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ARTICLE

A Balanced Route Design for Min-Max Multiple-Depot Rural
Postman Problem (MMMDRPP): a police patrolling case
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London, UK; bDepartment of Computer Science, University College London, London, UK

ABSTRACT
Providing distributed services on road networks is an essential concern
for many applications, such asmail delivery, logistics and police patrol-
ling. Designing effective and balanced routes for these applications is
challenging, especially when involving multiple postmen from distinct
depots. In this research, we formulate this routing problem as a Min-
MaxMultiple-Depot Rural Postman Problem (MMMDRPP). To solve this
routing problem, we develop an efficient tabu-search-based algorithm
and propose three novel lower bounds to evaluate the routes. To
demonstrate its practical usefulness, we show how to formulate the
route design for police patrolling in London as an MMMDRPP and
generate balanced routes using the proposed algorithm. Furthermore,
the algorithm is tested onmultiple adapted benchmark problems. The
results demonstrate the efficiency of the algorithm in generating
balanced routes.
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1. Introduction

Providing distributed services on road networks is an essential concern for many
applications, such as mail delivery, logistics and police patrolling. For example, a pro-
duction company may pick up materials from different places and deliver the products
to the customers. Similarly, a security service may manage the patrolling activities of a
region conducted by several police stations. Obviously, a well-designed route can
reduce the cost of the distributed service substantially. For these reasons, routing
problems have been an essential area of operations research, and are receiving increas-
ing attention in both research and applications (Dror 2000, Corberan and Laporte 2014).

Routing problems can be divided into two categories, namely node routing problems
(NRPs) and arc routing problems (ARPs). The major difference concerns where the
demands for service are located. In NRPs, the demands are on the nodes of the network,
hence the objective to traverse the nodes. In contrast, in ARP, the demands are on the
edges and the goal is to traverse the edges. Therefore, NRP and ARP require different
models of the network, and algorithms for one category cannot be directly applied for
the other.

The study of ARP dates back to Leonhard Euler and his notable Konigsberg seven-
bridge problem (Euler 1736). To date, ARP has evolved into a rich research area in
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combinatorial optimisation. Important applications of ARP include mail delivery, garbage
collection, snow removal and security guard patrolling. A thorough review of ARPs can
be found in Corberan and Laporte (2014), Dror (2000) and Eiselt et al. (1995). Since we
are dealing with applications where the demands are on the edges, such as police
patrolling, we will focus on ARP.

Two basic and important ARPs are the well-known Chinese Postman Problem (CPP)
and the Rural Postman Problem (RPP). Both problems are aimed at determining a
minimum length cycle for a single postman. The CPP requires that the complete edge
set E has to be covered at least once, and the RPP requires only a subset of E to be
covered.

The CPP/RPP has been generalised to use multiple postmen and have varying
objectives, as practically more than one postman or vehicle would be serving a med-
ium-size or large-size area. A common objective is to minimise the sum of all route costs
(Ulusoy 1985, Akyurt et al. 2015). However, minimising the sum of all route costs for
multiple postmen may be inefficient and unfair, as it neglects the workload distribution.
In the worst case, one postman would service all required edges while all other postmen
just leave the depot and return right away. Therefore, a balance objective that guaran-
tees similar route lengths for all postmen is preferable.

This balance objective can be represented by different functions. Degenhardt (2004)
and Osterhues and Mariak (2005) suggested functions that use a predefined allowed
time for each postman: minimum absolute deviation function minimising the sum of all
deviations from the allowed service time, minimum square deviation function minimis-
ing the square sum of the deviations from the allowed service time and minimum
overtime function minimising the sum of overtime for all postmen. These functions,
however, are limited to the applications where the allowed time can be predefined.
Furthermore, the balance objective can also be represented by minimising the deviation
of all route lengths from the average length. While this function does not require
predefined allowed service time, it may lead to excessively long and inefficient routes.
In the worst case, all postmen follow the same cycle to traverse all required edges, which
has the minimal route length deviation but is a waste of resources. Finally, Frederickson
et al. (1976) and Ahr and Reinelt (2002) proposed a min-max objective function to
minimise the length of the longest route. This function not only ensures the fair
scheduling and balanced routes but also increases the overall route efficiency and serves
the demands as early as possible (Ahr and Reinelt 2002). Thus, this paper focuses on the
min-max objective function.

The min-max RPP (MMRPP) or min-max CPP (MMCPP) has been studied by several
authors (Ahr and Reinelt 2006, Benavent et al. 2009, Willemse and Joubert 2012), but all
of them are limited to a single depot for all postmen. So far, there is no study on the
MMRPP/MMCPP in the multiple-depot case. This problem is, however, critical for cases in
which vehicles or postmen have to start from different depots and balanced task
distribution is required. As an example, in a city or a district, multiple police stations
are evenly located in the area in order to respond quickly to potential calls for service,
and police patrollers belong to different stations as well. To cover and monitor a set of
important locations in the area, the design of efficient patrol routes should consider two
factors: patrollers start from different stations before patrolling, and the patrol routes
should be balanced in order to avoid potential work overload and dissatisfaction.
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Therefore, it is necessary to study the combination of MMRPP/CPP and multiple-depot
RPP/CPP.

In the wider field of routing problems, a similar problem has been investigated, which
is called Min-Max Multi-Depot Vehicle Routing Problem (Carlsson et al. 2009), and a
linear programming-based algorithm for it was developed. However, as vehicle routing
aims at covering the nodes instead of the arcs in RPP/CPP, the algorithm is not
applicable for the multiple-depot RPP/CPP.

The aim of this paper is to formulate and solve the Min-Max Multiple-Depot Rural
Postman Problem (MMMDRPP), and to apply this problem to route design of police
patrolling. Here we use MMMDRPP to represent both MMMDRPP and MMMDCPP.
Specifically, our contributions are as follows:

● We introduce a new ARP, namely Min-Max Multiple-Depot Rural Postman Problem
(MMMDRPP), which can generate balanced routes for postmen from different
depots.

● We propose a routing algorithm TABU-PATROL that approximately solves
MMMDRPP.

● To approximate the optimal solution value of MMMDRPP, we propose three lower
bounds.

● We model the route design of police patrolling as the MMMDRPP, and demonstrate
how to design and choose routes for police patrolling in practice using the
proposed algorithm.

● We further test the TABU-PATROL algorithm with multiple benchmark routing
problems, and show that TABU-PATROL is robust to generate quality solutions on
different instances.

This paper is organised as follows. The next section reviews the approaches and
solution evaluations for MMRPP/MMCPP. In Section 3, we focus on the problem defini-
tion of MMMDRPP and present a tabu search algorithm to solve this problem. Following
that, we devise three innovative lower bounds and the solution evaluation for this
problem in Section 4. In Section 5, we demonstrate how to model the route design of
police patrolling using the MMMDRPP, and how to choose routes for implementation
using a case study in Camden. In Section 6, the proposed algorithm is further tested on
several benchmark problems. The final section summarises the major findings and future
research directions.

2. Background and related work

2.1. Approaches for min-max postmen problem

As MMMDRPP can be treated as a generalisation of MMRPP, approaches for MMRPP may
be adapted to solve MMMDRPP. In this part, we start with the computational complexity
of CPP/RPP/MMCPP/MMRPP, then review the existing approaches for the MMRPP, and
discuss their applicability to MMMDRPP.

CPP and RPP have different computational complexities. For CPP, the optimal solution
can be achieved in polynomial time from a matching algorithm (Edmonds and Johnson
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1973). In contrast, RPP is non-deterministic polynomial-time hard (NP-hard), implying
that it is computationally challenging to find the optimal solution in polynomial time
(Lenstra and Kan 1976). RPP can be approximately solved by a heuristic algorithm
developed by Christofides et al. (1981).

Both MMCPP and MMRPP are NP-hard. MMCPP is proved as NP-hard as the classic NP-
hard k-partition problem is reducible to MMCPP (Frederickson et al. 1976). Meanwhile,
MMRPP is NP-hard, as MMRPP with a single postman reduces to the classic RPP, which is
NP-hard. Since MMCPP is a special case of MMRPP, these two problems are very similar
in NP-hardness and solution approaches. For convenience, we use MMRPP to represent
both MMRPP and MMCPP. Approaches for MMRPP can be classified into three cate-
gories: exact approaches, approximation approaches and heuristic approaches.

Exact approaches are guaranteed to find at least one of the optimal solutions, but their
time complexity may be exponential (Bertsimas and Tsitsiklis 1997). As MMRPP is NP-hard,
the corresponding exact approaches are quite limited. Ahr (2004) proposed a branch-and-
cut algorithm for MMCPP, and Benavent et al. (2009) developed another branch-and-cut
algorithm for the MM k-Windy RPP. The MM k-Windy RPP is an extension of MMRPP in that
each edge is given different traversal costs for the two directions. The algorithm for MM
k-Windy RPP is capable of solving small- and medium-size instances with up to 78 required
edges in a few minutes (Benavent et al. 2009). However, these two approaches fail to solve
some difficult instances within specified time limits. Essentially, the excessive computation
time incurred by such exact methods does restrict their applicability to small problems
effectively excluding large-size and complicated problems, such as the route design of
police patrol in the road network in our application.

Approximation approaches provide a sub-optimal solution in polynomial time, along
with a bound on the degree of sub-optimality. The only such approach for MMRPP is the
7-approximation algorithm by Arkin et al. (2006). This algorithm aims at minimising the
length of the longest route. Assuming that the optimal solution value is λ*, this algo-
rithm receives a guess λ, and would either construct a solution with the cost at most
seven times λ or claim that λ is not a feasible solution value and λ is smaller than λ*.
Therefore, a binary search in combination with this procedure would lead to a solution
with the cost at most 7λ*. However, this algorithm assumes that the depot of each
postman is arbitrary, thus making it unsuitable for applications with a predefined depot
for each postman.

Heuristic algorithms usually generate a suboptimal solution without a guarantee on
its quality. Empirically, some of these algorithms return a good solution fast, although no
guarantee on the polynomial computation time. Given that MMRPP is NP-hard, most
solution strategies for these problems are based on heuristic or metaheuristic methods.
A typical process to solve MMRPP follows two stages: (1) a constructive method to
generate initial solutions, (2) a procedure to improve the solutions.

The first constructive method for MMCPP was proposed by Frederickson et al. (1976).
Subsequently, two methods for the same problem were proposed by Ahr and Reinelt
(2002): the Augment-Merge heuristic and the Cluster heuristic. These methods with
proper improved heuristics obtained a better solution in most instances than the
Frederickson heuristic. Later, a Parallel-Insertion method (henceforth referred to as PI)
was proposed to solve both MMCPP and MMRPP by Willemse and Joubert (2012).
Essentially, this algorithm generates multiple routes that traverse the required edges
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that are farthest from the depot, and then adds each untraversed required edge to an
existing route such that the resulting increase of route length is minimised. This is valid
if all tours share the same depot. However, in the case of multiple depots, this algorithm
may generate excessively long routes, thus making it unsuitable for MMMDRPP.

Most of the procedural improvements for MMRPP are based on the tabu search
approach. Tabu search attempts to iteratively find new solutions possibly with shorter
length of the longest route by reallocating the edges amongst routes.

Tabu search is a local search-based method used for mathematical optimisation. It
starts from a feasible solution and iteratively attempts to improve it by checking its
immediate neighbours, which are only slightly different from the current solution. To
avoid being stuck in suboptimal regions or areas with many equally fit solutions, tabu
search uses memory to guide the search, and discourages coming back to previously
visited solutions. At each iteration, worsening moves can be accepted if no acceptable
and improving move exists. Tabu search was proposed by Glover (1986), and a detailed
description of tabu search is given by Glover and Laguna (1997).

To improve solutions of MMRPP, Ahr and Reinelt (2006) devised a tabu search
procedure. Later, Willemse and Joubert (2012) introduced a tabu search algorithm
TABU-GUARD, which can be applied to both MMCPP and MMRPP. TABU-GUARD out-
performed the other strategies and achieved the best solutions for MMCPP test
instances. Moreover, it is the only existing solution algorithm for the MMRPP.

Meanwhile, tabu search methods have been applied to a similar problem to the MMRPP,
the Capacitated Arc Routing Problem (CARP). CARP is a generalisation of RPP, in which each
required edge is given a non-negative demand and must be traversed by a postman. CARP
aims at determining a set of closed walks with the minimum sum of edge weights, where
the sum of demands on edges traversed by each walk does not exceed the given capacity.

There are many tabu-search-based algorithms to solve CARP. Hertz et al. (2000)
developed a tabu search algorithm called CARPET to solve CARP, and later Greistorfer
(2003) proposed a tabu scatter search metaheuristic, which is a hybrid approach and is
competitive with CARPET. Moreover, a deterministic tabu search algorithm for CARP was
introduced by Brandão and Eglese (2008), which found best solutions for some bench-
mark instances. It is also worth noting that a tabu search algorithm using capacitated
trees has been proposed to solve the Multiple Centre CARP (Amberg et al. 2000).
However, as CARP is different from MMRPP, these existing algorithms cannot be applied
directly to MMRPP, or the MMMDRPP.

2.2. Solution evaluation for min-max postmen problem

Given that MMRPP is NP-hard, it is computationally unfeasible to find the optimal
solution. Typically, a solution of MMRPP is evaluated by comparing with the lower
bounds of MMRPP. Informally, an MMRPP is said to have a lower bound c if c is no
larger than the length of the longest route in any solution. To this end, we review the
lower bounds that have been developed for MMRPP and discuss how to adapt these
lower bounds for MMMDRPP.

Three lower bounds have been developed for MMRPP (Ahr and Reinelt 2002). First,
the Shortest Path Tour Lower Bound (SPT-LB) comes from the observation that in an
optimal solution, the farthest required edge from the depot must be traversed. Thus, the
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longest route must be no shorter than the shortest route to traverse u from the depot. In
the case of different depots, it is unclear which edge is the farthest from the depots.
Therefore, these lower bounds cannot be directly used for MMMDRPP.

Second, the CPP Tour Lower Bound is computed by finding the optimal 1-postmen
route and then divide the length by k. This lower bound is only valid for MMCPP, and the
MMRPP where the required edges constitute a connected sub-graph. To our knowledge,
there is no research on extending this lower bound for the MMRPP with disconnected R,
since it would involve solving the NP-hard RPP. Therefore, it is challenging to apply this
lower bound for MMMDRPP.

Third, the Integer Programming Relaxation Lower Bound (IPR-LB) is computed by
solving a relaxed linear programming formulation for MMRPP. This lower bound can
directly be applied for MMMDRPP, as it does not consider the depot nodes.

3. A TABU-PATROL algorithm for MMMDRPP

In this section, we first formulate the MMMDRPP, then briefly review the TABU-GUARD
algorithm for MMRPP and propose a TABU-PATROL algorithm for MMMDRPP, which is
based upon TABU-GUARD. Hereafter, we use the terms route and tour interchangeably.

3.1. Problem definition

In the formulation of MMMDRPP, a transportation network is represented as a con-
nected graph consisting of nodes and edges. Each node represents a street intersection
in the geographic space, and each edge between two nodes represents a street
segment with a travelling distance.

Each required edge must be traversed at least once by some route. A traversal is
defined as a pair (e, Ci), where e is an edge and Ci is a route. In a solution, an edge may
be traversed by multiple routes and for multiple times. To simplify the MMMDRPP
formulation, given a required edge e, we distinguish two types of traversal, namely a
service and a traversal without service. A service is randomly selected from all traversal
of e, and e must be serviced once and only once.

The MMMDRPP is defined as follows:
Input: A connected and undirected graph G with

● A set of nodes V, and a set of edges E,
● A set of required edges R ⊆ E,
● A non-negative distance function for edges f: E ! R�0,
● The number of postmen k and a list of k depots D. The depots may be different.

Output: A set of k closed routes, T.
Objective: Minimise the distance of the longest route of T.
Constraints:

● Closed route constraint: the kth route of T should be a closed route and traverse
the kth depot of D;

● Traversal constraint: each edge in R should be traversed at least once by T.

6 H. CHEN ET AL.
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A mathematical model of MMMDRPP is formulated as follows, which is adapted from
the MMRPP (Ahr and Reinelt 2002):

min L (1)

subject to:

L2R
þ (2)

X

e2E
w eð Þxi eð Þ þ w eð Þyi eð Þ � L; " i ¼ 1; . . . ; k (3)

xi eð Þ 2 0; 1f g; yi eð Þ 2 N0; " e 2 E; i ¼ 1; . . . ; k (4)

Xk

i¼1

xi eð Þ ¼ 1; " e 2 R (5)

X

eδ vð Þ
xi eð Þ þ yi eð Þ ; 0 mod2ð Þ; " v 2 V; i ¼ 1; . . . ; k (6)

xi δ Sð Þð Þ þ yi δ Sð Þð Þ � 2�xi eð Þ;" S# Vndi; e 2 E Sð Þ; i ¼ 1; . . . ; k (7)

The binary decision variable xi eð Þ equals 1 if edge e is serviced by tour Ci and e 2 R. The
integer variable yi eð Þ represents number of times that edge e is traversed by Ci without
being serviced. δ vð Þ denotes the set of edges that are incident to the node v, and δ Sð Þ
denotes the set of edges that have one and only one endpoint belonging to the node
set S. E Sð Þ denotes the set of required edges whose both endpoints belong to the node
set S. Lmax is defined as the positive length of the longest patrol route, and is expressed
by constraints (2) and (3). Constraint (5) guarantees that each required edge is serviced.
Constraint (6) enforces that each single route must be a closed walk. It requires that the
number of times any node is traversed by any route must be even. If the number is odd,
the route cannot form a closed walk. Constraint (7) ensures that the depot is traversed.
For any route and any sub-graph (S, E(S)) excluding the depot node, if any edge in the
sub-graph is serviced (xi eð Þ ¼ 1), this route must ‘enter’ or ‘leave’ the sub-graph at least
twice. Otherwise, the route will probably fail to contain its depot. For example, a route
would violate constraint (7) if it traverses only one required edge and excludes the
depot.

The integer program of MMMDRPP is extremely difficult to solve directly. Assuming
that there are m required edges (|R| = m) and k postmen, there would be approximately
2m sub-graphs and more than 2m � k inequalities from constraint (7).

The MMMDRPP is an NP-hard problem, which can be proved in two steps. First, the
MMRPP is NP-hard, as RPP reduces to MMRPP with a single postman, with RPP known to
be NP-hard (Lenstra and Kan 1976). Second, the MMRPP reduces to MMMDRPP with only
one depot.

A feasible solution for the MMMDRPP is a set T of k tours T = {C1,. . .,Ck}. We denote by
w(Ci) the length of a route Ci, which is the total length of its traversed edges. For a
feasible solution T, wmax(T) = max(w(Ci)) denotes the length of the longest route. The
objective of the MMMDRPP is to find a solution T* with the minimum wmax(T).
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SP(u,v) denotes the shortest path between two nodes u and v. This can be calculated
by Dijkstra’s algorithm (Dijkstra 1959). The shortest path between two edges e1 = (u1, u2)
and e2 = (v1, v2), which is called SP(e1, e2), is defined as the shortest path out of {SP(u1,
v1), SP(u1, v2), SP(u2, v1), SP(u2, v2)}. Note that SP(e1, e2) does not include e1 and e2.
Furthermore, SPR(e1, e2) denotes the set of required edges that are contained in SP
(e1, e2).

3.2. TABU-GUARD for MMRPP

TABU-GUARD was proposed to tackle MMRPP (including MMCPP) by Willemse and Joubert
(2012). This algorithm follows three stages: (1) generating multiple random initial solutions by
a PI method (see Introduction), (2) IMPROVE-SOLUTION, which iteratively attempts to shorten
the longest route by exchanging or reallocating edges between different routes, (3) TABU-
SEARCH, which further improves the solutions.

The TABU-SEARCH procedure has several components and different choices. First, in
terms of neighbourhood exchange procedures to create neighbouring solutions, there are
three choices: REMOVE-INSERT-NEIGHBOURHOOD (RIN); EXCHANGE-NEIGHBOURHOOD
(EN); a combination of RIN and EN (RINEN). Second, there are three tabu list strategies to
determine whether a move is forbidden: COMPLEX-TABU; SIMPLE-TABU; and SIMPLE-
AGGRESSIVE-TABU. Third, TABU-SEARCH has two parameters: the maximum number of
iterations with improvement tmax, and the tabu tenure α.

In the application of TABU-GUARD, the first step is to manually determine the
component combination and select parameter values. Given a set of problem
instances, nine different combinations of neighbourhood exchange procedures and
tabu list strategies are tested over all instances, with α ranging from 1 to 16 and tmax
fixed at 500. Then, the best three combinations with appropriate α range are chosen
and used.

TABU-GUARD is not readily applicable to MMMDRPP, as it does not consider multiple
depots. Specifically, if TABU-GUARD is used for MMMDRPP, the first step would be to
generate k routes by assigning each depot with the farthest required edge. However, the
resulting routes would be excessively long and overlap considerably with each other.
For example, assuming there are two depots d1 and d2 as well as a required edge e1,
where e1 is the farthest required edge to d1 and distance(d1, e1) > distance(d2, e1),
intuitively it would be more efficient to assign e1 to d2 rather than to d1. Therefore, it
is necessary to develop new algorithms that are well-suited to MMMDRPP.

3.3. TABU-PATROL for MMMDRPP

Here, we propose the TABU-PATROL algorithm for MMMDRPP. TABU-PATROL is influ-
enced by the TABU-GUARD, but it is different from TABU-GUARD in three aspects. First, it
includes two novel constructive methods to generate the initial routes, which are better
suited for the MMMDRPP than the PI of TABU-GUARD. Second, it contains only the most
efficient neighbourhood exchange procedures and tabu list strategy, which makes the
algorithm simpler than TABU-GUARD. Third, in contrast to the manual parameter selec-
tion in TABU-GUARD, TABU-PATROL uses an automatic and systematic parameter
selection.

8 H. CHEN ET AL.
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TABU-PATROL works in three stages (Figure 1). First, it produces a number of random
initial solutions by calling GENERATE-INITIAL-SOLUTION. Second, the initial solutions are
improved by calling IMPROVE-SOLUTION. Third, the solutions are further improved by a
SIMPLE-TABU-SEARCH procedure, which includes automatic parameter selection.

3.3.1. Stage 1: generating initial solutions
The first stage of TABU-PATROL is to generate a number of different initial solutions
using two new constructive methods. The first method, called TOUR-SPLIT-EXCHANGE
(referred to as TSE), follows the route-first-cluster-second paradigm (Prins et al. 2014). It
creates a giant tour to traverse all required edges, decomposes the tour into a given
number of sub-tours and then improves the routes by exchanging stations. The other
method, called CLUSTER-ROUTE-SPLIT (referred to as CRS), follows the cluster-first-route-
second paradigm (Prins et al. 2014). It firstly forms clusters of required edges based on
the distance to stations, then computes the tour to traverse the required edges within
each cluster, and further splits the tours if necessary.

TSE is illustrated in Figure 2. Firstly, it creates a single tour (called a 1-tour) that
traverses all required edges at least once. Constructing such a tour is an undirected Rural
Postman Problem, and can be near-optimally solved by the heuristic of Christofides et al.
(1981). The length of 1-tour is w(1-tour). The tour is encoded by the scheme of Willemse
and Joubert (2012), in which only required edges are explicitly represented per route
and it is assumed that the shortest path is used between consecutive required edges.
Thus, 1-tour is denoted as RPPT = {r1,SPR(r1, r2), r2, . . .., rn-1, SPR(rn-1, rn), rn, SPR(rn, r1)},

Figure 1. Flow chart of TABU-PATROL.
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where riR. Then, we simplify 1-tour by only retaining the first position of any duplicated
required edge.

Second, the obtained 1-tour is split into k partitions with similar lengths. Here, D0

denotes the list of unused depots, and initially D0 ¼ D. The first splitting node is selected
randomly on 1-tour, and then (k–1) splitting nodes are determined to divide the tour
into k approximately long segments {P1, P2, . . ., Pk}. The ith route {d, Pi, d} is formed by
finding the depot d from D0 such that length of the route {d, Pi, d} is (one of) the shortest,
and then d is removed from D0. This step is repeated k times to form k routes.

The resulting solution T = {C1,. . ., Ck} is feasible for the MMMDRPP, as all required
edges are traversed. It is then further improved by exchanging the depots between any
pair of tours. If the exchange reduces the longer tour length, the depots are exchanged
to form two new tours. This process is repeated until no improvements can be gained.

Since the first splitting node is chosen randomly and is different each time that TSE is
invoked, the TSE is capable of generating different initial solutions.

The second new method CRS is illustrated in Figure 3. Given the list of station as D,
We denote by Du = {d1,. . .,dm} the set of unique stations. For each i∈[1,m], ki is the
number of occurrences of di in D. Then, the set of required edges is divided into m
clusters {CL1, . . ., CLm} based on the shortest distance to the depots, and the ith cluster
corresponds to the ith depot di. Afterwards, for each cluster CLi, ki tours should be
formed such that each tour traverses di and each edge in CLi should be traversed at least
once. This sub-problem can be solved by invoking the TSE procedure. As the random
factor of TSE is brought into CRS, CRS is also capable of generating different initial
solutions.

Both TSE and CRS take into account the different depots for postmen. TSE generates
routes from different depots by assigning each partition of the 1-tour to the closest
depot, and by exchanging the depots of routes to further shorten the tour length. In this

Figure 2. Illustration of Tour-Split-Exchange (TSE).
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way, the generated routes may have similar lengths and contain edges that are close to
each other, as they are from a partition of the 1-tour. However, the route lengths are
affected by the depot-edge distance. Meanwhile, CRS deals with different depots by
assigning each required edge to the nearest depot before generating routes. It is
guaranteed that the generated routes contain edges in close proximity, but not neces-
sarily have similar lengths.

As TSE and CRS follow different paradigms, we cannot easily judge which method is
better. Therefore, we will use both of them in the TABU-PATROL, and select the one that
generates a better solution.

3.3.2. Stage 2: improving the initial solutions
The initial solutions from TSE and CRS may be excessively long and unbalanced, and will
be improved in Stages 2 and 3. At this stage, we apply the IMPROVE-SOLUTION
procedure developed by Willemse and Joubert (2012) without adjustment. IMPROVE-
SOLUTION iteratively attempts to improve a solution T by exchanging or reallocating
edges between different tours such that the longest tour is shortened. It terminates
when no improvement is obtained in the current iteration.

3.3.3. Stage 3: SIMPLE-TABU-SEARCH
In this stage, SIMPLE-TABU-SEARCH is called to find new solutions by reallocating the
edges in the current solution. SIMPLE-TABU-SEARCH used here is different from the
TABU-SEARCH algorithm in TABU-GUARD on two aspects. First, SIMPLE-TABU-SEARCH is
simpler and easier to use than TABU-GUARD, as it includes only one tabu list strategy
(SIMPLE-TABU) and only one exchange neighbourhood procedure (EN). SIMPLE-TABU
and EN are selected, as they perform the best in the tests by Willemse and Joubert

Figure 3. Illustration of Cluster-Route-Split (CRS).
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(2012) and our pilot tests. Second, parameters of SIMPLE-TABU-SEARCH are selected by
an automatic algorithm, which would lead to a non-biased parameter configuration and
solutions of higher quality. The manual parameter selection in TABU-GUARD is biased, as
it is usually guided by the personal experience of the users and is influenced by the
random factors in the experiments.

SIMPLE-TABU-SEARCH begins with constructing neighbourhood solutions by modify-
ing the initial solution. Then the neighbourhood solutions are examined and the best is
chosen for the next iteration. The chosen new solution may be better or worse than the
previous solution. However, the search may cycle by continuously moving back to the
visited solutions such as the local optimum, which hinders further progress. To tackle
this problem, SIMPLE-TABU-SEARCH uses a tabu list to keep track of the recent neigh-
bourhood moves, which are called tabu moves. Each tabu move is stored for a certain
number of iterations and would ‘expire’ and be removed from the list. If a new
neighbourhood solution comes from a move that coincides with any tabu move, it
cannot be chosen. However, if no non-tabu neighbourhood solutions exist, the algo-
rithm may move to a neighbourhood solution that comes from a tabu move but has
better performance than the best solution ever found. The best solution found is called
the incumbent solution, and is tracked in the search. SIMPLE-TABU-SEARCH ends when
no non-tabu neighbourhood solution is available and no neighbourhood solution that
outperforms the incumbent solution exists. Finally, SIMPLE-TABU-SEARCH returns the
incumbent solution. Later, we present details on essential components of SIMPLE-TABU-
SEARCH.

Constructing neighbourhood solutions. SIMPLE-TABU-SEARCH constructs neighbour-
hood solutions using EN, which removes an edge from one tour and adding it to
another tour. EN is applied to two tours at a time: the longest tour Ci, and any other
tour Cj. It removes an edge u from Ci and another edge v from Cj, and then inserts u into
Cj and v into Ci by calling INSERT-ARC (Willemse and Joubert 2012) to form a new
solution. This process is repeated for any two-edge combination with u of Ci and v of Cj.
Then, the overall best solution and the best non-tabu solution obtained from this
process is improved by IMPROVE-SOLUTION and returned. SIMPLE-TABU-SEARCH will
move to the overall best solution if it outperforms the incumbent solution, or otherwise
move to the best non-tabu neighbouring solution.

Tabu list and stopping criteria. The tabu list is updated in each iteration. After moving
to a neighbourhood solution Tnew, SIMPLE-TABU-SEARCH adds to the tabu list the edges
u and v that have been moved to create Tnew. Any move that involves edge u or v leads
to a tabu solution. This tabu list strategy is called TABU-SIMPLE (Willemse and Joubert
2012). The edges u and v will be removed from the tabu list after a predefined number
of iterations (tabu tenure) have passed.

SIMPLE-TABU-SEARCH has two stopping criteria. First, it terminates if all neighbour-
hood solutions are tabu and the overall best neighbourhood solution does not outper-
form the incumbent solution. Second, it terminates if the incumbent solution has not
improved after a predefined number of iterations. After SIMPLE-TABU-SEARCH termi-
nates, the incumbent solution is returned as the improved solution.

12 H. CHEN ET AL.
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Parameter configuration. SIMPLE-TABU-SEARCH has two parameters: the maximum
number of iterations with improvement tmax, and the tabu tenure α. As the initial
solutions involve randomness, it is challenging to find the best parameters of SIMPLE-
TABU-SEARCH to improve different initial solutions. Therefore, the parameter tuning
requires repeated experiments and statistical testing. This task is an instance of the
algorithm configuration problem, and can be solved by iterated racing (Balaprakash
et al. 2007, López-Ibáñez et al. 2016).

Iterated racing is a method for automatic configuration, which consists of three steps:
sampling new configurations according to a particular distribution; selecting the best
configurations from the newly sampled ones via racing; and updating the sampling
distribution in order to bias the sample towards the best configurations. These steps are
repeated until a termination criterion is met: reaching a minimum number of surviving
configurations, a maximum number of used instances or a predetermined computa-
tional budget. More details of iterated racing can be found in López-Ibáñez et al. (2016).

4. Algorithm evaluation for MMMDRPP

Since MMMDRPP is NP-hard, we propose three lower bounds to approximate the
minimum longest route length. Then, a solution for MMMDRPP is evaluated in terms
of its lower bound gap (LBG), in comparison with the tightest lower bound. Given TABU-
PATROL and similar algorithms involving randomness, its efficiency should be evaluated
based on different solutions from it. We will run the algorithm multiple times and use
the Best lower bound gap (LBP) and Mean LBP of the solutions, and the execution time
to evaluate the efficiency of the algorithm.

Here, we introduce the lower bounds. The first lower bound is called the SPT-LB,
which is adapted from STP-LB for MMRPP. For any required edge e, there must be a
nearest depot from D and a shortest path length, SPT eð Þ ¼ min

d2D
w SP d; eð Þ; e; SP e; dð Þð Þ: In

an optimal solution, each required edge has to be traversed, and the route to traverse e
is no shorter than SPT eð Þ. Thus, the longest route in an optimal solution must be no
shorter than the max

e2E
SPT eð Þ:

The second lower bound, the IPR-LB is obtained by solving the relaxed integer
programming problem of MMMDRPP without the constraint (7). This lower bound is
the same as IPR-LB for MMRPP, as the different depot nodes are not considered.

The third lower bound is called the Rural Postman Tour Lower Bound (RPT-LB). The idea is
to create a rural postman tour using the optimal solution T* = {C1,. . .,Ck} to the MMMDRPP.
Let wmax(T*) be the length of the longest tour of T*. Then, we can generate a shortest cycle
to traverse all depot nodes at least once, which is the well-known Travelling Salesman
Problem, and can be near-optimally computed by an approximation algorithm (JGraphT
2017), with the approximation ratio of 2. That is, if the shortest cycle and the calculated cycle
are C* and C0; respectively, we can prove that w(C*) ≤ w(C0) ≤ 2 � w(C*). Then, we can
combine the tours of T* and C* to construct a connected and larger tour T0, withw(T0) =w(T*)
+w(C*)≤ k *wmax(T*)+w(C0). As T0 traverses all required edges of E, it is a feasible solution to
the RPP on G = (V, E, R) with one postman (referred to as 1-RPP). Moreover, this 1-RPP can be
near-optimally solved by the algorithm of Christofides et al. (1981), with an approximation
factor of 3/2. Let RPPT* be the optimal RPP tour and RPPT0 the obtained RPP tour, and it
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exists that w(RPPT*) ≤ w(RPPT0) ≤ 3/2 * w(RPPT*). As T0 is a feasible solution to the 1-RPP,
thenwe havew(T0) ≥w(RPPT*) ≥ 2/3 *w(RPPT0). It is not difficult to prove that k *wmax(T*) ≥
w(T0) – w(C0) ≥ 2/3 * w(RPPT0) – w(C0), hence [2/3 � w(RPPT0) – w(C0)]/k is a new lower bound
for the MMMDRPP.

To evaluate the quality of a solution T, we use the LBG, which is defined as

LBG Tð Þ ¼ wmax Tð Þ �maxLB
wmax Tð Þ (8)

where wmax(T) is the length of the longest route in T, maxLB is the tightest lower bound
for the given problem. The range of LBG(T) is (0,1), and a lower value indicates higher
solution quality.

Based on different solutions generated by TABU-PATROL or similar algorithms, we
can calculate the Best LGB and Mean LGB. An algorithm with lower Best LBG and
lower mean LBG is more efficient than others. Moreover, as time constraint is
essential in applications, an efficient algorithm should generate quality solutions
within acceptable time.

5. Case study: balanced routes for police patrolling in Camden

In Sections 5 and 6, we use different MMMDRPP cases to test and evaluate the TABU-
PATROL with three constructive methods (TSE, CRS and PI). Here, the PI method is
adjusted and used as a baseline method, as follows: for each depot d∈D, it creates a
route {d, SPR(d,r), r, SPR(r,d), d} by finding the untraversed required edge r that is furthest
from d. Then, it adds the remaining untraversed required edges to an existing tour that
results in the minimum route length increase.

Here, we illustrate using TABU-PATROL to develop patrol routes from multiple sta-
tions in Borough Camden in northwest Inner London. Camden is policed by the
Metropolitan Police Service, and during 2011 and 2012 it had five major police stations.
As is indicated by MPS, there are different types of officers, including foot patrol officers,
community support officers and senior officers. The responsibility and tasks of officers
vary with their types, and we select foot patrol officers for this study, as their main task is
to patrol and cover the area. The patrol activity in a day is divided into three shifts (i.e.
early, late and night shift), each lasting for about eight hours. In each shift, foot patrollers
are dispatched to patrol the environment and to cover some important locations.

The purpose of this case is to generate routes for patrolling Camden with a group of
patrollers from different stations, in order to balance the route length amongst patrol-
lers. To illustrate the balanced patrol routes, we assume the number of patrollers as five
and ten, which means one and two patrollers from each police station, respectively. We
also assume that the police patrollers are dispatched to cover the crime hotspots in
Camden (see Figure 4). Here, 69 street segments have been identified as crime hotspots
that have the highest crime density and covering 1% of the total road length. The time
duration of crimes used is from March of 2011 to March of 2012, and the types include
theft, burglary, homicide, battery, arson, motor vehicle theft, assault and robbery.

All algorithms described in Sections 3 and 4 were coded in Java version 1.8.0_66 and
run in Java SE Runtime Environment and on two 3.60 GHz Intel® Core™ i7 CPUs with 32.0
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GB of RAM. The integer programming of IPR-LB was solved by 64-bit Gurobi Optimizer
version 6.5.2 (Gurobi Optimization Inc. 2016). Parameter configuration was conducted in
R environment version 3.2.2 (R Core Team 2015) and the irace package version 2.1.1662
(López-Ibáñez et al. 2016). Data analysis was also performed in R environment.

5.1. Computational results

Here, we first discuss how to use TABU-PATROL to generate patrolling routes, and then
evaluate the solutions using the Best LGB, Mean LGB and execution time. Afterwards, we
demonstrate the routes from TABU-PATROL on the road map.

TABU-PATROL generated ten different initial solutions for 5 and 10 patrollers by using
three constructive methods (TSE, CRS and PI), and then improved the solutions by
calling IMPROVED-SOLUTION and SIMPLE-TABU-SEARCH.

The parameter configuration of SIMPLE-TABU-SEARCH was selected by the iterating-
racing algorithm from the IRACE package. Both parameters, tmax and α are treated as
categorical variables, with the range of {100,200,300,400,500,600,700} and {1, 2, .., 15},
respectively. These ranges are selected based on the TABU-GUARD algorithm and some

Figure 4. Crime hotspot map of Camden, London.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 15

D
ow

nl
oa

de
d 

by
 [

U
C

L
 L

ib
ra

ry
 S

er
vi

ce
s]

 a
t 1

0:
11

 2
5 

O
ct

ob
er

 2
01

7 



pilot experiments. The evaluation measure used by iterated racing is LBG. Up to 300
experiments are performed in the iterated racing. The parameter configuration was
conducted on each combination of constructive method and k. Table 1 shows the
best configuration for each algorithm and k. The best configurations differ from case
to case. Overall, the best performance of SIMPLE-TABU-SEARCH is obtained using a high
value of tmax and medium value of α.

Before evaluation, we calculate the three MMMDRPP lower bounds for patrolling
Camden with the patroller number k as 5 and 10, as is reported in Table 2. All results are
given in metres and the tightest bounds are in bold, and the column Tightest in Table 2
indicates the tightest lower bound of the three. SPT-LB does not consider k and hence
does not change with k, whereas IPR-LB and RPT-LB decrease as k increases. For both k,
SPT-LB is the tightest lower bound, probably because of an edge that is very far away
from all depots. For clarity, in the remainder of this paper Lower Bound or LB refers to
the tightest lower bound for the given k.

Tables 3 and 4 show the results of Best LBG and Mean LBG in Camden using three
methods and after three stages. For all methods, large LBGs were observed in the initial
solutions. The solution quality was slightly improved after using IMPROVE-SOLUTION,
and then considerably improved after SIMPLE-TABU-SEARCH. From Table 2, when k = 5,
in the initial solutions, the mean LBG was the lowest with TSE, and the highest with PI. In
the final solutions, TSE performed the best, in terms of both Best LBG and Mean LBG,
while PI produced the worst solutions with the highest Best LBG and Mean LBG. The
performance of CRS is slightly better than PI. Large lower bound gaps were still observed

Table 1. Best parameter configuration for each combination of (method, k).
(Method, k) (TSE, 5) (TSE, 10) (CRS, 5) (CRS, 10) (PI, 5) (PI, 10)

α 9 7 12 6 9 5
t 500 700 700 600 600 700

Table 4. Summary of 10 solutions for k = 10 in Camden using three methods.
TSE CRS PI

Best LBG Mean LBG Best LBG Mean LBG Best LBG Mean LBG

Initial 0.292 0.395 0.420 0.526 0.710 0.711
Improved 0.231 0.367 0.393 0.513 0.710 0.711
Final 0.128 0.188 0.086 0.121 0.196 0.513

Table 3. Summary of 10 solutions for k = 5 in Camden case using three methods.
TSE CRS PI

Best LBG Mean LBG Best LBG Mean LBG Best LBG Mean LBG

Initial 0.600 0.631 0.643 0.648 0.765 0.781
Improved 0.579 0.611 0.642 0.645 0.764 0.779
Final 0.437 0.453 0.443 0.508 0.446 0.567

Table 2. Lower bounds for Camden hotspot map (in metres).
k SPT-LB IPR-LB RPT-LB Tightest

5 4748 1554 2259 4748
10 4748 784 1129 4748
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in the final solutions. This may be partly explained by the weak lower bound in this case,
which may be much lower than the true value.

When k increases to 10, we observe a different comparison of three algorithms.
Overall, both TSE and CRS significantly outperformed PI. The final solutions of CRS
were better than TSE, although the initial solutions of CRS were not the best.

Table 5 compares the execution time for three algorithms in the Camden case. Both TSE
and CRS are capable of generating 10 different solutions within 200 s, which is very time-
efficient. Although PI is quicker than TSE and CRS, PI performs the worst in terms of solution
quality.

To visualise the patrolling routes, we show the initial and final solutions by TSE and CRS
with 10 patrollers on the road map (Figure 5). Each colour represents the route of a
patroller, and the colour of the route overlap is randomly selected from the overlapped
routes. When using TSE, the routes in the initial solution constitute a giant tour to traverse
all required edges, and the routes have considerable overlaps. In the final solution, the
overlap of routes has been significantly reduced, and the route lengths have become much
more balanced. Moreover, each new route is compact and is restricted to a small area,
which is suitable for patrolling operation. In contrast, in the initial solution by CRS, each
route only traverses the required edges that are adjacent to the station, and visually the
route lengths are distinct and unbalanced. In the final solution, the new routes become far
more balanced and less overlapped, while the compactness of routes is retained. The
results reveal the difference of TSE and CRS in generating initial routes, and also acknowl-
edges the effectiveness and efficiency of the SIMPLE-TABU-SEARCH algorithm in balancing
the routes, alleviating route overlaps and keeping the routes compact.

5.2. Applying TABU-PATROL in practice

Here, we discuss how to apply TABU-PATROL in practice. In practice, route planners of
police can use TABU-PATROL to generate efficient patrol routes. First, route planners
decide the available patrollers, and then use TABU-PATROL with TSE and CRS to gen-
erate a sufficiently large set of solutions. The number of solutions depends on the time
constraint, and as is shown in the case study, generating 10 solutions is a good trade-off
between execution time and solution quality. Second, the generated solutions are
evaluated by the LBG, and a subset of solutions with the lower LBG is chosen. Third,
these chosen solutions can be visualised on the geographical information system (GIS)
to view the spatial extent and the traversed area of each route. Route planners can
evaluate the feasibility of these routes, based on their knowledge and experience of
policing and the local area. Fourth, route planners can now choose one or several
feasible solutions, the sequence in which they are implemented, and which routes

Table 5. Summary of execution time for generating 10 solutions on
Camden case with three methods (in seconds).

TSE CRS PI

k = 5 193 191 131
k = 10 84 49 42

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 17

D
ow

nl
oa

de
d 

by
 [

U
C

L
 L

ib
ra

ry
 S

er
vi

ce
s]

 a
t 1

0:
11

 2
5 

O
ct

ob
er

 2
01

7 



should follow a clockwise or anti-clockwise direction. If there are multiple patrolling
shifts in the day, route planners can choose a different solution for each shift, which
makes the patrolling routes unpredictable and flexible (Willemse and Joubert 2012).

6. Another case study using benchmark problems

For further testing of TABU-PATROL, we tested the algorithm on eight problem instances
that are originally proposed for CARP by Li and Eglese (1996). These benchmark
instances have been intensively adopted in CARP (Belenguer et al. 2006, Brandão and
Eglese 2008) and MMCPP/MMRPP (Ahr 2004, Ahr and Reinelt 2006, Willemse and Joubert
2012). The original instances entail demands on edges and only one depot, and are
adapted for MMMDRPP as follows. First, as MMMDRPP do not model edge demand, the
edge demands are omitted. Moreover, a list of 10 depots is added to each instance to
form the new MMMDRPP problems, which are called md-egl-**. The depot list of md-
egl-e* and md-egl-s* instances is {1, 51, 31, 42, 12, 1, 51, 31, 42, 12}, and {1, 40, 32, 98, 3,
1, 40, 32, 98, 3}, respectively. The new depots are chosen to be evenly distributed in the

Figure 5. Comparison of the initial and final solutions of TSE and CRS with k = 10 in Camden.
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network. To our knowledge, this is the first work on the MMMDRPP benchmark
problems.

For each instance, TABU-PATROL generated and improved five different solutions
for each k = 2,. . .,10. The initial solutions are generated using TSE, CRS and PI,
respectively. Each method is coupled with the best SIMPLE-TABU-SEARCH parameter
configuration for the Camden case and k = 10 (see Table 2). Table 6 reports the
average of the mean lower bound gap and execution time over different k. For the
complete results, please contact the authors. For the benchmark problems, either TSE
or CRS produced the best-quality solutions, except for the md-egl-e1 instance. The
worst LBG for TSE and CRS was 0.150 and 0.161, respectively, whereas the worst LBG
for PI was 0.440. Overall, these methods have similar execution time on md-egl-e*
problems, whereas on md-egl-s* problems, TSE is slower than CRS and PI. As CRS
produces high-quality solutions within reasonable execution time, this method is
ideal when good solutions have to be generated under time constraints. If there is
no time constraint, it is recommended to test TSE and CRS to solve the MMMDRPP
and choose the better results.

7. Conclusions and future work

This research presented MMMDRPP, which seeks balanced routes from different depots to
cover a road network. This problem is challenging because of the constraint of multiple
depots and the objective to minimise the length of the longest route. To solve this
problem, we proposed a novel TABU-PATROL algorithm, which follows three stages to
generate and improve the routes using tabu search. To approximate the optimal solution
value, we devised three lower bounds for this problem, namely SPT-LB, IPR-LB and RPT-LB.
Then, we measure the solution quality by using the LBP, and measure the algorithm
efficiency by using the best LBP and the mean LBP of its multiple solutions.

In the case study, we demonstrated how to model the route design of police
patrolling as the MMMDRPP, and used TABU-PATROL to generate balanced routes. The
results showed that TABU-PATROL can generate quality solutions within reasonable
time. In TABU-PATROL, we used three methods (TSE, CRS and PI) to generate the initial
routes. With 5 patrollers, TSE generates better solutions (with shorter longest routes)
than CRS and PI, while with 10 patrollers CRS outperforms TSE and PI. We conclude that
TSE and CRS can generate better solutions than PI. In terms of lower bounds, for both 5

Table 6. Results of TABU-PATROL with three constructive methods on MMMDRPP of eight adapted
benchmark problems.

TSE CRS PI

V E R Mean LBG Time(s) Mean LBG Time(s) Mean LBG Time(s)

md-egl-e1 77 98 47 0.145 13.3 0.161 14.6 0.140 16.6
md-egl-e2 77 98 72 0.140 39.4 0.111 37.9 0.193 39.4
md-egl-e3 77 98 87 0.133 78.1 0.118 72.1 0.215 73.1
md-egl-e4 77 98 98 0.123 159 0.134 144 0.440 148
md-egl-s1 140 190 115 0.150 56.1 0.143 44.3 0.247 48.1
md-egl-s2 140 190 147 0.122 414 0.130 326 0.254 317
md-egl-s3 140 190 159 0.118 520 0.123 416 0.261 402
md-egl-s4 140 190 190 0.062 847 0.074 683 0.202 667
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and 10 patrollers, the SPT-LB is the tightest of the three. We also discussed how to apply
TABU-PATROL in practice.

Furthermore, the TABU-PATROL algorithm was tested on several adapted benchmark
problems, and results showed that TABU-PATROL was robust enough to generate
quality solutions on different instances.

The TABU-PATROL algorithm proposed here is applicable to applications that involve
multiple vehicles from different depots in order to service a set of edges in a road network
with balanced routes. Whilst we opted to use the case of patrolling crime hotspots to
demonstrate its utility, the algorithm can be used to generate routes in fields such as delivery
from multiple warehouses, snow removal work (Li and Eglese 1996) and routing of estate
security guards (Willemse and Joubert 2012).

In police patrolling, there exist opportunities to improve patrolling of an area even
further. Most notable are increasing the visibility of patrolling and dynamic routing.
Patrolling may have different and multiple goals. Besides covering the required loca-
tions, patrollers are required to increase their visibility to the public in order to increase
public confidence in policing. The task of generating patrol routes to satisfy multiple
goals can be modelled as a multiple-objective optimisation problem. This could be a
direction for further research.

The patrolling process is complex and dynamic. Patrollers would have to stop patrolling
and respond to calls for service if necessary. In this situation, the patrolling tasks should be
reallocated among patrollers and the planned routes should be adjusted within a short
time. Therefore, this new problem needs to be formulated and solved, which is also a
direction for future research.
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