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Abstract 

TCR gene transfer is used to redirect the antigen specificity of T lymphocytes towards 

known tumour antigens. TCR gene therapies in murine studies have shown promising 

results. However, in the clinic they have often generated sub-optimal responses, when 

compared to treatments with tumour infiltrating lymphocytes. Previous work to improve 

TCR gene therapy has demonstrated that transferring additional CD3 genes increases 

TCR expression of both endogenous and introduced TCR, in CD4+ and CD8+ T cells. In 

vivo experiments demonstrated that CD8+ T cells, transduced with TCR and additional 

CD3 were more effective in tumour protection than T cells transduced with the TCR 

alone.  

In this thesis the effects of CD3 (and as a consequence TCR) overexpression were 

studied in CD4+ and CD8+ T cells, that had been transduced with a retroviral vector 

containing the CD3 chains genes (CD3-GFP). In vitro analysis showed that CD4+ T cell 

expressed higher levels of TCR compared to CD8+ T cells, both before and after 

transduction with the CD3-GFP vector. This associated with higher Ca2+ and CD107a 

concentration, but no difference in T cell activation or proliferation. Unexpectedly, we 

found that increased TCR expression did not improve T cell functional avidity following 

polyclonal or peptide-specific stimulation. In vivo CD3-enhanced CD4+ T cells survived 

for longer and were recovered in higher percentages, compared to CD3-enhanced CD8+ 

T cells and mock transduced CD4+ T cells, both in non-competition and competition 

experiments. Interestingly, this was observed despite a down-regulation of TCR levels in 

the CD3-enhanced CD4+ T cells, compared to their pre-transfer TCR levels, which was 

not observed in the control-transduced CD4+ T cells. The mechanism that drives TCR 

down-regulation and its biological meaning are unknown and require further 

investigation. 
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1. Introduction 

T cells, along with B cells, form the adaptive immune response that is mounted when the 

innate immune cells such as macrophages, neutrophils and NK cells are insufficient to 

deal with a pathogen. Whereas the innate response is quicker and of broad specificity, 

the adaptive immune response is typically slower, but highly specific and it recognises 

defined pathogen associated signals. In the case of T cells their specificity is determined 

by a unique T cell receptor, which defines what antigen will be recognised by that T cell. 

 

1.1. The T cell receptor-CD3 complex  

1.1.1. The T cell receptor 

The T cell receptor (TCR) is expressed on the surface of all T cells and determines what 

antigen that T cell will be able to respond to (T cell specificity). The TCR is a 

heterodimeric membrane anchored protein composed of a disulphide linked α and β 

chain (figure 1.1). Both chains consist of two immunoglobulin like domains: a constant 

region domain that spans the cell membrane, and a variable region that projects 

outwards and is responsible for antigen binding (Davis and Bjorkman 1988). The variable 

domain binds, with relatively low affinity (~1-100 μM), short antigen fragments (peptides) 

when presented by major histocompatibility complex (MHC) molecules. The variation in 

TCR specificity is generated both by the assembly of the two different TCR chains and 

by a process known as V(D)J recombination. As T cells mature in the thymus they 

undergo a process of somatic recombination which rearranges the variable (V), joining 

(J) and, in the β chain, diversity (D) gene segments that comprise the variable region of 

the TCR. Additional nucleotides are also inserted or deleted in the rearranged regions 

during these recombination events (Schatz et al., 1992). The variability generated during 

the V(D)J recombination is mirrored in the complementarity determining region (CDR) of 
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the TCR variable chain. Each variable chain contains three CDRs: CDR1 and CDR2 bind 

the α-helix of the MHC molecule; CDR3, also known as hypervariable region, binds the 

peptide (Rudolph, 2006). Because V(D)J recombination is somewhat random, an 

enormous number of TCR and specificities can theoretically be generated and it is 

estimated to be in the range of about 1018 different TCRs, which to put things in 

perspective it is also the predicted number of grains of sand on planet Earth (Reddy, 

2017). The initial understanding was that each TCR will only recognise one unique 

antigen. However, there are >1015 potential foreign peptides that the immune system has 

to recognise and the human body contains only about 1012 T cells. More recent studies 

have estimated that the total number of TCR within this T cell pool is <108. Thus, it is 

now widely accepted that TCRs are degenerate and can bind multiple peptides and it is 

expected that one single antigen can be recognised by a variety of TCRs (reviewed in 

Sewell, 2012).  

 

 

Figure 1.1– The T cell receptor (TCR). 

 

1.1.2. The CD3 co-receptor 

Signals transmitted via the TCR are the primary checkpoints controlling T cell activation, 

and the quality and strength of these signals determine the fate and ultimate function of 

the T cell. However, as the TCR does not contain any signalling domains within its 
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structure, TCR signalling is dependent upon association with the CD3 complex. In 

addition, cell surface expression of the TCR is dependent upon CD3 co-expression. The 

CD3 complex comprises 4 different chains: zeta (ζ), gamma (γ), epsilon (ε) and delta (δ) 

(figure 1.2). 

 

 

Figure 1.2– The TCR:CD3 complex. 

 

All of the CD3 chains except for ζ are members of the immunoglobulin-like superfamily. 

CD3γ, ε and δ are structurally related and have significant sequence homology. They 

are encoded by genes on chromosome 11 (human) and chromosome 9 (mice). In 

contrast the CD3ζ chain has no structural or sequence homology to the other CD3 

components and the gene coding for the ζ chain is found on chromosome 1 (in both 

human and mouse) (Baniyash, 2004). The cytoplasmic domains of each of the CD3 

chains contain immunoreceptor tyrosine-based activation motifs (ITAMs) (YxxL/Ix6-

12YxxL/I) through which the TCR signal is propagated inside the cell. Each ζ chain 

contains 3 ITAMs, whilst the other three chains contain one motif each. These signalling 

chains are known to form three distinct dimers: CD3δε, CD3γε and CD3ζζ. The TCR-

CD3 complex assembles in the endoplasmic reticulum (ER) in an ordered process driven 
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by interactions among both transmembrane (TM) and extracellular domains of the CD3 

and TCR subunits (Call et al., 2004). Studies carried out in Jurkat cells showed that the 

assembly of the CD3-TCR complex is a relatively rapid process, whereas the export of 

the complex from the ER to the Golgi apparatus is slow (Alarcon et al., 1988).  The  

formation  of  a  correct  TCR-CD3  complex  depends  on  the  correct placement  of 

nine  ionizable  residues  within  the  TM  domains of  the  TCR and the  CD3 chains 

(figure 1.3). The TCRα chain first binds the CD3δε dimer by formation of a three-helix 

bundle, with each chain contributing one ionizable residue (2x acidic and 1x basic 

residues) to the interface among the three helices. A similar process allows the TCRβ 

chain to bind the CD3γε dimer. Once both CD3 dimers have assembled with the TCR, 

the ζζ dimer binds to the complex via a second distinct site in the TCRα chain (Call et 

al., 2004; Call et al., 2002). The α and β TCR chains dimerize via formation of disulphide 

bonds. Interaction of the two TCR chains only is not sufficient to prevent rapid 

degradation and such a dimer has a T½ of 35-45 minutes in the ER. This degradation 

was shown to be a consequence of basic residues within the TM domains being exposed 

to the ER environment, as binding of the TCR chains with the CD3 dimers leading to 

shielding of such residues prevented degradation (Call et al., 2004). The sequestration 

of strongly polar residues at specific protein-protein interfaces, in addition to a specific 

ER retention signal present in the cytoplasmic domain of the CD3ε chain serve as a 

quality control mechanisms which determine the fate of the TCR-CD3 complex (Carrasco 

et al., 2001). Moreover, TCRαβ-CD3γε-CD3δε hexamers lacking the ζζ dimer that 

escape the ER are degraded by a second quality control step in the Golgi, thus 

preventing the expression of defective TCR-CD3 complexes on the cell surface 

(Sussman et al., 1988). Therefore, if one or more components of the TCR-CD3 complex 

are absent, the incomplete complex is retained and degraded within the ER or degraded 

once it reaches the Golgi complex. A fully functional and surface-expressed TCR-CD3 

complex is thus composed of one TCRαβ heterodimer, one CD3γε homodimer, one 

CD3δε homodimer and one CD3ζζ heterodimer. 
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Figure 1.3 – The assembly of the TCD:CD3 complex. 

 

1.1.3. The role of the CD3 co-receptor in thymocyte development 

and disease 

Correct CD3 chain arrangement and expression was shown to be fundamental for 
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resulted in a block of thymocyte maturation at the double negative (DN) or double 

positive (DP) stage (Love et al., 1993; Malissen et al., 1995; Wang N. et al., 1998). The 
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chain was absent. The most important dimer for thymocyte maturation was CD3γε, 

followed by the ζζ dimer, whereas the CD3δε may be dispensable. Abrogation of 

expression of any of the CD3 chains causes a severe impairment in thymic output in 

mice. This study also suggested an overlapping role for CD3γ and CD3δ chains. Mice 

lacking either one of those chains developed only a small number of mature T cells. 

However, in mice deficient for both γ and δ chains mature T cells were not found (Wang 

B. et al., 1998). Additional genetic studies in which the ITAMs of the different CD3 chains 

were modified shed light on the importance played by these motifs in thymocyte 

development. In particular the efficiency of thymic selection was shown to correlate with 

the number of ITAMs (Shores et al., 1997; Love et al., 2000; Pitcher et al., 2005b). More 

recent studies showed that mutation of three or more ITAMs in one or more of any of the 

CD3 chains led to defective negative selection and development of fatal autoimmunity 

(Holst et al., 2008). This was thought to be a consequence of lower TCR signal strength 

during negative selection, allowing self-reactive T cells to escape the thymus leading to 

a breakdown of central tolerance. Notably, effector functions seem to be governed by 

different rules as cytokine production was relatively unaffected by a lower number of CD3 

ITAMS, whereas lower proliferation had a linear correlation with the number of ITAMs 

present in the cell. These findings are in contrast with results from other studies, which 

have shown that ITAM-mutated CD3ζ and CD3γ transgenic mice did not exhibit 

autoimmunity and only a few cells showed mild auto reactivity (Shores et al., 1997; 

Ardouin et al., 1999; Haks et al., 2002; Pitcher et al., 2005a). The reason/s behind these 

discrepancies are not clear, but the different techniques used for genetic manipulation 

(retroviral transduction followed by adoptive transfer versus transgenesis) may explain 

the differences seen in the data sets. In addition, it has been shown that both other motifs 

in the CD3 chains and the length of the CD3 chain may play a role in thymocyte 

development, by influencing TCR-CD3 complex expression, signalling and trafficking 

(Dave, 2009). 
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Modulation of CD3 chains expression is also important for the correct functioning of 

mature T cells and their ability to mount an effective immune response. Patients with 

CD3 γ, δ, ε or ζ deficiencies have been reported and typically present with a severe 

combined immuno deficiency (SCID) phenotype, including absence of functional T cells 

and normal, but non-functional B cells. Recio et al. reported five patients with CD3γ 

deficiency, all of which presented with mild T lymphocytopenia, poor in vitro proliferative 

responses to antigens and very low TCR rearrangement excision circles (TRECs). 

However both intrafamilial and interfamilial variation was seen with some individuals 

reaching the third decade of life in healthy conditions, whereas others showed lethal 

SCID features and enteropathy in early life (Recio et al., 2007). More recently two siblings 

with autoimmunity were reported and upon genetic analysis it was discovered they both 

carried a mutation in the CD3γ gene (Tokgoz et al., 2013). Defects in CD3ε expression 

have also been reported in multiple patients. Three consanguineous patients all died 

within six months of age from viral infections and pneumonitis (Soudais et al., 1993). In 

contrast a two year old patient with CD3ε deficiency and recurrent pneumonia with otitis 

media was treated with antibiotics and no major infections were seen thereafter (de Saint 

Basile et al., 2004). The difference in survival between those two sets of patients may be 

explained by the different degree of CD3ε deficiency. A complete loss of expression 

(former three patients) correlated with severe immunodeficiency, whereas the latter 

patient’s mutation did not totally prevent CD3ε expression. Several reports regarding 

CD3δ deficiency also exist. The thymus of a CD3δ-deficient fetus was analysed and it 

revealed that T cell differentiation was blocked at entry into the DP stage, indicating 

CD3δ may play an essential role in promoting thymocyte development (de Saint Basile 

et al., 2004). In another report describing three cousins, two died within the first three 

months of life due to multi-organ failure. The third one was diagnosed with CD3δ 

deficiency at birth, underwent bone marrow transplantation and was alive and well at 

three years of age (Dadi et a., 2003). As for deficiencies of the CD3ε chain, the degree 

of CD3δ loss seemed to correlate with patient outcome. CD3ζ deficiencies have been 

reported in a number of patients too. CD3ζ deficiency was linked to T- B+ NK+ SCID in 
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two patients, both of whom received bone marrow transplantation to correct the 

immunodeficiency (Roberts et al., 2007; Rieux-Laucat et al., 2006). In a separate family 

two siblings were diagnosed with CD3ζ deficiency which caused lower expression of 

TCR-CD3 complex expression and a subsequent immunodeficiency. Lethal severe 

autoimmune haemolytic anaemia developed in one of the patients, who died at the age 

of three (Alarcon et al., 1988). Thus, a number of cases have been reported in which 

autoimmune disease developed as a consequence of CD3 chain deficiencies. The 

clinical features are highly variable and depend upon the affected chain and the type of 

mutation. Treatment has been aimed at infection control (where co-existing 

immunodeficiency exists) and where possible, a curative bone marrow transplantation 

can be attempted.               

CD3 chain down-modulation leading to TCR-CD3 downregulation and T cell function 

impairment has been shown in mature T cells isolated from hosts with various chronic 

pathologies, including cancer, autoimmunity and chronic infection. Mutations causing 

this phenotype have been observed in all of the CD3 chain genes. A downregulation of 

the CD3γ gene, followed by a progressive impairment in TCR-CD3 complex expression 

and function was reported early upon HIV-1 and HIV-2 infection (Willard-Gallo et al., 

1996; Segura et al., 1999; Willard-Gallo et al., 2001). HTLV-1, the agent known to cause 

T cell leukaemia and lymphoma, also has the capacity to impair T cell function upon 

infection. Akl et al., have shown that HTLV-1 infection initiates a process leading to 

complete loss of CD3 membrane expression by an epigenetic mechanism. The onset of 

this phenomenon coincided with a decrease of CD3γ followed by subsequent 

progressive reduction in CD3δ, then CD3ε and CD3ζ mRNA (Akl et al., 2007). However, 

in the majority of reported cases T cell dysfunction was a consequence of CD3ζ specific 

downregulation. The first report showing CD3ζ downregulation in the context of cancer 

came from an experimental model of colon carcinoma, in which cytotoxic T cells showed 

impaired effector function (Mizoguchi et al., 1992). Since then a number of reports 

describing aberrant T cell function in solid and non-solid tumours due to CD3ζ 
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downregulation have been published, from both human patients and animal models. 

These include colorectal cancer (Matsuda et al., 1995), renal cell carcinoma (Finke et 

al., 1993), ovarian carcinoma (Kuss et al., 2002), breast cancer (Kurt et al., 1998), 

prostate cancer (Healy et al., 1998), head and neck cancer (Kuss et al., 1999), 

melanoma (Dworacki et al., 2001) and acute lymphoblastic leukemia (Torelli et al., 2003). 

Ungefroren et al. suggested that CD3ζ downregulation may be one of the many 

mechanisms employed by tumour cells to evade immune surveillance. This hypothesis 

was based on the observation that factors secreted by malignant cells drive ζ 

downregulation (Ungefroren et al., 1999). Interestingly, initial CD3ζ downregulation was 

seen in tumour infiltrating lymphocytes (TILs) only, but upon cancer progression this 

phenomenon extended to peripheral blood lymphocytes (Baniyash, 2004). Moreover 

CD3ζ chain expression has been shown to correlate with cancer patients’ outcomes, with 

low or absent ζ chain expression predicting poor prognosis and survival. Thus it could 

become a useful biomarker both for cancer prognosis and decisions on whether to 

administer immunotherapy or not (Whiteside, 2004). T cells isolated from patients 

suffering from systemic lupus erythematosus and rheumatoid arthritis also showed lower 

CD3ζ expression levels (Liossis et al., 1998; Maurice et al., 1997; Berg et al., 2000). 

Loss of ζ chain expression and dysfunctional T cells have also been reported in various 

infectious diseases. Patients who are infected with HIV (but have yet to develop AIDS) 

were found to have reduced CD3ζ levels in both CD4+ and CD8+ T cells (Stefanova et 

al., 1996; Trimble et al., 1998). A similar pattern of CD3ζ down modulation was seen in 

leprosy caused by Mycobacterium leprae (Zea et al., 1998) and in helminth infections 

(Appleby et al., 2015). Eleftheriadis et al. reported a selective downregulation of the ζ 

chain in chronic renal failure patients on haemodialysis (Eleftheriadis et al., 2008).  

Interestingly, in all the situations described above despite the absence of the CD3ζ chain, 

TCR levels on the cell surface were reported as normal. Studies have shown that the ζ 

chain can be replaced by the γ chain of the receptor for IgE (FcεR) leading to normal 

concentration of TCR on the cell surface but impaired T cell function after TCR:pMHC 

binding (Mizoguchi et al., 1992; Zea et al., 1998). As discussed above CD3ζ chain 
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downregulation can be driven by factors secreted by the tumour cells. In addition reports 

have shown that both oxidants secreted by macrophages within the tumour 

microenvironment but also chronic antigen exposure can cause ζ downregulation (Kono 

et al., 1996; Otsuji et al., 1996; Bronstein-Sitton et al., 2003). The reason behind ζ chain 

targeting may lie behind the central role played by CD3ζ in TCR signalling. In a fully 

functional T cell following TCR engagement the lymphocyte-specific protein tyrosine 

kinase (Lck) phosphorylates residues in the CD3ζ chain ITAMs, allowing the ζ-chain-

associated protein kinase of 70 kDa (ZAP70) to bind and the signal to the transmitted 

downstream. Total or partial loss of CD3ζ expression thus prevents activation of the T 

cell (T cell signalling will be discussed in section 1.1.7) allowing disease progression.  

1.1.4. The CD4 and CD8 co-receptors 

The first indication that two different subsets of T lymphocytes exist came from studies 

in the mid 1970’s, when it was shown that T cells express either the CD4 or CD8 co-

receptor, and these receptors are mutually exclusive (Bach et al., 1976). With this came 

the discovery that the two subsets also had different functions: CD4+ cells augmented 

the ability of B cells to produce antibodies (Cantor et al., 1977), whereas CD8+ cells 

caused direct cytotoxicity of infected target cells (Cantor et al., 1975). Finally during the 

1980’s the discovery that CD4 binds to and recognises antigens on MHC-II and CD8 

binds to recognises antigens on MHC-I was made (Doyle et al., 1987; Norment et al., 

1988). It is now known that these co-receptors are glycoproteins which participate in both 

T cell development and antigen recognition. CD4 is a single chain composed of an 

intracellular domain and four extracellular Ig-like domains (D1 – D4) which binds via its 

D1 domain, a hydrophobic crevice at the junction between the α2 and β2 chains of the 

MHC-II molecule (figure 1.4 left). The CD8 co-receptor is a dimer composed of two 

different chains, one α and one β linked by a disulphide bond, and both chains interact 

with residues in the α2 and α3 domains of MHC-I (figure 1.4 right). The role played by the 

co-receptors has been intensively studied. Studies have shown that CD8 plays a role in 

stabilising the TCR:pMHC interaction, and such role is particularly important in the case 
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of lower affinity antigens whereas the requirement for CD8 is minimal in the case of 

strong TCR ligands with lower off-rates (Wooldrige et al., 2005). In contrast, it has been 

shown that CD4 does not play a stabilising effect on TCR:pMHC interactions. When the 

CD4:pMHC interaction was inhibited using anti-CD4 blocking antibodies, no change in 

the formation (kinetics and architecture) of immunological synapses was seen (Huppa et 

al., 2010). Both CD4 and CD8 co-receptors, however, play a critical role in enhancing 

TCR signalling by recruiting Lck to the TCR complex. When a TCR complex is engaged, 

the co-receptors in its proximity can bind Lck, preventing it from diffusing away 

(Chakraborty et al., 2014). Lck will then phosphorylate the ITAMs within the CD3ζ chains 

allowing ZAP70 to bind, initiating TCR signalling. TCR signalling will be discussed in 

further detail in section 1.1.7. The CD4 and CD8 co-receptors also contribute to naïve T 

cell survival and the homeostatic expansion of their relevant T cell subsets, as shown by 

studies where conditional loss of CD4 or mutation of the CD4 binding site on the MHC-

II molecules inhibited the homeostatic expansion of CD4+ cells in vivo (Strong et al., 

2001; Ge et al., 2001).  

 

Figure 1.4 – The CD4 and CD8 co-receptors, and MHC-II and MHC-I molecules. 
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1.1.5. Antigen presentation and antigen recognition  

T cells only recognize antigens that are displayed on cell surfaces and presented to them 

in the context of an MHC molecule, a process known as antigen presentation. The MHC 

molecules are encoded by genes in the major histocompatibility complex region, which 

is found on chromosome 6 in humans, and they were first identified in the context of 

transplantation. For that reason this cluster of genes and their protein output are known 

as the major histocompatibility complex. MHC molecules are divided into two classes: 

MHC class I and MHC class II. Both MHC-I and MHC-II molecules bind and present small 

peptides that derive from intact antigens. This process of peptide generation from a naïve 

protein is known as antigen processing. However, the structure, expression profile and 

function of these two classes of MHC are different. MHC-I molecules are expressed by 

all nucleated cells and the peptides they present originate in the intracellular milieu 

(cytoplasm or nucleus). MHC class I molecules are heterodimers composed of 2 chains: 

one heavy α chain formed of 3 different domains (α1-α3) and one light β2-microglobulin 

chain (figure 1.4 right). The majority of peptides presented in the context of MHC-I are of 

intracellular origin (e.g. viral or nuclear antigens). In some circumstances peptides of 

extracellular origin can be presented on MHC-I molecules, via a process known as cross-

presentation, which will be discussed later in this section. Proteins at the end of their 

functional life are degraded by the cellular proteasome-ubiquitin dependent system: 

proteins are conjugated with ubiquitin, which directs them to cytosolic and nuclear 

multicatalytic complexes, knows as proteasomes for subsequent degradation (Pickart et 

al., 2004). Proteasome activity is fundamental for antigen presentation by MHC-I 

molecules, as inhibitors of the proteolytic activity of the proteasome prevents MHC-I 

peptide presentation (Rock et al., 1994). Once a protein has been degraded the peptides 

that have been generated can either be destroyed by additional peptidases or pumped 

into the ER lumen via a specialised peptide transporter known as transporter associated 

with antigen processing (TAP). Inside the ER MHC-I molecules are stabilised by 

chaperone proteins such as tapasin, calreticulin and ERp57. These chaperones, the 
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MHC-I molecule and TAP form the so called peptide loading complex (PLC). Once inside 

the ER, peptides can then bind the MHC-I allowing the release of the chaperones and 

the export of the peptide:MHC-I complex to the cell’s surface to facilitate antigen 

presentation. Since TAP translocates peptides that are between 8 and 16 amino acids 

in length (Parcej et al., 2010), and MHC-I complexes can only bind peptides of 8-10 

residues in length due to their closed binding grove (York et al., 2002; Mohan et al., 

2012), some peptides will need further “trimming” before loading onto the MHC-I 

molecule. This is carried out by ER aminopeptidases. One such enzyme has been 

identified in mice and it is known as ER aminopeptidase associated with antigen 

processing (ERAAP) (Serwold et al., 2002), and two of these enzymes have been 

discovered in humans and are known as ER aminopeptidase 1 and 2 (ERAP1 and 

ERAP2) (Saveanu et al., 2005). If a peptide that has entered the ER is not suitable for 

MHC-I binding, even after the action of ER aminopeptidases, it is transported back into 

the cytosol by the ER associated protein degradation (ERAD) system for destruction or 

for a new round of TAP translocation (Roelse et al., 1994; Neefjes et al., 2011) (figure 

1.5). MHC class II molecules are primarily expressed by professional antigen presenting 

cells (APCs), such as dendritic cells (DCs) and B cells. However, expression of MHC-II 

can be induced by stimuli such as IFNγ in non-APCs, including fibroblasts and 

endothelial cells (Geppert et al., 1985) and mesenchymal stromal cells (Romieu-Mourez 

et al., 2007). The peptides presented by class II complexes are of extracellular origin and 

derive from proteins degraded via the endosomal pathway. The structure of MHC-II is 

similar to that of MHC-I: it is composed of two transmembrane chains, one α and one β, 

each consisting of two domains (figure 1.4 left). MHC-II α and β chains assemble in the 

ER and form a complex with the invariant chain (Ii). This prevents the premature binding 

of peptides but also contains two dileucine sorting motifs that direct MHC-II molecules to 

endosomal compartments (Landsverk et al., 2009). The dileucine motifs are recognised 

by the sorting adaptors AP1 (a Golgi adaptor) and AP2 (a plasma membrane adaptor). 

Thus the Ii:MHC-II heterotrimer can be transported to a late endosomal compartment 

named MHC class II compartment (MIIC), via either the Golgi complex (AP1) or by 
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endocytosis from the plasma membrane (AP2) (Hofmann et al., 1999). Once inside the 

MIIC the Ii is digested and a small peptide known as class II associated Ii peptide (CLIP) 

is left inside the peptide-binding groove of the MHC-II molecule. Exchange of CLIP with 

a specific peptide of endosomal origin is dependent upon activity of HLA-DM (humans) 

or H2-DM (mice). Class II complexes are able to accommodate longer peptides, typically 

14-20 amino acids long thanks to their open binding grove (Mohan et al., 2012). Once a 

correct peptide is bound to MHC-II, the pMHC-II complex can translocate to the cell’s 

surface for antigen presentation (Neefjes et al., 2011) (figure 1.6). As a general rule, 

intracellular peptides are presented to CD8+ T cells by MHC-I molecules and antigens of 

extracellular origin are presented to CD4+ cells by MHC-II molecules. However, as 

previously mentioned, in some cases MHC-I molecules can present peptides of 

extracellular origin, via a process known as cross-presentation, a mechanism discovered 

in the 1970’s (Bevan, 1976). This process is fundamental for CD8+ T cell cross-priming 

in response to viral infections and tumours that do not involve APCs. During cross-

presentation DCs take up peptides by endocytosis mechanisms involving Fc and C-type 

lectin receptors, and present such peptides to both CD4+ cells via MHC-II molecules and 

CD8+ cells through MHC-I molecules (Kurts et al., 2010). Ever since its discovery cross-

priming and cross-presentation has been shown to be required for defence against many 

viruses (Sigal et al., 1999) and tumours (Huang et al., 1994), and it is essential for many 

effective vaccination responses (Yewdell et al., 2005). Moreover, self-antigens can also 

be cross-presented resulting in deletion of self-reactive CD8+ cells and cross-tolerance 

(Kurts et al., 1997). Thus, the specificities of MHC class I and class II molecules, in 

addition to cross-presentation make APCs able to present to T cells peptides of different 

origin, from almost all cellular compartments.  
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Figure 1.5 – Class I antigen processing and presentation (adapted from Neefjes et al., 

2011). 
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Figure 1.6 – Class II antigen processing and presentation (adapted from Neefjes et al., 

2011). 
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1.1.6. The Immune Synapse 

T cells constantly traffic throughout the body “looking” for their cognate antigen presented 

on a MHC molecule. Within minutes of the initial pMHC:TCR binding the T cell stops 

trafficking and forms a stable junction with the APC. This specialised junction is known 

as the immunological synapse (IS) as it bears many similarities to the classical synapse 

of the nervous system (Dustin et al., 2002) and it is arranged in a bulls-eye structure. 

The first step that leads to the formation of the IS is the recognition of a pMHC by the 

cognate TCR. This interaction causes an upregulation of the integrin leukocyte function 

associated antigen (LFA-1) on the surface of the T cell (Bromley et al., 2002). LFA-1 

binds the intercellular adhesion molecule 1 (ICAM-1) on the APC, further slowing down 

T cell migration and stabilising the interaction between the T cell and the APC. All these 

receptors are arranged within three supramolecular activation clusters (SMACs): a distal 

SMAC (dSMAC), a peripheral SMAC (pSMAC) and a central SMAC (cSMAC) (Grakoui 

et al., 1999; Dustin et al., 2010). In the cSMAC on the surface of the T cell we find TCR 

micro-clusters, which are formed upon TCR signalling (Varma et al., 2006). Such clusters 

originally form in the dSMAC and gradually move centrally towards the cSMAC via an 

actin dependent process (Vardhana et al., 2010). In addition to TCRs we also find CD28, 

CD4 or CD8 and CD2 in the cSMAC. Importantly, such receptor arrangement within this 

central zone actively excludes the phosphatase CD45, one of the major negative 

regulators for TCR signalling (Varma et al., 2006). LFA-1 arranges around the c-SMAC, 

in the pSMAC. The outermost area is the dSMAC which represents an area of active 

membrane movement. TCR signalling is initiated with the formation of TCR micro-

clusters so the formation of cSMAC is not necessary for TCR signal initiation (Monks et 

al., 1998). Is it now believed that the cSMAC mainly plays a role in signalling termination, 

by facilitating TCR ubiquitination and degradation (Lee at al., 2003). Finally, pSMAC may 

be important for cytolytic killing. It has been proposed that pSMAC might function as a 

“sealing ring” preventing cytolytic molecules secreted by the T cell to escape in the 

surrounding environment and focusing the killing on the target cell (Dustin et al., 2010).   
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1.1.7. TCR signalling 

TCR signalling is initiated when a T cell encounters its cognate antigen presented in 

complex with a MHC-I or –II molecules on an APC. Upon TCR:pMHC interaction a 

number of changes (increased integrin binding, cytoskeletal rearrangements, production 

and mobilization of transcription factors and changes in metabolism) occur in the T cell 

which leads to cell’s activation, proliferation and differentiation. The earliest modification 

that occurs upon TCR engagement is the phosphorylation of tyrosine residues in the 

CD3ζ chain ITAMs by the CD4/CD8 co-receptor-associated Lck. This in turns leads to 

the recruitment and activation of ZAP70, which is itself phosphorylated by Lck. ZAP70 

phosphorylates two substrates: the linker for activation of T cells (LAT) and the SRC 

homology 2 (SH2)-domain-containing leukocyte protein of 76 kDa (SLP76). The 

activated forms of these molecules form a complex which activates phospholipase C-γ 

1 (PLC-γ1). The active form of PLC-γ1 produces inositol triphosphate (IP3) and 

diacylglycerol (DAG) from phosphatidylinositol 4,5-biphosphate (PIP-2). These two 

secondary messenger molecules lead to T cell activation by three separate mechanisms. 

IP3 causes the release of calcium ions (Ca2+) from the ER and uptake of calcium from 

the microenvironment and activates calcineurin, which dephosphorylates and activates 

the transcription factor nuclear factor of activated T cells (NFAT). Conversely, DAG de-

inhibits the transcription factor nuclear factor kappa-light-chain-enhancer of activated B 

cells (NFκB) and activates the mitogen-activated protein kinase (MAPK) cascade, 

leading to activation of the transcription factor activator protein 1 (AP-1). These 

transcription factors then translocate to the nucleus and induce transcription of genes 

involved in T cell proliferation, effector function and differentiation (Malissen et al., 2015; 

Smith-Garvin et al., 2009) (figure 1.7). 
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Figure 1.7 – TCR signalling 
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Although the molecular mechanisms behind T cell activation have been elucidated, the 

initial events that trigger TCR signalling are still poorly understood. Several models have 

been proposed which involve aggregation, conformational change and receptor 

segregation.  Aggregation models propose that following TCR engagement, TCR-CD3 

complexes aggregate in clusters enhancing phosphorylation. Data to support these 

models come from the finding that forced TCR aggregation through anti-TCR antibodies 

or soluble multimeric p:MHC complexes is sufficient to trigger TCR signalling (var der 

Merwe et al., 2011). The conformational change model suggests that binding of a p:MHC 

molecule alters the conformation of the TCR and initiates signalling (Xu et al., 2008). 

Segregation models such as the kinetic segregation theory suggest that TCR signalling 

is initiated when the TCR is clustered in areas of the plasma membrane that are rich in 

Lck and lack the phosphatase CD45 (Davis et al., 2006). This latter model corroborates 

the findings relative to the immune synapse. None of these models are mutually 

exclusive and it is likely that TCR triggering will involve a combination of these 

mechanisms. The initiation of signal transduction such as the phosphorylation of 

proximal signalling molecules, occurs within seconds and minutes after TCR 

engagement. However, for full activation and commitment to T cell proliferation and 

development of effector function, sustained signalling which involves p:MHC:TCR 

contact for several hours is required. Premature disruption of the TCR:cognate-antigen 

contact stops T cell progression into T cell division, despite effective initial signalling 

events. Thus, more than one threshold of activation needs to be exceeded for a T cell to 

become fully activated (Acuto et al., 2008). 

1.1.8. Regulation of T cell activation 

T cell maturation involves T cell binding to self-peptide:MHC complexes in the thymus. 

Therefore, all peripheral T cells express TCRs that can recognize “self” with low affinity. 

Moreover, self-p:MHC molecules are presented to T cells in greater numbers compared 

to foreign p:MHCs, indicating that T cells need to be able to not only discriminate between 

“self” and “non-self”, but also detect the very low number of foreign p:MHC ligands in the 
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presence of an excess of self-peptides. In addition, naïve, resting T cells continuously 

receive tonic signals from self-p:MHC molecules in the periphery, which are essential for 

their survival (Tanchot et al., 1997). A few models have been proposed to explain how T 

cell activation can occur despite low concentration of antigen, and how it is regulated to 

prevent autoimmune disease. The serial triggering model first described by Valitutti et al. 

may explain how T cells can mount an efficient response against a foreign peptide that 

is presented at a relatively low frequency. This study showed that a single p:MHC 

molecule can trigger up to 200 TCRs (Valitutti et al., 1995). How T cells can discriminate 

between self and non-self peptides can be explained by the kinetic proofreading model. 

According to this model, engagement of a TCR by a high-affinity p:MHC molecule with a 

lower dissociation rate results in a higher degree of TCR signalling, compared to low 

affinity peptides with higher dissociation rates that are present at higher concentrations 

(McKeithan, 1995; Rabinowitz et al., 1996).  

However, full T cell activation requires three signals, of which TCR signalling is only one. 

The further two signals are provided by APCs in the form of co-stimulatory molecules 

(signal 2) and secreted inflammatory cytokines (signal 3). CD28 is the major 

costimulatory molecule present on T cells. Imaging studies have shown that upon TCR 

engagement CD28 forms micro-clusters with the TCR recruiting signalling molecules 

(Saito et al., 2010; Chen et al., 2013). CD80 and CD86 are the ligands for CD28 and are 

expressed on activated APCs. Binding of CD28 to either one of them activates the PI3K 

pathway, ultimately enhancing nuclear translocation of NFκB (Smith-Garvin et al., 2009). 

IL-12 and type I interferons (IFNα/β) are two of the major source of signal 3 in CD8+ T 

cells, whereas IL-1 can also provide signal 3 to CD4+ T cells. The molecular mechanisms 

behind signal 3 are still being elucidated, and appear to include cytokine-driven 

chromatin remodelling (Curtsinger et al., 2010). Importantly, signalling through the TCR 

alone in absence of co-stimulation and signal 3 results in a non-responsive state known 

as anergy. Anergic T cells are unable to optimally expand and acquire effector functions. 
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As with co-stimulatory molecules, co-inhibitory molecules that prevent T cell activation 

also exist. Cytotoxic T lymphocyte antigen 4 (CTLA-4) receptor is one of the main co-

inhibitory molecules involved in T cell activation, and it competes with CD28 for the 

binding of CD80 and CD86. Upon binding, CTLA-4 can rip CD80 and CD86 from the 

surface of APCs, thereby preventing interaction of such ligands with co-stimulatory 

receptors (Qureshi et al., 2011). CTLA-4 binding to its ligand activates the phosphatases 

SH2 domain-containing tyrosine phosphatase 2 (SHP2) and serine/threonine protein 

phosphatase 2A (PP2A), which reduce proximal TCR signalling by dephosphorylating 

the CD3ζ chain. Whereas CD28 is constitutively expressed on T cells, CTLA-4 

expression is upregulated upon T cell activation and its expression induces endocytosis 

and downregulation of CD28 (Rudd et al., 2009).  

Thus, co-signalling molecules allow T cells to sense external environmental conditions 

and to promote T cell responses against harmful, non-self antigens, whist limiting or 

preventing aberrant and autoreactive responses.  
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1.2. T cell biology 

1.2.1. T cell effector function 

Upon activation through TCR signalling and co-stimulation a naïve T cell will proliferate 

and differentiate while assuming effector functions, allowing infections to be resolved. 

Within the naïve T cell population, only a few T cells specific for a given antigen will be 

present. However, upon encountering their cognate peptide these cells will undergo a 

massive burst of expansion. Using a murine LCMV infection model Blattman et al. 

showed that upon priming, antigen specific cells can divide more than 14 times in a week, 

going from 100-200 cells to approximately 107 cells (Blattman et al., 2002). Along with 

proliferation comes the acquisition of effector functions, thus antigen encounter 

generates a large population of antigen-specific, effector T cells. However, CD4+ and 

CD8+ T cells differ in their proliferative responses. Whereas CD8+ T cells will rapidly 

proliferate and differentiate into cytotoxic T lymphocytes (CTLs), CD4+ T cells have a 

lesser ability to divide and their proliferation begins after a slight delay (Foulds et al., 

2002). Moreover, CD4+ T cells have a broader differentiation repertoire which includes 

type 1 T helper (Th1), Th2, Th9, Th17, Th22, regulatory T cells (Treg) and follicular T 

helper cells (Tfh) (Wan et al., 2009; Rapahel et al., 2015). Some of the differences 

between CD8+ and CD4+ T cell effector functions will be described below. 

1.2.1.1. CD4+ T cells subsets 

CD4+ T cells are characterised by a different cytokine profile and transcription factor 

expression, both of which are used to define different CD4+ T cell subsets. Originally it 

was thought that CD4+ T cells simply differentiated into either Th1 or Th2 cells, the former 

characterised by the secretion of IFNγ and TNFα, the latter by IL-4, IL-15 and IL-13 

expression (Mosmann et al., 1986). However, since the discovery of Th1 and Th2 

subsets many additional Th subsets have been identified including Th17, Tregs, Th22, 
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Th9 and Tfh, and each one of these subsets plays a critical role in shaping the immune 

response (figure 1.8).   

The role of Th1 cells is to stimulate innate and T cell responses by producing pro-

inflammatory cytokines such as IFNγ, TNFα and TNFβ. Such cytokines induce CTL 

activation, IgG2a production by B cells and macrophage activation. Because of this pro-

inflammatory profile, these cells are important in protecting the host from intracellular 

pathogens and help in immune-mediated tumour rejection (Wan et al., 2009). However, 

because of their pro-inflammatory profile they can cause tissue damage and elicit 

unwanted inflammatory diseases and self-reactivity. The transcription factor associated 

with Th1 cells is T-bet, and overexpression of T-bet activates IFNγ expression, while 

supressing IL-2, IL-4 and IL-5 production both in cell lines and primary cells (Dong et al., 

2000).    

Th2 cells are producers of IL-4, IL-5, IL-9, IL-10 and IL-13 and their master transcription 

factor regulator is GATA-3 (Zhang et al., 1997). Th2 responses are important to 

neutralise foreign organisms such as helminths and nematodes, as this type of response 

promotes IgG1 and IgE class-switching and eosinophil recruitment (Mossman et al., 

1986). Just like Th1, Th2 cells can also promote pathology such as atopic asthma and 

allergy (Wan et al., 2009).  

Th17 are so called because of their ability to produce IL-17 (A, E and F), but they can 

also produce IL-21 and IL-22. Th17 responses, which are able to indirectly induce the 

recruitment of neutrophils, are directed against extracellular bacterial and fungal 

infections, indirectly recruit neutrophils, but have also been implicated in autoimmune 

diseases such as multiple sclerosis and rheumatoid arthritis (Zambrano-Zaragoza et al., 

2014; Wan et al., 2009; Pelletier et al., 2010). Rorγt is the transcription factor driving 

Th17 differentiation (O’Shea et al., 2010).  

Both Th9 and Th22 were recently identified as new subtypes of helper T cells. Th9 cells 

were firstly reported in 2008 by Dardalhon et al. and Veldhoen et al., and are associated 
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with the production of high levels of IL-9 and IL-10 (Dardalhon et al., 2008; Veldhoen et 

al., 2008). Th22 cells are characterised by the secretion of IL-22 and TNFα, but not IFNγ, 

IL-4 or IL-17 and were first identified in the epidermis of individuals with inflammatory 

skin disorders (Eyerich et al., 2009).  

Tregs are a specialised subset of helper T cells with regulatory functions, whose main 

role is to suppress the immune system. These can be thymically derived or natural Tregs 

(nTregs) which arise from self-reactive cells in the thymus; or can be induced in the 

periphery (iTregs). In both cases their signature transcription factor is Foxp3. Although 

nTregs and iTregs were shown to have similar transcriptional signatures, their TCR 

repertoires only minimally overlap. Thus, although both subsets of Tregs carry out similar 

immunosuppressive functions, the two populations are non-redundant with iTregs 

supplementing nTregs in part by expanding TCR diversity (Haribhai et al., 2011). Tregs 

can employ different mechanisms to exert their immunosuppressive functions:  they can 

produce immunosuppressive cytokines such as IL-10 and TGF-β; they can suppress 

TCR-induced Ca2+, NFAT and NF-κB signalling; they can suppress IL-2 consumption or 

induce cell death by perforin and granzyme; and they can drive down-modulation of co-

stimulatory molecules on APCs by upregulating CTLA-4 (Schmidt et al., 2012). All these 

mechanisms are fundamental for the maintenance of self-tolerance and immune 

homeostasis. In fact, Treg depletion or dysfunction can lead to a variety of inflammatory 

and autoimmune diseases as shown some time ago by Sakaguchi et al. (1995). 

Tfh are primarily found at the edge of the B cell zones and follicular regions and germinal 

centres of secondary lymphoid organs, due to their high expression levels of CXCR5. 

Tfh drive generation of high-affinity antibodies and memory B cells by expressing the B 

cell-promoting cytokine IL-10 and IL-21 (Wan et al., 2009; Fazilleau et al., 2009). 

The different subsets described above have been classically viewed as distinct lineages. 

However, recent studies have shown that both transcription factor expression and 

cytokine production might not be as fixed as originally thought and flexibility in the 
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expression of master regulators and cytokines is relatively common (O’Shea et al., 

2010). Nonetheless, despite questions remaining over CD4+ T cell differentiation and 

plasticity, the different subsets all clearly play a diverse but important role the immune 

system. 

 

Figure 1.8 – CD4+ T cell subsets (adapted from O’Shea et al., 2010). 
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1.2.1.2. CD8+ T cell subsets 

CD8+ T cells are commonly known as cytotoxic T lymphocytes and they are so named 

because of their ability to directly kill target cells. This killing is highly efficient and 

involves transient interactions (between 2-10 minutes) between the CTL and the target 

cell, through the formation of the immunological synapse. Killing occurs by induction of 

two separate apoptotic pathways. Firstly, upon target cell recognition and signalling 

through the CD8+ T cell’s TCR, a calcium-dependent mechanism is initiated by which the 

microtubule organisation centre reorganises, polarising the Golgi complex and lytic 

granules within the CTL’s cytoplasm towards the target. Lytic granules are specialised 

secretory lysosomes containing cytolytic proteins such as granzymes and perforin. Upon 

polarisation, they move to the plasma membrane, where they dock and release their 

content onto the target cell. Perforin causes the formation of pores in the target cell’s 

plasma membrane allowing granzyme to enter and trigger the mitochondrial apoptotic 

pathway by directly cleaving Bid (Sutton et al., 2000; Jenkins et al., 2010; Stinchcombe 

et al., 2001).  

The second mechanism used by CD8+ T cells to induce cytotoxicity involves the Fas-

FasL lytic pathway. Fas is a transmembrane glycoprotein widely expressed on both 

lymphoid and non-lymphoid tissues, which contains an intracellular domain, homologous 

to the p55 TNF receptor death domain. FasL is a transmembrane protein of the tumour 

necrosis factor family that is expressed on activated T cells. Upon interaction with its 

ligand, Fas trimerises leading to caspase 8 activation, and ultimately cell apoptosis 

(Berke, 1995; Waring et al., 1999). 

1.2.2. T cell central and peripheral tolerance 

As described above, V(D)J recombination in the thymus is a quasi-random process 

through which millions of different TCR specificities can be generated. Many of the 

randomly rearranged TCR are useless as they will not be able to recognize and bind to 

the MHC molecules. Conversely, newly generated TCRs could also be potentially self-
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reactive and harmful for the organism. To avoid both scenarios and to ensure generation 

of fully functional, non-self-reactive T cells during thymic maturation developing T 

lymphocytes undergo two selection steps known as positive and negative selection. Both 

steps occur simultaneously (Baldwin et al., 1999) and are crucial for the development of 

central tolerance.  

Positive selection is the process by which the ability of newly generated TCRs to interact 

with self is tested. Indeed, cells expressing TCRs that are not capable of recognising and 

binding self-MHC molecules will not receive further survival signals through the TCR and 

will die by neglect. It has been estimated that the mouse thymus at the peak of its 

productivity generates around 50 million CD4 CD8 DP thymocytes each day. More than 

90% of these precursors will die by neglect (Klein et al., 2014). Because this process 

enriches for self-reactive clones thus increasing the danger of autoimmunity, another 

process fundamental for central tolerance development is negative selection by clonal 

deletion. During negative selection T cell clones with high affinity for self are deleted. 

Alternatively some self-reacting T cells differentiate into Tregs upon strong interaction 

with self-p:MHC molecules. Thus, only clones with low-medium affinity for self-pMHC will 

proliferate and mature into functional conventional T cells.  

Positive selection occurs in the thymic cortex and it is dependent on a single type of  

APC, known as the cortical thymic epithelial cells (cTECs). The ability of cTECs to play 

such a critical role in thymocyte development, is due both to their abundant surface 

expression of MHC molecules, and to the unique machinery they possess to process 

antigens. Indeed, for MHC-I antigen presentation, cTECs express a unique version of 

the proteasome (referred to as the “thymoproteasome”) which contains the catalytic 

subunit β5t. Mice lacking this subunit have a substantial defect in positive selection of 

CD8+ T cells (Murata et al., 2007). In terms of MHC-II antigen presentation, cTECs 

express the unique lysosomal proteases cathepsin L and thymus-specific serine 

proteases (TSSP). Deficiency in these enzymes results in impaired positive selection of 

CD4+ T cells (Nakagawa et a., 1998; Gommeaux et al., 2009). Thus, interaction of 
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thymocytes with cTECs also determines whether the CD4 CD8 DP precursors will 

mature into CD4+ or CD8+ T cells, depending on whether they bind MCH-II or MHC-I 

respectively. Negative selection occurs in the medulla and depends on another specific 

cell type, known as medullary thymic epithelial cells (mTECs). The peculiarity of mTECs 

is that collectively they express almost all peripheral tissue restricted antigens (TRAs), 

through their expression of the autoimmune regulator (AIRE) transcription factor. These 

self-antigens can be presented to thymocytes either by direct presentation on mTECs or 

by cross presentation on migratory DCs. Clonal diversion can also occur in the medulla, 

that is the process by which self-reactive T cells are imprinted with a regulatory function 

and become Tregs. What determines if a self-reacting cell will undergo clonal deletion or 

clonal diversification is still a matter of some debate.  

Another key question that remains is how a TCR can discriminate between low and high 

affinity interactions, and as a consequence whether the T cell expressing that TCR will 

be deleted or not. It has been suggested that a high affinity interaction causes signal 

transduction leading to negative selection, whereas low affinity interactions result in a 

partial phosphorylation of the CD3 co-receptor, triggering positive selection (Palmer et 

al., 2009). Ca2+ and ERK signalling downstream of the TCR also seem important in 

determining negative versus positive selection. Indeed, rapid and robust ERK activation 

is associated with negative selection, whereas positive selection stimulates a lower 

intensity but sustained ERK activation (McNeil et al., 2005). The thymocyte expressed 

molecule involved in selection (Themis) also seems to be involved in determining the 

strength and kinetics of both ERK phosphorylation and Ca2+ influx, and its deficiency 

markedly impairs positive selection of thymocytes (Fu et al., 2009). Therefore, 

developing thymocytes integrate information from multiple inputs when deciding cell fate 

in the thymus. 

Theoretically mature T cells that have left the thymus should either be naïve T cells that 

can recognise foreign antigens presented on self-MHC molecules, or self-reacting Tregs. 

However, low affinity self-reacting T cells continuously escape to the immune periphery 
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as shown by the occurrence of autoimmunity. These cells are subjected to peripheral 

tolerance, which is additional mechanisms that prevent self-reacting T cells from 

mediating autoimmunity in the periphery. Anergy is one such mechanism. T cells become 

activated in the presence of both a TCR (signal 1) and a co-stimulatory signal (signal 2). 

T cell activation in the absence of signal 2 induces a state of long term hypo-

responsivness in the cells, termed anergy and characterised by active TCR signalling 

repression (Schwartz, 2003). Tolerogenic DCs can also induce tolerance, by presenting 

antigen without the adequate co-stimulatory signal. Evidence suggests that tolerogenic 

DCs are the results of incomplete DC maturation. For example, apoptotic cells unlike 

necrotic cells are insufficient to trigger DC maturation (Gallucci et al., 1999; Hawiger et 

al., 2001). Peripheral deletion of self-reacting clones can also occur. This is achieved 

through apoptotic cell death, via both the Fas- and the Bim-mediated apoptosis 

pathways, in T cells chronically stimulated by self-antigens (Xing et al., 2012). Finally, 

Tregs can also suppress self-reacting T cells via a variety a mechanisms including 

production of immunosuppressive cytokines and expression of inhibitory receptors such 

as CTLA-4 (described in section 1.2.1.1).  

Thus, several mechanisms are in place, both in the thymus and in the periphery, to 

prevent the development of autoimmunity. These, together with the tightly regulated 

signalling sequences needed for full T cell activation (described in section 1.1.8.) ensure 

that effective immune responses are mounted only against foreign, harmful pathogens.  

1.2.3. T cell homeostasis 

After the process of positive and negative selection in the thymus, newly generated 

naïve, mature T cells exit the thymus and form the long-lived pool of naïve cells that 

recirculate within the peripheral tissues. Indeed, naïve murine T cells can persist for 

several weeks in the absence of antigenic stimulation. In the periphery, these cells are 

maintained without proliferating, and the number of T cells in the periphery remains fairly 

constant in young adult animals. This is in contrast with the maintenance of the human 
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naïve T cells pool, which is maintained by peripheral naïve T cell proliferation (den Braber 

et al., 2012). As with other cell types in the body, the composition and survival of the 

mature T cell pool are governed by complex homeostatic mechanisms. Post-thymic T 

cells retain a low degree of self-reactivity, and this is thought to be fundamental for their 

homeostatic survival. Much controversy exist in this field as different studies over the 

past few years, generated different conclusions. Initial studies suggested that T cell 

homeostatic signals rely on interactions between the TCR and self-p:MHC complexes 

(Brocker , 1997; Kirberg et al., 1997). Conversely, in later studies where MHC-II-deficient 

mice were used, normal maintenance of CD4+ T cells was observed (Clarke et al., 2000; 

Grandjean et al., 2003). However, another study by Martin and colleagues contradicted 

this, as they found that MHC-II molecules were required for maintenance of the 

peripheral CD4+ T cell pool in a non-lymphopenic environment (Martin et al., 2006). One 

caveat in the majority of these studies is that they involved sustained or transient 

lymphopenia, and it is now known that lymphopenic environments alter physiological T 

cell homeostasis, for example by generating a proliferative response and the acquisition 

of these cells of a memory-like phenotype (Takada et al., 2009a). 

It has also been suggested that recognition of self-p:MHC complexes may control T cell 

function, and two contradictory models have been proposed. One study showed that 

CD4+ T cells deprived of MHC-II molecules in vivo, showed a rapid decline in their ability 

to proliferate and produce IL-2 following in vitro stimulation. This suggests that self-

peptide MHC complexes play a role in supporting T cell sensitivity to antigenic stimulation 

(Stefanova et al., 2002). However, data obtained from other studies showed that 

depriving CD4+ T cells of contact with self-p:MHC complexes led to enhanced functional 

sensitivity (Smith et al., 2001). In the case of CD8+ T cells, data suggests that lack of 

MHC-I molecules leads to upregulation of CD8 on the T cells, which makes T cells more 

responsive to weak antigens. In accordance with this data, it has been proposed that 

continuous interaction between the co-receptor and self-p:MHC complexes elevates the 

activation threshold of the T cells, a mechanism which may serve to prevent the 
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emergence of auto reactivity (Takada et al., 2009b). Thus, more studies are needed to 

dissect the role of TCR interactions with “self” in the context of naïve T cell reactivity. 

Soluble factors also play a role in the maintenance of naïve T cell homeostasis. In 

particular, IL-7 is the major cytokine required for naïve T cell survival (Schluns et al., 

2000; Hassan et al., 1998). Survival of naïve T cells is impaired if mice are injected with 

anti-IL-7 blocking antibodies, or after transfer into IL-7-deficient mice (Kondrack et al., 

2003). In particular, IL-7 signalling enhances the expression of two anti-apoptotic factors, 

BCL-2 and MCL1, whilst inhibiting expression of the pro-apoptotic molecules interacting 

domain death agonist (BID), BCL-2-interacting mediator of cell death (BIM) and BCL-2 

antagonist of cell death (BAD) (Wojciechowski et al., 2007). Moreover, IL-7 signalling 

through the PI3K-AKT pathway prevents T cell atrophy, by activating the mammalian 

target of rapamycin (mTOR) and sustaining the expression of the glucose transporter 

GLUT1 (Rathmell et al., 2001; Wofford et al., 2008). 

TCR and IL-7 signalling seem to cooperate in the maintenance of the peripheral pool of 

naïve cells, as impairment of both mechanisms leads to more rapid decline of naïve T 

cell numbers, compared to inhibition of either pathway alone (Seddon et al., 2002). 

To conclude, IL-7 and self-p:MHC complexes are known promoters of naïve T cell 

homeostasis. However the way in which these two signalling pathways are integrated is 

still unclear.   

1.2.4. T cell memory formation 

A T cell response to an antigen can generally be divided into four phases. As discussed 

above, on exposure to cognate antigen, naïve T cells are primed and undergo dramatic 

expansion. While proliferating they acquire effector functions and travel to the site of 

infection to mediate pathogen clearance (“effector phase”). During this expansion phase 

cells can divide up to 15-20 times, increasing up to 50,000-fold in number. This 

proliferation generally peaks around 7 days post infection, after which the second phase 
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of the T cell response occurs: the “contraction phase”. During this second phase the 

majority (90-95%) of the expanded T cell clones die by apoptosis. The remaining cells 

are maintained for years as long-lived memory cells, a phase known as the “memory 

maintenance phase”. The T cells that are left behind have an enhanced ability to control 

secondary infections by the same pathogen, due to their ability to rapidly acquire effector 

functions, and their localization at the site of infection. Indeed, the last phase of the T cell 

response occurs if and when the same pathogen re-infects the host. In this case the 

memory population that has been maintained throughout the life of the individual gives 

rise to a rapid recall response, providing better protection compared to that generated 

by antigen-inexperienced T cells (Williams et al., 2007). 

The memory T cell compartment can be divided into central memory (TCM) and effector 

memory T cells (TEM), based on two criteria: the presence or absence of effector 

functions, and the expression of homing receptors which dictate the cell’s trafficking 

pattern (lymphoid or non-lymphoid organs). TCM constitutively express CD62L and CCR7, 

two receptors required for extravasation which allow their migration to secondary 

lymphoid organs. This subset of memory cells displays limited effector functions, but 

upon TCR engagement they efficiently differentiate into effector cells. Moreover TCM are 

less dependent on co-stimulation and provide a more effective feedback stimulatory 

mechanism to DC and B cells, via upregulation of CD40L. Upon activation they mainly 

produce IL-2, but can also produce large quantities of IFNγ or IL-4. On the other hand, 

TEM no longer express CCR7 and their expression of CD62L is heterogeneous. In 

addition, they display different combinations of chemokine receptors and adhesion 

molecules, which promote their homing to different inflamed tissues. This subset of 

memory cells have a lower proliferative capacity, but can rapidly acquire effector 

functions within hours of antigen stimulation. Indeed, they can produce IFNγ, IL-4 and 

IL-5. CD8+ TEM also contain large amounts of intracellular perforin (Sallusto et al., 2004; 

Sallusto et al., 1999). In blood of healthy donors, TCM are predominant in the CD4+ T cell 

compartment; TEM are predominant in the CD8+ compartment. However within tissues 
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TCM and TEM display characteristic patterns of distribution, with TCM being enriched in the 

lymph nodes and tonsils, while TEM are primarily found in the lung, liver and gut (Campbell 

et al., 2001).  

Although the four different phases that make up T cell responses are well established, 

the pathways that lead to memory formation are less well understood. Two studies have 

shown that that the transcription factors T-bet and Eomes determine the differentiation 

of T cells into either central or effector memory T cells. In particular, Joshi and colleagues 

showed that high levels of T-bet expression drive differentiation into TEM cells; whereas 

Intlekofer and colleagues showed that Eomes expression is linked to TCM maintenance 

(Joshi et al., 2007; Intlekofer et al., 2005).  

The steps that lead to memory formation are still somewhat unclear. Two main models 

have been proposed. One model suggests that a subpopulation of the cells that 

differentiate into effector cells during an immune response, possibly those with greater 

effector function, will go on to become memory cells (Youngblood et al., 2013) (figure 

1.9 A).  Supporting data for this model comes from studies in which genetically marked, 

cytokine producing cells that were generated during the effector phase, were present in 

the subsequent memory pool (Harrington et al., 2008; Lohning et al., 2008).  

An alternative model suggests that T cell differentiation follows a linear path, and memory 

cells can develop directly from naïve cells, without transitioning through an effector stage 

(figure 1.9 B). According to this theory, memory cells are generated from activated T 

cells that have never experienced full activation and effector state. Effector cells on the 

contrary, represent fully differentiated cells, which can only generate more effector cells 

or undergo apoptosis. (Restifo et al., 2013). Data supporting this “linear differentiation 

model” comes from a number of recent studies. D’souza and colleagues showed that 

naïve T cells adoptively transferred towards the end of an infection, preferentially 

differentiate into memory cells. This pattern of differentiation was promoted by reduced 

antigenic stimulation, which also correlated with fewer rounds of cell division. (D’souza 
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et al., 2006). Additionally, in vivo tracing studies showed that slowly proliferating cells 

generated long-lived memory cells; whilst increased levels of proliferation gave rise to 

short-lived effector cells. Rapidly expanding T cells were also found to be involved less 

in re-call responses (Buchholz et al., 2013; Gerlach et al., 2013).  

Since memory T cells play a fundamental role in the adaptive immune responses, a 

deeper understanding of the processes involved in T cell differentiation is needed. 

Elucidation of the exact model, or models that drive differentiation of memory T cells is 

fundamental for the development of better therapies. Indeed, a number of studies have 

shown that transfer of T cells with a less differentiated phenotype correlates with a higher 

rate of objective responses. This will be discussed in more detail in section 1.4.3., in the 

context of tumour immunotherapy. 
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Figure 1.9 – Two models of memory T cell formation. 
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1.3. Tumour immunology 

1.3.1. Immune surveillance 

The role of the immune system in eradicating pathogens has long been understood. 

However the concept that the immune system could recognise and eradicate cancerous 

cells that arise in our bodies from transformed cells, was widely disputed until the mid-

20th century. 

The tumour surveillance hypothesis was first postulated by Paul Ehrlich in 1909. 

According to this theory the immune system is capable of distinguishing between healthy 

cells and transformed, cancerous cells, and is able to eliminate the latter before they 

develop into a clinically detectable disease (Ehrlich, 1909). However, convincing 

evidence did not emerge until the latter half of the 1900’s, and this concept was 

formalised as the theory of “cancer immune surveillance” by Sir MacFarlane Burnet and 

Lewis Thomas in 1957.  

The first conclusive evidence supporting a role of the immune system in tumour control 

came from mice lacking IFNγ. Dighe et al showed that in mice injected with a neutralising 

antibody against IFNγ, transplanted fibrosarcoma grew faster. Similarly, if the tumour 

cells expressed a dominant negative form of the IFNγ receptor α chain, they displayed 

enhanced tumorigenicity and lower immunogenicity when transplanted into syngeneic 

mice (Dighe et al., 1994). Later experiments showed that perforin-deficient mice were 

more susceptible to a variety of tumours (both transplanted tumour cell-lines and 

chemically-induced tumours), compared to wild type mice (van den Broek et al., 1996).  

Subsequent work utilising knockout mice, built upon the notion that lymphocytes play a 

central role in tumour surveillance. Mice lacking the recombinase-activating-gene 2 

(RAG2) were used to demonstrate that lymphocytes play a central role in the control of 

tumour growth. RAG2 deficient mice lack mature lymphocytes (T, B and NK T cells) due 

to their inability to initiate V(D)J rearrangement (Shinkai et al., 1992). Injection of the 
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chemical carcinogen methylcholanthrene (MCA) into these mice induced tumour 

formation at a higher frequency compared to wildtype mice. In addition RAG2 deficient 

mice showed an increase in the development of spontaneous neoplastic disease which, 

when then transplanted into immunocompetent hosts was shown to be more 

immunogenic compared to tumours that developed in the presence of an intact immune 

system. Interestingly, when RAG2 knockout mice were crossed with STAT1 deficient 

mice, which cannot respond to IFNγ, similar tumourigenesis kinetics were seen. Taken 

together this data suggests that there is an extensive overlap between these two tumour-

suppressor systems, but also that an intact immune system shapes the growing tumours, 

eliminating the more immunogenic cells, favouring the growth of less immunogenic 

clones (Shankaran et al., 2001), a mechanism now known as “cancer immunoediting” 

(described in more detail in the next section). Finally, the fact that lymphocytes played a 

role in tumour control was given further credence by the identification of melanoma-

specific cytotoxic T cells in the T cell pool derived from tumour-bearing patients (van der 

Bruggen et al., 1991).  

1.3.2. Immunoediting  

In the study by Shankaran described above, tumours developed even in the presence of 

a fully functional immune system. This led to the idea that a growing tumour is 

continuously edited and sculpted by the immune response to which it is subjected in vivo. 

Thus, tumours that are capable of developing despite an immune response, are likely to 

be (by default) less immunogenic. Therefore, the immune system plays a dual role by 

both protecting the host from, and promoting the growth of, tumours. This concept of 

immunoediting was originally proposed by Schreiber, and it can be divided into three 

different phases: elimination, equilibrium and escape (Schreiber et al., 2011).  

The elimination phase can be described as an updated version of cancer immune 

surveillance, during which the innate and adaptive immune systems networks work 

together to detect and eliminate developing tumours before they become clinically 
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apparent. Invasive tumour growths cause inflammation in their surrounding tissues, 

leading to the recruitment of innate immune cells (NK cells, macrophages, etc.) into the 

site. These recently recruited innate cells recognise the transformed cells and produce 

IFNγ, which has both anti-proliferative and pro-apoptotic effects on the tumour cells. 

Moreover, IFNγ also induces the production of chemokines such as CXCL10 and 

CXCL9, which can prevent angiogenesis, leading to further tumour cell death. Tumour 

cell debris is taken up by DCs, which migrate to the draining lymph nodes and present 

tumour antigens to CD4+ and CD8+ T cells, priming antigen specific cells. Primed T cells 

are subsequently recruited to the tumour site where they exert their cytotoxic functions, 

killing additional tumour cells (Dunn et al., 2002). Although efficient, this immune 

response is not always sufficient to prevent tumour development. 

In the equilibrium phase, the host immune system and any malignant cell clone that has 

survived the elimination phase enter into a dynamic equilibrium. During this process, 

potent selection pressure on the tumour cells is sufficient to control further tumour 

growth, but not fully eradicate the malignancy. Evidence for this process arose from in 

vivo experiments where mice were treated with small doses of MCA to induce tumour 

formation. Mice that after ~200 days were tumour-free were injected with either control 

antibodies, or anti-CD4/-CD8 or anti-IFNγ antibodies to deplete these populations or 

neutralise IFNγ, respectively. Following these weekly injections, 46% of the animals 

depleted of CD4+ and CD8+ T cells and treated to neutralised IFNγ, developed sarcomas. 

In contrast, no tumour growth occurred in the mice treated with control antibodies. This 

data supports the role of the adaptive immune system in preventing outgrowth of small 

MCA-induced sarcomas (Koebel et al., 2007). Which factors shift the balance towards 

subsequent tumour escape still needs to be determined. However during this process, 

as with Darwinian selection, new tumour variants carrying different, advantageous 

mutations arise, and these will go on to escape immune control (Greaves et al., 2012). 

The equilibrium phase is likely to be the longest of the three processes, and it has been 

suggested that this may occur over a period of many years.  



59 
 

Escape represents the final phase of immunoediting, during which the immune system 

fails to control the less immunogenic tumour cell variants, leading to uncontrolled growth 

and clinical presentation of a malignant disease. Tumour cells have developed multiple 

mechanisms to escape and evade recognition by the immune system. One of these 

mechanisms involves downregulation of antigen presentation. Indeed, reduced 

expression of, or mutations in proteins involved in antigen processing and presentation 

have been reported in a number of malignancies. These include mutations or down 

modulation of HLA, β2 microglobulin, TAP and components of the proteasome (Algarra, 

2000; Seliger et al., 2000). Alternatively, immune pressure can cause tumour cells to 

silence the expression of tumour antigens. This was shown to be particularly relevant in 

the case of immunotherapies targeting a tumour antigen, often lost on non-responding 

or relapsing tumours (Verdegaal et al., 2016; Maude et al., 2014). Increased expression 

of anti-apoptotic molecules, such as Bcl-2, or decreased expression of receptors 

involved in apoptosis signalling, such as TRAIL, have also been reported as a 

mechanisms used by tumour cells to escape cell death (Fulda, 2009).  

Tumour cells also have the ability to promote immune dysfunction by making the tumour 

microenvironment suppressive. Cancerous cells can over-express immunosuppressive 

cytokines such as IL-10 and transforming growth factor β (TGFβ) (Khong et al., 2002). 

In addition immunosuppressive cells such as Tregs, myeloid derived suppressor cells 

(MDSC), or dysfunctional DCs, can be recruited to the tumour site by malignant cells 

(Terabe et al., 2004; Gabrilovich et al., 2009; Pinzon-Charry et al., 2005). 
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1.4. Cancer immunotherapy  

Over the past decades many attempts to utilise the potential of the immune system to 

treat and eradicate tumours in patients have been made. The responses generated by 

adaptive T cells are crucial to the anti-tumour immune response, and the biological 

characteristics of these effector cells make T cell immunotherapy a very attractive field. 

T cells can recognise tumour antigens and directly kill malignant cells. Moreover this 

recognition can occur systemically, potentially allowing T cells to cure metastatic 

diseases. Further, initial recognition of malignant cells leads to the formation of 

immunological memory, generating long lived protection. Indeed the majority of recent 

cancer immunotherapies have focused on the manipulation of T cell populations. The 

three main approaches used within the T cell immunotherapy field to generate anti-

tumour responses are: 

- Vaccination against tumour antigens to promote endogenous tumour-specific T 

cell responses 

- Expansion and adoptive transfer of tumour infiltrating lymphocytes 

- Genetic modification of T cells to generate new anti-tumour T cell populations 

Briefly, while vaccines have proved potent at inducing durable responses against 

infectious disease, their use in cancer immunotherapy has proved more challenging. 

Vaccination in this context can be used both prophylactically, and therapeutically. 

Perhaps the best known prophylactic cancer vaccine to date is the HPV vaccine, which 

protects against high-risk types of the human papilloma virus (HPV), well known agents 

that can drive cervical cancer development upon long term infection. In the case of 

therapeutic vaccines, these are given to patients with an established disease, to boost 

their anti-tumour immune responses, and DCs are at the centre of these technologies 

thanks to the role they play in the initiation of T cell responses.  

The rest of this section will describe the foundations of and recent developments in the 

other two approaches.  
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1.4.1. Adoptive T cell therapy (ACT) 

T cells capable of recognising cancer cells have been identified in multiple patients, 

burdened with a number of different malignancies. These T cells are commonly referred 

to as tumour infiltrating lymphocytes or TILs. Autologous TILs can be isolated from the 

patient, expanded ex vivo using tumour specific peptides and/or cytokines, and re-

infused back into the patient where they can carry out their effector functions and mediate 

tumour control. The first evidence that adoptive transfer of sensitised, ex vivo cultured T 

cells could induce cancer regression came from a murine lymphoma study, in which 93% 

of mice with disseminated tumours were cured with ACT (Eberlein et al., 1982). This anti-

tumour effect was improved by co-administration of IL-2 (Rosenberg et al., 1985). Soon 

after these initial studies, the efficacy of TILs isolated from surgically removed tumours 

and grown ex vivo, was also shown (Rosenberg et al., 1986). Importantly, these 

therapies were shown to be effective only when administered in combination with 

lymphodepletive chemotherapy. Depletion of the endogenous pool of immune cells is 

now known to favour homeostatic proliferation and expansion of the transferred cells by 

providing “space”; by removing “cytokine sinks”, that is endogenous immune cells, 

thereby giving the transferred cells greater access to IL-15 and IL-7; and by reducing 

Treg mediated immune-suppression, through depletion of endogenous Tregs (Dummer 

et al., 2002; Gattinoni et al., 2005a; Antony et al., 2005). The promising results shown 

by these pre-clinical experiments, led to the design of clinical trials to treat patients with 

metastatic melanoma. In these crucial studies, co-administration of TILs and exogenous 

IL-2, in combination with lymphodepletion, resulted in objective responses in 50-70% of 

patients with progressive, refractory, metastatic disease (Dudley et al., 2002; Dudley et 

al., 2008). One of the benefits of ACT using TILs, is that the population of isolated tumour 

reactive lymphocytes is polyclonal and may contain cells with reactivity to a number of 

tumour antigens. Some TILs may recognise antigens that are dispensable for tumour 

survival, and may be downregulated due to immune pressure, thus giving short-term 

responses; others may recognise antigens derived from genes indispensable for cancer 
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progression, mediating durable regressions (Lu et al., 2014). However, isolation of, and 

treatment with TILs is not technically feasible for all patients. The location of the tumour 

may make surgical resection and TIL extraction difficult in some cases; moreover 

isolation of sufficient numbers of TILs may not always be possible, especially from 

patients with less immunogenic malignancies. In addition, the immunosuppressive 

characteristics of the tumour microenvironment in addition to the lengthy ex vivo culture 

to which TILs are subjected, may limit the efficacy of these therapies. Lastly, in the case 

of cancers expressing self-antigens, TILs may not be available, as self-reacting T cells 

would have been eliminated during their development in the thymus, or may have been 

rendered tolerant. Therefore, alternative ways to generate tumour specific T cells, by 

genetically modifying T lymphocytes to re-direct their specificity, have been developed.   

1.4.2. TCR gene therapy 

The antigen specificity of a T cell is defined exclusively by the TCR it expresses. 

Therefore the specificity of a T cell can be re-directed, for example towards tumour 

antigens, by introducing the genes coding for an anti-tumour TCR. Once a T cell clone 

with the desired specificity is isolated, its TCR α and β chains can be sequenced, and 

cloned into vectors which can be used to transduce peripheral blood lymphocytes. The 

use of retroviral vectors to introduce the genes encoding for the αβ TCR of desired 

specificity, has been tested in many studies. In all of these, the retrovirally transduced 

cells were functional, exhibited the same specificity as the original T cell clones from 

which the TCR was derived, and were able to recognise and reject antigen-expressing 

tumours in vivo (Clay et al., 1999; Cooper et al., 2000; Stanislawski et al., 2001; Kessels 

et al., 2001; Ahmadi et al., 2011; Xue et al., 2005). These initial studies, and the 

successful treatment of melanoma patients with ACT, led investigators to design similar 

clinical trials with TCR-modified T cells. TCR genes were isolated from a HLA-A2 

restricted T cell clone that recognised the antigen “melanoma antigen recognised by T 

cells 1” (MART-1) (from Dudley et al., 2002). Patients’ own PBMCs were transduced with 

the MART-1 TCR, and then infused back into the patients, after a lymphodepleting 
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conditioning regimen. Objective regression of metastatic melanoma lesions was seen in 

four patients (13%). Two of these patients remained disease-free at 20 months after 

treatment (Morgan et al., 2006). Shortly afterwards a follow-up study was performed 

using a higher avidity MART-1 TCR, and an anti-gp100 TCR, which recognises the 

gp100 melanoma antigen. In this study 30% and 19% of patients treated with the MART-

1 and the anti-gp100 TCR, respectively, showed objective cancer regression (Johnson 

et al., 2009). Similar results were obtained in a study were a TCR targeting the NY-ESO-

1 cancer/testis antigen, expressed in 80% of patients with synovial cell sarcoma and 

25% of patients with melanoma and other common epithelial tumours, was used. In 

particular, objective clinical responses were seen in 67% and 45% of synovial cell 

carcinoma patients, and melanoma patients, respectively (Robbins et al., 2011). Since 

these initial studies, others, more or less successful, have been carried out targeting a 

number of different antigens. These include p53, the carcinoembryonic antigen (CEA), 

another melanoma antigen, MAGE A-3, and the hepatitis B surface antigen (HBsAg) 

(reviewed in Duong et al., 2015). The clinical trials described above have shown that 

treatment with TCR transduced T cells can indeed induce clinical responses, and control 

tumour progression, but only in a subsets of patients. Therefore new strategies to 

improve the efficacy of these therapies, and also to limit their side effects, are urgently 

needed.  

1.4.3. Strategies to improve TCR gene therapies 

Since the initial studies described above, using TCR modified T cells, different strategies 

have been devised in order to improve the efficacy of the engineered T cells. 

Antigen selection 

First of all, the choice of a suitable antigen to target is fundamental. Tumour antigens 

can be divided into two families: tumour associated antigens (TAAs), and tumour specific 

antigens (TSAs).  
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TAAs are non-mutated self-antigens that are expressed both by tumour cells, and by 

healthy cells of specific tissues. Furthermore, this family of antigens can be divided into 

3 more sub-families. A first class represents antigens whose expression is restricted to 

male germline cells, such as the cancer testis antigen NY-ESO-1, and often expressed 

by cancers. The second class is represented by differentiation antigens, that is epitopes 

expressed by both the tumour cells and the healthy tissues these originate from. An 

example of these is the MART-1 antigen, expressed both on melanoma cells, but also 

on healthy melanocytes. Finally, the last class of TAAs include epitopes derived from 

proteins expressed in healthy tissues such as the Her-2/Neu antigens (Heemskerk et al., 

2013). The benefit of TAAs is their potential to be targeted by the same TCR, in different 

patients. On the other hand, the downside of using such antigens, is that TAA arise from 

self-antigens. Thus, TAA-specific T cells may either be deleted during development, or 

have low affinity for the TAA, or they may be subject to peripheral tolerance mechanisms, 

to prevent the onset of autoimmunity. Indeed, Zhu and colleagues showed that AIRE 

deficiency correlates with lower TRP1 thymic expression, a melanocyte-specific self-

antigen, also expressed in melanoma cells. This translated into a greater ability of AIRE-

deficient mice to reject TRP1+ melanoma (Zhu et al., 2013). Similarly, T cells specific for 

the melanoma antigen gp100 were tolerant to a B16 melanoma model in mice, unless 

these were also given an antigen-specific vaccination (Overwijk et al., 2003). Finally, 

targeting of TAAs may lead to “off-tumour, on-target” side effects, where the therapeutic 

T cells attack healthy tissues which express the target antigen. This has indeed been 

reported in a number of clinical trials were MART-1, gp100 or MAGE A-3 specific T cells 

caused adverse side effects (in some cases leading to the death of the patient) as a 

consequence of the transduced T cells targeting the antigen on healthy tissues (skin, 

inner ear, retina, brain) (Johnson et al., 2009; Morgan et al., 2013).  

Therefore TSAs are the preferred target of choice for TCR gene therapy. TSAs, also 

referred to as neoantigens, are generated as a consequence of mutations in the genome 

of the cancer cells, leading to the production of novel protein sequences. Alternatively in 
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the case of virus-associated tumours, such as cervical cancer, TSAs can derive from the 

viral open reading frames (Schumacher et al., 2015). Thanks to their restricted 

expression on tumour cells, targeting of neoantigens cannot lead to “on-target, off-

tumour” side effects. Moreover, T cells specific for such antigens, are not subject to 

central or peripheral tolerance mechanisms. Thus, theoretically neoantigens represent 

the perfect target for cancer immunotherapy. T cells specific for neoantigens have now 

been found in a number of patients. Moreover, Lennerz and colleagues showed that 

tumour-reactive T cells isolated from the blood of a melanoma patient predominantly 

reacted against patient specific neoantigens, rather than shared, known TAAs (Lennerz 

et al., 2005). This showed that it is feasible to isolate patient-specific, anti-tumour 

neoantigens T cells. However, unless these neoantigens represents driver mutations, 

the immune pressure exerted by the tumour infiltrating T cells may lead to loss of the T-

cell-recognised neoantigen from the tumour cell population, as previously shown in two 

melanoma patients (Verdegaal et al., 2016). It is now well known that extensive 

heterogeneity exists between individual tumours, and within the same tumour too.   

Therefore, identification of driver mutations (sometimes referred to as “trunk” mutations), 

indispensable for the survival of the cancer cells, and expressed ubiquitously in the 

tumour microenvironment, is fundamental to prevent immune escape (Gerlinger et al., 

2012). However, the major downside of neoantigen targeting is that the vast majority of 

these are patient-specific (Heemskerk et al., 2013). The use of neoantigens is therefore 

considered a form of personalised medicine, and the feasibility of this approach will need 

to be addressed if therapies targeting those antigens are to enter the clinic. 

Increasing TCR expression 

Another approach to try and improve the efficacy of TCR gene therapies, consists of 

increasing the expression levels of the introduced TCR. Increased TCR surface 

expression correlates with increased sensitivity for the target p:MHC complex, and 

increased anti-tumour activity in vivo (Jorritsma et al., 2007; de Witte et al., 2008). When 

a new TCR is introduced into a T cell, both this new TCR and the endogenous TCR will 
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be expressed on the cell surface. The ability of a TCR to be expressed depends on the 

intrinsic ability of its α and β chain to pair, and its ability to associate with the CD3 

complex (Heemskerk et al., 2007). This results in some TCRs being better expressed 

(“strong” TCRs), compared to others (“weak” TCRs). The level of CD3 within a cell are 

also rate-limiting for TCR expression. This is particularly obvious in the case of TCR 

transfer, when an exogenous TCR has to compete with the endogenous TCR population 

for CD3 complexes and cell surface expression (figure 1.10 B and C). Indeed, our lab 

has previously shown that providing T cells with additional CD3 genes leads to increased 

TCR surface expression (both endogenous and introduced TCR). This translates into 

greater functional avidity in vitro, and greater anti-tumour activity in vivo (Ahmadi et al., 

2011).  
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Figure 1.10 – TCR mispairing and the competition for CD3 molecules. 
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those and increasing TCR functional avidity (Kuball et al., 2007; Cohen et al., 2007). 

Alternatively, in the case of human TCRs, these can be modified and their constant α 

and constant β regions replaced with murine constant regions, to favour correct αβ 

pairing. In addition the murine chains bind the CD3 complex more efficiently, with the 

overall result of greater anti-tumour activity (Cohen et al., 2006). 

Improvements in the design of the vectors may also lead to better TCR expression levels. 

Codon optimisation of the introduced TCR sequences has been shown to increase gene 

expression, allowing the exogenous TCR to outcompete the endogenous TCR for CD3 

binding, leading to improved TCR surface expression (de Witte et al., 2008; Kerkar et 

al., 2011). In addition, providing the cell with equimolar amounts of the α and β chains, 

through the use of viral self-cleaving 2A peptide sequences to separate the genes, 

promotes specific pairing, as both chains are expressed equally (Szymczak et al., 2004). 

This approach differs from the use of an internal ribosome entry site (IRES), which 

requires two transcription events to produce the α and β chains.   

Expression of the introduced TCR may also be increased by the suppression of 

endogenous TCR expression. This can be achieved using a variety of methods, including 

RNA interference (Bunse et al., 2014); zinc-finger nucleases (Provasi et al., 2012); 

TALEN or CRISPR/Cas9 technologies (Knipping et al., 2017). In brief, these 

technologies suppress the expression of the endogenous TCR by distorting the TCR 

genes or its mRNA, preventing its successful transcription and translation into a 

functional protein. 

Increasing TCR affinity 

Whereas the avidity of a TCR for its cognate antigen determines how strongly the 

interaction will be, the affinity of a TCR for its cognate peptide determines how well the 

TCR will recognise, and a consequence bind to, its cognate peptide. Thus, much effort 

has been put towards the generation of TCR with higher affinities for its cognate p:MHC 

complexes, to generate better immune responses. The affinity of a naturally occurring 



69 
 

TCR for its cognate p:MHC complex is normally in the micromolar range, with KD values 

between 1-100 μM. TCR with higher affinity for their p:MHC complexes can be 

generated, by mutating the protein sequence of the CDR regions, followed by selection 

using phage display. This methods allows the creation of TCRs whose affinities are in 

the picomolar region (Li et al., 2005). Higher affinity TCRs have higher on-rates, 

suggesting which may impair specificity, and perhaps not surprisingly, they can also be 

stimulated by self-peptides. This correlates with the notion that TCRs with high affinities 

are normally negatively selected in the thymus, due to their potential to become auto-

reactive (Holler et al., 2003). If the affinity of a TCR is pushed beyond the natural TCR 

affinity range (1-100 μM), these TCRs initiate T cell responses faster compared to wild 

type TCRs, but they also lose their ability to respond to low antigen density, suggesting 

higher affinity correlates with decreased off-rates, impairing serial triggering (Thomas et 

al., 2011). Thus, the designing of affinity matured TCRs should concentrate on the 

production of TCRs with only marginal increases in their affinity, which falls within the 

natural affinity range, compared to that of wild-type TCRs. Indeed, the generation of 

TCRs with ultra-high affinities may be detrimental.   

Increasing TCR-transduced T cell persistence 

Another factor influencing the outcome of TCR engineered T cell therapies, is the ability 

of the adoptively transferred cells to persist in the periphery. It is now well documented 

that longer persistence, and in greater numbers, correlates with better anti-tumour 

responses (Robbins et al., 2004). Multiple rounds of in vitro stimulation before adoptive 

transfer drive T cells to acquire an end stage effector phenotype, which correlates with 

pronounced in vitro tumour killing, but impaired in vivo T cell activation, proliferation and 

survival (Gattinoni et al., 2005b). Transfer of less-differentiated cells may be more 

efficacious at providing tumour protection. Indeed, Klebanoff et al. have shown that 

transfer of tumour specific TCM cells translated into more effective anti-tumour responses, 

compared to TEM cells. This correlated with a greater ability of TCM cells, compared to TEM 

cells, to recirculate through secondary lymphoid organs and encounter APCs, thanks to 
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their expression of CD62L and CCR7 (Klebanoff et al., 2005). Data supporting the notion 

that less differentiated cells may generate better anti-tumour responses also came from 

a study from Hinrichs and colleagues. In this study it was shown that effector cells derived 

from naïve progenitors, rather than TCM progenitors, possessed greater proliferative 

potential and greater ability to produce IFNγ, which in turn correlated with greater anti-

tumour responses (Hinrichs et al., 2009).  

Finally, as previously described, lymphodepletion prior to adoptive transfer, also 

promotes the expansion and persistence of the transferred cells (Dudley et al., 2005; 

Dummer et al., 2002; Gattinoni et al., 2005a; Antony et al., 2005). 

1.4.4. CAR-T cell therapy 

An alternative strategy to redirect T cell antigen specificity, is to transduce T cells with a 

novel class of receptors called chimeric antigen receptors (CARs). The basic structure 

of a CAR consists of an extracellular binding domain, linked to an intracellular signalling 

domain (figure 1.11), via a transmembrane domain. Antigen specificity is typically 

provided by a single chain antibody variable fragment (scFv), although other receptors, 

such as cytokine receptors can be used (Kong et al., 2012). The first generation of CARs, 

contained the CD3ζ intracellular signalling domain; however T cells transduced with such 

constructs proliferated poorly and failed to elicit a robust cytokine response, due to poor 

T cell activation (Brocker et al., 1995; Cong et al., 1999). CARs were then modified, and 

the second generation of these receptors contained both CD3ζ and the cytoplasmic 

domain of a co-stimulatory receptor, such as CD28, 4-1BB or OX40. Addition of these 

co-stimulatory domains improved T function by conferring greater strength of signalling 

and persistence to the transduced lymphocytes (Finney et al., 2004; Sadelain et al., 

2013). This translated into better persistence in patients (Savoldo et al., 2011). More 

recently third generation CARs have been designed and tested in the clinic. These 

receptors contain 2 co-stimulatory domains combined with an activation domain, in their 
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cytoplasmic region. In some mouse models these receptors seem to confer yet greater 

potency to anti-tumour cells (Zhong et al., 2012; Tammana et al., 2010). 

The advantage of CAR gene therapy over TCR gene therapy is that CAR recognition of 

antigen is not dependent on presentation by MHC, meaning they are not restricted by a 

particular HLA molecule and can be used in patients of different HLA types. Moreover 

they are not associated with mispairing risk, inherent in TCR gene therapy. 

However, the disadvantage of CAR therapy is that the antigen recognised by the receptor 

must be expressed as an intact molecule on the surface of the target cell, limiting the 

range of targetable antigens.  

Nevertheless, clinical trials using anti-CD19 CAR-T cells to treat patients with a number 

of haematological malignancies showed very promising results. For example, in one 

study by Maude and colleagues 30 patients suffering from relapsed or refractory acute 

lymphoblastic leukaemia were treated with anti-CD19 CAR transduced T cells. Complete 

remission was achieved in 27 of those (90%) (Maude et al., 2014). 

 

 

Figure 1.11 – Chimeric antigen receptors (CARs). 
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1.5. Limitations of mouse immunology for the study of 

human immunology  

Thanks to their genetic and physiological relatedness to humans, mice are the 

experimental tool of choice to study the human immune system. However significant 

differences exist between them, and these have been highlighted by the failure to 

translate a number of therapies from murine models into the clinic. In this section some 

of the differences between human and mouse, and some of the limitation of murine 

models will be discussed. 

The overall structure of the immune system is quite similar between mice and human 

(reviewed in Haley et al., 2003), but the expression and/or function of some of its 

components varies. For example, although ZAP-70 mutations are found both in humans 

and in mice, the phenotype caused by these mutations are different; in humans 

mutations in this signalling molecule results in normal numbers of CD8+ and CD4+ T 

cells, although the latter are non-functional. On the contrary, ZAP-70 mutations in mice 

result in a block in differentiation of both T cell subsets at the double positive stage (Elder 

et al., 2001). This difference was suggested to be a consequence of the “leakiness” of 

the Syk kinase which is seen in humans, but not in mice (Chu et al., 1999). The 

expression of the co-stimulatory molecule CD28 is also different, with the expression in 

murine CD4+ and CD8+ T cells being close to 100%, while only 80% of human CD4+ 

and 50% of human CD8+ T cells express this receptor. This in turn was suggested to 

play a role in the efficacy of anti-CTLA-4 blocking antibody treatments, which are more 

efficient in mice compared to humans (Lenschow et al., 1996). Thus, although mice and 

human express the same proteins, their function and the pathways in which these are 

involved may be different.  

Similarly to the study of single molecules and pathways, mice are the tool of choice to 

study the biology of cancer, among other diseases. Although these models have been 

useful tools to validate gene function, to identify novel cancer genes and to test novel 



73 
 

therapeutic strategies, significant limitations still exist. These include species-specific 

differences and inaccurate representation of de novo tumour development and 

progression. For example, telomerases are active in mice, whereas are largely inactive 

in adult human cells. As a consequence murine cells can transform and become 

immortalised more easily than human cells do. Thus, murine tumours require fewer 

genetic alterations for malignant transformation than human malignancies do. Species 

to species differences also results in mouse tumours with different histology and/or 

spectrum from human tumours. For example Rb heterozygous mutant mice develop 

pituitary adenocarcinomas, unlike children with the same mutation who develop 

retinoblastoma (Jacks et al., 1992). In addition, the metastatic potential of murine 

cancers is different compared to human tumours: mouse models tend to develop 

relatively few metastases, or metastases with different tissue specificities, which 

suggests the metastatic process in mouse and human might follow different 

mechanisms. The number and type of genetic mutations are also different: many mouse 

models rely on mutations in the germ-line or in a large proportion of somatic cells. The 

latter are often promoted by the use of carcinogens, such as MCA, which don’t mimic 

the human tumorigenesis process. Moreover in human cancers germ-line mutations are 

rare, and most somatic mutations are quite rare. In humans, point mutations in onco- or 

tumour-suppressive genes normally cause and/or drive the disease; in mice cancer often 

develops as a consequence of gene/s deletion or overexpression. Thus, murine 

malignancies are generally more homogeneous compared to human cancers. (Cheon et 

al., 2011). Whether the development of ideal mouse models is achievable is still unclear, 

and all the limitations of the current systems need to be taken into consideration when 

designing experiments, interpreting the data and developing new therapeutic strategies. 

Currently, mouse models are unlikely to replace research based on patients’ samples, 

and no one best model in which to study cancer exists. Therefore, combinatorial 

approaches using multiple systems are necessary to study and understand human 

cancers. 
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1.6. Background to PhD project 

The amount of endogenous TCR expressed by a T cell on its surface, is dictated early 

on during development in the thymus. How this level changes in the periphery, during an 

immune response, and after pathogen clearance is not known. 

Thanks to their ability to be genetically modified, and because of the central role they 

play in an adaptive immune response, T cells are at the centre of the cancer 

immunotherapy field. 

Over the past decades a number of technologies have been developed to improve the 

anti-tumour efficacy of genetically transduced T cells. In particular, our group has shown 

that CD3 overexpression, leading to TCR overexpression, in CD8+ T cells, correlates with 

greater functional avidity in vitro and better anti-tumour responses in vivo (Ahmadi et al., 

2011); similar results were obtained with CD4+ T cells (Nicholson, unpublished data). 

However in the latter case, preliminary evidence suggested that CD3-overepressing 

CD4+ T cells may be toxic in vivo. 

This project was therefore designed to investigate the consequences of CD3 (and as a 

consequence endogenous TCR) overexpression in CD4+ T cells. We hypothesised that 

increasing the levels of TCR on the T cell surface lowers the activation threshold of CD4+ 

T cells, which in turn may promote their in vivo survival due to greater interaction with 

self-p:MHC complexes. Consequently the co-transfer of additional CD3 molecules may 

be a viable strategy to improve CD4+ T cell cancer immunotherapies.   

1.6.1. The role of CD4+ T cells in adoptive immunotherapy 

Although CD4+ T cells are critical for orchestrating immunological responses, cancer 

immunotherapy has until recently focused primarily on tumour reactive CD8+ cytotoxic T 

cells, mainly because of their capacity to directly kill cancerous cells. A number of groups 

have now demonstrated that CD4+ T cells not only enhance CD8+ T cell responses, but 

are themselves capable of eradicating tumours. 
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1.6.2. CD4+ T cells in tumour immunity 

Our understanding of the role played by CD4+ T cells in tumour immunity comes from 

both animal models and from patients. Greenberg and colleagues demonstrated that 

adoptive transfer of CD4+ T cells into mice burdened with MHC-I+ metastatic acute 

leukaemia, and which lacked both CD4+ and CD8+ T cells, lead to tumour eradication, 

even in absence of CTLs (Greenberg et al., 1985). Moreover, a melanoma model was 

used to demonstrate that whereas CD4+ T cell deficient mice failed to reject tumours, a 

significant proportion of CD8+ T cell deficient mice mounted successful tumour rejection. 

This led the authors to conclude that CD4+ T cell-dependent effector mechanisms 

existed, in addition to the MHC-I restricted CD8+ T cell killing mechanisms (Hung et al., 

1998). 

In patients, tumour specific CD4+ T cells have been isolated from a number of different 

malignancies. In a study looking at small cell carcinoma and adenocarcinoma patients, 

it was found that a decreased CD4/CD8 ratio was significantly associated with a worse 

prognosis (Nakamura et al., 2002). In breast cancer patients, an increase in CD4+ T cells 

in axillary lymph nodes correlated with disease-free survival (Kohrt et al., 2005). 

Rosenberg et al. showed that adoptive transfer of a heterogeneous population of TILs, 

containing both CD4+ and CD8+ T cells, to treat patients suffering from metastatic 

melanoma, led to an objective clinical response in 77% of patients. This was in contrast 

to previous studies were no objective response was seen in metastatic melanoma 

patients treated with an anti-tumour CD8+ T cell only population (Rosenberg et al., 2004). 

Adoptive transfer of autologous CD4+ T cells specific for the melanoma-associated NY-

ESO-1 antigen, into a patient with refractory metastatic melanoma mediated a durable 

clinical remission, with the patient remaining in remission 2 years post adoptive transfer 

(Hunder et al., 2008). 
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1.6.3. Mechanisms of action of tumour specific CD4+ T cells 

From the data described above it is clear that CD4+ T cells play a central role in tumour 

eradication. Indeed, they can coordinate both innate and adaptive immune responses, 

both of which are important for tumour rejection.  CD4+ T cells can activate tumour-

specific CTL, APCs, macrophages and NK cells, and can themselves also be cytotoxic.  

It is well established that in vivo priming of antigen specific CD8+ T cells depends on 

“help” provided by the CD4+ T cells. This “help” comes from APC-licensing by activated 

CD4+ T cells. CD40L is expressed on the surface of activated CD4+ T cells. Its interaction 

with CD40 on the surface of APCs, B cells and macrophages increases their ability to 

present antigen and upregulate their co-stimulatory molecules. Thus, after interaction 

with CD4+ T cells, APCs can more efficiently present antigens and stimulate cytotoxic 

CD8+ T cells, which become activated. The role played by the CD40:CD40L interaction 

was demonstrated by both Bennett et al. and Schoenberger et al. Both groups showed 

that in CD4 deficient mice, CD8+ T cell responses could be restored by administering 

activating anti-CD40 antibodies. Conversely, blockade of CD40L abrogated priming 

(Bennett et al., 1998; Schoenberger et al., 1998).      

Quezada et al. investigated the mechanisms of tumour protection by CD4+ T cells in a 

murine model of melanoma. Transgenic CD4+ T cells expressing the TRP1-TCR, which 

recognises a melanoma antigen, were transferred into animals with established 

melanoma. Transfer of as few as 50,000 CD4+ TRP1-TCR+ T cells was sufficient to 

induce initial regression of the tumours. However, in 60% of the cases the tumour 

recurred. This was prevented by co-injecting the animals with anti-CTLA-4 antibodies, at 

the time of adoptive transfer. CTLA-4 blockade increased the expansion of the transgenic 

cells by up to 3 fold, and prevented the differentiation of the adoptively transferred CD4+ 

T cells into Foxp3+ cells. The adoptively transferred cells acquired a Th1 phenotype, and 

produced large amounts of both IFNγ, TNF and IL-2, which were further increased with 

CTLA-4 blockade. IFNγ was shown to be fundamental for tumour rejection, as IFNγ 
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neutralisation prevented rejection of tumours. Moreover, it was shown that at least 

initially, IFNγ produced by the TRP1-TCR+ CD4+ T cells directly targeted the tumour cells, 

as transfer into IFNγ receptor-deficient did not alter the kinetics of tumour rejection. 

However, in this case 100% of recipients regrew tumours, suggesting IFNγ-sensitive 

cells, besides tumour cells, are potentially important for complete tumour eradication. 

Further experiments with RAG-deficient and perforin-deficient recipient mice indicated 

that tumour rejection was independent of endogenous T, B and NK cells. Cytotoxic 

activity also required direct MHC-II recognition by the adoptively transferred cells, which 

exerted their cytotoxic activity by degranulation of granzyme-containing lytic granules 

(Quezada et al., 2010).  

Similar results using the TRP1-TCR melanoma model were also obtained by Xie and 

colleagues. They demonstrated that after adoptive transfer into lymphopenic hosts, CD4+ 

T cells differentiated into Th1 cytotoxic cells, which expressed genes normally associated 

with effector cells, such as perforin, granzyme B and LAMP-1 (Xie et al., 2010). 

IFNγ produced by CD4+ T cells has also been shown to act on non-haematopoietic IFNγ 

receptor+ cells. In particular, IFNγ acts on stromal cells to inhibit angiogenesis, leading 

to tumour necrosis (Qin et al., 2000). Moreover, Corthay et al. also showed that CD4+ T 

cells could mediate rejection of MHC-II-/- myeloma. The IFNγ produced by CD4+ T cells 

was a potent activator of macrophages at the tumour site, which in turn suppressed 

tumour growth (Corthay et al., 2005). 

Perez-Diez compared tumour protection efficiency by two transgenic populations of 

CD8+ (MataHari) and CD4+ (Marilyn) T cells which both recognise the H-Y antigen. Mice 

were challenged with a bladder carcinoma which expressed both MHC-I and MHC-II H-

Y antigens, recognised by the transgenic CD8+ and CD4+ cells respectively. Surprisingly, 

MataHari CD8+ T cells were no capable of mediating tumour rejection, whereas 80% of 

the Marilyn CD4+ T cells cleared the tumour. Moreover, lack of MHC expression by the 

tumour cells did not lessen the anti-tumour effects of the CD4+ cells, but MHC-II 
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expression on host cells was fundamental to mediate tumour rejection. In addition, NK 

cells were fundamental for long-term tumour rejection, and these co-localised with the 

CD4+ Marilyn cells in the tumour mass, suggesting they worked in concert at the tumour 

site (Perez-Diez et al., 2007). 
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1.7. Research aims and hypothesis 

This project was designed to investigate the effects of CD3 overexpression in CD4+ T 

cells. We hypothesised that CD3 overexpression leading to increased expression of the 

endogenous TCR may alter the triggering threshold of CD4+ T cells and enhance their in 

vivo survival. To address this, we used retroviral vectors to provide additional CD3 genes 

to bulk populations of CD4+ T cells (with or without additional TCR), which were then 

examined in vitro and transferred into lymphopenic mice, in both competitive and non-

competitive settings. The survival and differentiation of CD3-transduced CD4+ T cells 

was tracked overtime, and compared to those of control-transduced CD4+ T cells. 
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2. Materials and Methods 

2.1. Cell culture 

2.1.1. Tissue culture and cell counting 

All tissue culture was performed under sterile conditions in Biohit Biological Safety 

Cabinet Class 2 hoods. All cells were cultured at 37 ºC with 5% CO2 unless otherwise 

stated. 

Cell counting was performed using a haemocytometer (Immune Systems, BVS100). 

Cells were diluted in Trypan Blue 0.4% (Life Technologies, 15250-061) and live cells 

(cells that did not uptake the dye) were counted under a light microscope. 

Cell counting in flow cytometric analyses were performed using CountBright™ Absolute 

Counting Beads (Life Technologies, C36950). A fixed number of counting beads were 

added to each sample allowing the total number of cells in each sample to be calculated. 

2.1.2. Phoenix eco (p.eco) cells 

P.eco cells, the packaging cells used for the production of retroviruses, derive from the 

human 293T cell line (a human embryonic kidney line transformed with the adenovirus 

E1a). 293T cells were stably transfected, by the Nolan laboratory, with the DNA encoding 

for the gag-pol proteins as well as the ecotropic virus envelope. Cells were grown in 

tissue culture flasks 75 cm2 (TPP, 90076) with Isocove’s Modified Dulbecco Medium 

(IMDM) (Lonza, BE12722F), supplemented with 10% Foetal Calf Serum (FCS) (Biosera), 

1% Penicillin/Streptomycin (100 U/ml; GIBCO, 15070) and 1% L-Glutamine 200 mM (2 

mM; GIBCO, 25030). Cells were detached by treating them with 3 ml of 0.05% Trypsin-

EDTA (GIBCO, 25300) for 1 minute before neutralisation with culture medium. Cells were 

split 1/8 every 2 days, according to cell growth. 
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2.1.3. Murine T cell culture 

Murine spleens were mashed through a 40 μM cell strainer (BD Falcon, 352340) into a 

50 ml Falcon centrifuge tube (TPP, 91050) and washed with PBS. Red blood cells were 

lysed by resuspending the pellet in 2 ml of ammonium-chloride-potassium (ACK) lysing 

buffer (Lonza, 10-548E) for 2 minutes. Cells were then washed with 10x PBS. Cells were 

MACS sorted (see below) if needed, and cultured in RPMI 1640 medium (Lonza, BE12-

167F) supplemented with 10% Foetal Calf Serum (FCS) (Biosera), 1% 

Penicillin/Streptomycin (100 U/ml; GIBCO, 15070), 1% L-Glutamine 200 mM (2 mM; 

GIBCO, 25030) and 0.5% 2-Mercaptoethanol (complete RPMI 1640 medium).  

 

2.2. Transduction of murine splenocytes/T cells 

2.2.1. Retroviral vectors  

The retroviral vectors pMP71-CD3ζ-2A-CD3ε-2A-CD3δ-2A-CD3γ-IRES-GFP (CD3-

GFP), pMP71-iCre-IRES-GFP (control-GFP), and pMP71-TRP1-IRES-CD19 (TRP1-

TCR) were available in the laboratory and were used for transduction (figure 2.1 and 

2.2). The CD3-GFP vector contains all four chains of the CD3 complex, linked by 2A 

sequences. The control-GFP vector contains the Cre sequence in reversed orientation, 

so not to give any transcription. Both vectors contain an IRES-GFP sequence so that 

transduction efficiency of both vectors can be assessed by GFP expression. The TRP1-

TCR vector encodes the α and β chains of the TRP1-TCR, separated by a 2A sequence. 

The TRP1-TCR recognizes a peptide (TRP1113-127) derived from the tyrosinase related 

protein 1, on MHC-II. All TCRs were codon optimised and the TRP1-TCR also contain 

an extra cysteine residue in the constant chain to facilitate preferential pairing of the 

introduced TCR. 
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Figure 2.1 – control-GFP and CD3-GFP retroviral vectors. (A) Schematic outline and (B) vector 

map of the pMP71-iCre-IRES-GFP (referred to as “control-GFP”) retroviral vector. (C) Schematic 

outline and (D) vector map of the pMP71-CD3ζ-F2A-CD3ε-T2A-CD3δ-E2A-CD3γ-IRES-GFP 

(referred to as “CD3-GFP”) retroviral vector. 

CD3-GFP retroviral vector 

CD3ζ CD3ε CD3δ CD3γ 
F2A T2A E2A 

IRES GFP 5’ LTR 3’ LTR 

Control-GFP retroviral vector 

iCre IRES GFP 5’ LTR 3’ LTR 
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C 
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Figure 2.2 – TRP1-TCR retroviral vector. (A) Schematic outline and (B) vector map of the 

pMP71-TRP1-IRES-CD19 (referred to as “TRP1-TCR”) retroviral vector. 

 

2.2.2. Retrovirus production 

1.5 x 106 p.eco cells were plated on a 60.1 cm2 tissue culture treated dish (TPP, 93100) 

in 8 ml of complete IMDM. The next day the medium was replaced with 5 ml of fresh 

IMDM 30-60 minutes before transfection. The transfection mix was set up as follows: 10 

μl of Fugene HD Transfection Reagent (Roche, 04709713001) was added to 150 ul 

OPTIMEM media (GIBCO, 31985) in a 1.5 ml Eppendorf tube. In a separate Eppendorf 

the DNA mix was set up: 2.6 μg of vector DNA and 1.5 μg of pCl-Eco DNA were added 

to a total volume of 50 μl water. The DNA mix was gently added to the Fugene-OPTIMEM 

mix and incubated at room temperature for 15-20 minutes, before dripping it onto the 

p.eco plates. After 24 hours the medium on the p.eco cells was replaced with 5 ml of 

complete RPMI 1640 medium. Two days after transfection the viral supernatant was 

A 

B 

TRP1-TCR retroviral vector 

TRP1α 5’ LTR 3’ LTR TRP1β 
P2A 

IRES CD19 
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harvested from the p.eco plates and spun down to remove debris. Viral supernatant was 

used fresh or cryopreserved and stored at -80 °C for future transductions. 

2.2.3. Purification and activation of murine T cells  

CD4+ and CD8+ T cells were sorted from bulk splenocytes using CD4 (L3T4) (Miltenyi, 

130-049-201) MicroBeads or CD8a (Ly-2) MicroBeads (Miltenyi, 130-049-401). 

Splenocytes single cells suspensions were prepared as described above and 

resuspended in 630 μl of MACS buffer (0.5% Bovine Serum Albumin (BSA) and 2 mM 

Ethylendiamintetraacetat (EDTA)) per spleen. 70 μl of relevant MicroBeads were added 

per spleen and incubated at 4 °C for 15 minutes. LS magnetic separation columns 

(Miltenyi, 130-042-401) were equilibrated with 3 ml of MACS buffer. Cells were washed 

with 15 ml of MACS buffer and then resuspended in 500 μl of MACS buffer per 108 

cells/per spleen. Cells were loaded onto the equilibrated columns prior to washing three 

times with 3 ml of MACS buffer. Cells were eluted with 5 ml of MACS buffer into a sterile 

30 ml Universal container. The sorted cells were resuspended at 1.5 x 106/ml in complete 

RPMI 1640 medium supplemented with 30 U/ml IL-2 (Roche, 11011456001), and 

activated with Dynabeads® Mouse T-Activator CD3/CD28 (Thermo Fisher, 11456D) (20 

μl per million of cells) for 24 hours before transduction. 

2.2.4. Retroviral-mediated transduction of T cells 

24 hours after activation, T cells were counted and 4-6 x 106 cells resuspended in 1.5 ml 

of neat retroviral supernatant. Non-tissue culture treated plates were prepared by coating 

with 2.5 ml of RetroNectin (Takara, T100B) for 3 hours at room temperature, then blocked 

with filter sterilised 2% BSA/PBS for 30 minutes at room temperature and finally washed 

twice with PBS. The activated cells were resuspended in the retroviral supernatant, 

added to the retronectin-coated plates and spun at 2000 rpm for 90 minutes at 32 °C. 

For co-transductions, activated cells were resuspended in an equal volume of TRP1-

TCR supernatant and Control-GFP or CD3-GFP supernatant. At the end of the spin, 4.5 

ml of complete RPMI 1640 medium and 10 U/ml of Roche IL-2 were added and the cells 
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were cultured in a 37 °C incubator. Fresh complete RPMI 1640 medium and IL-2 were 

added every 2-3 days. The process of retrovirus production and transduction is shown 

in figure 2.3 below. 

 

Figure 2.3 – Transfection and Transduction. Schematic representation of the phoenix eco 

transfection and T cell transduction steps. 
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2.3. Flow cytometry 

2.3.1. Surface staining 

Prior to FACS analysis all cells were washed once with PBS and resuspended in 50 μl 

FACS buffer (1% FCS/PBS) containing the monoclonal antibodies of interest in the 

appropriate dilutions (see table 2.1 below for details). Cells were incubated in the dark 

at 4 °C for 30 minutes, before a further wash in FACS buffer. FACS data acquisition was 

performed on BD Fortessa or LSRII flow cytometers. FCS flow cytometry files were 

analysed using FlowJo v10 software (Treestar).   

Annexin V staining was performed using the Annexin V Apoptosis Detection Kit (Thermo 

Fisher, 88-8008-72), as per manufacturer’s instructions. Cells were stained for surface 

molecules as described above, washed once in FACS buffer and once in Annexin V 

binding buffer 1x. Cells were resuspended in 100 μl Binding buffer containing the 

Annexin V antibody diluted 1/20. Cells were incubated in the dark at room temperature, 

for 10-15 minutes, before being washed and then resuspended in binding buffer. Cells 

were analysed by flow cytometry within 4 hours of Annexin V staining. 

2.3.2. Intracellular staining 

Cells were initially stained for surface molecules as described above and then fixed with 

300 μl IC Fixation buffer (eBioscience, 00-8222-49) for 30 minutes at 4 °C. Cells were 

washed with 1 ml 2% BSA/PBS. Cells were permeabilised with 300 μl/sample of 0.1% 

IGEPAL® CA-630 (Sigma Aldrich, I8896) for 3 minutes on ice. Cells were washed once 

more, then resuspended in 50 μl FACS buffer (1% FCS/PBS) containing the monoclonal 

antibodies of interest in the appropriate dilutions (see table 2.1 for details). 

For p-ERK intracellular staining cells (up to 1 x 106 cells) were fixed with 1 ml 2% 

PFA/PBS for 10 minutes at 37 ºC. Cells were permeabilised with 0.9 ml of ice-cold 90% 
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MeOH for 30 minutes on ice, washed once and simultaneously stained for both surface 

markers and p-ERK, as described above.  

Ki67 staining was performed using the FoxP3 staining kit (eBioscience, 00-5523-00). 

Cells were surface stained as above and fixed with 300 ul of FoxP3 Fix/Perm solution 

for 30 minutes on ice. Cells were washed with perm wash and stained with Ki67 

eFluor660 diluted in Perm wash for 30 minutes at room temperature. Cells were then 

washed again in Perm wash and resuspended in BSA/PBS for analysis. 

 

Specificity Fluorochrome Manufacturer 
Catalogue 
number Dilution 

CD3 BUV395 BD  563565 1/50 

CD3 BV605 BD  563004 1/50 

CD3 BV711 BD  563123 1/50 

CD4 APC-H7 BD  580181 1/400  

CD4 PerCP BD  553052 1/100 

CD8 v500 BD  560778 1/200 

CD8 v450 BD  560469 1/400 

CD25 PE BD  553075 1/100 

CD45.1 BV650 BD  563754 1/200 

CD62L Alexa Fluor700 BD  560517 1/400 

CD69 APC-Cy7 BD  561240 1/100 

CD127 eFluor660 eBioscience 50-1271-80 1/100 

TCRβ APC BD  553174 1/50 

TCRβ PE BD  555548 1/100 

Thy1.1 PE-Cy7 eBioscience 25-0900-82 1/10000 

Annexin V PerCP-eFluor710 Invitrogen 88-8008-72 1/20 

Ki67 eFluor660 Invitrogen 50-5698-80 1/200 

Live/Dead PI BD  556463 1/300 

Live/Dead APC-Cy7 Thermo Fisher L10119 1/800 

IFNγ APC BD  554413 1/200 

IL-2 APC BD  554429 1/100 
p-ERK 
(Thr202/Tyr204) N/A CST 4377S 1/50 

goat anti-rabbit IgG PE Invitrogen P-2771MP 1/50 

Vβ14 PE Miltenyi Biotec 130-110-051 1/100 
 

Table 2.1 – FACS antibodies 
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2.4. In vitro functional assays 

2.4.1. CD107a assay 

CD4+ and CD8+ T cells were MACS purified from C57Bl/6 spleens, as described above. 

After purification cells were resuspended at 1 x 106/ml in complete RPMI 1640 medium 

supplemented with 0.7 μl/ml Golgi stop (BD Biosciences; 554724), 0.2 μl/ml Brefeldin A 

(Brefeldin A blocks the transport of proteins from the Golgi apparatus preventing 

secretion of cytokines) and 1:100 dilution of anti-CD107a APC-conjugated antibody.    

Cells were restimulated with anti-CD3/CD28 beads (20 μl/million of cells), or 200 ng/ml 

PMA plus 2000 ng/ml ionomycin (positive control) or PBS (negative control), up to 4 

hours and samples taken at 5, 15, 30 minutes and 1, 1.5, 2, 3 and 4 hours. Each sample 

was washed with 2 ml ice-cold PBS, followed by two further washes in FACS buffer. 

Cells were stained and analysed by flow cytometry. 

2.4.2. Stimulation of T cells soluble anti-CD3 antibody 

Polyclonal CD4+ and CD8+ T cells were purified by magnetic sorting from C57Bl/6 

spleens, as described above. After purification up to 1 x 106 purified cells were 

restimulated by addition of 50 μg/ml soluble anti-CD3 antibody (BD, 553057) for 1-60 

minutes, for ERK phosphorylation analysis. At the end of the stimulations cells were 

fixed, permed and stained for p-ERK as described above.   

2.4.3. Stimulation of T cells with plate-bound anti-CD3 antibody 

Polyclonal T cells transduced with the control-GFP or the CD3-GFP vectors (see figure 

2.1) were cultured for 6 days post-transduction in the presence of IL-2 prior to CD3 

stimulation for in vitro functional analysis. Non-tissue culture treated 96-well plates were 

coated with 10 μg – 0.001 μg of anti-CD3 antibody (BD, 553057) or PBS, overnight at 4 

°C. The following day wells were washed once with PBS before 0.1 x 106 transduced 

cells were transferred to the coated wells and were incubated for 4 hours or overnight in 
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a 37 °C incubator. At the end of the restimulation cells were spun and 150-180 μl of 

supernatant was harvested and stored at -20 °C for subsequent analysis by ELISA. 

Where stated, the cells were stained for intracellular cytokines, as described in section 

2.3.2. If intracellular cytokine staining was performed, Brefeldin A was added to the cells 

after 2 hours from initial stimulation (referred to as “4 hours stimulation”) or the following 

morning (referred to as an “overnight stimulation”). 

2.4.4. Stimulation of T cells with peptide-loaded splenocytes 

CD4+ MACS purified T cells transduced with the TRP1-TCR and the control-GFP or the 

CD3-GFP vectors (See figure 2.1 and 2.2) were cultured for 6 days post transduction in 

the presence of IL-2 prior to peptide stimulation for in vitro functional analysis. Single cell 

suspensions of C57Bl/6 spleens were generated and splenocytes were loaded with 10 

μM-100 pM TRP1113-127 peptide (CRPGWRGAACNQKI), or 10 μM pNP366 peptide 

(ASNENMDAM; irrelevant peptide for negative control) for 2-3 hours at 37 ºC in complete 

RPMI 1640 medium. After loading 5 x 104 peptide-loaded stimulator cells were added to 

5 x 104 transduced CD4+ T cells. The cells were initially co-cultured in complete RPMI 

1640 medium for 2 hours, after which 5 μg/μl brefeldin A was added; the cells were then 

co-cultured overnight. The next morning the cells were washed, fixed and permeabilised 

for intracellular staining as described above. For positive control, transduced T cells were 

incubated overnight with PMA and ionomycin in absence of stimulator cells. 

2.4.5. Enzyme-linked Immunoabsorbent Assay (ELISA) 

Cytokine-containing supernatants were generated as described in section 2.4.3. IL-2 and 

IFNγ concentrations were measured using the BD OptEIA kits (IFNγ, 555138; IL-2, 

555148), according to manufacturer’s instructions. Supernatants were diluted 1/4 in 

complete RPMI 1640 media before used in the assay. 

 

 



90 
 

2.4.6. Calcium flux assay 

10 x 106 CD4+ and CD8+ purified T cells per sample were resuspended in IMDM 

supplemented with 5% FCS and loaded with Indo-1 AM (Thermo Fisher, I1223) (4 μg/ml) 

for 1 hour at 37 °C. Indo-1 AM is a UV light-excitable, ratiometric Ca2+ indicator (see 

chapter 3, section 3.3 for mechanism of action). Cells were re-suspended in a final 

volume of 2 ml IMDM supplemented with 1% BSA prior to analysis on the BD Fortessa 

at 37 °C. To determine baseline levels of intracellular calcium, cells were acquired for an 

initial 2-4 minutes, after which stimulation was provided by adding 10 or 5 μg/ml of anti-

CD3 purified antibody (BD, 553057), or PMA/ionomycin. Data was recorded for a further 

15 minutes. FCS flow cytometry files were analysed using FlowJo v10 software 

(Treestar). 

2.4.7. LEGENDplex™ bead-based immunoassay 

Murine peripheral blood was collected into eppendorf tubes on day 3 and day 11 post T 

cell transfer. Blood was left to clot for 30 minutes and spun for 10 minutes at 13000 rpm; 

serum was removed from each sample and stored at -80 °C until analysis. The 

LEGENDplex™ bead-based immunoassay (BIolegend) assay was performed on serum 

to determine the concentration of the following cytokines: MCP-1; GM-CSF; IFN-β; IFN-

γ; IL-1α; IL-1β; IL-6; IL-10; IL-12 (p70); IL-17A; IL-23; IL-27; TNF-α and IL-2. The assay 

was performed according to manufacturer’s instructions. 

 

2.5. In vivo experiments 

2.5.1. Mice 

Animal protocols were approved by local institutional research committees and in 

accordance with UK Home Office guidelines. C57BL/6 female mice aged between 8 and 

10 weeks were obtained from the in-house Comparative Biology Unit at the Royal Free 
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Hospital, London. Similarly aged Thy1.1 luciferase+ C57BL/6 mice, Thy1.1 C57BL/6 mice 

and CD45.1 C57BL/6 congenic mice from the same animal facility were also used as 

donors in multiple experiments. All experiments were carried out under home office 

licenses (project licence numbers PPL 70/7300 and PA41AA614). 

2.5.2. In vivo bioluminescence imaging of T cells 

CD4+ and CD8+ T cells were MACS sorted from C57BL/6 Thy1.1 luciferase+ mice and 

transduced with the CD3-GFP vector as described in sections 2.2.3 and 2.2.4. Three 

days post transduction, wild-type C57BL/6 mice were sub-lethally irradiated with 5.5 Gy 

and then 3-4 hours post irradiation the mice were injected with 5 x 106 transduced 

luciferase+ cells in a total volume of 200 μl PBS, intravenously (i.v.) On day 8 post T cell 

transfer mice were injected with 200 μl D-Luciferin Firefly (15 mg/ml) (Biosynth, L-8220), 

anaesthetized, and after 10 minutes post injection, imaged with a Xenogen IVIS-100 

(Caliper Life Sciences). Bioluminescent Imagining was performed as per local 

institutional operating procedures. 

2.5.3. In vivo competition experiments 

C57BL/6 mice were sublethally irradiated with 5.5 Gy on day 0 and then 3-4 hours later 

received an i.v. injection of a mixture of CD45.1 and hy1.1 congenically marked CD4+ T 

cells, transduced with the control-GFP and the CD3-GFP vector respectively. The 

proportion of control-GFP and CD3-GFP cells in the injection mixture was analysed by 

flow cytometry prior to injection.  Mice’s weight was monitored over time and animals 

were sacrificed at day 5, 10, 15 and 20 post T cell transfer. Spleen, inguinal lymph nodes, 

bone marrow (pooled from 1 tibia and 1 femur per mouse) and liver were harvested from 

each culled animal and single cell suspensions prepared as follows: tissues were 

mashed through a 40 μM cell strainer (BD Falcon, 352340) into a 50 ml Falcon centrifuge 

tube (TPP, 91050) and washed with PBS. Red blood cells were lysed by resuspending 

the pellet in 2 ml of ammonium-chloride-potassium (ACK) lysing buffer (Lonza, 10-548E) 
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for 2 minutes. Cells were then washed with 20 ml PBS. Cells were analysed by flow 

cutometry as described in section 2.3. 

 

2.6. Statistical analysis  

Data was analysed in GraphPad Prism 6, which was also used to generate graphs and 

perform statistical analysis. Unpaired student t-tests was calculated for all data sets, 

except for in vitro restimulations (sections 3.9 and 3.10), where two-way ANOVA analysis 

was applied. Differences were considered statistically significant when p values were 

<0.05 (significance was represented by *: ≤0.05; **:≤0.01; ***:≤0.001; ****≤0.0001). 
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3. In vitro phenotype and function 

characterisation of CD3 engineered CD4+ and 

CD8+ T cells 

3.1. Introduction 

The functional avidity of a T cell for its cognate peptide is dependent on the “fitness” of 

the T cell, the affinity of the TCR for its peptide:MHC complex (p:MHC) and the density 

of TCR on the T cell’s surface. The density of the TCR plays a major role in determining 

whether a T cell will be activated or not. Irrespective of the affinity of the TCR for its 

p:MHC, a T cell will not be activated unless a threshold number of TCR has been 

engaged. Viola et al. showed that T cell activation in absence of co-stimulation will occur 

only when ≥8000 TCRs are engaged, whereas if CD28 co-stimulation is present ligation 

of 1000 TCRs is sufficient for activation (Viola et al., 1996). Other studies have also 

shown that the level of T cell activation correlates with TCR density. A transgenic mouse 

model where T cells express different levels of the same TCR was used to show that 

calcium mobilization, proliferation and IFNγ production are reduced by approximately 3 

fold when the number of TCR per cell is reduced from 5x104 to 1x104 (Blichfeldt et al., 

1996).   

Our laboratory has previously shown that concentration of CD3 in T lymphocytes is rate 

limiting for TCR-CD3 surface expression. In fact provision of additional CD3 molecules 

to T cell is an effective strategy to increase TCR expression. When CD3 is co-transduced 

with a therapeutic TCR into CD8+ T cells, expression of both introduced and endogenous 

TCRs is increased. This improved TCR expression augments TCR functional avidity, 

which correlates with better peptide specific responses in vitro (cells respond to lower 

concentration of peptide and produce more cytokines upon stimulation). This translates 

to better anti-tumour responses in vivo: more cells traffic to the tumour site and they 
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persist for longer, leading to faster tumour eradication (Ahmadi et al., 2011). Similarly 

CD4+ T cells co-transduced with a class I-restricted therapeutic TCR and CD3 showed 

increased functional avidity which in turn gives better in vivo anti-tumour responses. 

However mice receiving CD4+ cells co-transduced with TCR + CD3 developed fatal 

toxicity, which was independent from tumour burden. Interestingly preliminary results 

also showed CD4+ transduced with CD3-only cells could also cause toxicity in vivo 

(Nicholson, unpublished data). 

Thus the aim of the experiments reported in this chapter was to characterise the 

consequences of CD3 overexpression in CD4+ and CD8+ T cells. Initially we investigated 

the phenotype of non-manipulated CD4+ and CD8+ T cells. We then assessed if and how 

their phenotype and in vitro functions are changed after transduction with CD3. 

 

3.2. Polyclonal CD4+ T cells express higher levels of 

endogenous TCR than CD8+ T cells 

TCR and CD3 expression were measured in freshly isolated CD4+ and CD8+ T cells 

isolated from spleen, inguinal lymph nodes (LN), bone marrow (pooled from one tibia 

and one fibula; BM) and liver, of a untreated C57Bl/6 mouse. Tissues were harvested 

and single cell suspensions generated as described in chapter 2, section 2.5.3. 

CD4+ and CD8+ T cell populations were identified by flow cytometry in the four tissues 

(figure 3.1A) and their expression levels of TCR and CD3 were analysed, using 

antibodies recognising the TCR murine constant β (Cβ) chain and CD3ε respectively. 

Figure 3.1B shows typical expression levels (median fluorescent intensity; MFI) of TCR 

and CD3 in freshly isolated lymphocytes. CD4+ T cells express significantly higher levels 

of TCR, on average 2.5 fold more, compared to CD8+ T cells (CD4+ TCR MFI=11066.7; 

CD8+ TCR MFI=5772.57; CD4+ CD3 MFI=1856; CD8+ CD3 MFI=1306). Mean values are 
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shown in figure 3.1C. Thus resting, unmanipulated CD4+ T cells physiologically express 

significantly higher levels of TCR-CD3 complex compared to CD8+ T cells.  

 

Figure 3.1 – Polyclonal CD4+ T cells express higher levels of endogenous TCR than CD8+ 

T cells. Single cell suspensions from spleen, LN, BM and liver were stained for CD4, CD8, TCR 

Cβ and CD3ε. (A) Representative plot showing CD4+ and CD8+ cells FACS gating used for TCR 

and CD3 expression analysis. (B) Representative plot of TCR and CD3 MFI levels in unstained 

controls, CD4+ and CD8+ T cells isolated from the above tissues. (C) Mean values (TCR n=8, CD3 

n=2) showing significantly higher expression of TCR in CD4+ T cells compared to CD8+ T cells. 

(p=*≤0.05; unpaired t test; standard error of the mean (SEM) is plotted).   
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3.3. Higher levels of TCR associates with higher 

cytoplasmic Ca2+ concentration  

Previous experiments showed that unmanipulated CD4+ T cell express higher levels of 

TCR than CD8+ T cells. To investigate whether this correlates with stronger TCR 

signalling we analysed calcium signalling in unmanipulated T cells. Ca2+ ions are 

universal second messengers in eukaryotic cells. Indeed after TCR engagement one of 

the earliest signalling events to take place is an increase in intracellular calcium 

concentration. This rise in concentration is caused by both calcium influx from the 

extracellular environment and calcium release from the ER.  

To analyse the influx of calcium in the cytoplasm of T lymphocytes, cells were loaded 

with Indo-1 AM, a cell permeable dye that binds to calcium. The peculiarity of this dye is 

that its emission shifts from about 475 nm (Indo-1 Blue) in Ca2+ free conditions to about 

400 nm (Indo-1 Violet) when it is saturated with calcium. The different emission spectra 

MFIs and their shift can be measured in real time by flow cytometry. Similarly the ratio 

between the calcium-bound to calcium-unbound dye and its moving median can be 

calculated. Thus the MFI of the dye in the calcium bound and unbound state can be used 

to indirectly quantify the intracellular calcium concentration. Figure 3.2 shows how the 

emission spectrum of the dye changes upon addition of a stimulus, and how the two 

emission spectra can be plotted and their ratio and its moving median calculated. 
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Figure 3.2 – Indo-1 AM dye is used to study intracellular calcium levels. Indo-1 AM is a UV 

excitable, cell-permeant, ratiometric calcium indicator. (A) The emission spectrum of the dye 

changes from 475 nm to 400 nm when the dye becomes saturated with calcium. (B) The changes 

in the two emission spectra can be monitored overtime and (C) their ratio can be calculate and 

plotted as a function of time. (D) The ratio’s moving median can be calculated and it can be used 

to indirectly analyse intracellular calcium concentration. The red arrow indicates addition of the 

stimulus. Plots are representative of 5 independent experiments. 

Indo-1 Violet 

Ca
2+

-bound 

In
d
o

-1
 B

lu
e

 

C
a

2
+
-u

n
b
o
u
n
d

 

+ Stimulus 

A 

B 

Time [mSec] 

C
a

2
+
-u

n
b
o
u
n
d

 

Time [mSec] 

C
a

2
+
-b

o
u
n
d

 

D C 

Time [mSec] C
a

2
+
-b

o
u

n
d

/ 
C

a
2
+
-u

n
b

o
u
n

d
 

Dot plot Median 

Time [Sec] 

C
a

2
+
-b

o
u

n
d

/ 
C

a
2
+
-u

n
b

o
u
n

d
 



98 
 

CD4+ and CD8+ T cells were MACS purified and loaded with Indo-1 AM dye as described 

in chapter 2, section 2.2.3 and section 2.4.6. Soluble anti-CD3 antibody was used for 

stimulation. Cells were acquired for 2-4 minutes to record cytoplasmic calcium baseline 

levels, after which the stimulus was added and data acquired for a further ~15 minutes. 

Plots in figure 3.3A are representative of the purity (typically ≥95%) of CD4+ and CD8+ 

populations used to run the assays. From each reaction the ratio of calcium-bound: 

calcium-unbound ratio can be calculated and plotted as moving average (figure 3.3B).  

The ability of both CD4+ and CD8+ T cells to upregulate intracellular calcium 

concentration after stimulation was assessed by measuring the change in the ratio of 

Ca2+-bound:Ca2+-unbound before and after the addition of the stimulus (figure 3.3 C). 

Stimulation with culture medium doesn’t trigger calcium influx or calcium release from 

intracellular storages and the intracellular calcium concentration remains unchanged as 

shown but the similar values of Ca2+-bound:Ca2+-unbound ratio before and after 

stimulation. Addition of the PKC-activator PMA causes a rapid increase in intracellular 

calcium concentration which is similar in both CD4+ and CD8+ cells, and it is shown by 

the increase in Ca2+-bound:Ca2+-unbound ratio. High affinity stimulation with 10 μg/ml 

anti-CD3 antibody only marginally causes an increase in intracellular calcium 

concentration. Lowering the concentration of anti-CD3 antibody to 5 μg/ml doesn’t give 

any detectable change in cytoplasmic Ca2+ concentration. The average changes in 

calcium ratio are summarised in 3.1 below. 

 10 μg/ml anti-CD3 5 μg/ml anti-CD3 PMA Culture medium 

CD4+ CD8+ CD4+ CD8+ CD4+ CD8+ CD4+ CD8+ 

Unstimulated 0.39 0.4 0.33 0.35 0.34 0.38 0.37 0.36 

Stimulated 0.67 0.54 0.41 0.36 1.62 1.78 0.4 0.38 

 

Table 3.1 – Average changes in intracellular calcium concentration ratios 

Analysis of Indo-1 Violet’s MFI, the Ca2+-bound form of the dye, allowed us to study the 

changes in cytoplasmic concentration of CD4+ and CD8+ T cells. The first ~12 minutes 

of the analysis were divided into 7 sections: from time 0 to the addition of the stimulus 
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(section 0), followed by 6 100-seconds-long sections (1-6); this allowed us to study the 

early signalling events occurring after stimulation (figure 3.3D). Although the kinetics of 

calcium upregulation and the ability to upregulate intracellular calcium are similar 

between the two populations of T lymphocytes, the cytoplasmic calcium concentration of 

CD4+ T cells is higher to that of CD8+ T cells, both at baseline and after stimulation (figure 

3.3E). The average Ca2+-bound (Indo-1 Violet) MFI in CD4+ T cells at baseline is 30400, 

whereas in CD8+ T cells the same dye has an average MFI of 16416. After stimulation 

both CD4+ and CD8+ T cells upregulate their intracellular calcium levels according to the 

strength of stimulation: the stronger the stimulus the higher the increase in cytoplasmic 

calcium. Indeed PMA causes the highest increase in Indo-1 Violet MFI, in both CD4+ and 

CD8+ cells, followed by stimulation with 10 μg/ml of anti-CD3 antibody. Stimulation with 

5 μg/ml anti-CD3 antibody or PBS does not cause a detectable increase in Indo-1 Violet 

MFI. Overall even after PMA stimulation, the highest intracellular calcium concentration 

reached by CD8+ T cells is lower than that of CD4+ cells stimulated with either 10 μg/ml 

of anti-CD3 or PMA. 
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Figure 3.3 – CD4+ T cells exhibit higher intracellular Ca2++ concentration compared to CD8+ 

T cells after stimulation. (A) Representative plot of MACS sorted CD4+ and CD8+ T cells used 

for calcium analysis. (B) Representative moving averages from negative (i; culture medium), 

positive (ii; PMA/Ionomycin) and anti-CD3 stimulation (iii) are shown. The red arrow indicates the 

addition of the stimulus. (C) The moving average was used to calculate the change in Indo-1 

Violet:Indo-1 Blue ratio before and after the addition of the stimulus. Summary data for CD4+ and 

CD8+ cells is shown on the right. (D) Each stimulation was split into 7 time windows. (E) The MFI 

for Indo-1 Violet (Ca2+-bound) was calculated for each section for both CD4+ and CD8+. Data from 

5 independent experiments. SEM is shown. 
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3.4. CD4+ and CD8+ T cells have similar kinetics of ERK 

phosphorylation 

The ERK pathway is a major pathway induced by TCR stimulation at it plays an important 

role in the regulation of T cell activation and differentiation. TCR signalling leads to DAG 

activation, which in turns activates the guanine nucleotide-binding protein Ras. After its 

activation Ras activates Raf, which initiates MAP kinase phosphorylation and the MAPK 

signalling cascade, leading to ERK1/2 phosphorylation and activation. In previous 

experiments the kinetics of calcium flux were studied as representative of early TCR 

signalling events. Phosphorylation of ERK occurs downstream of calcium mobilisation 

and it can be used as a model for late TCR signalling events. Thus we investigated 

whether higher TCR expression in CD4+ T cells translated into increased ERK 

phosphorylation following stimulation.  

CD4+ and CD8+ T cells were MACS purified and stimulated with anti-CD3 antibody as 

described in chapter 2 section 2.2.3 and section 2.4.2. Cells were stimulated for 1, 5, 10, 

15, 30, 45 and 60 minutes, or left unstimulated. Stimulation with PMA/Ionomycin for 15 

minutes was used as positive control; PBS stimulation was used as negative control. 

Reactions were stopped with PFA and cell permeabilised for p-ERK staining with MeOH, 

as described in chapter 2, section 2.3.2. The antibody used for intracellular staining 

recognised both phospho-44 and phospho-42 ERK (Thr202/Tyr204).   

The kinetics of ERK phosphorylation are similar between CD4+ and CD8+ T cells. 

Stimulation with PMA/Ionomycin gives a strong p-ERK signal with, on average, ≥80% of 

cells becoming p-ERK+ after 15 minutes of stimulation. Anti-CD3 stimulation, albeit with 

a high concentration (50 μg/ml) of antibody, only gives marginal ERK phosphorylation 

(~30%) in both cell populations. The kinetics of phosphorylation are the same in CD4+ 

and CD8+ T cells, with the peak of ERK phosphorylation occurring after 15 minutes of 

stimulation. After this time point p-ERK levels are downregulated and quickly return to 

baseline values (figure 3.4B).  
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Similarly, the levels of p-ERK within the cell are comparable between CD4+ and CD8+ 

cells, as shown in figure 3.4C. Stimulation with PMA for 15 minutes causes more than a 

9 fold increase in p-ERK MFI in both CD4+ and CD8+ cells (from 28.5 to 495.9 in CD4+ 

and from 65.75 to 594 in CD8+). Increase in p-ERK signal following stimulation with anti-

CD3 is minimal, even at the peak of the stimulation (15 minutes), going from 28.5 and 

65.75 to 96.25 and 125.9 in CD4+ and CD8+ cells respectively (figure 3.4C).  

 

Figure 3.4 – ERK phospshorylation levels and kinetics are similar in CD4+ and CD8+ T 

cells. (A) Representative plots used to calculate p-ERK+ % and p-ERK MFI are shown. (B) 

Summary data of p-ERK phosphorylation and (C) p-ERK MFI following stimulation is shown. Data 

from 2 independent experiments. 
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3.5. No difference in CD107a expression is seen 

between polyclonal CD4+ T cells and polyclonal 

CD8+ T cells 

Previous experiments showed that CD4+ T cells express higher levels of TCR compared 

to CD8+ T cells. In addition preliminary data suggested that CD4+ cells with increased 

TCR expression can be toxic in vivo, whereas CD8+ T cells in the same setting are not. 

To assess whether higher TCR expression is associated with a higher cytotoxic potential, 

we decided to analyse the expression of the degranulation marker CD107a in both CD4+ 

and CD8+ T cells.  

C57Bl/6 splenocytes were resuspended in complete RPMI 1640 medium supplemented 

with Golgi stop, Brefeldin A and anti-CD107a antibody. Cells were re-stimulated with 

anti-CD3/anti-CD28 beads, or PMA and ionomycin (positive control) or PBS (negative 

control) as described in chapter 2, section 2.4.1. Cells were stimulated for up to 4 hours 

with samples taken and reactions stopped at 5, 15, 30 minutes and 1, 1.5, 2, 3 and 4 

hours.  

Figure 3.5A shows a typical CD4 and CD8 gating used for subsequent CD107a analysis. 

Figure 3.5B shows the staining given by the IgG2ak isotype control, the CD107a staining 

control. Both at baseline at upon stimulation no statistically significant difference is seen 

in the percentage of CD107a+ CD4+ or CD8+ T cells (figure 3.5C). On average 15.3% of 

resting CD4+ T cells (PBS negative control) express CD107a, compared to 3.4% of CD8+ 

T cells. Stimulation with the PKC-activator PMA, leads to a gradual increase of CD107a 

expression in both CD4+ and CD8+ T cells, which in both populations peaks at 4 hours 

from initial stimulation. At this time point 26% of CD4+ T cells express CD107a, compared 

to 20% of CD8+ T cells. The kinetics of CD107a expression after triggering of the T cells 

with anti-CD3/CD28 beads are different between the two T cell subsets. CD3/CD28 

stimulation causes a rapid upregulation of CD107a in CD4+ T cells and the percentage 
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of CD4+ CD107a+ cells peaks (29.25%) at 15 minutes post initial stimulation. On the other 

hand the peak (10.6%) of CD107a upregulation in CD8+ T cell is reached at 1 hour after 

initial stimulation. The levels of CD107a expressed in the cells were also compared by 

looking at the MFI of CD107a (figure 3.5D). No difference in the MFI of CD107a was 

seen between CD4+ and CD8+ T cells (CD4+ CD107a average MFI=100.6; CD8+ CD107a 

average MFI=62.9). Similarly to the kinetics described above, after stimulation with 

CD3/CD28 beads, CD107a expression in CD4+ T cells peaks at 15 minutes (MFI=126). 

CD4+ stimulation with PMA doesn’t lead to changes in CD107a MFI, the levels of which 

remain relatively stable overtime. In CD8+ T cells CD3/CD28 stimulation causes a sharp 

upregulation of CD107a expression which is downregulated by 1.5 hours post initial 

stimulation. PMA stimulation in CD8+ T cells causes a gradual increase in CD107a 

expression, which peaks at 4 hours post stimulation. PMA-stimulated CD8+ T cells 

express the highest CD107a levels (CD107a MFI=133) observed in all of the assays.  
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Figure 3.5 – CD4+ and CD8+ T cells express similar levels of CD107a at resting state and 

upon polyclonal stimulation. (A) Splenocytes were stained for CD4 and CD8 and their 

expression of CD107a was analysed by flow cytometry. (B) The isotype IgG2ak was used as 

control for CD107a staining. (C) The percentage of CD4+ and CD8+ T cells expressing the 

degranulation marker CD107a, at rest and upon stimulation is shown. (D) CD107a MFI of CD4+ 

and CD8+ T cells at rest and upon stimulation is shown. Mean data + SEM from 2 independent 

experiment are plotted. 
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3.6. CD3-engineered CD4+ T cells have higher levels of 

TCR expression compared to CD3-engineered 

CD8+ T cells 

Following characterisation of non-manipulated CD4+ and CD8+ T cells, we wanted to 

investigate which changes, if any, occur in T lymphocytes following CD3 overexpression. 

Previous experiments showed that naïve, resting CD4+ T cells express higher levels of 

TCR compared to their CD8+ counterparts. Firstly we the wanted to study whether this 

difference was maintained upon transduction with additional CD3 genes. CD4+ and CD8+ 

splenocytes were MACS sorted, activated and transduced as described in chapter 2, 

sections 2.2.3 and 2.2.4, and their TCR levels were analysed by flow cytometry at day 

3, 5 and 7. 

Purified CD4+ and CD8+ cells were transduced with either the control-GFP vector or the 

CD3-GFP vector. GFP was used as a marker for transduction which allowed us to 

compare both transduced and untransduced cells. Cell’s purity was typically ≥95% for 

both CD4+ and CD8+ populations (figure 3.6A); transduction efficiency was more 

variable, with CD4+ normally having a higher transduction efficiency compared to CD8+, 

in both cases typical transduction efficiency was over 50% (figure 3.6B). Transduction 

with the control-GFP vector did not alter TCR expression and both GFP- (untransduced) 

and GFP+ cells (transduced) expressed similar levels of TCR (figure 3.6C; summary 

data in figure 3.6D). However upon transduction with the CD3-GFP vector TCR 

expression increased by 2 to 2.5 folds in both CD4+ and CD8+ cells, as shown in figure 

3.6D. The statistically significant increase in TCR expression after CD3 transduction was 

maintained for up to a week post transduction. TCR levels were similar between day 3 

and day 5 post transduction. At day 7 lower TCR levels were seen in all cell populations. 

The difference between TCR levels in CD4+ and CD8+ T cells was maintained even after 

transduction with the CD3-GFP vector: transduced CD4+ cells still expressed higher 
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levels of TCR compared to CD8+ T cells transduced with the same vector, up to 7 days 

post transduction (figure 3.6D). 

 

Figure 3.6 – Transduction with the CD3-GFP retroviral vector increases TCR expression in 

both CD4+ and CD8+ T cells. (A) Representative plot of MACS purified CD4+ and CD8+ cells 

used for transduction. (B) Purified cells were transduced with either the control-GFP or the CD3-

GFP retroviral vector, and their transduction efficiency and TCR expression measured by flow 

cytometry. (C) Histograms showing TCR expression increase in both CD4+ and CD8+ T cell 

transduced with the CD3-GFP vector, compared to cells transduced with the control-GFP vector, 

or non-transduced (GFP-). (D) TCR levels were analysed at day 3, 5 and 7 post transduction; 

mean values from 3 independent experiments is shown. (p=* ≤0.05; ** ≤0.01; ***≤0.001; unpaired 

t test. SEM is shown). 
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3.7. CD3 overexpression does not enhances in vitro 

proliferation in CD4+ or CD8+ T cells 

In vivo TCR signals from contact with self-ligands induce anti-apoptotic signals to 

promote survival of naïve T cells in a resting state. Similarly in vitro T cells don’t survive 

unless a stimulation signal is provided. Increasing the density of the TCR-CD3 complex 

on the cell surface may overcome the need for such extrinsic. TCR-CD3 complexes may 

form micro clusters on the cell’s surface which may provide the tonic signalling needed 

for survival. To investigate whether this was the case, we monitored cell’s numbers 

overtime (up to 7 days post transduction). 

CD4+ and CD8+ T cells were purified and activated for transduction as described in 

chapter 2, section 2.2.3. Cell numbers were recorded on day 0 (transduction day) and 

day 3, 5 and 7 post transduction. At each time point cell number was plotted as variation 

from day 0, which was considered to be 100%. 

No significant differences were seen between CD4+ and CD8+ cells transduced with 

either the control-GFP or the CD3-GFP vector (figure 3.7). Three days post transduction 

all 4 different populations expanded. CD4+ T cells expanded to a lesser extent compared 

to CD8+ T cells: the former population typically doubled in size, whereas the latter 

population generally expanded by 3.5-4 folds. The differences in cell numbers however 

weren’t significant. By day 5 post transduction all four populations contracted and cell 

numbers decreased reaching similar or lowers figures to those at day 0. Between day 5 

and day 7 no change in cell numbers was seen in any of the four different populations. 

Average values for each population at the 4 different time points are shown in 3.2 below 

(n=8 CD4+ cells; n=2 CD8+ cells).   
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  Day 0 Day 3 Day 5 Day 7  

CD4+ Control-GFP 100 333.46 72.24 95.94 

CD3-GFP 100 324.08 85.37 82.99 

CD8+ Control-GFP 100 387.5 74 64.5 

CD3-GFP 100 417.5 47 46 

   

Table 3.2 – Changes in cell numbers post transduction. 
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Figure 3.7 – Overexpression of CD3 does not enhances in vitro proliferation in neither CD4+ 

nor CD8+ cells following stimulation with anti-CD3/CD28 beads. Purified CD4+ and CD8+ T 

cells were transduced with either the control-GFP or the CD3-GFP vector and their cell numbers 

(cell/ml) were monitored at day 3, 5 and 7 post transduction (day 0). On day -1 cells were 

stimulated with anti-CD3/CD28 beads. Data is plotted as a variation from the concentration at day 

0 (100%). Data from 8 independent experiments (CD4+) or 2 independent experiments (CD8+). 
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3.8. Overexpression of CD3 in CD4+ and CD8+ 

polyclonal T cells does not alter their activation 

status or phenotype 

Previous experiments showed that both naïve and CD3-transduced CD4+ T cells express 

higher levels of TCR compared to naïve and CD3-transduced CD8+ T cells. This was not 

associated with an advantage in in vitro persistence as cell numbers were similar 

overtime. However previous experiments indicated that polyclonal CD4+ T cells 

overexpressing CD3 can be toxic in vivo, whereas CD8+ cells with the same modification 

are not. Thus in vitro studies were performed to investigate the phenotype and activation 

status of CD3-overexpressing CD4+ and CD8+ T cells overtime. 

CD4+ and CD8+ splenocytes were purified and transduced as described in chapter 2, 

section 2.2.3 and section 2.2.4, and their CD25, CD69, CD62L and CD127 expression 

monitored overtime by flow cytometry. 

CD25 is the IL-2 receptor α chain, and it is expressed on activated T cells. CD25 

expression at day 3 following transduction is similar between GFP- (activated but not 

transduced) CD4+ and CD8+ T cells and CD8+ cells transduced with either the control-

GFP or the CD3-GFP. At this time point a trend showing higher CD25 expression in both 

CD4+ transduced populations compared to the other 4 populations was seen. CD25 

expression increased in both GFP- populations and in GFP+ CD8+ T cells by day 5, 

reaching similar levels to those in CD4+ T cells. At day 7 no significant difference in CD25 

expression was seen among the different populations. Overall CD25 expression was 

stable in CD4+ GFP+ cells between day 3 and day 5; it increased in GFP- cells and GFP+ 

CD8+ cells between the same two time points; and slightly decreased in all populations 

by day 7 (figure 3.8A). 

CD69 is another activation marker expressed on T cells. In these in vitro settings the 

expression pattern of CD69 follows that of CD25. No significant difference was seen in 
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CD69 expression among the six populations at any of the analysed timepoints (figure 

3.8B). 

The homing receptor CD62L and the IL-7 receptor α chain CD127 were used to divide 

the cells into naïve-like, memory and effector populations, as shown in figure 3.8C. 

Naïve-like cells were so called as the cells were previously activated with anti-CD3/CD28 

for transduction, and thus they were not strictly naïve; they were identified as CD127+ 

CD62L+. Effector cells were identified as CD127- CD62L-; memory cells were 

characterised as CD127+ CD62L-.  

The percentages of naïve-like, effector and memory cells were similar among the six 

different populations, but different across the three time points. At day 3 post transduction 

the majority of the cells presented with an effector phenotype, followed by naïve-like cells 

and memory cells. Two days later (day 5 post transduction) the percentage of effector 

cells had expanded in all populations, whereas the portion of naïve-like cells had 

decreased to similar levels of that of memory cells. By day 7 post transduction the 

effector population had expanded further all six populations. The percentage of memory 

cells also increase in the four transduced populations, whereas is remained constant in 

the GFP- cells. Naïve-like cells accounted for the lower percentage of differentiated cells 

at day 7. 

The level of TCR expression in the three differentiated population was also analysed to 

determine whether a trend in TCR expression was associated with a specific 

differentiation profile. However no difference in TCR expression was seen among the 

three differentiated populations across the three time points, as shown in figure 3.9. The 

kinetics of TCR expression were similar between the 3 differentiated subsets in all 
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populations, with relative constant TCR expression levels between day 3 and day 5, and 

decrease in TCR expression at day 7. 

Figure 3.8 – Transduction with the CD3-GFP vector does not alter CD25 and CD69 

expression or the differentiation status of CD4+ and CD8+ T cells, after stimulation with 

anti-CD3/CD28 beads. Untransduced, control-GFP transduced and CD3-GFP transduced CD4+ 

and CD8+ T cells express similar levels of both CD25 (A) and CD69 (B), following stimulation with 

anti-CD3/CD28 beads at day -1. Stimulus was removed on day 3. (C) Similarly their differentiation 

status based on CD127 and CD62L expression does not change upon transduction with either 

one of the vectors, and after stimulation. Mean values + SEM from 3 independent experiments 

are plotted.  
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Figure 3.9 – Naïve-like, effector and memory subsets express the same level of TCR. 

Analysis of naïve-like, effector and memory T cells show that all 3 differentiated subsets express 

similar levels of TCR, independently of transduction status (non-transduced, control-GFP 

transduced or CD3-GFP transduced), following stimulation with anti-CD3/CD28 beads at day -1. 

Stimulus was removed on day 3. Moreover the kinetics of TCR expression are the same across 

the 3 differentiated subsets and across the 6 populations.  Mean values + SEM from 2 

independent experiments are shown. 
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3.9. Increased TCR expression is not associated with 

improve effector function in polyclonal CD4+ T 

cells 

To determine whether the increased levels of TCR on CD4+ cells transduced with the 

CD3-GFP vector compared to control-GFP transduced CD4+ cells has a functional 

implication, we examined the triggering threshold and cytokine (IL-2 and IFNγ) 

production of transduced CD4+ cells. 

Polyclonal CD4+ splenocytes were purified and transduced as described in chapter 2, 

sections 2.2.3 and 2.2.4. Seven days post transduction (8 days post initial activation) the 

cells were restimulated for 4 hours or overnight with plate-bound anti-CD3 antibody, or 

PMA/ionomycin or left unstimulated, as described in chapter 2, section 2.4.3. At the end 

of the stimulation the supernatant was collected and analysed by ELISA; the cells from 

the 4 hours restimulation were also harvested and analysed for cytokine production by 

flow cytometry. Representative FACS analysis from one experiment is shown in figure 

3.11A.  

Contrary to what we expected, CD4+ cells overexpressing CD3 and TCR do not show 

lower triggering threshold compared to control-GFP transduced CD4+ cells. On the other 

hand increased TCR density seems to be detrimental to cell activation and cytokine 

production. Indeed CD3-GFP transduced cells produce significantly less IL-2 compared 

to control-GFP transduced cells in 4 out of the 5 tested, anti-CD3 antibody concentrations 

for 4 hours restimulation. IFNγ production is similar between the two CD4+ populations 

after 4 hours restimulation (figure 3.10A). After overnight stimulation IL-2 production 

follows the same trend seen in the 4 hours restimulation, albeit more IL-2 is produced. 

Control-GFP transduced cells produce more cytokine compared to CD3-GFP transduced 

cells, with a significant difference seen at the lowest, tested concentration of anti-CD3 

(0.01 μg/ml). More IFNγ is produced during overnight stimulation compared to the 4 
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hours stimulation, but no notable differences between the two populations of transduced 

CD4+ cells are seen (figure 3.10B).  

 

 

 

Figure 3.10 – Transduction with the CD3-GFP vector does not increase CD4+ T cells 

functional avidity - ELISA. No statistically significant difference in IL-2 and IFNγ production after 

(A) 4 hours or (B) overnight polyclonal stimulation (with plate-bound anti-CD3 antibodies), by 

control-GFP and CD3-GFP transduced CD4+ T cells was seen (as measured by ELISA). The 

number of cells in each well was adjusted based on the transduction efficiency, so to have 1 x 

105 transduced cells (GFP+) in each well. Data from 3 independent experiments, each re-

stimulation was performed in duplicates. SEM is plotted. Two-way ANOVA statistical analysis was 

performed and no difference was determined to be statistically significant.  
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Intracellular (IC) cytokine staining after 4 hours stimulation showed similar results to 

those seen by ELISA for both IL-2 and IFNγ production. No significant differences were 

seen in either IL-2 or IFNγ production, with generally higher percentages of IL-2+ or IFNγ+ 

cells in the control-GFP CD4+ population (figure 3.11B and C).  

The lack of difference in IL-2 and IFNγ production between the two populations was seen 

despite CD3-GFP transduced cells expressing higher levels of TCR compare to control-

GFP transduced CD4+ cells, both at baseline and upon stimulation (figure 3.11D).  

Stimulation through the TCR-CD3 complex is known to cause TCR downregulation. 

Indeed TCR downregulation upon stimulation was observed in both CD4+ populations in 

these assays. The extent of TCR downregulation was proportional to the strength of 

stimulation: the stronger the stimulation, the greatest the TCR downregulation. For 

example cells stimulated with 10 μg/ml of anti-CD3 antibody almost completely 

downregulate their TCR levels; T cells stimulated with the lowest concentration of anti-

CD3 (0.001 μg/ml) have TCR levels that are comparable to the TCR levels seen in 

unstimulated CD4+ cells (PBS negative control) (figure 3.11D). 
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Figure 3.11 – Transduction with the CD3-GFP vector does not increase CD4+ T cells 

functional avidity – IC cytokine staining. (A) The gating strategy for IL-2 and IFNγ expression 

analyses are shown. IL-2 (B) and IFNγ (C) production after 4 hours polyclonal stimulation with 

plate-bound anti-CD3 antibody was measured by IC cytokine staining. The number of cells in 

each well was adjusted based on the transduction efficiency, so to have 1 x 105 transduced cells 

(GFP+) in each well. (D) TCR downregulation following anti-CD3 stimulation was analysed by flow 

cytometry. Data from 3 independent experiments, each stimulation was performed in duplicates. 

SEM is shown. 
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3.10. Increased TCR expression is not associated with 

improved CD4+ antigen-specific effector functions 

Since transduction with the CD3-GFP vector did not alter cytokine production, nor the 

triggering threshold of polyclonal CD4+ cells restimulated with anti-CD3 antibody, we 

sought to investigate whether increased TCR expression improves functional avidity in 

the context of antigen-specific restimulations.  

CD4+ splenocytes were purified and co-transduced with the MHC-II restricted TRP1-TCR 

vector and the control-GFP or the CD3-GFP vector as described in chapter 2, sections 

2.2.3 and 2.2.4. Seven days post transduction (8 days post initial activation) the cells 

were restimulated overnight with peptide-loaded splenocytes, or PMA and ionomycin, as 

described in chapter 2, section 2.4.4. At the end of the stimulation the cells were 

harvested and analysed for cytokine production by flow cytometry. Representative FACS 

analysis from one experiment is shown in figure 3.12A.    

On restimulation day, the expression levels of the TRP1-TCR were analysed in both co-

transduced populations. The β chain used in the TRP1-TCR complex is the murine β14; 

thus anti-Vβ14 antibodies were used to indirectly assess TRP1-TCR expression. TRP1-

TCR + CD3-GFP double transduced CD4+ cells expressed higher levels of the Vβ14 

chain compared to TRP1-TCR + control-GFP transduced cells, before restimulation 

(Figure 3.12B). On average TRP1-TCR + CD3-GFP transduced cells expressed 5 folds 

more Vβ14 compared to the control transduced population. TRP1-TCR downregulation 

following peptide stimulation was also analysed, and the data from the two experiments 

is summarised in figure 3.12C. At all stimulation conditions TRP1-TCR + CD3-GFP cells 

expressed higher levels of Vβ14 compared to TRP1-TCR + control-GFP transduced 

cells. However contrary to what we observed during polyclonal stimulation, no TCR 

downregulation correlating with the strength of the stimulation was observed, in neither 

one of the populations. Peptide stimulation of the TRP1-TCR + control-GFP co-

transduced cells caused a small decrease in TCR surface expression, compared to the 
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stimulation with the irrelevant peptide (pNP366). No Vβ14 down modulation was seen in 

the TRP1-TCR + CD3-GFP co-transduced population, at any of the tested stimulation 

conditions. 

Despite higher TRP1-TCR expression in the CD3-GFP transduced cells, no difference 

in functional avidity (cytokine production or triggering threshold) was seen between the 

two populations of CD4+ transduced cells. Both populations demonstrated IL-2 and IFNγ 

production both all tested TRP1-peptide concentrations and after stimulation with PMA 

and ionomycin. Less than 1% of the cells responded to stimulation with pNP366 loaded 

cells. 
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Figure 3.12 – TRP1-control and TRP1-CD3 transduced CD4+ T cells do not show differences 

in functional avidity. (A) The gating strategy for IL-2 and IFNγ expression analysis are shown. 

(B) The expression TRP1-TCR before restimulation was measured using an anti-Vβ14 antibody. 

(C) TCR expression levels following stimulation with TRP1-loaded splenocytes was analysed by 

flow cytometry. The number of cells in each well was adjusted based on the transduction 

efficiency, so to have 1 x 105 double transduced cells (Vβ14+ GFP+) in each well, and 1 x 105 

stimulator cells. (D) IL-2 and (E) IFNγ production after overnight stimulation was measured by IC 

cytokine staining. Data from 2 independent experiments, each experiment was performed in 

duplicates. SEM is shown.     
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3.11. Summary and Discussion 

Preliminary data from our laboratory showed that CD4+ T cells overexpressing 

endogenous TCR can become toxic when adoptively transferred in vivo. The aim of the 

experiments described in this chapter was to phenotype CD4+ and CD8+ cells both in 

their unmanipulated state and after transduction with either the control-GFP or the CD3-

GFP vectors.  

Firstly, phenotypic and functional analysis of unmanipulated CD4+ and CD8+ cells was 

carried out. These experiments showed that resting CD4+ T cells isolated from spleen, 

inguinal lymph nodes, bone marrow and liver of untreated C57Bl/6 mice, express higher 

levels of surface TCR compared to their CD8+ counterparts, as demonstrated by flow 

cytometry (figure 3.1). Typically CD4+ T cells express 1.5 fold more TCR compared to 

CD8+ T cells; the same difference in TCR expression was maintained even after 

transduction with the CD3-GFP vector. Transduction with the control-GFP vector did not 

alter TCR expression, and its levels are comparable to that of untransduced (GFP-) cells 

(figure 3.6). Both CD4+ and CD8+ T cells have the ability increase TCR expression by 1 

to 1.5 folds, suggesting the lower TCR levels seen in CD8+ cells are not due to TCR 

being rate-limiting. This increased TCR expression was associated with higher 

intracellular Ca2+ levels in CD4+ T cells compared to CD8+ T cells, both at baseline and 

upon stimulation. However both T cell populations could increase their intracellular 

calcium levels by the same extent, as shown by the similar increase in Ca-bound:Ca-

unbound ratio (figure 3.3C). ERK phosphorylation levels did not differ between the two 

populations, suggesting late TCR signalling events are not influenced by the higher 

expression of TCR. Surprisingly CD4+ T cells expressed higher levels of the 

degranulation marker CD107a compared to CD8+ T cells (figure 3.5). The kinetics of 

CD107a upregulation upon polyclonal stimulation with CD3/CD28 beads were also 

different, with CD4+ cells peaking at 30 minutes post stimulation, compared to 60 minutes 

in CD8+ T cells. The in vitro survival of CD4+ and CD8+ transduced with either the control-

GFP or the CD3-GFP vector was not significantly different. All cells populations 
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expanded by day 3 post activation and by day 5 the proliferation kinetics were identical, 

and remained so at day 7 (figure 3.7). Similarly, the expression levels of the activation 

markers CD25 and CD69, and the differentiation markers CD62L and CD127 were 

similar in all populations, at all time points (day 3, 5 and 7 post transduction). Transduced 

CD4+ T cells expressed higher levels of CD25 and CD69 3 days post transduction, but 

this difference was not significant. The kinetics of TCR expression followed the same 

trend in both non-transduced and transduced cells, with expression levels similar 

between day 3 and day 5 and a decrease in TCR at day 7 (figure3.9). Finally increase in 

TCR expression was not associated with increase functional avidity in either polyclonal 

or antigen-specific CD4+ cells (figure 3.10-3.12). 

Although the density of TCR on a T cell is known to change during its lifetime (Finkel et 

al., 1989), to our knowledge this disparity in TCR expression between CD4+ and CD8+ 

cells has yet to be reported, and the reason behind CD4+ cells expressing more TCR 

than CD8+ cells is unknown. Recently it has been suggested that different threshold may 

exists for the activation of CD4+ and CD8+ cells, with CD4+ T cells needing longer to 

reach such threshold (Kaech et al., 2002). Whether this difference is triggering threshold 

is dictated by extrinsic or intrinsic factors is unknown. Higher TCR expression in CD4+ T 

cells may account for this difference in activation threshold: if the same proportion of 

TCR needs to be engaged in CD4+ and CD8+ cells to promote T cell activation, it will 

take longer for CD4+ T cells to reach this result, if the cells are stimulated with the same 

amount of antigen. However Viola et al., showed that the minimum number of TCRs that 

need to be engaged for a T cell to become activated is 8000. Above this number both 

CD4+ and CD8+ T cells start to proliferate and produce IFNγ (Viola et al., 1996). Thus, in 

this setting CD4+ and CD8+ T cells showed the same triggering threshold.  

One important contributing factor affecting TCR expression levels might be the different 

in vivo interactions CD4+ and CD8+ have with “self”. MHC-I molecules are ubiquitously 

expressed, providing CD8+ T cells with more opportunities to encounter MHC-I 

complexes. In contrast, MHC-II molecules are expressed on a more limited set of cells, 
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meaning CD4+ T cells have a lower probability to encounter their MHC complex. It is now 

well established that TCR stimulation leads to TCR downregulation, and that T cells 

continuously interact with “self” over their lifetime. Thus, the higher interaction rate of 

CD8+ with MHC-I molecules in vivo may keep TCR levels in CD8+ T cells low, compared 

to CD4+ T cells that have less chances to encounter MHC-II molecules. 

Our results also suggest that increased TCR expression is associated with higher 

intracellular calcium concentration. Although the intracellular calcium concentration in T 

cells is known to be tightly controlled, and kept between ~100 nM in resting cells and ~1 

μM following TCR stimulation (Feske, 2007), little is known about how Ca2+ concentration 

changes in CD4+ and CD8+ T cells. Previous studies have shown that both lymphocyte 

motility and immunological synapse formation are Ca2+-dependent processes. In 

particular calcium increase in CD4+ cells as a consequence of T cell:APC contact needs 

to last for several hours to induce changes in CD4+ T cell gene expression. On the other 

hand CTL-mediated killing by release of lytic granules is faster and occurs within the first 

5 minutes of target-cell recognition (Lyubchenko et al., 2001). Our data does not quantify 

the concentration of intracellular calcium, but it indicates that the cytoplasmic 

concentration of Ca2+ in CD4+ T cells is higher compared to that of CD8+ T cells. Higher 

levels of intracellular calcium at baseline and upon stimulation might facilitate sustained 

calcium signalling needed for CD4+ T cell activation, and CD4+ calcium-depletion 

experiments would indicate whether this is the case or not. However neither intracellular 

calcium concentration, nor different TCR expression seem to influence Ca2+ mobilization, 

as both CD4+ and CD8+ T cell can upregulate their cytoplasmic calcium concentration to 

the same extent (figure 3.3C). This is in contrast with results from Blichfeldt et al. who 

reported that a decrease in TCR numbers resulted in reduction in cytosolic Ca2+ 

mobilization (Blichfeldt et al, 1996). However in their system TCR expression is 

downregulated below physiological levels; our system increases the levels of TCR. The 

TCR levels that are set in CD4+ and CD8+ T cells during thymic development and in vivo 

homeostasis may be the minimum required level for effective TCR signalling, and 
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increasing these levels might not affect TCR signalling in terms of calcium mobilisation. 

More physiological stimulation, such as peptide specific stimulation, or analysis of CD4+ 

and CD8+ sorted cells that express the same level of TCR are needed to further 

understand the biology of cytoplasmic calcium upregulation and if this is influenced by 

the levels of TCR expression.    

Contrary to Ca2+ levels, phospho-ERK (p-ERK) levels are similar between CD4+ and 

CD8+ cells despite their different TCR expression. This suggests that increased TCR 

levels are not associated with stronger, late TCR signalling, and regulatory mechanisms 

might be in place to prevent aberrant T cell activation in response to increased TCR 

triggering. Indeed studies in human T lymphocytes have shown that p-ERK has the 

capacity to induce LAT phosphorylation and attenuation of T cell signalling. However 

such mechanism has not been observed in mouse lymphocytes, but other mechanisms 

might be in place (Matsuda et al., 2004). Moreover in our assays activation was achieved 

with a high affinity antibody stimulus, bypassing TCR:p-MHC interaction. To note is that 

soluble anti-CD3 stimulation, in the absence of CD28 co-stimulation, may not be 

sufficient for full T cell activation. In these assays a higher concentration of anti-CD3 (50 

μg/ml) was required to detect phosphorylation of ERK; lower concentrations, for example 

10 μg/ml anti-CD3 (the same concentration used for calcium signalling assays) did not 

give detectable levels p-ERK (data not shown). Thus late TCR signalling events may not 

occur unless a strong signal 1 and signal 2 are delivered to the T cell. 

CD107a, also known as lysosome-associated membrane protein-1 (LAMP-1), is a 

common marker of degranulation and cytotoxic activity. As degranulation occurs, 

secretory lysosomes are released and CD107a is transported to the plasma membrane. 

Although cytotoxic activity as traditionally being associated with CD8+ T cells, the 

existence of distinct population of CD4+ cytotoxic T cells is now well established (Mucida 

et al., 2013). Since uptake of extracellular calcium is required for lymphocyte cytolytic 

activity (Maul-Pavicic et al., 2011), the higher cytosolic calcium concentration in CD4+ 

may account for their increased expression of CD107a. However previous studies 
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looking at LCMV-specific CD4+ and CD8+ effector cells showed that after 5 hours 

stimulation ~80% of CD8+ T cells expressed CD107a, compared to ~25% of CD4+ T cells. 

Nonetheless, their in vivo killing capacity was similar (Hildemann et al., 2013). The 

discrepancy between this study and our results may be due to the type of stimulation 

used for CD107a measurement, a peptide specific stimulation versus our polyclonal high 

affinity stimulation. Stimulation with high-affinity antibodies might give a response that is 

stronger than the normal physiological response. However this still doesn’t explain the 

higher CD107a levels at baseline seen in CD4+, compared to CD8+ cells. Notably, this 

data is from two experimets only; more repeats are necessary in order to obtain 

significant results. Another limitation of these assays is represented by the expression of 

the CD4 co-receptor, as this is not limited to CD4+ T cells. Monocytes, macrophages, NK 

cells, eosinophils and basophils all express CD4 (Biswas et al., 2003), in addition to 

CD107a. Our gating strategy cannot distinguish between CD4+ T cells and the other cell 

populations. Therefore, it is possible that our CD107a data is not representative of a pure 

CD4+ T cells population. Further experiments looking at CD107a expression in CD4+ T 

cells, after manipulation of both TCR expression and cytoplasmic Ca2+ are required to 

increase our understanding of how these influence CD107a expression. Moreover 

cytolytic assays are required to test whether the higher CD107a expression in the CD4+ 

cell population correlates with improved killing activity.    

As previously described, transduction with the control-GFP vector did not increase TCR 

expression levels in either CD4+ or CD8+ T cells; CD3-GFP transduction on the other 

hand lead to a significant increase in TCR density in both T cell populations, but with 

CD4+ T cell still expressing higher levels of TCR compared to CD8+ T cells. However this 

increase in TCR expression was not associated with an advantage in cell proliferation or 

in vitro cell survival. Although effective T cell stimulation was achieved with anti-

CD3/CD28 stimulation (as seen by initial T cell expansion) this was not sufficient to 

promote “stimulus-independent” (similar to antigen-independent) proliferation. Indeed, 

removal of the CD3/CD28 beads on day 3 lead to a quick loss of cell numbers on day 5 
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and day 7. Moreover increasing TCR density on the cell’s surface does not induce 

antigen-independent tonic signalling, which may promote antigen-independent survival. 

The notion that increased TCR expression in the context of high affinity stimulation with 

antibodies does not induce any changes in T cell activation, is corroborated by our 

activation and differentiation markers expression data. To investigate whether increased 

TCR expression favoured T cell activation or differentiation into a particular phenotype, 

CD25, CD69, CD62L and CD127 expression was analysed at day 3, 5 and 7 post 

transduction. CD69 is an early activation marker and it is detectable within hours of TCR 

ligation; in vitro its expression returns to baseline levels by 72 hours post activation 

(Simms et al., 1996). CD25 is detectable about 24 hours post stimulation and 

upregulated from day 2 onwards. CD69 expression is higher in the transduced CD4+ 

populations at day 3 post transduction suggesting a stronger activation in these two T 

cell populations, compared to the other populations. However this difference is lost by 

day 5 as both GFP- and CD8+ GFP+ upregulate their expression of CD69. Interestingly 

this upregulation occurs after removal of the stimulus as CD3/CD28 beads are removed 

at day 3 post stimulation. CD69 expression levels are downregulated between day 5 and 

day 7. Since CD69 expression returns to baseline levels by 72 hours post activation, 

analysis of CD69 expression at earlier time points (between day 0 and day 3 post 

transduction) may reveal differences in its expression. Similar kinetics are seen for CD25 

expression throughout the analysis. Interestingly CD69 and CD25 expression peaks at 

day 5 post transduction, whereas cell proliferation has stopped by day 5. Between day 5 

and day 7 CD69 and CD25 expression remains relatively constant, as does cell 

proliferation. Thus TCR overexpression in CD4+ or CD8+ cells is not associated with 

increased expression of activation markers, suggesting increased TCR density does not 

promote tonic signalling in the absence of antigen/stimulation. CD62L and CD127 

expression was used to determine naïve-like, effector and memory subsets. Perhaps not 

surprisingly the differentiation status is very similar among the 6 different populations at 

every time point, as all populations have undergone the same activation protocol. By day 
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5 post transduction the majority of the cells has acquired an effector phenotype (CD62L- 

CD127-) and this differentiation can be attributed to the CD3/CD28 activation steps, 

needed for transduction, which also explains why GFP- cells also present with a similar 

phenotype. The differentiation into effector cells continues up to day 7 when in all 6 

populations ~50% of the cells lose the expression of both CD62L and CD127. Thus, 

similarly to CD69 and CD25 expression, increasing the TCR levels on CD4+ or CD8+ T 

cells does not alter their differentiation program upon activation. Moreover the three 

different subsets of differentiated cells express comparable levels of TCR and acquisition 

of an effector phenotype continues even upon TCR downregulation, as seen between 

day 5 and day 7. This corroborates the hypothesis that differentiation occurs 

independently from TCR expression levels and increasing the levels of TCR does not 

promote tonic signalling and antigen-independent T cell activation. 

To test whether increasing endogenous TCR levels is associated with augmented 

functional avidity, we setup both polyclonal and antigen-specific restimulations. Control-

GFP and CD3-GFP transduced CD4+ cells were restimulated with plate-bound anti-CD3 

antibody; TRP1-TCR + control-GFP and TRP1-TCR + CD3-GFP double transduced cells 

were restimulated with peptide-loaded splenocytes. Our data suggests that increasing 

the levels of TCR does not lower the triggering threshold of either polyclonal or antigen-

specific CD4+ cells. IL-2 and IFNγ production was seen after stimulation with all of the 

tested concentrations of both anti-CD3 antibody and TRP1 peptide (10-0.001 μg/ml anti-

CD3; 10 μM-100 pM TRP1-peptide), in both control-GFP and CD3-GFP transduced 

polyclonal and antigen specific cells (figure 3.11 and 3.12). In addition increasing TCR 

density does not increase the frequency of IL-2 or IFNγ producing cells. On the contrary, 

the percentage of IL-2 producing cells after 4 hours polyclonal restimulation was 

significantly higher in the control-GFP transduced population. All other stimulation 

conditions, both with anti-CD3 and with TRP1 peptide, gave similar frequencies of IL-2 

and IFNγ producing cells in both control-GFP and CD3-GFP transduced populations. 

This pattern of cytokine expression was confirmed by both ELISA and IC cytokine 
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staining for the polyclonal stimulation; and by IC cytokine staining for the antigen specific 

stimulation. Our peptide-specific restimulation data is discordance with previously 

published results from our lab, where it was shown that increased TCR expression 

following transduction with the CD3-GFP results in increased functional avidity (Ahmadi 

et al., 2011). However previous studies were carried out in the context of class-I restricted 

peptides and TCRs. Because the TRP1-TCR is a class-II restricted TCR, a “cleaner” 

restimulation system may be required to appreciate differences, if any, between the two 

double transduced populations. In a population of splenocytes only a small proportion of 

cells (DCs and B cells) will be capable of presenting the TRP1 peptide in a MHC-II 

context to CD4+ cells. Restimulation with peptide-loaded purified DCs for example, may 

be a more efficient system for CD4+ restimulation.  

Higher TCR expression on CD3-GFP-transduced polyclonal and TRP1-TCR cells, was 

confirmed by flow cytometry; thus the absence of increased cytokine production was not 

due to a lack of increased TCR expression in the CD3-GFP transduced cells. Published 

studies have shown that TCR downregulation after initial T cell activation correlates with 

antigen avidity (Itoh et al., 1999). Accordingly, restimulation through the TCR-CD3 

complex by anti-CD3 antibody lead to TCR downregulation, the extent of which was 

associated with the strength of the stimulus: restimulation with 10 μg/ml anti-CD3 leads 

to downregulation of ≥90% of surface TCR in both control-GFP and CD3-GFP 

transduced cells, a greater downregulation to that seen with PMA stimulation; PBS and 

0.01-0.001 μg/ml anti-CD3 restimulations did not give any detectable TCR down 

modulation. However analysis of Vβ14 chain levels after stimulation with peptide-loaded 

splenocytes did not show TRP1 downregulation. This suggests that the stimulation 

conditions were not ideal and that the strength of the stimulation was insufficient to 

activate TRP1-TCR transduced cells. This supports our hypothesis that this stimulation 

setup may not be ideal to study functional avidity of CD4+ T cells and a more specific 

system is needed.    
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Notably although PMA is regarded as a strong T cell agonist, TCR downregulation 

following PMA stimulation is not as strong as that seen after stimulation with 10 μg/ml 

anti-CD3. This discrepancy might be due to the fact that different mechanisms are 

responsible for TCR down modulation following PMA or TCR-CD3 stimulation (Salio et 

al., 1997). Whether the observed TCR downregulation is permanent or transient we don’t 

know. However it has been previously suggested that stimulation with specific ligands 

leads to TCR degradation (Valitutti et al., 1997), whereas downregulation following PMA 

stimulation is transient and downregulated TCR are sequestered inside the cell and can 

be expressed on the cell surface when the stimulus is removed (Salio et al., 1997).  

Finally, as described repeatedly above one of the major caveats with polyclonal in vitro 

restimulation analysis is the use of high affinity anti-CD3 antibodies. Antibodies’ affinities 

are normally in the nanomolar concentrations (kD ~10-9), compared to the micromolar 

affinities (kD 10-6) of TCRs for their antigens. This non-physiological stimulation might 

trigger particular regulatory mechanisms. In addition high affinity stimulation may mask 

subtle differences in T cell activation, which could be seen in the context of peptide-

specific stimulations. 

To conclude our data showed that CD4+ T cells express higher levels of endogenous 

TCR and intracellular Ca2+, compared to CD8+ T cells. However this was not associated 

with increased proliferation, or increased expression of activation markers or increased 

differentiation into a particular phenotype. In addition effector functions of CD4+ T cells 

are not improved upon transduction with additional CD3 genes. Whether these 

differences play a role in the development of toxicity in mice receiving CD4+ T cells is 

unknown. Since all of the above characterisations were performed in vitro, experiments 

were carried out to characterise the behaviour of CD3-overexpressing CD4+ and CD8+ 

T cells in vivo. Such experiments are described in chapter 4.       
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4.  In vivo functional analysis of CD3-

engineered CD4+ and CD8+ T cells 

4.1. Introduction 

The data described in chapter 3 demonstrated that CD4+ T cells express higher levels of 

endogenous TCR compared to CD8+ T cells, both before and after transduction with the 

CD3-GFP vector. Previous experiments from our lab showed that provision of additional 

CD3 genes to TCR gene-modified CD8+ T cells promotes in vivo cell persistence and 

accumulation (Ahmadi et al., 2011). Moreover, tonic signalling through the TCR is 

fundamental for T cell homeostatic survival (Takada et al., 2009a). Therefore, we next 

investigated whether the difference in TCR expression between CD4+ and CD8+ T cells 

translated into different in vivo behaviour. In particular, we investigated whether the 

levels of TCR expression influenced the in vivo persistence, homing and differentiation 

profiles of CD4+ and CD8+ T cells. 

 Although our in vitro experiments did not show any difference in T cell activation and 

survival, physiological homeostatic signals received by the T cells in vivo may unmask 

subtle functional differences between the CD4+ and the CD8+ T cell populations. Thus, 

the experiments described in this chapter explore the consequence of CD3 

overexpression in both CD4+ and CD8+ T cells in an in vivo setting. Sub-lethally irradiated 

mice received syngeneic CD4+ and CD8+ T cells that had been transduced with the CD3-

GFP vector (CD4+ CD3-GFP and CD8+ CD3-GFP, respectively), or untransduced CD4+ 

T cells (CD4+ mock). Their homing, accumulation and differentiation were then analysed 

at two time points: one early time point, day 10 post T cell transfer; and one later time 

point, day 16 post adoptive transfer. We hypothesised that the higher levels of TCR 

expression in CD4+ T cells may lead to stronger survival signalling, promoting CD4+ T 

cell accumulation and survival, compared to similarly modified CD8+ T cells. 
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4.2. CD3-engineered CD4+ T cells accumulate in 

greater proportion in vivo compared to CD3- 

engineered CD8+ T cells 

Initial experiments were performed to compare in vivo persistence and differentiation of 

CD4+ mock, CD3-engineered CD4+ and CD8+ T cells, during early T cell engraftment. 

On day 0 C57Bl/6 Thy1.2+ recipient mice were sub lethally irradiated with 5.5 Gy; 2-3 

hours post irradiation they received adoptive transfer of 5 x 106 luciferase+ Thy1.1+ CD4+ 

mock, or luciferase+ Thy1.1+ CD3-engineered CD4+ (CD4+ CD3-GFP), or luciferase+ 

Thy1.1+ CD3-engineered CD8+ (CD8+ CD3-GFP) transduced T cells. Because 

transduction efficiency was not 100%, and because the transduced T cells were not 

sorted before injection, the number of adoptively transferred cells was adjusted 

according to the efficiency of transduction, with all mice receiving the same number of 

transduced cells. At day 8 post injection the adoptively transferred cells were tracked by 

bioluminescent imaging; on day 10 post injection the mice were sacrificed and the 

homing of Thy1.1+ cells investigated in four tissues: spleen, inguinal lymph nodes (LN), 

bone marrow (from one tibia and one fibula; BM) and liver. Prior to sacrifice, mice’s 

weight was monitored daily, and as per Home Office regulations, mice with > 20% body 

weight loss were culled. Figure 4.1 shows a schematic representation of the 

experimental in vivo set up.  
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Figure 4.1 – Schematic representation of experimental set up for in vivo persistence, 

homing and differentiation studies at day 10 post T cell transfer.  
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CD4+ and CD8+ T Cells were MACS sorted and transduced as described in chapter 2 

sections 2.2.3 and 2.2.4, prior to injection on day 3 post transduction. Figure 4.2A shows 

typical purity of adoptively transferred cells, which in all populations was >95%. 

Transduction efficiency was also similar between the CD3-engineered CD4+ and CD8+ 

T cells (84% and 72% respectively). In these experiments CD4+ mock cells were not 

transduced with the control-GFP vector, hence the lack of GFP signal (figure 4.2A). The 

differentiation status based on CD127 and CD62L expression was also analysed before 

injection (figure 4.2B). All three populations presented with identical proportions of naïve-

cells (CD127+ CD62L+), ≥80%, CD127- CD62L- effector cells (≤1%) and CD127+ CD62L- 

memory cells ≤20% (figure 4.2C). 

Weight was used to monitor the wellbeing of the animals and to track potential toxicity 

onset. No toxicity was seen in any of the animals in these experiments; the changes in 

body weight are plotted in figure 4.2D. 
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Figure 4.2 – Purity, transduction efficiency, differentiation status of adoptively transferred 

cells and mice weights. (A) Typical purity and transduction efficiency of adoptively transferred 

cells are shown. (B) Schematic representation of the gating strategy used to identify naïve, 

effector and memory cells based on CD62L and CD127 expression. (C) The differentiation status 

of the adoptively transferred cells is shown (SEM is plotted). (D) The changes in mice weight 

overtime are plotted for the three experimental groups. Data from 2 independent experiments. 

The total number of animals/group was CD4+ mock n=6; CD4+ CD3-GFP n=7; CD8+ CD3-GFP 

n=7.   
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On day 8 post T cell transfer, homing of the transferred cells was tracked in vivo by 

bioluminescent imaging, as described in chapter 2, section 2.5.2. Adoptively transferred 

cells were luciferase+; when recipient mice are injected with luciferin, this is broken down 

by the luciferase enzyme in a two-step reaction, causing light to be emitted, as shown 

by the reaction below.  

LUCIFERIN + ATP  LUCIFERYL ADENYLAYE + PPi 

LUCIFERYN ADENYLATE + O2  OXYLUCIFERIN + AMP + LIGHT 

At this time point (day 8 post adoptive T cell transfer) CD4+ CD3-GFP T cells were readily 

detectable compared to CD4+ mock and CD3-engineered CD8+ cells, as shown by the 

increased bioluminescent signal (figure 4.3). In 4 out of 5 mice that received CD4+ mock 

T cells, luciferase+ T cells were observed in the thymic/cervical lymph nodes area and 

around the mucosal membrane of the snout (figure 4.3A). In the experimental group 

receiving CD8+ CD3-GFP T cells a weak bioluminescent signal was observed in the 

thymic area in 3 out of 5 mice. No other signal was detected (figure 4.3C). In contrast, a 

strong bioluminescent signal was observed in all mice receiving CD3-engineer CD4+ T 

cells. Luciferase+ T cells were present in the thymic/cervical lymph nodes area, mucosal 

membrane of the snout, inguinal lymph nodes, splenic area and in the skin (tail, ears, 

and paws) (figure 4.3B). 
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Figure 4.3 – Bioluminescent imaging at day 8 post adoptive transfer. Mice in all experimental 

groups were imaged to track the homing and survival of the adoptively transferred cells. (A) CD4+ 

mock group. (B) CD4+ CD3-GFP group. (C) CD8+ CD3-GFP group.    
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Two days after bioluminescent imaging was performed all mice were humanely killed 

and their spleens weighted. Mice that received CD3-engineered CD4+ T cells had 

significantly heavier spleens (p≤0.05) compared to the other two experimental groups. 

This was not due to higher body weight, as these were comparable to the weights of 

mice receiving CD4+ mock cells, and were significantly lower to those mice receiving 

CD8+ CD3-GFP T cells (figure 4.4). 

 

 

 

Figure 4.4 – Weight of whole mice and resected spleens at day 10 post T cell transfer. 10 

days post T cell transfer the mice were culled, and their spleens were weighted. Data from 2 

independent experiments. CD4+ mock n=6; CD4+ CD3-GFP n=7; CD8+ CD3-GFP n=7. (p=* ≤0.05; 

** ≤0.01; unpaired T test. Lines represent mean + SEM).  
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Single cell suspensions of spleen, inguinal LNs, BM and liver were prepared and 

analysed by flow cytometry, as described in chapter 2, sections 2.5.3 and 2.3, 

respectively. Using congenically marked Thy1.1+ cells for adoptive transfer into Thy1.2+ 

recipients allowed us to discriminate the transferred cells from the endogenous Thy1.2+ 

T cell population. GFP expression permitted comparison of transduced CD4+ and CD8+ 

T cells. Thus the expansion and persistence of transduced cells in different tissues could 

be assessed. Figures 4.5A and B show the gating strategy used to analyse the single 

cell suspension from the four tissues of mice receiving CD4+ mock T cells and CD3-

engineered T cells, respectively. Summary data showing the percentage of transferred 

cells recovered from each tissue is shown in figure 4.5C and D. In mice receiving CD4+ 

mock T cells, the transferred cells accounted for less than 60% of the total viable CD4+ 

population, in all analysed organs (spleen:42.4%; LN: 35.9%; BM: 42.5%; liver: 58.5%). 

Similar percentages of transferred CD8+ CD3-GFP T cells were recovered from the 

tissues (spleen: 44.6%; LN: 40%; BM: 51.8%; liver: 66%). Conversely, CD3-engineered 

CD4+ T cells were isolated in significantly higher proportions compared to both CD4+ 

mock and CD3-engineered CD8+ T cells, from all analysed tissues. On average they 

represented 60% or more of the total CD4+ Thy1.1+ population found in the spleen 

(66.4%), LN (60.3%), BM (73%) and liver (83.8%). Summary of mean percentages is 

shown in figure 4.5 D.  

Absolute numbers of transferred cells were also calculated using counting beads as 

described in chapter 2, section 2.1.1. Similar to the trend seen in the percentages of 

recovered cells, CD3-engineered CD4+ T cells were recovered in significantly higher 

numbers compared to CD3-engineered CD8+ T cells, in all analysed organs, except the 

liver. In the liver no difference was seen in the number of recovered CD4+ CD3-GFP T 

cells compared to CD8+ CD3-GFP T cells. No difference in the absolute number of cells 

recovered from animals receiving the CD4+ mock or the CD3-engineered CD4+ T cells 

was seen. Figures 4.5 E and F show the mean absolute number of  
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transferred cells recovered from each tissue. 

 

Figure 4.5 – Increased TCR expression in CD4+ cells is associated with increased in vivo 

persistence. (A) The gating strategy to analysed CD4+ mock and (B) CD3-engineered CD4+ and 

CD8+ T cells is shown. (C, D) The mean percentages + SEM of recovered transferred cells are 

shown. (E, F) The mean absolute numbers + SEM of recovered transferred cells are shown. Data 

from 2 independent experiments. CD4+ mock n=6; CD4+ CD3-GFP n=7; CD8+ CD3-GFP n=7. 

(p=* ≤0.05; ** ≤0.01; ***≤0.001; **** ≤0.0001; unpaired t test).  
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4.3. Ex vivo phenotype of adoptively transferred CD4+ 

and CD8+ T cells is determined by both T cell 

lineage and their eventual homing site 

The data described above suggests that CD3 and TCR overexpression in CD4+ T cells 

promotes their in vivo persistence, compared to CD3-overexpressing CD8+ T cells. To 

determine whether this was associated with distinct differentiation profiles, flow 

cytometry was used to analyse the phenotype of the transferred T cells at day 10 post 

injection. CD62L and CD127 expression was analysed to determine whether the isolated 

cells presented with a naïve (CD62L+ CD127+), effector (CD62L- CD127-) or memory 

(CD62L- CD127+) phenotype (figure 4.6A). 

Analysis of CD62L and CD127 revealed that the phenotypic profile of the experimental 

T cells evolved after adoptive transfer, as shown by the different differentiation statuses 

observed on injection day and at day 10 post T cell transfer.  

CD62L and CD127 expression was analysed on viable, CD4+ Thy1.1+ (CD4+ mock 

group) or viable CD4+/CD8+ Thy1.1+ GFP+ (CD4+ and CD8+ CD3-GFP groups) T cells. 

In the spleen no significant difference in the proportion of naïve (16.6%-46%) or effector 

(20.3%-22.1%) cells was seen among the three populations. The proportion of CD3-

engineered CD8+ T cells demonstrating a naïve phenotype was slightly higher (46%), 

but not significantly. Memory cells were present in significantly higher proportions in the 

two CD4+ populations (57% CD4+ mock; 63% CD4+ CD3-GFP), compared to the 

proportion of recovered CD8+ T cells with a memory phenotype (28%) (figure 4.6B).  

In the inguinal LNs (figure 4.6C) no difference in the percentage of naïve cells was seen 

between the CD4+ mock and the CD8+ CD3-GFP population (37% and 30% 

respectively), whereas the percentage of recovered naïve CD4+ CD3-GFP T cells was 

significantly lower (12%). No difference in the proportion of effector cells were seen 

among the three populations, and it varied between 9.1% and 21.1%. Similar to the trend 
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seen in the splenic T cell population, the percentage of memory CD4+ T cells recovered 

from both the CD4+ mock and CD4+ CD3-GFP experimental groups was not significantly 

different (48% and 64% respectively). In addition, the latter was significantly higher than 

the proportion of memory CD8+ T cells (38%) recovered from the mice receiving the 

CD8+ CD3-GFP control T cells.  

The highest percentage of transferred cells recovered from the bone marrow of the three 

experimental groups, had an effector phenotype; no difference in the percentage of 

effector cells was seen among the three groups (CD4+ mock: 51%; CD4+ CD3-GFP: 

49%; CD8+ CD3-GFP: 41%). The second highest proportion of recovered cells were 

memory cells as defined by our cell surface staining. In this case, no significant difference 

was seen in the percentage of CD4+ mock and CD4+ CD3-GFP memory T cells (38% 

and 45% respectively), suggesting increased TCR expression in CD4+ T cells did not 

affect differentiation status. In addition the proportions of CD4+ mock and CD3-

engineered CD4+ memory T cells were significantly higher compared to that of CD3-

engineered CD8+ memory T cells (18%). No significant difference was seen in the 

percentage of naïve cells recovered from the two CD4+ experimental groups (CD4+ mock: 

6.8%; CD4+ CD3-GFP: 3.7%). The proportion of T cells with a naïve phenotype 

recovered from the CD3-engineered CD8+ experimental group was significantly higher 

than both CD4+ groups, and was 20.5% (figure 4.6D). 

In the liver (figure 4.6E) the percentage of adoptively transferred cells with an effector 

phenotype was not significantly different among the three different experimental 

populations (25.6%-38.7%). CD8+ CD3-GFP T cells with a naïve phenotype were 

recovered in higher percentages (40%) compared to both CD4+ populations (CD4+ mock: 

9%; CD4+ CD3-GFP: 6%). On the other hand the percentage of isolated, transferred cells 

presenting with a memory phenotype from both CD4+ experimental populations was 

significantly higher compared to the percentage of memory CD8+ T cells recovered from 

the CD3-engineered CD8+ population (CD4+ mock: 51%; CD4+ CD3-GFP: 61%; CD8+ 

CD3-GFP: 20%). 
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Thus, analysis of the ex vivo CD4+ mock, CD3-engineered CD4+ and CD3-engineered 

CD8+ T cells, from the four examined tissues revealed that the differentiation profile of 

the transferred cells, 10 days post T cell transfer is determined both by T cell lineage, 

and their homing site. Broadly speaking, the differentiation of the two CD4+ T cell subsets 

is similar in all analysed organs (with the exception of the naïve population in the LN), 

suggesting the cell’s lineage determines the phenotypic status, not the level of TCR 

expression (as altered by co-transfer of additional CD3); CD8+ T cells followed a distinct 

differentiation trend, which was organ specific. Figure 4.13 summarised the percentages 

of naïve, effector and memory cells isolated from the tissues of the three experimental 

groups.  
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Figure 4.6 – Day 10 ex vivo differentiation status of adoptively transferred cells. (A) 

The expression profiles of CD62L and CD127 were used to determine the phenotype of 

the recovered, transferred cells. A representative plot of the gating strategy is shown. (B-

E) The differentiation profile was examined in adoptively transferred cells (CD4+ mock: 

Thy1.1+; CD4+ and CD8+ CD3-GFP: Thy1.1+ GFP+) recovered from the spleen, inguinal 

lymph nodes (LN), bone marrow (BM) and liver. Mean values + SEM from 2 independent 

experiments are shown. CD4+ mock n=6; CD4+ CD3-GFP n=7; CD8+ CD3-GFP n=7. 
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4.4. CD3-engineered CD4+ T cells accumulate in 

greater numbers in vivo compared to CD3-

engineered CD8+ T cells, 16 days post adoptive 

transfer 

The experiments described above aimed to analyse the kinetics of T cell persistence and 

differentiation during the first 10 days following T cell transfer. To determine whether a 

longer exposure to “self” induced changes in the accumulation or differentiation of the 

experimental T cells, a similar experiment to the one described above was performed. 

On day 0, C57Bl/6 Thy1.2+ recipient mice were sub lethally irradiated with 5.5 Gy; 2-3 

hours post irradiation they received adoptive transfer of 5 x 106 Thy1.1+ CD4+ mock or 

Thy1.1+ CD3-engineered CD4+ (CD4+ CD3-GFP) or Thy1.1+ CD3-engineered CD8+ 

(CD8+ CD3-GFP) transduced T cells (cell number was adjusted to transduction 

efficiency, based on GFP expression). On day 16 post T cell injection the mice were 

sacrificed and the homing of Thy1.1+ cells investigated in the following four tissues: 

spleen, inguinal lymph nodes (LN), bone marrow (from one tibia and one fibula; BM) and 

liver. In addition at day 3 and day 11 post injection serum samples were obtained from 

peripheral blood, to examine the concentration of inflammatory cytokines, and how their 

concentration changes over time. Mouse weight was monitored overtime, and as per 

Home Office regulations mice with > 20% body weight loss were sacrificed. Figure 4.7 

shows a schematic representation of the experimental set up.  
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Figure 4.7 – Schematic representation of experimental set up for in vivo persistence, 

homing, differentiation at day 16 post T cell transfer, and cytokine studies.   
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T cells were MACS sorted and transduced as described in chapter 2 sections 2.23 and 

2.2.4, prior to injection on day 3 post transduction. Figure 4.8A shows typical purity of 

adoptively transferred cells, which in all populations was >90%. Transduction efficiency 

was twice as much in the CD3-engineered CD4+ population (69%) compared to the CD3-

engineered CD8+ population (33%). As with the previous experiments CD4+ mock cells 

were not transduced with the control-GFP vector, hence the lack of GFP signal in this 

population. The differentiation status based on CD127 and CD62L expression was also 

analysed before injection. All three populations presented with identical proportions of 

naïve-cells (CD127+ CD62L+), ≥70%, CD127- CD62L- effector cells (≤1%) and CD127+ 

CD62L- memory cells ≤20% (figure 4.8B). 
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Figure 4.8 – Purity, transduction efficiency and differentiation status of adoptively 

transferred cells. (A) The purity (top) and transduction efficiency (bottom) of the three 

populations of experimental cells were analysed on day 3 post transduction, before their injection 

into recipient mice. (B) CD62L and CD127 expression was examined to determine the phenotype 

of the injected cells (naïve: CD62L+ CD127+; effector: CD62L- CD127-; memory: CD62L- CD127+). 

Mean values are shown. Data from 1 experiment.   
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Animal weight was monitored to track their wellbeing and to check for toxicity 

development. Contrary to the experiments above where the weight of the mice did not 

drop by more than 20%, by day 16 (the set end point) one of the animals had lost more 

than 20% of its body weight and for the others there was a downward trend. Figure 4.9A 

shows the changes of weight compared to baseline. 

Ex vivo, spleens were weighed, as previous experiments had shown that mice in the 

CD4+ CD3-GFP group had significantly enlarged spleens. However no difference in 

spleen (or mouse) weight was observed in this experiment (figure 4.9B). 

 

Figure 4.9 – Percentage of mice’s body weight overtime and spleen weight. (A) The changes 

in mice weight are plotted for the three experimental groups. (B) 16 days post T cell transfer the 

mice and their spleens were weighed. Data from one experiment; CD4+ mock n=5; CD4+ CD3-

GFP n=4; CD8+ CD3-GFP n=4. Lines represent mean + SEM.  
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As for previous experiments, the congenic marker Thy1.1 allowed discrimination of the 

adoptively transferred cells from the endogenous Thy1.2+ T cells; GFP permitted 

comparison of CD4+ and CD8+ T cells transduced with CD3-GFP vector. Figures 4.10A 

and B show the gating strategy used to analyse the single cell suspensions from the four 

tissues of mice receiving CD4+ mock cells and CD3-engineered T cells, respectively. 

Summary data showing the percentage of transferred cells recovered from each tissue 

is shown in figures 4.10C and 4.10D. 

The trend in the percentage of Thy1.1+ (CD4+ mock group) or Thy1.1+ GFP+ (CD4+ and 

CD8+ CD3-GFP groups) isolated at day 16 post T cell transfer was similar to that seen 

at day 10 post T cell transfer. In all tissues, with the exception of the bone marrow, CD3-

engineered CD4+ T cells were recovered in significantly higher percentages compared 

to CD4+ mock and CD3-engineered CD8+ T cells, and represented 50% or more of the 

total population of viable Thy1.1+ cells (spleen: 55.78%; LN: 50%; liver: 69.1%) . In the 

bone marrow the highest percentage of transferred cells was recovered from the CD4+ 

mock group (89.8%), followed by the CD4+ CD3-GFP group (63.6%), and the CD8+ CD3-

GFP group (35.9%). No difference in the proportion of recovered T cells was seen 

between the CD4+ group and the CD4+ CD3-GFP group in the liver (67.9% and 69.1% 

respectively). However the percentage of transferred cells recovered from liver-derived 

single cell suspensions in animals receiving the CD3-engineered CD8+ T cell product 

was significantly lower compared to both CD4+ experimental groups (41.7%). In both the 

spleen and lymph nodes the percentage of isolated, experimental T cells was 

significantly higher in the CD4+ CD3-GFP group compared to either one of the other two 

experimental groups. In particular, in the spleen 55.78%, 45.9% and 28.9% of transferred 

cells were recovered from the CD4+ CD3-GFP group, CD4+ mock group and CD8+ CD3-

GFP group, respectively. In the lymph nodes the percentage of recovered Thy1.1+ GFP+ 

cells from the CD4+ CD3-GFP group was 50%; followed by 36.3% of Thy1.1+ cells 

recovered from the CD4+ mock group; and 31.43% of Thy1.1+ GFP+ cells recovered from 

the CD8+ CD3-GFP group. 
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However, no significant difference in the absolute number of transferred cells recovered 

was seen among the three groups, in any of the tissues (figure 4.10E and F). 

 

Figure 4.10 – Increased TCR expression in CD4+ cells is associated with in vivo 

accumulation. (A) The gating strategy to analysed CD4+ mock and (B) CD3-engineered CD4+ 

and CD8+ T cells is shown. (C, D) The mean percentages + SEM of recovered transferred cells 

are shown. (E, F) The mean absolute numbers + SEM of recovered transferred cells are shown. 

CD4+ mock n=5; CD4+ CD3-GFP n=4; CD8+ CD3-GFP n=4. (p=* ≤0.05; ** ≤0.01; ***≤0.001; **** 

≤0.0001; unpaired t test).  
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4.5. Ex vivo phenotype of transferred cells is similar 

between day 10 and day 16 

As for the previous experiment the differentiation phenotype of the recovered cells was 

examined by looking at their CD62L and CD127 expression. The Thy1.1+ or Thy1.1+ 

GFP+ cells recovered from the tissues were divided into naïve (CD62L+ CD127+), effector 

(CD62L- CD127-) and memory (CD62L- CD127+) cells. 

The phenotypic profile of the transferred cells isolated at day 16 was different to that 

observed in the experimental populations at the time of injection.  

The proportion of naïve T cells recovered from the spleen of mice receiving CD3-

engineered CD4+ T cells was significantly lower (21.6%) compared to percentage of 

naïve cells recovered from both the CD4+ mock group (30.3%) and the CD8+ CD3-GFP 

group (71%). On the other hand the percentage of adoptively transferred memory CD8+ 

T cells recovered from the CD8+ CD3-GFP group was the lowest (19.1%) among the 

three experimental groups. The proportion of memory T cells in the spleen of two CD4+ 

experimental groups was similar (CD4+ mock: 57%; CD4+ CD3-GFP: 65.8%). Lastly the 

percentage of effector T cells recovered from the spleen was similar among the three 

different experimental groups (CD4+ mock: 11.6%; CD4+ CD3-GFP: 12%; CD8+ CD3-

GFP: 8.1%) (figure 4.11A). This phenotypic differentiation followed the same trend to 

that seen in the cells isolated 10 days post T cell transfer (figure 4.6A). 

Similarly the percentages of naïve, effector and memory cells isolated from the LN of the 

three experimental groups, followed the same trend both on day 10 and day 16 (figure 

4.11B). Noticeably the lowest percentage of naïve cells was recovered from the CD4 

CD3-GFP group (10.5%). This value was significantly lower than both proportions of 

naïve cells isolated from the CD4+ mock (31.2%) and the CD3-engineered CD8+ group 

(40.6%). No differences were seen in the percentage of effector cells, which was 5% in 

the CD4+ mock T cell population, 7.8% in the CD4+ CD3-GFP T cell population, and 8.2% 

in the CD8+ CD3-GFP T cell population. Finally contrary to the trend seen with naïve 
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cells, transferred T cells isolated from the CD3-engineered CD4+ group presented with 

the highest proportion of memory cells (80.9%) out of the three experimental groups. 

This was significantly higher than the percentage of memory cells recovered both from 

the CD4+ mock group (62.4%) and the CD8+ CD3-GFP group (49.3%). 

Figure 4.11C summarises the phenotype of cells isolated from the bone marrow. The 

highest proportion of naïve cells was recovered in the Thy1.1+ GFP+ population isolated 

from the CD3-engineered CD8+ group (26%); this proportion was significantly higher than 

that seen in both CD4+ groups (CD4+ mock: 2.7%; CD4+ CD3-GFP: 4.9%). The 

percentage of effector CD3-engineered CD4+ T cells was 27; that of CD3-engineered 

CD8+ T cells was 44. The percentage of effector cells isolated from the CD4+ mock group 

was 43.2% and significantly higher to that of effector CD3-engineered CD4+ T cells. 

Similarly to the trend seen in both the spleen and the LN, the highest percentage of 

memory cells was recovered from the population of CD4+ CD3-GFP T cells (63.4%); this 

value was significantly higher than that of CD4+ mock T cells (53.6%), which in turn was 

significantly higher to the percentage recovered from population of CD3-engineered 

CD8+ T cells (24.9%).  

The trends seen in the liver for naïve, effector and memory cells were identical to those 

seen in the spleen, and are summarised in figure 4.11D. Adoptively transferred cells 

recovered from the CD8+ CD3-GFP group had the highest percentage of naïve cells 

(28.2%), which was significantly higher than that seen in the population of CD4+ mock T 

cells (5.9%), which in turn was significantly higher than the percentage of naïve CD4+ 

CD3-GFP T cells (2.7%). No significant difference in percentages of effector cells was 

seen between the groups (CD4+ mock: 27.8%; CD4+ CD3-GFP:23.2%; CD8+ CD3-GFP: 

38.7%); the highest proportion of memory cells was found in the population of transferred 

cells isolated from the livers of mice receiving CD3-engineered CD4+ T cells (73.9%). 

The proportion of memory cells recovered in the CD4+ mock population was 65.9%; the 

proportion recovered from the CD8+ CD3-GFP cells was 29%. 
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The analysis of the differentiation profiles of ex vivo CD4+ mock, CD3-engineered CD4+ 

and CD3-enginerrred CD8+ T cells at day 16 post T cell transfer revealed that the T cell 

phenotype at this time point are comparable to that observed at day 10; at day 16, both 

CD4+ populations in the bone marrow presented with a memory phenotype, compared 

to the effector phenotype seen at day 10; and the majority of Thy1.1+ GFP+ CD8+ T cells 

isolated from the liver of the CD8+ CD3-GFP group present with an effector phenotype, 

compared to the naïve phenotype seen at day 10. In addition similar to the trends seen 

at day 10, CD4+ T cells (both mock transduced and CD3-engineered) followed the same 

differentiation pattern across all four analysed organs. CD3-engineered CD8+ T cells 

differentiation is more varied and it’s tissue specific. Figure 4.13 summarised the 

percentages of cells with the different phenotypes, from all tissues and experimental 

groups.  
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Figure 4.11 – Day 16 ex vivo differentiation status of the adoptively transferred cells. (A-D) 

The differentiation profile was examined in adoptively transferred cells recovered from the spleen, 

inguinal lymph nodes (LN), bone marrow (BM) and liver. Cells were divided into naïve (CD62L+ 

CD127+), effector (CD62L- CD127-), and memory cells (CD62L- CD127+). CD4+ mock n=5; CD4+ 

CD3-GFP n=4; CD8+ CD3-GFP n=4 (p=* ≤0.05; ** ≤0.01; ***≤0.001; **** ≤0.0001; unpaired t test. 

Mean values + SEM are plotted). 
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4.6. The ex vivo phenotype of transferred CD4+ and 

CD8+ cells is different from that of CD4+ and CD8+ 

T cells isolated from the tissues of untreated 

C57Bl/6 mice 

We next examined whether the transferred CD4+ and CD8+ T cells homing to the four 

different tissues acquire similar phenotypes to those of endogenous CD4+ and CD8+ T 

cells found in the same tissues, in untreated animals. Single cell suspensions of spleen, 

LN, BM and liver were generated from the tissues of untreated, non-irradiated C57Bl/6 

animals. The expression levels of CD62L and CD127 were analysed in CD4+ and CD8+ 

populations from the four different tissues, as for previous experiments. 

Similar differentiation profiles from CD4+ and CD8+ T cells from the spleen (figure 4.12A) 

and the lymph nodes (figure 4.12B) were seen.  

In the spleen no significant difference in the proportion of naïve or effector cells were 

seen between the CD4+ and CD8+ T cells. 58.4% of CD4+ T cells isolated from the spleen 

presented with a naïve phenotype, whereas the proportion of CD8+ T cells with the same 

phenotype was 72.8%. Effector CD4+ T cells from the same organ accounted for 0.93%, 

compared to 1.86% of CD8+ effector cells. However memory CD4+ T cells were present 

in the spleen in a significantly higher proportion compared to CD8+
 T cells (33.7% and 

8% respectively; p≤0.001).  

74.3% of naïve CD4+ T cells were recovered from the inguinal lymph nodes, compared 

to 73.9% naïve CD8+ T cells. No difference was seen in the percentages of effector cells, 

with CD4+ effector T cells accounting for 0.29%, and CD8+ effector T cells accounting for 

0.19% of the total CD4+/CD8+ T cell population. A significantly higher proportion of 

memory CD4+ T cells were recovered from the lymph node, compared to CD8+ memory 

T cells (9.76% and 3.24% respectively).   



156 
 

The patterns of CD4+ and CD8+ differentiation in the bone marrow (figure 4.12C) and the 

liver (figure 4.12D) were also very similar to one another. In both organs significantly 

higher proportions of CD8+ naïve and effector T cells were recovered, compared to their 

CD4+ counterparts. Higher proportions of memory CD4+ memory T cells were recovered, 

compared to CD8+ T cells from both tissues.  

In the bone marrow naïve CD4+ T cells accounted for 26.9% of the total viable CD4+ 

population, compared to 62.6% of naïve CD8+ T cells; in the same tissue 0.49% of CD4+ 

T cells presented with an effector phenotype, compared to 6.3% of CD8+ T cells. The 

percentage of CD4+ T cells with a memory phenotype was 65.5%, compared to 11.3% 

of CD8+ T cells.  

In the liver, 37.25% and 0.43% of CD4+ T cells presented with a naïve and effector 

phenotype, respectively, compared to 71.7% and 3.1% of naïve and effector CD8+ T 

cells. Lastly, 58.8% CD4+ cells isolated from the liver presented with a memory 

phenotype, compared to 15.1% of CD8+ cells.  

Figure 4.13 summarised the percentages of the different cells’ phenotypes, from all 

tissues and experimental groups. 
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Figure 4.12 – Ex vivo differentiation status of CD4+ and CD8+ T cells from untreated mice. 

(A-D) The differentiation profile was examined in CD4+ and CD8+ T cells isolated from the tissues 

of untreated mice, to determine the percentage of naïve, effector and memory T cells normally 

found within those tissues. Cells were divided into naïve (CD62L+ CD127+), effector (CD62L- 

CD127-), and memory cells (CD62L- CD127+). n=2 for each tissue (p=* ≤0.05; ** ≤0.01; ***≤0.001; 

unpaired t test. Mean + SEM are plotted). 
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Figure 4.13 – Differentiation status summary data. The average percentage of naïve, memory 

and effector CD4+ and CD8+ T cells isolated from untreated animals, and at day 10 and 16 post 

adoptive transfer are shown.   
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4.7. No difference in serum cytokine profiles observed 

between mice receiving CD4+ mock, CD3-

engineered CD4+ or CD3-engineered CD8+ T cells 

Previous experiments showed that CD4+ T cells with enhanced CD3 and TCR 

expression have a survival advantage over both CD4+ mock and CD3-engineered CD8+ 

T cells. To investigate if this accumulation is driven by systemic T cell activation, driven 

by cytokines, we analysed the levels of 13 signature inflammatory cytokines in the serum 

of the recipient mice (in vivo experimental set up is described in figure 4.7). Peripheral 

blood samples were collected at an early time point (day 3 post adoptive transfer) and a 

late time point (day 11 post T cell transfer), and the serum isolated as describes in 

chapter 2, section 2.4.7. Day 3 and day 11 were chosen based on previous experiments, 

where mice receiving CD3-engineered CD4+ T cells, developed toxicity as early as day 

12 post T cell transfer. Day 3 represented an early, baseline time point; day 11 

represented the peak of a potential cytokine storm syndrome. LEGENDplex™ 

technology was used to analyse the serum levels of IL-1α; IL-1β; IL-6; IL-10; IL-12(p70); 

IL-17A; IL-23; IL-27, GM-CSF; IFNβ; IFNγ; MCP-1 and TNFα, as described in chapter 2, 

section 2.4.7. This particular set of cytokines was chosen as it contains classical 

inflammatory cytokines produced upon T cell activation, which are capable of driving 

both further T cell activation, and also pathology. 

Despite the differences in T cell accumulation, no difference in the serum concentration 

of any of the analysed cytokines was seen, at either day 3 or day 11 post adoptive T cell 

transfer (figures 4.14, 4.15 and summary data in figure 4.16). Although the levels of some 

cytokines increased (e.g. IL-6 and TNFα) between day 3 and day 11, this change in 

concentration was seen in all recipient animals. The mean concentration of the different 

cytokines, in the mice receiving CD4+ mock, CD3-engineered CD4+ or CD8+ T cells, at 

day 3 and day 11 are summarised in the figure 4.16. 



160 
 

 

Figure 4.14 – Serum cytokine concentrations. The concentration (pg/ml) of IL-1α; IL-1β; IL-6; 

IL-10; IL-12(p70); IL-17A; IL-23 and IL-27 in the serum of treated animals, at day 3 and day 11 

post T cell transer is shown. Mean values + SEM are plotted.   
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Figure 4.15 – Serum cytokine concentrations. The concentration (pg/ml) of GM-CSF; IFNβ; 

IFNγ; MCP-1 and TNFα in the serum of treated animals, at day 3 and day 11 post T cell transfer 

is shown. Mean values + SEM are plotted.    

 

 

 

Day 3 Day 11
0

10

20

30

40

50
CD4 mock

CD4 + CD3

CD8 + CD3

G
M

-C
S

F
 [

p
g

/m
l]

Day 3 Day 11
0

50

100

150
CD4 mock

CD4 + CD3

CD8 + CD3

IF
N


 [
p

g
/m

l]

Day 3 Day 11
0

10

20

30

40

50
500

1000

1500

2000
CD4 mock

CD4 + CD3

CD8 + CD3

IF
N

 [

p
g

/m
l]

Day 3 Day 11
0

5

10

15
CD4 mock

CD4 + CD3

CD8 + CD3

M
C

P
-1

 [
p

g
/m

l]

Day 3 Day 11
0

50

100

150

200
CD4 mock

CD4 + CD3

CD8 + CD3

T
N

F


 [
p

g
/m

l]



162 
 

 

 

 

 

Figure 4.16 – Serum cytokines concentration summary data. The mean concentration (pg/ml) 

of cytokines found in the serum of CD4+ mock, CD4+ CD3-GFP and CD8+ CD3-GFP treated 

animals are summarised.  
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4.8. Summary and discussion 

The aim of the experiments described in this chapter was to examine whether the higher 

TCR expression in CD4+ T cells observed in vitro, translated into different in vivo 

behaviour. Mature T cells in the periphery continuously interact with self-p:MHC 

complexes. These interactions, alongside IL-7 signalling, may play a role in T cell 

maintenance in the periphery (Takada et al., 2009a). Thus we hypothesised that 

increased TCR expression may favour CD4+ T cell survival over CD8+ cells, as they may 

be subjected to stronger interaction with “self and stronger TCR signalling. 

To test our hypothesis, we set up in vivo experiments which allowed us to study the 

persistence, homing and differentiation profile of adoptively transferred mock transduced 

CD4+ T cells, CD3-engineered CD4+ T cells and CD3-engineered CD8+ T cells. Indeed 

CD4+ T cells overexpressing CD3 were recovered in higher percentages (from the 

spleen, inguinal lymph nodes, bone marrow and liver) compared to mock transduced 

CD4+ T cells and CD3-engineered CD8+ T cells, both at day 10 and day 16 post T cell 

transfer. The accumulation of CD3-engineered CD4+ cells was confirmed by both in vivo 

bioluminescent imaging and ex vivo analysis of tissues’ single cell suspensions. CD3-

engineered CD4+ T cell accumulation was also associated with splenomegaly at day 10 

in the mice receiving these cells. However no enlarged spleens were seen if the mice 

were sacrificed at 16 days post T cell transfer. The phenotype of the recovered cells was 

also analysed ex vivo by flow cytometry. Broadly speaking CD4+ T cells, both mock and 

CD3-engineered, followed the same pattern of differentiation, and this was identical at 

both day 10 and day 16 post T cell transfer. CD3-engineered CD8+ T cells had a different 

maturation phenotype (compared to the CD4+ T cells), but again was similar at day 10 

and day 16. Analysis of CD4+ and CD8+ T cell populations from the tissues of untreated 

mice allowed us to examine whether adoptively transferred T cells repopulating these 

tissues, present with the same differentiation profiles. What we found was that the 

proportion of naïve cells was lower in the populations of adoptively transferred cells (both 

CD4+ and CD8+), compared to the percentage of naïve CD4+ and CD8+ T cells found at 
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steady state; the percentage of effector cells was higher in the ex vivo populations of 

experimental cells, compared to untreated CD4+ and CD8+ T cells. Lastly the 

percentages of memory cells recovered from the CD4+ and CD8+ populations differs both 

between themselves, and also from the percentages seen in untreated tissues.  

The endpoints of the experiments were set based on previous observations regarding 

toxicity onset. In previous studies, mice conditioned with the same irradiation dose and 

receiving a lower dose (1 x 106 transduced T cells) of CD4+ T cells transduced with the 

CD3-GFP vector, developed toxicity as early as day 12, with the average onset day being 

between day 15 and 17. Therefore day 10 was determined to be an early time point when 

adoptively transfer T cells start to infiltrate tissues; day 16 represented the peak time of 

T cell infiltration into target tissues. However no toxicity, as determined by weight loss, 

was seen in these set of experiments. Only one mouse lost more than 20% body weight 

by day 16. In addition other experiments were mice where kept for up to 30 days did not 

show any sign of pathology (data not shown).  

Despite the lack of toxicity, CD4+ T cells modified to express higher levels of CD3 and 

thus higher levels of TCR accumulated in higher percentages, compared to the other two 

experimental cell products, in all analysed tissues. Accumulation was confirmed by both 

in vivo bioluminescence and ex vivo flow cytometry analysis. Ex vivo analysis of the 

transferred cells at day 10 and day 16 post T cell injection, showed that the greatest 

accumulation is seen in the CD4+ CD3-GFP population. At day 10 no difference is seen 

in the accumulation of CD4+ mock and CD3-engineered CD8+ T cells. 16 days post T 

cell transfer the accumulation of CD4+ mock T cells is inferior to that of CD3-engineered 

CD4+ T cells, but significantly higher than that of CD3-engineered CD8+ T cells.  

In our in vivo studies the biological level of TCR is increased to supraphysiological levels 

in both CD4+ and CD8+ T cells. We hypothesised that increasing TCR expression 

promotes T cell survival, either by increasing the number and the strength of TCR:self-

p:MHC interactions, or by increasing ligand-independent survival signals. A number of 

ex vivo studies have demonstrated that naïve T cells in the periphery exist with basal 
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levels of CD3ζ phosphorylation (van Oers et al., 1994; Witherden et al., 2000). This was 

suggested to be a consequence of T cell interaction with self-p:MHC complexes. 

However whether TCR engagement by self-peptides is required for prolonged in vivo 

survival of naïve T cells is still matter of debate. Dorfman et al. revealed that lack of self-

p:MHC:TCR interaction and loss of CD3ζ phosphorylation did not impair T cell 

persistence (Dorfman et al., 2000). Other studies involving inducible TCR loss showed 

that absence of TCR leads to a gradual decay of T cells, with CD8+ T cells decaying 

faster (t1/2 16 days) compared to CD4+ T cells (t1/2 78 days) (Labrecque et al., 2001; Polic 

et al., 2001); Thus, despite controversial evidence regarding a potential role for TCR 

engagement by self-p:MHC complexes, TCR expression is fundamental for T cell 

survival in the periphery.  

Our data does not indicates whether the accumulation of CD3-engineered CD4+ T cells 

is a consequence of increased interaction with “self”, or increased ligand-independent 

signalling. To determine what mechanism is indeed driving T cell accumulation in vivo, 

analysis of the cell surface protein CD5 expression could be useful. Increasing evidence 

shows that differences in the expression of CD5 can be used to assess the strength of 

TCR;self-p:MHC interactions (Fulton et al., 2015; Tarakhovsky et al., 1995; Smith et al., 

2001; Wong et al., 2001). In particular high CD5 levels correlate with stronger interaction 

with MHC molecules. Indeed ex vivo analysis of CD5 levels on the transferred cells would 

allow us to determine whether T cell persistence requires TCR:self-p:MHC contact, or 

whether it is a ligand-independent mechanism. In the first case, higher CD5 expression 

would be expressed on the accumulating cells, compared to mock CD4+ and CD3-

engineered CD8+ T cells; in the latter case similar levels of CD5 would be expected on 

all experimental T cells populations. Alternatively, the experimental cells could be 

adoptively transferred into MHC-II deficient hosts, and their survival analysed. Lack of 

accumulation in this setting would suggest TCR:self-p:MHC interactions play a role in in 

vivo T cell persistence. Analysis of CD3ζ phosphorylation levels may also indicate the 

extent of interaction with self, as discussed above. 
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One controversy however is generated by our in vitro data.  In vitro analysis showed that 

CD8+ T cells transduced with the CD3-GFP vector express higher TCR levels compared 

to CD4+ mock cells (figure 3.6). However, we cannot determine from our in vivo data 

what were the TCR levels on the adoptively transferred cells were at takedown day.  TCR 

downregulation occurs after TCR engagement and prevents aberrant T cell activation. 

Indeed a recent report by Gallegos et al. has shown that activated CD4+ and CD8+ T cells 

at the peak of their clonal expansion after antigenic stimulation, downregulate their TCR. 

The proportion of TCR downregulation correlates with the strength of stimulation, with 

higher affinity and higher avidity TCRs, being downregulated to a greater extent 

compared to lower affinity TCRs, recognising the same antigen (Gallegos et al., 2016). 

Although our system does not alter the affinity of the TCR pool, nor provides foreign 

antigenic stimulation, TCR avidity is greatly increased, as shown in the context of 

antigen-specific stimulations (Ahmadi et al., 2011). Increasing the avidity of the 

endogenous TCR pool leading to an increase in the strength of interaction with “self” may 

initiate a negative feedback mechanism in our experimental CD3-engineered T cells, 

similar to that described by Gallegos and colleagues. TCR downregulation in turn may 

correlate with decrease CD8+ T cell survival and a lower percentage of recovered 

experimental CD8+ T cells. TCR downregulation may also occur in CD3-engineered 

CD4+ T cells as between day 10 and day 16 there’s a 10% drop in the percentage of 

recovered cells. This decrease in recovered cells is more profound in CD8+ T cells where 

in all organs but the lymph nodes, it’s 15% or more. CD3-engineered CD4+ T cells 

subjected to TCR downregulation may still express enough TCR (and a higher level of it 

compared to CD3-engineered CD8+ T cells) to promote their persistence. The 

physiological TCR levels and avidity of the unmanipulated CD4+ mock T cells may allow 

for these cells to persist for longer in vivo. Indeed in the spleen and lymph nodes no 

difference in the percentage of recovered CD4+ mock cells was seen between day 10 

and day 16 (figures 4.5D and 4.10D).  
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Alternatively CD8+ T cells may be subjected to greater TCR downregulation. As 

suggested in chapter 3, the ubiquitous expression of MHC-I molecules may lead to a 

higher number of interactions between CD8+ T cells and self-peptides, which may 

maintain TCR levels low and may correlate with a lower activation threshold, compared 

to CD4+ T cells. Thus this latter population may be subjected to less TCR downregulation, 

allowing accumulation of the CD4+ T cell population to a greater extent.  

TCR downregulation kinetics studies by Gallegos et al. showed that TCR is 

downregulated by day 15 post T cell transfer. This finding is in line with the kinetics of 

decrease cell accumulation we see at day 16 post T cell transfer in our in vivo 

experiments.  

Similar in vivo experiments where adoptively transferred CD4+ and CD8+ T cells express 

the same levels of TCR, or where TCR downregulation is prevented, for example by 

modifying the CD3 motifs involved in TCR downregulation, would allow us to test our 

hypothesis regarding TCR downregulation playing a role in T cell persistence.   

All of our in vivo experiments were carried out in lymphopenic animals, as a consequence 

of the 5.5 Gy sub lethal irradiation, a step that is necessary for the engraftment of the 

adoptive T cells. Once injected the cells will undergo lymphopenia induced proliferation 

(LIP). Increasing evidence suggests that the homeostatic proliferation in a lymphopenic 

environment is radically different to that seen in physiological, non lymphopenic 

conditions (Almeida et al., 2005; Surh et al., 2008). Lack of endogenous immune cells in 

lymphopenic animals means adoptively transferred T cells have greater access, and 

increased sensitivity to the available homeostatic factors (IL-7 and self-p:MHC 

complexes). Indeed polyclonal T cells rely on interaction with self-p:MHC complexes and 

IL-7 signalling for proliferation in lymphopenic settings, as LIP is impaired in mouse 

models where either one of those is absent (Tan et al., 2001; Ernst et al., 1999). Although 

we can’t rule out the presence of different signals in the different recipient animals in our 

system, the conditions in the three different experimental groups were constant. 

Syngeneic animals were used as recipients in all experimental groups, and they all 
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received 5.5 Gy sub lethal irradiation. Thus we can assume that our adoptively 

transferred T cells were transferred into the same lymphopenic environment, and 

experienced the same survival and expansion signals. Therefore any difference in their 

survival could be attributed to their different TCR expression.  

The differences in the numbers of transferred cells recovered at day 10, mirror the 

differences in the percentages of recovered cells. However no difference is seen among 

the numbers of recovered cells at day 16, despite significant differences in the 

percentages. The absolute number of cells was calculated as the number of transferred 

cells in the total lymphocytes population (determine by FACS gating; figures 4.5A and B, 

and 4.10A and B). Similar number of cells but lower percentages indicate that in the mice 

receiving the CD4+ mock cells or the CD3-engineered CD8+ cells the lymphocyte 

population contains a higher proportion of host lymphocytes. Since this is only seen at 

day 16 post T cell transfer, it may indicate a repopulation of the lymphocyte pool (T and 

B cells, NK cells, DCs, macrophages) following irradiation. However why this 

repopulation is not seen in the mice receiving the CD3-engineered CD4+ T cells is not 

known. Since the absolute numbers of recovered cells are the same, lack of “space” in 

the tissue should not be the cause. Tanchot et al. have shown that adoptively transferred 

transgenic T cells are rapidly replaced by host thymic emigrants when transferred into 

lymphopenic congenic hosts (Tanchot et al., 2002). The repopulation of the tissues 

described above may be an indication of this replacement taking place. However our 

injected cells represent a polyclonal population, thus they might be subjected to different 

survival mechanisms, which may lead to a different outcome compared to that seen by 

Tanchot and colleagues. How CD3-overexpressing CD4+ T cells interact with their 

surroundings and prevents niche repopulation is unknown.  

Overall the number of recovered cells from all experimental groups, from all analysed 

tissues, is lower at day 16 compared to day 10. Thus the higher percentage of cells is 

either a consequence of increased proliferation, with similar levels of cell death; or 

increased cell death, with similar levels of proliferation. Further experiments analysing 
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cell proliferation (e.g. Ki67 expression), or the levels of cell death (e.g. Annexin V 

expression) are needed to investigate which one of the scenarios described above is 

responsible for the differences seen in T cell accumulation.  

At both analysed endpoints the majority of CD3-engineered CD4+ T cells were recovered 

from the liver, followed by the bone marrow, the spleen and the lymph nodes. Similar 

accumulation trends were also seen for the other two experimental groups. The decision 

to look at those four tissues as targets for T cell trafficking was based on previous 

experimental data which indicated CD3-overexpressing T cells preferentially home to 

these tissues. Other tissues (e.g. dermis and epidermis) were analysed for T cell homing, 

but no transferred cells were recovered, suggesting they were not homing targets (data 

not shown), or our assays were not sensitive enough to detect very small numbers of 

transferred cells at these sites. What promotes T cell trafficking into the spleen, lymph 

nodes, bone marrow and liver, over other tissues may reside in the organs’ primary 

functions. The spleen, lymph nodes and bone marrow are classic lymphoid organs, 

through which T lymphocytes normally circulate and where lymphocytes home. In 

addition abundant evidence now supports the concept that the liver acts as a secondary 

lymphoid organ too (Crispe, 2009).  

Naïve unstimulated lymphocytes normally spend between half a day to a day within a 

lymphoid organ, surveying it for antigen presence, after which they return to the 

circulation (Cyster, 2003). However the trafficking pattern of T cells changes after their 

differentiation into memory cells. Increased availability of homeostatic factors during 

lymphopenia is thought to drive not only expansion but also differentiation into a memory-

like phenotype (Jameson, 2002). Indeed memory cell phenotype was confirmed by our 

ex vivo differentiation data (discussed later in this section). In particular our memory cells 

were L-selectin (CD62L) low, and IL-7 receptor (CD127) positive, suggesting they were 

effector memory T cells (TEM). TEM are found both in all secondary lymphoid tissues 

(Weninger et al., 2001) and can also enter peripheral tissues (Mora et al., 2006), thus 

corroborating our trafficking data. Analysis of homing receptors expressed on our 
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subsets of cells would give better insights on what specific interactions drive their homing 

into these specific tissues. For example expression of CXCR4, the CXCL12 receptor, on 

the transferred cells would account for their trafficking into the CXCL12-rich bone marrow 

environment. Otherwise, although no specific liver homing molecules have been 

identified yet, high levels of the vascular adhesion protein-1 (VAP-1) may promote 

trafficking into this tissue (Lalor et al., 2002). 

The differentiation status of the CD4+ mock, CD3-engineered CD4+ and CD3-engineered 

CD8+ T cells was also analysed, both before injection and ex vivo. The expression of L-

selectin (CD62L), a cell adhesion molecule driving homing of T lymphocytes into 

secondary lymphoid tissues; and the IL-7 receptor (CD127), a protein fundamental for 

IL-7 signalling and T cell survival, was analysed by flow cytometry. For successful 

retroviral transduction the target cells need to be proliferating, as retroviruses will not 

infect quiescent cells. Thus all of our cells produced for adoptive transfer, including the 

CD4+ mock population were initially stimulated with anti-CD3/CD28 beads, in the 

presence of IL-2. Despite this initial activation, the majority of the cells maintained a naïve 

phenotype, as demonstrated by their CD62L+ CD127+ phenotype (figures 4.2B and 4.8B). 

In both cases 80% or more of the cells presented with a naïve phenotype; memory cells 

accounted for 20% or less; and the percentage of effector cells was negligible (1% or 

less).  

Adoptive transfer of the cells promoted T cell differentiation into effector and memory T 

cells (figures 4.6B-E and 4.11A-D). The differentiation followed by the adoptively 

transferred cells is distinct from that which naturally occurs during an antigen response. 

In our experimental model, no external antigen was present to activate T cells, and the 

mice were lymphopenic. As previously described during LIP, T cells not only expand but 

also acquire a memory-like phenotype (Jameson, 2002). This is thought to be a 

consequence of stronger TCR and IL-7 signalling, caused by the lower competition for 

survival signal to which the adoptive transferred cells are exposed to. Moreover, it has 
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been suggested that the LPS released from the gut after irradiation may promote T cell 

activation and differentiation (Ferreira et al., 2000).  

Indeed, our data has shown that the majority of CD4+ T cells (both from the CD4+ mock 

and CD4+ CD3-GFP group) isolated from the tissues had a memory phenotype, both at 

day 10 and day 16 post T cell transfer. However CD8+ T cell differentiation followed 

different trends compared to CD4+ T cells, and memory CD8+ T cells were recovered 

from the lymph nodes only. The reason behind this difference is unknown. Previous 

reports suggested that CD8+ T cells may survive better and undergo homeostatic 

proliferation faster than CD4+ T cells (Jameson, 2002), suggesting CD8+ T cells 

undergoing LIP should acquire a memory phenotype faster than CD4+ T cells. This higher 

proliferation rate may be the consequence of the different mechanisms that support CD4+ 

and CD8+ T cell LIP. CD8+ T cells require IL-7 produced by stromal cells; CD4+ T cells 

require IL-7 production by haematopoietic cells. Guimond and colleagues showed that 

IL-7R signalling on DCs limits their IL-7 production, thus limiting CD4+ T cell expansion 

(Guimond et al., 2009). However it has been shown that T cells with high-affinity TCR for 

self-p:MCH ligands undergo LIP at faster rates, compared to low affinity T cells, as shown 

by Kassiotis and colleagues (Kassiotis et al., 2003). Higher affinity TCR lead to stronger 

TCR signalling compared to lower affinity ones; as previously discuss, increasing the 

levels of TCR expression and avidity of a T cell by providing extra CD3 genes may have 

the same overall results (stronger TCR signalling) to that of increasing TCR affinity. Thus 

in our model the rate at which CD3-engineered CD4+ T cells undergo LIP may be higher 

than that of CD3-engineeered CD8+ T cells, due to their higher TCR expression, 

promoting their differentiation into memory cells.  

What our data has demonstrated is that CD4+ and CD8+ T cell differentiation is 

determined by the T cell lineage (CD4+ or CD8+), by LIP, and also by the site of homing. 

Indeed both CD4+ mock and CD3-engineered CD4+ T cell population, independently of 

their TCR expression levels, follow the same pattern of differentiation, which is however 

different in different tissues, and at different time points. Influence of homing on the 
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differentiation is more marked in the CD8+ T cell population, where cells with different 

phenotypic profiles are recovered from different tissues. However whether the 

transferred cells acquire the specific phenotype once in the tissue, or whether they 

differentiated elsewhere and are then recruited into the specific tissues due to their 

phenotype is not known.  

Broadly speaking the differentiation profiles of the transferred CD4+ and CD8+ T cells do 

not change between the two takedown time points. This suggests that the cells 

differentiate early after adoptive transfer, and maintain their differentiated profile up to 16 

days post T cell transfer. Whether this phenotype represents a fully differentiated and 

terminal state, or whether T cells are only temporarily expressing this phenotype due to 

the signal they are receiving, is unknown. In similar adoptive transfer experiments where 

transgenic T cells were transferred into congenic hosts, the injected naïve T cells 

acquired a memory-like phenotype which remained stable with time, even in the absence 

of antigenic stimulation (Tanchot et al., 2002).  

Notably the time window between the two takedown points (day 10 and day 16) is not 

substantial. This may explain the lack of a difference in both T cell differentiation profile 

and T cell accumulation, between day 10 and day 16. Lengthier experiments, during 

which the adoptively transferred T cells are exposed to “self” for longer, may give different 

results, both in terms of T cell persistence, and T cell differentiation.    

Indication that the differentiation pattern is not fully dictated by the T cell lineage or CD3-

overexpression also comes from in vitro analysis of the transduced cells. CD3/CD28 

activated T cells cultured in the presence of IL-2 for up to 7 days post transduction, mainly 

differentiate into an effector phenotype (figure 3.8C), a different trend from that observed 

in vivo. A role for LIP in influencing T cell differentiation, is suggested by the different ex 

vivo differentiation profiles of adoptively transferred CD4+ and CD8+ T. These differ from 

the phenotypic profiles of CD4+ and CD8+ T cells isolated from untreated naïve animals. 

Perhaps not surprisingly, in the spleen and lymph nodes of unchallenged mice over 50% 

of the isolated CD4+ and CD8+ T cells present with a naïve (CD62L+ CD127+) phenotype. 
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The same is true for CD8+ T cells isolated from the bone marrow and the liver. In contrast 

CD4+ T cells isolated from the bone marrow and liver of unchallenged mice presented 

with a memory phenotype. Indeed, it has been previously shown that the bone marrow 

is a reservoir for both central and effector memory T cells (di Rosa et al., 2016). Similarly 

the liver can act as a secondary lymphoid organ and memory cells are found within this 

organ (Crispe, 2009). After irradiation and adoptive T cell transfer, the cells reconstituting 

the spleen, lymph node, bone marrow and liver lymphocyte pools, are phenotypically 

different from the T cells originally found in the tissues. Based on our data and on what 

has been discussed previously, we can attribute this difference to the conditioning regime 

(5.5 Gy irradiation) of the mice that drives LIP. 

Suggestion that tissue specific signals rather than systemic ones, impart different 

phenotypic profiles on the T cells is also suggested by the lack of increased systemic 

cytokines. Blood samples were collected at day 3 and day 11 post T cell transfer, and 

the serum was isolated. Day 3 and day 11 time points were chosen to track any change 

in the systemic cytokine profile, which may drive adoptive T cell proliferation. The 

concentration of classical inflammatory cytokines (IL-1α; IL-1β; IL-6; IL-10; IL-12(p70); 

IL-17A; IL-23; IL-27, GM-CSF; IFNβ; IFNγ; MCP-1 and TNFα) was analysed. All of these 

cytokines have a role in promoting inflammation by triggering the expression of genes 

involved in cell’s activation, cell’s trafficking, and secondary cytokine production, among 

others. Increase in the concentration of inflammatory cytokines may also indicate the 

onset of a cytokine storm. For example, increased serum cytokine levels in the serum of 

mice receiving CD3-engineered CD4+ T cells, but not in that of animals receiving CD3-

engineered CD8+ T cells, may indicate a potential mechanism to drive the previously 

observed toxicity. However our data did not show changes in the concentration of any of 

the analysed cytokines. IL-6 and TNFα were the only two cytokines whose concentration 

increased between day 3 and day 11. However the increase was seen in all three 

experimental groups. Whether this increase was caused by the adoptive transfer of the 

cells or by the conditioning regimen was not tested in our experiment. Irradiation has 
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previously shown to cause an increase in TNFα production in wildtype mice irradiated 

with 2 Gy (Kang et al., 2009). Similarly IL-6 production is also increased after in vivo 

irradiation (Neta et al., 1992). To conclude our data does not indicate that adoptive 

transfer of CD4+ mock, or CD3-engineered CD4+, or CD3-engineered CD8+ T cells alters 

serum cytokine concentration, nor initiates a cytokine storm. 

Notably, in the experiments examining the transduced cells 16 days post adoptive 

transfer, the transduction efficiency of the CD8+ population was significantly lower to that 

of the CD3-engineered CD4+ population (70% and 32% respectively). Although the 

number of transduced (GFP+) cells that was injected was the same (5 x 106), the number 

of bystander cells in this groups will be more than double, compared to the CD4+ CD3-

GFP group. Thus the frequency of transduced cells in the total population is lower. 

Whether this low concentration of experimental cells, and the high number of 

untransduced, bystander cells affects the in vivo behaviour of the experimental cells is 

unknown. It can be postulated that transduced cells will have less access to the 

homeostatic signals because of a higher number of competitor cells. Indeed this would 

affect their in vivo persistence and differentiation. Whether adoptive transfer of a CD8+ 

population with better transduction efficiency will have led to different results is unknown. 

However, ex vivo analysis at day 10 post T cell transfer, in experiments were transduction 

efficiencies were similar between CD3-engineered CD4+ and CD8+ T cells showed that 

CD3-engineered CD8+ T cells still accumulate to a lower extent compared to their CD4+ 

counterparts.  

In conclusion what our in vivo experiments have shown is that CD4+ T cells engineered 

to express higher levels of CD3 and as a consequence higher levels of endogenous 

TCR. They accumulate in greater percentages than CD4+ cells expressing physiological 

levels of TCR (mock CD4+) or CD3-overexpressing CD8+ T cells. Because of the similar 

differentiation kinetics between mock CD4+ T cells and CD3-engineered CD4+ T cells we 

proceeded to determine whether TCR expression favours accumulation in the context of 

in vivo competition assays. The results of these experiments are described in chapter 5. 
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5. In vivo functional analysis of CD4+ control-

GFP and CD4+ CD3-GFP T cells 

5.1. Introduction 

The data described in the previous chapters demonstrated that CD4+ T cells engineered 

to express higher levels of CD3 and TCR accumulate in higher percentages compared 

to CD3-engineered CD8+ T cells, at both 10 days and 16 days post adoptive transfer, 

when the proportion of CD3-engineered CD8+ T cells was also significantly lower than 

that of CD4+ mock T cells. We hypothesised that this difference in T cell accumulation 

was a consequence of higher TCR expression in the CD4+ T cells overexpressing CD3.  

These experiments were carried out using lymphopenic recipients, receiving only one 

population of transduced T cells (mock CD4+, or CD4+ CD3-GFP, or CD8+ CD3-GFP). As 

a consequence the adoptively transferred T cells did not have to compete with 

endogenous cells for survival signals.  The only cells competing with the transduced cells 

for survival signals, were the untransduced cells present in the same population. 

To examine whether the supraphysiological levels of TCR expressed by CD3-engineered 

CD4+ T cells drive accumulation of this population in competitive settings too, a new set 

of in vivo studies was set up. In particular, Thy1.2+ CD45.2+ C57Bl/6 recipient mice 

received a known mix (1:1, 2:1 or 1:2) of CD45.1+ control-GFP transduced CD4+ T cells 

and Thy1.1+ CD3-GFP transduced CD4+ T cells. The changes in the proportion of 

Thy1.1+ and CD45.1+ cells in the total GFP+ population, were then tracked over time. 

Previous reports have shown that transgenic T cells after antigenic stimulation downr-

egulate their TCR at the peak of their clonal expansion (Gallegos et al., 2016). The extent 

of TCR down-regulation correlates with the affinity and the avidity of the TCR for its 

cognate p:MHC complex. Thus, we hypothesised that although CD3-overexpressing 
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CD4+ T cells will have a persistence advantage over CD4+ control-GFP cells, their 

continuous, stronger interaction with “self” may drive TCR down-regulation.  

The levels of Ki67+ and Annexin V+ within the two transduced cells populations were also 

tracked over time, to determine whether any difference in T cell accumulation was driven 

by increased cell proliferation, or decreased cell death.  

 

5.2. CD3 overexpression promotes accumulation of 

CD4+ T cells in 1:1 competition settings 

Initial experiments were performed to compare in vivo persistence of CD3-engineered 

CD4+ T cells, when these are transferred into a lymphopenic recipient in a 1:1 mix with 

control-GFP transduced CD4+ T cells. On day 0 C57Bl/6 Thy1.2+ CD45.2+ recipient mice 

were sub lethally irradiated with 5.5 Gy; 2-3 hours post irradiation they received adoptive 

transfer of a mix of 2.5 x 106 CD45.1+ control-GFP transduced CD4+ and 2.5 x 106 Thy1.1+ 

CD3-GFP transduced CD4+ T cells in a 1:1 ratio. Because transduction efficiency was 

not 100% the number of adoptively transferred cells was adjusted according to the 

efficiency of transduction, in order to inject 5 x 106 total transduced cells. At day 10 post 

injection the mice were sacrificed and the homing of GFP+ CD45.1+ and GFP+ Thy1.1+ 

cells to four tissues was investigated: spleen, inguinal lymph nodes (LN), bone marrow 

(from one tibia and one fibula; BM) and liver. Mouse total weight was monitored on over 

time, and as per Home Office regulations mice with > 20% body weight loss were culled. 

Figure 5.1 shows a schematic representation of the in vivo experimental set up.  

 

 

 

 



177 
 

 

 

 

 

 

 

 

Figure 5.1 – Schematic representation of experimental set up for in vivo persistence, 

homing and differentiation studies in a 1:1 competition environment.  
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CD4+ T Cells were MACS sorted and transduced as described in chapter 2 sections 2.2.3 

and 2.2.4, prior to injection on day 3 post transduction. Figure 5.2A shows typical purity 

of adoptively transferred cells, which was >95%. The injection mix was analysed by flow 

cytometry to check the ratio of control-GFP to CD3-GFP cells. GFP expression allowed 

us to compare transduced cells from both the control-GFP and the CD3-GFP 

transduction. The congenic markers CD45.1 and Thy1.1 allowed us to separate control-

GFP and CD3-GFP transduced cells respectively (figure 4.2A). The average proportion 

of control-GFP and CD3-GFP cells injected is shown in figure 4.2B. The injection mixes 

contained on average very similar proportions of control-GFP (48.15%) and CD3-GFP 

(47.6%) transduced CD4+ T cells. The differentiation status based on CD127 and CD62L 

expression was also analysed before injection (figure 5.2C). Figure 5.2D shows 

representative plots of CD62L and CD127 expression in the control-GFP and CD3-GFP 

populations. At the time of injection both populations had similar proportions of CD127+ 

CD62L+ naïve cells (control-GFP: 74.15%; CD3-GFP: 62.1%); CD127- CD62L- effector 

cells (control-GFP: 2.27%; CD3-GFP: 5.94%) and CD127+ CD62L- memory cells 

(control-GFP: 15.35%; CD3-GFP: 13.65%) (figure 5.2E). 

Weight was used to monitor the wellbeing of the animals. No toxicity was seen in these 

experiments and the changes in body weight observed throughout the experiments are 

plotted in figure 5.3. 
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Figure 5.2 – Purity, transduction efficiency, injection mix ratio and differentiation status of 

adoptively transferred cells, in the 1:1 competition experiments. (A) Typical purity, 

transduction efficiency and control-GFP:CD3-GFP ratio of adoptively transferred cells are shown. 

(B) The mean proportion + SEM of Control-GFP and CD3-GFP cells in the injection mixes is 

shown. (C) The differentiation status of the adoptively transferred cells was determined by 

examining CD62L and CD127 expression, as shown by the gating strategy diagram. (D) 

Representative plots of the differentiation profile seen in the two CD4+ populations used for 

adoptive transfer are shown. (E) The average percentage + SEM of naïve, effector and memory 

cells in the adoptively transferred cells are shown. Data from 2 independent experiments.  
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Figure 5.3 – Mice’s body weight. The changes in mice weight are plotted as a function of time. 

Data from 2 independent experiments, n=9. 

 

On day 10 post T cell transfer all mice were culled and single cell suspensions of the 

spleen, inguinal lymph nodes (LN), bone marrow (pooled from one tibia and one fibula; 

BM) and liver generated, as described in chapter 2, section 2.5.3. This allowed us to 

study the proportion of CD45.1+ GFP+ and Thy1.1+ GFP+ cells infiltrating in the tissues, 

and to determine whether any changes from the initial 1:1 ratio of the injected T cells had 

occurred. To analyse the isolated, transduced cells the gating strategy that was used is 

shown in figure 5.4A. Briefly, CD45.1+ and Thy1.1+ populations were identified in the total 

population of live, singlets, CD4+ GFP+ lymphocytes.  

On average the percentage of CD4+ CD3-GFP T cells isolated from the tissues was ≥ 

1.5 fold higher than that of CD4+ control-GFP T cells. In the total population of GFP+ cells 

isolated from the spleen, control-GFP cells accounted for 25.35%, whereas CD3-GFP 

cells accounted for 71.3%; in the LN, the control-GFP and CD3-GFP cells accounted for 

38.3% and 60.1% of the total GFP+ population, respectively; in the bone marrow control-
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GFP cells accounted for 29.8%, and CD3-GFP cells accounted for 66.9% of the total 

GFP+ population; lastly the proportion of control-GFP cells in the total GFP+ population 

isolated from the liver was 37.1%, compared to 71.3% of CD3-GFP cells (figure 5.4B). 

 

 

Figure 5.4 – Percentages of CD4+ control-GFP and CD4+ CD3-GFP T cells recovered from 

the tissues, 10 days post T cell transfer. (A) 10 days post T cell transfer the infiltration of CD4+ 

control-GFP and CD4+ CD3-GFP T cells into the spleen, inguinal lymph nodes, bone marrow and 

liver was analysed, using the gating strategy shown here. (B) Summary data of the percentage of 

adoptively transferred cells isolated from the tissues is shown. Data from two independent 

experiments, n=11 (p=* ≤0.05; ***≤0.001; **** ≤0.0001; unpaired t test. Mean + SEM are shown).  
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5.3. The ex vivo phenotype of adoptively transferred 

CD4+ T cells is not influenced by the levels of TCR 

expression, but is determined by the homing site 

and T cell lineage 

The data described above showed that CD3 overexpression in CD4+ T cells promotes 

their in vivo persistence, compared to CD4+ T cells expressing normal levels of CD3 and 

TCR. To confirm the finding that TCR expression does not influence the activation 

phenotype of the CD4+ T cells (originally observed in chapter 4), the ex vivo phenotype 

of the adoptively transferred cells was analysed 10 days post T cell transfer. CD62L and 

CD127 expression was analysed to determine whether the isolated cells presented with 

a naïve (CD62L+ CD127+), effector (CD62L- CD127-) or memory (CD62L- CD127+) 

phenotype. The data is summarised in figure 5.5A-D. 

No difference in the percentage of naïve, effector and memory cells was seen between 

the two populations of CD4+ T cells, in any of the analysed organs. As seen previously, 

cells isolated from different tissues, had a different phenotype.  

In the spleen 49.7% of control-GFP and 59.3% of CD3-GFP cells presented with an 

effector phenotype. The percentage of memory cells form the GFP+ population in this 

tissue was 39.2% in the control-GFP population and 33% in the CD3-GFP population. 

Naïve cells represented 7.5% and 4.8% of the control-GFP and CD3-GFP population, 

respectively (figure 5.5A).  

Similar proportions of effector cells were found in the LN (control-GFP: 42.3%; CD3-

GFP: 49.2%). The proportion of memory cells in this tissue was ~10 folds lower than that 

seen in the spleen, with 3% and 3.5% of memory cells in the control-GFP and CD3-GFP 

population, respectively. Naïve cells accounted for the lowest percentage in this tissues, 

with 2.7% and 2.3% of cells in the control-GFP and CD3-GFP group respectively (figure 

5.5B). 
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In both the bone marrow and the liver, the highest percentage (>82%) of cells isolated 

form the GFP+ population, in both control-GFP and CD3-GFP populations, presented 

with an effector phenotype.  

Figure 5.5C shows the proportions of naïve, effector and memory cells in the bone 

marrow. 1.5% and 1.7% of naïve cells were isolated from the control-GFP and the CD3-

GFP populations, respectively. Memory cells accounted for 8.5% and 10.7% of all cells 

in the control-GFP and CD3-GFP populations respectively. 85.6% and 82.9% of all 

isolated control-GFP and CD3-GFP cells presented with an effector phenotype.  

Similarly to the trends seen in the bone marrow, in the liver 86.7% of control-GFP cells 

and 92.3% of CD3-GFP cells presented with an effector phenotype. Less than 1% of 

adoptively transferred cells isolated from this tissue showed a naïve phenotype (control-

GFP: 0.8%; CD3-GFP: 0.3%). Finally the percentage of memory cells in the isolate 

population of control-GFP cells was 6, compared to 4.1% of memory cells isolated from 

the CD3-GFP population (figure 5.5D).  
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Figure 5.5 – Day 10 ex vivo differentiation status of the adoptively transferred cells. The 

differentiation profile was examined in adoptively transferred cells recovered from the (A) spleen, 

(B) inguinal lymph nodes (LN), (C) bone marrow (BM) and (D) liver. Transferred cells were 

identified as described in the gating strategy in figure 5.4 A. Cells were divided into naïve (CD62L+ 

CD127+), effector (CD62L- CD127-), and memory cells (CD62L- CD127+). Data from two 

independent experiments, n=9. The mean + SEM are shown. 
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5.4. CD3-overexpressing CD4+ T cells are isolated in 

higher proportions compared to control-GFP CD4+ 

T cells, in mice receiving a 2:1 mix of control-GFP 

to CD3-GFP cells 

To determine whether CD3-overexpressing cells are capable of outcompeting control-

GFP transduced cells when these are present in higher proportions, we decided to set 

up similar in vivo experiments as the ones described above, this time injecting twice as 

many control-GFP transduced cells compared to CD3-GFP transduced cells. Four 

different time points (day 5, 10, 15 and 20 post T cell transfer) allowed us to track the 

change in the relative numbers of control-GFP and CD3-GFP transduced populations 

over time.  

On day 0 CD45.2+ Thy1.2+ C57Bl/6 recipients were sub lethally irradiated with 5.5 Gy; 2-

3 hours post irradiation they were injected with a 2:1 mix of CD45.1+ control-GFP CD4+ 

and Thy1.1+ CD3-GFP CD4+ T cells. The total number of transduced cells in the injection 

mixture was 5 x 106. At 5, 10, 15 and 20 days post injection mice were sacrificed and the 

homing of GFP+ CD45.1+ and GFP+ Thy1.1+ cells was investigated in four tissues: spleen, 

inguinal LN, BM (from one tibia and one fibula) and liver. Mouse total weight was also 

monitored over time, and as per Home Office regulations and mice with > 20% body 

weight loss were sacrificed. Figure 5.6 shows a schematic representation of the 

experimental in vivo set up.  
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Figure 5.6 – Schematic representation of experimental set up for in vivo persistence, 

homing, differentiation and proliferation studies in a 2:1 competition environment.  
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CD4+ T Cells were MACS sorted and transduced as described in chapter 2 sections 2.2.3 

and 2.2.4, prior to injection on day 3 post transduction. Figure 5.7 shows typical purity of 

adoptively transferred cells, which was >95%. The injection mix was analysed by flow 

cytometry to verify the ratio of control-GFP to CD3-GFP transduced CD4+ T cells (figure 

5.7A). Summary data from the analysis of the injection mixtures used in the experiments 

is shown in figure 5.7B. On average in this set of experiments the injection mixtures 

contained 1.8 (1.7-2) times as many CD4+ CD45.1+ control-GFP cells, compared to CD3-

GFP CD4+ Thy1.1+ cells.  

The TCR expression level in the two experimental populations of CD4+ T cells was also 

tracked by flow cytometry, both before injection and at the different experiments’ end 

points (discussed later). At the time of injection, CD4+ T cells transduced with the CD3-

GFP vector expressed 3-3.8 times as much TCR as cells transduced with the control-

GFP vector (figure 5.7C). 
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Figure 5.7 – Purity, transduction efficiency, injection mix ratio and TCR expression of the 

adoptively transferred cells, in the 2:1 competition experiments. (A) Typical purity, 

transduction efficiency and control-GFP:CD3-GFP ratio of the injection mix are shown. (B) The 

average proportion of Control-GFP and CD3-GFP CD4+ T cells in the injection mix is shown. The 

proportion of control-GFP cells in the injection mix was twice that of CD3-GFP cells. (C) The TCR 

expression in the control-GFP and CD3-GFP transduced cells used for adoptive transfer was 

examined by looking at the median fluorescent intensity (MFI) of the TCR (constant β chain). Data 

from 3 independent experiments. SEM is shown. 
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The differentiation status based on CD127 and CD62L expression was also analysed 

before injection (figure 5.8A-C), and the proportions of naïve, effector and memory cells 

were similar to those seen in the previous experiments. 

 

 

Figure 5.8 – Differentiation status of adoptively transferred cells, in the 2:1 competition 

experiments. (A) The differentiation status of the adoptively transferred cells was determined by 

examining CD62L and CD127 expression, as shown by the gating strategy diagram. (B) 

Representative plots of the differentiation profile seen in the two CD4+ populations of adoptively 

transferred T cells are shown. (C) The average percentage of naïve, effector and memory cells 

in the adoptively transferred cells are shown. Data from 3 independent experiments. Mean + SEM 

are shown. 
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Figure 5.9 shows the changes from baseline weight seen in the recipient animals. In this 

set of experiments, two recipients lost more than 20% of their body weight (Home Office 

cut-off point).  

 

 

 

 

Figure 5.9 – Mice’s body weight. The changes in mice weight are plotted as a function of time. 

Data from 3 independent experiments, n= 29. 
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On day 5, 10, 15 and 20 post adoptive T cell transfer, mice were sacrificed and single 

cell suspensions of the spleen, inguinal lymph nodes, bone marrow (pooled from one 

tibia and one fibula) and liver, were generated as described in chapter 2, section2.5.3. 

The proportion of CD45.1+ control-GFP and Thy1.1+ CD3-GFP CD4+ T cells in each tissue 

was analysed. This allowed us to determine whether the accumulation of CD3-

overexpressing CD4+ T cells seen in the previous 1:1 competition experiments occurred 

in this context too. The flow cytometric gating strategy used for the analysis of the single 

cell suspensions was the same used for previous experiments (figure 5.4A). 

The same trend was seen in all organs: by day 10 in the spleen, lymph nodes, bone 

marrow and liver the proportion of CD3-GFP cells in the total population of GFP+ 

lymphocytes, was higher to that of control-GFP cells. 

In the spleen (figure 5.10A) the percentage of control-GFP and CD3-GFP cells in the 

GFP+ population at day 5 post T cell injection was similar to that seen in the injection mix. 

By day 10 the percentages had inverted, with now twice as much CD3-GFP cells (62.2%) 

compared to control-GFP cells (31.8%; p≤0.0001). At day 15 and day 20 the difference 

in the proportions of the two populations wasn’t significant (day 15 control-GFP: 44.3%; 

CD3-GFP cells: 52.3%; day 20 control-GFP: 47.5%; CD3-GFP: 45.3%)  

In the lymph nodes (figure 5.10B), at day 5 post T cell transfer the proportion of control-

GFP cells was 1.5 fold higher compared to that of CD3-GFP cells (control-GFP:56.2%; 

CD3-GFP:37.1%; p ≤0.05). At day 10 this difference was minimal with control-GFP cells 

accounting for 40.4% and CD3-GFP accounting for 45.7% of the total GFP+ population. 

A negligible difference in the percentage of control-GFP and CD3-GFP cells isolated at 

day 15 was seen (control-GFP: 41.5%; CD3-GFP: 45.3%), and at day 20 a higher 

percentage of control-GFP cells (44.1%) was recovered, compared to the percentage of 

isolated CD3-GFP cells (34.6%; p≤0.01). 



192 
 

Similarly to the changes seen in the lymph nodes, in the bone marrow (figure 5.10C) 5 

days post T cell transfer 2.6 fold more control-GFP cells were isolated, compared to the 

CD3-GFP cells (63.2% and 24.2% respectively; p≤0.001). However both at day 10 and 

15 this difference was minimal, with CD3-GFP cells accounting for slightly more GFP+ 

cells (day 10 control-GFP: 40%, CD3-GFP: 47.7%, p≤0.01; day 15 control-GFP: 44.7%, 

CD3-GFP: 47.6%). Equally to the trend seen in the lymph nodes, at day 20 the proportion 

of control-GFP cells was slightly higher (49.5%) to that of CD3-GFP cells (42.2%). 

The trend seen in the liver was similar to that seen in the spleen, and it is shown in figure 

5.10D. Five days post T cell transfer the proportion of control-GFP cells and CD3-GFP 

cells in the total GFP+ population was similar to that seen in the injection mix (control-

GFP: 57.5%, CD3-GFP: 39%; p ≤0.01). By day 10 the ratio of control-GFP and CD3-

GFP cells had inverted, with control-GFP now accounting for less than half (30.6%) of 

the total GFP+ population, compared to the CD3-GFP cells (65.1%; p ≤0.0001). This 

difference was seen at day 15 too, when the proportion of isolated control-GFP cells was 

33.9%, compared to 64.2% of isolated CD3-GFP cells (p ≤0.001). Contrary to what was 

seen in the spleen, in the liver at day 20 the proportion of CD3-GFP cells in the GFP+ 

population was still significantly higher to that of control-GFP; specifically CD3-GFP cells 

accounted for 55.7%, and control-GFP accounted for 38.2% of the total GFP+ cells (p 

≤0.01). 
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Figure 5.10 – Change in the proportion of control-GFP and CD3-GFP CD4+ T cell 

populations overtime, 2:1 competition experiments. The proportions of control-GFP and CD3-

GFP T cells in to the total CD4+ GFP+ population isolated from the spleen (A), inguinal lymph 

nodes (B), bone marrow (C) and liver (D) were analysed and plotted as a function of time. The 

adoptively transferred cells were identified using the gating strategy described in figure 5.4 A. 

Data from 3 independent experiments. Day 5 n=6; day 10 n=16; day 15 n=6; day 20 n=5. (p=* 

≤0.05; **≤0.01; ***≤0.001; ****≤0.0001; unpaired t test; mean + SEM are shown).  
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5.5. The level of TCR expression in the transduced 

CD4+ T cells is down-regulated in vivo 

TCR down-regulation is a regulatory feedback mechanism that occurs in T lymphocytes 

after TCR engagement, to dampen TCR signalling, and to prevent aberrant T cell 

activation. Recently, a study showed that higher affinity and avidity TCRs are down-

regulated to a greater extent compared to lower affinity and avidity TCRs, when engaged 

by their cognate p:MHC complex.  

To investigate if TCR down-regulation occurs in our system, and to determine if this 

altered in vivo T cell-persistence, we tracked the levels of TCR expression of our 

adoptively transferred cells over time (injection day, and day 5, 10, 15 and 20 post T cell 

transfer). The levels of TCR were measured by looking at the MFI of the anti-TCR 

constant β domain (Cβ). 

CD3-GFP transduced CD4+ T cells expressed on average 3-3.8 fold as much TCR 

compared to control-GFP CD4+ cells (control-GFP TCR MFI: 1210-1807; CD3-GFP TCR 

MFI: 3510-7002). In all analysed organ this difference was lost by day 15, when both 

populations of cells expressed very similar levels of TCR. 

Broadly speaking, the TCR MFI of both the control-TCR transduced and the CD3-GFP 

transduced CD4+ T cells, increased early after adoptive transfer (between day 0 and day 

5). The only exception was given by the TCR levels of the CD3-GFP transduced T cells 

isolated from the spleen, whose TCR levels slightly decreased between injection day 

and day 5. Moreover, no overall down-regulation in the levels of TCR expression was 

seen in the control-GFP transduced T cell population; the levels of TCR expression at 

day 10 were identical, or higher, to those seen at injection day.    

In the spleen (figure 5.11A), 5 days post T cell transfer CD3-overexpressing cells 

expressed lower levels of TCR compared to the levels expressed on injection day. In 

particular, CD3-GFP cells expressed 1.9 folds more TCR compared to control-GFP cells. 
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From day 5 onwards the level of TCR expression on CD3-engineered CD4+ T cells kept 

decreasing, and from day 15 onwards only a small difference in the level of TCR 

expressed by CD3-overexpressing and control-transduced CD4+ T cells was seen.  

In the lymph nodes (figure 5.11B) and bone marrow (figure 5.11C) a slightly different 

trend in TCR expression and down-regulation was seen. In particular, the levels of TCR 

expression were more varied, with a higher range of TCR expression in both transduced 

populations. Although in both tissues from day 5 to day 15 a gradual decrease in TCR 

expression was seen, this reduction was lower than that observed in the spleen. 

Moreover, between day 15 and day 20 a small increase in TCR expression was seen in 

both populations of transduced cells. Contrary to the spleen, the average level of TCR 

expressed in CD3-engineered CD4+ T cells never reached that expressed in control-GFP 

cells. 

Figure 5.11D shows summary data of the TCR expression kinetics in the liver. Analysis 

of TCR expression 5 days post T cell transfer showed a slight increase in TCR 

expression in both injected T cell populations. From day 5 onwards TCR expression 

gradually decreased until day 15, when 1.5 fold more TCR was expressed in CD3-

engineered T cells compared to control-GFP T cells. Twenty days post T cell transfer 

this difference further decreased with CD3-GFP transduced CD4+ T cells only expressing 

1.4 fold more TCR compared to control-GFP transduced CD4+ T cells. 
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Figure 5.11 – TCR expression of control-GFP and CD3-GFP CD4+ T cells, 2:1 competition 

experiments. The TCR expression of the control-GFP and CD3-GFP T cells isolated from the 

different tissues at day 5, 10, 15 and 20 is plotted. The adoptively transferred cells were identified 

using the gating strategy described in figure 5.4 A. (A) Spleen; (B) inguinal lymph nodes; (C) bone 

marrow; (D) liver. Data from 3 independent experiments. Day 5 n=6; day 10 n=16; day 15 n=6; 

day 20 n=5. Mean + SEM are shown.   
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5.6. TCR down-regulation is not due to reduced 

expression of the retroviral transgene  

TCR down-regulation may occur as a consequence of retroviral transgene expression 

loss. To investigate whether this was the case, the MFI of GFP was tracked over time.  

The gene coding for GFP, which was used as a marker of transduction, is found on the 

same retroviral vector as the CD3, or control, genes, and it’s separated from them by an 

IRES sequence (figure 2.1). Thus, a loss of transgene expression will result in a loss of 

GFP expression too. 

The GFP of the two transduced T cell populations, control-GFP and CD3-GFP, was 

analysed over time, in the four tissues: spleen, inguinal lymph nodes, bone marrow and 

liver (figure 5.12 A-D). In this set of experiments, no overall loss in GFP signal was seen 

over time, and the MFI of the GFP at day 20 was similar of higher than the MFI at 

injection. The expression levels of GFP from the control-GFP vector remained constant 

throughout the experiment. That of the fluorescent protein from the CD3-GFP retroviral 

construct, increased between day 0 and day 5, and decreased to reach the original value 

after day 5.  
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Figure 5.12 – GFP MFI of control-GFP and CD3-GFP CD4+ T cell populations, 2:1 

competition experiments. The MFI of GFP in the population of control-GFP and CD3-GFP T 

cells isolated from the different tissues at day 5, 10, 15 and 20 is plotted. The adoptively 

transferred cells were identified using the gating strategy described in figure 5.4 A. (A) Spleen; 

(B) inguinal lymph nodes; (C) bone marrow; (D) liver. Data from 3 independent experiments. Day 

5 n=6; day 10 n=16; day 15 n=6; day 20 n=5. Mean + SEM are shown.   
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5.7. Accumulation of gene-modified CD4+ T cells is due 

to increased cell proliferation, not decreased cell 

death 

These and previous experiments have shown that CD3 overexpression is associated 

with greater T cell accumulation both in a 1:1 and a 2:1 control-GFP to CD3:GFP 

competition environment. However so far the described experiments did not show 

whether this was due to increased cell proliferation or decreased cell death. To address 

this question, the percentage of Ki67+ and Annexin V+ cells in the two adoptively 

transferred populations was analysed throughout the experiment. 

In the spleen (figure 5.13A) 5 days post T cell transfer the percentage of cells in the 

population transduced with the control-GFP vector expressing Ki67 (Ki67+) and in the 

population transduced with the CD3-GFP vector was 16.4% and 19.4%, respectively. At 

day 10, a significantly higher proportion of proliferating cells were found in the CD3-GFP 

population (22.7%) compared to the percentage of proliferating cells in the control-GFP 

transduced cells (11.8%; p≤0.01). This difference was maintained until 15 days post T 

cell transfer, with Ki67+ cells in the control-GFP and CD3-GFP populations accounting 

for 15.8% and 27.9%, respectively (p≤0.05). At the last time point analysed T cell 

proliferation had significantly reduced, with only 2.3% Ki67+ cells found in the control-

GFP population, compared to 3.7% Ki67+ cells in the CD3-GFP transduced population. 

Very similar proportions of proliferating cells were found in the lymph nodes (figure 

5.13B) at 5 days post T cell transfer (control-GFP: 14.8%; CD3-GFP: 16.3%). The 

number of proliferating T cells increased in both transduced populations at day 10 (13.3% 

of control-GFP cells were Ki67+, compared to 20.2% of CD3-GFP cells; p≤0.05) and 

continued until day 15, when 22.7% and 24.9% of the control-GFP and CD3-GFP 

populations were Ki67+ respectively. After day 15 the rate of proliferation dropped, and 

at day 20 post T cell injection only 6.8% and 9.12% of the adoptive transferred T cells 
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isolated from the tissue were Ki67+ in the control-GFP and CD3-GFP populations, 

respectively. 

In the bone marrow (figure 5.13C) no significant difference in the proportion of 

proliferating cells were found at day 5 and 10 (Day 5 control-GFP: 10.6%, CD3-GFP: 

15.3%; day 10 control-GFP: 6.9%, CD3-GFP: 14.2%). At day 15, twice as many Ki67+ 

cells were found in the CD3-GFP population (34.8%), compared to the control-GFP 

population (17%; p≤0.01). However, by day 20 the proportion of proliferating cells had 

dramatically reduced in both populations (control-GFP: 0.12%; CD3-GFP: 0.2%) 

The liver was the organ where the most dramatic differences in Ki67+ expression was 

observed, among all the analysed organs (figure 5.13D). CD3-GFP cells isolated 5 days 

post adoptive transfer contained 17% of Ki67+ cells, compared to 10.1% of proliferating 

cells in the control-GFP transduced population (p≤0.05). Five days later the percentage 

of Ki67+ cells in the control-GFP population was 2.2 fold lower (18.3%) compared to that 

seen in CD3-GFP cells (40.9%; p≤0.0001). A similar difference in the proportion of Ki67 

expressing cells was seen at day 15, with 24% of cells in the control-GFP population, 

and 49% of cells in the CD3-GFP population expressing Ki67+ (p≤0.05). However, again 

by day 20 proliferation had dramatically reduced (control-GFP: 10.1%; CD3-GFP: 

15.2%). 

To determine the proportion of cell’s undergoing apoptosis, the levels of Annexin V in 

the two different populations of transduced cells were tracked over time. Due to technical 

problems, no data from day 10 post T cell transfer was collected. 

At injection no significant difference in the percentage of control-GFP and CD3-GFP cells 

undergoing apoptosis was seen, and 15.6% and 20.3% of cells in the control-GFP and 

CD3-GFP population respectively expressed Annexin V. 

In the spleen (figure 5.13E) the overall levels of Annexin V+ cells remained low (<22%) 

throughout the experiments. At day 5, 5.7% of control-GFP transduced cells and 16.7% 

of CD3-GFP cells were found positive for Annexin V expression (p≤0.05). This proportion 
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slightly decreased between day 5 and day 15 (control-GFP: 9%; CD3-GFP: 11%), and 

then marginally increased at day 20 (control-GFP: 12.2%; CD3-GFP: 22%). 

Higher numbers of Annexin V+ T cells were recovered from the lymph nodes in both 

groups (figure 5.13F) at day 5 post T cell transfer. 48% CD3-GFP transduced T cell 

population were Annexin V+, compared to 25.2% of the control-GFP population. This had 

increased further at day 15 where both populations of Annexin V+ cells increased and 

reached similar values (control-GFP: 52.8%; CD3-GFP: 56.7%), before decreasing at 

day 20. At this time point 29.1% and 36.4% of Annexin V+ cells were recovered from the 

population of control-GFP and CD3-GFP cells, respectively.   

The bone marrow (figure 5.13G) was the tissue from which the highest proportion of 

apoptotic cells was recovered. Already 5 days post adoptive transfer 51.4% and 57.9% 

of the T cells recovered from the control-GFP and the CD3-GFP populations were 

Annexin V+, respectively. This proportion further increased, and at day 15 more than 60% 

of the cells from both populations were Annexin V+ (control-GFP: 64.4%; CD3-GFP: 

70.8%). However by day 20 post T cell transfer, the percentage of apoptotic cells 

dropped by 20% or more in both populations (control-GFP: 35.3%; CD3-GFP: 39.2%). 

In the liver, a similar trend was observed. The proportion of apoptotic cells isolated 5 

days after their adoptive transfer accounted for 12.9% and 16.1% of the population of 

cells transduced with the control-GFP and the CD3-GFP vectors respectively. However, 

this percentage decreased between day 5 and day 15, when the percentage of Annexin 

V+ cells was 8.6% in the control-GFP population, and 12.1% in the CD3-GFP population. 

By day 20 only 2.48% and 2% of all cells in the control-GFP and CD3-GFP transduced 

population were positive for Annexin V. 
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Figure 5.13 – Percentage of Ki67+ and Annexin V+ control-GFP and CD3-GFP cells, 2:1 

experiments. The percentage of Ki67+ (left) and Annexin V+ (right) cells in the control-GFP and 

CD3-GFP populations overtime is shown. The adoptively transferred cells were identified using 

the gating strategy described in figure 5.4 A. (A, E) Spleen; (B, F) inguinal lymph nodes; (C, G) 

bone marrow; (D, H) liver. Data from one experiment. Day 5-15 n=3, day 20 n =2. No Annexin V 

data at day 10. (p=*≤0.05; **≤0.01; ***≤0.001; ****≤0.0001; unpaired t test; mean + SEM are 

shown). 
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5.8. The differentiation status of the cells is determined 

by their homing site and it changes over time 

As in the non-competitive experiments, the expression of CD62L and CD127 were 

analysed in all organs, at the four different time points. 

In all analysed tissues, no difference in CD127 and CD62L expression was seen 

between the two populations of transduced CD4+ T cells. However different trends were 

seen among different organs.  

In the spleen (figure 5.14 left) similar percentages of naïve and memory cells (35.1-37% 

and 29.4-38.5%, respectively) were isolated 5 days post T cell transfer. The percentage 

of effector cells was the lowest (7.9%-10%) of the three populations. However by day 10 

both the proportion of effector and memory cells had increased with effector cells 

accounting for 46.1%-47.5% and 37.5-42.6%, respectively. There was a corresponding 

decrease in the percentage of naïve cells in both populations (6.8%-8.9%). The 

proportion of each population of differentiated cells further changed with time, and at day 

15 the highest proportion of cells isolated from the spleen had a memory phenotype 

(39.5%-40.5%), followed by naïve (26%-34%), and finally effector (17.7%-23.8%) 

phenotypes. Five days later a similar trend to that of day 5 was seen, with naïve and 

memory cells presenting with the two highest proportions (31.2%-43.2% and 51%-

59.6%, respectively), followed by effector cells (4.3%-6.8%). 

Different trends were seen in the inguinal lymph nodes (figure 5.14 right). Five days post 

T cell transfer the majority of the cells retained a naïve phenotype (44.3%-44.9%), with 

the proportion of memory cells being between 19.7% and 30.6%. Effector cells were the 

smallest proportion of cells (9.4%-12.6%). By 10 days post T cell transfer similar 

proportions of naïve, effector and memory cells were found (36.5%-38.9%, 26%-27% 

and 27.9%-28.9%, respectively). The proportion of naïve cells isolated from the tissue at 

day 15 further increased (42.4%-43.6%), while that of effector cells and memory cells 

decreased (14.1%-19.6% and 25.4%-28.8%, respectively). The highest proportion of 
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naïve cells among the four different time points was recovered at day 20 post adoptive 

transfer (53.8%-60.7%). The proportion of memory cells at this time point was 34.6%and 

42.8% in the two populations, while effector cells accounted for less than 2% (1.5%-

1.9%). 

Figure 5.15 right shows the changes in proportion of naïve, effector and memory cells in 

the bone marrow. At the first analysed time point the majority of the cells had a memory 

phenotype (36.8%-38%). The percentages of naïve and effector cells were similar 

(21.1%-23.4% and 19%-20.5%, respectively). Five days later (10 days post T cell 

transfer) memory cells still represented the highest proportion of cells (45.9%-46.8%), 

followed by effector cells (36.6%-37.5%), and finally naïve cells (11.4%-13.6%). At day 

15 naïve and effector cells were recovered in similar percentages (23.2%-27.9% and 

23%-24.8%, respectively), while the proportion of memory cells in the two transduced 

populations was slightly higher (34.4%-37.9%). At the last analysed time point the 

proportion of memory cells recovered from this tissue in both populations was the highest 

(57.6%-61.5%), followed by that of naïve cells (32.9%-38.7%). Effector cells accounted 

for 3.5% or less in both populations (2.5%-3.5%). 

Lastly, the differentiation trends seen in the liver are summarised in figure 5.15 left. 

Similarly to the bone marrow, at day 5 post T cell transfer the majority of the cells had a 

memory phenotype (34.9%-49.2%); the second highest proportion was represented by 

naïve cells (23%-29.6%), whereas effector cells represented the lower proportion of cells 

(11%-13.8%). The proportion of effector and memory cells isolated at day 15 was similar 

(44.5%-47.5% and 42.8-42.9%, respectively), while naïve cells accounted for 6.1% and 

7.9% of all cells. Five days later a similar trend was seen. Effector and memory cells 

were isolated in similar proportions (32.5%-39.6% and 40.3%-42.3%, respectively). 

Naïve cells were recovered in lower percentages from both populations (11.5%-16.7%). 

The majority of the cells isolated 20 days post adoptive transfer had a memory phenotype 

(69.6%-74.5%). Naïve and effector cells accounted for similar proportions in both 

populations (12%-16.3% and 12.8%-13%, respectively). 
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Figure 5.14 – Day 5-20 ex vivo differentiation status of the adoptively transferred cells. The 

differentiation status (naïve: CD62L+ CD127+; effector: CD62L- CD127-; memory: CD62L- 

CD127+) of the control-GFP and CD3-GFP CD4+ T cells isolated from the spleen (left) and inguinal 

lymph nodes (right), at day 5, 10, 15 and 20 are shown. The adoptively transferred cells were 

identified using the gating strategy described in figure 5.4 A. Data from 3 independent 

experiments. Day 5 n=6; day 10 n=16; day 15 n=6; day 20 n=5. Mean + SEM are shown.  
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Figure 5.15 – Day 5-20 ex vivo differentiation status of the adoptively transferred cells. The 

differentiation status (naïve: CD62L+ CD127+; effector: CD62L- CD127-; memory: CD62L- 

CD127+) of the control-GFP and CD3-GFP CD4+ T cells isolated from the bone marrow (left) and 

liver (right), at day 5, 10, 15 and 20 are shown. The adoptively transferred cells were identified 

using the gating strategy described in figure 5.4 A. Data from 3 independent experiments. Day 5 

n=6; day 10 n=16; day 15 n=6; day 20 n=5. Mean + SEM are shown. 
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5.9. Acquisition of differentiation phenotypes is not 

associated with different levels of TCR expression 

To determine whether acquisition of a particular differentiation profile (naïve, effector or 

memory phenotype) is associated with higher or lower TCR expression, the TCR 

expression levels were analysed in the three different T cell subsets (figure 5.16). As 

described previously, T cells were divided into naïve, effector and memory cells based 

on their expression of the markers CD62L and CD127. 

All 3 differentiated subsets identified in the population of CD3-GFP transduced CD4+ T 

cells expressed higher levels of TCR than CD4+ T cells transduced with the control-GFP 

vector. However, in the two populations no difference in TCR expression was seen 

between naïve, effector and memory cells. The kinetics of TCR expression in the subsets 

of control-GFP and CD3-GFP cells are similar to the kinetics seen in the whole population 

of transduced cells. 
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Figure 5.16 – TCR expression of naïve, effector and memory cells from the control-GFP 

and CD3-GFP CD4+ T cell populations, 2:1 competition experiments. The TCR expression 

of the naïve, effector and memory cells, of the control-GFP and CD3-GFP T cell populations 

isolated from the different tissues at day 5, 10, 15 and 20 is plotted. The adoptively transferred 

cells were identified using the gating strategy described in figure 5.4 A. (A) Spleen; (B) inguinal 

lymph nodes; (C) bone marrow; (D) liver. Data from 3 independent experiments. Day 5 n=6; day 

10 n=16; day 15 n=6; day 20 n=5. Mean + SEM are plotted.  
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5.10. Physiological levels of TCR cannot promote CD4+ 

T cell accumulation in a competitive environment, 

despite TCR down regulation in CD3-

overexpressing CD4+ T cells 

The experiments described above show that after adoptive transfer, CD3-

overexpressing CD4+ T cells quickly down-regulated their TCR levels to that seen in 

control-GFP transduced cells. This down-regulation is associated with a loss of 

accumulation in 3 of the 4 analysed organs. To examine whether a higher proportion of 

CD3-overexpressing cells in the injection mix was associated with a greater loss of TCR 

expression and therefore reduced in vivo cell accumulation of this population, a different 

set of competition experiments were designed. It was postulated that a greater reduction 

in TCR expression may more rapidly reduce in vivo cell accumulation, allowing CD4+ T 

cells expressing physiological levels of TCR (i.e. control-GFP T cells) to outcompete the 

population of CD3-overexpressing T cells. 

In the following experiments host animals received an excess of CD3-GFP transduced 

T cells (a 1:2 mix of control-GFP to CD3-GFP cells), in order to test whether loss of 

organ-specific CD3-GFP T cell accumulation secondary to in vivo TCR down-modulation 

could be repopulated by the control-GFP transduced T cells. This could result in 

subsequent isolation of a relative increase in the number of control-GFP T cells in various 

organs. Previous experiments showed that control-GFP transduced cells, which express 

physiological levels of TCR overall did not down regulate their TCR expression in vivo. 

On day 0 CD45.2+ Thy1.2+ C57Bl/6 recipients were sub lethally irradiated with 5.5 Gy 

and then 2-3 hours post irradiation they were injected with a 1:2 mix of CD45.1+ control-

GFP and Thy1.1+ CD3-GFP CD4+ T cells. The total number of transduced cells in the 

injection mixture was 5 x 106. At 5, 10 and 15 days post adoptive transfer mice were 

culled and the homing pattern of GFP+ CD45.1+ and GFP+ Thy1.1+ T cells was 
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investigated in four tissues: spleen, inguinal lymph nodes, bone marrow (from one tibia 

and one fibula) and liver. Mouse total weight was monitored over time, and as per Home 

Office regulations mice with > 20% body weight loss were culled. A schematic 

representation of the experimental in vivo set up is shown in figure 5.17.  

 

 

 

 

 

Figure 5.17 – Schematic representation of experimental set up for in vivo persistence, 

homing, differentiation and proliferation studies in a 1:2 competition environment.  

 

 

 

 

 

 

 

Day 0 
1:2 mix of  

CD4
+
 CD45.1

+
 Control-GFP 

+ 

CD4
+
 Thy1.1

+
 CD3-GFP 

5.5 Gy 
C57Bl/6 

Thy1.2
+
 

CD45.2
+
 

 recipient 

Day 10 

Sacrifice 

Day 5 

Sacrifice 

Day 15 

Sacrifice 



211 
 

CD4+ T Cells were MACS sorted and transduced as described in chapter 2 sections 2.2.3 

and 2.2.4, prior to injection on day 3 post transduction. Figure 5.18A shows typical purity 

of adoptively transferred cells, which was >97%. The number of cells from each 

population injected was calculated based on the transduction efficiency of the two 

populations, in order to inject a total of 2.5 x 106 transduced cells from each population. 

The injection mix was analysed by flow cytometry to verify the ratio of control-GFP to 

CD3-GFP cells (figure 5.18A). Summary data from the analysis of the injection mixtures 

used in all experiments is shown in figure 5.18B. On average in this set of experiments 

the injection mixture contained 1.75 times (1.6-1.9) as many CD4+ Thy1.1+ CD3-GFP 

cells (59.1%), compared to control-GFP CD4+ CD45.1+ cells (32.3%).  

The expression of TCR in the two experimental populations of CD4+ T cells was analysed 

before injection (figure 5.18C). On average CD4+ T cells transduced with the CD3-GFP 

vector expressed 2 fold more TCR compared to T cells transduced with the control-GFP 

vector. 
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Figure 5.18 – Purity, transduction efficiency, injection mix ratio and TCR expression of the 

adoptively transferred cells, in the 1:2 competition experiments. (A) Typical purity, 

transduction efficiency and control-GFP:CD3-GFP ratio of the injection mix are shown. (B) The 

average proportion of Control-GFP and CD3-GFP cells in the injection mix is shown. The 

proportion of control-GFP cells in the injection mix was half that of CD3-GFP cells (SEM is shown). 

(C) The TCR expression in the control-GFP and CD3-GFP transduced cells used for adoptive 

transfer was examined by looking at the median fluorescent intensity (MFI) of the TCR (constant 

β chain). Data from 2 independent experiments. 
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The differentiation status based on CD127 and CD62L expression was also analysed 

before injection (figure 5.19). Figure 5.17B shows CD62L and CD127 expression in two 

representative populations of control-GFP and CD3-GFP transduced CD4+ T cells. At the 

time of injection both populations contained similar proportions of naïve cells (CD127+ 

CD62L+; control-GFP: 50.5%; CD3-GFP: 45.4%); CD127- CD62L- effector cells (control-

GFP: 6.3%; CD3-GFP: 7.6%) and CD127+ CD62L- memory cells (control-GFP: 29.5%; 

CD3-GFP: 37.2%) (figure 5.19C). However there was a greater variation between 

experiments, compared to the previous set of experiments. 

 

Figure 5.19 – Differentiation status of adoptively transferred cells, in the 1:2 competition 

experiments. (A) The differentiation status of the adoptively transferred cells was determined by 

examining CD62L and CD127 expression, as shown by this gating strategy diagram. (B) 

Representative plots of the differentiation profile seen in the two CD4+ populations of adoptively 

transferred T cells are shown. (C) The average percentage of naïve, effector and memory cells 

in the adoptively transferred cells are shown. Mean + SEM are shown. Data from 2 independent 

experiments. 
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 Figure 5.20 shows the changes from baseline weight observed in recipient animals, 

none of which lost more than 20% of their body weight.   

 

 

 

Figure 5.20 – Mice’s body weight. The changes in mice weight are plotted as a function of time. 

Data from 2 independent experiments, n= 11. 
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On day 5, 10 and 15 post T cell transfer, mice were sacrificed and single cell suspensions 

of spleen, inguinal lymph nodes, bone marrow (pooled from one tibia and one fibula) and 

liver were generated, as described in chapter 2, section 2.5.3. The proportion of CD45.1+ 

control-GFP and Thy1.1+ CD3-GFP CD4+ T cells in each tissue was analysed. The flow 

cytometric gating strategy used for the analysis of the single cell suspensions was the 

same used for previous experiments, and it is shown in figure 5.4A. 

Figure 5.21A shows the control-GFP and CD3-GFP populations between injection day 

and day 15 in the spleen. At day 5 there was an increase in the proportion of CD3-GFP 

cells (78.1%), and a reciprocal decrease in the proportion of control-GFP cells (20.8%; 

p≤0.01). Five days later the marked difference between the seizes of the two populations 

decreased, with control-GFP cells accounting for 31.4%, and CD3-GFP cells accounting 

for 45.8% of the total population of CD4+ GFP+ cells (p≤0.05). However, 15 days after 

injection the percentage of recovered CD3-GFP cells (77.7%) was more than 4 times 

that of control-GFP cells (16.8%; p≤0.001). 

Similarly, in the lymph nodes (figure 5.21B) after 5 days of in vivo exposure to “self” the 

percentage of CD3-GFP cells had increased (74.5%) relative to the composition of the 

injection mix, with the proportion of control-GFP cells decreasing to 21.1% (p≤0.05). At 

10 days post adoptive transfer CD3-GFP cells accounted for 57.8% of the total 

population of isolated GFP+ cells; control-GFP cells represented 36.5% of the total GFP+ 

population (p≤0.05). As observed in the spleen, at the latest analysed time point a relative 

expansion of CD3-GFP cells compared to control-GFP cells had occurred, with 80.1% 

and 16.1% of CD3-GFP and control-GFP T cells, respectively, isolated from the GFP+ 

population (p≤0.001). 

The findings in the bone marrow were different. Contrary to the trend seen in the previous 

two analysed tissues, in the bone marrow (figure 5.21C) 5 days post initial cell transfer 

the percentage of CD3-GFP cells had decreased to 50.1% with a moderate increase in 

control-GFP cells to 40.5%, and this trend continued until day 10 with 42.2% of the 

remaining transferred cells belonging to the CD3-GFP subset and 50.4% control-GFP. 
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Analysis at day 15 revealed that this trend inverted after day 10, with 75.4% of CD3-GFP 

cells and 19.1% of control-GFP cells accounting for the total GFP+ population (p≤0.01). 

The trends in the liver (figure 5.21D) mirrored those of the spleen and the lymph nodes. 

At day 5 post T cell transfer CD3-GFP cells accounted for 74%, and control-GFP cells 

accounted for 25.3% of the total GFP+ population (p≤0.001). By day 10 the percentage 

of CD3-GFP cells had dropped to 54.2%, and that of control-GFP had slightly increase 

to 26.9% (p≤0.01). Just like in the spleen and lymph nodes five days later the proportion 

of CD3-GFP cells isolated from the GFP+ population was much greater to that of control-

GFP cells (81.7% and 16.9%, respectively; p≤0.01). 
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Figure 5.21 – Change in the proportion of control-GFP and CD3-GFP CD4+ T cell 

populations overtime, 1:2 experiments. The proportions of control-GFP and CD3-GFP T cells 

in to the total CD4+ GFP+ population isolated from the spleen (A), inguinal lymph nodes (B), bone 

marrow (C) and liver (D) were analysed and plotted as a function of time. The adoptively 

transferred cells were identified using the gating strategy described in figure 5.4 A. Data from 2 

independent experiments. Day 5 n=2; day 10 n=7; day 15 n=2. (p=* ≤0.05; **≤0.01; ***≤0.001; 

unpaired t test. Mean + SEM are shown).  
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5.11. TCR downregulation trends are similar to those 

seen in a 2:1 competition settings 

Again, the changes in TCR expression over time were tracked in this set of experiments 

too.  

In the spleen at day 5 post T cell transfer, CD3-GFP cells expressed 1.9 times more 

endogenous TCR compared to control-GFP cells (p≤0.05). This difference decreased to 

1.7 times at day 10 (p≤0.01) and 1.5 times at day 15 (p≤0.05) (figure 5.22A). 

Figure 5.22B shows the changes in cell surface TCR density on the transduced cells 

homing to the lymph nodes. At 5 days post adoptive transfer, CD3-GFP T cells isolated 

from the lymph nodes expressed 1.4 fold higher TCR as control-GFP cells did. An 

increase in TCR expression in the CD3-GFP population was seen at day 10, with a 1.8 

fold higher TCR expression compared to control-GFP cells. At the last time point of the 

analysis (day 15 post T cell transfer) the observed difference in TCR expression between 

the two populations decreased, with CD3-GFP cells expressing 1.6 times as much TCR 

as control-GFP transduced cells did. 

In the bone marrow (figure 5.22C), the smallest differences in TCR expression between 

the two populations of T cells were seen. Already by 5 days post T cell transfer, CD3-

GFP cells only expressed 1.3 times as much TCR as control-GFP cells did. This 

difference increased to 1.6 times at day 10 (p≤0.01), to then decrease again at day 15 

when TCR expression in the cells transduced with the CD3-GFP vector was 1.4 folds 

that of control-GFP cells (p≤0.05). 

In the liver (figure 5.22D), 5 days post adoptive transfer CD3-GFP cells expressed 2.3 

fold higher TCR as control-GFP cells (p≤0.01); five days later CD3 over-expressing cells 

had down-regulated their TCR, and they expressed 1.9 times as much TCR as the 

control population (p≤0.05). Lastly, at day 15 CD3-GFP cells further down-regulated their 
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TCR and at this time point the difference in cell surface TCR expression was lowest, with 

CD3-GFP cells expressing 1.4 times as much TCR as control-GFP cells (p≤0.01). 

GFP expression was confirmed over time (figure 5.23 A-D). In this instance the kinetics 

of GFP expression were different to the kinetics of TCR expression. TCR expression was 

observed to increase following injection (figure 5.22 A-D), whilst GFP expression was 

down-regulated in the majority of the populations between injection day and day 5. In all 

tissues GFP expression decreased in both populations of transduced cells between day 

5 and day 10. After day 10 the expression trends were different in the different tissues, 

and in the two populations of transduced cells. The GFP MFI in the CD3-GFP transduced 

cells increased in the spleen, whereas it decreased in all the other tissues. In the control-

GFP transduced population, GFP expression remained stable in the lymph nodes and 

bone marrow, and it increased in the spleen and liver.  
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Figure 5.22 – TCR expression of control-GFP and CD3-GFP cells, 1:2 experiments. The TCR 

expression (MFI) of the control-GFP and CD3-GFP T cells isolated from the different tissues at 

day 5, 10 and 15 is plotted. The adoptively transferred cells were identified using the gating 

strategy described in figure 5.4 A. (A) Spleen; (B) inguinal lymph nodes; (C) bone marrow; (D) 

liver. Data from 1 experiments. Day 5-15 n=2. (p=*≤0.05; **≤0.01; unpaired t test. Mean + SEM 

are shown).  

 

T
C

R
 C


 [
M

F
I]

Injection Mix 5 10 15
0

1000

2000

3000
CD4 Control-GFP

CD4 CD3-GFP

Days post T cell transfer

**

*

**

Spleen 

LN 

BM 

Liver 

T
C

R
 C


 [
M

F
I]

Injection Mix 5 10 15
0

1000

2000

3000
CD4 Control-GFP

CD4 CD3-GFP

Days post T cell transfer

%
 o

f 
e
a
c
h

 p
o

p
u

la
ti

o
n

Injection Mix 5 10 15
0

20

40

60

80

100
CD4 Control-GFP

CD4 CD3-GFP

Days post T cell transfer

A 

B 

C 

D 

T
C

R
 C


 [
M

F
I]

Injection Mix 5 10 15
0

1000

2000

3000
CD4 Control-GFP

CD4 CD3-GFP

Days post T cell transfer

*

**

*

T
C

R
 C


 [
M

F
I]

Injection Mix 5 10 15
0

1000

2000

3000
CD4 Control-GFP

CD4 CD3-GFP

Days post T cell transfer

**

*



221 
 

 

Figure 5.23 – GFP MFI of control-GFP and CD3-GFP CD4+ T cell populations, 1:2 

competition experiments. The MFI of GFP in the population of control-GFP and CD3-GFP T 

cells isolated from the different tissues at day 5, 10, 15 and 20 is plotted. The adoptively 

transferred cells were identified using the gating strategy described in figure 5.4 A. (A) Spleen; 

(B) inguinal lymph nodes; (C) bone marrow; (D) liver. Data from 2 independent experiments. Day 

5 =2, day 10 n=7, day 15 n=2. Mean + SEM are shown. 
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5.12. CD3-overexpressing and control-transduced CD4+ 

T cells have similar rates of cell proliferation and 

cell death in a 1:2 competitive in vivo environment 

The trends in cell accumulation and TCR down-regulation that were seen in the 1:2 

control-GFP to CD3-GFP competition environment, were different to those seen when 

the proportion of control-GFP cells in the injection mix was twice as that of CD3-GFP 

cells. To determine whether this difference in accumulation was due to a higher rate of 

proliferation or a lower rate of cell death, the proportion of proliferating and apoptotic 

cells in the two different populations were analysed. 

In the spleen (figure 5.24A) no significant difference in the percentage of proliferating 

cells was seen at any of the time points, between the two populations. At day 5 between 

9.5% and 11.1% of cells in the control-GFP and CD3-GFP populations respectively, were 

found to be positive for Ki67. These percentages marginally increased at day 10 (control-

GFP: 11.2%; CD3-GFP: 13.6%), to then decrease again by day 15 (control-GFP: 5.7%; 

CD3-GFP: 8.4%). 

In the lymph nodes (figure 5.24B) less than 20% of all GFP+ cells were Ki67+ by day 5 

post T cell transfer (control-GFP: 15%; CD3-GFP: 16.9%). These proportions decreased 

further at 10 days post T cell transfer (control-GFP: 10%; CD3-GFP: 12.9%), and by day 

15 post injection the percentage of Ki67+ cells in the two populations were identical 

(11.2%). 

The initial trend seen in the bone marrow (figure 5.24C) was identical to that seen in 

other tissues, with the percentage of proliferating cells dropping below 20% in both 

populations (control-GFP: 10.9%; CD3-GFP: 12.7%) at day 5 post infusion. However, 

after day 5 the percentage of proliferating cells in the CD3-GFP cells started to increase 

(12.9%) compared to that observed in the control-GFP cells (8.8%) (day 10), and at day 

15 the difference was even greater with the proportion of proliferating cells in the CD3-
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GFP population being 13.3%, compared to 7.6% of proliferating cells in the control 

population. However, these values were not significantly different. 

The changes described above for the bone marrow were more pronounced in the liver 

(figure 5.24D). Cells isolated from both populations at day 5 contained very similar 

proportions of proliferating cells (control-GFP: 9%; CD3-GFP: 10.2%). At day 10, 26% of 

CD3-GFP cells were proliferating, compared to 15.9% of proliferating cells in the control-

population (p≤0.01). Five days later 22.6% of CD3-GFP cells were Ki67+, whereas the 

control-GFP population contained 15% of proliferating cells. 

The percentage of apoptotic cells was similar between the two populations in the different 

organs.  

In the spleen (5.24E) at day 5 on average 34.2% of cells in the CD3-GFP population 

were positive for Annexin V, compared to 15.1% of Anenxin V+ cells isolated from the 

control-GFP population. Ten days post T cell transfer, 19.4% and 12.9% of all cells from 

the CD3-GFP and control-GFP population respectively, were identified as positive for 

Annexin V. At day 15 the percentages of apoptotic cells from the control-GFP and the 

CD3-GFP populations was 6.8% and 8.2%, respectively. 

No difference in Annexin V expression was seen between the two transduced 

populations isolated from the lymph nodes, at any of the analysed time points (figure 

5.24F). In both populations the percentage of apoptotic cells increased between injection 

day and day 5 post T cell transfer, when in the population of control-GFP cells 25% of 

cells were apoptotic, and 31.7% of CD3-GFP cells were positive for Annexin V. Five days 

later 29.4% of all CD3-GFP cells and 32.3% of all control-GFP cells were apoptotic. 

Similar percentages were seen at day 15, with 25.4% of control-GFP and 26% of CD3-

GFP cells undergoing apoptosis. 

The bone marrow (figure 5.24G) contained the highest percentage of apoptotic cells of 

all tissues. By day 5, 74.1% and 85.1% of cells from the control-GFP and the CD3-GFP 

respectively were found positive for Annexin V. A marginal decrease was seen at day 10 
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(control-GFP: 51%; CD3-GFP: 53.5%), followed by another increase in Annexin V 

expression at day 15, when 70% of control-GFP cells and 78.3% of CD3-GFP cells were 

apoptotic. This higher proportion of Annexin V+ cell is in line with previous reports where 

a higher turnover rate was shown for T cells in the bone marrow as compared with spleen 

and lymph nodes (Parretta et al., 2008). 

In the liver (figure 5.24H) the levels of apoptotic cells were not statistically different and 

remained below 10% in both populations, throughout the analysis. 
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Figure 5.24 – Percentage of Ki67+ and Annexin V+ control-GFP and CD3-GFP cells, 1:2 

experiments. The percentage of Ki67+ (left) and Annexin V+ (right) cells in the control-GFP and 

CD3-GFP populations overtime is shown. The adoptively transferred cells were identified using 

the gating strategy described in figure 5.4 A. (A, E) Spleen; (B, F) inguinal lymph nodes; (C, G) 

bone marrow; (D, H) liver. Data from one experiment. Day 5-15 n=2. (p=**≤0.01; unpaired t test. 

Mean + SEM are shown). 
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5.13. The differentiation profile of the adoptively 

transferred cells in a 1:2 competition context is 

influenced by the homing of the cells, and it’s 

different from that seen in a 2:1 competition 

As seen in the previous experiments, the differentiation profile of the transduced cells 

isolated from the four analysed tissues was determined by the homing site of the cells. 

The percentages of naïve, effector and memory cells in the two populations of 

transduced cells were not affected by CD3 over-expression, but were different according 

to the organ from which they were re-isolated.  

On average in the spleen (figure 5.25 left) 5 days after adoptive transfer, the percentage 

of effector cells and memory cells was similar (effector cells: 42.3%-47.8%; memory 

cells: 37.9%-45.7%), whereas a lower proportion of naïve cells were recovered (2.8%-

8%). The proportion of memory cells increased with time and at day 10, 66.8%-71.8% of 

memory cells were recovered. At the same time point the percentage of effector cells in 

the populations was 20.4%-24.2%; that of naïve cells was 2.9%-4.4%. At the last 

analysed time point (day 15 post T cell transfer) the same trend was seen, with memory 

cells representing the highest proportion of cells (61.1%-63.2%), followed by effector 

cells (28%-28.3%) and naïve cells (6.7%-8.7%). 

The trends seen in the lymph nodes are shown in figure 5.25 right. At day 5 post adoptive 

transfer the highest proportion of cells in the two transduced populations were memory 

cells (46.7%-55%), followed by effector cells (31.1%-38.9%), and naïve cells (4.2%-

8.4%). Five days later the proportions of effector and memory cells were similar and were 

37.2%-41.8% and 37%-37.1%, respectively. At this time point naïve cells accounted for 

14% of the total populations. Fifteen days post adoptive transfer memory cells accounted 

for more than 60% of the total population (65.9%-73.8%), whereas the percentages of 

naïve and effector cells were lower (9.5%-13.6% and 15%-16%, respectively). 
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The proportion of naïve, effector and memory cells in the bone marrow (figure 5.26 left) 

were similar 5 days post T cell transfer (24.1%-36.8%, 17.9%-22.5% and 19.1%-28.4%, 

respectively). At day 10 post T cell transfer, memory cells represented the highest 

proportion of cells (56.7%-60.2%), followed by effector cells (31.7%-33.1%) and lastly 

naïve cells (4.6%-5.3%). Analysis of the cells isolated at the last time point, revealed that 

the majority of transduced cells had acquired a memory phenotype (50.2%-51.5%). The 

proportion of naïve cells was 23%-23.5%, and that of effector cells was 17.8%-18.7%. 

The differentiation trends of the cells homing to the liver are depicted in figure 5.26 right. 

Memory and effector cells represented the main populations isolated 5 days post T cell 

transfer (49.6%-52.5% and 43.3%-45.3%, respectively). The proportion of naïve cells 

was between 2.3% and 4.8%. Similar percentages were seen at day 10 (naïve cells: 

2.7%-5.4%; effector cells: 39.8%-42%; memory cells: 51.2%-55.3%). The same trend 

was again seen five days later, with memory cells accounting for 65.6%-66.9%, effector 

cells accounting for 28.4%-29.15%, and naïve cells accounting for 4%-4.7% of the total 

GFP+ populations. 

Finally, the TCR expression levels in naïve, effector and memory cells from the two 

populations of transduced cells were analysed as before (figure 5.27). Again, no 

difference in the level of TCR expression was observed on naïve, effector and memory 

cells from the same transduced population. As expected, naïve, effector and memory 

cells isolated form the CD3-GFP transduced CD4+ T cells expressed higher levels of 

TCR compared to their counterparts in the control-GFP transduced population. The 

kinetics of TCR expression were similar to those seen in the whole populations of control-

GFP and CD3-GFP transduced populations (figure 5.22). 
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Figure 5.25 – Day 5-15 ex vivo differentiation status of the adoptively transferred cells. The 

differentiation status of the control-GFP and CD3-GFP T cells isolated from the spleen (left) and 

inguinal lymph nodes (right), at day 5, 10, 15 and 20 are shown. The adoptively transferred cells 

were identified using the gating strategy described in figure 5.4 A. Data from one experiment. Day 

5-15 n=2. Mean + SEM are shown. 
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Figure 5.26 – Day 5-15 ex vivo differentiation status of the adoptively transferred cells. The 

differentiation status of the control-GFP and CD3-GFP T cells isolated from the bone marrow (left) 

and liver (right), at day 5, 10, 15 and 20 are shown. The adoptively transferred cells were identified 

using the gating strategy described in figure 5.4 A. Data from one experiment. Day 5-15 n=2. 

Mean + SEM are shown.  
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Figure 5.27 – TCR expression of naïve, effector and memory cells from the control-GFP 

and CD3-GFP CD4+ T cell populations, 1:2 competition experiments. The TCR expression 

of the naïve, effector and memory cells, of the control-GFP and CD3-GFP T cell populations 

isolated from the different tissues at day 5, 10, 15 and 20 is plotted. The adoptively transferred 

cells were identified using the gating strategy described in figure 5.4 A. (A) Spleen; (B) inguinal 

lymph nodes; (C) bone marrow; (D) liver. Data from 1 independent experiments. Day 5-15 n=2. 

Mean + SEM are shown. 
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5.14. Summary and discussion 

The aim of the experiments described in this chapter was to determine whether the 

accumulation of CD3-overexpressing CD4+ T cells seen in a non-competition setting 

(chapter 4), was also observed in a competitive environment. CD3-overexpressing CD4+ 

T cells were co-transferred with control-GFP transduced CD4+ T cells into lymphopenic 

syngeneic recipients. Three different ratios of control-GFP:CD3-GFP were used (1:1, 2:1 

and 1:2) to study the behaviour of CD3-overexpressing cells. Transfer of injection mixes 

containing different proportions of control-GFP and CD3-GFP cells means that CD3-

overexpressing cells have to compete with similar, higher or lower proportions of 

competitor cells for survival signals (self-p:MHC complexes and cytokines), which might 

result in different CD3-GFP T cells’ survival and differentiation outcomes. How the 

persistence of control-GFP and CD3-GFP transduced cells varies over time was tracked 

by sacrificing recipient animals at different time points (5, 10, 15 and 20 days after 

adoptive transfer), and looking in the spleen, inguinal lymph nodes, bone marrow and 

liver. The proportion of proliferating and apoptotic cells in each one of the transferred 

populations was also analysed by looking at the expression of Ki67 and Annexin V 

respectively. This allowed us to determine whether the difference in cell accumulation 

was a consequence of increased/decreased cell proliferation, or increased/decreased 

cell death. The kinetics of TCR expression was also analysed over time to investigate 

how these related to cell’s persistence. Finally the differentiation status of the transferred 

cells homing to the spleen, lymph nodes, bone marrow and liver was examined. 

In the first set of experiments irradiated mice received a 1:1 mix of control-GFP:CD3-

GFP cells. We found that 10 days post adoptive transfer, CD3-overexpressing CD4+ T 

cells are found in significantly higher percentages compared to CD4+ T cells that express 

physiological levels of TCR and CD3. Both cell populations were analysed before 

injection for purity and differentiation status. In both cases they were >95% pure, and 

both populations contained the same proportion of naïve, effector and memory cells. 

Thus we concluded that the difference in the percentages of isolated cells was due to 
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different in vivo behaviours of the two populations, rather than the consequence of a 

difference in purity or activation status acquired before injection. This difference in 

accumulation however did not translated into a difference in activation status. Cells 

isolated at day 10 had the same differentiation phenotype, independent of level of 

TCR/CD3 expression (e.g. either control-GFP or CD3-GFP transduced). Specifically, in 

all four of the analysed tissues, the majority of the cells (over 40%) had an effector 

phenotype, with this proportion being 85% or higher in the bone marrow and liver.  

The kinetics of this accumulation were studied further in a second set of experiments. 

Recipient mice received a 2:1 mix of control-GFP:CD3-GFP transduced CD4+ T cells, 

and their accumulation in the four tissues was analysed over time, from day 5 to day 20 

post T cell injection. This set of experiments was designed to study the behaviour of 

CD3-overexpressing T cells when their access to survival signal is limited by an 

increased number of competitor cells (control-GFP CD4+ T cells). The purity of both 

injected populations was over 95% and the activation status of the cells was similar, with 

the majority of the cells retaining a naïve phenotype. Increased TCR expression in the 

CD3-GFP transduced cells was confirmed before injection, and CD3-overexpressing 

CD4+ T cells expressed on average 4 fold higher TCR compared to control-GFP 

transduced cells. Isolation of the transferred cells at the four different time points showed 

that although at day 5 the population of control-GFP cells still accounted for the majority 

of cells within the GFP+ population, by day 10 their percentage had fallen, with CD3-GFP 

transduced cells representing the highest proportion of GFP+ cells. After day 10, the 

percentage of CD3-GFP cells gradually decreased until day 20 when it reached similar 

or lower numbers then the control-GFP population. The only exception was in the liver, 

where at day 20 an accumulation of CD3-GFP cells was observed.  

Interestingly, the initial increase in the proportion of CD3-overexpressing T cells in the 

GFP+ population, was not associated with the kinetics of TCR expression. Indeed, from 

day 5 onwards CD3-overexpressing cells started to gradually down-regulate their TCR 

levels. This decrease carried on until day 20 in the spleen, where the TCR expression 
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levels of control-GFP and CD3-GFP T cells were indistinguishable. In other tissues the 

TCR expression levels plateaued at day 15 post T cell transfer, when it reached similar 

levels to that seen in the control-GFP population. In all 4 tissues, an initial increase in 

TCR expression was observed between day 0 and day 5 in the control-GFP transduced 

T cells. After day 5 TCR down-regulation occurred in the control cells, but at a much 

lower extent to that seen in CD3-GFP transduced T cells.  For example, in the spleen a 

3 fold decrease in TCR expression is seen in the CD3-GFP population, between injection 

day and day 20. On the contrary, no overall down-regulation is seen in control-GFP cells, 

with TCR expression levels at day 20 being identical or higher to those seen at injection 

day.  

The accumulation of CD3-overexpressing CD4+ T cells seen in the mice receiving the 

2:1 ratio of cells, is a consequence of increased cell proliferation in this population. A 

higher proportion of Ki67+ cells is found in the CD4+ population transduced with the CD3-

GFP vector. This increase in proliferating cells began after day 5, and it was seen until 

day 15, after which both transduced populations equilibrated at similar proportions of 

proliferating cells. The proportion of apoptotic cells on the other hand, was similar in the 

two populations at all analysed time points, with the exception of day 5 in the spleen and 

lymph nodes, when the percentage of Annexin V+ T cells within the CD3-overexpressing 

population of CD4+ T cells was higher. 

As previously discussed, the driver of this proliferation is unknown. Increased 

proliferation may be a consequence of stronger interactions with self-p:MHC complexes, 

or stronger ligand-independent TCR signalling. As previously mentioned CD5 can be 

used to indirectly verify the strength of T cell interaction with self, with high CD5 

expression triggered by stronger self-p:MHC interactions. Indeed, Mandl and colleagues 

have shown that polyclonal CD5hi CD4+ T cells have higher proliferation rates compared 

to CD5lo CD4+ T cells. This resulted in CD5hi CD4+ T cells outcompeting CD5lo cells in an 

infection model, in which the two populations were initially transferred in a 1:1 ratio. The 

different proliferative ability was not attributed to different cell-intrinsic proliferation 
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abilities, as observed in vitro responses were similar in the two populations. Interestingly, 

the same CD5hi clones that dominated the anti-infectious response, showed stronger 

interaction with self (Mandl et al., 2013). Thus, if self-p:MHC interaction is driving the 

observed T cell proliferation and CD3-overexpressing T cells interact more strongly with 

self, we would expect our CD3-overexpressing CD4+ T cells to express higher levels of 

CD5 compared to the control-GFP transduced population.  

Although marked TCR down-regulation was seen in the CD3-GFP transduced 

population, their proliferation continued until day 15; after this time point the proportion 

of proliferating cells decreased. Interestingly day 15 is the time point when the TCR 

expression of the two populations reach similar levels. Thus, our data supports the 

hypothesis that higher levels of endogenous TCR expression, even if only marginally 

higher, can still promote preferential T cell proliferation. As soon as the CD3-

overexpressing T cells lose this advantage, their proliferative capacity returns to baseline 

levels as seen in the control-GFP transduced CD4+ population.  

How CD3-overexpressing T cells out-proliferate control-GFP transduced T cells is not 

known. Three main models of T cell competition for “space” have been proposed 

(Takada et al., 2009a). In the first case “intraclonal competition” between T cell clones 

recognising the same self-p:MHC complex, regulates the survival of clones with the 

same specificity, but does not interfere with the maintenance of clones of different 

specificity. The second proposed mechanism is based on the promiscuity of the TCR 

(“interclonal dominance through promiscuity” model). More promiscuous TCRs, capable 

of recognising multiple self-p:MHC complexes, can out-compete T cell clones that are 

less promiscuous, by preventing them from interacting with their self-p:MHC complexes. 

Finally, in the last proposed model, some T cell clones can outcompete other clones 

through interclonal competition for survival signals (“interclonal dominance through 

fitness” model). In this model T cell clones only compete with their cognate self-p:MHC 

complex, but these different TCR:self-p:MHC interactions lead to acquisition of different 

survival capacities by some clones, for example allowing some of them to compete more 
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effectively for other survival signals, such as cytokines. Indeed, Agenes and colleagues 

showed that OT1 cells (H-2Kb-restricted) co-transferred with P14 cells (H-2Db-restricted) 

into P14 recipients, proliferate whereas P14 cells do not. Moreover they also used 

parabiotic pairs of OT1 Rag-/- and Kb-sufficient or K-b-mutant mice to demonstrate that 

OT1 cells prevented homeostatic proliferation of P14 cells, even in the presence of Kb-

deficient APCs, which OT1 cells cannot interact with. This difference in proliferative 

capacity was a consequence of the higher ability of OT1 cells to access IL-7 and IL-2, 

compared to P14 cells (Agenes et al., 2008).  

It is possible that increasing the TCR levels on T cell clones, may render them more 

promiscuous, as their increased avidity may allow them to bind more self-p:MHC 

complexes. However whether increased TCR expression confers increased ability to 

compete for other survival signals, is not known. Thus, in our model the interclonal 

dominance through promiscuity model alone, or a combination of this model with the 

“interclonal dominance through fitness” one, may be promoting the observed increased 

cell proliferation. Alternatively, increased TCR expression may not lead to increased 

promiscuity, but simply stronger activation signals, leading to increased proliferation and 

higher cell numbers, which outcompete the lower proliferating cells.    

In the third set of experiments, where the mice received twice as much CD3-GFP 

transduced CD4+ T cells, compared to control-GFP transduced CD4+ T cells, the 

percentage of CD3-overexpressing CD4+ T cells, remained higher than that of control-

GFP T cells throughout the majority of the experiments. One exception was the bone 

marrow at day 10 post T cell transfer, when the percentage of control-GFP T cells was 

slightly higher than that of CD3-GFP T cells; however, after a further 5 days the 

proportion of CD3-overexpressing cells was almost 4 fold higher than the control-GFP 

cells. In the other 3 analysed tissues, throughout the analysis the proportion of CD3-GFP 

cells in the total GFP+ population was between 4.8 and 5 folds higher than the control-

GFP cells, a diversion from the original 1:2 ratio seen in the injection mix. This difference 

in the behaviour of the cells may be attributed to the different TCR down-regulation seen 
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in the adoptively transferred cells in these experiments. Although TCR down-regulation 

in the CD3-overexpressing CD4+ T cells still occurs, the extent of the down modulation 

is almost 4 times less that seen in the 2:1 competition experiments. The greatest down-

regulation is seen in the spleen, and the difference in TCR expression between injection 

day and day 15 post T cell transfer is 1.7 times lower, compared to the 3 fold decrease 

seen in the 2:1 competition experiments. Why a difference in the extent of the TCR down-

regulation is seen is unknown. However this could be partially explained by the fact that 

in this setting CD3-overexpressing CD4+ T cells do not always contain a higher 

percentage of proliferating cells. Indeed in the spleen and inguinal lymph nodes, both 

populations of transduced cells contain similar proportions of proliferating (Ki67+) cells 

throughout the analysis. In the bone marrow similar percentages of Ki67+ cells are seen 

until day 10; whereas in the liver after day 5 CD3-overexpression leads to increased 

proliferation levels. As with the 2:1 set of competitions experiments, the levels of Annexin 

V+ are similar between the two populations. Since no difference in cell proliferation or cell 

death was seen in the spleen and lymph nodes, the increase in the proportion of CD3-

overexpressing CD4+ T cells in the total GFP+ population could be explained by control-

GFP transduced cells migrating outside of these tissues. On the other two tissues (bone 

marrow and liver) it could be explained by the higher percentage of proliferating cells in 

the CD3-GFP transduced population.   

Why the proportion of CD3-overexpressing T cells is not downregulated overtime as 

seen in the previous 2:1 competition set of experiments, is unknown. Notably this data 

is from one single experiment, thus replicate experiments should be performed to confirm 

these findings.  

Transfer of CD3-overexpressing cells at an advantageous percentage compared to the 

other population of experimental T cells, means they will have a competitive advantage 

over the control-GFP transduced T cells. CD4+ T cells expressing physiological levels of 

TCR have to compete with the CD3-overexpressing population of T cells for survival 

signals in order to expand. However as previously mentioned, CD3-GFP transduced T 
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cell may outcompete their competitor population both in terms of access to self-p:MHC 

complexes and any other potential survival signals. This may drive the persistence of the 

CD3-overexpressing population, but prevent the persistence of the control-GFP 

population. Alternatively, since control-GFP T cells may not be able to access survival 

signals in the tissues where CD3-GFP T cells are also present, they may have migrated 

out of those organs and into other tissues where less competition was present.  

Analysis of trafficking receptors would indicate whether this is the case or not. For 

example, analysis of the expression pattern of the sphingosine-1-phosphate receptor 1 

(S1PR1) would indicate whether control-GFP transduced cells have a higher rate of 

egress from the lymphoid organs. S1PR1 recognises the phospholipid sphingosine-1-

phosphate (S1P) which is present in the lymph and blood, and promotes T cell egress 

from various lymphoid tissues (Cyster, 2005). Up-regulation of this receptor on T cells 

promotes their migration out of secondary lymphoid organs, thus we could expect 

control-GFP cells to express more S1PR1 compared to CD3-overexpressing CD4+ T 

cells. Moreover, it has previously been reported that CD4+ T cell maintenance in the 

periphery is dependent on, and occurs in secondary lymphoid organs, such as Peyer’s 

patches, in which CD4+ T cells receive specific survival signals (Dai et al., 2001). Thus, 

analysis of other secondary lymphoid tissues may reveal different homing patterns of 

control-GFP CD4+ T cells to the CD3-GFP CD4+ T cells.  

Down-regulation of retroviral transgene expression has been previously reported 

(Lindermann et al., 2002; Burns et al., 2009). Thus, to confirm that TCR down-regulation 

was not due to loss of CD3 overexpression after loss of retroviral transgene expression, 

the levels of GFP expression were tracked over time. The gene coding for GFP is found 

on the same retroviral vector as the CD3, or iCre-control, genes. Thus, a loss of the 

transgene will result in a loss of GFP expression too. Although the kinetics of GFP and 

TCR expression are different, GFP expression was maintained throughout the 

experiment, suggesting the transgene is still expressed and TCR down-regulation is the 

consequence of a TCR specific down modulation. Moreover previous experiments from 
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our in which the same CD3-GFP vector was used, have shown that 35 days post 

adoptive T cell transfer T cells co-transduced with the CD3-GFP and the F5-TCR vectors, 

still expressed higher levels of F5-TCR (Vβ11) compared to cells transduced with the 

TCR alone, suggesting the CD3 transgene is still expressed (Ahmadi et al., 2011). The 

difference in TCR and GFP expression kinetics can be explained by the fact that the two 

genes (CD3/iCre and GFP) are regulated by different promoters. The CD3/iCre and GFP 

genes are separated by an IRES element. The CD3/iCre genes are found upstream of 

IRES and their translation relies on a 5’ cap-dependent mechanism; GFP is found 

downstream of IRES, thus its translation is initiated at the IRES site, in a cap-

independent manner. In addition to being regulated by two different mechanisms, the 

efficiency of translation of the two genes is also different. In particular, it is known that 

the translation initiation of the gene downstream of an IRES element is less efficient than 

that of the upstream gene (Mizuguchi et al., 2000). Therefore, differences in the MFI of 

GFP and TCR, as a surrogate for CD3, may be explained by different translational 

kinetics.  

The subsequent differentiation status of the transferred cells seemed to be affected by 

the proportion at which the two populations of CD4+ T cells were transferred (1:1, 2:1 or 

1:2). Indeed, in the 3 different sets of experiments, different activation profiles were seen 

in the 4 analysed tissues. Moreover, as in chapter 4, whether the phenotype acquired by 

the T cell was a consequence of their migration to a specific tissue or whether it was 

acquired somewhere else which then drives the T cell migration, is not known. However, 

no differences in the proportion of recovered naïve, effector and memory cells, was seen 

between the two populations in any of the tissues, at any time point. This suggests that 

TCR expression levels do not alter the differentiation profile of transduced CD4+ T cells.  

The majority of the T cells re-isolated from tissues of mice which received a 1:1 mix of 

transduced cells 10 days post T cell transfer, had an effector phenotype. Effector cells 

do not express the lymph node homing receptor L-selectin (CD62L), and therefore 

preferentially migrate between the blood and splenic compartments, but also enter 
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peripheral organs, such as the liver. The effector cells isolated from the lymph node, may 

either be newly differentiated cells that are about to egress, or they may be recruited to 

these lymphoid organs via CD62L independent mechanisms, including E-selectin and 

α4β1 (Brinkman et al., 2013).  

Acquisition of an effector phenotype in vivo suggests that the T cells have engaged with 

their cognate p:MHC complex. This may simply be an interaction between the TCR and 

self-p:MHC complex. In a physiological context this may promote T cell survival. In a 

lymphopenic context, this interaction in addition to higher exposure to survival factors, 

and/or inflammatory cytokines (due to the initial conditioning regime) may drive T cell 

activation and acquisition of the effector phenotype. 

What the findings of the 2:1 and 1:2 competition experiments have demonstrated is that 

T cell differentiation in vivo is a very plastic phenomenon. Indeed, the phenotype of the 

cells in the different organs changes with time. Broadly speaking in all analysed organs, 

5 days post T cell transfer the majority of the cells that were isolated had a naïve or 

memory phenotype. Five days later the proportion of effector cells had increased, to then 

subsequently decrease again. By day 15 and day 20 post T cell transfer the majority of 

the isolated cells again had a naïve or memory phenotype. This may suggest that after 

T cell transfer into lymphopenic animals, the transduced cells started to expand and 

acquire an effector like’ phenotype. However, further lymphopenia induced proliferation, 

lack of appropriate signals (e.g. foreign antigens), or repopulation of the lymphoid 

compartment, may drive the cells to revert their differentiation to a naïve or memory 

phenotype. Indeed, Goldrath and colleagues showed that once the lymphoid 

compartment has been repopulated following lymphopenia, and T cell proliferation 

ceases, T cells return to a naïve phenotype (Goldrath et al., 2000). 

The trafficking pattern of the transferred gene-modified T cells is likely to be determined 

by multiple in vivo factors. All the analysed organs function as lymphoid organs, through 

which naïve cells continuously recirculate. Effector cells need to traffic to those organs 

to encounter their cognate p:MHC complex, and memory cells home here. As previously 
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described memory T cells do not express CD62L. Thus more specifically they can be 

identified as effector memory T cells. It has been previously reported that effector 

memory T cells can indeed migrate to non-classical lymphoid tissues (e.g. the liver) and 

reside there as long lived memory cells (Masopust et al., 2001). 

Interestingly the phenotype of the cells isolated at day 20 post T cell transfer was similar 

to that seen in the population of CD4+ cells isolated from untreated mice (figure 4.12). In 

untreated mice, the majority of the CD4+ T cells isolated from the spleen and inguinal 

lymph nodes had a naïve phenotype. However, the majority of the CD4+ population 

isolated from the bone marrow and liver of untreated mice had a memory phenotype. 

Transferred CD4+ T cells with similar phenotypes were recovered from the injected mice 

20 days post T cell transfer. It is possible that longer exposure to “self” in the absence of 

foreign antigens, may result in reversion of the phenotype of the transduced cells to that 

seen in untreated animals. Alternatively, it may be that only cells with those specific 

phenotypes were capable of repopulating the lymphocyte niche in those tissues. In some 

cases a lower proportion of naïve cells, and a higher proportion of memory cells were 

seen in the populations of transduced cells. This may have been a consequence of 

memory formation due to LIP, as described in the previous chapter.  

One model of T cell differentiation suggests that memory and effector cells are generated 

simultaneously upon T cell activation. What determines whether a cell will acquire a 

memory or effector phenotype, is the extent of the activation stimulus: fully activated cells 

will become effector cells; whereas cells that encounter their cognate antigen but are not 

fully activated will differentiate into memory cells. Thus, higher TCR expression may 

correlate with T cell receiving a stronger activation signal, leading to a preferential 

differentiation into effector cells, rather than memory cells; and vice versa. To test 

whether this is the case in our in vivo model, the TCR levels on naïve, effector and 

memory cells from both control-GFP and CD3-GFP transduced populations were 

analysed. Although all 3 differentiated subsets in the CD3-GFP transduced population 

expressed higher levels of TCR than control-GFP transduced cells, no significant 
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difference in TCR expression was seen among the 3 subsets in either one of the 

transduced populations. Naïve, effector and memory cells all expressed similar levels of 

TCR, thus in this model, the level of TCR expression did not seem to influence their 

differentiation.   

To conclude, this set of experiments has shown that CD3 overexpression led to 

increased expression of endogenous TCR, and was sufficient to drive proliferation and 

promote T cell persistence, even in disadvantageous, competitive environments. 

However, increased TCR levels were not readily maintained in vivo. CD4+ T cells 

transduced with the CD3-GFP vector gradually down-regulated their TCR, until it 

reached expression levels similar to those seen in control CD4+ T cells. The extent of 

down-regulation was also associated with the levels of proliferation: higher proliferation 

led to greater TCR down-regulation. Lastly, the levels of TCR expression in CD4+ T cells 

did not influence the differentiation status of those cells.     
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6. Conclusions and future work 

The experiments described in this thesis have explored phenotypic and behavioural 

differences between CD4+ T cells and CD8+ T cells. In particular, differences were 

analysed before and after T cells were transduced with a retroviral vector encoding the 

CD3 ε, δ, γ, and ζ chains (CD3-GFP vector), or a control vector (control-GFP). This 

transduction was used to increase TCR expression on the surface of the T cell. Indeed, 

transduction with the CD3-GFP vector led to a significant and similar increase in TCR 

expression, in both CD4+ and CD8+ T cells.  

The amount of CD3 within a cell determines the amount of TCR that will be expressed 

on the cell’s surface. Moreover, one of the main factors influencing TCR avidity is the 

density of TCR. Thus, increasing the amount of CD3 available in a T cell, will increase 

the amount of TCR that can be expressed, and the cell’s functional avidity. Increased 

functional avidity following transduction with the CD3-GFP vector was previously shown 

in CD8+ T cells. 

Initial in vitro experiments showed that ex vivo untreated CD4+ T cells expressed 

significantly higher levels of TCR (and CD3) than untreated CD8+ T cells. This difference 

in TCR expression was maintained even after transduction with the CD3-GFP vector. 

The increase in TCR was similar in both CD4+ and CD8+ T cells, suggesting TCR is not 

a rate limiting factor in CD8+ T cells. The biological and functional reason behind the 

difference in TCR expression levels in CD4+ and CD8+ T cells was not investigated in this 

project. We hypothesise that the different levels of interaction of CD4+ and CD8+ T cells 

with the lower expressed MHC-II and the higher expressed MHC-I molecules 

respectively, may influence the levels of TCR on T cells. More frequent interactions of 

CD8+ T cells with the almost-ubiquitously expressed MHC-I, may drive down-regulation 

of TCR on this subset, compared to CD4+ T cells.  

Future experiments aimed at investigating the levels of basal CD3ζ phosphorylation 

could help us determine whether increased interaction with self, leading to higher CD3ζ 
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phosphorylation, is indeed playing a role in modulating TCR expression levels in the 

periphery. If this is the case, we would expect CD8+ T cells to have higher level of basal 

CD3ζ phosphorylation. 

However, the higher TCR expression in CD4+ T cells may lead to higher avidity 

interactions with MHC-II molecules, although less frequent, and similar levels of CD3ζ 

phosphorylation. Thus, to further dissect the level of interaction of CD4+ and CD8+ T cells 

with “self”, future experiments could be aimed at examining the expression of CD5 on 

the T cell subsets. Higher avidity interactions between TCR and self-p:MHC complexes 

have been shown by others to correlate with higher CD5 expression. Therefore CD4+ T 

cells may have increased CD5 expression, compared to CD8+ T cells, due to their 

increased TCR expression. 

We have shown that the increased TCR expression was associated with higher 

intracellular calcium concentration and higher CD107a concentration, both at steady-

state and after polyclonal stimulation. Whether this was a direct result of higher TCR 

expression, was not investigated in this project. Future experiments analysing calcium 

concentration and CD107a expression in CD4+ and CD8+ T cells expressing the same 

level of TCR, would help understand whether this is the case or not. In particular, a recent 

study has shown that increased levels of CD5 correlate with increased calcium signalling 

(Freitas et al., 2017). Thus, TCR expression and calcium signalling might indeed be 

correlated.  

Unexpectedly, increasing the levels of TCR expression did not alter the functional avidity 

(triggering threshold and amount of cytokines produced) of either bulk CD4+ T cells or 

TCR-transduced CD4+ T cells as previously demonstrated by our lab (Ahmadi et al., 

2011; Nicholson, unpublished data). However, in this thesis MHC-II restricted TCR 

responses were analysed, whereas previous work was carried out with the F5-TCR, a 

MHC-I restricted TCR. We hypothesised that the lack of a difference is a consequence 

of experimental limitations, rather than a lack of differences attributed by the increased 

CD3 and TCR expression. In the case of the bulk CD4+ T cell population, the lack of a 
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common known antigen that could be used for stimulation, and the consequent use of a 

high affinity anti-CD3 antibody for stimulation, may have masked subtle differences 

between the two populations of CD3-GFP and control-GFP transduced cells. In the case 

of TCR-transduced CD4+ T cells, the use of suboptimal conditions for stimulation (low 

number of APCs, mixed with a high number of bystander cells) may have prevented 

effective stimulation of the target population, providing false negative results. In both 

cases, improved stimulatory conditions may lead to different conclusions. The use of 

superantigens such as staphylococcal enterotoxins, and the use of a cleaner population 

of APCs, may lead to different functional avidity profiles in bulk and TCR-transduced 

CD4+ T cells, respectively.   

Following adoptive transfer in vivo, it was demonstrated that the persistence of the CD4+ 

T cells transduced with the CD3-GFP was superior to that of CD4+ T cells transduced 

with the control-GFP vector or CD8+ T cells transduced with the CD3-GFP vector. This 

suggested that increased TCR expression provided T cells with a persistence advantage 

over the other experimental populations of T cells. To test this further, adoptive transfer 

of CD4+ and CD8+ T cells expressing the same density of TCR, would indicate whether 

the difference in persistence is a sole consequence of different levels of TCR expression. 

This project has shown that increased, supraphysiological TCR expression in CD4+ T 

cells cannot be maintained in vivo. By 20 days post initial T cell transfer, the CD4+ T cells 

transduced with the CD3-GFP vector had down modulated the expression of their TCR, 

to levels similar to those seen in the control-GFP population. Since this downregulation 

was not seen in the control-GFP population, we hypothesised that this was a 

consequence of increasing the levels of TCR to supraphysiological levels. Increased 

TCR expression may result in stronger interaction with self-p:MHC complexes, leading 

to aberrant T cell signalling. To prevent abnormal T cell activation and potential auto-

reactivity and toxicity, regulatory mechanisms drive TCR downregulation to physiological 

levels. To confirm that this is a consequence of TCR:self-p:MHC interaction, future 

experiments should be carried out in MHC-II deficient mice. In this case CD4+ T cells 
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would not be able to interact with self-MHC and it would be predicted that no TCR down-

regulation would be observed. 

Moreover, to investigate whether TCR downregulation is indeed a mechanism to prevent 

aberrant T cell activation and development of toxicity, genetically modified CD4+ T cells 

could be used. Two mechanisms are known to drive TCR downregulation: one is 

dependent on the kinases p56-lck and p59-fyn; the second one is induced by PKC and 

is dependent on a di-leucine motif in the CD3γ chain. Mutant T cells lacking either p56-

lck or the di-leucine CD3γ motif are unable to downregulate their TCR following 

stimulation. These mutant CD4+ T cells could be used as donor cells, and their TCR 

expression and ability to induce toxicity in vivo tracked overtime. If TCR downregulation 

is impaired and supraphysiological levels of TCR are indeed able to induce auto-

reactivity in T cells, recipient mice would present with progressively higher severity 

scoring. 

Finally, future experiments should concentrate on investigating whether the observed 

TCR downregulation is permanent or not. Ex vivo CD3-GFP transduced CD4+ T cells 

could be cultivated in vitro following their isolation from a variety of tissues. Their 

expression of TCR could be monitored to determine whether constant TCR:self-p:MHC 

interactions are needed to maintain the levels of TCR low; or whether the downregulation 

is a permanent feature.  
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8. Appendix 

pMP71 CD3-IRES-GFP retroviral construct 

TCAAGGTTAG GAACAGAGAG ACAGGAGAAT ATGGGCCAAA CAGGATATCT  

GTGGTAAGCA GTTCCTGCCC CGGCTCAGGG CCAAGAACAG TTGGAACAGC  

AGAATATGGG CCAAACAGGA TATCTGTGGT AAGCAGTTCC TGCCCCGGCT  

CAGGGCCAAG AACAGATGGT CCCCAGATGC GGTCCCGCCC TCAGCAGTTT  

CTAGAGAACC ATCAGATGTT TCCAGGGTGC CCCAAGGACC TGAAATGACC  

CTGTGCCTTA TTTGAACTAA CCAATCAGTT CGCTTCTCGC TTCTGTTCGC  

GCGCTTCTGC TCCCCGAGCT CAATAAAAGA GCCCACAACC CCTCACTCGG  

CGCGCCAGTC CTCCGATTGA CTGCGTCGCC CGGGTACCCG TATTCCCAAT  

AAAGCCTCTT GCTGTTTGCA TCCGAATCGT GGACTCGCTG ATCCTTGGGA  

GGGTCTCCTC AGATTGATTG ACTGCCCACC TCGGGGGTCT TTCATTTGGA  

GGTTCCACCG AGATTTGGAG ACCCCTGCCC AGGGACCACC GACCCCCCCG  

CCGGGAGGTA AGCTGGCCAG CGGTCGTTTC GTGTCTGTCT CTGTCTTTGG  

GCGTGTTTGT GCCGGCATCT AATGTTTGCG CCTGCGTCTG TACTAGTTGG  

CTAACTAGAT CTGTATCTGG CGGTCCCGCG GAAGAACTGA CGAGTTCGTA  

TTCCCGGCCG CAGCCCCTGG GAGACGTCCC AGCGGCCTCG GGGGCCCGTT  

TTGTGGCCCA TTCTGTATCA GTTAACCTAC CCGAGTCGGA CTTTTTGGAG  

CTCCGCCACT GTCCGAGGGG TACGTGGCTT TGTTGGGGGA CGAGAGACAG  

AGACACTTCC CGCCCCCGTC TGAATTTTTG CTTTCGGTTT TACGCCGAAA  

CCGCGCCGCG CGTCTTGTCT GCTGCAGCAT CGTTCTGTGT TGTCTCTGTC  

TGACTGTGTT TCTGTATTTG TCTGAAAATT AGCTCGACAA AGTTAAGTAA  

TAGTCCCTCT CTCCAAGCTC ACTTACAGGC GGCCGCATGA AGTGGAAAGT  

GTCTGTTCTC GCCTGCATCC TCCACGTGCG GTTCCCAGGA GCAGAGGCAC  

AGAGCTTTGG TCTGCTGGAT CCCAAACTCT GCTACTTGCT AGATGGAATC  

CTCTTCATCT ACGGAGTCAT CATCACAGCC CTGTACCTGA GAGCAAAATT  

CAGCAGGAGT GCAGAGACTG CTGCCAACCT GCAGGACCCC AACCAGCTCT  

ACAATGAGCT CAATCTAGGG CGAAGAGAGG AATATGACGT CTTGGAGAAG  

AAGCGGGCTC GGGATCCAGA GATGGGAGGC AAACAGCAGA GGAGGAGGAA  

CCCCCAGGAA GGCGTATACA ATGCACTGCA GAAAGACAAG ATGGCAGAAG  

CCTACAGTGA GATCGGCACA AAAGGCGAGA GGCGGAGAGG CAAGGGGCAC  

GATGGCCTTT ACCAGGGTCT CAGCACTGCC ACCAAGGACA CCTGTGATGC  

CCTGCATATG CAGACCCTGG CCCCTCGCGT GAAGCAGACT TTGAATTTTG  

ACCTTCTCAA GTTGGCGGGA GACGTGGAGT CCAACCCAGG GCCCATGCGG  

TGGAACACTT TCTGGGGCAT CCTGTGCCTC AGCCTCCTAG CTGTTGGCAC  

TTGCCAGGAC GATGCCGAGA ACATTGAATA CAAAGTCTCC ATCTCAGGAA  

CCAGTGTAGA GTTGACGTGC CCTCTAGACA GTGACGAGAA CTTAAAATGG  

GAAAAAAATG GCCAAGAGCT GCCTCAGAAG CATGATAAGC ACCTGGTGCT  

CCAGGATTTC TCGGAAGTCG AGGACAGTGG CTACTACGTC TGCTACACAC  

CAGCCTCAAA TAAAAACACG TACTTGTACC TGAAAGCTCG AGTGTGTGAG  

TACTGTGTGG AGGTGGACCT GACAGCAGTA GCCATAATCA TCATTGTTGA  

CATCTGTATC ACTCTGGGCT TGCTGATGGT CATTTATTAC TGGAGCAAGA  

ATAGGAAGGC CAAGGCCAAG CCTGTGACCC GAGGAACCGG TGCTGGTAGC  

AGGCCCAGAG GGCAAAACAA GGAGCGGCCA CCACCTGTTC CCAACCCAGA  

CTATGAGCCC ATCCGCAAAG GCCAGCGGGA CCTGTATTCT GGCCTGAATC  

AGAGAGCAGT CGAGGGCAGA GGAAGTCTGC TAACATGCGG TGACGTCGAG  

GAGAATCCTG GCCCAATGGA ACACAGCGGG ATTCTGGCTA GTCTGATACT  

GATTGCTGTT CTCCCCCAAG GGAGCCCCTT CAAGGTACAA GTGACCGAAT  

ATGAGGACAA AGTATTTGTG ACCTGCAATA CCAGCGTCAT GCATCTAGAT  
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GGAACGGTGG AAGGATGGTT TGCAAAGAAT AAAACACTCA ACTTGGGCAA  

AGGCGTTCTG GACCCACGAG GGATATATCT GTGTAATGGG ACAGAGCAGC  

TGGCAAAGGT GGTGTCTTCT GTGCAAGTCC ATTACCGAAT GTGCCAGAAC  

TGTGTGGAGC TAGACTCGGG CACCATGGCT GGTGTCATCT TCATTGACCT  

CATCGCAACT CTGCTCCTGG CTTTGGGCGT CTACTGCTTT GCAGGACATG  

AGACCGGAAG GCCTTCTGGG GCTGCTGAGG TTCAAGCACT GCTGAAGAAT  

GAGCAGCTGT ATCAGCCTCT TCGAGATCGT GAAGATACCC AGTACAGCCG  

TCTTGGAGGG AACTGGCCCC GGAACAAGAA ATCTCAATGT ACTAACTACG  

CTTTGTTGAA ACTCGCTGGC GATGTTGAAA GTAACCCCGG TCCTATGGAG  

CAGAGGAAGG GTCTGGCTGG CCTCTTCCTG GTGATCTCTC TTCTTCAAGG  

CACTGTAGCC CAGACAAATA AAGCAAAGAA TTTGGTACAA GTGGATGGCA  

GCCGAGGAGA CGGTTCTGTA CTTCTGACTT GTGGCTTGAC TGACAAGACT  

ATCAAGTGGC TTAAAGACGG GAGCATAATA AGTCCTCTAA ATGCAACTAA  

AAACACATGG AATCTGGGCA ACAATGCCAA AGACCCTCGA GGCACGTATC  

AGTGTCAAGG AGCAAAGGAG ACATCAAACC CCCTGCAAGT GTATTACAGA  

ATGTGTGAAA ACTGCATTGA GCTAAACATA GGCACCATAT CCGGCTTTAT  

CTTCGCTGAG GTCATCAGCA TCTTCTTCCT TGCTCTTGGT GTATATCTCA  

TTGCGGGACA GGATGGAGTT CGCCAGTCAA GAGCTTCAGA CAAGCAGACT  

CTGTTGCAAA ATGAACAGCT GTACCAGCCC CTCAAGGACC GGGAATATGA  

CCAGTACAGC CATCTCCAAG GAAACCAACT GAGGAAGAAG GTCGACCTCG  

AGATCCGCCC CTCTCCCTCC CCCCCCCCTA ACGTTACTGG CCGAAGCCGC  

TTGGAATAAG GCCGGTGTGC GTTTGTCTAT ATGTTATTTT CCACCATATT  

GCCGTCTTTT GGCAATGTGA GGGCCCGGAA ACCTGGCCCT GTCTTCTTGA  

CGAGCATTCC TAGGGGTCTT TCCCCTCTCG CCAAAGGAAT GCAAGGTCTG  

TTGAATGTCG TGAAGGAAGC AGTTCCTCTG GAAGCTTCTT GAAGACAAAC  

AACGTCTGTA GCGACCCTTT GCAGGCAGCG GAACCCCCCA CCTGGCGACA  

GGTGCCTCTG CGGCCAAAAG CCACGTGTAT AAGATACACC TGCAAAGGCG  

GCACAACCCC AGTGCCACGT TGTGAGTTGG ATAGTTGTGG AAAGAGTCAA  

ATGGCTCTCC TCAAGCGTAT TCAACAAGGG GCTGAAGGAT GCCCAGAAGG  

TACCCCATTG TATGGGATCT GATCTGGGGC CTCGGTGCAC ATGCTTTACA  

TGTGTTTAGT CGAGGTTAAA AAAACGTCTA GGCCCCCCGA ACCACGGGGA  

CGTGGTTTTC CTTTGAAAAA CACGATGATA ATATGGCCAC AACCATGGTG  

AGCAAGGGCG AGGAGCTGTT CACCGGGGTG GTGCCCATCC TGGTCGAGCT  

GGACGGCGAC GTAAACGGCC ACAAGTTCAG CGTGTCCGGC GAGGGCGAGG  

GCGATGCCAC CTACGGCAAG CTGACCCTGA AGTTCATCTG CACCACCGGC  

AAGCTGCCCG TGCCCTGGCC CACCCTCGTG ACCACCCTGA CCTACGGCGT  

GCAGTGCTTC AGCCGCTACC CCGACCACAT GAAGCAGCAC GACTTCTTCA  

AGTCCGCCAT GCCCGAAGGC TACGTCCAGG AGCGCACCAT CTTCTTCAAG  

GACGACGGCA ACTACAAGAC CCGCGCCGAG GTGAAGTTCG AGGGCGACAC  

CCTGGTGAAC CGCATCGAGC TGAAGGGCAT CGACTTCAAG GAGGACGGCA  

ACATCCTGGG GCACAAGCTG GAGTACAACT ACAACAGCCA CAACGTCTAT  

ATCATGGCCG ACAAGCAGAA GAACGGCATC AAGGTGAACT TCAAGATCCG  

CCACAACATC GAGGACGGCA GCGTGCAGCT CGCCGACCAC TACCAGCAGA  

ACACCCCCAT CGGCGACGGC CCCGTGCTGC TGCCCGACAA CCACTACCTG  

AGCACCCAGT CCGCCCTGAG CAAAGACCCC AACGAGAAGC GCGATCACAT  

GGTCCTGCTG GAGTTCGTGA CCGCCGCCGG GATCACTCTC GGCATGGACG  

AGCTGTACAG AATTCGAGCA TCTTACCGCC ATTTATTCCC ATATTTGTTC  
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TGTTTTTCTT GATTTGGGTA TACATTTAAA TGTTAATAAA ACAAAATGGT  

GGGGCAATCA TTTACATTTT ATGGGATATG TAATTACTAG TTCAGGTGTA  

TTGCCACAAG ACAAACATGT TAAGAAACTT TCCCGTTATT TACGCTCTGT  

TCCTGTTAAT CAACCTCTGG ATTACAAAAT TTGTGAAAGA TTGACTGATA  

TTCTTAACTA TGTTGCTCCT TTTACGCTGT GTGGATATGC TGCTTTAATG  

CCTCTGTATC ATGCTATTGC TTCCCGTACG GCTTTCGTTT TCTCCTCCTT  

GTATAAATCC TGGTTGCTGT CTCTTTATGA GGAGTTGTGG CCCGTTGTCC  

GTCAACGTGG CGTGGTGTGC TCTGTGTTTG CTGACGCAAC CCCCACTGGC  

TGGGGCATTG CCACCACCTG TCAACTCCTT TCTGGGACTT TCGCTTTCCC  

CCTCCCGATC GCCACGGCAG AACTCATCGC CGCCTGCCTT GCCCGCTGCT  

GGACAGGGGC TAGGTTGCTG GGCACTGATA ATTCCGTGGT GTTGTCGGGG  

AAGCTGACGT CCTTTCCATG GCTGCTCGCC TGTGTTGCCA ACTGGATCCT  

GCGCGGGACG TCCTTCTGCT ACGTCCCTTC GGCTCTCAAT CCAGCGGACC  

TCCCTTCCCG AGGCCTTCTG CCGGTTCTGC GGCCTCTCCC GCGTCTTCGC  

TTTCGGCCTC CGACGAGTCG GATCTCCCTT TGGGCCGCCT CCCCGCCTGT  

TTCGCCTCGG CGTCCGGTCC GTGTTGCTTG GTCGTCACCT GTGCAGAATT  

GCGAACCATG GATTCCACCG TGAACTTTGT CTCCTGGCAT GCAAATCGTC  

AACTTGGCAT GCCAAGAATT CGGATCCAAG CTTAGGCCTG CTCGCTTTCT  

TGCTGTCCCA TTTCTATTAA AGGTTCCTTT GTTCCCTAAG TCCAACTACT  

AAACTGGGGG ATATTATGAA GGGCCTTGAG CATCTGGATT CTGCCTAGCG  

CTAAGCTTCC TAACACGAGC CATAGATAGA ATAAAAGATT TTATTTAGTC  

TCCAGAAAAA GGGGGGAATG AAAGACCCCA CCTGTAGGTT TGGCAAGCTA  

GCTTAAGTAA GCCATTTTGC AAGGCATGGA AAAATACATA ACTGAGAATA  

GAGAAGTTCA GATCAAGGTT AGGAACAGAG AGACAGGAGA ATATGGGCCA  

AACAGGATAT CTGTGGTAAG CAGTTCCTGC CCCGGCTCAG GGCCAAGAAC  

AGTTGGAACA GCAGAATATG GGCCAAACAG GATATCTGTG GTAAGCAGTT  

CCTGCCCCGG CTCAGGGCCA AGAACAGATG GTCCCCAGAT GCGGTCCCGC  

CCTCAGCAGT TTCTAGAGAA CCATCAGATG TTTCCAGGGT GCCCCAAGGA  

CCTGAAATGA CCCTGTGCCT TATTTGAACT AACCAATCAG TTCGCTTCTC  

GCTTCTGTTC GCGCGCTTCT GCTCCCCGAG CTCAATAAAA GAGCCCACAA  

CCCCTCACTC GGCGCGCCAG TCCTCCGATA GACTGCGTCG CCCGGGGTAC  

CCGTATTCCC AATAAAGCCT CTTGCTGTTT GCATCCGAAT CGTGGACTCG  

CTGATCCTTG GGAGGGTCTC CTCAGATTGA TTGACTGCCC ACCTCGGGGG  

TCTTTCATTC TCGAGAGCTT TGGCGTAATC ATGGTCATAG CTGTTTCCTG  

TGTGAAATTG TTATCCGCTC ACAATTCCAC ACAACATACG AGCCGGAAGC  

ATAAAGTGTA AAGCCTGGGG TGCCTAATGA GTGAGCTAAC TCACATTAAT  

TGCGTTGCGC TCACTGCCCG CTTTCCAGTC GGGAAACCTG TCGTGCCAGC  

TGCATTAATG AATCGGCCAA CGCGCGGGGA GAGGCGGTTT GCGTATTGGG  

CGCTCTTCCG CTTCCTCGCT CACTGACTCG CTGCGCTCGG TCGTTCGGCT  

GCGGCGAGCG GTATCAGCTC ACTCAAAGGC GGTAATACGG TTATCCACAG  

AATCAGGGGA TAACGCAGGA AAGAACATGT GAGCAAAAGG CCAGCAAAAG  

GCCAGGAACC GTAAAAAGGC CGCGTTGCTG GCGTTTTTCC ATAGGCTCCG  

CCCCCCTGAC GAGCATCACA AAAATCGACG CTCAAGTCAG AGGTGGCGAA  

ACCCGACAGG ACTATAAAGA TACCAGGCGT TTCCCCCTGG AAGCTCCCTC  

GTGCGCTCTC CTGTTCCGAC CCTGCCGCTT ACCGGATACC TGTCCGCCTT  

TCTCCCTTCG GGAAGCGTGG CGCTTTCTCA ATGCTCACGC TGTAGGTATC  

TCAGTTCGGT GTAGGTCGTT CGCTCCAAGC TGGGCTGTGT GCACGAACCC  
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CCCGTTCAGC CCGACCGCTG CGCCTTATCC GGTAACTATC GTCTTGAGTC  

CAACCCGGTA AGACACGACT TATCGCCACT GGCAGCAGCC ACTGGTAACA  

GGATTAGCAG AGCGAGGTAT GTAGGCGGTG CTACAGAGTT CTTGAAGTGG  

TGGCCTAACT ACGGCTACAC TAGAAGGACA GTATTTGGTA TCTGCGCTCT  

GCTGAAGCCA GTTACCTTCG GAAAAAGAGT TGGTAGCTCT TGATCCGGCA  

AACAAACCAC CGCTGGTAGC GGTGGTTTTT TTGTTTGCAA GCAGCAGATT  

ACGCGCAGAA AAAAAGGATC TCAAGAAGAT CCTTTGATCT TTTCTACGGG  

GTCTGACGCT CAGTGGAACG AAAACTCACG TTAAGGGATT TTGGTCATGA  

GATTATCAAA AAGGATCTTC ACCTAGATCC TTTTAAATTA AAAATGAAGT  

TTTAAATCAA TCTAAAGTAT ATATGAGTAA ACTTGGTCTG ACAGTTACCA  

ATGCTTAATC AGTGAGGCAC CTATCTCAGC GATCTGTCTA TTTCGTTCAT  

CCATAGTTGC CTGACTCCCC GTCGTGTAGA TAACTACGAT ACGGGAGGGC  

TTACCATCTG GCCCCAGTGC TGCAATGATA CCGCGAGACC CACGCTCACC  

GGCTCCAGAT TTATCAGCAA TAAACCAGCC AGCCGGAAGG GCCGAGCGCA  

GAAGTGGTCC TGCAACTTTA TCCGCCTCCA TCCAGTCTAT TAATTGTTGC  

CGGGAAGCTA GAGTAAGTAG TTCGCCAGTT AATAGTTTGC GCAACGTTGT  

TGCCATTGCT GCTGGCATCG TGGTGTCACG CTCGTCGTTT GGTATGGCTT  

CATTCAGCTC CGGTTCCCAA CGATCAAGGC GAGTTACATG ATCCCCCATG  

TTGTGCAAAA AAGCGGTTAG CTCCTTCGGT CCTCCGATCG TTGTCAGAAG  

TAAGTTGGCC GCAGTGTTAT CACTCATGGT TATGGCAGCA CTGCATAATT  

CTCTTACTGT CATGCCATCC GTAAGATGCT TTTCTGTGAC TGGTGAGTAC  

TCAACCAAGT CATTCTGAGA ATAGTGTATG CGGCGACCGA GTTGCTCTTG  

CCCGGCGTCA ATACGGGATA ATACCGCGCC ACATAGCAGA ACTTTAAAAG  

TGCTCATCAT TGGAAAACGT TCTTCGGGGC GAAAACTCTC AAGGATCTTA  

CCGCTGTTGA GATCCAGTTC GATGTAACCC ACTCGTGCAC CCAACTGATC  

TTCAGCATCT TTTACTTTCA CCAGCGTTTC TGGGTGAGCA AAAACAGGAA  

GGCAAAATGC CGCAAAAAAG GGAATAAGGG CGACACGGAA ATGTTGAATA  

CTCATACTCT TCCTTTTTCA ATATTATTGA AGCATTTATC AGGGTTATTG  

TCTCATGAGC GGATACATAT TTGAATGTAT TTAGAAAAAT AAACAAATAG  

GGGTTCCGCG CACATTTCCC CGAAAAGTGC CACCTGACGT CTAAGAAACC  

ATTATTATCA TGACATTAAC CTATAAAAAT AGGCGTATCA CGAGGCCCTT  

TCGTCTTCAA GCTGCCTCGC GCGTTTCGGT GATGACGGTG AAAACCTCTG  

ACACATGCAG CTCCCGGAGA CGGTCACAGC TTGTCTGTAA GCGGATGCCG  

GGAGCAGACA AGCCCGTCAG GGCGCGTCAG CGGGTGTTGG CGGGTGTCGG  

GGCGCAGCCA TGACCCAGTC ACGTAGCGAT AGTTACTATG CGGCATCAGA  

GCAGATTGTA CTGAGAGTGC ACCATATGCG GTGTGAAATA CCGCACAGAT  

GCGTAAGGAG AAAATACCGC ATCAGGCGCC ATTCGCCATT CAGGCTGCGC  

AACTGTTGGG AAGGGCGATC GGTGCGGGCC TCTTCGCTAT TACGCCAGCT  

GGCGAAAGGG GGATGTGCTG CAAGGCGATT AAGTTGGGTA ACGCCAGGGT  

TTTCCCAGTC ACGACGTTGT AAAACGACGG CCAGTGAATT AGTACTCTAG  

CTTAAGTAAG CCATTTTGCA AGGCATGGAA AAATACATAA CTGAGAATAG  

AGAAGTTCAG A 
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pMP71 invertedCre-IRES-GFP retroviral construct 

AGCATCGTTC TGTGTTGTCT CTGTCTGACT GTGTTTCTGT ATTTGTCTGA  

AAATTAGCTC GACAAAGTTA GTATAGTCCC TCTCTCCAAG CTCACTTACA  

GGCGGCCGCT CGAGATCGCC ATCTTCCAGC AGGCGCACCA TTGCCCCTGT  

TTCACTATCC AGGTTACGGA TATAGTTCAT GACAATATTT ACATTGGTCC  

AGCCACCAGC TTGCATGATC TCCGGTATTG AAACTCCAGC GCGGGCCATA  

TCTCGCGCGG CTCCGACACG GGCACTGTGT CCAGACCAGG CCAGGTATCT  

CTGACCAGAG TCATCCTTAG CGCCGTAAAT CAATCGATGA GTTGCTTCAA  

AAATCCCTTC CAGGGCGCGA GTTGATAGCT GGCTGGTGGC AGATGGCGCG  

GCAACACCAT TTTTTCTGAC CCGGCAAAAC AGGTAGTTAT TCGGATCATC  

AGCTACACCA GAGACGGAAA TCCATCGCTC GACCAGTTTA GTTACCCCCA  

GGCTAAGTGC CTTCTCTACA CCTGCGGTGC TAACCAGCGT TTTCGTTCTG  

CCAATATGGA TTAACATTCT CCCACCGTCA GTACGTGAGA TATCTTTAAC  

CCTGATCCTG GCAATTTCGG CTATACGTAA CAGGGTGTTA TAAGCAATCC  

CCAGAAATGC CAGATTACGT ATATCCTGGC AGCGATCGCT ATTTTCCATG  

AGTGAACGAA CCTGGTCGAA ATCAGTGCGT TCGAACGCTA GAGCCTGTTT  

TGCACGTTCA CCGGCATCAA CGTTTTCTTT TCGGATCCGC CGCATAACCA  

GTGAAACAGC ATTGCTGTCA CTTGGTCGTG GCAGCCCGGA CCGACGATGA  

AGCATGTTTA GCTGGCCCAA ATGTTGCTGG ATAGTTTTTA CTGCCAGACC  

GCGCGCCTGA AGATATAGAA GATAATCGCG AACATCTTCA GGTTCTGCGG  

GAAACCATTT CCGGTTATTC AACTTGCACC ATGCCGCCCA CGACCGGCAA  

ACGGACAGAA GCATTTTCCA GGTATGCTCA GAAAACGCCT GGCGATCCCT  

GAACATGTCC ATCAGGTTCT TGCGAACCTC ATCACTCGTT GCATCGACCG  

GTAATGCAGG CAAATTTTGG TGTACGGTCA GTAAATTGGC CATGGTGGCG  

GCTCAGAATT CTTTGCCAAG TCGACCTCGA GATCCGCCCC TCTCCCTCCC  

CCCCCCCTAA CGTTACTGGC CGAAGCCGCT TGGAATAAGG CCGGTGTGCG  

TTGTCTATAT GTTATTTTCC ACCATATTGC CGTCTTTTGG CAATGTGAGG  

GCCCGGAAAC CTGGCCCTGT CTTCTTGACG AGCATTCCTA GGGGTCTTTC  

CCCTCTCGCC AAAGGAATGC AAGGTCTGTT GAATGTCGTG AAGGAAGCAG  

TTCCTCTGGA AGCTTCTTGA AGACAAACAA CGTCTGTAGC GACCCTTTGC  

AGGCAGCGGA ACCCCCCACC TGGCGACAGG TGCCTCTGCG GCCAAAAGCC  

ACGTGTATAA GATACACCTG CAAAGGCGGC ACAACCCCAG TGCCACGTTG  

TGAGTTGGAT AGTTGTGGAA AGAGTCAAAT GGCTCTCCTC AAGCGTATTC  

AACAAGGGGC TGAAGGATGC CCAGAAGGTA CCCCATTGTA TGGGATCTGA  

TCTGGGGCCT CGGTGCACAT GCTTTACATG TGTTTAGTCG AGGTTAAAAA  

AACGTCTAGG CCCCCCGAAC CACGGGGACG TGGTTTTCCT TTGAAAAACA  

CGATGATAAT ATGGCCACAA CCATGGTGAG CAAGGGCGAG GAGCTGTTCA  

CCGGGGTGGT GCCCATCCTG GTCGAGCTGG ACGGCGACGT AAACGGCCAC  

AAGTTCAGCG TGTCCGGCGA GGGCGAGGGC GATGCCACCT ACGGCAAGCT  

GACCCTGAAG TTCATCTGCA CCACCGGCAA GCTGCCCGTG CCCTGGCCCA  

CCCTCGTGAC CACCCTGACC TACGGCGTGC AGTGCTTCAG CCGCTACCCC  

GACCACATGA AGCAGCACGA CTTCTTCAAG TCCGCCATGC CCGAAGGCTA  

CGTCCAGGAG CGCACCATCT TCTTCAAGGA CGACGGCAAC TACAAGACCC  

GCGCCGAGGT GAAGTTCGAG GGCGACACCC TGGTGAACCG CATCGAGCTG  

AAGGGCATCG ACTTCAAGGA GGACGGCAAC ATCCTGGGGC ACAAGCTGGA  

GTACAACTAC AACAGCCACA ACGTCTATAT CATGGCCGAC AAGCAGAAGA  

ACGGCATCAA GGTGAACTTC AAGATCCGCC ACAACATCGA GGACGGCAGC  

GTGCAGCTCG CCGACCACTA CCAGCAGAAC ACCCCCATCG GCGACGGCCC  

CGTGCTGCTG CCCGACAACC ACTACCTGAG CACCCAGTCC GCCCTGAGCA  

AAGACCCCAA CGAGAAGCGC GATCACATGG TCCTGCTGGA GTTCGTGACC  

GCCGCCGGGA TCACTCTCGG CATGGACGAG CTGTACAGAA TTCGAGCATC  

TTACCGCCAT TTATTCCCAT ATTTGTTCTG TTTTTCTTGA TTTGGGTATA  

CATTTAAATG TTAATAAAAC AAAATGGTGG GGCAATCATT TACATTTTAT  

GGGATATGTA ATTACTAGTT CAGGTGTATT GCCACAAGAC AAACATGTTA  
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AGAAACTTTC CCGTTATTTA CGCTCTGTTC CTGTTAATCA ACCTCTGGAT  

TACAAAATTT GTGAAAGATT GACTGATATT CTTAACTATG TTGCTCCTTT  

TACGCTGTGT GGATATGCTG CTTTAATGCC TCTGTATCAT GCTATTGCTT  

CCCGTACGGC TTTCGTTTTC TCCTCCTTGT ATAAATCCTG GTTGCTGTCT  

CTTTATGAGG AGTTGTGGCC CGTTGTCCGT CAACGTGGCG TGGTGTGCTC  

TGTGTTTGCT GACGCAACCC CCACTGGCTG GGGCATTGCC ACCACCTGTC  

AACTCCTTTC TGGGACTTTC GCTTTCCCCC TCCCGATCGC CACGGCAGAA  

CTCATCGCCG CCTGCCTTGC CCGCTGCTGG ACAGGGGCTA GGTTGCTGGG  

CACTGATAAT TCCGTGGTGT TGTCGGGGAA GCTGACGTCC TTTCCATGGC  

TGCTCGCCTG TGTTGCCAAC TGGATCCTGC GCGGGACGTC CTTCTGCTAC  

GTCCCTTCGG CTCTCAATCC AGCGGACCTC CCTTCCCGAG GCCTTCTGCC  

GGTTCTGCGG CCTCTCCCGC GTCTTCGCTT TCGGCCTCCG ACGAGTCGGA  

TCTCCCTTTG GGCCGCCTCC CCGCCTGTTT CGCCTCGGCG TCCGGTCCGT  

GTTGCTTGGT CGTCACCTGT GCAGAATTGC GAACCATGGA TTCCACCGTG  

AACTTTGTCT CCTGGCATGC AAATCGTCAA CTTGGCATGC CAAGAATTCG  

GATCCAAGCT TAGGCCTGCT CGCTTTCTTG CTGTCCCATT TCTATTAAAG  

GTTCCTTTGT TCCCTAAGTC CAACTACTAA ACTGGGGGAT ATTATGAAGG  

GCCTTGAGCA TCTGGATTCT GCCTAGCGCT AAGCTTCCTA ACACGAGCCA  

TAGATAGAAT AAAAGATTTT ATTTAGTCTC CAGAAAAAGG GGGGAATGAA  

AGACCCCACC TGTAGGTTTG GCAAGCTAGC TTAAGTAAGC CATTTTGCAA  

GGCATGGAAA AATACATAAC TGAGAATAGA GAAGTTCAGA TCAAGGTTAG  

GAACAGAGAG ACAGGAGAAT ATGGGCCAAA CAGGATATCT GTGGTAAGCA  

GTTCCTGCCC CGGCTCAGGG CCAAGAACAG TTGGAACAGC AGAATATGGG  

CCAAACAGGA TATCTGTGGT AAGCAGTTCC TGCCCCGGCT CAGGGCCAAG  

AACAGATGGT CCCCAGATGC GGTCCCGCCC TCAGCAGTTT CTAGAGAACC  

ATCAGATGTT TCCAGGGTGC CCCAAGGACC TGAAATGACC CTGTGCCTTA  

TTTGAACTAA CCAATCAGTT CGCTTCTCGC TTCTGTTCGC GCGCTTCTGC  

TCCCCGAGCT CAATAAAAGA GCCCACAACC CCTCACTCGG CGCGCCAGTC  

CTCCGATAGA CTGCGTCGCC CGGGGTACCC GTATTCCCAA TAAAGCCTCT  

TGCTGTTTGC ATCCGAATCG TGGACTCGCT GATCCTTGGG AGGGTCTCCT  

CAGATTGATT GACTGCCCAC CTCGGGGGTC TTTCATTCTC GAGAGCTTTG  

GCGTAATCAT GGTCATAGCT GTTTCCTGTG TGAAATTGTT ATCCGCTCAC  

AATTCCACAC AACATACGAG CCGGAAGCAT AAAGTGTAAA GCCTGGGGTG  

CCTAATGAGT GAGCTAACTC ACATTAATTG CGTTGCGCTC ACTGCCCGCT  

TTCCAGTCGG GAAACCTGTC GTGCCAGCTG CATTAATGAA TCGGCCAACG  

CGCGGGGAGA GGCGGTTTGC GTATTGGGCG CTCTTCCGCT TCCTCGCTCA  

CTGACTCGCT GCGCTCGGTC GTTCGGCTGC GGCGAGCGGT ATCAGCTCAC  

TCAAAGGCGG TAATACGGTT ATCCACAGAA TCAGGGGATA ACGCAGGAAA  

GAACATGTGA GCAAAAGGCC AGCAAAAGGC CAGGAACCGT AAAAAGGCCG  

CGTTGCTGGC GTTTTTCCAT AGGCTCCGCC CCCCTGACGA GCATCACAAA  

AATCGACGCT CAAGTCAGAG GTGGCGAAAC CCGACAGGAC TATAAAGATA  
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CCAGGCGTTT CCCCCTGGAA GCTCCCTCGT GCGCTCTCCT GTTCCGACCC  

TGCCGCTTAC CGGATACCTG TCCGCCTTTC TCCCTTCGGG AAGCGTGGCG  

CTTTCTCAAT GCTCACGCTG TAGGTATCTC AGTTCGGTGT AGGTCGTTCG  

CTCCAAGCTG GGCTGTGTGC ACGAACCCCC CGTTCAGCCC GACCGCTGCG  

CCTTATCCGG TAACTATCGT CTTGAGTCCA ACCCGGTAAG ACACGACTTA  

TCGCCACTGG CAGCAGCCAC TGGTAACAGG ATTAGCAGAG CGAGGTATGT  

AGGCGGTGCT ACAGAGTTCT TGAAGTGGTG GCCTAACTAC GGCTACACTA  

GAAGGACAGT ATTTGGTATC TGCGCTCTGC TGAAGCCAGT TACCTTCGGA  

AAAAGAGTTG GTAGCTCTTG ATCCGGCAAA CAAACCACCG CTGGTAGCGG  

TGGTTTTTTT GTTTGCAAGC AGCAGATTAC GCGCAGAAAA AAAGGATCTC  

AAGAAGATCC TTTGATCTTT TCTACGGGGT CTGACGCTCA GTGGAACGAA  

AACTCACGTT AAGGGATTTT GGTCATGAGA TTATCAAAAA GGATCTTCAC  

CTAGATCCTT TTAAATTAAA AATGAAGTTT TAAATCAATC TAAAGTATAT  

ATGAGTAAAC TTGGTCTGAC AGTTACCAAT GCTTAATCAG TGAGGCACCT  

ATCTCAGCGA TCTGTCTATT TCGTTCATCC ATAGTTGCCT GACTCCCCGT  

CGTGTAGATA ACTACGATAC GGGAGGGCTT ACCATCTGGC CCCAGTGCTG  

CAATGATACC GCGAGACCCA CGCTCACCGG CTCCAGATTT ATCAGCAATA  

AACCAGCCAG CCGGAAGGGC CGAGCGCAGA AGTGGTCCTG CAACTTTATC  

CGCCTCCATC CAGTCTATTA ATTGTTGCCG GGAAGCTAGA GTAAGTAGTT  

CGCCAGTTAA TAGTTTGCGC AACGTTGTTG CCATTGCTGC TGGCATCGTG  

GTGTCACGCT CGTCGTTTGG TATGGCTTCA TTCAGCTCCG GTTCCCAACG  

ATCAAGGCGA GTTACATGAT CCCCCATGTT GTGCAAAAAA GCGGTTAGCT  

CCTTCGGTCC TCCGATCGTT GTCAGAAGTA AGTTGGCCGC AGTGTTATCA  

CTCATGGTTA TGGCAGCACT GCATAATTCT CTTACTGTCA TGCCATCCGT  

AAGATGCTTT TCTGTGACTG GTGAGTACTC AACCAAGTCA TTCTGAGAAT  

AGTGTATGCG GCGACCGAGT TGCTCTTGCC CGGCGTCAAT ACGGGATAAT  

ACCGCGCCAC ATAGCAGAAC TTTAAAAGTG CTCATCATTG GAAAACGTTC  

TTCGGGGCGA AAACTCTCAA GGATCTTACC GCTGTTGAGA TCCAGTTCGA  

TGTAACCCAC TCGTGCACCC AACTGATCTT CAGCATCTTT TACTTTCACC  

AGCGTTTCTG GGTGAGCAAA AACAGGAAGG CAAAATGCCG CAAAAAAGGG  

AATAAGGGCG ACACGGAAAT GTTGAATACT CATACTCTTC CTTTTTCAAT  

ATTATTGAAG CATTTATCAG GGTTATTGTC TCATGAGCGG ATACATATTT  

GAATGTATTT AGAAAAATAA ACAAATAGGG GTTCCGCGCA CATTTCCCCG  

AAAAGTGCCA CCTGACGTCT AAGAAACCAT TATTATCATG ACATTAACCT  

ATAAAAATAG GCGTATCACG AGGCCCTTTC GTCTTCAAGC TGCCTCGCGC  

GTTTCGGTGA TGACGGTGAA AACCTCTGAC ACATGCAGCT CCCGGAGACG  

GTCACAGCTT GTCTGTAAGC GGATGCCGGG AGCAGACAAG CCCGTCAGGG  

CGCGTCAGCG GGTGTTGGCG GGTGTCGGGG CGCAGCCATG ACCCAGTCAC  

GTAGCGATAG TTACTATGCG GCATCAGAGC AGATTGTACT GAGAGTGCAC  

CATATGCGGT GTGAAATACC GCACAGATGC GTAAGGAGAA AATACCGCAT  

CAGGCGCCAT TCGCCATTCA GGCTGCGCAA CTGTTGGGAA GGGCGATCGG  

TGCGGGCCTC TTCGCTATTA CGCCAGCTGG CGAAAGGGGG ATGTGCTGCA  

AGGCGATTAA GTTGGGTAAC GCCAGGGTTT TCCCAGTCAC GACGTTGTAA  

AACGACGGCC AGTGAATTAG TACTCTAGCT TAAGTAAGCC ATTTTGCAAG  

GCATGGAAAA ATACATAACT GAGAATAGAG AAGTTCAGAT CAAGGTTAGG  

AACAGAGAGA CAGGAGAATA TGGGCCAAAC AGGATATCTG TGGTAAGCAG  

TTCCTGCCCC GGCTCAGGGC CAAGAACAGT TGGAACAGCA GAATATGGGC  

CAAACAGGAT ATCTGTGGTA AGCAGTTCCT GCCCCGGCTC AGGGCCAAGA  

ACAGATGGTC CCCAGATGCG GTCCCGCCCT CAGCAGTTTC TAGAGAACCA  

TCAGATGTTT CCAGGGTGCC CCAAGGACCT GAAATGACCC TGTGCCTTAT  

TTGAACTAAC CAATCAGTTC GCTTCTCGCT TCTGTTCGCG CGCTTCTGCT  

CCCCGAGCTC AATAAAAGAG CCCACAACCC CTCACTCGGC GCGCCAGTCC  

TCCGATTGAC TGCGTCGCCC GGGTACCCGT ATTCCCAATA AAGCCTCTTG  

CTGTTTGCAT CCGAATCGTG GACTCGCTGA TCCTTGGGAG GGTCTCCTCA  

GATTGATTGA CTGCCCACCT CGGGGGTCTT TCATTTGGAG GTTCCACCGA  
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GATTTGGAGA CCCCTGCCCA GGGACCACCG ACCCCCCCGC CGGGAGGTAA  

GCTGGCCAGC GGTCGTTTCG TGTCTGTCTC TGTCTTTGGG CGTGTTTGTG  

CCGGCATCTA ATGTTTGCGC CTGCGTCTGT ACTAGTTGGC TAACTAGATC  

TGTATCTGGC GGTCCCGCGG AAGAACTGAC GAGTTCGTAT TCCCGGCCGC  

AGCCCCTGGG AGACGTCCCA GCGGCCTCGG GGGCCCGTTT TGTGGCCCAT  

TCTGTATCAG TTAACCTACC CGAGTCGGAC TTTTTGGAGC TCCGCCACTG  

TCCGAGGGGT ACGTGGCTTT GTTGGGGGAC GAGAGACAGA GACACTTCCC  

GCCCCCGTCT GAATTTTTGC TTTCGGTTTT ACGCCGAAAC CGCGCCGCGC  

GTCTTGTCTG CTGC 
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pMP71 TRP1-TCR-IRES-CD19 retroviral construct 

AGCATCGTTCTGTGTTGTCTCTGTCTGACTGTGTTTCTGTATTTGTCTGAAAATTAGCTCG

ACAAAGTTAAGTAATAGTCCCTCTCTCCAAGCTCACTTACAGGCGGCCGCGCCACCCCCGG

ACCATGGTGCTGGCTCTGCTGCCTGTGCTGGGCATCCACTTTCTGCTGAGAGATGCCCAGG

CCCAGAGCGTGACACAGCCTGATGCTAGAGTGACCGTGTCCGAGGGCGCCAGCCTGCAGCT

GAGATGCAAGTACAGCAGCAGCGTGACCCCCTACCTGTTTTGGTACGTGCAGTACCCCAGA

CAGGGACTGCAGCTGCTGCTGAAGTACTACAGCGGCGACCCTGTGGTGCAGGGCGTGAACG

GATTCGAGGCCGAGTTCAGCAAGAGCAACAGCAGCTTCCACCTGAGAAAGGCCTCCGTGCA

TTGGAGCGACAGCGCCGTGTACTTCTGCGCCGTGTCCAGCAACAACAACAGAATCTTCTTC

GGCGACGGCACCCAGCTGGTCGTGAAGCCCAACATCCAGAACCCCGAGCCTGCCGTGTACC

AGCTGAAGGACCCTAGAAGCCAGGACAGCACCCTGTGCCTGTTCACCGACTTCGACAGCCA

GATCAACGTGCCCAAGACCATGGAAAGCGGCACCTTCATCACCGATAAGTGCGTGCTGGAC

ATGAAGGCCATGGACAGCAAGTCCAACGGCGCTATCGCCTGGTCCAACCAGACCAGCTTCA

CATGCCAGGACATCTTCAAAGAGACAAACGCCACCTACCCCAGCAGCGACGTGCCATGTGA

CGCCACCCTGACCGAGAAGTCCTTCGAGACAGACATGAACCTGAACTTCCAGAACCTGAGC

GTGATGGGCCTGAGAATCCTGCTGCTGAAAGTGGCCGGCTTCAACCTGCTGATGACCCTGA

GACTGTGGTCCAGCGGCTCTGGCGCCACGAACTTCTCTCTGTTAAAGCAAGCAGGAGACGT

GCAAGAAAACCCCGGTCCCATGCTGTACTCCCTGCTGGCTTTCCTGCTGGGAATGTTCCTG

GGCGTGTCCGCCCAGACCATCCACCAGTGGCCTGTGGCCGAGATCAAGGCTGTGGGCAGCC

CTCTGTCTCTGGGCTGCACCATCAAGGGCAAGAGCAGCCCCAACCTGTACTGGTACTGGCA

GGCTACCGGCGGCACACTGCAGCAGCTGTTCTACAGCATCACCGTGGGCCAGGTGGAAAGC

GTGGTGCAGCTGAACCTGTCCGCCAGCAGACCCAAGGACGACCAGTTCATCCTGAGCACCG

AGAAACTGCTGCTGAGCCACAGCGGCTTCTACCTGTGTGCTTGGAGCCCTGGCCACCAGGA

CACCCAGTACTTTGGCCCTGGCACAAGACTGCTGGTGCTGGAAGATCTGAGAAACGTGACC

CCTCCCAAGGTGTCCCTGTTCGAGCCTAGCAAGGCTGAGATCGCCAACAAGCAGAAAGCCA

CCCTCGTGTGCCTGGCCAGAGGCTTCTTCCCCGACCACGTGGAACTGTCTTGGTGGGTCAA

CGGCAAAGAGGTGCACTCCGGCGTGTGCACAGACCCCCAGGCCTACAAAGAGAGCAACTAC

AGCTACTGCCTGAGCAGCAGACTGAGAGTGTCCGCCACCTTCTGGCACAACCCCAGAAACC

ACTTCAGGTGCCAGGTGCAGTTTCACGGCCTGAGCGAAGAGGACAAGTGGCCTGAGGGCAG

CCCAAAGCCCGTGACCCAGAACATCTCTGCCGAGGCTTGGGGCAGAGCCGACTGCGGCATT

ACAAGCGCTAGCTACCAGCAGGGGGTGCTGAGCGCCACCATCCTGTACGAGATTCTGCTGG

GCAAGGCCACCCTGTACGCCGTGCTGGTGTCTACCCTGGTCGTGATGGCCATGGTCAAGAG

AAAGAACTCCTGAGTCGACACGCGTACGTCGCGACCGCGGACATGTACAGAGCTCGAGCGG

GATCAATTCCGCCCCCCCCCTAACGTTACTGGCCGAAGCCGCTTGGAATAAGGCCGGTGTG

CGTTTGTCTATATGTTATTTTCCACCATATTGCCGTCTTTTGGCAATGTGAGGGCCCGGAA

ACCTGGCCCTGTCTTCTTGACGAGCATTCCTAGGGGTCTTTCCCCTCTCGCCAAAGGAATG

CAAGGTCTGTTGAATGTCGTGAAGGAAGCAGTTCCTCTGGAAGCTTCTTGAAGACAAACAA

CGTCTGTAGCGACCCTTTGCAGGCAGCGGAACCCCCCACCTGGCGACAGGTGCCTCTGCGG

CCAAAAGCCACGTGTATAAGATACACCTGCAAAGGCGGCACAACCCCAGTGCCACGTTGTG

AGTTGGATAGTTGTGGAAAGAGTCAAATGGCTCTCCTCAAGCGTATTCAACAAGGGGCTGA

AGGATGCCCAGAAGGTACCCCATTGTATGGGATCTGATCTGGGGCCTCGGTGCACATGCTT

TACATGTGTTTAGTCGAGGTTAAAAAACGTCTAGGCCCCCCGAACCACGGGGACGTGGTTT

TCCTTTGAAAAACACGATAATAATGCCACCATGCCATCTCCTCTCCCTGTCTCCTTCCTCC

TCTTTCTTACCTTAGTAGGAGGCAGGCCCCAGAAGTCCTTACTGGTGGAGGTAGAAGAGGG

AGGCAATGTTGTGCTGCCATGCCTCCCGGACTCCTCACCTGTCTCTTCTGAGAAGCTGGCT

TGGTATCGAGGTAACCAGTCAACACCCTTCCTGGAGCTGAGCCCCGGGTCCCCTGGCCTGG

GATTGCACGTGGGGTCCCTGGGCATCTTGCTAGTGATTGTCAATGTCTCAGACCATATGGG

GGGCTTCTACCTGTGCCAGAAGAGGCCCCCTTTCAAGGACATCTGGCAGCCTGCCTGGACA

GTGAACGTGGAGGATAGTGGGGAGATGTTCCGGTGGAATGCTTCAGACGTCAGGGACCTGG

ACTGTGACCTAAGGAACAGGTCCTCTGGGAGCCACAGGTCCACTTCTGGTTCCCAGCTGTA

TGTGTGGGCTAAAGACCATCCTAAGGTCTGGGGAACAAAGCCTGTATGTGCCCCTCGGGGG

AGCAGTTTGAATCAGAGTCTAATCAACCAAGACCTCACTGTGGCACCCGGCTCCACACTTT

GGCTGTCCTGTGGGGTACCCCCTGTCCCAGTGGCCAAAGGCTCCATCTCCTGGACCCATGT

GCATCCTAGGAGACCTAATGTTTCACTACTGAGCCTAAGCCTTGGGGGAGAGCACCCGGTC
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AGAGAGATGTGGGTTTGGGGGTCTCTTCTGCTTCTGCCCCAAGCCACAGCTTTAGATGAAG

GCACCTATTATTGTCTCCGAGGAAACCTGACCATCGAGAGGCACGTGAAGGTCATTGCAAG

GTCAGCAGTGTGGCTCTGGCTGTTGAGAACTGGTGGATGGATAGTCCCAGTGGTGACTTTA

GTATATGTCATCTTCTGTATGGTTTCTCTGGTGGCTTTTCTCTATTGTCAAAGAGCCTTTA

TCCTGAGAAGGAAAAGGAAGCGAATGACTGACCCCGCCAGGAGATTCTTCAAAGTGACGTG

ATCCGGATTAGTCCAATTTGTTAAAGACAGGATATCAGTGGTCCAGGCTCTAGTTTTGACT

CAACAATATCACCAGCTGAAGCCTATAGAGTGAATTCGGATCCAAGCTTAGGCCTGCTCGC

TTTCTTGCTGTCCCATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTG

GGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAGCGCTAAGCTTCCTAACACG

AGCCATAGATAGAATAAAAGATTTTATTTAGTCTCCAGAAAAAGGGGGGAATGAAAGACCC

CACCTGTAGGTTTGGCAAGCTAGCTTAAGTAAGCCATTTTGCAAGGCATGGAAAAATACAT

AACTGAGAATAGAGAAGTTCAGATCAAGGTTAGGAACAGAGAGACAGGAGAATATGGGCCA

AACAGGATATCTGTGGTAAGCAGTTCCTGCCCCGGCTCAGGGCCAAGAACAGTTGGAACAG

CAGAATATGGGCCAAACAGGATATCTGTGGTAAGCAGTTCCTGCCCCGGCTCAGGGCCAAG

AACAGATGGTCCCCAGATGCGGTCCCGCCCTCAGCAGTTTCTAGAGAACCATCAGATGTTT

CCAGGGTGCCCCAAGGACCTGAAATGACCCTGTGCCTTATTTGAACTAACCAATCAGTTCG

CTTCTCGCTTCTGTTCGCGCGCTTCTGCTCCCCGAGCTCAATAAAAGAGCCCACAACCCCT

CACTCGGCGCGCCAGTCCTCCGATAGACTGCGTCGCCCGGGGTACCCGTATTCCCAATAAA

GCCTCTTGCTGTTTGCATCCGAATCGTGGACTCGCTGATCCTTGGGAGGGTCTCCTCAGAT

TGATTGACTGCCCACCTCGGGGGTCTTTCATTCTCGAGAGCTTTGGCGTAATCATGGTCAT

AGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAG

CATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGC

TCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAAC

GCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCT

GCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTA

TCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCA

GGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCA

TCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAG

GCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGAT

ACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAATGCTCACGCTGTAGGTA

TCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAG

CCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACT

TATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGC

TACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATC

TGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAAC

AAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAA

AGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAAC

TCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAA

ATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTA

CCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTT

GCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTG

CTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCC

AGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATT

AATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTG

CCATTGCTGCTGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGG

TTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCC

TTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGG

CAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGA

GTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCG

TCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAAC

GTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACC

CACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCA

AAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATAC

TCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGG

ATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGA
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AAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGC

GTATCACGAGGCCCTTTCGTCTTCAAGCTGCCTCGCGCGTTTCGGTGATGACGGTGAAAAC

CTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCA

GACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCGCAGCCATGACCCA

GTCACGTAGCGATAGTTACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATG

CGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCCATTCGCCAT

TCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCT

GGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCA

CGACGTTGTAAAACGACGGCCAGTGAATTAGTACTCTAGCTTAAGTAAGCCATTTTGCAAG

GCATGGAAAAATACATAACTGAGAATAGAGAAGTTCAGATCAAGGTTAGGAACAGAGAGAC

AGGAGAATATGGGCCAAACAGGATATCTGTGGTAAGCAGTTCCTGCCCCGGCTCAGGGCCA

AGAACAGTTGGAACAGCAGAATATGGGCCAAACAGGATATCTGTGGTAAGCAGTTCCTGCC

CCGGCTCAGGGCCAAGAACAGATGGTCCCCAGATGCGGTCCCGCCCTCAGCAGTTTCTAGA

GAACCATCAGATGTTTCCAGGGTGCCCCAAGGACCTGAAATGACCCTGTGCCTTATTTGAA

CTAACCAATCAGTTCGCTTCTCGCTTCTGTTCGCGCGCTTCTGCTCCCCGAGCTCAATAAA

AGAGCCCACAACCCCTCACTCGGCGCGCCAGTCCTCCGATTGACTGCGTCGCCCGGGTACC

CGTATTCCCAATAAAGCCTCTTGCTGTTTGCATCCGAATCGTGGACTCGCTGATCCTTGGG

AGGGTCTCCTCAGATTGATTGACTGCCCACCTCGGGGGTCTTTCATTTGGAGGTTCCACCG

AGATTTGGAGACCCCTGCCCAGGGACCACCGACCCCCCCGCCGGGAGGTAAGCTGGCCAGC

GGTCGTTTCGTGTCTGTCTCTGTCTTTGGGCGTGTTTGTGCCGGCATCTAATGTTTGCGCC

TGCGTCTGTACTAGTTGGCTAACTAGATCTGTATCTGGCGGTCCCGCGGAAGAACTGACGA

GTTCGTATTCCCGGCCGCAGCCCCTGGGAGACGTCCCAGCGGCCTCGGGGGCCCGTTTTGT

GGCCCATTCTGTATCAGTTAACCTACCCGAGTCGGACTTTTTGGAGCTCCGCCACTGTCCG

AGGGGTACGTGGCTTTGTTGGGGGACGAGAGACAGAGACACTTCCCGCCCCCGTCTGAATT

TTTGCTTTCGGTTTTACGCCGAAACCGCGCCGCGCGTCTTGTCTGCTGC 

 


