particle size distribution are generated. 

Samples were measured in triplicate. 

The particle size was also determined after spray drying. 

Five milligrams of dry powder of each formulation could be 

easily redispersed in 5 mL distilled water and the particle 

size was determined without any further dilution by the 

abovementioned Zetasizer Nano ZS instrument (Malvern 

Instruments Ltd., Worcestershire, United Kingdom). 

Solubility and drug release studies of BSA-Api formula-

tions. The solubility of BSA-Api formulations was deter-

mined in PBS buffer (pH 7.4) and in mSLF (pH 7.4), which 

contained 0.02% (w/v) DPPC, prepared according to Son 

and McConville.(30) Fifty milligrams of samples of spray-

dried powders was added to 100 mL solvent and shaken 

(150 rpm) for 2 hours at 37°C. At predetermined time points, 

1 mL of samples was taken from each dissolution medium 

and replaced with the same volume of fresh medium. All of 

the samples were diluted with 1 mL methanol and filtered 

with Amicon® Ultra Centrifugal filters (30K; Merck Millipore, 

Merck KGaA, Germany) before the injection and the amount 

of apigenin was determined by the HPLC-UV method. 

The in vitro drug release study of the three formulations 

was conducted with the Franz cell apparatus. The mSLF was 

used as dissolution media and a 0.45 jm cellulose acetate 

membrane filter (Sartorius AG, Gottingen, Germany) was 

applied. 

Briefly, an accurately weighed amount (10 mg) of spray-

dried nanoparticles of each formulations were scattered onto 

the membrane, which was previously wetted with the dis-

solution media for 1 hour. One milliliter of samples was 

withdrawn at various time intervals for 5 hours and replaced 

with fresh dissolution medium. After the measurement, 

membrane was rinsed with 2 mL of MeOH and the drug 

content of the possibly remained powders was determined. 

The sample preparation and the measurement were the same 

as mentioned above. The cumulative amount of apigenin 

release over the time was plotted for each formulation. All 

measurements were performed in triplicate. 

Aerosol delivery of BSA-Api formulations. In vitro aero-

dynamic performance of BSA-Api formulations was as-

sessed using the NGI (Copley Scientific Ltd., Nottingham, 

United Kingdom), connected sequentially to a low-capacity 

pump via the critical flow controller (Model LCP5; Copley 

Scientific Ltd.). During the measurement, the pump was 

operated at an air flow rate of 60 L/min for 4 seconds. The 

3 x 10mg powder aliquots from each formulation were 

loaded manually into gelatin capsules (size 3) and placed 

into the inhaler device (Cyclohaler®; Pharmachemie, Lon-

don, United Kingdom), which was connected to the NGI via 

an airtight rubber adaptor and a stainless steel United States 

Pharmacopeia (USP) throat. The NGI stages were assem-

bled with an induction port and a preseparator, and a filter 

was placed in the final stage. 

Before the impaction, the collection plates were uni-

formly coated with 1 mL of 1% silicone oil in N-hexane 

solution and allowed to dry, leaving a thin film of silicone 

oil on the plate surface to prevent the re-entrainment of 

the particles and the preseparator was filled with 15 mL 

DMSO:MeOH (50:50%, v/v) mixture. After the deposition 

of the powders in the NGI, the amount of each formulation 

was cumulatively collected onto silicone-coated plates for 

each of the stages. The inhaler, mouthpiece, induction port, 

preseparator, and the collection plates were rinsed with 

DMSO:MeOH (50:50%, v/v) mixture, collected in volu-

metric flasks (10 or 25 mL), and made up to volume. The 

samples were determined by using the HPLC method as 

described previously. 

To characterize the aerosol performance, the following 

parameters were calculated based on the drug mass of each 

fraction: emitted dose (ED, %): the percentage of the entire 

dose depositing from the mouthpiece of the inhaler device 

and recovered dose (RD, %): the total recovered drug mass. 

The fine particle fraction (FPF, <4.46 jm) is defined as the 

percentage of the ED, deposited from Stage 2–7 and the 

micro-orifice collector. The mass median aerodynamic di-

ameter (MMAD) and geometric standard deviation (GSD) 

were calculated from the inverse of the standard normal 

cumulative mass distribution against the natural 

logarithm of the effective cutoff diameter of the respective 

stages. All measurements were carried out in triplicate. 

Particle morphology. Morphology of Api powder and 

spray-died nanoparticles was examined using scanning 

electron microscopy (SEM) analysis. The dry powder of the 

formulations was placed on the sample holder using a 

double adhesive tape, and gold coating (-20 nm thickness) 

was applied. Examinations were performed by the FEI 
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InspectTM S50 (Hillsboro, OR) scanning electron microscope 

at 20.00 kV accelerating voltage. Original magnifications 

were 8000x, 10,000x, and 20,000xwith accuracy of ±2%. 

Antioxidant activity 

The antioxidant activities of the prepared spray-dried 

formulations were compared to the pure Api to investigate 

the effectiveness of the formulation. The free radical scav-

enging activity was measured by using DPPHc method as 

described previously,(31) with slight modifications. Metha-

nolic stock solution of 0.1 mM DPPHc reagent was freshly 

prepared and protected from light. Standard curve was 

plotted between the DPPHc concentration (0.01–0.1 mM) 

and absorbance, the linear relationship was calculated 

graphically. One milliliter of MeOH was added to the BSA-

Api-NPs and the concentration of Api was the same in each 

sample for comparability. Thereafter, 2 mL of 0.06mM 

DPPHc reagent was added to the samples, vortex mixed for 

10 seconds, and protected from light. 

The absorbance at 517 nm was determined with a spec-

trophotometer (UV-Vis spectrophotometer, Metertech SP-

8001; Metertech, Inc., Taipei, Taiwan) every 15 minutes 

until the steady state (when no further discoloration could be 

observed). The addition of samples resulted in a decrease in 

the absorbance of DPPHc due to the scavenging activity of 

Api. The exact concentration of the free radical was calculated 

using the standard curve. To calculate the inhibition of the free 

radical DPPHc, the following equation (Eq. 3) was used: 

A0 —As  

I(%) 1/4 _____________ x 100 (Eq: 3) 
A0 

Where I (%) is the inhibition in percent, A0 is the absor-

bance of the DPPHc solution, and As is the absorbance of the 

sample. All measurements were carried out triplicate and the 

data are expressed as the mean value ± standard deviation. 

Results and Discussion 

Characterization of BSA-Api-NPs 

Size, zeta potential, and drug content. Albumin is a 

natural protein that has been widely used as a macromolec-

ular carrier for many drugs with low water solubility. Several 

techniques are available to prepare albumin nanoparticles, 

including desolvation (coacervation), nab (nanoparticle al-

bumin bound) technology, and self-assembly.(14) In this 

study, the BSA-Api-NPs were prepared by using modified 

nab technology with ultrasonication. The achieved mean 

particle size of three samples was 376 ± 7.824 nm with a PDI 

of 0.285±0.01. The size of albumin NPs less than 500nm 

could localize effectively in the lung. The PDI value indi-

cated narrow particle size distribution and the uniformity of 

the nanoparticles. The zeta potential was -19.20 ± 0.818 mV. 

The higher the zeta potential, the more stable the 

formulation is, less aggregation occurs.(32)
 

The EE was determined to be 82.61% ± 4.56% and the DL 

was 7.51% ± 0.415%. Therefore, these results confirmed the 

high encapsulation efficiency of apigenin by BSA-NPs and 

that it can be an attractive tool in encapsulation of flavo-

noids for delivery. Similar data were found in the literature 

when encapsulating flavonoids into albumin nanoparticles. 

Human serum albumin (HSA)-bound curcumin nano-

particles resulted in 7.2% ± 2.5% loading efficiency(33) and 

scutellarin-loaded BSA nanoparticles possess 64.46% EE 

and 6.73% DL.(34)
 

Fluorescence spectroscopy. The phenomenon of fluo-

rescence quenching can result from various inter- and in-

tramolecular interactions such as energy transfer, conformational 

changes, complex formation (static quenching), or collisional 

interaction (dynamic quenching). During static quenching, the 

quencher forms a stable nonfluorescent complex with the fluor-

ophore, however, during dynamic quenching it collides with the 

fluorophore and facilitates nonradiative transitions to the ground 

state.(35) Therefore, quenching of the intrinsic fluorescence of the 

two tryptophan residues (Trp-134 and Trp-212) ofBSA can offer 

information about the changes in molecular microenvironment 

of these fluorophores, located in domain I and II, respectively. 

Trp-134 residue is located close to the protein surface in a hy-

drophilic environment, whereas Trp-212 is within a protein 

pocket that is hydrophobic (subdomain II A). The Trp-214 

in HSA is located similarly to Trp-212 in BSA.(36–38)
 

The quenching effect of Api on fluorescence intensity of 

serum albumins (BSA and HSA) has been studied previ-

ously,(36,39–42) but there are no data related to its behavior in a 

nanoparticulate system. Studies have shown that the in-

creasing concentration of Api resulted in a decrease in the 

fluorescence emission intensity of serum albumin solutions. 

This was mainly attributed to complex formation (static 

quenching), however, it could be dynamic quenching at 

higher Api concentrations.(42) Nevertheless, all studies 

concluded that Api most likely binds to the subdomain 

IIA of Site I side with electrostatic and hydrophobic 

interactions, through which H-bonds and nonradiative 

energy transfer can occur. The binding could affect the 

conformation of Trp microregion, but the secondary 

structure of serum albumin is not altered.(36,39,41) However, the 

pH and ionic concentrations (e.g., NaCl) can affect the 

fluorescence quenching on the binding parameters of apigenin 

to BSA.(43)
 

Figure 2 demonstrates the fluorescence emission spec-

tra of BSA solution, BSA-NPs, and BSA-Api-NPs. The 

 

FIG. 2. Fluorescence emission spectra of BSA solution, 
BSA nanoparticles, and BSA-Api nanoparticles. The exci-
tation wavelength was set to 285 nm. BSA, bovine serum 
albumin. 
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fluorescence intensity of BSA-NPs decreased slightly com-

pared to BSA solution with no obvious shift of the maxi-

mum position at 350nm. It was probably due to the 

conformational changes of the protein. The significantly 

lower emission intensity of BSA-Api-NPs indicates that Api 

could quench the fluorescence of BSA, which is also re-

flected on the 3D projections (Fig. 3). All of these findings 

indicate that Api binds to the Trp region (Trp-212, sub-

domain II A), but the spectral maximum was not affected, 

and therefore, hydrophobicity and polarity of the fluor-

ophore residues are not altered. It was concluded that Api 

can be bound to the Trp region of serum albumin nano-

particles similarly to the solutions. 

Characterization of spray-dried BSA-Api-NPs 

Determination of residual moisture. Moisture content is 

mainly influenced by the spray drying conditions. Increased 

heat energy availability provided by regulating inlet air 

temperature and aspirator capacity allows more efficient 

drying, thus resulting in the lower moisture content demon-

strated. However, degradation of heat-sensitive materials 

such as proteins may occur; therefore, inlet air temperature 

should be kept below 1200C.(44) The water content is also 

affected by the type of excipients and the ratio with the na-

noparticles.(45) Moisture content is an important factor that 

can significantly influence the aerodynamic properties of 

aerosols. It can change the surface of particles, promote ag-

gregation, and influence the crystallinity of the spray-dried 

samples.(44)
 

In this study, the residual water content was determined 
by using Karl Fisher titration. All formulations had rela-
tively low moisture content, which followed the rank 

order of L-leucine (4.11% – 0.21%, w/w) < excipient-free 

(4.55% –0.49%, w/w) < lactose (5.8%–0.36%, w/w) con-

taining products. These results demonstrate that the opti-

mized outlet air temperature (around 65°C) was suitable for 

serum albumin. The L-leucine containing formulation had 
the lowest water content due to the low hygroscopic be-
havior of this amino acid.(46,47) The low moisture content 
can potentially improve the flowability and consequently 
enhance lung deposition due to reduced aggregation as ex-
pected. Storage conditions are also important, for example, 
the spray-dried amorphous lactose particles could transform 
into crystals easily in humidity above 30%.(48)

 

Fourier transform infrared spectroscopy. FT-IR analysis 
allows a quick and efficient identification of the compounds 
and by their functional groups and bond vibrations. In the 
spectrum of raw Api, the following characteristic regions 
were observed: 2710–2580 cm-1 O-H bond, 1730–1680 cm-1

 

C=O stretch, and 1450–1380cm-1 C-H bend. A broad peak 

observed at 3300 cm-1 can be attributed to O-H stretching and 

those bands at 1600–1400 cm-1 (C-C stretch in ring) and 

900–675 cm-1 (C-H “oop”) can be assigned to the aromatic 
group (Fig. 4A). In the spectrum of BSA protein, the amide I 

band at 1635 cm-1 (mainly C = O stretch) and amide II band 

at 1530–1500 cm-1 (C–N stretching and N–H bend) can be 

seen. The medium broad peak at 3276 cm-1 corresponds to 

bonded N-H stretch of amide and a smaller band at 1057 cm-1
 

 

FIG. 3. Three-dimensional fluorescence emission maps and two-dimensional contour maps of empty 
BSA nanoparticles and BSA-Api nanoparticles. Color scale displays the range of observed fluorescence 
intensities. EM, emission; EXC, excitation. 
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FIG. 4. (A) FT-IR spectra of apigenin (1), BSA (2), and the excipient-free spray-dried BSA-Api nanoparticles (3). (B) FT-

IR spectra of apigenin (1), BSA (2), lactose (3), and spray-dried BSA-Api nanoparticles with lactose (4). (C) FT-IR spectra 

of apigenin (1), BSA (2), L-leucine (3), and spray-dried BSA-Api nanoparticles with L-leucine (4). FT-IR, Fourier 

transform infrared spectroscopy. 

is the C-N stretch of aliphatic amine. In the spectra of the 
excipient-free formulation, the characteristic amide bands of 

BSA can be seen and peak at 830 cm-1 indicating the pres-

ence of Api (aromatic), which is an indirect confirmation of 
Api encapsulation on BSA-NPs. Conformational changes can 
be suggested due to the lack of the peak of aliphatic amine. 

The spectra of raw Api, BSA, lactose, and lactose con-
taining product are displayed in Figure 4B. In the spectra of 

lactose, there is also a broad band around 3300 cm-1 indi-

cating the stretching vibration of hydroxyl group. A weak 

band at 1654 cm-1 is the bending vibration of the crystalline 

water and peaks at 1200–1070 cm-1 demonstrating the 

stretching vibration of C-O-C in the glucose and galactose. 
The spectrum of amorphous lactose has the less number and 
defined peaks and therefore it could be distinguished from 
the crystalline spectrum.(49) The characteristic broad band 

at 3300 cm-1 in the spectrum of spray-dried product could 

originate from the residual water content that is further 
supported by the Karl Fischer titration data (lactose con 
taining product had the highest water content). Similarly to 
the spectrum of excipient-free formulation, the amide bands 

of BSA and a small peak of Api could be observed. The 

peaks at 1200–1070cm-1 demonstrate the lactose content 

and the amorphous state could be assumed. 

Functional groups of L-leucine lead to its characteristic 
spectrum (Fig. 4C). The strong band in the region of 2970– 

2910 cm-1 can be accounted for the aliphatic C-H stretching. 

The bonded N-H stretch is present in the region of 2600– 

2450 cm-1. The NH2 bending and the C-N skeletal vibration 

appear in the regions of 1595–1550 cm-1 and 1250– 

1020 cm-1.(50) The presence of BSA characteristic peaks on 

the spray-dried formulation could be mainly observed with a 
small peak of Api, but the major characteristic peaks of L-
leucine are obscured. 

X-ray powder diffraction. XRPD is considered to be the 

most accurate method to study crystalline structure.(51) The 

combined XRPD diffractograms of Api and spray-dried 
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FIG. 5. X-ray powder diffraction pattern of raw apigenin and the formulations. 

formulations are presented in Figure 5. The characteristic 

narrow diffraction peaks of Api are due to the crystalline 

state of the commercially available material. In comparison, 

broad diffuse peaks could be observed in the diffractograms 

of the spray-dried formulations suggesting the amorphous state 

of BSA-Api-NPs. The observed XRD patterns of spray-dried 

L-leucine and lactose were consistent with literature.(48,52,53)
 

DSC analysis. The DSC curves of raw Api, excipents, 

physical mixtures, and spray-dried formulations were stud-

ied to examine crystallinity. As seen in Figure 6, there is 

only one sharp endothermic peak at 360°C indicating the 

melting point of raw Api; no impurities were observed. 

Drug-free albumin exhibited two broad peaks with onset 

values of 220°C and 310°C. The evaporation of residual 

water occurred at 50–120°C. The melting point of Api on 

the thermograms of raw material and physical mixtures 

corresponds to the crystalline habitus. 

In the thermograms of physical mixtures in Figure 6B, the 

endothermic peak at 140°C indicating the crystalline lac-

tose(54) and the sublimation of L-leucine crystals occurred at 

200°C–230°C (Fig. 6C).(55) However, in each spray-dried 

formulation, the absence of endotherms confirms the loss of 

crystallinity. No peak could be observed around 360°C in-

dicating that Api is in an amorphous state due to the spray 

drying process, which is in agreement with the XRPD dif-

fractograms. The amorphous form generated may result in 

higher solubility of the powders and dissolution of 

apigenin in lung fluids. 

Aerosol particle size analysis and redispersibility in wa-

ter. Dry powder formulations of BSA-Api-NPs were pre-

pared with the aim of studying the influence of excipients on 

the particle size and aerodynamic behavior. The deposition 

of aerosols is significantly affected by particle size, which 

should be small enough to pass through the upper airways 

and large enough to avoid exhalation.(56) Gravitational 

sedimentation is the main driving force for deposition of a 

nanoparticulate system in the lung due to the formation of 

aggregates in the micrometer size range. Particle geometry 

and surface properties also play a significant role in reaching 

the bronchioles.(22,32) It is well known that particles can be 

deposited efficiently deeper in the lung if their aerodynamic 

diameter is in the range of 1–5 jm and only those with 1– 

3 jm can reach the respiratory zone.(57) Particles, larger than 

5 jm, tend to deposit in the oropharynx and the mucociliary 

clearance plays a role in clearing the particles toward the 

pharynx. However, very small particles, less than 1 jm are 

usually exhaled because of the low inertia.(58,59)
 

Mucociliary clearance is part of the natural defense mech-

anism of the lung as well as the phagocytosis of macro-

phages in the alveolar region. The aerosol particle size was 

determined by Sympatec HELOS laser diffractometer (Ta-

ble 1). The excipient-free and lactose containing products 

have similar sizes, while spray drying with L-leucine pro-

duced the smallest particles (D50 = 2.473 jm). In all cases, 

the particle size could ensure the highest probability of 

delivery of apigenin into the respiratory zone. 
Following the redispersion of spray powder 

formulations in distilled water, the size of the particles was 

preserved in the nanometer size range: without excipient (358.9 ± 

5.3 nm, PDI: 0.315±0.013), lactose (366.1 ±4.8nm, PDI: 

0.382±0.014), and L-leucine (343.7±2.9nm, PDI: 

0.316±0.011) containing products. Spray drying has no 

significant effect on the average size of the particles, 
suggesting the deposition of apigenin containing nanoparticles 
in the lung fluid. Moreover, the excipients did not affect 
adversely the particle size. 

Solubility and drug release studies of BSA-Api formula-

tions. The solubility of apigenin in nanoparticles was in-

vestigated in PBS buffer and mSLF (Fig. 7A). The results 

showed that the solubility was slightly increased in mSLF 

media (82%–98% within 5 minutes), however, it was high in 

PBS buffer as well (79%–95% within 5 minutes). These data 

indicated that the solubility of apigenin could be highly 

enhanced by BSA nanoparticles in aqueous medium. 

Nevertheless, the dispersibility enhancers could play a 

role in the solubility. In case of excipient-free formulation, 

91% of the encapsulated apigenin was dissolved in mSLF 

within 5 minutes. Formulation prepared with lactose 

increased the 
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FIG. 6. (A) DSC thermograms of apigenin (1), BSA (2), physical mixture (3), and excipient -free spray-dried BSA-Api 
nanoparticles (4). (B) DSC spectra of apigenin (1), BSA (2), physical mixture (3), and spray-dried BSA-Api nanoparticles 
with lactose (4). (C) DSC spectra of apigenin (1), BSA (2), physical mixture (3), and spray-dried BSA-Api nanoparticles 
with L-leucine (4). DSC, differential scanning calorimetry. 

solubility rate up to 98%, however, it was slower (82%) 

when using L-leucine and completed within 2 hours. These 

results could be attributed to the solubility of the excipients 

themselves; lactose has very good water solubility, but L-

leucine possesses a low solubility in water.(55)
 

TABLE 1. AEROSOL PARTICLE SIZES OF SPRAY-DRIED 

NANOPARTICLES WITH SYMPATEC HELOS 

LASER DIFFRACTOMETER IN lM 

 Excipient free Lactose L-leucine 

ED (%) 91.862±2.735 93.950±1.046 95.183±0.667 

FPF (%) 65.617±3.422 58.463±6.031 66.090±2.777 
MMAD (lm) 3.210±0.069 3.130±0.001 2.123±0.098 
GSD (lm) 2.823±0.113 2.270±0.212 1.887±0.063 

RD (%) 99.1±5.012 94.7±4.091 96.3 ±2.161  
ED, emitted dose; FPF, fine particle fraction; GSD, geometric 

standard deviation; MMAD, mass median aerodynamic diameter; 
RD, recovered dose. 

The apigenin release from the spray-dried BSA-Api-NPs 

was investigated with Franz cell apparatus. It is a well -

known device for the dissolution of semisolid dosage forms 

and approved by the USP. However, there is no standardized 

method for inhaled powders, Franz cell could be one of the 

alternative choices due to simulating the diffusion -

controlled air–liquid interface of the lung. On the contrary, 

it has some limitations such as small air bubbles under the 

contact area of membrane to dissolution medium, wide 

range of SD, or recovery usually around maximum 90%.(60)
 

Based on the solubility measurements, mSLF was applied. 

The cumulative dissolution curves of the prepared for-

mulations are shown in Figure 7B. As expected, the disso-

lution was affected by the cospray-dried excipients. Lactose 

containing product resulted the fastest and highest apigenin 

release due to the excellent water solubility. This enhance-

ment of the dissolution is supported by previously published 

data.(61) In contrast, the dissolution rate was decreased when 

L-leucine was applied. The coating layer of L-leucine slowed 
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FIG. 7. (A) Solubility of spray-dried BSA-Api formulations in PBS buffer and mSLF). (B) Dissolution  

of apigenin from the formulations as a function of time in mSLF. mSLF, modified simulated lung fluid.  

down the dissolution of apigenin, which could be well ob-

served in the dissolution curve. The low water solubility of 

L-leucine is able to hinder the dissolution of the drug, which 

was published previously.(55) These results suggest that the 

excipients play an important role in the solubility and the  

dissolution as well. 

Aerosol delivery of BSA-Api formulations. Particles can 

be taken up by alveolar macrophages, which influence the 

therapeutic outcome. Those nanoparticles that are soluble 

and above 200 nm are able to escape from the macrophages 

and therefore exhibit sustained therapeutic effect.(62) The 

lung deposition and therefore the efficacy of the inhaled 

therapeutics are governed by their aerosol properties.(56)
 

Manufacturing respirable nanoparticles could be produced 

by aggregation in the favorable size range or their incor-

poration into microparticles (1–5 itm).(26) 

Lactose monohydrate is a well-known, traditional carrier 

for improving the performance of inhaled products; how-

ever, it is influenced by physicochemical properties and  

interaction with the active ingredient.(63,64) It is the only 

FDA-approved carrier and has also been shown to be a 

potential excipient for protein encapsulation.(27,64) Recently, 

novel materials such as specific amino acids have been  

developed for pulmonary formulations(26) and L-leucine is 

one of the most effective dispersibility enhancer among  

them.(47) Previous studies proved that 5% (w/w) L-leucine 

improved the aerosol performance of raw naringin(65) and 

inclusion up to 15% (w/w) L-leucine resulted in higher ED 

and FPF of powder formulation of gentamicin.(46)
 

In this study, in vitro aerosol properties of three different 

dry powder formulations were evaluated using the NGI,  

which is regarded as an optimal instrument for analysis of 

aerodynamic behavior of aerosol formulations for pulmonary 

drug delivery(66) according to the European and US Phar-

macopeias. The obtained data and deposition pattern are 

presented in Table 2 and in Figure 8. It can be seen that more 

than 90% of apigenin could be recovered from the NGI,  

which is in the acceptable pharmacopeia range (75–125%). 

The ED ranged between 91% and 96% indicating good  

flowability and high dispersibility of the powders. L-leucine 

containing formulation had the highest ED as it could im-

prove significantly the flowability of the powders.(47,53)
 

TABLE 2. AERODYNAMIC CHARACTERISTIC 

OF SPRAY-DRIED NANOPARTICLES 

 Excipient free Lactose L-leucine 

D10 1.033 ± 0.032 1.020 ± 0.070 0.843 ± 0.680 

D50 3.030 ± 0.092 3.107 ± 0.102 2.473 ± 0.300 

D90 7.110 ± 0.306 7.117 ± 0.337 5.287 ± 0.670 
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FIG. 8. Next-generation impactor deposition pattern of the spray-dried 

BSA-Api formulations. 

Figure 8 shows the amount of Api deposited on the throat 

device and Stages 1–7 expressed as a percentage of the total 

amount of recovered powder. All formulations exhibited 

increased deposition in Stage 2–4, indicating enhanced 

drug delivery to the alveolar regions. As expected, improved 

aerosol performance and deposition (Stage 3 and 4) could be 

observed when L-leucine was used an as excipient. The 

FPF is one of the key parameters in aerosol delivery and 

should be as high as possible.(67) In this study, the FPF 

values ranged between 58% and 66%, suggesting that the 

particles could be delivered into the peripheral regions. 

Spray drying of nanoparticles in the presence of L-

leucine resulted a higher FPF value (66%) due to improved 

surface properties and morphology of the particles.(64)
 

In general, MMAD values <5 lm are for pulmonary lung 

delivery and between 2 and 3 lm are optimal for deep lung 

deposition.(56) In each cases, the calculated MMAD data 
were in agreement with the physical diameter size of the 
particles measured by laser diffractometer. The data obtained 

(<5 lm) support good dispersibility of the particles into the 

lower airways and the deep lung. Therefore, local delivery 
to the alveoli could be assured by both excipient-free and 

lactose formulations generated (MMAD 3.2 and 3.1 lm). 

Moreover, formulation with L-leucine (MMAD 2.1 lm) 

would be more optimal for deep lung deposition. The size 
distribution of an aerosol is described best by GSD.(68) Based 
on the GSD data obtained, the L-leucine containing formu-

lation had the narrowest size distribution (1.8 lm) but that of 

the others was also in the acceptable range (<3 lm). 

The overall values demonstrate that the particles of 

each dry powder nanoparticle formulation are in the fa-

vorable aerodynamic size range, possess good dis-

persibility properties and particle deposition. Therefore, 

BSA-NPs are an attractive delivery system for pulmonary 

drug delivery. We demonstrated that L-leucine improved 

better the aerosolization properties of BSA-Api-NPs than 

lactose monohydrate. Therefore, it can be concluded that 

the use of excipients influences the aerosol performance 

of nanoparticles. 

Particle morphology. SEM analysis was conducted to 

investigate the morphology of the powders (Fig. 9A, B). It is 

well known that the morphology of the particles is strongly 

affected by the solubility of the components and the nature of 

the excipients.(46,47) The commercially available Api was a 

crystalline powder featuring needle-shaped crystals. The 

excipient-free spray-dried nanoparticles exhibited a spherical 

shape and smooth or wrinkled surface. Particles of lactose 

containing product had raisin-like surface and some of the 

particles were larger in accordance with the laser diffraction 

particle size analysis. 

Powders prepared with L-leucine comprised small and 

collapsed particles with a strongly corrugated surface. The 

low aqueous solubility of L-leucine leading to a shell on the 

surface of the droplet that interferes with the diffusion of 

water; therefore, corrugated particles could form. This out-

come was consistent with previous observations.(46,53,69)
 

Corrugated surface improves the dispersibility of the dry 

powder formulations and enhances respirability due to re-

duced interparticulate cohesion (Van der Waals forces), 

which is beneficial for particles intended for inhalation.(70)
 

Antioxidant activity 

Owing to its reproducibility and comparability, the 

DPPH assay is an established method for investigating the 

antioxidant properties of natural compounds. Due to the H-

donating ability of the antioxidants, a stable reduced DPPH-

H molecule can form. The reaction can be seen visually and 

the detection can be carried out using UV-Vis spectropho-

tometer.(71,72) Previous studies confirmed that Api is able to 

scavenge the DPPH free radial even in nanoscale delivery 

formulation.(73,74) In general, the scavenging activity is 

influenced by concentration and structural features such as 

hydrogen donating ability, position, and the degree of 
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FIG. 9. Scanning electron microscopy images of raw apigenin (1), excipient-free spray-
dried BSA-Api nanoparticles (2), spray-dried BSA-Api nanoparticles with lactose (3), and 
spray-dried BSA-Api nanoparticles with L-leucine (4) 20,000 · magnification. 

hydroxylation.(75,76) To calculate the exact concentration of 

remaining DPPH in the samples, a calibration curve was 

plotted with R2=0.9999. The time required to reach the 

steady state was estimated to be 120 minutes, and the slow 

reaction kinetic of Api has been reported.(73) The discolor- 

ation of the deep purple DPPH free radical indicates the 

antioxidant properties of free and encapsulated Api. 

The inhibition of free radicals by the prepared spray-

dried formulations was compared to the empty BSA-NPs, 

methanolic Api solution, and “empty”nanoparticles (Fig. 10). 

 

FIG. 10. Radical scavenging activity of Apigenin solution, empty BSA na-
noparticles, BSA-Apigenin nanoparticles (NP), and spray-dried nanoparticles 
(SD) with excipients. The antioxidant activity is expressed as the inhibition of 
DPPH free radical in percent. DPPH , 2,2-diphenyl-1-picrylhydrazyl. 
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It can be seen that the free and encapsulated Api has similar 

scavenging activity, moreover, spray drying did not result in 

the loss of scavenging activity. It has been reported that 

serum albumin is a physiological circulating antioxidant in 

the body,(77) which is confirmed by the inhibition capacity of 

the empty BSA-NPs observed. Similar results were reported 

when encapsulating rutin and kaempferol(78) or quercetin,(17)
 where 

the antioxidant activity of the flavonoids are retained by 

BSA. It can be concluded that the antioxidant activity of 

Api is preserved, moreover, slightly enhanced by the BSA. 

Conclusion 

In this study, novel apigenin containing albumin nano-

particles were prepared for inhalation against lung injury 

caused by oxidative stress. Apigenin was recently 

classified as a BCS II drug with prominent antioxidant 

and anti-inflammatory properties in the lung. The obtained 

results confirmed that incorporation of apigenin into the 

biocompatible albumin nanoparticles resulted in high 

encapsulation efficiency, and therefore, it could be an 

attractive tool for delivery. Moreover, the spray-dried 

nanoparticles possess good ability to redisperse in aqueous 

media and size of the particles was preserved in the 

nanometer size range. 

The influence of dispersibility enhancers on the physi-

cochemical properties and in vitro pulmonary deposition 

was investigated and compared to the excipient-free for-

mulation. The obtained in vitro pulmonary depositions 

proved that the developed BSA-NP dry powders are po-

tentially able to carry apigenin deep in the lung, reaching the 

respiratory zone. The use of novel excipient amino acid L-

leucine resulted in enhanced aerodynamic properties over 

the traditional lactose monohydrate, indicating that the na-

ture of the excipients and morphology of the particles play a 

significant role in the formulation of nanoparticles for pul-

monary delivery. In addition, the solubility and dissolution 

characteristics of apigenin from nanoparticles were deter-

mined in mSLF dissolution media, the cospray-dried ex-

cipients played an important role. 

The dissolution rate was increased by the water soluble 

lactose and decreased by L-leucine, which has low water 

solubility. Therefore, the use of excipients should be taken 

into consideration, and may not be required in case of al-

bumin nanoparticles. We further confirmed that the antiox-

idant activity is retained; thus, the potential of albumin 

nanoparticles as an effective pulmonary delivery system for 

flavonoids such as apigenin. 
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