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Summary

We propose a novel Bayesian nonparametric process prior for modelling a collection of random

discrete distributions. This process is defined by including a suitable Beta regression framework

within a Generalised Dirichlet Process to induce dependence among the discrete random dis-
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tributions. This strategy allows for covariate dependent clustering of the observations. Some

advantages of the proposed approach include wide applicability, ease of interpretation, and avail-

ability of efficient MCMC algorithms. The motivation for this work is the study of the impact

of asparginage metabolism on lipid levels in a group of pediatric patients treated for acute lym-

phoblastic leukaemia.

Key words: Bayesian Nonparametrics; Beta regression; Generalised Dirichlet Process; dependent random

probability measures; stick-breaking processes.

1. Introduction

Very often real world applications involve observational data that are collected in groups or

clusters that can be characterised, for example, by spatial or temporal coordinates, as samples

from the same experimental unit, or more generally by shared levels of covariates. While the

groupings may be known at the time of data collection, some clustering may be unobserved.

While covariates may allow consolidation of observations into subgroups, unobserved factors may

also lead to latent clusters. Learning about these latent clusters in the presence of measured

covariates may provide insight into underlying mechanisms. An example, the one that motivated

this research, is the analysis of longitudinally collected measurements with the goal of learning

about temporal relationships and how patient characteristics may affect these associations. This

study sought to learn about the relationship between levels of an anti-cancer drug (asparaginase),

administered corticosteroids (dexamethasone), and alterations of circulating lipids. Asparaginase

is used to treat children with acute lymphoblastic leukaemia (ALL). Osteonecrosis, a condition

that leads to bone cell death and pain, occasionally occurs as a result of anti-ALL therapy.

Complex relationships between asparaginase and dexamethasone on albumin and triglycerides

may affect a patient’s risk of osteonecrosis. We wanted to model trajectories of triglyceride levels
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and their relationships with asparaginase activity and albumin to improve our understanding of

the relationship and the ability to predict these trajectories.

In settings with spatially or temporally grouped measurements, a common strategy is to

model the data by introducing random effects to account for the correlation of the observations

within each group. The main consequence of this approach is that the parameters shared by all

clusters are robustly estimated. Generalised linear mixed models are an example in the regression

framework. Common distributions for random effects are e.g. normal distributions or Student-t

distributions, but these may be too restrictive in some circumstances. A variety of solutions have

been presented as more flexible alternatives. Among these proposals, nonparametric techniques,

such as infinite mixture models, are gaining popularity. The most general proposals for random

effects’ distributions assume an infinite mixture model for groups of observations and introduce

dependence among the parameters of the mixture models (i.e., the weights and/or the locations).

Each infinite mixture model is a convolution of a parametric density kernel with a discrete random

probability measure that has (a priori) an infinite number of locations and weights. Thus, the

problem of inducing dependence among the infinite mixture models can be rewritten in terms of

the dependence among the discrete random probability measures indexed by the different groups

or clusters of observations.

A seminal contribution in this field is the extension of the Dirichlet process (DP, Ferguson

(1973)) called the dependent DP (DDP, MacEachern (1999) and MacEachern (2000)). The DDP

is constructed in such a way that each group of observations is distributed as a DP. The random

effects’ distributions thereby become DP mixture models (DPM, Lo (1984)) and the observations

are implicitly clustered by belonging to different mixture components of the sampling model.

Dependence among the different DP probability measures is induced by specifying convenient

stochastic process priors indexed by the groups of observations, leading to group-specific weights

and locations. One can specify such models by enriching the structure of the stick-breaking
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representation of the DP presented by Sethuraman (1994).

Recently, a large number of extensions of the DDP have been introduced to incorporate

covariates. These contributions may be classified in two groups. One group is a variation of the

DDP in which only the locations of the discrete random measures are indexed by the covariate

space (De Iorio and others (2004), De Iorio and others (2009), Gelfand and others (2005), among

the others). Most of the proposals that belong to this group preserve the DP marginals, as

happens for the DDP. The second group of variations of the DDP has the weights indexed by the

covariate space but maintains common cluster locations across covariate levels. Some examples

include the works of Griffin and Steel (2006), Rodriguez and Dunson (2011), Ren and others

(2011), Dunson and Park (2008) and Karabatsos and others (2012).

Alternative solutions introduce dependence within the more general construction of the dis-

crete random measures based on Poisson random measures (Kingman (1967)). See for instance

the works of Müller and others (2004), Griffin and Leisen (2017) and Lijoi and others (2014).

In this paper, we propose a novel approach that generalises the DDP by MacEachern (2000)

by assuming that the discrete random measure associated with each group of observations is

distributed according to a Generalised Dirichlet Process prior (GDP, Hjort (2000)). The GDP

employs a richer parametrisation compared to the usual DP and, for this reason, allows more

flexibility. The dependence among the different random measures is induced by specifying a

convenient prior for the weights of the measures, while assuming the locations to be the same

across all groups of observations (although alternatives with also covariate dependent locations

can be easily specified). We call the resulting process the Dependent Generalised Dirichlet Process

(DGDP). The DGDP has a better control of the implicit partition of the observations defined

by the different mixture components compared to the DDP’s case in terms of the distributions

of number and size of the clusters. The law of the partition induced by samples from a GDP

can be derived analytically allowing for a better interpretation of that quantity and an increased
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number of computational strategies compared to other processes where this cannot be derived.

Furthermore, including the covariates within the weights of the process, the DGDP leads to

improved predictive power compared to processes including covariate information only within

the locations (Cruz-Marcelo and others (2013)).

We use the DGDP in order to consider potential (latent) groupings of patients over and

above groupings based on measured covariates including less restrictive prior distributions, while

preserving computational simplicity.

The paper is organised as follows. Section 2 reviews the main properties of the GDP and

presents some new results. In Section 3, we introduce the DGDP and we present two possible

MCMC algorithms for posterior inference in Section 4. The analysis of the ALL data with the

DGDP is in Section 5. We conclude with a discussion in Section 6. Proofs and details of two

MCMC algorithms for posterior inference are deferred to Supplementary Material.

2. Generalised Dirichlet Process

2.1 Definition

Let us consider a measurable space (Θ,A) and an associated probability measure G ∈ G. We

say that G is distributed according to a Generalised Dirichlet Process (GDP, Ishwaran and

James (2001); Hjort (2000)) with parameters φ = {φh}∞h=1 (with each element belonging to R+),

µ = {µh}∞h=1 (with each element belonging to (0, 1)), and centrecentre measure G0 (a non-atomic

probability measure on Θ) if it admits the following stick-breaking representation:

G =

∞∑
h=1

Whδθh , (2.1)

where {θh}∞h=1
iid∼ G0 and {Wh}∞h=1 are constructed via the stick-breaking procedure. The proce-

dure involves a sequence of random variables {Vh}∞h=1 taking values on (0, 1). Common practice

is to assume these are Beta distributed, which we do here. We specify the Beta density function
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as

P[Vh ∈ dvh | φh, µh] =
Γ(φh)

Γ(φhµh)Γ(φh(1− µh))
vφhµh−1
h (1− vh)φh(1−µh)−1dvh,

where µh = E[Vh] and φh = µh(1 − µh)/V[Vh] − 1, with E[·] and V[·] denoting the expectation

and variance operators, respectively. Thus, we assume {Vh}∞h=1
ind∼ Beta(vh | φhµh, φh(1− µh)),

independent from {θh}∞h=1, and we specify the infinite sequence of weights setting W1 = V1 and

obtaining the other weights as

Wr = Vr

r−1∏
l=1

(1− Vl), r = 2, 3, . . . . (2.2)

The resulting measure, G, is a proper random distribution function. Indeed it can be easily verified

that
∑∞
h=1 E[log(1− Vh)] = −∞, which is a necessary and sufficient condition for

∑∞
h=1Wh = 1.

(See Ishwaran and James (2001) for a detailed proof). We write G ∼ GDP(φ,µ, G0).

A more parsimonious formulation of the GDP, described by Hjort (2000), assumes {φh}∞h=1 =

φ and {µh}∞h=1 = µ; we denote it as GDP(φ, µ,G0). In Section S.1 of Supplementary Material we

include a plot with the cumulative distribution functions of realisations from a GDP.

As the name suggests, the GDP generalises the well-known Dirichlet Process (DP, Ferguson

(1973)), which can be specified by a GDP with {φh = µ−1h }∞h=1 and {µh}∞h=1 = µ.

2.2 Moments

If G ∼ GDP(φ,µ, G0), we have that

E[G(A)] = G0(A).

The variance of G(A) is given by

V[G(A)] = (1−G0(A))G0(A)E

[ ∞∑
h=1

W 2
h

]
. (2.3)
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The expectation in the last equation cannot be computed explicitly, unless we consider the

constant-parameter case GDP(φ, µ,G0). With constant parameters, Hjort (2000) showed that

E

[ ∞∑
h=1

W 2
h

]
=

E[V 2]

2E[V ]− E[V 2]
,

where V is a Beta random variable with parameters (φµ, φ(1−µ)). Thus, E[V ] = µ and E[V 2] =

µ(1− µ)/(φ+ 1) + µ2.

Hjort (2000) discussed also the computation of higher order moments of G(A) to demonstrate

the extra flexibility gained by the richer parameterisation employed by the GDP, compared to

the DP.

2.3 Distributional sampling properties

We now derive some properties of the GDP. Consider G as in (2.1). Because G is discrete, a

sample (θ1, . . . , θn) from G induces a random partition of the set {1, . . . , n} into Kn = k blocks

with frequencies (N1, . . . , NKn
) = (n1, . . . , nk). We denote by p(n1, . . . , nk) the probability of

any particular partition of {1, . . . , n}, with k blocks and block-specific frequencies (n1, . . . , nk). In

Definition 4 of Pitman (1995) this is referred to as the partially exchangeable partition probability

function. Under the GDP with constant parameters, an application of Corollary 7 of Pitman

(1995) leads to an explicit expression for p(n1, . . . , nk), i.e.

p(n1, . . . , nk) (2.4)

= E

[(
k∏
h=1

Wnh−1
h

)
k−1∏
h=1

(
1−

h∑
i=1

Wi

)]

=
(φ(1− µ))k−1

(φ)(n−1)

k−1∏
i=1

(φ(1− µ) + 1)(
∑k

j=i+1 nj−1)

(φ)(
∑k

j=i+1 nj−1)

k∏
i=1

(φµ)(ni−1),

where (a)(b) = a(a+1) · · · (a+b−1) is the rising factorial number. We note that if we set φ = µ−1,

then the first product over i in (2.4) cancels, leading to a symmetric distribution with respect

to the frequencies ni’s. In other term if φ = µ−1 then (2.4) becomes an exchangeable partition
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probability function. This is the celebrate Ewens partition probability function (Ewens (1972))

induced by a sample drawn from a Dirichlet process (Blackwell and MacQueen (1973)).

According to the theory of partially exchangeable random partitions developed in Pitman

(1995), (2.4) characterises the predictive probabilities of the GDP with constant parameters. See

Proposition 10 in Pitman (1995). In particular, consider a sample of size n from a GDP(φ, µ,G0)

and assume that it induces a partition of {1, . . . , n} into Kn = k blocks, labelled by θ∗1 , . . . , θ
∗
Kn

,

with corresponding frequencies (N1, . . . , NKn
) = (n1, . . . , nk). Then

P[Xn+1 /∈ {θ∗1 , . . . , θ∗Kn
}] =

φ(1− µ)

φ+ n− 1

k−1∏
i=1

φ(1− µ) +
∑k
j=i+1 nj

φ+
∑k
j=i+1 nj − 1

(2.5)

and

P[Xn+1 = θ∗r ] =
φµ+ nr − 1

φ+ n− 1

r∏
i=1

φ(1− µ) +
∑k
j=i+1 nj

φ+
∑k
j=i+1 nj − 1

. (2.6)

for any r = 1, . . . , k. Unfortunately, due to the cumbersome dependency on k and the frequencies

ni’s, the predictive probabilities (2.5) and (2.6) neither allow to obtain moments of the distribution

of Kn or moments of the distribution of the number of blocks with certain frequencies.

We now determine the asymptotic behaviour of Kn as n grows. Using results in Karlin (1967),

one can show that

Kn

log(n)
→ 1

ψ(0)(φ)− ψ(0)(φ(1− µ))
(2.7)

almost surely, as n → +∞. In (2.7), ψ(0)(x) denotes the polygamma function, i.e., the first

derivative of the logarithm of the Gamma function with respect to x. Details of the derivation of

this result are in Section S.2 of Supplementary Material. If φ = µ−1, then the large n asymptotic

result in (2.7) reduces to the well-know large n asymptotic behaviour of Kn under the assumption

of the Dirichlet process. Indeed, ψ(0)(1/µ)−ψ(0)(1/µ−1) = (1/µ−1)−1 and, hence, Kn/log(n)→

(1/µ− 1) almost surely, as n→ +∞.

The richer parameterisation of the GDP allows controlling simultaneously different important

features of the partition (see Rodriguez and Dunson (2014)). For instance, fixing the E(Kn),
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the parameters of GDP can control quantities such as the cardinality of the largest clusters, the

average cluster size for different values or the number of clusters with cardinality equal one. This

is in contrast with what happens using the DP, where the precision parameter governs all this

quantities at once. Similarly, the additional flexibility can be appreciated also by looking at the

distribution of Kn under the GDP and the DP, after matching the first moment as in Figure 1.

[Figure 1 about here.]

2.4 Truncated GDP

We next consider a modified version of (2.1) that includes a finite number H of atoms. We write:

GH =

H∑
h=1

Whδθh . (2.8)

As in the infinite dimensional case, the sequence of locations is an i.i.d. sample from G0. The

weights are constructed with the same stick-breaking procedure presented above, with the ex-

ception of the last weight, WH , which is set to the value that makes the weights sum to 1. We

denote this truncated process GDPH(φ,µ, G0).

Truncated versions of the DP and other random probability measures have been employed in

the literature, because they allow simplified computation when used as prior mixing distributions.

Obviously, the use of a truncated process introduces an approximation error. The most common

way to control this error was proposed by Ishwaran and James (2001) (Theorem 1) and has

been adapted for many other processes. This consists in setting an upper bound to L1 distance

between marginal densities obtained under the original and the truncated version of the process.

An adaptation to GDP of this result is in Rodriguez and Dunson (2014).

In mixture models, it is common to truncate the mixing measure to a specific level for com-

putational purposes. This is particularly true when the mixing measure is not distributed as a

DP for which simple and efficient Gibbs samplers are available. When the mixing measure is
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a GDP (consequently, also a DP), however, the joint distribution of the truncated sequence of

weights, namely W = (W1, . . . ,WH), has a known distribution. This distribution is the Gen-

eralised Dirichlet Distribution (Connor and Mosimann (1969), Ishwaran and Zarepour (2000)),

which is conjugate with the multinomial distribution. This leads to simple calculations in the

case GDPH with constant parameters when we want to sample from the posterior of φ and µ,

encouraging the use of parsimonious models. Discussion of this point continues in Section S.4 of

Supplementary Material.

In Section S.2 of Supplementary Material, we discuss the result obtained when the truncation

of the GDP is random, extending a similar result of DP introduced in Muliere and Tardella (1998).

This can give useful insights about the number of components to include in (2.8) to approximate

a sample from GDP matching pre-specified approximation levels.

3. Dependent GDP

Recalling the definition of the GDP in (2.1), a realisation from a GDP is an almost surely discrete

probability measure. While the discreteness of G may seem unappealing, the use of such objects

as random prior distributions is common in Bayesian nonparametrics, such as when dealing with

density estimation. The most famous example is the Dirichlet Process Mixture (DPM, Lo (1984)),

which results from convolving a density kernel parameterised by some quantity with a random

prior distribution that is distributed according to a DP. One may adopt an equivalent strategy

using a GDP. The resulting model is represented by the following hierarchy:

y1, . . . , yn | G
iid∼
∫
f(yi | θ)dG(θ) (3.1)

G | φ,µ, G0 ∼ GDP(φ,µ, G0),

where the quantities φ = {φh}∞h=1 and µ = {µh}∞h=1 require the specification of suitable hyper-

prior distributions. According to the hierarchical formulation (3.1), the resulting sampling model
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is equivalent to an infinite mixture model with weights constructed as in (2.2).

Using a similar argument to the one presented in MacEachern (1999) and MacEachern (2000),

the model in (3.1) can be enriched when covariates are available, assuming the observations are

generated by a collection of infinite mixture models indexed by the covariate space and sharing

hyperparameters. We achieve this result by modifying the GDP in such a way that the sequence

{Wh}∞h=1 is a function of the covariates. Given the parameterisation of the Beta distribution

that we used as the prior for the sequence {Vh}∞h=1, we can express the expectations of the

latter quantities as functions of the covariates. We call the resulting process the Dependent GDP

(DGDP). More specifically, for a generic point x ∈ X , where X is the covariate space, a sample

from DGDP is

Gx =

∞∑
h=1

Wh,xδθh ,

where {θh}∞h=1
iid∼ G0, W1,x = V1,x and

Wr,x = Vr,x

r−1∏
l=1

(1− Vl,x), r = 2, 3, . . .

Each Vh,x is independently distributed following a Beta(vh,x | φhµh(x), φh(1 − µh(x))), where

µh(·) is a random mean function mapping into the set (0, 1). Using the DGPD, the hierarchical

model in (3.1) can be rewritten as

y1, . . . , yn | Gx1 , . . . , Gxn

ind∼
∫
f(yi | θ)dGxi(θ) (3.2)

Gx1 , . . . , Gxn | φ,µ(·), G0
ind∼ DGDP(φ,µ(xi), G0),

where φ = {φh}∞h=1 and µ(·) = {µh(·)}∞h=1. In case X is a dense set, each yi is associated with

an individual random measure, i.e. Gxi
. If X is not dense, then there may be ties in the vector

(x1, . . . , xn), which leads to ties in the corresponding random measures (Gx1
, . . . , Gxn

), i.e. groups

of observations having the same covariates share the same random measure. Furthermore, it is
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trivial to generalise the DGDP to the case with non-common location parameters, which can be

obtained substituting G0 with a stochastic process indexed by x ∈ X .

A key aspect of the construction above is the infinite sequence of random functions {µh(·)}∞h=1,

which incorporates the dependence of the random measures on the covariates and the association

between random measures indexed by different covariate values in X . One way to evaluate the

dependence between random distributions is by considering a measurable set A ∈ A, two locations

x, x′ ∈ X , and the covariance C[Gx(A), Gx′(A)]. Considering location-specific mean functions and

precisions, the covariance is equal to

C[Gx(A), Gx′(A)] = (1−G0(A))G0(A)E

[ ∞∑
h=1

Wh,xWh,x′

]
,

which converts to V[Gx(A)] when x = x′ (compare to (2.3)). Assuming a constant mean function

and precision across locations simplifies the calculations, as was the case with such an assumption

for the moments of the GDP. In particular, considering {µh(·)}∞h=1 = µ(·) and {φh}∞h=1 = φ allows

one to write

E

[ ∞∑
h=1

Wh,xWh,x′

]
=

E[VxVx′ ]

E[Vx] + E[Vx′ ]− E[VxVx′ ]
,

where Vr is a Beta random variable with parameters (φµ(r), φ(1− µ(r))).

Hatjispyros and others (2016) argue that another convenient way to learn about similarities

among to dependent random measures is to look at the distance between the infinite mixture

models induced by two random measures indexed at two different locations in the covariate space.

We apply this to two random measures distributed according to a DGDP. In particular, defining

fx(y) =
∫
f(y | θ)dGx(θ) and fx′(y) =

∫
f(y | θ)dGx′(θ) to be two mixture sampling models

indexed at x, x′ ∈ X , respectively, with G· ∼ DGDP(φ,µ(·)), the expected L2-distance (denoted

‖·‖2) between fx(y) and fx′(y) is given by

E[‖fx(y)− fx′(y)‖2] = (a− b)E

[ ∞∑
h=1

(Wh,x −Wh,x′)2

]
, (3.3)

where a = E
[∫
f(y | θh)2dy

]
and b = E

[∫
f(y | θh)f(y | θj)dy

]
. The latter equation shows that
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using covariate-dependent weights allows one to set mixture models to be arbitrarily close, despite

the fact that the mixture models share common locations. This could be an argument in favour

of using a stochastic process with only the weights indexed by the covariates.

Using the same approach we employed for calculating the moments of the GDP and assuming

{φh}∞h=1 = φ and {µh(·)}∞h=1 = µ(·), we can write,

E

[ ∞∑
h=1

(Wh,x −Wh,x′)2

]
=

E[V 2
x ]

2E[Vx]− E[V 2
x ]

+
E[V 2

x′ ]

2E[Vx′ ]− E[V 2
x′ ]
− 2E[VxVx′ ]

E[Vx] + E[Vx′ ]− E[VxVx′ ]
. (3.4)

We can derive expressions for the latter expectations for different choices of µ(·) and φ. We can

gain some insight into the distance measure represented by the previous equation by assuming

µ(x) =
exp(xµ)

1 + exp(xµ)
,

which is the usual link for logistic regression. We consider two levels of x = {0, 1} for simplicity

and evaluate the expectation in (3.4) for different values of µ and φ. The results are shown in

Figure 2.

[Figure 2 about here.]

We note that as φ tends to infinity, the DGDP defined as shown in this example becomes

the logit stick-breaking prior introduced in Ren and others (2011). Similarly, assuming µ(·) to

be a probit regression and letting φ tend to infinity leads the DGDP to become the probit

stick-breaking process introduced in Rodriguez and Dunson (2011).

4. Posterior Inference via MCMC

Posterior inference for DGDP mixture models can be performed adapting existing MCMC algo-

rithms for DDP mixture models. Following the work in Ishwaran and James (2001), posterior

distributions can be obtained using the blocked Gibbs sampler which provides an approximate

inference based on the process in (2.8). An alternative approach which does not involve a de-

terministic truncation of the DGDP is the slice sampler described by Walker (2007). This is



14 W. Barcella and others

equivalent to the blocked Gibbs sampler, but involves auxiliary variables which produce a ran-

dom truncation of the GDP. Details of the blocked Gibbs and the slice sampler are given in

Section S.4 of Supplementary Material. An alternative MCMC strategy to perform posterior

inference is offered by the retrospective sampler of Papaspiliopoulos and Roberts (2008). Addi-

tionally, the result in equation (2.4) enables us to design a Gibbs sampler algorithm to draw from

the distribution of the underlying partition of the observations when the DGDP has non-common

locations across different levels of the covariates.

5. Acute Lymphoblastic Leukaemia and Dyslipidemia

Childhood Acute Lymphoblastic Leukaemia (ALL) is a cancer that affects the production of blood

cells. The bone marrow produces an excess of lymphoblasts, which are immature white blood cells.

Children affected by ALL are currently treated with combinations of chemotherapies, and the

drug regimens include a class of steroids called glucocorticoids, such as dexamethasone. While this

therapy has improved cure rates for patients, it is associated with a number of side effects. One

adverse side effect is osteonecrosis, a disease that is associated with reduced blood flow to bones

and joints, leading to bone cell death and possible fractures. The pathogenesis of osteonecrosis and

its relationship with treatments for childhood ALL are described by Kawedia and others (2011).

In particular, poor metabolism of the glucocorticoids included in the treatment of ALL may lead

to this disease. The association between these steroids and the risk of osteonecrosis is thought to

be through the glucocorticoid’s effect on lipid levels. The effect leads to an increase in the size of

lipocytes (fat cells) and subsequent marrow ischemia and apoptosis. These complications often

result in bone necrosis, pain, and inability to use the joint.

Recent studies have shown that other drugs that are part of ALL therapy, such as asparaginase,

may lead to osteonecrosis by a different mechanism than that of steroids. The objective of this

analysis is to model the change of lipid measures over time (in particular triglycerides) during
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ALL therapy as a function of a biomarker of the pharmacological activity of asparaginase. We

use albumin level as this biomarker, since higher asparaginase activity leads to lower albumin

levels.

This study includes n = 198 ALL patients who have been classified by clinicians into two risk

groups based on expected outcome. Children in the low-risk group (LR) have a better chance

of cure than children in the standard-risk or high-risk groups. In the study data, the standard-

risk patients are combined with the high-risk patients into the standard/high risk group (SHR).

Factors at baseline that determine a patient’s risk group are age (younger children tend to have

better outcomes than older children), initial white blood cell (WBC) count (very high counts

require more intensive treatment), sex (females have a somewhat greater chance of cure than

males), race (Caucasian children tend to have better outcomes), and subtype of the disease, to

name a few. The data set includes 93 ALL patients in the SHR group and 105 patients in the

LR group.

Because the LR group tends to have a better prognosis than the SHR group, the treatment

regimens for the risk groups differ. The SHR group receives more intensive therapy than the LR

group. The different treatment regimens include different doses and schedules of dexamethasone

and asparaginase, the two drugs that are associated with risk of osteonecrosis. The analysis

considers each patient’s measurements of triglycerides (mg/dL) and albumin (g/dL) from blood

samples at baseline (t = 0), week 7 (t = 7), week 8 (t = 8), and week 12 (t = T = 12) of

treatment. Patients received both drugs at the start of weeks 7 and 8 but not at baseline or week

12.

We denote the log2 transformation of the triglyceride level for the i-th patient at time t by

yi,t. We assume the following model for the triglyceride trajectories, yi = (yi,0, . . . , yi,T )ᵀ,

yi | Bi,Ωi ∼ MNT

 y0
...
yT

∣∣∣∣∣∣∣
xᵀ
i,0βi,0

...
xᵀ
i,Tβi,T

,Ωi

 , (5.1)
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where MNT (· | ·, ·) denotes the T−dimensional Normal distribution, Bi = (βi,0, . . . ,βi,T ) is

a matrix of coefficients, and xi,0, . . . ,xi,T are time-dependent column vectors of covariates that

include the measured albumin levels at different times, along with an intercept. Ωi is the variance-

covariance matrix, and we assume

Ωi = σ2
iH(ρi).

As in Quintana and others (2016), we specify the matrixH(ρi) such that the covariance C(yi,t, yi,s) =

σ2
i ρ
|t−s|
i . This choice induces a correlation structure among the elements in yi that is equivalent

to one implied by an autoregressive model with time lag of one.

We account for possible heterogeneity between patients by assuming a priori that the tra-

jectories come from a mixture of distributions. We also assume different but correlated mixing

measures for patients belonging to the two risk groups (LR and SHR). This assumption allows

us to control for information implied by being in a certain risk group, making more realistic the

linear dependence of the triglyceride values on the albumin levels. The latter argument is similar

to one described in Papageorgiou and others (2015). We formalise this assumption through the

following hierarchical structure for the patient-specific parameters.

(Bi, σ
2
i , ρi) | Gzi

∼ Gzi

Gzi
| φ, µ(·), G0 ∼ DGDP(φ, µ(zi), G0),

where zi = (1, zi) and zi is equal to 1 if the i-th patient belongs to the LR and 0 if SHR. We

assume that the mean for the stick-breaking sequence is a logistic regression on zi,

µ(zi) =
exp(ziη)

1 + exp(ziη)
.

The regression parameters in the hypermean function are multivariate normal,

η ∼ MN2(η | 02, σ
2
ηI2),

where 0N is a N-dimensional vector of zeros, and IN denotes the identity matrix of dimension
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N ×N . Finally, we specify a gamma hyperprior distribution for the precision of the DGDP

φ ∼ Gamma(φ | aφ, bφ)

and the following for the prior mean measure of the process,

G0 = U(σ | aσ, bσ)U(ρ | 0, 1)

T∏
t=0

MNT (βt | 02, σ
2
βI2).

We fix σ2
β and σ2

γ to equal 100; set σ2
µ, aφ, and bφ to 1; and let aσ and bσ equal 0 and 5, respectively.

We run the blocked Gibbs sampler discussed in Section S.4 of Supplementary Material with

truncation level H = 30 and 50000 iterations after a burnin period of 30000.

The expectations of the posterior predictive distributions for the triglycerides are depicted in

Figure 3, showing different trajectories corresponding to different risk groups and different values

of albumin at baseline and weeks 7, 8, and 12.

[Figure 3 about here.]

Overall, the SHR-specific trajectories are higher than those corresponding to the LR patients

with the same albumin levels. The predicted triglyceride values at each time point, as a function

of albumin, indicate a negative relationship between albumin and triglyceride levels for both risk

groups. This relationship suggests that a reduction in the asparaginase activity, which is in turn

related to an increase in albumin level, leads to a reduction in triglycerides in both risk groups,

with a stronger effect among the SHR patients.

The largest difference in the values of the triglyceride trajectories is observed between the

t = 7 and t = 8, when patients receive both the glucocorticoid and asparaginase. Figure 4 shows

marginal density estimates of the distributions of triglycerides at week 8, where the different type

of lines and colours correspond to the legend in Figure 3.

[Figure 4 about here.]
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Figure 4 shows the posterior predictive densities for week 8 triglycerides, which are mixtures

with weights that vary across risk group. The curves corresponding to the SHR group assign high

probability to a mixture component located around 9 log2(mg/dl). This component is centred at a

relatively high value and leads to the differences seen in the expectations observed in Figure 3. The

other apparent mixture component has a roughly equivalent location for both risk groups and is

centred around 6.5 log2(mg/dl). This observation suggests that the risk group-specific differences

in triglyceride values evident at week 8 are driven by a subset of the SHR patients, whereas the

other SHR patients show similar triglyceride values as the LR risk group. An equivalent, although

less evident, pattern can be seen in the marginal density distributions for the triglycerides at weeks

t = 7 and 12.

In Figure 5, we show the posterior densities for the effects of albumin on triglycerides at each

of the four time points under analysis (i.e., the time and group-specific regression coefficients).

[Figure 5 about here.]

While the relationship between albumin and triglycerides at baseline (top-left panel) seems

similar for the risk groups, the densities diverge at t = 7. That is, after the start of treatment,

a group of patients (mostly SHR patients) shows a stronger negative relation between albumin

and triglycerides, while a number of other patients (mostly belonging to the LR group) exhibit a

weaker negative effect of albumin on triglycerides. This pattern also appears at week 8, although

the albumin effect is less negative than at week 7 for the majority of LR patients. At week 12,

the majority of the mass corresponding to the albumin effect on triglycerides among the LR

patients is centred a little to the right of zero. The effect for the SHR group at t = 12, however,

remains bimodal, with the left-hand component remaining strongly negative and the right-hand

component looking much like the density corresponding to the majority of the LR patients. These

observations suggest that a subset of the SHR patients may be at higher risk of osteonecrosis,

perhaps because of greater sensitivity to the drugs.
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5.1 Comparison with related methods

We compare the performance of the DGDP mixture model described above for the data analysis

in this section with those obtainable with related and more standard alternatives. The first

competitor model is a parametric mixed-effect model, which is specified by a sampling model

equivalent to the one in (5.1) where the individual effects, namely Bi and Ωi, have been replaced

with parameters shared by all patients. In addition, information regarding the risk groups is

included via random effects within the model of the mean. Borrowing strength across groups is

favoured by a suitable hierarchical structure. The second competitor is a DDP mixture model

which is specified as the DGDP mixture model above, except for the distribution of the mixing

weights which follows marginally (for each value of z) a DP with precision parameter equal

α(z) = exp(zη).

The competitor models are assessed using a Pseudo Bayes Factor (PSBF, Geisser and Eddy

(1979), Gelfand and Dey (1994)). When two models, Ml and Mr, are considered, the PSBF is

defined as

PSBF(Ml,Mr) =

∏n
i=1 pMl

(yi | Y−i)∏n
i=1 pMr

(yi | Y−i)
,

where pMl
(yi | Y−i) and pMr (yi | Y−i) are posterior predictive densities of yi under Ml and Mr,

including the information of Y−i, the matrix containing all observations except for yi. All these

posterior predictive densities, often called conditional predictive ordinates, have been approxi-

mated using MCMC samples. PSBF is preferred to the common Bayes factor or posterior Bayes

factor (Aitkin (1991)) because it is less sensitive to prior choices and simpler from a computational

point of view.

The results of the comparison provide evidence in favour of proposed DGDP mixture model

against the two competitor models. In particular, log(PSBF) of the DGDP mixture model relative

to the mixed-effect model is equal to 39.16. The same quantity calculated using the DGDP

versus the DDP mixture model is 10.85. Thus, there is strong evidence that the DGDP provides
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a superior fit to these data, when compared to a mixed-effects model and to a DDP mixture

model.

6. Discussion

In this paper we introduce the Dependent Generalised Dirichlet Process (DGDP), a stochastic

process over discrete random probability measures. The DGDP has GDP-distributed marginals.

This process directly generalises the well-known DDP, which instead has DP-distributed marginals.

The generalisation allows more flexibility at the marginal level, as well as better interpretability

of the parameters. The DGDP can be constructed using sequences of correlated stick-breaking

weights indexed by covariate levels. Random functions of the covariate levels can be included

in the means of these Beta random variables. When probit or logit regression models are em-

ployed, the DGDP can be seen as a stochastic version of the probit stick-breaking or logistic

stick-breaking priors, respectively.

The first part of this paper described the main properties of the GDP and introduced new

distributional properties of samples generated by realisations from a DGDP, along with results

about random truncation of the process. In the second part, we defined the DGDP and employed

different criteria for assessing the strength of dependence between DGDP marginals that are

indexed by different levels in the covariate space. We discussed different MCMC algorithms for

posterior inference with DGDP mixture models and gave details for two of them (contained in

Section S.4 of Supplementary Material). The last part of the paper illustrated an application of the

DGDP for modelling longitudinal data to assess the effect of asparaginase activity on triglyceride

levels when treating acute lymphoblastic leukaemia patients with this drug. Inference was based

on albumin levels, which served as surrogates for asparaginase activity.

The method proposed in this paper is tailored to handle longitudinal data, i.e., a series of

observations for each subject. Multiple series of observations for each subject can also be modelled
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by extending the covariate space to which the DGDP indexes its realisations. In particular, one

can include a vector that indicates for each observation the corresponding series of which it is a

part. This would allow one to flexibly account for interactions among the different series while

also borrowing strength across groups of patients.
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Fig. 1. Distributions of the number of clusters Kn under DP (thick line) and GDP (thin lines), all
having E(Kn) ≈ 4. The different distributions under the GDP correspond to different combinations of
the parameters µ and φ.
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Fig. 2. Expected L2-distance between two mixture models corresponding to x = {0, 1} generated accord-
ing to a DGDP (up to a constant dependent on the centre measure c) for different values of φ and µ, the
latter being the parameter of µ(x), a logistic regression without intercept.
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Fig. 3. Posterior predictive mean triglycerides for the two risk groups and different albumin values at
baseline and weeks 7, 8, and 12.
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Fig. 4. Marginal posterior predictive densities of triglycerides at week 8. The different lines correspond
to the legend in Figure 3.
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Fig. 5. Posterior densities of the regression coefficients related to albumin at times t = 0, 7, 8, and 12, for
SHR patients and LR patients.
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