
Zero Knowledge Protocols and Applications

Pavlos Ioannis Pyrros Chaidos

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Security & Crime Science

University College London

2017

2

3

I, Pavlos Ioannis Pyrros Chaidos, confirm that the work presented in this thesis is my

own. Where information has been derived from other sources, I confirm that this has been

indicated in the work.

4

Abstract

The historical goal of cryptography is to securely transmit or store a message in an insecure

medium. In that era, before public key cryptography, we had two kinds of people: those

who had the correct key, and those who did not. Nowadays however, we live in a complex

world with equally complex goals and requirements: securely passing a note from Alice to

Bob is not enough. We want Alice to use her smartphone to vote for Carol, without Bob the

tallier, or anyone else learning her vote; we also want guarantees that Alice’s ballot contains

a single, valid vote and we want guarantees that Bob will tally the ballots properly. This is

in fact made possible because of zero knowledge protocols.

This thesis presents research performed in the area of zero knowledge protocols across

the following threads: we relax the assumptions necessary for the Damgård, Fazio and

Nicolosi (DFN) transformation, a technique which enables one to collapse a number of

three round protocols into a single message. This approach is motivated by showing how

it could be used as part of a voting scheme. Then we move onto a protocol that lets us

prove that a given computation (modeled as an arithmetic circuit) was performed correctly.

It improves upon the state of the art in the area by significantly reducing the communication

cost.

A second strand of research concerns multi-user signatures, which enable a signer to

sign with respect to a set of users. We give new definitions for important primitives in the

area as well as efficient instantiations using zero knowledge protocols.

Finally, we present two possible answers to the question posed by voting receipts. One

is to maximise privacy by building a voting system that provides receipt-freeness automati-

cally. The other is to use them to enable conventual and privacy preserving vote copying.

6

Acknowledgements

I owe a great debt of thanks to Jens Groth for his supervision, guidance and support in this

adventure. I must also thank Allan Sikk for his grounded perspective and our productive

talks. Thanks are also due to Yvo Desmedt for his trust and motivation. My coauthors,

remote or local have all been huge positive influences in too many ways to mention.

I want to give a special thanks to the UCL InfoSec group, and to the folks at room 6.22

specifically. You all made this feel like a home away from home and I could not be more

thankful. I know we’ll meet again, but it still feels sad to leave.

I also want to single out my mother for her love and support throughout. I’d like to

thank Nicolas for all the chats, pointless and meaningful, at every odd hour. Last but not

least, Sundy for her love, support, and inspiration.

Thanks!

Pyrros

8 Acknowledgements

Contents

1 Introduction 19

1.1 Non-Interactive Zero Knowledge . 20

1.2 Protocols for Arithmetic Circuits . 23

1.3 Multiuser Signatures . 24

1.4 Voting and Receipt Freeness . 25

1.5 Structure . 27

2 Literature Review 29

2.1 Zero Knowledge . 30

2.1.1 Non-Interactive Zero Knowledge 30

2.1.2 Circuit-Based Protocols . 31

2.2 Multi-user Signatures . 34

2.2.1 Group Signatures . 34

2.2.2 Ring Signatures . 36

2.2.3 Accountable Ring Signatures . 36

2.3 Internet Voting . 37

2.3.1 Homomorphic Tallying . 37

2.3.2 Helios Ballot Copying . 38

2.3.3 Receipt Freeness and Coercion Resistance 40

3 Background & Definitions 43

3.1 Notation . 43

3.2 Setting . 44

3.2.1 Cyclic Groups & The Discrete Logarithm Assumption 44

3.2.2 One-way functions . 45

10 Contents

3.3 Encrypting and Commiting . 45

3.3.1 Commitment Schemes . 46

3.3.2 Pedersen Commitments . 46

3.3.3 Public-Key Encryption . 47

3.3.4 IND-CPA Security . 48

3.3.5 ElGamal Encryption . 48

3.3.6 IND-CCA Security . 48

3.4 Zero Knowledge . 49

3.4.1 Relations and NP-Languages . 49

3.4.2 Interactive Protocols . 49

3.4.3 Zero Knowledge Arguments of Knowledge 51

3.4.4 A general forking lemma . 52

3.4.5 Non-Interactive Zero-Knowledge (NIZK) Proofs 55

3.4.6 The Fiat-Shamir heuristic. 56

3.4.7 Signature of Knowledge . 56

3.4.8 Non-Interactive Designated Verifier Zero Knowledge Arguments . . 58

4 Non-Interactive Zero Knowledge without Random Oracles 61

4.1 Introduction . 62

4.1.1 Contribution . 63

4.2 Preliminaries . 64

4.2.1 Strongly Additively Homomorphic Encryption 64

4.2.2 Okamoto-Uchiyama encryption [OU98] 65

4.2.3 Σ-protocols with Linear Answers and Unique Identifiable Challenges 66

4.2.4 Σ-protocol for additively homomorphic encryption of 0 or 1. 68

4.3 Transformation . 69

4.3.1 Non-interactive Designated Verifier Arguments for Statements

about Ciphertexts . 71

4.3.2 Circuit Satisfiability . 72

4.4 Applications in Voting with Homomorphic Tallying 74

4.4.1 Voting Schemes with Delayed Bulletin Boards 74

4.4.2 A Referendum Voting Scheme . 77

4.4.3 Efficiency . 80

Contents 11

5 Efficient Protocols for Arithmetic Circuits 81

5.1 Introduction . 83

5.1.1 Contributions . 83

5.2 Related Work . 84

5.3 Preliminaries . 85

5.3.1 Arithmetic Circuits . 85

5.3.2 Full zero knowledge & non-interactivity 88

5.4 Commitments to Polynomials . 88

5.4.1 Main idea for standard polynomials. 89

5.4.2 Extension to Laurent polynomials. 90

5.4.3 Evaluation Protocol. 91

5.4.4 Security Properties. 92

5.4.5 Efficiency. 95

5.5 Recursive Argument for Inner Product Evaluation 96

5.5.1 Main Idea . 96

5.5.2 Formal description . 98

5.5.3 Security Analysis. 99

5.5.4 Efficiency. 100

5.6 Logarithmic Communication Argument for Arithmetic Circuit Satisfiability 101

5.6.1 Reduction of Circuit Satisfiability to a Hadamard Matrix Product

and Linear Constraints. 102

5.6.2 Reduction to a Single Polynomial Equation. 103

5.6.3 Square Root Communication Argument 105

5.6.4 Breaking the Square Root Barrier 106

5.6.5 Formal Description . 107

5.6.6 Security Analysis. 109

5.6.7 Efficiency. 111

5.7 Implementation using Python . 113

5.7.1 Performance Comparison . 113

6 Accountable Ring Signatures 115

6.1 Introduction . 117

6.1.1 Contributions . 117

12 Contents

6.2 Defining Accountable Ring Signatures . 118

6.2.1 Ring and Group Signatures from Accountable Ring Signatures . . . 121

6.3 Constructing Accountable Ring Signatures 123

6.3.1 Building Blocks . 123

6.3.2 Design . 123

6.3.3 Security . 123

6.4 Efficient Instantiation . 126

6.4.1 Committed bits . 127

6.4.2 List Containing Encryption of 1 128

6.4.3 Correct Signature . 131

6.4.4 Correct Opening . 132

6.4.5 Efficiency of our schemes . 132

7 Fully Dynamic Group Signatures 135

7.1 Introduction . 137

7.1.1 Motivation . 137

7.1.2 Contributions . 138

7.2 Syntax and Security of Fully Dynamic Group Signatures 139

7.2.1 Security of Fully Dynamic Group Signatures 142

7.2.2 Comparison with Existing Models 148

7.3 Recovering Other Models . 149

7.3.1 Static Group Signatures [BMW03] 149

7.3.2 Partially Dynamic Group Signatures [BSZ05] 152

7.3.3 Partially Dynamic Group Signatures [KY06] 154

7.4 On the Security of Some Existing Schemes 157

7.4.1 Libert et al. Schemes [LPY12b, LPY12a] 158

7.4.2 Nakanishi et al. Scheme [NFHF09] 159

7.4.3 Scheme based on Sect. 6.3 . 160

8 Helios Ballot Copying Revisited 165

8.1 Introduction . 167

8.2 Background . 168

8.2.1 Helios Implementation . 169

Contents 13

8.2.2 Vote Representation . 171

8.2.3 Validity Checks . 171

8.2.4 Disjunctive Proofs of Equality between Discrete Logarithms. 172

8.2.5 Non-Interactive Proofs. 173

8.3 A Ballot-Blinding Protocol . 175

8.4 Vote Blinding . 175

8.5 Proof Blinding . 176

8.5.1 The proof blinding protocol of [DC12] 177

8.5.2 New Proof Blinding Protocol . 178

8.5.3 A Combined Protocol for Blinded Copying 181

8.6 Further Work . 181

9 BeleniosRF 183

9.1 Introduction . 184

9.1.1 Our Contributions . 185

9.2 Comparison to Related Work . 187

9.3 Receipt-Freeness . 188

9.3.1 Syntax of a Voting System . 188

9.3.2 Strong Receipt-Freeness . 190

9.4 Building Blocks . 194

9.4.1 Assumptions and Primitives . 194

9.4.2 Signatures on Randomizable Ciphertexts 195

9.5 Our SRC Construction . 196

9.5.1 Asymmetric Waters signature scheme. 196

9.5.2 Our SRC scheme. 197

9.5.3 RCCA-Secure Encryption from SRC 200

9.6 BeleniosRF . 201

9.6.1 Overview . 201

9.6.2 Receipt-Freeness . 203

9.6.3 Verifiability . 206

9.7 Efficiency of BeleniosRF . 207

9.8 The Blazy et al. Voting Protocol is not Ballot-Private 208

9.9 Conclusions . 209

14 Contents

10 Conclusions 211

List of Figures

3.1 Pedersen commitment to multiple elements 47

3.2 ElGamal encryption . 48

3.3 Σ-protocol with statement u and witness w 50

3.4 Emulator U for Lemma 1 . 53

3.5 Tree finders T for Lemma 1 . 54

4.1 Σ-protocol for encryption of 0 or 1. 68

4.2 Non-interactive designated verifier argument 69

4.3 Non-interactive designated verifier argument for encrypted satisfying as-

signment of wires in a circuit . 73

4.4 The referendum correctness experiment and oracles 76

4.5 The Ballot Privacy experiment, and the oracles provided to the adversary . . 76

5.1 A simple arithmetic circuit . 87

6.1 A generic construction for Accountable Ring Signatures 124

6.2 Σ-protocol for relationR1 (committed unit vectors) 127

6.3 Σ-protocol for a list c0, . . . ,cN−1 containing an encryption of 1 129

6.4 Σ-protocol forRsig . 131

6.5 Σ-protocol for correct decryption . 132

7.1 Details of the oracles used in the security games 143

7.2 Security games for fully dynamic group signatures 145

7.3 Modified non-frameability game. 149

7.4 Static group signatures [BMW03] from our group signatures 150

7.5 Group signatures [BSZ05] from our group signatures. 153

7.6 Group signatures [KY06] from our group signatures 155

16 List of Figures

7.7 Construction of a fully dynamic group signature from an accountable ring

signature (Sect. 6.2.1) . 162

9.1 Oracles for the receipt freeness experiments 192

9.2 Our SRC scheme . 199

List of Tables

4.1 Size comparison between our ballots and standard Helios ElGamal ballots

for both classical and ECC based Discrete log. groups. 80

5.1 Efficiency comparison between our arguments and the most efficient inter-

active zero-knowledge arguments relying on the discrete logarithm problem 85

5.2 Performance comparison between our implementation and Pinocchio 114

6.1 Efficiency comparison between our instantiation and most efficient group

and ring signatures based on RSA and/or DDH assumptions 133

9.1 Time to encrypt, sign and perform GS proofs for BeleniosRF ballots 208

18 List of Tables

Chapter 1

Introduction

The historical goal of cryptography is to securely transmit or store a message via an insecure

medium. In that era, before public key cryptography, we had two kinds of people: those

who had the correct key, and those who did not. Nowadays however, we live in a complex

world with equally complex goals and requirements: securely passing a note from Alice

to Bob is not enough. We want Alice to be able to use her smartphone to vote for Carol,

without Bob the tallier, or anyone else learning her vote, we want guarantees that Alice’s

ballot contains a single, valid vote and we want guarantees that Bob will tally the ballots

properly. This is in fact made possible because of zero knowledge protocols.

Generalizing from the voting example, in a zero knowledge protocol a prover wishes

to convince a verifier that a particular statement is true. Alice, in our example, would want

to convince Bob that her (encrypted) ballot only contains a single vote (as opposed to 5, or

simply random data). Alice, acting as the prover has some private information (a witness)

which would convince anyone, beyond the shadow of a doubt, that the statement is true.

However, the prover does not wish to reveal this witness. Alice could easily convince Bob

by showing him the contents of her ballot i.e. her vote, as well as any randomness used to

encrypt it, but this would completely defeat the secrecy of her ballot. Zero knowledge pro-

tocols allow us to satisfy both parties: without revealing the witness to anyone, they make

it infeasible (or even impossible) for the prover to convince the verifier of false statements.

Balancing security and privacy is hard enough on its own, but to fully capture our

voting example we need a third pillar: efficiency. After all, Alice wants to vote on her

smartphone, and Bob might need to process and tally thousands if not millions of ballots.

Efficiency can manifest itself in different ways: processing time, storage space or interac-

tivity, the need for back and forth communication between the two parties.

20 Chapter 1. Introduction

In this thesis we will study four different areas, each time improving upon the state

of the art in one of the three pillars. We will consider: (a) Non-interactive zero knowledge

designated verifier arguments, where we remove a computational assumption and replace it

with one that can be fully realised in applications, (b) The evaluation of arithmetic circuits

where we improve on existing work in terms of processing time as well as communica-

tion, (c) Accountable Ring Signatures and Group signatures, where we provide a compact

accountable ring signature, give a new, more precise definition of group signatures and

demonstrate how one can obtain a group signature scheme from accountable ring signa-

tures. Finally, (d) we will examine the topic of receipt-freeness in voting from two opposite

directions: first by building a voting system that achieves a strong version of the property,

and second by studying a secure vote-copying protocol built on top of a voting system lack-

ing in receipt-freeness.

In many cases the improvements listed in the above contributions are not free: often

there is a price to be paid in terms of efficiency or stronger assumptions (or equivalently,

potentially weaker security). We will discuss these issues and make comparisons with works

tackling similar problems with different methods in the following chapters. In the rest of

this chapter we will give a succinct introduction to each problem area in order to establish

some context for our contributions.

1.1 Non-Interactive Zero Knowledge

The original notion of zero knowledge, due to Goldwasser, Micali, and Rackoff [GMR89],

captures interactive protocols between a prover and a verifier. Such protocols enable the

prover to convince the verifier that a given statement is true, whilst satisfying the following

properties:

Completeness If the statement is indeed true, the protocol will convince the verifier.

Soundness If the statement is false, it will be infeasible for the prover to convince the

verifier, even if she attempts to cheat by deviating from the protocol.

Zero Knowledge The protocol gives the verifier only a single bit of information: that the

statement is true.

Such statements can also have witnesses associated with them. For example, Alice

may state that her ballot contains a valid vote. A possible witness would be the vote and

1.1. Non-Interactive Zero Knowledge 21

the randomness used to produce the ballot. Given a statement and a witness, verification

is simple. The object of zero knowledge protocols is to allow verification to be performed

accurately without revealing the witness, or in fact leaking any other information.

The concept of the witness is tightly coupled with the working definition of zero knowl-

edge: that there exists a way to simulate the execution of the protocol regarding a true state-

ment without needing to know the corresponding witness. Intuitively, a simulated execution

cannot give information regarding the witness because the witness was never a part of it.

However, if such simulated executions are indistinguishable from real ones, then real ones

cannot leak information either.

When real and simulated transcripts follow identical distributions, we have perfect

zero-knowledge. We can relax this to statistical zero knowledge, where the two distributions

are statistically close, or even computational zero knowledge, where the distributions are

indistinguishable only by computationally-bound adversaries.

Similarly, perfect soundness means that the prover cannot cheat, statistical soundness

means that any cheating prover will fail to prove a false statement with overwhelming prob-

ability and computational soundness further relaxes this to only cover polynomially-bound

provers. Computationally sound protocols are called arguments, as opposed to proofs.

The motivation behind such relaxations is efficiency: we know that perfect soundness

precludes short (sub-linear) proofs for non-trivial languages [GVW02, GH98]. At the same

time, succinct arguments were presented by Kilian [Kil92] in 4 rounds and later compressed

to a single round by Micali [Mic94] via the Fiat-Shamir heuristic. Round complexity is a

particularly important parameter, moreso when they only require a single move and are thus

non-interactive. We call such Non-Interactive Zero Knowledge protocols NIZKs [BFM88].

The Fiat-Shamir transformation [FS87] is a widely used tool to transform a Sigma

protocol into a NIZK proof. It is conceptually simple, and efficient to implement: we

simply replace the verifier’s challenge with a hash of the protocol’s transcript thus far. The

transformation is secure in the random oracle model (ROM) [BR93] where the hash function

is idealised into a truly random function. Furthermore, the model also allows for the oracle

to be programmed (even adaptively) if required.

Unfortunately, the random oracle model is too strong. Canetti, Goldreich and Halevi

[CGH04] proved that for any candidate hash function, one can build encryption schemes and

signature schemes which are secure under the ROM, but trivially insecure in practice. This

22 Chapter 1. Introduction

was later generalised by Goldwasser and Kalai [GK03] who produced signature schemes

that would fail for any instantiation while being provably secure in the ROM. Nevertheless,

it is still widely used as there is evidence that non-interactive zero knowledge with sub-

linear communication cost requires unfalsifiable assumptions [GW11] i.e. assumptions that

cannot be modeled as a security game whose outcome can be efficiently checked.

One alternative to the Fiat-Shamir transformation is the one by Damgård, Fazio and Ni-

colosi (DFN) [DFN06], which can be used to transform a restricted class of Sigma-protocols

into NIZK arguments for a designated verifier. In their transformation, instead of using a

hash to replace the verifier’s challenge, the verifier registers an encrypted challenge ahead

of time. Because the cryptosystem used for this is additively homomorphic, and the prover’s

last message is linear in the challenge, the prover is able to complete the protocol by produc-

ing a ciphertext containing her answer. However, the security proof for their construction

requires a complexity leveraging assumption: i.e. a class of (possibly super-polynomial)

adversaries strong enough to completely break one computational problem but at the same

time weak enough that a second problem remains hard. In contrast with gap assumptions

(where two problems are separated into “easy” and “hard”), both problems are considered

hard for polynomial adversaries. The additional tiering into “hard” and “very hard” only

becomes relevant inside certain security reductions.

In chapter 4 we will revisit the DFN transformation with the goal of removing the

complexity leveraging assumption they require. To do that, we use the concept of culpable

soundness [GOS12], which is a relaxation of standard soundness in that a successful adver-

sary needs to not only prove a false statement, but also provide a proof of this falsehood,

called a guilt witness, in a fashion established ahead of time. The nature of guilt witnesses

can be different for every application. In the case of the DFN transformation, they take the

form of decryption keys, allowing us to peek inside ciphertexts that would be brute forced

under the original complexity leveraging assumption. It might seem that we are essentially

formalizing the same concept in a different way, but that is false. The second part of our

contribution is to demonstrate a practical application of NIZKs (namely, a simplified voting

system) where the guilt witness is available in the environment. Thus, whereas the security

of the original construction is conditioned on the complexity leveraging assumption for all

applications, we manage to show that for certain applications the equivalent assumption (i.e.

the infeasibility of a proof for a false statement absent a guilt witness) is always satisfied.

1.2. Protocols for Arithmetic Circuits 23

This is done by building a minimal voting system: the decryption key for the ballots serves

as the guilt witness. Since the key exists in the environment, and soundness does not rely

on it being secret, we are able to make any successful adversary culpable by simply giving

them the key.

1.2 Protocols for Arithmetic Circuits
Arithmetic circuits are a more expressive variant of binary circuits: instead of restricting the

values carried by wires to 1s and 0s, we consider values from a finite field Zp. We mainly

consider addition and multiplication gates (note that AND gates are essentially multiplica-

tion gates and OR gates can be built out of addition and multiplication –with the help of a

constant “-1” wire). Apart from their generality, arithmetic circuits are also practical: there

exists a compiler of restricted C programs to arithmetic circuits.

This practicality of arithmetic circuits is also manifest in their use in the veri-

fiable computation setting. Verifiable computation (VC) setting eschews zero knowl-

edge in favour of efficiency. By using succinct non-interactive arguments of knowledge

(SNARKs) [GGPR13] based on bilinear maps, Pinocchio [PHGR13] manages to produce a

verifiable computation system with constant-size proofs where verification times for a com-

putation are faster than running the computation locally. Most of this efficiency is preserved

when adding zero knowledge to our requirements.

When we consider protocols based on the discrete log problem, the most efficient ones

are those of Groth [Gro09b] and Seo [Seo11], both achieving square root communication.

ZKBoo [GOM16] relies only on collision resistant hash functions and achieves excellent

performance but produces large proofs (linear in both the circuit size and the desired sound-

ness parameter).

In chapter 5 we will give a discrete log protocol for the evaluation of arithmetic circuits

that manages to improve upon the state of the art in the following ways:

• We can achieve logarithmic proof size by using a logarithmic number of rounds.

• For constant rounds, we can match the 5 move interaction cost of Seo’s protocol,

while also achieving lower communication and computation cost than Groth’s 7 move

protocol, improving upon what would be the “best of both worlds”.

• We are able to tune the number of rounds to any intermediate point between the loga-

rithmic and the constant version, enabling us to balance communication and compu-

24 Chapter 1. Introduction

tation cost as required.

• The protocol comes with a prototype python implementation, which manages to out-

perform Pinocchio’s prover (but not the verifier).

1.3 Multiuser Signatures

Group and Ring signatures allow a team member to sign with respect to that team without

disclosing her identity. A trivial solution would be to create a single signing key for the

team and give it to every member. Obviously, this solution is extremely poor: there is no

accountability, no ability to remove users (other than starting over) and members of multiple

teams need to be given keys for every team. Group signatures [CvH91] offer solutions to

these problems: they provide a tracing algorithm that can be run in case of abuse, so as

to reveal the individual who produced the signature on a malicious message. The group is

overseen by a manager who is also responsible for adding users (dynamic groups) or adding

and removing users (fully dynamic groups) from the group.

Ring signatures [RST01] do away with the manager and effectively let users manage

themselves: any user is able to define a ring (i.e. a set of users that includes herself) and

sign with respect to it. Every signature can be attached to a different ring. However, ring

signatures typically lack a tracing functionality. Accountable ring signatures are a more

recent concept that attempts to combine the best features of groups and rings: users are

still free to define the ring they are signing against, but accountability is still enforced.

Furthermore, ring signature schemes can allow signers to specify who will be the tracing

authority. This can enable interoperability by allowing the same infrastructure and keys to

be reused across different settings by only changing the authority specified. For example,

Alice would use the same credentials to sign as a member of her employer’s information

security team (with the team members as the ring, and their manager as the tracing authority)

as well as a member of her local science fiction book club (with the club members forming

the ring, and Bob, the club president as the authority).

Existing definitions for dynamic group signatures are oftentimes built around a spe-

cific instantiation, and in that way inherit some of its flaws. As we will see, this is in fact

the case with some constructions based around revocation lists. Revocation lists are one

method used to achieve revocation i.e. the removal of a member from a group. They re-

quire that the signer also provides proof that her identity is not featured in a list of revoked

1.4. Voting and Receipt Freeness 25

users that is published by the manager. Intuitively, this might seem to capture our security

requirement: revoking a user prevents them from signing afterwards. However, this proves

to be imprecise: what one would reasonably expect is that users are able to sign with re-

spect to time periods following them joining the group and (if applicable) preceding their

revocation. Schemes such as [NFHF09,LPY12b,LPY12a], which follow the revocation list

paradigm fail to consider a simple back-dating attack: a user who joined the group in June

is not prevented from signing with regards to the group membership as it was in March.

In the absence of a reliable opening oracle, this may implicitly frame past members. In

this thesis we will study both group and ring signatures. We will first address accountable

ring signatures (Chap. 6), starting with definitions before moving on to a construction in

the discrete logarithm setting. Our construction is based on the ring signature of Groth

and Kohlweiss [GK14] but adds accountability as well as some performance enhancements

(namely n-ary trees instead of binary, and substituting Pedersen commitments for ElGamal

ciphertexts when possible).

We will then move to group signatures (Chap. 7) and give a rigorous set of definitions

for their security. We also give a full description of the backdating attack, and show how

affected schemes may be repaired. Finally, we show how existing models for group signa-

tures can be described in our framework. Finally, we link the two concepts, and show how

group signatures and can be built from accountable ring signatures, with our scheme used

as a concrete example.

1.4 Voting and Receipt Freeness

Electronic Voting has been a prominent cryptographic application for the last 30 years, af-

ter Chaum’s early work [Cha81]. However, Internet voting for general elections is only

regularly practiced in a limited number of countries [SFD+14]. A few more use electronic

in-person voting (with cryptography being deployed in varying degrees). By contrast, finan-

cial transactions over the internet are near-ubiquitous. If Alice can buy a new phone from

her computer (or a new computer from her phone) why is internet voting so hard?

First off, the privacy requirements are much stricter. If Alice orders a pizza over the

internet she might reasonably expect her choice of toppings or sides to be private; using

more recent payment systems, the identity of the business she’s paying might be obscured

as well. The amount transacted however needs to be made known to her bank, which Alice

must (at least partly) trust. Part of this trust may also be mitigated via regulation and state

26 Chapter 1. Introduction

oversight.

When voting however, Alice expects a higher degree of privacy. Ideally, the only infor-

mation that’s disclosed is whether she voted or not (if that). In practice, some voting systems

might reveal her ballot, but only after anonymizing it, and usually in a restricted setting. To

achieve this via cryptography we use systems based on either blind signatures [Cha83] or

homomorphic encryption such as [Elg85]. Blind signatures enable a voter to anonymously

demonstrate her eligibility, reducing the problem to that of anonymously submitting the

signed vote. Systems where votes encrypted via a homomorphic scheme allow for two so-

lutions: they may be passed through a series of shuffling servers (a Mixnet), or they may be

tallied homomorphically, where an encryption of the tally is produced directly by summing

the encrypted votes. Zero knowledge protocols are used to ensure correct behaviour in all

cases.

Even so, voting introduces an extra hurdle: we might need to protect Alice from her-

self. In particular we should not leave Alice in a position where she is able to prove how

she voted, as that would leave her open to coercion. This property, introduced by Benaloh

and Tuinstra [BT94], is receipt freeness, i.e. the requirement that voters are unable (even if

willing) to construct receipts for their ballots. A receipt in this context allows its holder to

check whether a ballot is in support of a particular candidate (e.g. by providing the random-

ness used in constructing the ballot). Unfortunately, preventing Alice from having a receipt

rules out most of the easy solutions to verifiability [CMFPT06] necessitating additional

assumptions such as trusted hardware, multi-party protocols or untappable channels.

In this thesis we will study two modifications of the Helios voting system. Helios, is

a well-studied and widely deployed internet voting system based on homomorphic tallying.

It is proposed as a system for elections in low coercion environments. Because it runs as a

javascript application, users in control of their web browser are able to produce receipts by

running simple javascript commands (see Sect. 8.2.1).

In chapter 8 we investigate the lack of receipt freeness as an opportunity for controlled

ballot copying. Ballot copying without controls was pointed out in [CS11, CS13] and later

developed into controlled ballot copying by [DC12]. Desmedt and Chaidos gave a vote-

copying protocol utilising the divertibility of the proofs used in Helios. However, in order to

maintain compatibility with Helios their protocol was only zero knowledge against honest

verifiers (or copiers). In addition their privacy definition was informal, which as pointed

1.5. Structure 27

out in [SB13] fails to highlight the privacy implications of the protocol itself versus those

implied by the act of allowing copies. The work in this thesis repairs both issues: first we

give a formal definition of privacy for ballot copying, and second, we extend the original

Ballot copying protocol so as to achieve full zero knowledge.

In a different direction, chapter 9 will address the lack of receipt freeness by intro-

ducing BeleniosRF: a Helios inspired voting system which uses the encryption scheme

of [BFPV11a] to achieve a strong variant of receipt freeness. Signed Randomizable Ci-

phertexts enable an intermediate server to rerandomise ballots before posting but prevents

tampering or wholesale replacement. This ensures that a voter is unable to produce a re-

ceipt even if she were to disclose all of her information. This is similar to the notion of

RCCA [CKN03] encryption, which combines the strong tamper-resistance of CCA-secure

encryption with a rerandomisation functionality. However, since it does not involve signa-

tures, RCCA security cannot guard against wholesale replacement, but only against tamper-

ing.

1.5 Structure

The next chapter 2 covers related work, and highlights the motivations and techniques be-

hind the results in this thesis. Chapter 3 covers background concepts and gives definitions

that will be used throughout the text. In some cases, highly domain-specific concepts will

be deferred until the chapter in which they will be relevant.

The rest of the chapters are based around different projects. They may be read inde-

pendently for the most part with any exceptions being mentioned in the text. Thematically,

they form three loose groups. In the first group, chapter 4 covers the revisiting of the DFN

transformation which, while being applicable to only a small subset of protocol, can still be

used in a wide range of applications. After that, chapter 5 focuses exclusively on calcula-

tions that can be represented as arithmetic circuits. This produces a highly efficient family

of protocols under without relying on any strong assumptions (for the online version).

The next two chapters, 6 and 7 cover multiuser signatures. We start by giving a def-

inition and a generic construction for accountable ring signatures along with a very size-

efficient instantiation. We also demonstrate how accountable ring signatures (ARS) can be

used to derive both ring signatures and group signatures. Next, in chapter 7 we focus on

giving new definitions for fully dynamic group signatures. Our interest is motivated both by

some weaknesses present in existing definitions, as well as the presence of our ARS based

28 Chapter 1. Introduction

construction.

Finally the last two chapters consider two divergent approaches to the issue of non

receipt-free voting systems, such as Helios. In chapter 8 we exploit the presence of receipts

to build a secure system allowing for consentual ballot copying. Opposing this, in chapter 9

we present BeleniosRF, a derivative of Helios designed to achieve receipt freeness without

requiring any extra work from the voter.

Chapter 10 concludes this work and offers some potential future directions.

Publications.

• The research presented in chapter 4 was joint work with Jens Groth and published in

PKC 2015 as [CG15].

• The research presented in chapter 5 was joint work with Jonathan Bootle, Andrea

Cerulli, Jens Groth and Christophe Petit, and published in EUROCRYPT 2016 as

[BCC+16b].

• The research presented in chapter 6 was joint work with Jonathan Bootle, Andrea

Cerulli, Essam Ghadafi, Jens Groth and Christophe Petit, and was published in

ESORICS 2015 as [BCC+15].

• The research presented in chapter 7 was joint work with Jonathan Bootle, An-

drea Cerulli, Essam Ghadafi and Jens Groth, and was published in ACNS 2016

as [BCC+16a].

• The research presented in chapter 8 is joint work with Yvo Desmedt, and significantly

updates work that was published in ESORICS 2012 as [DC12].

• The research presented in chapter 9 is joint work with Véronique Cortier, Georg

Fuchsbauer and David Galindo, and was published in CCS 2016 as [CCFG16].

Chapter 2

Literature Review

This chapter covers relevant parts of existing work with the aim of establishing both context

and motivation for the results that follow. First, we cover the area of zero-knowledge proto-

cols, with a focus on non-interactivity as well as circuit-based protocols. Non-interactivity

is a crucial feature for many applications as it is not feasible to assume that all participants

in a system are online at the same time. At the same time, efficient circuit-based approaches

can find wide usage in applications for which a tailor-made protocol is unavailable or in-

feasible. Multi-user signatures follow, where users are able to sign not as individuals but as

member of a large set. Oftentimes, they use zero knowledge techniques to enforce correct

behaviour amongst the (sometimes untrusted participants). Finally, we cover voting appli-

cations, focusing on solutions using homomorphic tallying such as Helios [Adi08]. Again,

non-interactive zero knowledge protocols are a core component as malicious ballots need

to be detected before being tallied into the result.

Parts of this chapter are derived from [CG15, BCC+16b, BCC+15, BCC+16a, DC12,

CCFG16] as well as the author’s upgrade report.

30 Chapter 2. Literature Review

2.1 Zero Knowledge

Zero-knowledge proofs were invented by Goldwasser et al. [GMR89]. Since then, they have

been used in a number of cryptographic applications, particularly in areas covered in this

text.

2.1.1 Non-Interactive Zero Knowledge

Σ-protocols are particular types of 3-move honest verifier zero-knowledge proofs that can

be highly efficient. However, in many applications (e.g. in voting or in multiparty signa-

tures) it is preferable for a protocol to be non-interactive [BFM88] with the prover prepar-

ing a proof with no need for direct input from the verifier. The Fiat-Shamir transforma-

tion [FS87] produces a non-interactive version of a Σ-protocol by substituting the verifier’s

challenge with the output of a hash function on the prover’s statement and messages. The

transformation can be proven secure in the random oracle model [BR93]. However, the ran-

dom oracle model is regarded with some skepticism since there exist pathological protocols

that can be proven secure in the random oracle model but fail in any real-world instantia-

tion [CGH04, GK03].

The introduction of pairing-based techniques [GOS12, Gro06, GS12] has led to prac-

tically efficient non-interactive zero-knowledge proofs that can be used in the context

of pairing-based cryptography. Recently pairing-based succinct non-interactive zero-

knowledge arguments [Gro10b, GGPR13, PHGR13] have become very compact even for

large scale statements, however, they rely on knowledge extractor assumptions over bilin-

ear groups.

The above research yields non-interactive zero-knowledge proofs that are publicly ver-

ifiable. However, there are many settings where it suffices to have non-interactive zero-

knowledge arguments intended for a designated verifier. Cramer and Shoup used universal

hash proofs to build a highly efficient public-key encryption scheme [CS98, CS02], secure

against chosen ciphertext attacks. Non-interactive proofs for a designated verifier for all

languages in NP can be found in [BCNP04] in the key registration model where parties

register keys.

Damgård, Fazio and Nicolosi (DFN) [DFN06] introduced an alternative to the Fiat-

Shamir transformation. The DFN transformation works in the Registered Key Model

(RKM) [BCNP04] where a verifier registers a public key and transforms a Σ-protocol with

linear answer into a non-interactive zero-knowledge argument that can be verified by this

2.1. Zero Knowledge 31

specific verifier [JSI96]. The transformation works by having the verifier encrypt his chal-

lenge under an additively homomorphic encryption scheme and relies on the Σ-protocol

having an answer that can be computed using linear algebra and the homomorphic property

of the encryption scheme to enable the prover to complete an encrypted version of the an-

swer in the Σ-protocol. Their construction is secure for a logarithmic number of proofs but

soundness rests on a complexity leveraging assumption. A complexity leveraging assump-

tions states that there is a hardness separation between two hard problems, i.e. that there

exist solvers for the first problem, running in time T , but no T -bound adversary can solve

the second problem with more than negligible probability. This allows security reductions

to raise a contradiction by solving the second, harder, problem using the adversary, and a

solver for the first problem.

Ventre and Visconti [VV09] give an alternative proof of soundness for a construction

based on a two ciphertext variation of the DFN transformation in the style of Naor and

Yung [NY90]. They replace the complexity leveraging assumption by introducing a modi-

fication of culpable soundness1 [GOS12] that they call weak culpable soundness. Culpable

soundness restricts adversaries to being “aware” of the falsehood of the statement they are

proving. Weak culpable soundness furthermore requires that the adversary is also aware of

the fact that she has succeeded in producing a convincing proof of a false statement, by

producing a second auxiliary proof to that effect.

In the DFN setting using weak culpable soundness would require the adversary to

prove statements containing ciphertexts addressed to the designated verifier. It would be

challenging to provide such an adversary with enough power to perform the required proofs

without having knowledge of the verifier’s secret decryption key (if the adversary knows

the verifiers key, the system serves no function). To overcome this, in chapter 5 we will

instead opt to construct the underlying protocol with the property that forged proofs reveal

the challenge. This is enough to contradict the semantic security of the encryption scheme

used for the designated verifier proof if a false proof is ever produced.

2.1.2 Circuit-Based Protocols

Since the introduction of non-interactive zero-knowledge proofs by Blum, Feldman and

Micali [BFM88] much effort has been spent on reducing their size [Dam92, KP98, Gro10a,

GGI+14].

1Culpable soundness was also called co-soundness in an earlier version of [GOS12].

32 Chapter 2. Literature Review

Both [Dam92] and [KP98] suggest protocols on circuit satisfiability, since SAT is NP-

Complete and computer operations are naturally represented as circuits. Both protocols

essentially operate in the hidden bits model, where a shared random string is “interpreted”

in a way that hides information from the verifier while still preventing the prover from

cheating. [Dam92] uses a shared sting of cubic size in the circuit size to encode the gates

of the circuit as quadratic residues of large numbers (where squares encode 0 and non-

squares 1). The prover then proves consistency by demonstrating that hidden values which

are claimed to be equal multiply up to a square. However, the size of the proofs is as large

as that of the common string. In [KP98] the dependency on the circuit size is reduced to

n logn by using a different encoding with less redundancy.

This is further reduced to a quasi-linear dependency in the circuit in [Gro10a] by us-

ing probabilistically checkable proofs (PCPs) i.e. large proofs that may be convincingly

checked by accessing only a small portion thereof. This helps compact the proof as the

probability of a malicious prover failing is high in the base case, eliminating the need to

boost it via repetition.

Gentry et al. [GGI+14] used fully homomorphic encryption to construct zero-

knowledge proofs where the communication complexity corresponds to the size of the

witness. However, proofs cannot in general have communication that is smaller than

the witness size unless surprising results about the complexity of solving SAT instances

hold [GH98, GVW02].

It is useful to distinguish between zero-knowledge proofs, with statistical soundness,

and zero-knowledge arguments with computational soundness. In general proofs can only

have computational zero-knowledge, while arguments may have perfect zero-knowledge.

Goldreich et al. [GMW91] showed that all languages in NP have zero-knowledge proofs

while Brassard et al. [BCC88] showed that all languages in NP have zero-knowledge argu-

ments with perfect zero-knowledge.

Kilian [Kil92] showed that in contrast to zero-knowledge proofs, zero-knowledge ar-

guments can have very low communication complexity. His construction relied on the PCP

theorem though, and did not yield a practical scheme.

Schnorr [Sch91] and Guillou and Quisquater [GQ88] gave early examples of practical

zero-knowledge arguments for concrete number theoretic problems. Extending Schnorr’s

protocols, there have been many constructions of zero-knowledge arguments based on the

2.1. Zero Knowledge 33

discrete logarithm assumption. Cramer and Damgård [CD98] gave a zero-knowledge argu-

ment for arithmetic circuit satisfiability, which has linear communication complexity.

Currently the most efficient discrete logarithm based zero-knowledge arguments for

arithmetic circuits are the ones by Groth [Gro09b] and Seo [Seo11], which are constant

move arguments with a communication proportional to the square root of the circuit size.

A square root barrier. The works of [Gro09b, Seo11] share the common pattern of repre-

senting the circuit state as a matrix, using a commitment to represent each row, doing some

protocol specific work and finishing with de-commiting a function of the committed rows.

This seems to imply a square root lower bound on the size of such a proof: committing

has a cost equal to the number of rows and revealing has a cost equal to the number of

columns. Since both parts seem critical to proving soundness it seems that further improve-

ments would either require a complete rethink of the representation and proof structure, or

an intermediate “compression” step allowing us to reveal less data.

The work of [Gro09a] can be thought of as one such step, moving from a matrix to a

cube to give a zero-knowledge argument with a cubic root communication complexity, but

uses pairing-based cryptography instead of just relying on the discrete logarithm assump-

tion. In the discrete log setting, [BG12] use an iterable reduction to reduce computation

by compressing one problem instance into a smaller one (obviously, this hinges on the cost

difference of the two instances being larger than that of the compression).

There are recent works giving a logarithmic communication complexity for specific

languages. Bayer and Groth [BG13] show that one can prove that a polynomial evalu-

ated at a secret committed value gives a certain output with a logarithmic communication

complexity and Groth and Kohlweiss [GK14] show that one can prove that one out of N

commitments contain 0 with logarithmic communication complexity. These results are for

very specific types of statements (with low circuit depth) and the techniques do not seem to

generalise to arbitrary NP languages.

An exciting line of research [Gro10b, Lip12, BCCT12, GGPR13, BCCT13, PHGR13,

BCG+13, BCTV14, GK14] has developed many proposals for succinct non-interactive ar-

guments (SNARGs) yielding pairing-based constructions where the arguments consist of a

constant number of group elements. However, they all rely on a common reference string

(with a special structure) and non-falsifiable knowledge extractor assumptions. In contrast,

the arguments we develop in Chapter 5 are based solely on the discrete logarithm assump-

34 Chapter 2. Literature Review

tion, and use a small common reference string which is independent of the circuit.

2.2 Multi-user Signatures

2.2.1 Group Signatures

After their introduction by [CvH91], a long line of research on group signatures has

emerged. In the early years, security of group signatures was not well understood and early

constructions were proven secure via informal arguments using various interpretations of

their requirements.

Bellare et al. [BMW03] formalised the security definitions for static groups. In their

model, the group manager (who also acts as the tracing authority) needs to be fully trusted.

Later on, Bellare et al. [BSZ05] and Kiayias and Yung [KY06] provided formal security def-

initions for the more practical partially dynamic case. Also, [BSZ05] separated the tracing

role from the group management. In both [BSZ05, KY06] models, members cannot leave

the group once they have joined. More recently, Sakai et al. [SSE+12] strengthened the

security definitions for partially dynamic groups by defining opening soundness, ensuring

that a valid signature only traces to one user.

The first practical and provably secure group signature was due to Ateniese et

al. [ACJT00]. It yields signatures of constant size and are based on the DDH and the

strong RSA assumptions, in the random oracle model. Their scheme was later improved

by Camenisch and Lysyanskaya to allow efficient revocation of group member using dy-

namic accumulators [CL02]. Boneh et al. [BBS04] also constructed constant size group

signatures under the strong Diffie-Hellman and the Decision Linear assumption in pair-

ing groups. Other pairing-based schemes include [ACHdM05, NS04, CG05, BW07, Gro07,

CKS09,LPY12a]. Recently, Langlois et al. [LLNW14] gave an efficient lattice-based group

signature scheme supporting revocation, based on the hardness of approximating the short-

est independent vectors problem in lattice of dimension n within a factor Õ(n1.5).

Group Signatures Without Revocation. Constructions of group signatures in the ran-

dom oracle model [BR93] include [CS97, CM98, ACJT00, BBS04, CL04, CG05, NS04,

FI05, FY04, KY05, DP06, BCN+10]. Constructions not relying on random oracles in-

clude [ACHdM05, Gro06, BW06, Gro07, BW07, AHO10].

Group Signatures With Revocation. Since revocation is an essential feature of group

signatures, many researchers investigated the different approaches via which such a feature

2.2. Multi-user Signatures 35

can be realised. One approach is for the group manager to change the group public key

when members are removed and issue new group signing keys to all remaining legitimate

members or allow them to update their old signing keys accordingly. This is the approach

adopted by e.g. [TX03, CL02].

Bresson and Stern [BS01] realise revocation by requiring that the signer proves at

the time of signing that her group membership certificate is not among those contained

in a public revocation list. Another approach, which was adopted by e.g. [CL02, TX03,

DKNS04, Ngu05], uses accumulators, i.e. functions that map a set of values into a fixed-

length string and permit efficient proofs of membership.

Boneh, Boyen and Shacham [BBS04] showed that their static group signature scheme

supports revocation since it allows members to update their signing keys according to the

changes in the group without the involvement of the manager. Camenisch and Groth [CG05]

also gave a construction that supports revocation. Song [Son01] gave a fully dynamic group

signature with forward security.

A different approach for revocation known as Verifier Local Revocation (VLR), which

needs relaxation of some of the security requirements, considered by Brickell [Bri04], was

subsequently formalised by Boyen and Shacham [BS04] and further used in e.g. [NF05,

LV09, LLNW14]. In VLR, the revocation information (i.e. revocation lists) is only sent to

the verifiers (as opposed to both verifiers and signers) who can check whether a particular

signature was generated by a revoked member. A similar approach is also used in Direct

Anonymous Attestation (DAA) protocols [BCC04]. Traceable Signatures [KTY04] extend

this idea, as the group manager can release a trapdoor for each member, enabling their

signatures to be traced back to the individual user.

More recently, Libert, Peters and Yung [LPY12b, LPY12a] gave a number of efficient

constructions of group signatures supporting revocation without requiring random oracles

by utilizing the subset cover framework [NNL01] that was originally used in the context

of broadcast encryption. [NFHF09] is another certificate-based scheme and achieves con-

stant size as well as signing and verification time in the random oracle model. However,

the security models of [LPY12b, LPY12a, NFHF09] all fail to account for users producing

“backdated” signatures (i.e. signatures w.r.t to a time before them joining the group). While

one would expect such signatures to be invalid, the models do not cover it and their con-

structions allow them to verify. As such, this may be used to (implicitly) implicate past

36 Chapter 2. Literature Review

users for the actions of current ones. In Chapter 7 we examine this attack in detail, fix the

affected schemes and provide a strict definition for fully dynamic group signatures.

2.2.2 Ring Signatures

Ring Signatures were first introduced in [RST01], offering a way for users to sign on behalf

of a set without the requirement for managers or registration. Their construction produces

signatures with size linear in the group. A formal security model for ring signatures was

provided by Bender et al. [BKM09].

Constant-size ring signatures can be based on the strong RSA assumption [DKNS04]

and on pairing assumptions [Ngu05]. Very recently, Groth and Kohlweiss provided a ring

signature scheme based on the discrete logarithm assumption in the random oracle model,

which is asymptotically more efficient than previous ones.

2.2.3 Accountable Ring Signatures

Accountable ring signatures were informally defined by Xu and Yung [XY04]. Their secu-

rity model mitigates the trust on the opener by using several openers and a threshold decryp-

tion mechanism. However, their construction requires a cumbersome registration protocol

between the user, her smart card and the opener, whereas in our model a user needs only

to be aware of the public key of an opener (the opener does not need to be aware of the

user). This makes it simpler and more efficient to compartmentalize trust by using different

openers for different contexts (e.g posting on a technical message board vs a political one)

as there is no registration process to be duplicated.

The [DKNS04] construction, supports identity escrow in a model similar to that of

accountable ring signatures, but without requiring openers to prove the opening is correct

when they claim a particular user made a signature.

Traceable ring signatures [FS08] and linkable ring signatures [LWW04] also offer

some restricted form of accountability. In traceable ring signatures, any couple of signa-

tures produced by the same user and under the same tag will reveal her identity if they sign

different messages. Two signatures by the same user for the same message and under the

same tag will be distinguishable as duplicates, but without revealing the signer. In linkable

group signatures, it is possible to efficiently decide whether two signatures were produced

by the same user but without revealing his identity. Unique ring signatures [FZ13] encom-

pass elements of both traceable and linkable ring signatures: signatures by the same user

for the same message will be linked, but signatures of different messages have no special

2.3. Internet Voting 37

property.

2.3 Internet Voting

The technical feasibility for internet voting was first pointed out by Chaum [Cha81], and

was followed by a large output of research, broadly split into three “schools” of ensuring

anonymity. Mix-Based approaches, (also introduced in [Cha81], along with their voting ap-

plication) operate by shuffling ballots before decrypting them so that the link between voter

and vote is obscured. Solutions based on blind signatures [Cha83] focus on anonymous

“endorsement” (i.e. signing) of ballots by authorities so that only registered voters can get

their ballots endorsed while the authorities are unable to determine the voter behind a final

ballot. Finally, solutions based on homomorphic tallying require a homomorphic encryp-

tion scheme so that ballots can be added together before they are decrypted, so that only an

encryption of the tally requires decryption.

2.3.1 Homomorphic Tallying

Initial efforts in homomorphic tallying systems are due to Benaloh (previously Cohen)

[CF85,BY86]. In such a system valid encrypted ballots can be added together in a straight-

forward manner to produce an encrypted sum of the votes. Both systems used a form of

cut and choose approach where the validity of an encrypted ballot would be guaranteed by

interactively revealing part of it in a random way they differ in that the later system supports

multiple authorities to better manage trust. The randomness for the ballot proof was facili-

tated by means of a beacon. Later systems such as [CFSY96, CGS97a] use the Fiat-Shamir

heuristic in place of a beacon in order to provide random challenges for the proofs of ballot

validity. Both systems support multiple authorities but [CGS97a] is more efficient by us-

ing threshold encryption [DF90] rather than the more expensive technique of verified secret

sharing [Fel87]. The system of Hirt & Sako [HS00] modify [CGS97a] to provide the newer

security property of receipt freeness [BT94]. This is accomplished by having the authority

prepare a list of encryptions of all possible options in a scrambled order and giving the voter

a designated verifier proof of the correct ordering. Because of the designated verifier prop-

erty (i.e the verifier is in the unique position of being able to forge proofs), the proof is of no

value to an adversary. Shorty after the invention of the Paillier cryptosystem [Pai99] it was

put to use in homomorphic tallying systems [DJN10, BFP+01] as being additively homo-

morphic is preferable to the multiplicative homomorphic property of ElGamal. The system

38 Chapter 2. Literature Review

by Baudron et al. also supports a regional hierarchy that mirrors paper-based elections and

also mentions the possibility of using randomisers to obtain receipt freeness. A later system

by Damgård et al. [DGS03] improves on [CGS97a] by using a single ciphertext to encrypt

multiple choices thus reducing the number of proofs required.

Helios [Adi08] (since the 2nd version) is an implemented voting platform with a design

very similar to [CGS97a]. Since its introduction it has been attacked [ED10], repaired

[CS13], modified to add functionality [DC12] and improved to provide everlasting privacy

[DVDGA12]. It has been used in several real-world elections such as that of the president of

the University of Louvain-la-Neuve in Belgium, and of the Board of Directors of the IACR

since 2011 [IAC].

Kulyk et al. [KTV15] propose an extension of Helios where voters may later cancel

their vote, still being indistinguishable from null votes submitted by the crowd. In addi-

tion to being difficult to deploy in practice, this scheme strongly relies on revoting. Hirt’s

scheme [Hir10] heavily depends on the existence of untappable channels. Selene [RRI15]

proposes an enhancement for receipt-free schemes, to ease the verification step made by

voters through tracking numbers.

A different approach is that of self-tallying systems such as [KY02, DJ03, Gro04a,

HK11]. In such a system, a (somewhat expensive) pre-processing step ensures that the sub-

mitted encrypted ballots will sum to a decrypted or easily decryptable value. This requires

that participants do not abstain since their vote is needed to facilitate decryption. In settings

with a small number of participants this may be easily rectified by restarting the protocol,

but for large groups it becomes necessary to re-introduce an election authority albeit with

a very limited role. The presence of an authority also prevents the situation where the last

person to vote holds the advantage of being able to know the result before everyone else.

2.3.2 Helios Ballot Copying

Due to the popularity and prominence of Helios, a number of works have examined its

internals resulting in both attacks as well as additional, unplanned functionality.

Cortier & Smyth [CS11] attack a voter’s privacy by means of a replay attack. In the

base version of their attack, a ballot is recast either verbatim or with minor differences in

the representation of the signatures by a number of parties under the control of the attackers.

The checks performed by the then current Hellios ballot casting server were somewhat lax.

In some scenarios the additional votes for the original voter’s chosen party or candidate will

2.3. Internet Voting 39

significantly bias the election result, thus violating privacy. The authors offer the French

legislative elections as an example of such a scenario. A more complex version of their

attack involves a permutation of the voter’s choices making the malicious ballots slightly

harder to detect.

Esteghari & Desmedt [ED10] describe an attack which essentially installs a rootkit in

the user’s web-browser by exploiting a vulnerability in Adobe Reader. The rootkit then

secretly changes the user’s vote to a different one, and also hides any evidence of foul play.

Helios, operating under the assumption that the user’s browser is trustworthy, accepts the

changed vote instead of the intended one.

The work of [DC12] also leverages web-based nature of Helios’ voting booth and the

notion of divertible proofs (explained below) to provide a consensual vote copying mecha-

nism in which Bob asks Alice for permission (and assistance) in copying her vote, so that

the copied vote cannot be detected as such.

Blind signatures [Cha83, CP93], involve signing a document through an intermediary

(in our case, the copier) without the original signer (the voter) being able to trace the end

product. Blind signatures have been suggested by Chaum [Cha83] for use with anonymous

electronic cash, where banks sign “coins” proving their authenticity but are unable to trace

their use, and voting where authorities can supply signed blank ballots to authenticated

voters but are then unable to track them once filled.

Divertible proofs [OO90, DGB88] are a similar notion to blind signatures, but in an

online setting. An intermediate party is introduced between the prover and verifier, playing

the role of the verifier against the prover and that of the prover against the verifier. The

intermediate is called a warden in some cases (for example, if he is introduced to enforce to

ensure honest behaviour) or a man in the middle in others.

In [SB13], Smyth and Bernhard correctly point out that the claim about Alice’s privacy

in [DC12] (i.e. Bob will not learn anything about Alice’s vote that is not also revealed by the

tally, but will know that the ballot produced by the copying system contains the same vote

as Alice’s) is too strong. Bob can learn more about Alice’s vote than what is revealed by the

tally, as he also knows if he cast his duplicate. Furthermore, they claim that vote copying

is incompatible with ballot privacy. This is true if the definitions and security reductions do

not account for ballot copying. We can however, adjust the definitions by adding a ballot

copying oracle, and ensuring that it always copies votes from the board that will be tallied,

40 Chapter 2. Literature Review

even if the board that is visible to the adversary is the fake one.

2.3.3 Receipt Freeness and Coercion Resistance

The early definitions of receipt-freeness [BT94, Oka97] introduced the idea that an at-

tacker should not be able to distinguish between a real transcript and a fake one, but

their descriptions are rather informal. A weaker definition of receipt-freeness, proposed

in [CG96,KZZ15], lets the attacker only interact with the voter after the election (in partic-

ular, the attacker cannot control the randomness of the voter’s device). A simulation-based

definition for receipt-freeness (UC-RF) was given in [MN06]. It assumes however that the

voters adopt an “anti-coercion strategy” and is therefore closer to coercion-resistance as

defined in [JCJ05], even if it does not cover, for instance, abstention attacks. The coercion-

resistance and receipt-freeness definitions in [KT09] also assume a strategy from the voter.

Similarly, the symbolic definition of receipt-freeness in [DKR06] also requires the

voter to adopt a strategy to fool the adversary. Other definitions in symbolic models aim

at characterizing the notion of a receipt [JdV06, BG11, HS12] but (as usual in symbolic

models) they are much more abstract than standard computational models.

In contrast, in chapter 9 we define strong receipt freeness which allows adversaries

to have greater control over the voter. At the same time, we present BeleniosRF, which

satisfies this definition without needing a specific counter-coercion strategy from the voter.

Previous receipt-free schemes. The scheme by Kiayias et al. [KZZ15] only achieves

receipt-freeness for honest voters, as discussed above. Other well-known and deployed

schemes include Prêt-à-voter [RBH+09] and Scantegrity [CEC+08]. These systems how-

ever are designed for elections with physical voting booths. The system used in Esto-

nia [SFD+14] and the one deployed in Norway [AC11, Gjø12] might possibly satisfy some

level of receipt-freeness, as the corresponding ballot boxes are not publicly available. But

because of this, they do not achieve universal verifiability.

Blazy et al. [BFPV11b] sketch a receipt-free e-voting scheme, using their new primi-

tive of signatures on rerandomizable ciphertexts (SRC) which enable votes to be rerandom-

ized without allowing them to be changed, although no definition nor security reduction

for receipt-freeness is given. In their approach, the voting server, which is in charge of

running the ballot box, can be allowed to re-randomise ballots if it is trusted not reveal the

randomness used for that procedure.

In contrast, Helios [MBC01] and [KZZ15] achieve receipt-freeness under the assump-

2.3. Internet Voting 41

tion that the voting client is not going to reveal the randomness it used for sealing the vote.

The latter seems difficult to ensure in practice, unless voters are provided with secure hard-

ware tokens.

In chapter 9 we will present BeleniosRF which is receipt-free only relies on a single

re-randomization server not leaking.

42 Chapter 2. Literature Review

Chapter 3

Background & Definitions

3.1 Notation

We will use y← S to denote uniform sampling from set S. For an algorithm A, y← A(x;r)

denotes the output of A on input x and randomness r. If the randomness is unimportant, we

may use the notation y← A(x) which denotes that r is (implicitly) randomly sampled and

passed to A. We write y := f (x) when the value of y is derived as a deterministic function f

of x.

We will assume that all algorithms get a security parameter λ , expressed in unary as

an additional input. This is not only to make sure that the parameter is available, but to also

enable us to make claims about the algorithms complexity with respect to the size of the

security parameter. In general, we will consider algorithms to be efficient if their running

time is polynomial in the security parameter.

We will call a function f : N→ R negligible, if for any polynomial p(t) there exists

n0 such that for n > n0 we have f (n)< p(n). We say that a probability a is overwhelming,

if 1− a is negligible. Given two functions g,h : N→ [0,1] we write g(n) ≈ h(n) when

|g(n)−h(n)|= O(n−c) for every constant c > 0.

In many security definitions we ofter refer to probabilities of the form:

Pr
[
Exp(λ)

]
,

where Exp(λ) describes an experiment involving the security parameter λ and a num-

ber of bound variables and algorithms. We will always consider the probability to be taken

over the random sampling of such variables, and any implicit random sampling in the exe-

cution of algorithms during the experiment. As such, evaluating the probability produces a

44 Chapter 3. Background & Definitions

function in λ with range [0,1]. In the same context, we will sometimes consider constant

values as (constant) functions of λ in order to facilitate comparison via the ≈ operator.

For algorithms A and B, 〈A,B〉 denotes algorithms A and B being run together, with

messages passed between them during execution. We write (x,y)← ⟪A(a),B(b)⟫ where at

the end A, with input a outputs x, whereas B, with input b outputs y. By AB(b)(a),we denote

the invocation of B (with input b) by A (with input a). Note that A does not get the private

output of B.

3.2 Setting

3.2.1 Cyclic Groups & The Discrete Logarithm Assumption

Let GGen be an algorithm that on input 1λ returns (G, p,g) such that G is the description

of a finite cyclic group of prime order p, where |p|= λ , and g is a generator of G.

Definition 1 (Discrete Logarithm Assumption). The discrete logarithm assumption holds

relative to GGen if for all non-uniform polynomial time adversaries A

Pr
[
(G, p,g)← GGen(1λ);h←G;a←A(G, p,g,h) : ga = h

]
≈ 0

In this definition, the value a is called the discrete logarithm of h in the basis g. Note

that the discrete logarithm assumption is defined with respect to a particular group generator

algorithm GGen. According to current state-of-the-art cryptanalytic techniques, to get a

security level of 2−λ the group generator may for example return well-chosen elliptic curve

groups where group elements can be represented with O(λ) bits or multiplicative subgroups

of finite fields with a large characteristic where group elements can be represented with

O(λ 3) bits. It is well-known that the discrete logarithm assumption is equivalent to the

following assumption.

Definition 2 (Discrete Logarithm Relation Assumption). For all n≥ 1 and all non-uniform

polynomial time adversaries A

Pr

 (G, p,g)← GGen(1λ);g1, . . . ,gn←G;

a0, . . . ,an←A(G, p,g,{gi}i)
: ∃ai 6= 0 and ga0

n

∏
i=1

gai
i = 1

≈ 0

We call such a product ga0 ∏
n
i=1 gai

i = 1 a non-trivial discrete logarithm relation.

3.3. Encrypting and Commiting 45

Definition 3 (Decisional Diffie-Hellman (DDH) Assumption). The DDH assumption holds

relative to G if for all PPT adversaries A

Pr

 gk = (G,q,g)← GGen(1λ);x,y,z← Zp;b←{0,1};

h := gx;u := gy;v := g(1−b)xy+bz :A(gk,h,u,v) = b

≈ 1
2
.

The DDH assumption relative to G implies the DL assumption relative to G. The DDH

assumption is believed to hold when G is an appropriately chosen subgroup of elliptic curve

groups or multiplicative groups of large characteristic finite fields.

3.2.2 One-way functions

A one-way function f with setup G works as follows.

G(1λ)→ gk: The probabilistic polynomial time setup algorithm generates a setup gk. The

setup gk defines a domain SK and a range VK, which have efficient algorithms for

deciding membership and sampling elements.

f (gk,sk) = vk: A deterministic polynomial time function from the domain to the range,

i.e., given sk ∈ SK we get vk = f (gk,sk) ∈VK. If sk /∈ SK, f returns an error symbol

⊥.

Definition 4 (One-way). We require the one-way function to be hard to invert, i.e., for all

probabilistic polynomial time adversaries A

Pr
[
gk←G(1λ);sk← SK;vk := f (gk,sk);sk′←A(gk,vk) : f (gk,sk′) = vk

]
≈ 0.

We will instantiate f via group exponentiation, i.e. x 7→ gx with domain Zp and range

G. The one-wayness of f is then implied by the DL assumption.

3.3 Encrypting and Commiting
A non-interactive commitment scheme allows a sender to create a commitment to a secret

value. She may later open the commitment and reveal the value in a verifiable manner. A

commitment should be hiding, i.e., not reveal the secret value, and binding in the sense that

a commitment cannot be opened to two different values.

Encryption can be thought of as a perfectly binding commitment scheme, with the

additional property that knowledge of a secret key allows the receiver to obtain the original

value without the need for the sender to reveal it.

46 Chapter 3. Background & Definitions

3.3.1 Commitment Schemes

Formally, a non-interactive commitment scheme is a pair of probabilistic polynomial time

algorithms (CGen,Com). The setup algorithm ck← CGen(1λ) generates a commitment

key ck. The commitment key specifies a message spaceMck, a randomness space Rck and

a commitment space Cck. The commitment algorithm combined with the commitment key

specifies a function Comck :Mck×Rck→Cck. Given a message m ∈Mck the sender picks

uniformly at random r←Rck and computes the commitment c = Comck(m;r).

Definition 5 (Perfectly hiding). We say a non-interactive commitment scheme (CGen,Com)

is perfectly hiding if a commitment does not reveal the committed value. For all non-uniform

polynomial time stateful interactive adversaries A

Pr

 ck← CGen(1λ);(m0,m1)←A(ck);

b←{0,1};c← Comck(mb)
:A(c) = b

=
1
2

where A outputs m0,m1 ∈Mck.

Definition 6 (Binding). A non-interactive commitment scheme (CGen,Com) is computa-

tionally binding if a commitment can only be opened to one value. For all non-uniform

polynomial time adversaries A

Pr

 ck← CGen(1λ);

(m0,r0,m1,r1)←A(ck)
:

Comck(m0;r0) = Comck(m1;r1)

and m0 6= m1

≈ 0

where A outputs m0,m1 ∈Mck and r0,r1 ∈Rck.

We say a commitment scheme is homomorphic if for all valid keys ck the message,

randomness and commitment spaces are abelian groups and for all messages m0,m1 ∈Mck

and randomness r0,r1 ∈Rck we have

Comck(m0;r0) ·Comck(m1;r1) = Comck(m0 +m1;r0 + r1).

3.3.2 Pedersen Commitments

The most prominent example of a homomorphic perfectly hiding commitment scheme is

the Pedersen commitment scheme [Ped91]. Pedersen commitments have the form c = grhm

where g,h are group elements specified in the commitment key. The opening of a Pedersen

3.3. Encrypting and Commiting 47

commitment is (m,r) ∈ Z2
p, from which anybody can recompute the commitment c and

verify it was a valid commitment. Since Pedersen commitments are random group elements,

they are perfectly hiding. On the other hand, breaking the binding property of Pedersen

commitments corresponds to breaking the discrete logarithm assumption.

CGen(gk)
h1, . . . ,hn←G.
Return ck := (h1, . . . ,hn).

Comck(m1, . . . ,mn)

If (m1, . . . ,mn) /∈ Zn
p return ⊥.

r← Zp; Return c := gr
∏

n
i=1 hmi

i .

Figure 3.1: Pedersen commitment to multiple elements

We exploit the fact that the Pedersen commitment scheme is homomorphic, i.e., for all

correctly generated gk,ck and all m,m′,r,r′ ∈ Zp

Comck(m;r) ·Comck(m′;r′) = Comck(m+m′;r+ r′).

We will use a variant of the Pedersen commitment scheme to commit to multiple messages

at once as shown in Fig. 3.1.

With the Pedersen commitment scheme in mind, we will assume throughout the text

that the message space is Zn
p and the randomness space is Zp. The constructions we have in

Sections 5.4 and 5.6.3 require a perfectly hiding, homomorphic commitment scheme so we

are not limited to using the Pedersen commitment scheme. However, in Sections 5.5 and

5.6.4, we will rely on specific properties of the Pedersen scheme and work directly on the

group elements in the key.

3.3.3 Public-Key Encryption

A public-key encryption scheme (over setup gk) consists of three algorithms (PKEGen,E ,D).

PKEGen(gk) is a probabilistic algorithm that generates a public key and decryption key

pair (pk,dk). Without loss of generality, we assume pk can be efficiently computed given

dk and write pk = PKEGen(gk,dk) for this computation which returns ⊥ if dk is not valid.

E(pk,m) is a probabilistic algorithm which returns a ciphertext c if all its inputs are valid

and ⊥ otherwise. D(dk,c) is a deterministic algorithm that decrypts the ciphertext and

returns either the message m or the failure symbol ⊥.

We assume that gk, which is an implicit input to E and D, defines the public key,

decryption key, message, randomness and ciphertext spaces PKgk, DKgk, Mgk, Rgk and

Cgk.

In most chapters of this work, we will make use of an encryption scheme where the

48 Chapter 3. Background & Definitions

message space is Zp for some large integer p, which is explicitly or implicitly defined by

the public key, and with size |p|= `p(λ) for a publicly known polynomial `p.

For notational convenience, we let c~z be the vector (cz1 , . . . ,czn) given a ciphertext c

and a vector of integers~z = (z1, . . . ,zn). Given a vector ~w we also define~c←Eek(~w) as the

vector of ciphertexts given by (Eek(w1), . . . ,Eek(wn)).

3.3.4 IND-CPA Security

A common security baseline for encryption is indistinguishability under chosen plaintext

attacks (IND-CPA).

Definition 7 (IND-CPA security). We say that (PKEGen,E ,D) is indistinguishable under

chosen plaintext attack (IND-CPA secure) if for all probabilistic polynomial time stateful

adversaries A

Pr

 gk←G(1λ);(pk,dk)← PKEGen(gk)

(m0,m1)←A(gk, pk);b←{0,1};c←E(pk,mb)
:A(c) = b

≈ 1
2
,

where A outputs m0,m1 ∈Mgk.

3.3.5 ElGamal Encryption

In many of the following chapters we will use ElGamal encryption, as described in

Fig. 3.2, which is IND-CPA secure if the DDH assumption holds relative to GGen where

gk = (G,q,g)← GGen(1λ).

We have PKgk := G∗, DKgk := Z∗q, Mgk := G, Rgk := Zp, and Cgk := G2. We also

note that ElGamal ciphertexts are homomorphic, similarly to Pedersen commitments.

PKEGen(gk)
dk← Z∗q; pk := gdk.
Return (pk,dk).

E(pk,m)
If pk /∈G∗ or m /∈G return ⊥.
r← Zp; Return c := (pkr,grm).

D(dk,c = (u,v))
If dk /∈ Z∗q or c /∈G2 return ⊥.
Return m := vu−

1
dk .

Figure 3.2: ElGamal encryption

3.3.6 IND-CCA Security

A common security baseline for encryption is indistinguishability under chosen ciphertext

attacks (IND-CCA).

Definition 8 (IND-CCA security). We say that (PKEGen,E ,D) is indistinguishable under

chosen ciphertext attack (IND-CCA secure) if for all probabilistic polynomial time stateful

3.4. Zero Knowledge 49

adversaries A

Pr

 gk←G(1λ);(pk,dk)← PKEGen(gk)

(m0,m1)←AD(gk, pk);b←{0,1};c←E(pk,mb)
:AD∗(c) = b

≈ 1
2
,

where A outputs m0,m1 ∈Mgk, and D∗ is defined as D except it answers ⊥ when queried

on c.

The above definition follows the more recent (adaptive) CCA2 [RS91] variant of cho-

sen ciphertext attacks. We can recover the older CCA1 definition by omitting theD∗ oracle,

but will not be using it in this text.

3.4 Zero Knowledge

3.4.1 Relations and NP-Languages

Let R be a polynomial time decidable binary relation, i.e., a relation that defines a language

in NP. We call w a witness for a statement u if (u,w) ∈ R. We define the language

LR = {x | ∃w : (x,w) ∈ R}

as the set of statements x that have a witness w in the relation R.

To incorporate the security parameter into relations, we will without loss of generality

assume all statements are of a form such that λ can be easily derived (all statements in this

text could be reformulated to be of the form u= (1λ ,u′) although for notational convenience

we will not do this) and that all statements and witnesses are of size polynomial in λ .

3.4.2 Interactive Protocols

A zero knowledge protocol for an NP-relation R enables a prover to demonstrate to a verifier

that a statement u satisfies u ∈ LR, i.e. that there exists a witness w such that (u,w) ∈ R

without disclosing anything else, in particular not disclosing the value of w that the prover

has in mind.

More formally, a protocol for a relation R w.r.t. a setup gk ← GGen(1λ) is a tuple

(CRSGen,P,V). If a common reference string, crs is used, we assume that the generator,

CRSGen(gk) generates it before the execution of the protocol. Both gk and crs are provided

as implicit inputs to all algorithms. We consider that the prover P and the verifier V , are

both probabilistic polynomial time interactive algorithms. The transcript produced byP and

50 Chapter 3. Background & Definitions

V when interacting on inputs s and t is denoted by tr←〈P(s),V(t)〉. In this text, the prover

will not produce an output (apart from messages to the verifier), so, for convenience we

only consider the output of the verifier and write b← ⟪P(s),V(t)⟫ depending on whether

the verifier rejects, b= 0, or accepts, b= 1. Without loss, we assume that transcripts include

the outputs and call them accepting or rejecting depending on whether b is 1 or not.

Σ-protocols are a specific kind of 3-move interactive protocols which are public coin,

complete, 2-special-sound and have special honest verifier zero knowledge. A typical run of

a Σ-proocol is illustrated in Fig. 3.3. P generates an initial message a; V(crs,u,a), produces

a random challenge x; P(x) computes a response z to the verifier‘s random challenge x.

Finally, V(crs,u,a,x,z) verifies the proof and outputs 1 for acceptance or 0 for rejection.

a -

Prover(u,w) x Verifier(u)−→ {accept, reject}�

z -

Figure 3.3: Σ-protocol with statement u and witness w

A Σ-protocol is required to operate correctly when used by honest participants (com-

pleteness), to prevent dishonest provers from convincing verifiers that false statements hold

(soundness), and not to leak information about w (zero-knowledge).

Definition 9 (Public coin). A protocol (P,V) is called public coin if the verifier chooses his

messages uniformly at random and independently of the messages sent by the prover, i.e.,

the challenges correspond to the verifier’s randomness ρ .

Definition 10 (Perfect completeness). (P,V) has perfect completeness if for all non-

uniform polynomial time adversaries A

Pr
[
(u,w)←A(1λ) : (u,w) 6∈ R or ⟪P(x,w),V(x)⟫= 1

]
= 1

Definition 11 (n-Special Soundness). We say that (P,V) is n-special sound [GK14] if there

exists an efficient extractor χ such that for any statement u, given n accepting transcripts

{(a,xi,zi)}n
i=1 where the challenges xi are distinct, χ(u,a,xi,zi) outputs w s.t. (u,w) ∈R.

A protocol is zero-knowledge if it does not leak information about the witness beyond

what can be inferred from the truth of the statement. We will present protocols that have

3.4. Zero Knowledge 51

special honest verifier zero-knowledge in the sense that if the verifier’s challenges are known

in advance, then it is possible to simulate the entire argument without knowing the witness.

Definition 12 (Special Honest Verifier Zero-Knowledge (SHVZK)). A public coin argu-

ment (P,V) is called a special honest verifier zero knowledge (SHVZK) argument for R if

there exists a probabilistic polynomial time simulator S such that for all interactive non-

uniform polynomial time adversaries A

Pr
[
(u,w,ρ)←A(1λ); tr← 〈P(u,w),V(u;ρ)〉 : (u,w) ∈ R and A(tr) = 1

]

≈ Pr
[
(u,w,ρ)←A(1λ); tr←S(u,ρ) : (u,w) ∈ R and A(tr) = 1

]
where ρ is the public coin randomness used by the verifier.

If this holds also for unbounded adversaries A, we say (P,V) is statistically special

honest verifier zero-knowledge. If the two distributions are equal, then we say (P,V) is

perfect special honest verifier zero-knowledge.

3.4.3 Zero Knowledge Arguments of Knowledge

In some applications we may need to tackle more complex protocols, where n-special

soundness may not be simple to obtain. Arguments of knowledge give us an appropriate

framework to analyse the security of such protocols.

To define an argument of knowledge we follow Groth and Ishai [GI08] that borrowed

the term witness-extended emulation from Lindell [Lin03]. Informally, their definition says

that given an adversary that produces an acceptable argument with some probability, there

exists an emulator that produces a similar argument with the same probability together with

a witness w. Note that the emulator is allowed to rewind the prover and verifier’s interaction

to any previous move.

Definition 13 (Argument of knowledge). The pair (P,V) is called an argument of knowl-

edge for the relation R if we have perfect completeness and statistical witness-extended

emulation as defined below.

Definition 14 (Statistical witness-extended emulation). (P,V) has statistical witness-

extended emulation if for all deterministic polynomial time P∗ there exists an expected

52 Chapter 3. Background & Definitions

polynomial time emulator E such that for all interactive adversaries A

Pr
[
(u,s)←A(1λ); tr← 〈P∗(u,s),V(u)〉 :A(tr) = 1

]
≈ Pr

 (u,s)←A(1λ);(tr,w)←E 〈P∗(u,s),V(u)〉(u) :

A(tr) = 1 and if tr is accepting then (u,w) ∈ R

where the oracle called by E 〈P∗(u,s),V(u)〉 allows rewinding i.e. the oracle is aware of the

operation of both algorithms and thus the execution of 〈P∗(u,s),V(u)〉 may be paused at

any intermediate state, then resumed from such state as requested. Additionally, when re-

suming, any part of the verifier randomness contained in s that has not yet been read, can

be replaced with fresh randomness.

In the definition, s can be interpreted as the state of P∗, including the randomness. So,

whenever P∗ is able to make a convincing argument when in state s, E can extract a witness.

This is why we call it an argument of knowledge.

The following lemma links witness-extended emulation with n-special soundness and

its generalizations.

3.4.4 A general forking lemma

Suppose that we have a (2µ +1)-move public-coin argument with µ challenges, x1, . . . ,xµ

in sequence. Let ni≥ 1 for 1≤ i≤ µ . Consider ∏
µ

i=1 ni accepting transcripts with challenges

in the following tree format. The tree has depth µ and ∏
µ

i=1 ni leaves. The root of the tree is

labelled with the statement. Each node of depth i < µ has exactly ni children, each labelled

with a distinct value for the ith challenge xi.

This can be referred to as an (n1, . . . ,nµ)-tree of accepting transcripts. All of our

arguments allow a witness to be extracted efficiently from an appropriate tree of accepting

transcripts. This is a natural generalisation of special-soundness for Sigma-protocols, where

µ = 1 and n = 2. For simplicity in the following lemma, we assume that the challenges are

chosen uniformly from Zp where |p|= λ , but any sufficiently large challenge space would

suffice.

Lemma 1 (Forking Lemma). Let (P,V) be a (2µ + 1)-move, public coin interactive pro-

tocol. Let χ be a witness extraction algorithm that always succeeds in extracting a witness

from an (n1, . . . ,nµ)-tree of accepting transcripts in probabilistic polynomial time. Assume

that ∏
µ

i=1 ni is bounded above by a polynomial in the security parameter λ . Then (P,V)

3.4. Zero Knowledge 53

has witness-extended emulation.

For simplicity in the following proof, we assume that the challenges are chosen uni-

formly from Zp where |p|= λ , but any sufficiently large challenge space would suffice.

Proof. Suppose that for deterministic polynomial time P∗ there is a non-uniform polyno-

mial time interactive adversary A in the sense of witness-extended emulation, such that

Pr
[
(u,s)←A(1λ); tr← 〈P∗(u,s),V(u)〉 :A(tr) = 1

]
= ε.

Note that if ε is negligible, then we do not need to extract a witness, since the emulator can

simply fail every time and trivially achieve witness-extended emulation. Therefore, from

now on, we assume that ε is not negligible.

We construct an expected polynomial time emulator U , which has access to a rewind-

able transcript oracle 〈P∗,V〉 and produces a witness. This is done via recursive calls to

tree-finders T that deal with the protocol after the first few challenges are already fixed.

The ith tree-finder takes the previous challenges and partial transcript given to it as input,

picks random values for xi+1, runs the prover on these values and hands the result to the

next tree-finder. Each tree-finder may fail on the first value of xi+1, ensuring that the whole

process runs in expected polynomial time. With overwhelming probability, the emulator

obtains an (n1, . . . ,nµ)-tree of transcripts and is then able to extract a witness, using the

efficient algorithm χ that exists by assumption.

U 〈P∗,V〉(u)→ (tr,w):
-Run T 〈P∗,V〉(1)→ (tr, tree)
-If tree =⊥ then return (tr,⊥).
-If tree is not a valid (n1, . . . ,nµ)-tree of transcripts (i.e. there are collisions
in certain challenges) then return (tr,⊥).
-Else run w← χ(u, tree).
-Return (tr,w)

Figure 3.4: Emulator U for Lemma 1

The emulator U calls T 〈P∗,V〉(i) for 1≤ i≤ µ +1:

Fix 1≤ i≤ µ , and fix x1, . . . ,xi−1. We say that T (i) has failed if it returns (tr,⊥).

Let ε ′ be the probability that the T (i) fails for this choice of challenges, and let ε ′(xi)

be the probability that T (i+ 1) fails for this choice of challenges continued with xi. The

54 Chapter 3. Background & Definitions

T 〈P∗,V〉(i)→ (tr, tree):
-If i = µ +1

-Obtain a complete protocol transcript from tr← 〈P∗,V〉
-Run V(tr)→ b
-If b = 0 then return (tr,⊥).
-If b = 1 then set tree = {tr} and return (tr, tree).

-Run 〈P∗,V〉 up to and including move 2i+1.
-Run T 〈P∗,V〉(i+1)→ (tr, tree)
-If tree =⊥ then return (tr,⊥).
-Set counter = 1
-While counter < ni:

-Rewind 〈P∗,V〉 back until just before move 2i.
-Run T 〈P∗,V〉(i+1)→ (tr′, tree′)
-If tree 6=⊥, then append the transcripts in tree′ to tree, and increment

counter.
-Return (tr, tree)

Figure 3.5: Tree finders T for Lemma 1

ith tree-finder can fail only if the (i+ 1)th tree-finder fails the first time it is called. This

implies that for uniformly random xi, the probability that T (i+1) fails is ε ′=∑xi∈Zp Pr[X =

xi]ε
′(xi).

Therefore, the expected number of times that T (i) runs T (i+ 1) is 1+ ε ′ (ni−1)
ε ′ = ni.

The final tree-finder T (k + 1) merely checks whether the transcript is accepting or not.

Hence, the total expected running time for T (1) to be ∏
µ

i=1 ni multiplied by the time taken

to check whether a transcript is accepting. We conclude that the emulator U runs in expected

polynomial time.

The first tree-finder T (1) only outputs (tr,⊥) if the very first set of challenges gen-

erated by all of the emulators fails to produce an accepting transcript. This is exactly the

probability that P∗ successfully produces an accepting transcript in one run.

Given that we receive ∏
µ

i=1 ni accepting transcripts in tree, we now consider the prob-

ability that they do not form an (n1, . . . ,nµ)-tree. This occurs only when the ni values of

challenge xi used by 〈P∗,V〉 while in the loop controlled by counter are not distinct, or in

other words, there is a collision between these values, for some i.

By Markov’s inequality, an algorithm whose expected running time is t will only run

for longer than time T > t with probability t
T . Let t be the expected running time of U ,

which is bounded above by a polynomial in the security parameter. For easier analysis, we

3.4. Zero Knowledge 55

limit the actual running time of U to T , whose value will be chosen later.

When U runs in time at most T , then at most T uniformly random public coin chal-

lenges were selected by V in 〈P∗,V〉. If there are no collisions between any of the public

coins chosen, then there are certainly no collisions of the type which would prevent tree

from being a (n1, . . . ,nµ)-tree of transcripts. The probability that there is a collision be-

tween T values sampled uniformly from Zp is at most T 2

p .

Now, we choose T = 3
√

p. The probability that tree fails to be an (n1, . . . ,nµ)-tree is

at most t
T + T 2

p which is now equal to t
3√p +

1
3√p . This is negligible. Therefore, there is

negligible probability of the tree-finding algorithms succeeding, yet U failing to extract a

witness. This proves the argument has statistical witness-extended emulation.

3.4.5 Non-Interactive Zero-Knowledge (NIZK) Proofs

It is often desirable to operate in a single step, avoiding the interaction needed to execute

a Σ-protocol. The prover still wishes to demonstrate to the verifier the truth of a statement

u ∈ LR for an NP-relation R without disclosing any other information about her witness w.

A NIZK proof system (over a setup gk) for an NP-relation R defining the language

LR := {u | ∃w : (u,w) ∈ R}, where u is a statement and w is a witness, is a tuple of

polynomial-time algorithms (CRSGen,Prove,PVfy). CRSGen(gk) generates a common

reference string crs; Prove(crs,u,w) returns a proof π that (u,w) ∈R; PVfy(crs,u,π) veri-

fies that π is a valid proof for u ∈ LR, outputting a bit accordingly.

Perfect completeness of the proof system requires that for any crs generated by

CRSGen and any pair (u,w) ∈ R we have Pr[PVfy(crs,u,Prove(crs,u,w))] = 1. Addi-

tionally, we require soundness and zero-knowledge, which are as follows:

• Soundness: For all PPT adversaries A, we have

Pr

 gk← GGen(1λ);crs← CRSGen(gk);(u,π)←A(gk,crs) :

PVfy(crs,u,π) = 1 ∧ u /∈ LR

≈ 0.

• Zero-Knowledge: There exist PPT algorithms (SimCRSGen,SimProve), where

SimCRSGen(gk) outputs a simulated reference string crs and possibly a simulation

trapdoor τ , and SimProve(crs,s,τ) produces a simulated proof (without knowing a

56 Chapter 3. Background & Definitions

witness). We require that

Pr
[
gk← GGen(1λ);crs← CRSGen(gk) :AProve(gk,crs) = 1

]
≈Pr

[
gk← GGen(1λ);(crs,τ)← SimCRSGen(gk) :ASim(gk,crs) = 1

]
,

where on query (u,w) ∈R, Sim returns π ← SimProve(crs,u,τ).

3.4.6 The Fiat-Shamir heuristic.

The Fiat-Shamir transformation takes an interactive public coin argument and replaces the

challenges with the output of a cryptographic hash function H. The idea is that the hash

function will produce random looking output and therefore be a suitable replacement for

the verifier. The Fiat-Shamir heuristic yields a non-interactive zero-knowledge argument in

the random oracle model [BR93].

Given a Σ-protocol P,V where the verifier’s challenge is sampled from X , and a hash

function h : {0,1}∗ → X . the Fiat-Shamir transformation replaces the second step, x ←

V (crs,u,a) with x := h(crs,u,a). As h is deterministic, π ← 〈P,h〉 can be produced by P

alone. At the same time, the original verifier V can be used unmodified to check π .

In general, the transformation allows us to transform any complete, public coin,

special sound, SHVZK interactive protocol (CRSGen,P,V) into a NIZK proof system

(CRSGen,〈P,h〉,V) given an appropriate1 hash function h.

In security proofs under the random oracle model, the hash function used in the proto-

col is assumed to be an oracle under the control of the simulator. As such, the simulator can

choose the value returned by the hash function on any input with the only limitation being

consistency (i.e. after setting H(x) = y, the simulator is not allowed to set H(x) = y′ 6= y.

The random oracle model has been criticised as [GK03, CGH04] have shown that it is pos-

sible to construct protocols that are secure under the random oracle model but provably

insecure in general. At the same time, these results have not led to a vulnerability being

found in a currently used protocol. In Chapter 4 we examine the DFN transformation that

can be used as an alternative to Fiat-Shamir for a restricted class of protocols.

3.4.7 Signature of Knowledge

A Signature of Knowledge (SoK) for an NP-relation R w.r.t. a setup gk is a tu-

ple (SoKSetup,SoKSign,SoKVerify). SoKSetup(gk) outputs public parameters crs;

1For notational convenience we assume that the challenge space is the same for all rounds.

3.4. Zero Knowledge 57

SoKSign(crs,u,w,m) outputs a signature σSoK on m if (u,w)∈R; SoKVerify(crs,u,m,σSoK)

outputs 1 if σSoK is a valid signature on m or 0 otherwise. The (game-based) security

definition for signatures of knowledge (SimExt) [CL06], besides correctness, requires Sim-

ulatability and Extractability. We consider a stronger generalisation of the latter called

f -extractability [BCKL08]:

• Simulatability: There are PPT algorithms (SoKSimSetup,SoKSimSign), where

SoKSimSetup(gk) outputs public parameters crs and some trapdoor τ , whereas

SoKSimSign(crs,τ,u,m) outputs a signature σSoK, such that

Pr
[
gk← GGen(1λ);(crs,τ)← SoKSimSetup(gk) :ASoKSim(gk,crs) = 1

]
≈Pr

[
gk← GGen(1λ);crs← SoKSetup(gk) :ASoKSign(gk,crs) = 1

]
,

for all PPT adversaries A, where SoKSim(u,w,m) returns SoKSimSign(crs,τ,u,m)

if (u,w) ∈R and ⊥ otherwise.

• f -Extractability: For all PPT adversariesA, there exists a polynomial time algorithm

SoKExtract such that:

Pr

gk← GGen(1λ);(crs,τ)← SoKSimSetup(gk);

(u,m,σSoK)←ASoKSim(gk,crs);

y← SoKExtract(crs,τ,u,m,σSoK) :

(u,m,σSoK) ∈ QSoKSim∨ SoKVerify(crs,u,m,σSoK) = 0

∨
(
∃w s.t. (u,w) ∈R∧ y = f (w)

)

≈ 1·

In the above, QSoKSim is a list of queries to the SoKSimSign oracle. Note that our

extractability definition is stronger than that of [CL06], as we allow the adversary

to ask for signatures w.r.t. statements for which it does know the witness. In the

definition, if f is the identity function, we get the standard notion of extractability.

Signatures of knowledge in the random oracle model can be efficiently realised by

applying the Fiat-Shamir transformation to Σ-protocols. Applying the transformation to Σ-

protocols having quasi-unique responses (i.e. given an accepting transcript, it is infeasible

to find a different accepting response w.r.t. the same initial message and challenge) provides

weak simulation-extractability [FKMV12], where the extractor needs to rewind the prover.

To get straightline f -extractability, i.e. without rewinding [Fis05], we additionally encrypt

58 Chapter 3. Background & Definitions

a function f of the witness with a public key in the reference string and prove that the

encrypted value is consistent with the witness. This way we get both full weak extractability

and straightline f -extractability simultaneously.

3.4.8 Non-Interactive Designated Verifier Zero Knowledge Arguments

Designated Verifier protocols have an additional property: they are tailored to a specific

verifier as opposed to the general public. Conceptually, it is akin to each verifier having a

personal CRS (along with additional related information that enables verification).

In a non-interactive designated verifier zero knowledge argument system, we imagine

the verifier sets up a public key pk for the proof together with a secret verification key vk

that can be used to verify the arguments. The system therefore consists of three probabilistic

polynomial time algorithms (RKGen,P,V).

(pk,vk)←G(1λ): The key generation algorithm, given the security parameter as input,

generates a public key pk and a secret verification key vk.

π ←P(pk,u,w): Given a public key pk and (u,w)∈ Rλ , the prover algorithm generates an

argument π .

{0,1}← V(vk,u,π): Given a secret verification key vk, a statement u and an argument π ,

the verification algorithm returns 1 if accepting the argument and 0 for rejection of

the argument.

(RKGen,P,V) is said to be a non-interactive designated verifier zero-knowledge argument

system for R with culpable soundness with respect to Rguilt if it is complete, culpably sound

and zero-knowledge as defined below.

Definition 15 (Completeness). (RKGen,P,V) is perfectly complete if for all λ ∈N and all

(u,w) ∈ Rλ

Pr
[
(pk,vk)←G(1λ);π ←P(pk,u,w) : V(vk,u,π) = 1

]
= 1.

In our constructions (see Chapter 4) we will get zero-knowledge even if the adversary

knows the secret verification key, a strong type of zero-knowledge called composable zero-

knowledge in [Gro06] due to it making composition of zero-knowledge proofs easier.

Definition 16 (Composable zero-knowledge). (RKGen,P,V) is computationally compos-

3.4. Zero Knowledge 59

able zero-knowledge if for all probabilistic polynomial time stateful adversaries A

Pr
[
(pk,vk)← RKGen(1λ);(u,w)←A(pk,vk);π ←P(pk,u,w) : (u,w) ∈ Rλ and A(π) = 1

]
≈Pr

[
(pk,vk)← RKGen(1λ);(u,w)←A(pk,vk);π ←S(vk,u) : (u,w) ∈ Rλ and A(π) = 1

]
.

If the above holds also for unbounded stateful adversaries A then we say the argument is

statistically composable zero-knowledge.

Culpable soundness [GOS12] is a relaxation of soundness that restricts the prover in

the following way: First, we only consider false statements in a subset Lguilt of L̄R charac-

terised by a relation Rguilt. Second, we require a successful cheating prover to also output a

guilt witness wguilt along with his false statement u such that (u,wguilt) ∈ Rguilt. Intuitively

this definition captures the notion of a malicious prover being aware of the falsehood of the

statement for which she is creating a fake proof.

Definition 17 (Adaptive culpable soundness). We say (G,P,V) is culpably sound with re-

spect to the relation Rguilt if for all probabilistic polynomial time A

Pr
[
(pk,vk)←G(1λ);(u,π,wguilt)←A(pk) : (u,wguilt) ∈ Rguilt,λ and V(vk,u,π) = 1

]
≈ 0.

The above definition does not directly cover the adversary, A having access to a veri-

fication oracle V(vk, ·, ·). However it is straightforward to handle cases where the adversary

has access to a logarithmic number of queries (as in [DFN06]), since that can be simulated

by guessing the responses with inverse polynomial probability.

60 Chapter 3. Background & Definitions

Chapter 4

Non-Interactive Zero Knowledge without

Random Oracles

Damgård, Fazio and Nicolosi [DFN06] gave a transformation of Sigma-protocols, 3-move

honest verifier zero-knowledge proofs, into efficient non-interactive zero-knowledge argu-

ments for a designated verifier. Their transformation uses additively homomorphic encryp-

tion to encrypt the verifier’s challenge, which the prover uses to compute an encrypted an-

swer. The transformation does not rely on the random oracle model but proving soundness

requires a complexity leveraging assumption.

We propose an alternative instantiation of original DFN transformation and show that it

achieves culpable soundness without complexity leveraging. This improves upon an earlier

result by Ventre and Visconti [VV09], who used a different construction which achieved

weak culpable soundness, by achieving standard culpable soundness as well as avoiding the

duplicate proofs required by their approach.

We demonstrate how our construction can be used to prove validity of encrypted votes

in a referendum. This yields a voting system with homomorphic tallying that does not rely

on the Fiat-Shamir heuristic.

The research presented in this chapter was joint work with Jens Groth and published

in [CG15]. The author contributed to the investigation in defining strongly additively homo-

morphic encryption, the security proofs and the design and security proof of the referendum

scheme. The idea of using culpable soundness and the boolean circuit application were put

forward by Jens Groth.

62 Chapter 4. Non-Interactive Zero Knowledge without Random Oracles

4.1 Introduction

Cryptographic applications often require a party to demonstrate that a statement is true

without revealing any additional details. For example, a voter may wish to prove that an

encrypted message contains a vote for a valid candidate without disclosing the actual can-

didate. This can be done using zero-knowledge proofs [GMR89] that enable a prover to

demonstrate to a verifier that a statement u belongs to a language L in NP defined by a rela-

tion R without giving the verifier any information about the witness w such that (u,w) ∈ R.

The Damgård, Fazio and Nicolosi (DFN) [DFN06] transformation works in the Regis-

tered Key Model (RKM) [BCNP04] where a verifier registers a public key and transforms a

Σ-protocol with linear answer into a non-interactive zero-knowledge argument that can be

verified by this specific verifier [JSI96]. The transformation works by having the verifier

encrypt his challenge under an additively homomorphic encryption scheme and relies on

the Σ-protocol having an answer that can be computed using linear algebra and the homo-

morphic property of the encryption scheme to enable the prover to complete an encrypted

version of the answer in the Σ-protocol. We describe their construction in Section 4.3, where

we give an alternate soundness proof for a more restricted class of protocols and encryption

schemes. The original proof holds for a logarithmic number of proofs but soundness rests

on a complexity leveraging assumption. Complexity leveraging assumptions state that there

is a hardness separation between two hard problems, i.e. that there exist solvers for the first

problem, running in time T , but no T -bound adversary can solve the second problem with

more than negligible probability. This allows security reductions to raise a contradiction

by solving the second, harder, problem using the adversary, and a solver for the first prob-

lem. Ventre and Visconti [VV09] give an alternative proof of soundness for a construction

based on a two ciphertext variation of the DFN transformation in the style of Naor and

Yung [NY90]. They replace the complexity leveraging assumption by introducing a modi-

fication of culpable soundness1 [GOS12] that they call weak culpable soundness. Culpable

soundness restricts adversaries to being “aware” of the falsehood of the statement they are

proving. Weak culpable soundness furthermore requires that the adversary is also aware of

the fact that she has succeeded in producing a convincing proof of a false statement, by

producing a second auxiliary proof to that effect.

In the DFN setting using weak culpable soundness would require the adversary to

1Culpable soundness was also called co-soundness in an earlier version of [GOS12].

4.1. Introduction 63

prove statements containing ciphertexts addressed to the designated verifier. It would be

challenging to provide such an adversary with enough power to perform the required proofs

without having knowledge of the verifier’s secret decryption key. We instead opt to construct

the underlying protocol with the property that forged proofs reveal the challenge. This is

enough to contradict the semantic security of the encryption scheme used for the designated

verifier proof if a false proof is ever produced.

4.1.1 Contribution

We give an instantiation of the DFN transformation that achieves standard culpable sound-

ness without complexity leveraging. The transformation relies on an IND-CPA secure addi-

tively homomorphic encryption scheme and is quite efficient. The transformation can be ap-

plied to Σ-protocols that have linear answers and unique identifiable challenges (Sect. 4.2.3).

We can use our resulting non-interactive zero-knowledge designated verifier arguments

to efficiently prove statements about encrypted plaintexts. In particular, we can prove that a

ciphertext contains either 0 or 1 without disclosing the plaintext. This can in turn be used

to prove that a set of ciphertexts encrypt a witness for the satisfiability of a circuit. For the

appropriate Σ-protocols to be in place, we require the encryption scheme to be additively

homomorphic modulo a prime and satisfy a few other requirements (Sect. 4.2.1). We use

Okamoto-Uchiyama encryption [OU98] as an example.

We proceed to give an example application of our non-interactive zero-knowledge ar-

guments to provide publicly verifiable arguments in the context of electronic voting. In vot-

ing systems such as Helios [Adi08] voters submit their votes encrypted under a homomor-

phic encryption scheme accompanied with non-interactive arguments (typically using the

Fiat-Shamir transformation) that the encrypted votes are in fact valid. Ciphertexts with con-

vincing arguments are aggregated homomorphically to produce an encrypted tally which is

then decrypted to produce the result. By releasing the designated verifier keys to the public

(similar to [Wik08]), once vote submission has concluded, we can use our non-interactive

designated verifier arguments in place of the usual non-interactive zero-knowledge argu-

ments with minimal changes to the design. It does however differ in that invalid ballots

are detected after being tentatively accepted, whereas other systems are able to reject them

outright.

Additionally, we require that the contents of the message board are initially hidden

and only revealed after ballot submission has concluded. This is a departure from common

64 Chapter 4. Non-Interactive Zero Knowledge without Random Oracles

practice, and raised the amount of trust placed on the bulletin board. However, it is not

dissimilar from the way conventional elections are run, and the delay may be omitted by

using a stronger (non-malleable) encryption.

4.2 Preliminaries
In this section we expand on some concepts from Chapter 3. This is necessary as the tech-

nical parts of this chapter rely on specific bit sizes of parameters and additional properties

for our encryption scheme.

4.2.1 Strongly Additively Homomorphic Encryption

We say that (PKEGen,E ,D) is additively homomorphic if the randomness and ciphertext

spaces are finite groups as well (written additively and multiplicatively respectively) and for

all possible keys ek and plaintexts m1,m2 ∈Mek and r1,r2 ∈Rek we have

Eek(m1;r1) · Eek(m2;r2) = Eek(m1 +m2;r1 + r2).

We say that an additively homomorphic scheme (PKEGen,E ,D) is a strongly addi-

tively homomorphic scheme if it satisfies the four additional properties described below:

Prime order message space: The message space is Zp for some prime p.

Decryption homomorphic2: Membership of the ciphertext space can be efficiently tested

and the decryption algorithm on all elements in Cek returns a plaintext inMek (i.e.,

decryption does not fail). Furthermore, decryptions respect the additively homomor-

phic operation, i.e., for all possible key pairs (ek,dk) and c1,c2 ∈ Cek we have

Ddk(c1)+Ddk(c2) =Ddk(c1 · c2).

Extended randomness: Rek = ZN for some integer N but the encryption function accepts

randomness in Z and for all m ∈Mek and r ∈ Z

E(m;r) = E(m;r mod N).

Verifiable keys: There exists an efficient test VerifyKey(1λ ,ek,dk) that given a public key

ek and decryption key dk (or without loss of generality the randomness used in the
2This property is trivial for cryptosystems where the entire cipherspace consists of valid encryptions but in

the general case it must be stated explicitly.

4.2. Preliminaries 65

key generation) returns 1 if and only if (ek,dk) is a valid key pair using security

parameter λ .

The strengthening of the usual homomorphic properties is mainly aimed to capitalize

on our ability (via culpable soundness) to extract from adversarially generated ciphertexts.

The prime order message space help by ensuring that the values we will extract will give

unique solutions, and the decryption homomorphic property ensures that the adversary will

not be able to present malformed ciphertexts (which might be hard to extract from) that

homomorphically add up to a valid one. Extended randomness is present for generality in

the event that the modulus of the randomness space, N is unknown.

For notational convenience, we let c~z be the vector (cz1 , . . . ,czn) given a ciphertext c

and a vector of integers~z = (z1, . . . ,zn). Given a vector ~w we also define~c←Eek(~w) as the

vector of ciphertexts given by (Eek(w1), . . . ,Eek(wn)).

4.2.2 Okamoto-Uchiyama encryption [OU98]

The Okamoto-Uchiyama [OU98] cryptosystem is strongly additively homomorphic with a

message space Zp for a prime p that is implicitly defined by the public key.

PKEGen(1λ): Pick two different `p(λ)-bit primes p,q and let N = p2 · q. Then choose a

random g in Z∗N such that g mod p2 has order p(p− 1) in Z∗p2 . The public key is

ek = (N,g) and the secret decryption key is dk = (ek, p).

Eek(m): Given m ∈ Zp return Eek(m;r) = gm+rN mod N, where r← ZN .

Ddk(c): Return m = L(cp−1 mod p2)
L(gp−1 mod p2)

mod p, where L(x) = x−1
p .

For a given public key ek = (N,g) the randomness space is ZN and the ciphertext space

is Z∗N . Even though the message space is defined as Zp, in practice we cannot disclose p

but as long as the encrypting party picks messages m ∈ {0,1}`p(λ)−1 we are guaranteed that

they fall within the message space and will decrypt correctly.

Direct calculation confirms that Okamoto-Uchiyama encryption is decryption homo-

morphic and that it is easy to extend the randomness space to Rek = Z. The keys are verifi-

able in the sense that given the decryption key, i.e., the factorization of N, it is easy to check

that the keys are a valid output of the key generation algorithm and that the encryption

scheme satisfies all the required properties.

66 Chapter 4. Non-Interactive Zero Knowledge without Random Oracles

4.2.3 Σ-protocols with Linear Answers and Unique Identifiable Challenges

We will restrict ourselves to Σ-protocols with a linear answer over the integers. By this

we mean without loss of generality that we can consider a prover that generates the initial

message a and two integer vectors ~z1 and ~z2. We consider protocols where x is picked

as a random λ -bit string, where λ is the security parameter. The answer to a challenge

x ∈ {0,1}λ can then be computed as the integer vector~z = x~z1 +~z2. We will assume that all

the integers in~z1,~z2,~z are non-negative and that there is a known polynomial upper bound

`z(λ) on the bit-size of the integers.

We can describe a Σ-protocol for an NP-relation R with linear answer as a pair (PΣ,VΣ),

where PΣ,VΣ are probabilistic polynomial time algorithms. The Σ-protocol runs as follows:

(a,~z1,~z2)←PΣ(x,w): The prover given a statement and witness pair (u,w) ∈ Rλ generates

an initial message a and a state~z1,~z2.

x←{0,1}λ : An λ -bit challenge is chosen uniformly at random.

~z← x~z1 +~z2: An answer to the challenge x can be computed as~z = x~z1 +~z2.

{0,1}← VΣ(u,a,x,~z): The verifier given a statement u and a protocol transcript (a,x,~z)

returns 1 if accepting and 0 if rejecting. The verifier will always reject if any inputs

are malformed, for instance if x /∈ {0,1}λ or~z contains an entry zi /∈ {0,1}`z(λ).

With respect to soundness, we will for our purposes be interested in a special class of

Σ-protocols that have unique identifiable challenges. Traditionally, Σ-protocols are required

to have 2-special soundness, which says that if the prover, after having created the initial

message a, can answer two different challenges x and x′ then it is possible to compute a

witness w for the statement u being proved such that (u,w) ∈ R.

We do not need the witness to be extractable, and will therefore relax the soundness

definition to just saying that on a false statement there is at most a single unique challenge

the prover can answer after having created the initial message a.

However, we will require that under certain circumstances this unique answerable chal-

lenge should be identifiable, i.e., if the prover “knows” the statement is false in a certain way

then she can actually compute the unique challenge x she will be able to answer if she can

answer any challenge at all. We define this by adapting the notion of culpable soundness

from [GOS12] and strong soundness from [HN06]. We say that the unique challenge is

identifiable using an NP-relation Rguilt, which only contains false statements, if when the

4.2. Preliminaries 67

prover produces a statement x and a witness wguilt of being guilty of cheating such that

(u,wguilt) ∈ Rguilt, then it is possible to efficiently compute a unique challenge where the

verifier may possibly accept (in comparison, strong soundness omits Rguilt). The relation

Rguilt will typically include all false statements that have a special form, depending on the

specifics.

Definition 18 (Soundness with unique identifiable challenge). We say (PΣ,VΣ) has a unique

identifiable challenge using NP-relation Rguilt if there is a polynomial time algorithm E that

takes as input the statement, witness and initial message and returns the unique challenge x

that can be answered. Formally, we require that for all λ ,u,wguilt,a,x,z where (u,wguilt) ∈

Rguilt,λ and VΣ(u,a,x,z) = 1 that x = E(u,wguilt,a).

A frequently asked question is why would the adversary want to provide a witness for

cheating. The answer is that there are many natural scenarios where the real adversary is

only a part of a larger system that contains the guilt witness. It may well be that the system

would never provide a guilt witness in a normal execution but even when that is the case the

notion can still be useful in security proofs: by framing a “standard” adversary within such a

system we are able to explicitly use privileged information held by honest parties in security

reductions. In Sect. 4.4 we give voting as a concrete example of how culpable soundness

can be used to prevent cheating by voters. Voters prove that they have encrypted valid

votes using the election system’s public key. The guilt witness is the decryption key, which

the voting system will never make public since it would reveal all the votes. However,

if a cheating voter exists, it is enough to point out that the guilt witness will exist in the

possession of the electoral authorities. To satisfy the definition we may consider a new

adversary which consists of the cheating voter’s behaviour, with the decryption key added

to the output in a post-processing step. Culpable soundness then guarantees the voter cannot

cheat and submit an invalid vote.

We note that the extractor E only requires the guilt witness and the initial message

from the prover. This will be critical in the next section where the protocol is made non-

interactive via the DFN transformation and the prover’s answer will be encrypted. In gen-

eral, we cannot require that a cheating prover knows the contents of that ciphertext since it

might have been assembled in a way that differs from the protocol.

68 Chapter 4. Non-Interactive Zero Knowledge without Random Oracles

4.2.4 Σ-protocol for additively homomorphic encryption of 0 or 1.

Consider a strongly additively homomorphic encryption scheme (G,E ,D) with message

space Zp for a prime p defined by the encryption key. We will now give a Σ-protocol for

proving that a ciphertext encrypts 0 or 1 using randomness r ∈ {0,1}`r(λ) bounded by a

polynomial `r(λ).

Prover((ek,c),(m,r)) Verifier(ek,c)

ma←{1}||{0,1}2λ a,b Accept if and only if
ra←{0,1}`r(λ)+2λ ;a←Eek(ma;ra)

-
a,b,c ∈ Cek, f ∈ {0,1}2λ+2

rb←{0,1}`r(λ)+3λ ;b←Eek(−mma;rb) x←{0,1}λ za ∈ {0,1}`r(λ)+2λ+1
�

zb ∈ {0,1}`r(λ)+3λ+1

f := xm+ma,za := xr+ ra f ,za,zb cxa = Eek(f ;za)
zb := (f − x)r+ rb

-
c f−xb = Eek(0;zb)

Figure 4.1: Σ-protocol for encryption of 0 or 1.

Let

R =
{(

(ek,c),(m,r)
)

: m ∈ {0,1} and r ∈ {0,1}`r(n) and c = Eek(m;r)
}
,

Rguilt =
{(

(ek,c),dk
)

: c ∈ Cek and Ddk(c) /∈ {0,1} and VerifyKey(1λ ,ek,dk) = 1
}
.

Theorem 1. Fig. 4.1 describes a Σ-protocol for R with linear answer and unique identifiable

challenge using Rguilt assuming (G,E ,D) is a strongly additively homomorphic encryption

scheme with message space Zp of sufficiently large size such that `p(λ)> λ .

Proof. The algorithms are probabilistic polynomial time. The protocol has linear answer

with a polynomial upper bound of `z(λ) = `r(λ)+3λ +1 on the bit-lengths of the integers

in the answer. Direct verification shows that the protocol is perfectly complete.

The protocol is statistical SHVZK. The simulator, given challenge x ∈ {0,1}λ picks

f ← {1}||{0,1}2λ , za ← {0,1}`r(λ)+2λ and zb ← {0,1}`r(λ)+3λ . It then computes a =

c−xEek(f ;za) and b = cx− fEek(0;zb) and returns the simulated proof (a,b, f ,za,zb). Ob-

serve that the simulated f ,za,zb are statistically close to those of a real proof. To see the

simulation is statistically indistinguishable from a real proof with challenge x all that re-

mains to be seen is that given f ,za,zb, the initial message containing a,b is fixed by the

verification equations in both real and simulated proofs.

4.3. Transformation 69

Finally, let us show that the protocol has unique identifiable challenges using Rguilt.

A witness in Rguilt gives us the decryption key for the encryption scheme. We can verify

the correctness of the decryption key and decrypt c to get m and also decrypt a,b to get

plaintexts ma and mb. In a succesful argument, the value f must be f = xm+ma mod p

since otherwise the first verification equation would fail. The second verification equation

gives us (f − x)m+mb = 0 mod p, which means e(m− 1)m+mam+mb = 0 mod p. If

m /∈{0,1}we have that (m−1)m 6= 0 mod p and therefore the equation uniquely determines

x mod p. With p > 2λ this identifies a unique challenge x ∈ {0,1}λ that the prover may be

able to answer or shows that no answerable challenge exists. �

4.3 Transformation

We will now use the DFN transformation [DFN06] on a Σ-protocol with linear answer over

the integers and unique identifiable challenges to get a non-interactive designated verifier

argument. The transformation we use is identical to [DFN06], but the soundness proof

differs: at the cost of requiring soundness with unique identifiable challenge, a strongly

additively homomorphic encryption scheme and proving culpable soundness, we eschew

the use of complexity leveraging assumptions.

The verifier uses an additively homomorphic encryption scheme (RKGen,E ,D) to en-

crypt a random challenge x. Since the Σ-protocol has linear answer, the prover can now

use the homomorphic property of the encryption scheme to compute an encryption of the

answer~z in the Σ-protocol, which is sent together with the initial message a. The verifier

decrypts the ciphertext from the prover to get z and checks whether (a,x,~z) is a valid proof.

The full non-interactive designated verifier argument is described in Fig. 4.2.

RKGen(1λ)

(ek,dk)← PKEGen(1λ)

x←{0,1}λ

c←Eek(x)
pk := (ek,c)
vk := (dk,x)
Return (pk,vk)

P(pk,u,w)
(a,~z1,~z2)←PΣ(u,w)
~cz← c~z1Eek(~z2)
Return π := (a,~cz)

V(vk,u,π)
Parse π = (a,~cz)
~z←Ddk(~cz)
Return VΣ(u,a,x,~z)

Figure 4.2: Non-interactive designated verifier argument

Theorem 2. (RKGen,P,V) specified in Fig. 4.2 is a non-interactive designated verifier

argument for R with culpable soundness for Rguilt if (PΣ,VΣ) is a Σ-protocol for R with linear

70 Chapter 4. Non-Interactive Zero Knowledge without Random Oracles

answer over the integers and soundness with unique identifiable challenge using Rguilt and

if (PKEGen,E ,D) is an additively homomorphic, IND-CPA secure public key encryption

scheme where Zp is of sufficiently large size to include the answers, i.e., `p(λ)> `z(λ).

Proof. Since (PΣ,VΣ) and (PKEGen,E ,D) are probabilistic polynomial time algorithms

so are (RKGen,P,V). Perfect completeness follows from the additive homomorphicity of

the encryption scheme and that 0≤ zi < 2`z(λ) < p for all entries zi in~z combined with the

perfect completeness of (PΣ,VΣ).

Next, we will prove that the construction is zero-knowledge. The simulator knows the

secret verification key vk = (dk,x). It starts by running the SHVZK simulator for the Σ-

protocol to get a simulated proof (a,x,~z) for the statement u. It then generates~cz← Eek(~z)

and returns the simulated argument π := (a,~cz).

To see a that simulated argument is indistinguishable from a real argument consider

a hybrid simulator that does get the witness as input. This hybrid simulator proceeds by

following the Σ-protocol to get an argument (a,x,~z) and then encrypts ~z to get ~cz. Since

the encryption scheme is also homomorphic with respect to the randomness used for en-

cryption, the hybrid arguments generated this way and real arguments are perfectly indis-

tinguishable. Furthermore, since the Σ-protocol is SHVZK, hybrid arguments and simu-

lated arguments are computationally indistinguishable. Furthermore, if the Σ-protocol has

statistical SHVZK then the hybrid arguments and simulated arguments are statistically in-

distinguishable.

Finally, we will prove that the construction has adaptive culpable soundness with re-

spect to Rguilt. Plugging our construction into the probability defining culpable soundness

with a probabilistic polynomial time adversary A we get

Pr

 (ek,dk)← RKGen(1λ);x←{0,1}λ ;c←Eek(x)

(u,(a,~cz),wguilt)←A(ek,c);~z←Ddk(~cz)
:
(u,wguilt) ∈ Rguilt

VΣ(u,a,x,~z) = 1

 .
By the unique identifiable challenge property of the Σ-protocol this probability is at

most the chance that x is the unique answerable challenge:

Pr

 (ek,dk)← RKGen(1λ);x←{0,1}λ ;c←Eek(x)

(u,(a,~cz),wguilt)←A(ek,c);~z←Ddk(~cz)
:

(u,wguilt) ∈ Rguilt

x = E(u,wguilt,a)

 .
By the IND-CPA security of the encryption scheme, this probability is at most negli-

4.3. Transformation 71

gibly larger than the same expression with c encrypting a random challenge x′

Pr

 (ek,dk)← RKGen(1λ);x,x′←{0,1}λ ;c←Eek(x′)

(u,(a,~cz),wguilt)←A(ek,c);~z←Ddk(~cz)
:

(u,wguilt) ∈ Rguilt

x = E(u,wguilt,a)

 .
Since x is chosen uniformly random this latter probability is at most 2−λ , which is negligi-

ble. �

4.3.1 Non-interactive Designated Verifier Arguments for Statements about

Ciphertexts

In Sect. 4.2.4 we gave a Σ-protocol for proving a ciphertext having either 0 or 1 as plaintext.

Using the DFN transformation, this leads to a non-interactive designated verifier argument

with culpable soundness for a ciphertext encrypting 0 or 1, i.e., for the relation

R =
{
((ek,c),(m,r)) : m ∈ {0,1} and r ∈ {0,1}`r(n) and c = Eek(m;r)

}
with culpable soundness using

Rguilt =
{
((ek,c),dk) : c ∈ Cek and Ddk(c) /∈ {0,1} and VerifyKey(1λ ,ek,dk) = 1

}
.

This designated verifier argument works for ciphertexts produced by all strongly ad-

ditively homomorphic encryption schemes that have message space Zp for p > 2λ such as

for instance the Okamoto-Uchiyama [OU98] encryption scheme from Sect. 4.2.2. A second

instance of the same strongly additively homomorphic encryption scheme but with larger

message space can also be used for the DFN transformation. However, in the interest of

more efficient implementations, it might be desirable to use a different encryption scheme

for the DFN transformation. Specifically, DFN does not require the message space to be of

prime order or the scheme to be strongly additively homomorphic, giving us the option of

using an encryption scheme better suited for encrypting long messages such as Damgård-

Jurik [DJN10].

It is fairly simple to adapt standard Σ-protocols for other languages expressing prop-

erties about ciphertexts. In particular, in addition to the argument for encryption of 0 or

1 it is possible to construct non-interactive designated verifier arguments for the following

relations:

72 Chapter 4. Non-Interactive Zero Knowledge without Random Oracles

Plaintext is 0: We can prove that a ciphertext c encrypts 0, i.e., give a non-interactive des-

ignated verifier argument for the relation

R0 =
{
((ek,c),r) : r ∈ {0,1}`r(n) and c = Eek(0;r)

}
.

Equivalence of plaintexts: Given two ciphertexts c and c′, we can give a non-interactive

designated verifier argument for them having the same plaintext by proving that c/c′

is an encryption of 0 using the above designated verifier argument.

Multiplicative relationship: Given a triple of ciphertexts c0,c1 and c2, we can prove that

the plaintexts m0,m1 and m2 satisfy m0 = m1m2 mod p. More precisely, we can con-

struct a designated verifier argument for the relation

RM =

 ((ek,c0,c1,c2),(m1,m2,r0,r1,r2)) : m1,m2 ∈ Zp,r0,r1,r2 ∈ {0,1}`r(n)

c0 = Eek(m1m2;r0) and c1 = Eek(m1;r1) and c2 = Eek(m2;r2)

 .

In all cases, the corresponding guilt witness wguilt consists of the decryption key, which can

be used to decrypt the ciphertexts in the statement.

4.3.2 Circuit Satisfiability

We will now show that given a circuit consisting of NAND-gates and encryptions of the

wires it is possible to prove that the plaintexts correspond to a satisfying assignment. A

circuit C with k+ 1 wires and s gates can be described as {(j1, j2, j3)}s
j=1, which means

that the wires should satisfy w j3 = ¬(w j1 ∧w j2). We let the output wire be w0 = 1 and the

corresponding ciphertext be c0 = Eek(1;0) encrypted with randomness r0 = 0. We consider

the relations:

RC =

 ((C,ek,c1, . . . ,ck),(w1,r1, . . . ,wk,rk)) | ∀ j = 1, . . . ,s : w j3 = ¬(w j1 ∧w j2)

∀i = 1, . . . ,k : wi ∈ {0,1}∧ ri ∈ {0,1}`r(λ)−2∧ ci = Eek(wi;ri)

 ,

RC
guilt =

 ((C,ek,c1, . . . ,ck),dk) | VerifyKey(1λ ,ek,dk) = 1 and ∀i = 1, . . .k : ci ∈ Cek

∃i ∈ {1, . . . ,k} : wi =Ddk(ci) /∈ {0,1} or ∃ j ∈ {1, . . . ,s} : w j3 6= ¬(w j1 ∧w j2)

 .

The strategy in the designated verifier argument for RC is to first prove that each ci-

phertext contains a wire value wi ∈ {0,1}. Next, the prover proves for each NAND-gate

4.3. Transformation 73

(j1, j2, j3) that w j3 = ¬(w j1 ∧w j2). Following [GOS12] we have for w j1 ,w j2 ,w j3 ∈ {0,1}

w j3 = ¬(w j1 ∧w j2) if and only if w j1 +w j2 +2w j3−2 ∈ {0,1}.

Using the homomorphic properties of the encryption scheme, we will therefore for each

NAND-gate show c j1c j2c2
j3Eek(−2;0) contains 0 or 1. The full construction can be found in

Fig. 4.3

PC(pk,(C,ek,c1, . . . ,ck),(w1,r1, . . . ,wk,rk))

w0 = 1,r0 = 0,c0 = Eek(w0;r0)
For i = 1, . . . ,k

πi←P(pk,ci,(wi,ri))
Parse C = {(j1, j2, j3)}s

j=1
For j = 1, . . . ,s

c′j = c j1c j2c2
j3Eek(−2;0)

m′j = w j1 +w j2 +2w j3−2
r′j = r j1 + r j2 +2r j3
π ′j←P(pk,c′j,(m

′
j,r
′
j))

Return π = (π1, . . . ,πk,π
′
1, . . . ,π

′
s)

VC(vk,(C,ek,c1, . . . ,ck),π)

w0 = 1,r0 = 0,c0 = Eek(w0;r0)
Parse C = {(j1, j2, j3)}s

j=1
For j = 1, . . . ,s

c′j = c j1c j2c2
j3Eek(−2;0)

Parse π = (π1, . . . ,πk,π
′
1, . . . ,π

′
s)

Accept if and only if
For i = 1, . . . ,k
V(vk,ci,πi) = 1

For j = 1, . . . ,s
V(vk,c′j,π

′
j) = 1

Figure 4.3: Non-interactive designated verifier argument (GC,PC,VC) for encryption of
satisfying assignment of wires in a circuit using GC = G where (G,P,V) is a designated
verifier argument for encryption of 0 or 1.

Theorem 3. (GC,PC,VC) given in Fig. 4.3 is a non-interactive designated verifier argu-

ment for RC with culpable soundness using RC
guilt if (G,P,V) is a non-interactive designated

verifier argument for encryption of 0 or 1 using Rguilt from Sect. 4.2.4.

Proof. Perfect completeness follows from the homomorphic properties of the encryption

scheme and the perfect completeness of (G,P,V).

We will now prove composable zero-knowledge. The simulator SC(vk,(C,ek,c1, . . . ,ck))

runs like the prover except it simulates the proofs π1, . . . ,πk,π
′
1, . . . ,π

′
s as πi ←

S(vk,(ek,ci)) and π ′j ← S(vk,c′j). We prove this via a hybrid argument. Let

SPi(vk,(C,ek,c1, . . . ,ck),(w1,r1, . . . ,wk,rk)) for i= 0 . . .(k+s) by a hybrid prover/simulator,

operating as follows: it uses the real prover for the first (k+ s− i) subproofs of π , and the

simulator for the last i. It is clear that SP0 behaves as the real prover (since it ignores its first

argument), while SP(k+s) behaves as the simulator (since it ignores its last argument). Thus,

if an adversary AC can distinguish between the prover (i.e. SP0) and simulator (SP(k+s)),

74 Chapter 4. Non-Interactive Zero Knowledge without Random Oracles

there must also be a value i so that is distinguishes SPi from SP(i+1). We will use AC to

build an adversary A against the composable zero knowledge of (G,P,V). A operates by

running AC to obtain a statement for the circuit protocol, and isolates the ciphertext c and

witness r used in subproof i+ 1. It then returns c,r to the game, obtaining π∗, finally it

creates a proof π by running SPi, but inserting π∗ in place of subproof i+1, and copies the

response ofAC. It is clear that iffAC correctly guesses whether π was produced identically

to SPi or SP(i+1) thenA correctly guesses if π∗ was created by the prover or the simulator.

We remark that here the usefulness of composable zero-knowledge comes into play

since it gives the adversary access to the verification key vk, which allows the hybrid argu-

ment to go through.

Finally, we will prove that the argument is culpably sound. By the culpable soundness

of (RKGen,P,V) when we are given dk by the adversary, the proofs π1, . . . ,πk guarantee

each ciphertext contains 0 or 1. The homomorphic property of the encryption scheme com-

bined with the culpable soundness of the proofs π ′1, . . . ,π
′
s then shows that the plaintexts

respect the NAND-gates. Since the output is w0 = 1 this means the circuit is satisfied by the

encrypted values. �

4.4 Applications in Voting with Homomorphic Tallying

We will use a basic referendum voting scheme as an illustration of how to use non-

interactive zero-knowledge designated verifier arguments with culpable soundness. We use

a modification of the framework by Bernhard et al. [BCP+11] which generalises the Helios

voting system. Such schemes operate by having eligible voters post their votes on a bulletin

board encrypted with an additively homomorphic encryption scheme. The election result

can then be produced by a single decryption operation on the homomorphic sum of the indi-

vidual votes. Zero-knowledge protocols ensure that the various participating parties remain

honest.

4.4.1 Voting Schemes with Delayed Bulletin Boards

We assume a delayed bulletin board BB holds all messages posted by the various partici-

pants in the election, and that it behaves honestly for the entirety of the election. During the

submission of ballots, it operates in an append-only mode without disclosing its contents.

After voting has concluded, the bulletin board reveals the ballots it contains and checks their

validity. The checks use only public information and as such are reproducible by any party;

4.4. Applications in Voting with Homomorphic Tallying 75

the bulletin board performs them for convenience. Finally, we assume that the history of the

bulletin board is publicly accessible as well as the current state.

Our use of a delayed bulletin board is a departure from usual practice and is aimed

at preventing attacks based on malleability. The additional trust placed on the board by

this requirement may be mitigated by having the bulletin board immediately display com-

mitments to ballots or eliminated by augmenting the ballot encryption to be submission

secure [Wik08]. We also note that Cortier et al. [CGGI13] develop techniques to guard

against misbehaving boards.

In the interest of simplicity, we restrict the options in the referendum to {0,1} without

giving the option of casting an abstention ballot. The election is run by two trustees, TD and

TV , tasked with holding the decryption and verification keys for the election. We will for

simplicity consider them to be trusted parties but they could be implemented using threshold

cryptography.

Definition 19 (Delayed Voting Scheme). A voting scheme Π consists of five probabilistic

polynomial time algorithms: Setup, Vote, SubmitBallot, CheckBoard, Tally, which

operate as follows:

Setup The setup algorithm takes as input a security parameter 1λ . It produces secret

information SEC, public information PUB and verification information AUG. It also

initialises the bulletin board BB and sets it to be hidden. PUB is assumed to be public

knowledge after Setup has run.

Vote Vote accepts a vote m ∈ {0,1} and outputs a ballot B encoding m.

SubmitBallot SubmitBallot(B,BB) takes as input a ballot B and the current state of the

bulletin board BB and outputs either (0,BB) if it rejects B or (1,BB +←B) if it accepts

it.

CheckBoard CheckBoard(BB,AUG) makes BB visible, and then checks all ballots on BB,

replacing with ⊥ any ballots that do not pass the verification tests. After checking,

the verification information of valid ballots can be removed from the board.

Tally Tally (BB,SEC) takes as input a verified bulletin board BB and the secret informa-

tion SEC and outputs the election result.

For correctness we require that the ballots of honest voters are counted correctly, and

that ballots cast by malicious voters cannot influence the election more than an honest one

76 Chapter 4. Non-Interactive Zero Knowledge without Random Oracles

(i.e casting q malicious ballots can only add q votes and subtract none).

ExpCOR
Π,A(λ)

(PUB,SEC,AUG)← Setup(1λ)
(vsum,q) := (0,0)
AVoteOracle(·),BallotOracle(·)(PUB)
BB← CheckBoard(BB,AUG)
result← Tally(BB,SEC)
Return (result,vsum,q)

VoteOracle(v)
B← Vote(v)
(r,BB)← SubmitBallot(B,BB)
if r = accept : vsum := (vsum+ v)
Return (r,B)

BallotOracle(B)
(r,BB)← SubmitBallot(B,BB)
q := q+1
Return r

Figure 4.4: The referendum correctness experiment, and the oracles provided to the adver-
sary.

Definition 20 (Correctness). We say that a referendum voting scheme Π is correct if for all

efficient adversaries A:

Pr
[
(result,vsum,q)← ExpCOR

Π,A(λ) : vsum≤ result ≤ q+ vsum
]
≈ 1

Definition 21 (Delayed Ballot Privacy). We say that a delayed voting scheme Π satisfies

ballot privacy if for all efficient stateful interactive adversaries A:

Pr
[
ExpBP

Π,A(λ) = 1
]
≈ 1

2

ExpBP
Π,A(λ)

(PUB,SEC,AUG)← Setup(1λ)
b←{0,1}
AVoteOracle(·),BallotOracle(·)(PUB)
BB← CheckBoard(BB,AUG)
BB′← CheckBoard(BB′,AUG)
result← Tally(BB′,SEC)

b̂←A(result,BB,AUG)

Return b = b̂

VoteOracle(v)
B′← Vote(v)
if b = 1 then B← B′

else B← Vote(0)
(r,BB)← SubmitBallot(B,BB)
(r′,BB′)← SubmitBallot(B′,BB′)
Return (r,B)

BallotOracle(B)
(r,BB)← SubmitBallot(B,BB)
if r = accept then
(r′,BB′)← SubmitBallot(B,BB′)

Return r

Figure 4.5: The Ballot Privacy experiment, and the oracles provided to the adversary

4.4. Applications in Voting with Homomorphic Tallying 77

4.4.2 A Referendum Voting Scheme

We will now describe a delayed voting scheme ΠREF for a yes-no referendum, based on

an additively homomorphic encryption scheme such as (PKEGen,E ,D) and with a non-

interactive designated verifier argument system (RKGen,P,V) for a plaintext being 0 or 1

such as the one given in Fig. 4.2.

For simplicity, we omit correctness proofs for keys having been generated correctly

but point out that since the setup involves a limited number of parties we could assume

the use of online zero-knowledge protocols using standard techniques. We also assume

that the bulletin board behaves honestly. We now give descriptions of the Voting Protocol

Algorithms:

Setup The setup algorithm takes as input a security parameter 1λ . The decryption trustee

TD runs PKEGen(1λ) to produce (ek,dk) and the verification trustee then runs

RKGen(1lz(λ)) to obtain (pk,vk). Let, PUB = (ek, pk), AUG = vk and SEC = dk.

The procedure also initialises the bulletin board BB to be hidden, and publishes PUB.

Vote(m) Pick r ← {0,1}`r(λ) and return (c,π), where c = Eek(m;r) and π ←

P(pk,(ek,c,r)).

SubmitBallot(B,BB) Return (accept,BB +←B).

CheckBoard(BB,AUG) The bulletin board BB becomes visible. TV publishes AUG. For

every ballot B = (c,π) in BB we check whether c ∈ Cek and V(vk,(ek,c),π) = 1. If

not, they will be omitted from the tally.

Tally(BB,SEC) The decryption trustee publishes result = Ddk(∏
k
i=1 ci), where c1, . . . ,ck

are the encrypted votes that passed the validity check.

Theorem 4. The referendum scheme ΠREF defined above is correct, if (RKGen,P,V) is

adaptive culpablby sound.

Proof. Let A be an adversary against ExpCOR
Π,A(λ) that causes result to be out of bounds

with non-negligible probability. We construct a simulator B that contradicts the adaptive

culpable soundness of (RKGen,P,V). B will simulate the correctness experiment for A

while acting as the adversary for the adaptive culpable soundness experiment. B operates

by running the correctness experiment normally with the difference that it does not generate

(pk,vk) but instead obtains pk from the adaptive culpable soundness experiment.

78 Chapter 4. Non-Interactive Zero Knowledge without Random Oracles

Because (PKEGen,E ,D) is correct and additively homomorphic, result being out of

bounds implies one of the submitted ballots B = (c,π) is such that c encrypts a value other

than 0 or 1 while at the same time V(vk,(ek,c),π) = 1. Choosing one of the q ballots at

random, B outputs (u,π,wguilt) to the experiment, where u= (c, pk) and wguilt = dk. Since q

is polynomial in λ this gives B a non-negligible probability of winning the experiment.

Theorem 5. The scheme ΠREF satisfies delayed ballot privacy, if the (RKGen,P,V) argu-

ment has statistical zero-knowledge, and (PKEGen,E ,D) is IND-CPA secure.

Proof. We will prove thatA can not do better than guess the value of b in the delayed ballot

privacy experiment via a series of hybrid games. We exploit the delay on the bulletin board

and also take advantage of the fact that in a referendum the number of possible results is

linear in the number of votes.

We will focus on the VoteOracle calls that the adversary makes, as that is where the ex-

periment diverges depending on b. Let qv,qb be upper bounds on the number of VoteOracle

and BallotOracle queries made byA for a particular security parameter λ . Let qΣ = qv+qb

be the total number of queries.

We define as Exp2 the experiment ExpBP
ΠREF ,A where all VoteOracle calls produce a

ballot with a simulated proof π instead of a real one. We also define a series of hybrid games

H1
i for i ∈ {0,qv} in which the first i VoteOracle calls produce a ballot with a simulated

proof π instead of a real one. Via a straightforward hybrid argument, if A can distinguish

between Exp2 = H1
qv

and ExpBP
ΠREF ,A = H1

0 with a non-negligible probability there must be

a value of i such that he can distinguish H1
i and H1

i+1. This contradicts the honest verifier

zero knowledge property of (G,P,V), since for all i, H1
i and H1

i+1 differ (at most) only in a

single proof transcript. Thus A wins Exp2 with probability negligibly close to ExpBP
ΠREF ,A.

We also define a series of hybrid games H2
i for i ∈ {0,qv} as Exp2 in which the first

i VoteOracle calls operate as if b = 1 and the rest as if b = 0. If A can win Exp2 with

non-negligible probability, he can distinguish between H2
0 and H2

qv
and thus there must be a

value of i such that A can distinguish H2
i and H2

i+1.

Let the variable RES be the sum of the votes contained in ballots with correct proofs

which appear in the bulletin board BB′ before CheckBoard is called. We note that RES

only takes values in {0, . . . ,qΣ}.

Let p(λ) be a polynomial such that A can distinguish between H2
i and H2

i+1 with

probability at least 1
2 +

1
p(λ) for an infinite number of λ ∈N. We will construct an adversary

4.4. Applications in Voting with Homomorphic Tallying 79

B that can obtain non-negligible advantage against the IND-CPA security of (K,E ,D) by

simulating an election against A. Initially B obtains a public key ek from the IND-CPA

experiment and completes the setup as normal, obtaining (pk,vk) from G. B proceeds by

following ΠREF with the following difference: the first i VoteOracle calls operate as if

b = 1. The next VoteOracle (which we can assume w.l.o.g to be v∗ = 1) is answered as if

it was successful, but B does not update BB. Afterwards, before CheckBoard is called, the

experiment is suspended and the state st of A is saved along with the bulletin boards and

keys as σ = (ek,(pk,vk),st,BB,BB′). B does not know the value of RES, but knows that it

takes values in {0, . . . ,qΣ}.

Let Exp3(σ ,v,r), where σ = (ek,(pk,vk),st,BB,BB′) be the following experiment:

Produce B∗ as a fresh ballot (with simulated proof) containing v, add B∗ to BB, restore the

adversary’s state to st and resume the voting protocol starting at CheckBoard. The Tally

query is answered with r. The result of the experiment is 1 only if v = b̂ where b̂ is A’s

reply.

We note when r = RES, Exp3(σ ,v,r) produces the same output as H2
i or H2

i+1 de-

pending only on v. We call a saved state σ “good” if A has a non-negligible advantage in

distinguishing Exp3(σ ,0,RES) from Exp3(σ ,1,RES), where RES is determined uniquely

by BB′. Because A can distinguish between H2
i and H2

i+1, a state created by B must be

“good” with non-negligible probability.

B repeats the following λ · p(λ) times: run Exp3(σ ,v,r) for all combinations of v ∈

{0,1} and r ∈ {0, . . . ,qΣ}.

Afterwards, B can determine the value of r for whichA has best distinguished between

v = 0 and 1. We note that because the true value of RES is included in the iterations, if σ

is a “good” state, there is a value of r for which A achieves at least 1
p(λ) advantage in

distinguishing v, and after λ · p(λ) experiments Chernoff-bounds show that B has a good

estimate of A’s advantage for each value of r.

After determining the optimal value of r, B will send (0,1) to the IND-CPA experiment

and obtain a challenge ciphertext ĉ. B produces a simulated proof π̂ for c, adds B̂ to the

saved board and resumes the experiment a final time. B finally forwards the reply of A to

the IND-CPA experiment.

Because B will proceed without restarting with non-negligible probability, it runs in

expected polynomial time. Because with overwhelming probability B proceeds only when

80 Chapter 4. Non-Interactive Zero Knowledge without Random Oracles

Reference Elements Size (bits) Total (bits)
G F GL G. F. GL.

ElGamal (ECC) 4 3 256 256 1.75K
ElGamal (Zp) 4 3 4.4K 256 18.5K

This work (naive) 3 3 4.4K 15K 58.2K
This work (baseline) 3 3 4.4K 11.6K 48K

Table 4.1: Size comparison between our work and baseline Helios - ElGamal, for parame-
ters targeting 128 bit security.

σ is a “good” state, the advantage in distinguishing whether c contains 0 or 1 is non-

negligible.

4.4.3 Efficiency

In this section, we compare the size of a simple 0/1 ballot for our scheme, compared to a

standard Helios instantiation with ElGamal. We use the guidelines from [Len05] and target

128 bit security. In both cases, we give the cost in terms of group elements G, field elements

F and large group elements GL. Large group elements are used for the outer encryption layer

of our DFN-based construction (i.e the keys in).

The three variants of our instantiation differ as follows: In the the naive version, p and

q increase in size proportionally. In the baseline version, only p increases in size, as the size

of q is already large enough and the size of the message space depends only on p.

Chapter 5

Efficient Protocols for Arithmetic Circuits

In the previous chapter, we gave a protocol for the satisfiability of a binary circuit. While

simple conceptually, it was not particularly efficient as we relied on a separate subprotocol

for every multiplication gate and wire. In this chapter we will construct a much more

efficient but also more complex protocol that is tailored to arithmetic circuits. The additional

complexity means that the DFN transformation is no longer applicable: some aspects (e.g.

multiple rounds or answers linear in higher powers of the challenge) could be handled by

generalising the transformation, but others (like answers involving group elements with

the challenge used as an exponent) would require a large jump in its expressive power.

This leaves us with either a multi-round argument or using the Fiat-Shamir heuristic in the

random oracle model.

With regards to efficiency, we provide a zero-knowledge argument for arithmetic cir-

cuit satisfiability with a communication complexity that grows logarithmically in the size

of the circuit. The round complexity is also logarithmic and for an arithmetic circuit with

fan-in 2 gates the computation of the prover and verifier is linear in the size of the cir-

cuit. The soundness of our argument relies solely on the well-established discrete logarithm

assumption in prime order groups.

At the heart of our new argument system is an efficient zero-knowledge argument

of knowledge of openings of two Pedersen multicommitments satisfying an inner product

relation, which is of independent interest. The inner product argument requires logarithmic

communication and interaction, and linear computation for both the prover and the verifier.

We also develop a scheme to commit to a polynomial and later reveal the evaluation

at an arbitrary point, in a verifiable manner. This is used to build an optimised version

of the constant round square root complexity argument of Groth [Gro09b], reducing both

82 Chapter 5. Efficient Protocols for Arithmetic Circuits

communication and round complexity.

The research presented in this chapter was joint work with Jonathan Bootle, Andrea Cerulli,

Jens Groth and Christophe Petit, and published in [BCC+16b]. The author contributed to

the investigation in the recursive version of the main protocol and in the idea of utilising

the homomorphic property of the bases in our commitment scheme. Additionally, in the

root version of the protocol, and specifically in using the constraints system required by

the multiplication argument to handle additions “for free”. The author also contributed

the Python implementation of the protocol, together with Andrea Cerulli as well as the

benchmarking.

5.1. Introduction 83

5.1 Introduction

Our goal is to build an efficient argument system for the satisfiability of an arithmetic cir-

cuit, i.e., a circuit that consists of addition and multiplication gates over a finite field Zp.

Moreover we want to base the security of this argument solely on the discrete logarithm as-

sumption: this will provide both strong security guarantees and good efficiency since there

exists no known attacks better than generic ones for well-chosen elliptic curve subgroups.

The most efficient zero-knowledge arguments solely based on the discrete logarithm

assumption are Groth’s protocol based on linear algebra [Gro09b] and its variant by

Seo [Seo11]. Both of these protocols have a communication complexity that is proportional

to the square root of the circuit size. This square root complexity has since then appeared

(Sect. 2.1.2) as a (perhaps fundamental) barrier for discrete logarithm-based arguments for

circuit satisfiability in this setting.

5.1.1 Contributions

We provide an honest verifier zero-knowledge argument for arithmetic circuit satisfiability

based on the discrete logarithm assumption that only requires a logarithmic communication

complexity. Our argument has perfect completeness and perfect special honest verifier zero-

knowledge. Soundness is computational and based on the discrete logarithm assumption.

We require a logarithmic number of moves, and both the prover and verifier have linear

computational complexity. The argument is therefore efficient on all parameters with the

biggest improvement being in the communication complexity.

Improved Square Root Complexity Argument. We start from the circuit satisfiability ar-

gument of Groth [Gro09b], which requires 7 moves and has square root communication

complexity in the total number of gates. In this argument the prover commits to all the

wires using homomorphic multicommitments, verifies addition gates using the homomor-

phic properties, and uses a product argument to show that the multiplication gates are satis-

fied.

We first improve Groth’s argument into a 5 moves argument with square root commu-

nication complexity in the number of multiplication gates only. We achieve fewer moves

compared to [Gro09b] by avoiding generic reductions to linear algebra statements. We re-

move the communication cost of the addition gates in the argument by providing a technique

that can directly handle a set of Hadamard products and linear relations together. Another

efficiency improvement is a subroutine to commit to a polynomial and later reveal its eval-

84 Chapter 5. Efficient Protocols for Arithmetic Circuits

uation at an arbitrary point in a verifiable manner. In Section 5.4 we provide a protocol to

perform this task, which has a square root communication complexity with respect to the

degree of the polynomial, and which may be of independent interest.

Logarithmic Complexity Argument. In spite of all these improvements, the above argu-

ment still requires a square root communication complexity with respect to multiplication

gates. In the first move the prover commits to all circuit wires using 3m commitments to n

elements each, where mn = N is a bound on the number of multiplication gates, and in the

last move after receiving a challenge he opens one commitment that can be constructed from

the previous ones and the challenge. By setting m ≈ n we get a minimal communication

complexity of O(
√

N).

Our key idea to break this square root communication complexity barrier is to replace

the last opening step in this protocol by an argument of knowledge of the opening values.

Using specific properties of Pedersen multicommitments, namely homomorphic properties

with respect to the keys, we rewrite this argument as an argument of knowledge of openings

of two homomorphic commitments, satisfying an inner product relation. In Section 5.5 we

provide an argument system for this problem, which only requires a logarithmic communi-

cation with respect to the vector sizes. The argument is built in a recursive way, reducing the

size and complexity of the statement further in each recursion step. Using this inner prod-

uct argument as a subroutine we obtain an arithmetic circuit satisfiability argument with

logarithmic communication.

Implementation. In Section 5.7 we report on an implementation of our arguments. To

show the practicality of our results we compare the efficiency of our implementation to that

of Pinocchio [PHGR13]. Pinocchio is a practical verifiable computation scheme allowing

a constrained client to outsource computation of a function to a powerful worker and to

efficiently verify the outcome of the function. It uses quadratic arithmetic programs, a

generalisation of arithmetic circuits, and for some functions achieves verification that is

faster than local computation. While we do not achieve comparably fast verification, we

compare favourably in terms of prover computation, and do so under simpler assumptions.

5.2 Related Work
Table 5.1 compares the most efficient previous zero-knowledge arguments based on the

discrete logarithm assumption with our scheme, when allowing for 5 moves or a logarith-

mic number of moves. Using 5 moves, our scheme requires significantly less computation

5.3. Preliminaries 85

Reference Moves Communication Prover Complexity Verifier Complexity
G Zp exp. mult. exp. mult.

[CD98] 3 6N 5N +2 6N 6N 6N 0
[Gro09b] 7 9

√
N +4 7

√
N +6 6N

logN O(N logN) 39
√

N
logN O(N)

[Gro09b] 2 logN +5 2
√

N 7
√

N 6N
logN O(N) 18

√
N

logN O(N)

[Seo11] 5 30
√

N 7
√

N 6N
logN O(N logN) 77

√
N

logN O(N)

This work 5 2
√

N 2
√

N 6N
logN 3N logN 8

√
3N

logN O(N)

This work 2logN +1 4logN +7 2logN +6 12N O(N) 4N O(N)

Table 5.1: Efficiency comparison between our arguments and the most efficient interactive
zero-knowledge arguments relying on discrete logarithm. We express communication in
number of group elements G and field elements Zp and computation costs in number of
exponentiations over G and multiplications over Zp. The efficiency displayed is for a circuit
with N multiplication gates.

than [Seo11]. On the other hand when using a logarithmic number of moves and apply-

ing a reduction similar to [BG12], our scheme dramatically improves the communication

costs with respect to all previous work without incurring any significant overhead. We note

that [BG12] uses the reduction to reduce computation whereas we use it to reduce commu-

nication.

As part of our construction we give a protocol for committing to a polynomial and

later revealing an evaluation of the polynomial in a given point. Kate et al. [KZG10] have

also provided protocols to commit to polynomials and then evaluate them at a given point

in a verifiable way. Their protocols only require a constant number of commitments but

security relies on pairing assumptions. Our polynomial commitment protocol has square

root communication complexity but relies solely on the discrete logarithm assumption.

5.3 Preliminaries

Throughout the chapter we let G be a group of prime order p. Let ~g = (g1, . . . ,gn) ∈ Gn

and ~f = (f1, . . . , fn) ∈ Zn
p. We write ~g~f for the multi-exponentiation ~g~f = ∏

n
i=1 g fi

i . A

multi-exponentiation of size n can be computed at a cost of roughly n
logn single group expo-

nentiations using the multi-exponentiation techniques of [Lim00, Möl01, MR08].

5.3.1 Arithmetic Circuits

Our satisfiability arguments consider arithmetic circuits described as a list of multiplication

gates together with a set of linear consistency equations relating the inputs and outputs of

the gates. In this section, we show how to reduce an arbitrary arithmetic circuit to this

format.

86 Chapter 5. Efficient Protocols for Arithmetic Circuits

An arithmetic circuit over a field Zp and variables (a1, . . . ,am) is a directed acyclic

graph whose vertices are called gates. Gates of in-degree 0 are inputs to the circuit and

labelled with some ai or a constant field element. All other gates are labelled + or ×. We

may consider fan-in 2 circuits, in which case all of the + and × gates have in-degree 2, or

arbitrary fan-in circuits.

Arithmetic circuits can be described alternatively as a list of multiplication gates with

a collection of linear consistency equations relating the inputs and outputs of the gates.

Our zero-knowledge protocols for circuit satisfiability use circuits in this form. Any circuit

described as an acyclic graph can be efficiently converted into the alternative description.

We show how to remove addition and multiplication-by-constant gates from an arith-

metic circuit A, and replace them with bilinear consistency equations on the inputs and

outputs of the remaining gates, such that satisfiability of the equations is equivalent to sat-

isfiability in the original circuit.

Let B be the sub-circuit of A containing all wires and gates before a multiplication

gate, with m input wires and n output wires. Label the m inputs of B with the unit vectors

~ei = (0, . . . ,1, . . . ,0) of length m. For every addition gate with inputs labelled as ~x,~y, label

the output wire as~x+~y. For every multiplication-by-constant gate with inputs~x and constant

c label the output with c~x. By proceeding inductively, the n outputs of B are now labelled

with vectors of length m representing them as linear combinations of the inputs.

This requires at most m |B| arithmetic operations. Note however that all outputs of B

are linear combinations of the inputs, and that B can be written with n(2m− 1) fan-in 2

gates in such a way that the consistency equations can be trivially read off from the circuit

description. More specifically, a linear combination ∑
m
i=1 aixi can be produced using m

multiplication-by-constant gates and m−1 addition gates to add the answers together.

We can now remove the gates of B from A. We also remove any multiplication gates

whose inputs are the inputs of the new circuit. Now we simply repeat the process of finding

consistency equations until we have considered the whole of A. In Figure 5.1 there is an

example of a circuit together and the corresponding consistency equations.

The first (input) and final (output) sub-circuits require additional processing. We show

how to do this for the output sub-circuit. The input sub-circuit is very similarly handled.

Let B be the output sub-circuit. Write (a1, . . . ,am) = ~a for the input wires of B and

(b1, . . . ,bn) =~b for the output wires. Without loss of generality, we may ignore variable

5.3. Preliminaries 87

×
a1

b1

×
a2

b2

×
a3

b3

×

×
4

c1 = a4

c2 = b4

c3

•

+

•

×

•

×

c4 a5

b6

b5

a6

c5

c6

c1 = a4

c2 = b4

c4 = a5

4c3 + c4 = b5

4c3 + c4 = a6

4c3 = b6

Figure 5.1: A simple arithmetic circuit, and the corresponding consistency equations.
The first sub-circuit contains the wires a1,b1,c1,a2,b2,c2,a3,a3,c3. The second sub-
circuit contains the wires c1,a4,c2,b4,c4,c5,c6. The third sub-circuit B contains the wires
c3,c4,a5,b5,a6.

output wires. By construction of B, each output bi is of the form ∑
n
i=1 qi ja j + pi, with

consistency equations obtained as above. We write this in terms of an m×n matrix Q and a

column vector ~p of size m, namely

~b = Q~a+~p.

Let r be the rank of Q. We convert Q into reduced row echelon form R, writing

~b′′ = R~a.

By the properties of reduced row echelon form, after relabelling the ai and permuting

the columns of R to match, we have that b′′i = ai +∑
m
j=l+1 ri ja j for 1 ≤ i ≤ l. Therefore,

we may consider al+1, . . . ,am as free wires and express other ai as linear functions of these

wires plus constants.

Note that if b′′i 6= 0 for some i > l, the circuit can never be satisfied anyway. However,

assuming that our statement is a satisfiable circuit, with a witness consisting of satisfying

wire values, this never occurs. Then the original circuit is satisfied if and only if the ai

values satisfy the consistency equations.

If Q is an m×n matrix then it can be converted into reduced row echelon form using

O(max(m,n)mn) operations. It is trivial that m ≤ 2 |B| and n ≤ |B|. This gives an upper

bound of O(|B|3) computation for the output sub-circuit. Note that this is often a large

over-estimate; this upper bound occurs for circuits of depth 1 where inputs feed into distinct

gates. For circuits of large depth, where the same input is fed into several gates, the upper

bound will definitely not be reached.

88 Chapter 5. Efficient Protocols for Arithmetic Circuits

The case of the input sub-circuit is very similar, except that we take the transpose of

the matrix.

5.3.2 Full zero knowledge & non-interactivity

In real life applications special honest verifier zero knowledge may not suffice since a ma-

licious verifier may give non-random challenges. However, it is easy to convert an SHVZK

argument into a full zero-knowledge argument secure against arbitrary verifiers in the com-

mon reference string model using standard techniques [Gro04b, GMY06] . The conversion

can be very efficient and only costs a small additive overhead.

The Fiat-Shamir transformation (Sect. 3.4.6) can be applied to our arguments to make

them non-interactive, as well as full zero knowledge at the cost of using the random oracle

model in the security proofs. From an efficiency point of view this is especially useful for

the arguments in Sections 5.5 and 5.6.4, reducing a logarithmic number of moves to a single

one.

5.4 Commitments to Polynomials

In this section, we present a protocol to commit to a polynomial t(X) and later reveal the

evaluation of t(X) at any point x ∈ Z∗p together with a proof that enables a verifier to check

that the evaluation is correct with respect to the committed t(X). We will consider Lau-

rent polynomials t(X) ∈ Zp[X ,X−1] i.e. polynomials in which we allow terms of negative

degree. This protocol will be used as a subroutine for the arguments described in Sec-

tions 5.6.3 and 5.6.4.

A simple solution for this problem would be to send commitments to coefficients of

t(X) individually, from which the evaluation of t(X) at any particular point can be verified

using the homomorphic properties. This solution requires d group elements to be sent,

where d is the number of non-zero coefficients in t(X). As we shall show it is possible to

reduce the communication costs to O(
√

d) group elements, where d = d2 + d1 if t(X) =

∑
d2
k=−d1

tkXk.

For clarity we first informally describe our protocol for a standard (not Laurent) poly-

nomial t(X) = ∑
d
k=0 tkXk. We then extend this informal description to Laurent polynomials

with zero constant term. We finally provide a formal description of the protocol and analyze

its security and efficiency.

5.4. Commitments to Polynomials 89

5.4.1 Main idea for standard polynomials.

Let t(X) = ∑
d
k=0 tkXk be a polynomial with coefficients in Zp and assume d +1 = mn. We

can write t(X) = ∑
m−1
i=0 ∑

n−1
j=0 ti, j(X)X in+ j and arrange the coefficients in a m×n matrix

t0,0 t0,1 · · · t0,n−1

t1,0 t1,1 · · · t1,n−1
...

...
...

tm−1,0 tn−1,1 · · · tm−1,n−1

Now, t(X) can be evaluated by multiplying the matrix by row and column vectors.

t(X) =
(

1 Xn · · · X (m−1)n
)

t0,0 t0,1 · · · t0,n−1

t1,0 t1,1 · · · t1,n−1
...

...
...

tm−1,0 tn−1,1 · · · tm−1,n−1

1

X
...

Xn−1

The idea behind the protocol is to commit to the rows of this matrix using commitments

T0, . . . ,Tm−1. Later, when given an evaluation point x ∈ Zp we can use the homomorphic

property of the commitment scheme to compute the commitment ∏
m−1
i=0 T xin

i to the vector

~̄t =
(

1 xn · · · x(m−1)n
)

t0,0 t0,1 · · · t0,n−1

t1,0 t1,1 · · · t1,n−1
...

...
...

tm−1,0 tm−1,1 · · · tm−1,n−1

The prover opens this latter commitment and now it is easy to compute v = t(x) from~̄t and

x.

The problem with this straightforward solution is that it leaks partial information about

the coefficients of t(X). We remedy this by inserting some blinding values u1, . . . ,un−1 to

hide the weighted sum of the coefficients in each column. However, we make sure that

the blinding values cancel each other out so that we still get the correct evaluation of the

90 Chapter 5. Efficient Protocols for Arithmetic Circuits

polynomial. More precisely, we commit to the rows of the following (m+1)×n matrix

T =

t0,0 t0,1−u1 · · · t0,n−2−un−2 t0,n−1−un−1

t1,0 t1,1 · · · t1,n−2 t1,n−1
...

...
...

tm−1,0 tm−1,1 · · · tm−1,n−2 tm−1,n−1

u1 u2 · · · un−1 0

with U being a commitment to the last row. This time

t(X) =
(

1 Xn · · · X (m−1)n X
)

T

1

X

X2

...

Xn−1

We now open Ux

∏
m−1
i=0 T xin

i by revealing the vector

~̄t =
(

1 xn · · · x(m−1)n x
)

T

This still allows us to compute t(x), but due to the blinders we no longer leak in-

formation about the coefficients of t(X). In fact, each element of ~̄t is uniformly random,

conditional on their weighted sum being equal to t(x), which the prover intends for the

verifier to learn anyway.

5.4.2 Extension to Laurent polynomials.

Let now t(X) be a Laurent polynomial t(X) = ∑
d2
i=−d1

tiX i with constant term t0 = 0.

Let m1,m2,n be positive integers such that d1 = nm1 and d2 = nm2 and write t(X) =

X−m1nt ′(X)+Xt ′′(X) for degree d1− 1 and d2− 1 polynomials t ′(X), t ′′(X) ∈ Zp[X]. We

can write t ′(X) = ∑
m1−1
i=0 ∑

n−1
j=0 t ′i, jX

in+ j and t ′′(X) = ∑
m2−1
i=0 ∑

n−1
j=0 t ′′i, jX

in+ j.

We can arrange the coefficients of t ′(X) and t ′′(X) in a (m1 +m2)× n matrix T . We

commit to both t ′(X) and t ′′(X) simultaneously by committing to the rows of the matrix

using commitments T ′i and T ′′i . As when committing to polynomials we add blinders

5.4. Commitments to Polynomials 91

u1, . . . ,un−1 and make a commitment U to the additional last row arising from this.

T =

t ′0,0 t ′0,1 · · · t ′0,n−1

t ′1,0 t ′1,1 · · · t ′1,n−1
...

...
...

t ′m1−1,0 t ′m1−1,1 · · · t ′m1−1,n−1

t ′′0,0 t ′′0,1−u1 · · · t ′′0,n−1−un−1

t ′′1,0 t ′′1,1 · · · t ′′1,n−1
...

...
...

t ′′m2−1,0 t ′′m2−1,1 · · · t ′′m2−1,n−1

u1 u2 · · · 0

=

~t ′0
~t ′1
...

~t ′m1−1

~t ′′0
~t ′′1
...

~t ′′m2−1

~u

Define vectors

~Z =~Z(X) =
(

X−m1n,X−(m1−1)n, . . . ,X−n,X ,Xn+1, . . . ,X (m2−1)n+1,X2
)

~X = ~X(X) =

1

X
...

Xn−1

and we have t(X) =~ZT~X .

To evaluate at x ∈ Z∗p we open
(

∏
m1−1
i=0 (T ′i)

x(i−m1)n
)(

∏
m2−1
i=0 (T ′′i)

xin+1
)

Ux2
to the vector

~̄t = ~Z(x)T . This allows us to compute t(x) as~̄t~X(x). The blinders hide the weighted sums

of each column as before, and now the verifier is able to compute t(x) without gaining

additional information about its coefficients.

5.4.3 Evaluation Protocol.

Our protocol is made of the following three algorithms.

• PolyCommit(ck,m1,m2,n, t(X))→ (pc,st): Take as input a commitment key ck and a

Laurent polynomial t(X) = ∑
nm2
i=−m1n tiX i with constant coefficient t0 = 0. Pick blin-

ders u1, . . . ,un−1 ← Zp and randomness τu,τ
′
0, . . . ,τ

′
m1−1, τ ′′0 , . . . ,τ

′′
m2−1 ← Zp. Set

~τ =
(
τ ′0, . . . ,τ

′
m1−1,τ

′′
0 , . . . ,τ

′′
m2−1,τu

)
. Compute

T ′i = Comck(~t ′i ;τ
′
i), T ′′i = Comck(~t ′′i ;τ

′′
i), U = Comck(~u;τu)

92 Chapter 5. Efficient Protocols for Arithmetic Circuits

Return a polynomial commitment pc =
(
{T ′i }

m1−1
i=0 ,{T ′′i }

m2−1
i=0 ,U

)
and private infor-

mation st = (t(X),~τ).

• PolyEval(st,x)→ pe: Compute

~̄t =~Z(x)T, τ̄ =~Z(x) ·~τ

Return pe = (~̄t, τ̄).

• PolyVerify(ck,m1,m2,n,pc,pe,x)→ v: The verifier checks whether

Comck(~̄t; τ̄) =

(
m1−1

∏
i=0

(T ′i)
x(i−m1)n

)(
m2−1

∏
i=0

(T ′′i)
xin+1

)
Ux2

If the check is satisfied the verifier returns v = t(x) =~̄t~X(x).

Otherwise, the verifier rejects pe as invalid with respect to pc and x and returns v=⊥.

5.4.4 Security Properties.

We define three security properties for our protocol: completeness, `-special soundness,

and special-honest-verifier zero-knowledge. Later, the protocol is used as a sub-protocol

inside our zero-knowledge arguments-of-knowledge. We opt out of using the definitions

of [KZG10] as our context is somewhat narrow (e.g. we do not intent to reveal an entire

polynomial) so we opt to only model the security properties we require. These properties

will help us to prove the completeness, witness-extended emulation, and special honest

verifier zero knowledge for the zero knowledge argument.

The definition of completeness simply guarantees that if PolyCommit, PolyVerify are

carried out honestly, then PolyVerify will accept and return a commitment to the evaluation

of the polynomial.

Definition 22 (Perfect Completeness). (PolyCommit,PolyEval,PolyVerify) has perfect

completeness if for all non-uniform polynomial time adversaries A

Pr

(ck,m1,m2,n, t(X),x)←A(1λ)

(pc,st)← PolyCommit(ck,m1,m2,n, t(X))

pe← PolyEval(st,x)

v← PolyVerify(ck,m1,m2,n,pc,pe,x)

: v = t(x)

= 1

5.4. Commitments to Polynomials 93

where ck is a key for a homomorphic commitment scheme, t(X) is a Laurent polynomial of

degrees d1 = m1n,d2 = m2n and x ∈ Z∗p.

The definition of `-Special Soundness says that given ` accepting evaluations for dif-

ferent evaluation points, but from the same commitment pc, then it is possible to extract

either a valid Laurent polynomial t(X) with zero constant term that is consistent with the

evaluations produced or a breach in the binding property of the commitment scheme. Fur-

thermore, any other accepting evaluations for the same commitment will also be evaluations

of t(X).

Definition 23 (Statistical `-Special Soundness). (PolyCommit,PolyEval,PolyVerify) is sta-

tistically `-special sound if there exists a probabilistic polynomial time algorithm χ that,

given ` accepting transcripts with the same commitment pc, either extracts the committed

polynomial t(X), or extracts a break of the binding property of the underlying commitment

scheme. For all adversaries A and all L≥ `

Pr

ck← CGen(1λ)

(m1,m2,n,pc,x1,pe1, . . . ,xL,peL)←A(ck)

Parse pei = (~̄ti, τ̄i)

(T,~τ)← χ(ck,m1,m2,n,pc,x1,pe1, . . . ,xl,pel)

vi← PolyVerify(ck,m1,m2,n,pc,pei,xi)

:

∀i : vi =~Z(xi)T~X(xi)

or ∃ j s.t.

Comck(~̄t j; τ̄ j) =

Comck

(
~Z(x j)T ;~Z(x j)~τ

)
,

where~̄t j 6=~Z(x j)T

≈ 1,

where x1, . . . ,x` are distinct, xi ∈ Z∗p, pei ∈ Zn
p×Zp, T ∈ Z(m1+m2)×n

p , and~τ ∈ Zm1+m2
p .

Perfect special honest verifier zero-knowledge means that given any value v and eval-

uation point x, it is possible to simulate pc and pe, distributed exactly as in a real execution

of the protocol where v was the evaluation of t(X) at x.

Definition 24 (Perfect Special Honest Verifier Zero Knowledge). (PolyCommit,

PolyEval,PolyVerify) has perfect special honest verifier zero knowledge (SHVZK) if there

exists a probabilistic polynomial time simulator S such that for all interactive non-uniform

94 Chapter 5. Efficient Protocols for Arithmetic Circuits

polynomial time adversaries A

Pr

(ck,m1,m2,n, t(X),x)←A(1λ)

(pc,st)← PolyCommit(ck,m1,m2,n, t(X))

pe← PolyEval(st,x)

:A(pc,pe) = 1

= Pr

 (ck,m1,m2,n, t(X),x)←A(1λ)

(pc,pe)←S(ck,m1,m2,n,x, t(x))
:A(pc,pe) = 1

where ck is a key for a homomorphic commitment scheme, t(X) is a Laurent polynomial of

degrees d1 = m1n,d2 = m2n and x ∈ Z∗p.

Theorem 6. The polynomial commitment protocol has perfect completeness, perfect special

honest verifier zero-knowledge and (m1 +m2)n+1-special soundness for extracting either

a breach of the binding property of the commitment scheme or openings to the polynomial.

Proof. Direct verification of the protocol shows that the verifier correctly obtains the eval-

uation of the committed polynomial t(X) at the point x.

For simplicity, we prove SHVZK and special-soundness for the case of Pedersen com-

mitments, but all aspects of the proof carry over in the general case.

For special honest verifier zero-knowledge suppose we have an evaluation point x and

an evaluation v. To simulate the polynomial evaluation we first pick random t̄2, . . . , t̄n, τ̄ ←

Zp and T ′0, . . . ,T
′

m1−1,T
′′

0 , . . . ,T
′′

m2−1←G. Now, t̄1 is computed as

t̄1 = v−
n

∑
i=2

t̄ixi−1

Let~̄t = (t̄1, . . . , t̄n) and compute

U = Comck(~̄tx−2; τ̄x−2)

[
m1−1

∏
i=0

(T ′i)
x(i−m1)n

]x−2 [
m2−1

∏
i=0

(T ′′i)
xin+1

]x−2

This is a perfect simulation. Given x,v observe that both in the simulation and in the real

execution we get uniformly random t̄2, . . . , t̄n, τ̄ ∈ Zp and T ′0, . . . ,T
′

m1−1,T
′′

0 , . . . ,T
′′

m2−1←G.

Now, conditioning on the values of x,v and the verification equations, U and t̄1 are uniquely

determined. Therefore, the simulation is perfect, and we have special honest verifier zero-

knowledge.

5.4. Commitments to Polynomials 95

Finally, for special soundness note that if we have valid evaluations of l =(m1+m2)n+

2 different challenges x ∈ Z∗p the vectors (x−m1n, . . . ,xm2n−n+1) form the rows of a Vander-

monde matrix multiplied by x−m1n and we can obtain any unit vector (0, . . . ,1, . . . ,0) by

taking an appropriate linear combination of these vectors. By taking the correct linear com-

binations of the l verification equations

Comck(~̄t; τ̄) =

[
m1−1

∏
i=0

(T ′i)
x(i−m1)n

][
m2−1

∏
i=0

(T ′′i)
xin+1

]
Ux2

for these l different challenges, we can then extract an opening of any T ′i = Comck(~t ′i ;τ ′i),

T ′′i = Comck(~t ′′i ;τ ′′i) and U = Comck(~u;τu).

This implies that whenever we have L≥ l different challenges x ∈ Z∗p with valid eval-

uations we must either have ~̄t = ~Z(x)T for each (x,pe) pair, where the rows of T are the

extracted ~t ′i and ~t ′′i and ~u, or we could extract a violation of the binding property of the

commitment scheme.

In the first case where ~̄t = ~Z(x)T , for each pair, χ sets τ = (τ ′0, . . . ,τ
′
m1−1,

τ ′′0 , . . . ,τ
′′
m2−1,τu), and sets S,~σ to be all zeroes. Since ~̄t = ~Z(x)T , it follows that

vi =~Z(xi)T~X(xi) for each i.

Alternatively, if ~̄ti 6= ~Z(xi)T for some xi and pei = (~̄ti, τ̄i, then since the verifier was

accepting, we have Comck(~̄ti; τ̄i) = Comck(~Z(xi)T ;~Z(xi)~τ), and this gives a violation of the

binding property of the commitment scheme.

5.4.5 Efficiency.

We now discuss the efficiency of the above protocol when instantiated with the Pedersen

multicommitment scheme. The outputs pc,pe of the polynomial commitment protocol have

sizes of m1 +m2 + 1 group elements and n+ 1 field elements respectively. The computa-

tional cost of computing pc is dominated by computing commitments T ′i and T ′′i , corre-

sponding to m1 +m2 n-wide multi-exponentiations. Using multi-exponentiation techniques

as in [Lim00, Möl01, MR08], the total cost is roughly (m1+m2)n
logn group exponentiations. The

main cost for computing pe is dominated by the n(m1 +m2) field multiplications required

to compute ~ZT . The dominant cost in PolyVerify is to check the verification equation. This

costs roughly m1+m2+n
log(m1+m2+n) group exponentiations.

96 Chapter 5. Efficient Protocols for Arithmetic Circuits

5.5 Recursive Argument for Inner Product Evaluation

We will now give an inner product argument of knowledge of two vectors ~a,~b ∈ Zn
p such

that A =~g~a, B =~h~b and ~a ·~b = z, given z ∈ Zp, A, B ∈G and ~g,~h ∈Gn. The argument will

be used later as a subroutine where zero-knowledge is not required, so the prover could in

principle just reveal the witness ~a,~b to the verifier. In the following we show how to use

interaction to reduce the communication from linear to logarithmic in n, the length of the

vectors.

The basic step in our inner product argument is a 2-move reduction to a smaller state-

ment using techniques similar to [BG12]. It will suffice for the prover to reveal the witness

for the smaller statement in order to convince the verifier about the validity of the original

statement. In the full argument, prover and verifier recursively run the reduction to obtain

increasingly smaller statements. The argument is then concluded with the prover revealing

a witness for a very small statement. The outcome of this is a O(logn)-move argument

with an overall communication of O(logn) group and field elements. The inner product

argument will be used in the next section to build a logarithmic size argument for circuit

satisfiability.

Due to the obvious relationship with Pedersen commitments, we will think of multi-

exponentiations~g~a and~h~b as commitments with randomness set equal to zero, and to~a,~b as

openings with respect to commitment keys~g,~h.

5.5.1 Main Idea

We now describe the basic step in our argument. Consider the common input for both

prover and verifier to be of the form (G, p,~g,A,~h,B,z,m) where m divides n, the length of

the vectors. For arbitrary n one can always reduce to the case where m|n by appending at

most m−1 random group elements to~g and~h.

We split the bases for the multi-exponentiations into m sets ~g = (~g1, . . . ,~gm) and

~h = (~h1, . . . ,~hm), where each set has size n
m . We want to prove knowledge of vectors

~a = (~a1, . . . ,~am) and~b = (~b1, . . . ,~bm) such that

A =~g~a =
m

∏
i=1

~g~ai
i B =~h~b =

m

∏
i=1

~h
~bi
i ~a ·~b =

m

∑
i=1

~ai ·~bi = z

The key idea is for the prover to replace A with A′, a commitment to a shorter vector ~a′ =

∑
m
i=1~aixi, given a random challenge x← Z∗p provided by the verifier. In the argument, the

5.5. Recursive Argument for Inner Product Evaluation 97

prover first computes and sends

Ak =
min(m,m−k)

∏
i=max(1,1−k)

~g~ai+k
i for k = 1−m, . . . ,m−1

corresponding to the products over the diagonals of the following matrix

~a1 ~a2 · · · ~am

~g1
...

~gm−1

~gm

~g~a1

1 ~g~a2
1 · · · ~g~am

1
. . . ~g~a2

2
. . .

...

~g~a1
m−1

. ~g~am
m−1

~g~a1
m ~g~a2

m · · · ~g~am
m

 Am−1
...

Am−2

A1−m A2−m · · · A0 = A

Notice that A0 = A is already known to the verifier since it is part of the statement. The

verifier now sends a random challenge x← Z∗p.

At this point, both the prover and the verifier can compute ~g′ := ∏
m
i=1~g

x−i

i and A′ :=

∏
m−1
k=1−m Axk

k . If the prover is honest then we have A′ = (~g′)~a
′
, namely A′ is a commitment

to ~a′ under the key ~g′. Furthermore, even if the prover is dishonest, we can show that if the

prover can open A′ with respect to the key ~g′ for 2m− 1 different challenges, then we can

extract opening (~a1, . . . ,~am) corresponding to A = ∏
m
i=1~g

~ai
i .

The same type of argument can be applied in parallel to B with the inverse challenge

x−1 giving us a sum of the form~b′ = ∑
m
i=1

~bix−i and a new base~h′ = ∏
m
i=1

~hxi

i .

All that remains is to demonstrate that z is the constant term in the product ~a′ ·~b′ =

∑
m
i=1~aixi ·∑m

j=1
~b jx− j. Similarly to A and B, the prover sends values

zk =
min(m,m−k)

∑
i=max(1,1−k)

~ai ·~bi+k for k = 1−m, . . . ,m−1

where z0 = z = ∑
m
i=1~ai ·~bi, and shows that z′ :=~a′ ·~b′ = ∑

m−1
k=1−m zkx−k.

To summarise, after the challenge x has been sent, both parties compute ~g′,A′,~h′,B′,z′

and then run an argument for the knowledge of~a′,~b′ of length n
m . Given n = mµmµ−1 · · ·m1,

we recursively apply this reduction over the factors of n to obtain, after µ − 1 iterations,

98 Chapter 5. Efficient Protocols for Arithmetic Circuits

vectors of length m1. The prover concludes the argument by revealing a short witness

associated with the last statement.

5.5.2 Formal description

We now give a formal description of the argument of knowledge introduced above.

Common input: (G, p,~g,A,~h,B,z,mµ = m,mµ−1 = m′, . . . ,m1) such that~g,~h ∈Gn, A,B ∈

G and n = ∏
µ

i=1 mi.

Prover’s witness: (~a1, . . . ,~am,~b1, . . . ,~bm) satisfying

A =
m

∏
i=1

~g~ai
i B =

m

∏
i=1

~h
~bi
i

m

∑
i=1

~ai ·~bi = z

Argument if µ = 1:

P→ V: Send (a1, . . . ,am,b1, , . . . ,bm).

P← V: Accept if and only if

A =
m

∏
i=1

gai
i B =

m

∏
i=1

hbi
i

m

∑
i=1

aibi = z

Reduction if µ 6= 1:

P→ V: Send A1−m,B1−m,z1−m, . . . ,Am−1,Bm−1,zm−1 where

Ak =
min(m,m−k)

∏
i=max(1,1−k)

~g~ai+k
i Bk =

min(m,m−k)

∏
i=max(1,1−k)

~h
~bi+k
i zk =

min(m,m−k)

∑
i=max(1,1−k)

~ai ·~bi+k

Observe A0 = A,B0 = B,z0 = z so they can be omitted from the message.

P← V: x← Z∗p.

Both prover and verifier compute a reduced statement of the form

(G, p,~g′,A′,~h′,B′,z′,mµ−1, . . . ,m1)

5.5. Recursive Argument for Inner Product Evaluation 99

where

~g′ = (~g′1, . . . ,~g
′
m′) =

m

∏
i=1

~gx−i

i A′ =
m−1

∏
k=1−m

Axk

k

~h′ = (~h′1, . . . ,~h
′
m′) =

m

∏
i=1

~hxi

i B′ =
m−1

∏
k=1−m

Bx−k

k z′ =
m−1

∑
k=1−m

zkx−k

The prover computes a new witness as (~a′1, . . . ,~a
′
m′) = ∑

m
i=1~aixi and (~b′1, . . . ,~b

′
m′) =

∑
m
i=1

~bix−i.

5.5.3 Security Analysis.

Theorem 7. The argument has perfect completeness and statistical witness extended emu-

lation for either extracting a non-trivial discrete logarithm relation or a valid witness.

Proof. Perfect completeness can be verified directly. To prove witness-extended emulation

we start by giving an extractor that either extracts a witness for the original statement or a

non-trivial discrete logarithm relation.

For µ = 1 we have (perfect) witness-extended emulation since the prover reveals a

witness and the verifier checks it.

Before discussing extraction in the recursive step, note that if we get a non-trivial

discrete logarithm relation for ~g′1, . . . ,~g
′
m′ then we also get a non-trivial discrete logarithm

relation for~g1, . . . ,~gm, since x 6= 0. A similar argument applies to~h′1, . . . ,~h
′
m′ and~h1, . . . ,~hm.

Now, assume we get witness~a′,~b′ such that

A′ =
m−1

∏
k=1−m

Axk

k =

(
m

∏
i=1

~gx−i

i

)~a′

B′ =
m−1

∏
k=1−m

Bx−k

k =

(
m

∏
i=1

~hxi

i

)~b′

~a′ ·~b′ =
m−1

∑
k=1−m

zkx−k

for 2m− 1 different challenges x ∈ Z∗p. We will show that they yield either a witness for

the original statement, or a non-trivial discrete logarithm relation for either ~g1, . . . ,~gm or

~h1, . . . ,~hm.

Take 2m− 1 different challenges x ∈ Z∗p. They form a shifted Vandermonde matrix

with rows (x1−m,x2−m, . . . ,xm−1). By taking appropriate linear combinations of the vectors

we can obtain any unit vector (0, . . . ,0,1,0, . . . ,0). Taking the same linear combinations of

the 2m−1 equations

m−1

∏
k=1−m

Axk

k =

(
m

∏
i=1

~gx−i

i

)~a′

we get vectors~ak,i such that Ak =
m

∏
i=1

~g~ak,i
i

100 Chapter 5. Efficient Protocols for Arithmetic Circuits

For each of the 2m− 1 challenges, we now have ∏
m−1
k=1−m Axk

k =
(

∏
m
i=1~g

x−i

i

)~a′
, which

means that for all i we have

x−i~a′ =
m−1

∑
k=1−m

~ak,ixk

unless we encounter a non-trivial discrete logarithm relation for ~g1, . . . ,~gm. This means

that ~a′ = ∑
m−1
k=1−m~ak,ixk+i for all i, and in particular ∑

m−1
k=1−m~ak,ixk+i = ∑

m−1
k=1−m~ak,1xk+1 =

∑
m−1
k=1−m~ak,mxk+m. Matching terms of degree outside {1, . . . ,m} reveals ~ak,i = 0 for k+ i /∈

{1, . . . ,m}. Defining~ai =~a0,i, and matching terms of similar degree we get

~ak,i =

 ~ak+i if k+ i ∈ {1, . . . ,m}

0 otherwise

This means

~a′ =
m−1

∑
k=1−m

~ak,1xk+1 =
m−1

∑
k=0

~ak+1xk+1 =
m

∑
i=1

~aixi

A similar analysis of B1−m, . . . ,Bm−1 and openings~b′ for 2m− 1 different challenges

x−1 ∈ Z∗p gives us either a non-trivial discrete logarithm relation for~h1, . . . ,~hm or vectors~bi

such that~b′ = ∑
m
i=1

~bix−i and B = ∏
m
i=1

~h
~bi
i .

Finally, with ∑
m
i=1~aixi ·∑m

j=1
~b jx− j = ∑

m−1
k=1−m zkx−k for 2m−1 different challenges we

get z = z0 = ∑
m
i=1~ai ·~bi.

We can now apply the forking lemma to a tree of size (2mµ−1)(2mµ−1−1) · · ·(2m2−

1) ≤ n2, which is polynomial in λ , to conclude that the argument has witness-extended

emulation.

Note that the argument is not zero-knowledge, as it is not necessary for its use in the

next section.

5.5.4 Efficiency.

The recursive argument uses 2µ − 1 moves. The communication cost of all steps sums up

to 4∑
µ

i=2(mi−1) group elements and 2∑
µ

i=2(mi−1)+2m1 field elements.

At each iteration, the main cost for the prover is computing the Ak and Bk values, using

less than
4(m2

µ mµ−1...m1)

log(mµ ...m1)
group exponentiations via multi-exponentiation techniques, and the

zk values using m2
µmµ−1 · · ·m1 field multiplications. The cost of computing the reduced

statements is dominated by 2(mµ mµ−1...m1)
logmµ

group exponentiations for both the prover and the

verifier. In the case where mµ = . . . = m1 = m, the verifier complexity is bounded above

5.6. Logarithmic Communication Argument for Arithmetic Circuit Satisfiability 101

by 2mµ

logm
m

m−1 group exponentiations. The prover complexity is bounded above by 6mµ+1

logm
m

m−1

group exponentiations and mµ+1 m
m−1 field multiplications.

5.6 Logarithmic Communication Argument for Arithmetic Cir-

cuit Satisfiability

In this section, we revisit zero knowledge arguments for the satisfiability of an arithmetic

circuit under the discrete logarithm assumption. We will explain how to build an argument

with square root communication complexity, and superior efficiency to the argument of

[Gro09b]. We then observe that our new argument involves computing a large inner product,

and can achieve as good as logarithmic communication complexity by using our recursive

inner product argument.

At a high level, we transform an arithmetic circuit into two kinds of equations. Mul-

tiplication gates are directly represented as equations of the form a · b = c, where a,b,c

represent the left, right and output wires. We will arrange these values in matrix form pro-

ducing a Hadamard matrix product. This process will lead to duplicate values, when a wire

is the output of one multiplication gate and the input of another, or when it is used as input

multiple times. We keep track of this by using a series of linear constraints. For example,

if the output of the first multiplication gate is the right input of the second, we would write

c1−b2 = 0.

We also add linear constraints representing the addition and multiplication by constant

gates of the circuit. We then rewrite those equations so that the only wires that are referenced

in the equations are those linked to (non-constant) multiplication gates. We describe this

process in Section 5.3.1.

Finally, we fold both the Hadamard matrix product and the linear constraints into a

single polynomial equation, where a Laurent polynomial has 0 as its constant term, and use

the construction of Section 5.4 to prove this. We can optionally integrate the inner product

argument of Section 5.5 to reduce communication.

Our technique improves on the efficiency of [Gro09b] by making three main changes,

each resulting in efficiency improvements.

1. We do not need commitments to the input and output wires of addition gates. We

handle addition gates with linear consistency equations thus yielding a significant

performance improvement proportional to the number of addition gates. This par-

102 Chapter 5. Efficient Protocols for Arithmetic Circuits

allels [GGPR13] who also manage to eliminate addition gates when constructing

Quadratic Arithmetic Programs from circuits.

2. We avoid black-box reductions to zero-knowledge arguments for generic linear al-

gebra statements and instead design an argument directly for arithmetic circuit sat-

isfiability. As a result, our square-root argument has only 5 moves, while the argu-

ment from [Gro09b] requires 7 moves. We note that [Seo11] reduced the complexity

of [Gro09b] to 5 moves as well, but at a significant computational overhead whereas

we also reduce the computational cost.

3. We use our protocol from Section 5.4 to reduce the communication costs of a poly-

nomial commitment.

These improvements give us a square root communication complexity with respect to

the number of multiplication gates in the circuit. This is because for a circuit with N = mn

multiplication gates, the prover makes 3m commitments to wire values in his first move,

and later provides an opening consisting of n field elements to a homomorphic combination

of these commitments. Optimising the parameters by choosing m≈ n≈
√

N leads to square

root complexity.

In our square root complexity argument, the verifier uses the n field elements to check

an inner product relation. Our key idea to reduce communication further is to use our

inner product evaluation argument instead of sending these field elements. This allows

for verification of the inner product, and also provides an argument of knowledge of the

opening of the commitment. We no longer need to open a large commitment, leading to

a drastic reduction in communication complexity depending on the settings for the inner

product argument.

Below we give a first informal exposition of our arguments, and follow with a formal

description.

5.6.1 Reduction of Circuit Satisfiability to a Hadamard Matrix Product and

Linear Constraints.

We consider an arithmetic circuit containing N = mn multiplication gates over a field Zp.

Without loss of generality, we assume that the circuit has been pre-processed (see Ap-

pendix 5.3.1 for a way to do this) , so that the input and the output wires feed into and

go out from multiplication gates only. We number the multiplication gates from 1 to N and

we arrange the inputs and outputs of these gates into three m×n matrices A,B and C such

5.6. Logarithmic Communication Argument for Arithmetic Circuit Satisfiability 103

that the (i, j) entries of the matrices correspond to the left input, right input and output of

the same multiplication gate.

As shown in Sect. 5.3.1, anarithmetic circuit can be described as a system of equations

in the entries of the above matrices. The multiplication gates define a set of N equations

A◦B =C (5.1)

where ◦ is the Hadamard (entry-wise) product. The circuit description also contains con-

straints on the wires between multiplication gates. Denoting the rows of the matrices A,B,C

as

~ai = (ai,1, . . . ,ai,n) ~bi = (bi,1, . . . ,bi,n) ~ci = (ci,1, . . . ,ci,n) for i ∈ {1, . . . ,m}

these constraints can be expressed as Q < 2N linear equations of inputs and outputs of

multiplication gates of the form

m

∑
i=1

~ai ·~wq,a,i +
m

∑
i=1

~bi ·~wq,b,i +
m

∑
i=1

~ci ·~wq,c,i = Kq for q ∈ {1, . . . ,Q} (5.2)

for constant vectors ~wq,a,i,~wq,b,i,~wq,c,i and scalars Kq.

For example, suppose that the circuit contains a single addition gate, with a1,1 and a1,2

as inputs, and b1,1 as output. In this case, Q = 1 and we would set ~w1,a,1 = (1,1,0, . . . ,0),

~w1,b,1 = (−1,0, . . . ,0), and all other ~w vectors would be set to~0. Then (5.2) would simply

read

a1,1 +a1,2−b1,1 = 0

to capture the constraint imposed by the addition gate.

In total, to capture all multiplications and linear constraints, we have N +Q equations

that the wires must satisfy in order for the circuit to be satisfiable.

5.6.2 Reduction to a Single Polynomial Equation.

Let Y be a formal indeterminate. We will reduce the N +Q equations above to a single

polynomial equation in Y by embedding each equation into a distinct power of Y . In our

argument we will then require the prover to prove that this single equation holds when

replacing Y by a random challenge received from the verifier.

Let ~Y ′ denote the vector (Y m, . . . ,Y mn) and ~Y denote (Y,Y 2, . . . ,Y m). Then, we can

104 Chapter 5. Efficient Protocols for Arithmetic Circuits

multiply (5.1) by ~Y from the left and ~Y ′T on the right to obtain ~Y (A ◦B)~Y ′
T
=~YC~Y ′

T
, or

equivalently
m

∑
i=1

Y i(~ai ◦~bi) ·~Y ′ =
m

∑
i=1

Y i(~ci ·~Y ′)

Since (~a◦~b) ·~Y ′ =~a · (~b◦~Y ′), we obtain the following expression

m

∑
i=1

~ai · (~bi ◦~Y ′)Y i =

(
m

∑
i=1

~ciY i ·~Y ′
)

This is easily seen to be equivalent to (5.1), because ai, jbi, j = ci, j appears in the coef-

ficients of Y i+ jm, and i+ jm takes every value from m+1 to M = N +m exactly once.

Moreover, the Q linear constraints on the wires in Eq. 5.2 are satisfied if and only if

Q

∑
q=1

(
m

∑
i=1

~ai ·~wq,a,i +
m

∑
i=1

~bi ·~wq,b,i +
m

∑
i=1

~ci ·~wq,c,i

)
Y q =

Q

∑
q=1

KqY q

since the qth constraint arises from comparing the coefficients of Y q. Combining the two

polynomial equations by adding them after multiplying the latter by Y M, and swapping

summations, we see that the circuit is satisfied if and only if(
m

∑
i=1

~ai · (~bi ◦~Y ′)Y i

)
+

m

∑
i=1

~ai ·

(
Q

∑
q=1

~wq,a,iY M+q

)
+

m

∑
i=1

~bi ·

(
Q

∑
q=1

~wq,b,iY M+q

)

+
m

∑
i=1

~ci ·

(
−Y i~Y ′+

Q

∑
q=1

~wq,c,iY M+q

)
=

(
Q

∑
q=1

KqY M+q

)

Let us define

~wa,i(Y) =
Q

∑
q=1

~wq,a,iY M+q ~wb,i(Y) =
Q

∑
q=1

~wq,b,iY M+q

~wc,i(Y) =−Y i~Y ′+
Q

∑
q=1

~wq,c,iY M+q K(Y) =
Q

∑
q=1

KqY M+q

Then the circuit is satisfied if and only if

m

∑
i=1

~ai · (~bi ◦~Y ′)Y i +
m

∑
i=1

~ai ·~wa,i(Y)+
m

∑
i=1

~bi ·~wb,i(Y)+
m

∑
i=1

~ci ·~wc,i(Y)−K(Y) = 0 (5.3)

In the argument, the prover will commit to ~ai,~bi and ~ci. The verifier will then issue

a random challenge y← Z∗p and the prover will convince the verifier that the committed

5.6. Logarithmic Communication Argument for Arithmetic Circuit Satisfiability 105

values satisfy Eq. 5.3, evaluated on y. If the committed values do not satisfy the polynomial

equation, the probability the equality holds for a random y is negligible, so the prover is

unlikely to be able to convince the verifier.

5.6.3 Square Root Communication Argument

In order to show that (5.3) is satisfied, we craft a special Laurent polynomial t(X) in a

second formal indeterminate X , whose constant coefficient is exactly twice the left-hand

side of (5.3). Therefore, this polynomial will have zero constant term if and only if (5.3)

is satisfied. In our argument this is proved using the polynomial commitment protocol of

Section 5.4. We define

~r(X) :=
m

∑
i=1

~aiyiX i +
m

∑
i=1

~biX−i +Xm
m

∑
i=1

~ciX i + ~dX2m+1

~s(X) :=
m

∑
i=1

~wa,i(y)y−iX−i +
m

∑
i=1

~wb,i(y)X i +X−m
m

∑
i=1

~wc,i(y)X−i

~r′(X) := ~r(X)◦~y′+2~s(X)

t(X) := ~r(X) ·~r′(X)−2K(y)

Here~y′ is the vector~Y ′ evaluated at y, and ~d is a blinding vector consisting of random scalars

that the prover commits to in the first round. In the square root argument the prover will

reveal~r(x) for a randomly chosen challenge x ∈ Z∗p, and the blinding vector ~d ensures that

we can reveal~r(x) without leaking information about~ai,~bi and~ci. We also observe that~s(x)

is efficiently computable from public information about the circuit and the challenges.

We have designed these polynomials such that the constant term of~r · (~r ◦~y′) is equal

to 2∑
m
i=1~ai · (~bi ◦~y′)yi and the constant term of ~r ·~s is equal to ∑

m
i=1~ai · ~wa,i(y)+∑

m
i=1

~bi ·

~wb,i(y)+∑
m
i=1~ci ·~wc,i(y). We conclude that the constant term of t(X) is exactly twice the

left-hand side of (5.3), and is therefore zero if and only if the circuit is satisfied.

We are now in a position to describe an argument with square root communication

complexity.

The prover first commits to vectors ~ai,~bi,~ci and ~d and the verifier replies with a

challenge y← Z∗p. The prover computes t(X) and commits to it by using the algorithm

PolyCommit defined in Section 5.4. Then, the verifier sends a random challenge x← Z∗p
and the prover responds by revealing ~r(x) and blinded openings pe of t(X) obtained by

running algorithm PolyEval as described in Section 5.4.

106 Chapter 5. Efficient Protocols for Arithmetic Circuits

The verifier first checks that~r(x) is consistent with the previously sent commitments

of ~ai,~bi,~ci and ~d using the homomorphic properties of the commitment scheme. She also

computes~s(x),~r′(x) and K. Then, she computes v = t(x) using the PolyVerify algorithm of

Section 5.4, and checks if v =~r(x) ·~r′(x)− 2K. The verifier accepts the argument if both

checks are satisfied.

As described so far, the argument requires communicating O(m) group elements and

O(n) field elements, so setting m ≈ n leads to square root communication. The argument

improves on [Gro09b, Seo11] by requiring only 5 moves without computational overhead

and significantly reduces the computational complexity. However, breaking this ostensible

square root communication barrier (Sect. 2.1.2) requires new ideas that we describe in the

next section.

5.6.4 Breaking the Square Root Barrier

The square root complexity argument described above was designed so that the verifier uses

~r =~r(x) to check the inner product v =~r ·~r′−2K, where v is the evaluation of a committed

polynomial at x. Sending~r has a cost of n field elements. In order to break the square root

barrier we try to avoid sending~r directly so that we can then let n be larger and m be smaller

and thus globally lower the communication of the argument.

Rather than sending ~r to the verifier, the prover could instead send commitments to

~r and~r′, and use our inner product argument to show that v+ 2K was a correctly formed

inner product. In fact, the prover does not even need to send commitments to~r and~r′! The

verifier can compute a commitment to~r(x) directly from Ai,Bi,Ci and D, the commitments

to~ai,~bi,~ci and ~d which were previously used to check that~r is correctly formed

Comck(~r;0) = Comck(0;−ρ)

[
m

∏
i=1

Axiyi

i

][
m

∏
i=1

Bx−i

i

][
m

∏
i=1

Cxm+i

i

]
Dx2m+1

=~g~r

where ρ is an appropriate randomness value, which is sent by the prover to the verifier, and

the vector~g = (g1, . . . ,gn) for a given commitment key ck = (G, p,g,g1, . . . ,gn).

As for a commitment to~r′, we observe that the Pedersen commitment, besides its well-

known homomorphic properties with respect to the message and the randomness, also has

the useful property that it is homomorphic with respect to the commitment key. Specifi-

cally, let~h = (gy−m

1 , . . . ,gy−mn

n), so that ~g~r =~h~r◦~y
′
. Multiplying ~g~r by~h2~s, the verifier obtains

Comck′(~r′;0) =~h~r
′
, with respect to the new commitment key ck′ which uses~h instead of ~g.

5.6. Logarithmic Communication Argument for Arithmetic Circuit Satisfiability 107

We note that~h and~s =~s(x) can be computed by the verifier.

Now the prover and verifier can run the inner product argument with statement

(G, p,~g,r,~h,r′,v+2K,mµ ,mµ−1, . . . ,m1) where

ck = (G, p,g,~g) n = mµmµ−1 · · ·m1

~g = (g1,g2, . . . ,gn) ~h = (gy−m

1 ,gy−2m

2 , . . . ,gy−mn

n)

R = Comck(0;−ρ)
[
∏

m
i=1 Axiyi

i

] [
∏

m
i=1 Bx−i

i

][
∏

m
i=1Cxm+i

i

]
Dx2m+1

=~g~r

R′ = R ·~h2~s =~h~r
′

and the prover’s witness is~r,~r′.

The values of mµ , . . . ,m1 can be chosen according to the desired efficiency of the circuit

satisfiability argument.

5.6.5 Formal Description

We now give the formal description of the above arguments of knowledge for the satisfi-

ability of an arithmetic circuit C. Both prover and verifier take the move parameter µ as

common input. For square root communication complexity, the inner product argument is

not used and we set µ = 0. For µ > 0, the common input includes the values (mµ , . . . ,m1)

used in the inner product argument. The description of the arithmetic circuit C is given as

a number N of multiplication gates and the values ~wq,a,i,~wq,b,i,~wq,c,i, which specify linear

consistency constraints between the input and output values of the multiplication gates.

Common Input: (ck,C,N,m,n,m′1,m
′
2,n
′,mµ , . . . ,m1,µ) where ck is a commitment key,

C is the description of an arithmetic circuit with N = mn multiplication gates, µ is

the move parameter and n = mµ · · ·m1. Parameters (m′1,m
′
2,n
′) are set to satisfy both

3m≤ m′1n′ and 4m+2≤ m′2n′.

Prover’s Witness: Satisfying assignments~ai,~bi and~ci to the wires of C.

Argument:

P→ V: Pick randomness α1,β1,γ1, . . . ,αm,βm,γm,δ ← Zp and blinding vector ~d ← Zn
p.

Compute for i ∈ {1, . . . ,m}

Ai = Com(~ai;αi) Bi = Com(~bi;βi) Ci = Com(~ci;γi) D = Com(~d;δ).

108 Chapter 5. Efficient Protocols for Arithmetic Circuits

Send to the verifier A1,B1,C1, . . . ,Am,Bm,Cm,D.

P← V: y← Z∗p.

As argued before, the circuit determines vectors of polynomials ~wa,i(Y), ~wb,i(Y),

~wc,i(Y) and K(Y) such that C is satisfiable if and only if

m

∑
i=1

~ai · (~bT
i ◦~Y ′)Y i +

m

∑
i=1

~ai ·~wa,i(Y)+
m

∑
i=1

~bi ·~wb,i(Y)+
m

∑
i=1

~ci ·~wc,i(Y) = K(Y)

where ~Y ′ = (Y m, . . . ,Y mn). Given y, both the prover and verifier can compute K =

K(y), ~wa,i = ~wa,i(y), ~wb,i = ~wb,i(y) and ~wc,i = ~wc,i(y).

P→ V: Compute Laurent polynomials~r,~s,~r′, which have vector coefficients, and Laurent

polynomial t, in the indeterminate X

~r(X) =
m

∑
i=1

~aiyiX i +
m

∑
i=1

~biX−i +Xm
m

∑
i=1

~ciX i + ~dX2m+1

~s(X) =
m

∑
i=1

~wa,iy−iX−i +
m

∑
i=1

~wb,iX i +X−m
m

∑
i=1

~wc,iX−i

~r′(X) =~r(X)◦~y′+2~s(X)

t(X) =~r(X) ·~r′(X)−2K =
4m+2

∑
k=−3m

tkXk

When the wires ~ai,~bi,~ci correspond to a satisfying assignment, the Laurent polyno-

mial t(X) will have constant term t0 = 0.

Commit to t(X) by running

(pc,st)← PolyCommit(ck,m′1,m
′
2,n
′, t(X))

Send pc to the verifier.

P← V: x← Z∗p

P→ V: Compute PolyEval(st,x)→ pe, and

~r =
m

∑
i=1

~aixiyi +
m

∑
i=1

~bix−i + xm
m

∑
i=1

~cixi + ~dx2m+1

5.6. Logarithmic Communication Argument for Arithmetic Circuit Satisfiability 109

ρ =
m

∑
i=1

αixiyi +
m

∑
i=1

βix−i + xm
m

∑
i=1

γixi +δx2m+1

• If µµµ = 0 : the inner product argument is not used. The prover sends (pe,~r,ρ) to

the verifier.

• If µµµ > 0 : the inner product argument is used. The prover computes~r′ =~r′(x)

and sends (pe,ρ) to the verifier.

Verification: First, the verifier computes

PolyVerify(ck,m′1,m
′
2,n
′,pc,pe,x)→ v

and rejects the argument if v =⊥.

• If µµµ = 0 : the inner product argument is not used. The verifier computes~r′ =

~r ◦~y′+2~s(x), and accepts only if

~r ·~r′−2K = v

Comck(~r;ρ) =
[
∏

m
i=1 Axiyi

i

][
∏

m
i=1 Bx−i

i

][
∏

m
i=1Cxm+i

i

]
Dx2m+1

• If µµµ> 0 : prover and verifier run the inner product argument with common input

(G, p,~g,R,~h,R′,v+2K,mµ ,mµ−1, . . . ,m1) where

ck = (G, p,g,~g) n = mµmµ−1 · · ·m1

~g = (g1,g2, . . . ,gn) ~h = (gy−m

1 ,gy−2m

2 , . . . ,gy−mn

n)

R = Comck(0;−ρ)
[
∏

m
i=1 Axiyi

i

] [
∏

m
i=1 Bx−i

i

][
∏

m
i=1Cxm+i

i

]
Dx2m+1

=~g~r

R′ = R ·~h2~s(x) =~h~r
′

and the prover’s witness is~r and ~r′.

The verifier accepts if the inner product argument is accepting.

5.6.6 Security Analysis.

Theorem 8. The argument for satisfiability of an arithmetic circuit has perfect complete-

ness, perfect special honest verifier zero-knowledge and statistical witness-extended emu-

lation for extracting either a breach of the binding property of the commitment scheme or a

witness for the satisfiability of the circuit.

110 Chapter 5. Efficient Protocols for Arithmetic Circuits

Proof. Perfect completeness follows by inspection and using the fact that the polynomial

commitment protocol and inner product argument also have perfect completeness.

For perfect special honest verifier zero-knowledge we are given y,x∈Z∗p, which allows

us to compute ~wa,i,~wb,i,~wc,i and K from the circuit. The simulator picks~r←Zn
p and ρ←Zp

and random commitments Ai,Bi and Ci. It computes

D =

[
m

∏
i=1

Axiyi

i Bx−i

i Cxm+i

i Comck(−~r;−ρ)

]−x−2m−1

v =~r ·~r′−2K

and simulates pc and pe from the polynomial commitment protocol.

To see that the simulated components have the same distribution as a real argument

observe that since the commitment scheme is perfectly hiding the commitments Ai,Bi and

Ci have the same distribution as in a real argument. Also, in both the simulation and a real

argument~r and ρ are uniformly random. Given these values the commitment D is uniquely

defined. Furthermore, since the polynomial commitment protocol is perfect special hon-

est verifier zero-knowledge, pc and pe have the same distribution as in a real argument,

conditioned on the value of v.

When µ > 0 we simply remove ~r from the transcript and execute a fresh run of the

inner product argument, given our knowledge of~r.

It remains to show that we have witness-extended emulation. We treat the cases µ = 0

and µ > 0 separately.

Square Root Argument. Assume that we have N +Q different challenges y ∈ Z∗p for the

same initial message, and for each of these challenges a further 7m+3 different challenges

x ∈ Z∗p for the same third message, all with valid answers. We begin by showing that from

this information we either extract a satisfying assignment to the wires~ai,~bi,~ci in the circuit,

or encounter a breach of the binding property of the commitment scheme.

Let us first consider a fixed initial transcript (A1, . . . ,Am, . . . ,Cm,D,y,pc) and sup-

pose we have valid arguments with 3m + 2 different values of x. Then the vectors

(x−m, . . . ,x2m+1) form the rows of a shifted Vandermonde matrix and we can obtain any unit

vector (0, . . . ,1, . . . ,0) by taking an appropriate linear combination of these vectors. By tak-

ing this linear combination of the 3m+2 verification equations Dx2m+1
∏

m
i=1 Axiyi

i Bx−i

i Cxm+i

i =

Comck(~r;ρ), we can then extract openings to each Ai,Bi and Ci, since y ∈ Z∗P.

We have valid arguments for (m′1 +m′2)n
′+ 1 = 7m+ 3 different challenges x ∈ Z∗p.

5.6. Logarithmic Communication Argument for Arithmetic Circuit Satisfiability 111

By the proof of Theorem 6 this implies that there exists a Laurent polynomial t(X) =

∑
n′m′2
i=−n′m′1

tixi with constant term t0 = 0 that is consistent with respect to all 3m+ 2 evalu-

ations of~r(X) ·~r′(X)−2K. This directly implies that Equation 5.3 holds for Y = y.

Finally, suppose that this holds for N +Q different challenges y ∈ Z∗p. Then, we have

equality of polynomials in Equation 5.3, since a non-zero polynomial of degree N +Q−1

cannot have N +Q roots. This means that the circuit is satisfied.

Now we can apply the forking lemma to get witness-extended emulation, as the tree

formed by the transcripts has size (N +Q) · (7m+3) which is polynomial in λ .

Inner Product Variant Assume that we have (N +Q) · (7m+ 3) · (2mµ − 1) . . .(2m2− 1)

accepting transcripts for the same statement arranged in a tree as follows:

• The root is labeled with the statement.

• Each of the (N +Q) depth 1 nodes is labeled with a different challenge y and has

7m+3 children labeled x.

• The children are subtrees of size (2mµ −1) . . .(2m2−1)

• Each level has nodes labeled with the challenges xi used in the i-th move of the recur-

sive argument, and of degree 2mµ−i+1−1.

Given the above tree of transcripts, we are able to do a two-stage extraction: First,

we invoke the witness-extended emulation of the recursive inner product argument. At this

point, we either have a a non-trivial discrete logarithm relation, in which case we are done,

or we have an accepting~r for each y,x pair. In this case, we proceed with the second stage

and repeat the extraction procedure for µ = 0 to obtain either a witness for the original

statement or a breach of the binding property of the commitment scheme.

We now point out that the size of the tree will be O(N · (2m)µ) ≈ O(N2+logm 2) which

is polynomial in the security parameter λ and invoke the Forking Lemma to complete the

proof.

5.6.7 Efficiency.

Square Root Communication. When we set µ = 0, the argument above has a communi-

cation cost of m′1 +m′2 + 2+ 1+ 3m commitments and n+ n′+ 2 field elements. Setting

m≈
√

N
3 , n≈

√
3N, n′ ≈

√
7m, m′1 ≈ 3

√m
7 and m′2 ≈ 4

√m
7 we get a total communication

complexity where the total number of group and field elements sent is as low as possible

112 Chapter 5. Efficient Protocols for Arithmetic Circuits

and approximately 2
√

N each. The main computational cost for the prover is computing

the initial commitments, corresponding to 3mn
logn group exponentiations. The prover can com-

pute t(X) using FFT-based techniques. Assuming that p is of a suitable form [Can89], the

dominant number of multiplications for this process is 3
2 mn logm. The main cost in the ver-

ification is computing ~s(X) given the description of the circuit which requires in the worst

case Qn multiplications in Zp, considering arbitrary fan-in addition gates. In case of O(N)-

size circuits with fan-in 2 gates, computing~s(X) requires O(N) multiplications. Evaluating

~s(x) requires 3N multiplications. The last verification equation costs roughly (n+3m)
logn+3m group

exponentiations to the verifier.

(µ + 1)-Root Communication. We can reduce communication by using µ = O(1) itera-

tions of the inner product argument. Choosing m = N
1

µ+1 , n = N
µ

µ+1 and mi = (N
m)

1
µ will

give us a communication complexity of 4µN
1

µ+1 group elements and 2µN
1

µ+1 field ele-

ments. The prover’s complexity is dominated by 6µN
logN group exponentiations and fewer than

3N
2µ

logN field multiplications. The verifier’s cost is dominated by 2µN
logN group exponentia-

tions and O(N) field multiplications.

Logarithmic Communication. By increasing the number of iteration of the inner product

argument we can further reduce the communication complexity.

To minimise the communication, we set µ = logN− 1, n = N
2 , m = mi = 2, m′1 = 2,

m′2 = 3 and n′ = 4 in the above argument gives us 2 logN + 1 moves. The total commu-

nication amounts to 4 logN + 7 group elements and 2logN + 6 field elements. The prover

computational cost is dominated by 12N group exponentiations, and O(N) multiplications

in Zp.The main verification cost is bounded by 4N group exponentiations and O(N) multi-

plications in Zp.

Alternatively, we can optimise the computation while maintaining logarithmic com-

munication by setting µ = logN− log log2N, m = logN, n = N
logN , n′ ≈

√
7logN, m′1 ≈

3
√

logN
7 , m′2 ≈ 4

√
logN

7 , mi = 2 for 1≤ i≤ µ . In this way we obtain a 2logN−2loglogN+

1 moves argument. With respect to the previous settings, we now save 2loglogN moves by

starting the inner product argument with a smaller statement. The resulting communication

is at most 7 logN +
√

7logN group elements and at most 2 logN +
√

7logN field elements.

Thus, the prover computation is dominated by 3N
logN group exponentiations and 11N log logN

field multiplications. For the verifier, it is bounded from above by 4N
logN log logN group expo-

nentiations and O(N) field multiplications.

5.7. Implementation using Python 113

5.7 Implementation using Python

To verify the practicality of our construction we produced a proof of concept implementa-

tion in Python using the NumPy [Oli06] package. The more costly operations are executed

natively: we use Petlib [Dan15] to outsource elliptic curve operations to the OpenSSL li-

brary, and also use a small C++ program to calculate the polynomial multiplication pro-

ducing~t(X) using NTL [Sho01]. Our implementation is single-threaded, but the operations

performed are easily parallelisable. The implementation is open source and consists of

approximately 3000 lines of Python and 100 lines of C++.

Our implementation accepts the circuit description format used by Pinocchio [PHGR13],

which it preprocesses to remove addition and multiplication by constant gates, encoding

them as a constraint table as in Section 5.3.1. Pinocchio also supports split gates, taking as

input a single arithmetic wire and producing a fixed number of binary wires as outputs, so

the binary wires correspond to the binary representation of the arithmetic wire. We handle

split gates by adding appropriate multiplication gates and constraints to ensure binary wires

can only carry zeroes or ones, and that their values scaled by the appropriate powers of 2

sum up to the gate’s input.

5.7.1 Performance Comparison

We compared the performance of our implementation to that of Pinocchio [PHGR13] using

the same set of circuits they used for their performance testing. The circuits implement

multiplication of a vector by a fixed matrix, multiplication of two matrices, evaluation of a

multivariate polynomial, and other applications for which we refer to [PHGR13]. We used

an i5-4690K running Pinocchio under Windows 10 and our software under Ubuntu 14.04

for the tests.

We note here that Pinocchio operates in a pairing-based setting, using knowledge of

exponent assumptions, whereas we operate in the discrete log setting. Even so, we feel

the comparison is meaningful, as we are not aware of previous implementations of circuit-

evaluation arguments in our setting.

From the comparison in Table 5.2, it is clear that our implementation is extremely

competitive in terms of prover computation. For certain applications, the square root ver-

sion outperformes Pinocchio by a factor larger than 10 in terms of prover speed. There is

a significant amount of variance in terms of the speedups achieved. The worst cases are

those where the number of constraints is high in comparison with the number of multi-

114 Chapter 5. Efficient Protocols for Arithmetic Circuits

Application

This work Pinocchio
Square Root Logarithmic (Constant)

Mult. Key Proof Key Proof Key Proof
Gates Gen Size Prove Verify Size Gen Size Prove Verify Size Gen Size Prove Verify Size

s B s s B s B s s B s B s s B
Vector Matrix 600 0.07 1120 0.38 0.25 6K 0.03 3872 0.55 0.31 3552 0.42 0.3M 0.23 .023 288
Product 1000 0.10 1440 0.76 0.61 8K 0.06 6464 1.05 0.67 3744 0.93 0.5M 0.53 .035 288
Matrix 347K 1.1 19K 14.7 3.4 76K 5.3 618K 49.9 22.9 5792 47.3 97.9M 167.4 .201 288
Product 1343K 2.7 37K 60.8 12.7 160K 18.6 2.2M 187.0 81.7 6496 170.4 374.8M 706.8 .503 288
Polynomial 203K 1.0 14K 30.0 2.1 88K 3.3 383K 53.1 14.0 5440 24.4 55.9M 146.8 .007 288
Evaluation 571K 1.7 24K 97.0 5.6 160K 8.3 962K 164.5 36.0 6272 60.2 156.8M 422.1 .007 288
Image 86K 0.7 9K 2.6 1.0 44K 1.5 171K 11.4 6.2 5120 15.2 23.6M 25.1 .007 288
Matching 278K 1.2 17K 7.4 2.9 72K 4.2 490K 34.3 18.1 5920 38.9 75.8M 88.8 .007 288
Shortest 366K 1.5 19K 9.3 3.7 52K 5.6 644K 45.6 23.9 5792 50.4 99.6M 130.7 .015 288
Paths 1400K 2.6 38K 35.1 12.6 72K 19.2 2.2M 169.8 84.0 6496 177.6 381.4M 523.3 .026 288
Gas 144K 0.8 12K 8.8 6.1 64K 2.3 271K 23.7 13.9 5440 22.6 39.6M 47.6 .007 288
Simulation 283K 1.2 17K 26.7 20.7 160K 4.3 503K 54.8 34.5 5920 45.9 77.7M 103.1 .007 288
SHA-1 24K 0.18 5K 3.7 3.3 24K 0.5 54K 6.5 4.3 4992 7.9 6.5M 9.0 .007 288

Table 5.2: Performance comparison between our implementation and Pinocchio. Pinocchio
was set to use public verifiability and zero-knowledge.

plication gates: the calculation of ~s(X) is performed entirely in Python and thus becomes

the dominant term in the computation. We expect that in a fully compiled implementation,

optimisation would prevent this issue.

The logarithmic communication version is slower in comparison but still outperforms

Pinocchio for most applications. The performance also becomes more even, as the con-

straints are irrelevant in the recursive part.

Our verification times are much higher than Pinocchio’s, which can often verify circuit

evaluation faster than native execution of an equivalent program. As with the prover, some

speedups can be gained by moving to a compiled language, but we would still not expect to

match Pinocchio’s performance; our verification cost would still be linear. Our proofs are

considerably larger as well, especially for the square root version.

Our key generation is simply a commitment key generation, and is not application-

specific. Therefore, it can be easily amortised even across different circuits. For a circuit

with N multiplication gates, the size of our commitment key is
√

N elements for the square

root version and N
logN for the log version. In comparison, Pinocchio’s key generation is

bound to specific circuits and produces keys of size 8N. Thus, if the keys need to be com-

municated, our arguments are competitive in terms of total communication if the number

of circuit evaluations is up to
√

N for the square root version, and up to N
logN for the log

version.

Chapter 6

Accountable Ring Signatures

Multiuser signatures (i.e. ring signatures and group signatures) are prominent cryptographic

primitives offering a combination of privacy and authentication. They enable individual

users to anonymously sign messages on behalf of a group of users. In ring signatures,

the group, i.e. the ring, is chosen in an ad hoc manner by the signer. In group signatures,

group membership is controlled by a group manager. Group signatures additionally enforce

accountability by providing the group manager with a secret tracing key that can be used to

identify the otherwise anonymous signer when needed.

Accountable ring signatures, introduced by Xu and Yung (CARDIS 2004), bridge the

gap between the two notions. They provide maximal flexibility in choosing the ring, and at

the same time maintain accountability by supporting a designated opener that can identify

signers when needed.

In this chapter, we revisit accountable ring signatures and offer a formal security model

for the primitive. Our model offers strong security definitions incorporating protection

against maliciously chosen keys and at the same time flexibility both in the choice of the

ring and the opener. We will give a generic construction using standard tools.

We will also give a highly efficient instantiation of our generic construction in the

random oracle model by meticulously combining Camenisch’s group signature scheme

(CRYPTO 1997) with a generalization of the one-out-of-many proofs of knowledge by

Groth and Kohlweiss (EUROCRYPT 2015). Our instantiation yields signatures of logarith-

mic size (in the size of the ring) while relying solely on the well-studied decisional Diffie-

Hellman assumption. In the process, we offer a number of optimizations for the recent

Groth and Kohlweiss one-out-of-many proofs, which may be useful for other applications.

Accountable ring signatures imply traditional ring and group signatures. We can there-

116 Chapter 6. Accountable Ring Signatures

fore also obtain highly efficient instantiations of those primitives with signatures shorter

than all existing ring signatures as well as existing group signatures relying on standard

assumptions.

The research presented in this chapter was joint work with Jonathan Bootle, Andrea Cerulli,

Essam Ghadafi, Jens Groth and Christophe Petit, and was published in [BCC+15]. The

author contributed to the investigation in the construction and proofs of the tree/list protocol

(together with Andrea Cerulli), in the construction and proofs of the other NIZK protocols

(together with Andrea Cerulli and Christophe Petit), the security proofs of the main Scheme

(the move from CCA encryption to CPA coupled with straighline extractability is due to Jens

Groth) and the discussion on revocation.

6.1. Introduction 117

6.1 Introduction

Significant effort has been devoted to the study of signature schemes with privacy properties

that allow a signer to remain anonymous within a set of users. Two prominent examples of

anonymous signature schemes are ring signatures [RST01] and group signatures [CvH91].

Ring signatures allow a signer to choose any ad hoc set of users, i.e. a ring, and sign anony-

mously on behalf the ring. Group signatures also allow a signer to sign anonymously on

behalf of a group of users but here group membership is controlled by a designated group

manager. The advantage of group signatures is accountability; in case of abuse, the group

manager can revoke anonymity and identify the signer.

Accountable ring signatures [XY04] bridge the gap between ring signatures and group

signatures. They offer the flexibility of freely choosing the ring of users when creating

a signature and at the same time enforce accountability by including an opener who can

open a signature and reveal who signed it. The combination of flexibility and accountability

allows applications where ring signatures or group signatures are less suitable. Consider,

for instance, an online forum that wants to offer anonymity to users but also wants to be able

to trace people who violate the code of conduct. A forum can achieve this by allowing user

posts with accountable ring signatures where the owner is the specified opener. This system

is decentralised and flexible since different fora can have their own opener keys and users do

not have to register with each individual forum they post to. Another potential application is

an auction system where bids are public but unsuccessful bidders want anonymity. Bidders

sign bids with the seller as opener and at the end of the auctions the seller can disclose the

winner in a verifiable way.

6.1.1 Contributions

We introduce a new security model for accountable ring signatures. The signer specifies, in

addition to a set of users that could have produced the signature, the public key of an opening

entity, which will be able to remove anonymity. This opening mechanism offers protection

against misbehaving signers while at the same time not relying on a single, centralised group

manager. Our security definitions are stringent and, when possible, incorporate protection

against maliciously chosen keys.

We provide a generic construction of accountable ring signatures from standard cryp-

tographic tools. We also give a concrete instantiation, combining ideas from Camenisch’s

group signature [Cam97] with a generalization of the one-out-of-many proof of knowl-

118 Chapter 6. Accountable Ring Signatures

edge of Groth and Kohlweiss [GK14]. The most efficient ring and group signatures

[ACJT00, CL02, CKS09, BBS04, DKNS04, CG05, Ngu05, GK14] in the literature are in the

random oracle model [FS87] and so is ours. However, the only other assumption we make

is the hardness of the well-established decisional Diffie-Hellman problem.1

From a technical viewpoint, we offer two optimisations of Groth-Kohlweiss one-out-

of-many proofs. One perspective on their proof system is that they form a binary tree and

prove that one of the leaves is selected. We generalise their approach to n-ary trees, allowing

us to fine-tune the parameters for better performance. For N = nm, our optimisations reduce

the number of group elements in the 1-out-of-N proof from 4m to 2m with little impact on

the number of field elements or computational cost. Also, while their proofs can be used for

ElGamal encryption, which is what we need for our scheme, this imposes an overhead in

all parts of their protocol. We deploy more efficient Pedersen commitments in some parts

of the proof, thus limiting the overhead of ElGamal.

The end result is an accountable ring signature scheme with efficient computation and

very small signatures. Namely, for a ring with N = poly(λ) users, we obtain signatures of

size approximately 5
2 λ log2 N bits, which is smaller than all existing group and ring signa-

tures based on standard assumptions.

6.2 Defining Accountable Ring Signatures
An accountable ring signature (ARS) scheme over a PPT setup Setup is a tuple of

polynomial-time algorithms (OKGen,UKGen,Sign,Vfy,Open,Judge).

Setup(1λ): Given the security parameter, produces public parameters pp used (sometimes

implicitly) by the rest of the scheme. The public parameters define key spaces

PK,DK,VK,SK with efficient algorithms for sampling and deciding membership.

OKGen(pp): Given the public parameters pp, produces a public key pk ∈ PK and secret

key dk ∈ DK for an opener. Without loss of generality, we assume dk defines pk

deterministically and write pk = OKGen(pp,dk) when computing pk from dk.

UKGen(pp): Given the public parameters pp, produces a verification key vk ∈ VK and a

secret signing key sk ∈ SK for a user. We can assume sk deterministically determines

vk and write vk = UKGen(pp,sk) when computing vk from sk.
1An important advantage of working over a discrete logarithm group is that so do many standard signature

schemes, e.g., DSS. We therefore already have many users with suitable public verification keys in a standard
cyclic group, e.g., NIST’s 256-bit elliptic curve group P-256.

6.2. Defining Accountable Ring Signatures 119

Sign(pk,m,R,sk): Given an opener’s public key, a message, a ring (i.e. a set of verification

keys) and a secret key, produces a ring signature σ . The algorithm returns the error

symbol ⊥ if the inputs are malformed, i.e., if pk /∈ PK,R 6⊂ VK,sk /∈ SK or vk =

UKGen(pp,sk) /∈ R.

Vfy(pk,m,R,σ): Given an opener’s public key, a message, a ring and a signature, returns

1 if accepting the signature and 0 otherwise. We assume the algorithm always returns

0 if the inputs are malformed, i.e., if pk /∈ PK or R 6⊂ VK.

Open(m,R,σ ,dk): Given a message, a ring, a ring signature and an opener’s secret key,

returns a verification key vk and a proof ψ that the owner of vk produced the signature.

If any of the inputs is invalid, i.e., dk /∈ DK or σ is not a valid signature using pk =

OKGen(pp,dk), the algorithm returns ⊥.

Judge(pk,m,R,σ ,vk,ψ): Given an opener’s public key, a message, a ring, a signature, a

verification key and a proof, returns 1 if accepting the proof and 0 otherwise. We

assume the algorithm returns 0 if σ is invalid or vk /∈ R.

An accountable ring signature scheme should be correct, fully unforgeable, anonymous

and traceable as defined below.

Definition 25 (Perfect correctness). An accountable ring signature scheme is perfectly cor-

rect if for any PPT adversary A

Pr

pp← Setup(1λ);(vk,sk)← UKGen(pp);

(pk,m,R)←A(pp,sk);σ ← Sign(pk,m,R,sk) :

If pk ∈ PK,R⊂ VK,vk ∈ R then Vfy(pk,m,R,σ) = 1

= 1.

We remark that correctness of the opening algorithm (w.r.t. an honestly generated opener

key) is implied by the other requirements.

Full unforgeability ensures that an adversary, who may control the opener, can neither

falsely accuse an honest user of producing a ring signature nor forge ring signatures on

behalf of an honest ring. The former should hold even when all other users in the ring are

corrupt. This requirement combines the non-frameability of group signatures [BSZ05] and

the unforgeability of ring signatures [BKM09] requirements.

120 Chapter 6. Accountable Ring Signatures

Definition 26 (Full Unforgeability). An accountable ring signature scheme is fully unforge-

able if for any PPT adversary A

Pr

pp← Setup(1λ);(pk,vk,m,R,σ ,ψ)←AUKGen,Sign,Reveal(pp) :(
vk ∈ QUKGen \QReveal ∧ (pk,vk,m,R,σ) /∈ QSign

∧Judge(pk,m,R,σ ,vk,ψ) = 1
)

∨
(

R⊂ QUKGen \QReveal ∧ (pk, ·,m,R,σ) /∈ QSign

∧ Vfy(pk,m,R,σ) = 1
)

≈ 0.

• UKGen runs (vk,sk)←UKGen(pp) and returns vk. QUKGen is the set of verification

keys vk that have been generated by this oracle.

• Sign is an oracle that on query (pk,vk,m,R) returns σ ← Sign(pk,m,R,sk) if vk ∈

R∩QUKGen. QSign contains the queries and responses (pk,vk,m,R,σ).

• Reveal is an oracle that when queried on vk ∈ QUKGen returns the corresponding

signing key sk. QReveal is the list of verification keys vk for which the corresponding

signing key has been revealed.

Anonymity ensures that a signature does not reveal the identity of the ring member

who produced it without the opener explicitly wanting to open the particular signature. We

allow the adversary to choose the secret signing keys of the users which implies anonymity

against full key exposure attacks [BKM09] where the users’ secret signing keys have been

revealed. Our definition also captures unlinkability as used in [XY04]: if an adversary can

link signatures by the same signer, it can break anonymity.

Definition 27 (Anonymity). An accountable ring signature scheme is anonymous if for any

PPT adversary A

Pr

 pp← Setup(1λ);b←{0,1};(pk,dk)← OKGen(pp) :

AChalb,Open(pp, pk) = b

≈ 1
2
.

• Chalb is an oracle that the adversary can only call once. On query (m,R,sk0,sk1)

it runs σ0← Sign(pk,m,R,sk0); σ1← Sign(pk,m,R,sk1). If σ0 6= ⊥ and σ1 6= ⊥ it

returns σb, otherwise it returns ⊥.

• Open is an oracle that on a query (m,R,σ) returns Open(m,R,σ ,dk). If σ was

6.2. Defining Accountable Ring Signatures 121

obtained by calling Chalb on (m,R), the oracle returns ⊥.

Traceability ensures that the specified opener can always identify the ring member who

produced a signature and that she is able to produce a valid proof for her decision. We allow

the adversary full control in specifying the decryption key of the opener, as well as the ring

R.

Definition 28 (Traceability). An accountable ring signature scheme is traceable if for any

PPT adversary A

Pr

pp← Setup(1λ);(dk,m,R,σ)←A(pp);

pk← OKGen(pp,dk);(vk,ψ)← Open(m,R,σ ,dk) :

Vfy(pk,m,R,σ) = 1 ∧ Judge(pk,m,R,σ ,vk,ψ) = 0

≈ 0.

Tracing soundness ensures that a signature cannot trace to two different users; only

one person can be identified as the signer even when all users as well as the opener are fully

corrupt. Similarly to the setting of group signatures [SSE+12], this requirement is vital for

some applications, e.g., where users might be rewarded for signatures they produced, or to

avoid shifting blame when signatures are used as evidence of abuse. We allow the adversary

full control in specifying the keys of the opener, the ring R and all the users. The setting of

tracing soundness is different than that of the traceability game, but is compatible with that

of full unforgettability. However, in the interest of readability, we cover it separately.

Definition 29 (Tracing Soundness). An accountable ring signature scheme satisfies tracing

soundness if for any PPT adversary A

Pr

 pp← Setup(1λ);(m,σ ,R, pk,vk1,vk2,ψ1,ψ2)←A(pp) :

∀i ∈ {1,2}, Judge(pk,m,R,σ ,vki,ψi) = 1∧ vk1 6= vk2

≈ 0.

6.2.1 Ring and Group Signatures from Accountable Ring Signatures

We will now relate accountable ring signatures to ring signatures and group signatures by

showing that the latter are implied by accountable ring signatures.

RING SIGNATURES. Traditional ring signatures [RST01] do not have an opener and their

security requires anonymity of the signer and unforgeability [RST01, BKM09]. By mod-

ifying the signing algorithm to produce a freshly sampled opener key and attach it to the

signature, we obtain a traditional ring signature scheme from an accountable ring signature.

122 Chapter 6. Accountable Ring Signatures

As the public key is freshly sampled, the opening and judge algorithms are ignored no user

can derive the private key required to open signatures and produce proofs. Correctness and

anonymity follow from those of the accountable ring signature, whereas unforgeability is

implied by full unforgeability and traceability.

GROUP SIGNATURES. Bellare et al. [BMW03] defined group signatures for static groups,

where the population of the group is fixed once and for all at the setup time, and where

the group manager additionally acts as the designated opener. Besides correctness, their

model requires full anonymity and full traceability. The latter requires that an adversary in

possession of the group master secret key who can corrupt members of the group, cannot

produce a new signature that does not trace to a user in set of corrupt users. An accountable

ring signature satisfying our security definitions gives rise to a group signature scheme as

follows: We fix the group manager as the designated opener and set the corresponding

decryption key as the group master secret key gmsk used as the tracing key. In the setup,

the group members generate their personal key pairs and the group manager publishes the

ring containing the public keys of the members as part of the group signature public key.

Group membership is enforced by the manager’s control over the ring. Group signatures

are then just accountable ring signatures w.r.t. this ring. Full anonymity follows from the

anonymity of the accountable ring signature scheme, whereas full traceability follows from

full unforgeability and traceability. In Sect. 7.4.3, we give a detailed example based on the

generic accountable ring signature construction of the following section.

The group public key in our scheme is quite large since it grows linearly in the number

of members. However, the cost of transmitting the public key that can be amortised over

many signatures: a user needs to obtain the public key only once in the static version, and

once per epoch in the dynamic one (furthermore, the dynamic case is also well suited to

delta-based solutions). An advantage of a group signature scheme based on ARS on the

other hand is that it can easily be made dynamic, something that we will cover in detail in

the next chapter. The group manager can enrol or remove users by adding or deleting their

verification keys from the group public key [DKNS04]. In the dynamic group signature

scheme, the group public key is changing and group signatures must be verified against the

group as it was at the time of signing, but for scenarios where the group is not changing too

often or where great flexibility is desired this is a price worth paying.

6.3. Constructing Accountable Ring Signatures 123

6.3 Constructing Accountable Ring Signatures

6.3.1 Building Blocks

Our generic construction (shown in Fig. 6.1) uses a one-way function f (Sect. 3.2.2), an

IND-CPA secure public-key encryption scheme (PKEGen,E ,D) (Sect. 3.2.2), a signature

of knowledge (Sect. 3.4.7), and a non-interactive zero-knowledge proof (Sect. 3.4.5), all

of which share the same setup gk. The setup gk defines domain SK and range VK for f ,

and key, message, randomness and ciphertext spaces PK,DK,M,Rnd,C for the encryption

scheme. The range of f and the message space of the encryption scheme need to be com-

patible such that VK ⊆M. We describe the relations w.r.t the signature of knowledge and

the zero knowledge proof operate in the next section.

6.3.2 Design

The idea is that an opener will have a key pair for the encryption scheme and the user will

have a secret key sk and corresponding verification key vk = f (sk). To sign a message m

w.r.t. a ring R, the signer first encrypts her verification key under the opener’s public key

and provides a signature of knowledge on m proving the ciphertext encrypts a verification

key in the ring and that she knows the secret key associated with the encrypted verification

key. To open a signature, the opener decrypts the ciphertext to obtain the user’s verification

key and provides an NIZK proof of correct decryption.

The relationsRsig andRopen associated with the signature of knowledge and the NIZK

system, respectively, are as follows:

Rsig :=

(
(pk,R,c),(sk,r)

)
:

R⊂ VK ∧ vk := f (sk) ∈ R ∧ c = E(pk,vk;r)

 ·

Ropen :=

(
(pk,c,vk),dk

)
:

pk = PKEGen(gk;dk) ∈ PK ∧ vk =D(dk,c) ∧ vk ∈ VK

 ·
6.3.3 Security

Lemma 2. The accountable ring signature scheme in Fig. 6.1 is anonymous if SoK forRsig

is SimExt secure, the NIZK for Ropen is zero knowledge, and (PKEGen,E ,D) is IND-CPA

secure.

Proof. We start by replacing the algorithm SoKSetup of the signature of knowledge with

SoKSimSetup, and when answering the challenge query, we use SoKSimSign instead of

SoKSign. By the SimExt security of the SoK, the adversary has a negligible probability in

124 Chapter 6. Accountable Ring Signatures

Setup(1λ)

gk← G(1λ);crs← CRSGen(gk)
crsSoK← SoKSetup(gk)
Return pp := (gk,crsSoK,crs)

OKGen(pp)
(pk,dk)← PKEGen(gk)
Return (pk,dk)

Open(m,R,σ ,dk)
pk← OKGen(pp;dk)
If Vfy(pk,m,R,σ) = 0 return ⊥
Parse σ as (c,σSoK)
vk :=D(dk,c)
ψ ← Prove(crs,(pk,c,vk),dk)
Return (vk,ψ)

UKGen(pp)
sk← SK; vk := f (sk); Return (vk,sk)

Sign(pk,m,R,sk)
vk← f (sk);r← Rnd;c← E(pk,vk;r)
σSoK← SoKSign(crsSoK,(pk,R,c),(sk,r),m)
Return σ := (c,σSoK)

Vfy(pk,m,R,σ)
Parse σ as (c,σSoK)
Return SoKVerify(crsSoK,(pk,R,c),m,σSoK)

Judge(pk,m,R,σ ,vk,ψ)
If Vfy(pk,m,R,σ) = 0 return 0
Parse σ as (c,σSoK)
Return PVfy(crs,(pk,c,vk),ψ)

Figure 6.1: A generic construction for Accountable Ring Signatures

distinguishing between the two settings. This ensures that the signature of knowledge σSoK

reveals no information about the underlying witness.

Next, we replace the algorithm CRSGen of the NIZK system with SimCRSGen

and when answering opening queries, we use SimProve instead of Prove. By the zero-

knowledge property of the NIZK system, the adversary has a negligible probability in dis-

tinguishing between the two settings.

Now, we modify the Open oracle into Open′ such that instead of decrypting the cipher-

text, we run SoKExtract to extract the verification key vk from the signature of knowledge

σSoK. By the SimExt security of the signature of knowledge, with overwhelming probability

in each query, we get the same vk as the plaintext of c.

As we are no longer using the decryption algorithm, by the IND-CPA security of the

encryption scheme, the probability of A winning the anonymity game is close to 1
2 .

Lemma 3. The accountable ring signature scheme in Fig. 6.1 is fully unforgeable if SoK

forRsig is SimExt secure, the NIZK forRopen is sound, and f is one-way.

Proof. We start by running the Setup algorithm as normal with the exception that here we

replace SoKSetup with SoKSimSetup. We forward crs to the adversary. By the simulatabil-

ity of the signature of knowledge, the adversary has a negligible probability in distinguish-

ing between the two settings. From now on, we use SoKSimSign instead of SoKSign when

answering Sign queries. The adversary can win in two ways:

• Case I: The adversary forges a valid ring signature on a message m w.r.t. an hon-

est ring R where (pk, ·,m,R,σ) /∈ QSign. By the SimExt security of the signature of

6.3. Constructing Accountable Ring Signatures 125

knowledge, we can extract a valid witness for the statement (pk,R,c) ∈ LRsig from

which we obtain (vk,sk) such that vk := f (sk) ∈ R. We use this to break the one-

wayness of the function f which contradicts the security of the function f .

• Case II: The adversary outputs a valid ring signature σ := (c,σSoK) on a message m

w.r.t. a ring R and a proof ψ that the honest user with key vk produced the signature

while such user never did so.

We start by guessing the user the adversary is going to frame. We have a probability
1

η(λ) of guessing correctly, where η(λ) is a polynomial representing an upper bound

on the number of honest users A uses in the game. By the soundness of the NIZK

system, ψ is a proof for a valid statement (pk,c,vk) ∈ LRopen . In the game, we abort

if A asks for the secret key of the user we guessed. For all other honest users, we

have chosen their key pairs ourselves and thus know their secret keys.

Again, by the simulation extractability of the signature of knowledge, with over-

whelming probability, we can extract a valid witness for the statement (pk,R,c) ∈

LRsig from σSoK, from which we obtain (vk,sk) such that vk := f (sk) ∈ R. We use

this to break the one-wayness of f which contradicts the security of the function f .

Lemma 4. The accountable ring signature scheme in Fig. 6.1 is traceable, if SoK for Rsig

is SimExt secure, the NIZK for Ropen is complete, and is (PKEGen,E ,D) perfectly correct.

.

Proof. By the security of the signature of knowledge, we are able to extract a valid witness

from σSoK part of the valid signature σ = (c,σSoK) the adversary outputs. The witness thus

satisfies vk = f (sk) where vk ∈ R⊂VK, pk ∈ PK and c = E(pk,vk;r) for some r ∈Rnd and

sk ∈ SK.

Since pk = PKEGen(gk;dk), we see from pk 6= ⊥ that dk ∈ DK. Correctness of the

encryption algorithm implies that D(dk,c) = vk, which is the first part of the opening algo-

rithm’s output. Now the opening algorithm has a statement (pk,c,vk) and a corresponding

witness dk. By the completeness of the NIZK proof system, ψ will verify correctly. This

means that the Judge algorithm will output 1 which is a contradiction.

Lemma 5. The construction satisfies tracing soundness if SoK is SimExt secure, the NIZK

proof system is sound and the encryption scheme is perfectly correct.

126 Chapter 6. Accountable Ring Signatures

Proof. The SimExt security of the signature of knowledge ensures that from any signature

σSoK (w.r.t. a statment s) output by the adversary, we can extract a valid witness w such

that (s,w) ∈Rsig which eliminates the case that the adversary forges a signature for a state-

ment s∗ /∈ LRsig . If this is not the case, we can use such an adversary to construct another

adversary against the SimExt security of the signature of knowledge.

The soundness of the NIZK system for the relation Ropen ensures that ciphertext c

contained in the ring signature decrypts to vk, which eliminates the case that the adver-

sary can produce a proof ψ for a statement s∗ /∈ LRopen . Finally, the perfect correctness of

the public-key encryption scheme (which is regarded as a perfectly-binding commitment

scheme) ensures that a ciphertext has a unique decryption.

Theorem 9. The accountable ring signature construction in Fig. 6.1 is perfectly correct,

anonymous, fully unforgeable, traceable, and satisfies tracing soundness if SoK for Rsig is

SimExt secure, the NIZK forRopen is complete, sound and zero knowledge, (PKEGen,E ,D)

is perfectly correct and IND-CPA secure, and f is one-way. .

Proof. Perfect correctness follows from that of the building blocks and is easy to verify.

Lemmata 2, 3, 4 and 5 complete the rest of the proof.

Since all the building blocks can be constructed from (doubly enhanced [Gol11]) trap-

door permutations, we get as a corollary that trapdoor permutations imply the existence of

accountable ring signatures.

6.4 Efficient Instantiation

We give here an efficient instantiation of the generic construction from Fig. 6.1. The instan-

tiation is secure in the random oracle model under the well-established DDH assumption.

We instantiate f with group exponentiation and the IND-CPA encryption scheme with El-

Gamal. We will get the Signature of Knowledge and NIZK proof for the relations Rsig

andRopen by applying the Fiat-Shamir transform to suitable Σ-protocols for these relations.

Thanks to the straightline f -Extractability of our instantiation of the signature of knowl-

edge, we can answer the adversary’s Open queries in the anonymity game by extracting

vk = f (sk) from σSoK without rewinding.

For all Σ-protocols, the setup includes the group description gk and the common ref-

erence string crs := (ck,ek), where ck← CGen(gk), (ek,τ)← PKEGen(gk) and ek = gτ

6.4. Efficient Instantiation 127

for τ ← Z∗p, for the Pedersen commitment scheme and the ElGamal encryption scheme,

respectively.

6.4.1 Committed bits

We first give a Σ-protocol for a commitment B having an opening consisting of sequences

of bits, where in each sequence there is exactly one 1. More precisely, we give in Fig. 6.2 a

Σ-protocol (Gcrs,P1,V1) for the relation

R1 =

 (B,(b0,0, . . . ,bm−1,n−1,r)) :

(∀i, j : b j,i ∈ {0,1})∧ (∀ j : ∑
n−1
i=0 b j,i = 1)∧B = Comck(b0,0, . . . ,bm−1,n−1;r)

The main idea is to prove that b j,i(1−b j,i) = 0 for all i, j, and also that ∑

n
i=1 b j,i = 1.

P1(gk,crs,B,(b0,0, . . . ,bm−1,n−1,r)) V1(gk,crs,B)
rA,rC,rD,a j,1, . . . ,a j,n−1← Zp

∀ j : a j,0 :=−∑
n−1
i=1 a j,i A,C,D

A := Comck(a0,0, . . . ,am−1,n−1;rA)
-

C := Comck({a j,i(1−2b j,i)}m−1,n−1
j,i=0 ;rC) Accept if and only if

D := Comck(−a2
0,0, . . . ,−a2

m−1,n−1;rD) x←{0,1}λ A,B,C,D ∈G
� f0,1, . . . , fm−1,n−1,zA,zC ∈ Zp

∀ j, i : f j,i := b j,ix+a j,i ∀ j : f j,0 := x−∑
n−1
i=1 f j,i

zA := rx+ rA f0,1, f1,1, . . . , fm−1,n−1,zA,zC BxA = Comck(f0,0, . . . , fm−1,n−1;zA)

zC := rCx+ rD
- CxD = Comck({ f j,i(x− f j,i)}m−1,n−1

j,i=0 ;zC)

Figure 6.2: Σ-protocol for relationR1.

Lemma 6. The Σ-protocol in Fig. 6.2 is perfectly complete, perfect SHVZK, computational

3-special sound and has quasi-unique responses, under the discrete logarithm assumption.

Proof. Perfect completeness follows by inspection. The SHVZK simulator, given a chal-

lenge x, can simulate the transcript by picking f0,1, . . . , fm−1,n−1,zA,zC ← Zp, C← G and

computing f j,0 := x−∑
n−1
i=1 f j,i, A :=Comck(f0,0, . . . , fm−1,n−1,zA)B−x, D=Comck({ fi, j(x−

fi, j)}m−1,n−1
i, j=0 ;zC)C−x. In both simulations and real proofs, f0,1, . . . , fm−1,n−1,zA,zC and C

are independent, uniformly random and uniquely determine { f j,0}m−1
j=0 ,A,D, so the sim-

ulation is perfect. We also have quasi-unique responses, since two different valid answers

f0,1, . . . , fm−1,n−1,zA,zC and f ′0,1, . . . , f ′m−1,n−1,z
′
A,z
′
C to one challenge would break the bind-

ing property of BxA and CxD.

We prove 3-special soundness in three parts. First, we show that any answers to 3

(actually 2) different challenges provide an opening of B. Second, we show that these

answers imply that committed values are bits. Finally, we show that they imply that

128 Chapter 6. Accountable Ring Signatures

the sum of the committed values is 1. For the first part, suppose that a prover has

answered two different challenges x,x′ correctly with answers (f0,1, . . . , fm−1,n−1,zA,zC)

and (f ′0,1, . . . , f ′m−1,n−1,z
′
A,z
′
C). Since we have BxA = Comck(f0,0, . . . , fm−1,n−1;zA) and

Bx′A = Comck(f ′0,0, . . . , f ′m−1,n−1;z′A), from the first verification equation we have Bx−x′ =

Comck(f0,0 − f ′0,0, . . . , fm−1,n−1 − f ′m−1,n−1;zA − z′A). Thus bi, j =
fi, j− f ′i, j

x−x′ , with r =
zA−z′A
x−x′ ,

gives us an opening of B. The first verification equation also gives an opening (a0, . . . ,a0;rA)

of A using a j,i = f j,i−xb j,i and rA = zA−xr. Note that by the binding properties of the com-

mitment scheme, the prover cannot know a second opening of A or B, and must respond to

any challenge with f j,i = b j,ix+ a j,i. We can get openings of C and D to values c j,i, d j,i

from the second equation in a similar way.

By the second verification equation, the values satisfy c j,ix + d j,i = f j,i(x− f j,i) =

b j,i(1− b j,i)x2 +(1− 2b j,i)a j,ix− a2
j,i. If this holds for three different x,x′ and x′′ then the

polynomials are identical. So, b j,i(1−b j,i) = 0 and b j,i ∈ {0,1} for all i, j.

By construction we have ∑
n−1
i=0 f j,i = ∑

n−1
i=0 b j,ix+∑

n−1
i=0 a j,i = x for all j = 0, . . . ,m−1.

This holds for two challenges x and x′. Therefore ∑
n−1
i=0 b j,i = 1.

6.4.2 List Containing Encryption of 1

We now describe a Σ-protocol that a list of N ElGamal ciphertexts (c0, . . . ,cN−1) includes

an encryption of 1. More precisely, we give a Σ-protocol (Gcrs,P2,V2) (see Fig. 6.3) for the

relation:

R2 =
{

(({ci}N−1
i=0),(`,r)) : (∀i,ci ∈G2)∧ ` ∈ {0, . . . ,N−1}∧ c` = Eek(1;r)

}
This generalises easily to other homomorphic encryption and commitment schemes.

Since we can pad the list with copies of the last ciphertext (at little extra cost in the

protocol), we may assume N = nm. We will later discuss the efficiency implications of

different choices of n. The idea behind our Σ-protocol is to prove knowledge of an index `

for which the product ∏
N−1
i=0 cδ`,i

i is an encryption of 1, where as usual δ`,i = 1 when i = `

and δ`,i = 0 otherwise. We have δ`,i = ∏
m−1
j=0 δ` j,i j , where ` = ∑

m−1
j=0 ` jn j and i = ∑

m−1
j=0 i jn j

are the n-ary representations of ` and i respectively.

The prover first commits to m sequences of n bits (δ` j,0, . . . ,δ` j,n−1). It runs the

Σ-protocol in Fig. 6.2 to prove that the commitment is well-formed. On receiving a chal-

lenge x, the prover discloses elements f j,i = δ` j,ix+ a j,i as in Fig. 6.2. Observe that for

6.4. Efficient Instantiation 129

every i ∈ {0, . . . ,N − 1}, the product ∏
m−1
j=0 f j,i j is the evaluation at x of the polynomial

pi(x) = ∏
m−1
j=0 (δ` j,ix+a j,i). For 0≤ i≤ N−1, we have:

pi(x) =
m−1

∏
j=0

δ` j,i j x+
m−1

∑
k=0

pi,kxk = δ`,ixm +
m−1

∑
k=0

pi,kxk, (6.1)

for some coefficients pi,k depending on ` and a j,i. Note that pi,k can be computed by

the prover independently of x, and that p`(x) is the only degree m polynomial amongst

p0(x), . . . , pN−1(x). From these coefficients and some random noise values ρk, the prover

computes ciphertexts Gk := ∏
N−1
i=0 cpi,k

i · Eek(1;ρk) and includes them in the initial message.

These ciphertexts are then used to cancel out the low degree terms in (6.1). Namely, if c` is

an encryption of 1, the following product is an encryption of 1 for any x

N−1

∏
i=0

c
∏

m−1
j=0 f j,i j

i ·
m−1

∏
k=0

G−xk

k =

(
N−1

∏
i=0

cδ`,i
i

)xm

.

P2(gk,crs,(c0, . . . ,cN−1),(`,r)) V2(gk,crs,(c0, . . . ,cN−1))

rB,ρk← Zp

B := Comck(δ`0,0 , . . . ,δ`m−1,n−1 ;rB)

(A,C,D)←P1(gk,crs,B,({δ` j,i}
m−1,n−1
j,i=0 ,rB))

For k = 0, . . . ,m−1 A,B,C,D,{Gk}m−1
k=0 Accept if and only if

Gk = ∏
N−1
i=0 cpi,k

i · Eek(1;ρk)
- A,B,C,D,G0, . . . ,Gm−1 ∈G

using pi,k from (6.1) x←{0,1}λ f0,1, . . . , fm−1,n−1,zA,zC,z ∈ Zp
� V1(gk,crs,B,x,A,B,C,{ f j,i}m−1,n−1

j=0,i=1 ,zA,zC) = 1
(f0,1, . . . , fm−1,n−1,zA,zC)←P1(x) f0,1, . . . , fm−1,n−1,zA,zC,z ∀ j : f j,0 := x−∑

n−1
i=1 f j,i

z := rxm−∑
m−1
k=0 ρkxk -

∏
N−1
i=0 c

∏
m
j=1 f j,i j

i ·∏m−1
k=0 G−xk

k = Eek(1;z)

Figure 6.3: Σ-protocol for a list c0, . . . ,cN−1 containing an encryption of 1

Lemma 7. Let m ≥ 2. The Σ-protocol in Fig. 6.3 is perfectly complete, SHVZK, (m+ 1)-

special sound and has quasi-unique responses, under the DDH assumption.

Proof. First we prove perfect completeness. By the perfect completeness of the Σ-protocol

in Fig. 6.2 we have that V1 always accepts. Correctness of the last equation follows from

the homomorphic property of ElGamal encryption since

130 Chapter 6. Accountable Ring Signatures

N−1
∏
i=0

c
∏

m−1
j=0 f j,i j

i ·
m−1
∏

k=0
G−xk

k =
N−1
∏
i=0

cpi(x)
i ·

m−1
∏

k=0

(
N−1
∏
i=0

cpi,k
i ·Enc(1;ρk)

)−xk

=
N−1
∏
i=0

cpi(x)
i ·

m−1
∏

k=0

(
N−1
∏
i=0

c−pi,kxk

i ·Enc(1;−xkρk)

)
=

N−1
∏
i=0

cpi(x)
i ·

N−1
∏
i=0

c−∑
m−1
k=0 pi,kxk

i ·Enc
(

1;−
m−1
∑

k=0
xkρk

)
=

N−1
∏
i=0

cδ`,ixm

i ·Enc
(

1;−
m−1
∑

k=0
xkρk

)
= cxm

` Enc
(

1;−
m−1
∑

k=0
xkρk

)
= Enc(1;rxm) ·Enc

(
1;−∑

m−1
k=0 xkρk

)
= Enc(1;z).

We now describe a special honest verifier zero-knowledge simulator. It picks B←

G and G1, . . . ,Gm−1 ← G2. It runs the SHVZK simulator for P1 to simulate A,C,D,zA,

zC, f0,1, . . . , fm−1,n−1 and computes the f j,0’s accordingly. It picks z← Zp and computes G0

from the last verification equation.

By the DDH assumption, G1, . . . ,Gm−1 in a real proof are indistinguishable from pick-

ing random pairs in G2 as in the simulation. We get independent, uniformly random B and z

in both real proofs and simulations. By the perfect SHVZK of the simulator for P1 we also

have the same distribution of A,B,C, f j,i,zA,zC as in a real proof. Finally, G0 is uniquely

determined by the last verification equation in both real proofs and in simulations, so the

two are indistinguishable. The last verification equation uniquely determines z, thus quasi-

unique responses follow from the quasi-unique responses of the underlying Σ-protocol for

R1.

Now we prove the protocol is (m+ 1)-special sound. Suppose an adversary can pro-

duce (m+1) different accepting responses (f (0)j,i ,z
(0)), . . . ,(f (m)

j,i ,z(m)) with respect to m+1

different challenges x(0), . . . ,x(m) and the same initial message. Assume that m > 1. We

use 3-special soundness of the Σ-protocol for R1 to extract openings δ` j,i,a j,i for B and A

with δ` j,i ∈ {0,1} and ∑
n−1
i=0 δ` j,i = 1. The openings define ` := ∑

m−1
j=0 ` jn j, where ` j is the

index of the only 1 in the sequence (δ` j,0, . . . ,δ` j,n−1). Following the proof, all answers sat-

isfy f (e)j,i = δ` j,ix
(e)+a j,i for 0 ≤ e ≤ m, with overwhelming probability due to the binding

property of the commitment scheme.

From δ` j,i,a j,i we can compute the polynomials pi(x) = ∏
m−1
j=0 (δ` j,ix+a j,i). Note that

p`(x) is the only such polynomial with degree m in x. Based on this observation we rewrite

the last verification equation as: cxm

` ·∏
m−1
k=0 G̃xk

k = Enc(1;z). Here the G̃k values are derived

from the initial statement and δ` j,i,a j,i. This equation holds for x(0), . . . ,x(m). Consider

the Vandermonde matrix with the eth row given by (1,x(e), . . . ,(x(e))m). The x(e) values are

distinct, so the matrix is invertible. We can thus obtain a linear combination θ0, . . . ,θn of the

6.4. Efficient Instantiation 131

rows producing the vector (0, . . . ,0,1). We deduce c` = ∏
m
e=0

(
c(x

(e))
m

` ·∏m−1
k=0 G̃(x(e))

k

k

)θe

=

Enc
(
1;∑

m
e=0 θez(e)

)
, which provides an opening of c` to the plaintext 1 with randomness

r = ∑
m
e=0 θez(e).

6.4.3 Correct Signature

We give in Fig. 6.4 a Σ-protocol for the relation

Rsig =
{

((pk,m,R,c),(sk,r)) : sk ∈ Zp∧ vk = gsk ∈ R⊂G∗∧ c = Epk(vk;r)
}

Psig(gk,crs,(pk,m,R,c),(r,sk)) Vsig(gk,crs,(pk,m,R,c))
s, t,ra,rb← Zp; d←Eek(gsk; t)
A←Epk(gs;ra); B←Eek(gs;rb) d,A,B,a2 Accept iff
c0 := d · Eek(vk−1

0 ;0), . . . ,cN−1 := d · Eek(vk−1
N−1;0) - R⊂G; pk ∈G∗; d,A,B ∈G2

a2←P2(gk,crs,(c0, . . . ,cN−1),(`, t)) x←{0,1}λ zs,za,zb ∈ Zp
� cxA = Epk(gzs ;za)

zs := sk · x+ s ; za := rx+ ra ; zb := tx+ rb za,zb,zs,z2 dxB = Eek(gzs ;zb)
z2←P2(x)

- V2(gk,crs,(c0, . . . ,cN−1),a2,x,z2) = 1

Figure 6.4: Σ-protocol forRsig

Lemma 8. The Σ-protocol in Fig. 6.4 is perfectly complete, SHVZK, (m+1)-special sound

and has quasi-unique responses, under the DDH assumption.

Proof. Perfect completeness follows by direct verification and the perfect completeness

of (P2,V2). The SHVZK simulator chooses za,zb,zs ← Zp and d ← G2 at random and

computes A,B from the verification equations. It runs the perfect SHVZK simulator for P2

to get a2 and z2. By the DDH assumption, d is indistinguishable from the ciphertexts in the

real proof. In Both real proofs and simulations, za,zb,zt are uniformly random and uniquely

determine A,B giving us SHVZK. Since the verification equations uniquely determine za,zb

and zs and (P2,V2) has quasi-unique responses, so must this protocol.

For (m + 1)-special soundness, consider accepting answers za,zb,zs and z′a,z
′
b,z
′
s

to distinct challenges x and x′. From the first verification equation we get cx−x′ =

Epk(gzs−z′s ;za− z′a) giving sk = zs−z′s
x−x′ and r = za−z′a

x−x′ . The second verification equation gives

dx−x′ = Epk(gzs−z′s ;zb− z′b) so d also encrypts gsk. Finally, (m+1)-special soundness of the

Σ-protocol forR2 then shows that gsk ∈ R.

Lemma 9. Applying the Fiat-Shamir transformation to the protocol in Fig. 6.4 with

SoKSetup as in Sect. 6.4 produces a signature of knowledge in the random oracle model,

that is extractable and straightline f -extractable, under the DDH assumption.

132 Chapter 6. Accountable Ring Signatures

Proof. For simulatability, SoKSimSetup is identical to SoKSetup and SoKSimSign pro-

grams the random oracle to simulate proofs. Simulatability then follows from SHVZK.

For extractability we rely on rewinding, (m+ 1)-special soundness and quasi-unique

responses, using [FKMV12]. For straightline f -extractability, we use the trapdoor τ to

decrypt d in the proof transcript and obtain vk = f (sk).

6.4.4 Correct Opening

Writing out the details of ElGamal encryption we get

Ropen =

 ((pk,c,vk),dk) :

dk ∈ Zp∧ pk = gdk 6= 1∧ c = (u,v) ∈G2∧ vk ∈G∧ (v/vk)dk = u

Popen(gk,crs,(pk,u,v,vk),dk) Vopen(gk,crs,(pk,u,v,vk))
a← Zp A,B Accept if and only if
A := ga - pk,u,v,vk ∈G
B := (v/vk)a x← Zp pk 6= 1

� pkxA = gz

z = dk · x+a z uxB = (v/vk)z

-

Figure 6.5: Σ-protocol for correct decryption

Lemma 10. The Σ-protocol in Fig. 6.5 is perfectly complete, perfect SHVZK, perfect 2-

special sound and has unique responses. Also, applying the Fiat-Shamir transformation to

it produces a NIZK proof.

Proof. Perfect completeness follows by direct verification. The SHVZK simulator picks

z←Zp and computes A,B from the verification equations. Both in real proofs and simulated

proofs z is uniformly random and the verification equations determine the initial message

uniquely, so we have perfect simulation. As the first verification equation determines z we

have unique responses.

For 2-special soundness, let z and z′ be accepting answers to distinct challenges x, x′.

The first verification equation gives pkx−x′=gz−z′, so dk= z−z′
x−x′ . The second gives ux−x′ =

(v/vk)z−z′, which shows u=(v/vk)dk. Thus, vk was encrypted in (u,v).

6.4.5 Efficiency of our schemes

The efficiency of our schemes is determined by the signature of knowledge of Fig. 6.4.

For a ring of N = nm users, this requires the prover to send m+ 4 ElGamal ciphertexts, 4

6.4. Efficient Instantiation 133

Scheme Signature Size Assumptions Type
[ACJT00] 3Z∗n +4Z Strong RSA Group

[CL02] 6Z∗n +8Z Strong RSA Group
[DKNS04] 12Z∗n +12Z Strong RSA Ring/Group

[CG05] 4Z∗n +4Z Strong RSA + DDH Group
[GK14] (4log2 N)G+(3log2 N +1)Z∗p DDH Ring

Ours (log2 N +12)G+ 1
2(3log2 N +12)Z∗p DDH Ring/Group

Table 6.1: Efficiency comparison between our instantiation and most efficient group and
ring signatures based on RSA and/or DDH assumptions. Z∗n,Z,G,Z∗p represent the size of
RSA ring elements, integers, group elements and field elements, respectively.

Pedersen commitments and m(n−1)+6 elements of Zp . A full accountable ring signature

includes an additional ElGamal encryption, i.e. 2m+ 12 group elements and m(n− 1)+ 6

field elements in total.

A signature can be computed using mN + 3mn+ 2m+ 12 group exponentiations as

follows. Computing A, C and D in the bit proof requires 2mn+ 3 exponentiations since

exponentiation by (1−2bi, j) amounts to a multiplication. By construction of ci in Fig. 6.4,

the first components of all ci are identical in Fig. 6.3, so computing the first components

of all Gk costs 2m exponentiations. The second components of all Gk require mN + m

exponentiations. We also need 9 exponentiations to compute B in Fig. 6.3, d, A and B in

Fig. 6.4, and the ElGamal encryption of the public key.

Signatures can be verified using N+2mn+2m+15 group exponentiations as follows:

N + 2m+ 3 exponentiations for the last verification equation in Fig. 6.3, 2mn+ 4 for the

equations in Fig. 6.2 and 8 for the first two verification equations in Fig. 6.4.

Our schemes can be instantiated over any group G where the DDH problem is com-

putationally hard. Let us say the security parameter λ determines the bit size of the field

elements as |p| ≈ λ bits and let N = poly(λ). When group elements are much larger than

field elements, say more than a factor λ , it is convenient to choose a large n. For instance,

setting n = λ + 1 (in which case m = O(1)) the communication complexity amounts to

a constant number of group elements and mλ + 6 field elements. When group and field

elements are of roughly the same size, as can be the case for elliptic curve groups, our

signatures have total size m(n+ 1)+ 18 elements. Setting n = 4 gives communication of

roughly 5log4 N +18 = 5
2 log2 N +18 elements.

In table 6.1, we compare our instantiation with prior work. Since our signatures re-

quire a logarithmic number of group elements, they enjoy shorter sizes than all previous

134 Chapter 6. Accountable Ring Signatures

signatures based on RSA and/or DDH assumptions, for sufficiently large security parame-

ters. Indeed, a constant number of RSA ring elements typically requires O(λ 3) bits whereas

the elliptic curve instantiation of our protocol achieves O(λ logN) bit size. As long as λ is

large enough our signatures will be shorter. Strictly speaking, we also require that N ≤ 2λ 2
,

but this is trivially satisfied for any meaningful value of λ (e.g. for 80 bit security, we can

handle 26400 users). Our signatures are also a factor 2.8 shorter than Groth and Kohlweiss

ring signatures.

Chapter 7

Fully Dynamic Group Signatures

In the previous Chapter we focused on accountable ring signatures, giving a particularly ef-

ficient construction and instantiation. In Sect. 6.2.1, we also sketched how one could derive

static group signatures from accountable group signatures. In this Chapter we will flesh out

that construction and move our attention to fully dynamic group signatures, i.e. where users

can join and leave the group at any time. Compared to accountable ring signatures the main

difference is that the opener is fixed ahead of time and most importantly, that membership

in the group is controlled centrally by a manager.

We start by taking a close look at existing security definitions for fully dynamic group

signatures. We identify a number of shortcomings in existing security definitions and fill the

gap by providing a formal rigorous security model for the primitive. Our model is general

and is not tailored towards a specific design paradigm and can therefore, as we show, be

used to argue about the security of different existing constructions following different design

paradigms, including the one based on the scheme of Sect. 6.3. Our definitions are stringent

and when possible incorporate protection against maliciously chosen keys.

In the process, we identify a subtle issue inherent to one design paradigm, where new

members might try to implicate older ones by means of back-dated signatures. This is

not captured by existing models. We propose some inexpensive fixes for some existing

constructions to avoid the issue.

The research presented in this chapter was joint work with Jonathan Bootle, Andrea Cerulli,

Essam Ghadafi and Jens Groth, and was published in [BCC+16a]. The author contributed

136 Chapter 7. Fully Dynamic Group Signatures

to the investigation in developing the definitions for fully dynamic group signatures (to-

gether with the other authors), developing the attacks against existing schemes (with Andrea

Cerulli), and the real-world motivation for the backdating attacks.

7.1. Introduction 137

7.1 Introduction

Group signatures, put forward by Chaum and van Heyst [CvH91], are a fundamental cryp-

tographic primitive allowing a member of a group (administered by a designated manager)

to anonymously sign messages on behalf of the group. In the case of a dispute, a des-

ignated tracing manager can revoke anonymity by revealing the signer. In many settings

it is desirable to offer flexibility in joining and leaving the group. In static group signa-

tures [BMW03], the group population is fixed once and for all at the setup phase. Partially

dynamic group signatures [BSZ05, KY06] allow the enrolment of members in the group at

any time but members cannot leave once they have joined. A challenging problem in group

signatures is that of revocation, i.e. allowing removal of members from the group.

Shortcomings in Existing Models. While the security of the static and partially dynamic

group settings has been rigorously formulated [BMW03, BSZ05, KY06, SSE+12] and is

now well understood, unfortunately, the security of their fully dynamic groups counterpart,

which is more relevant to practice, has received less attention and is still lacking. In partic-

ular, the different design paradigms assume different (sometimes informal) models which

do not necessarily generalise to other design approaches. This resulted in various models,

the majority of which lack rigour. As a consequence, it can be difficult to compare the

merits of the different constructions in terms of their security guarantees. Moreover, exist-

ing models place a large amount of trust in the different authorities and assume that their

keys are generated honestly. This does not necessarily reflect scenarios arising in real ap-

plications. Furthermore, some existing models, as we show, fail to take into account some

attacks which might be problematic for some applications of the primitive.

7.1.1 Motivation

“He Who Controls the Present Controls the Past”, (George Orwell). Consider a scenario

where the new leadership of an organisation or country wants to justify an unpopular policy

(e.g. layoffs or removal of personal freedoms). A way to do that would be to back-date

documents justifying the policy: thus, any animosity for the policy would be towards the

old leadership. The new leadership is only maintaining the status quo.

Re-framing this in technical terms, we show that the notion of traceability in exist-

ing models following the revocation list approach, where the group manager periodically

publishes information (i.e. revocation lists) about members excluded from the group, is too

weak. In those models, the life of the scheme spans over different intervals (epochs) at

138 Chapter 7. Fully Dynamic Group Signatures

the start of which the manager updates the revocation lists. Signatures in those models are

bound to a specific epoch. It is vital for functionality that old valid signatures (i.e. those

produced at earlier epochs by then-legitimate members) are accepted by the verification

algorithm.

The issue we identify in those models is that they allow members who joined at recent

epochs to sign messages w.r.t earlier epochs during which they were not members of the

group. In a sense this may be considered as an attack against traceability, as those members

were not in the group at that interval. Technically however, the scenario we describe is

allowed by the model: the underlying issue is a gap between one’s interpretation of group

signatures and what the definition implies. Our expectation is that a signature bound to

epoch τ was produced by a member of the group at that time. Current definitions however,

allow for all past, current, and future members, as long as they were not revoked at time τ .

One may dismiss this attack as theoretical, since the old leadership might appeal to

the opener. However, this might not always be possible: the opener may be controlled by

the new leadership, or in a business setting an outgoing CEO or board member might be

disinterested or disincentivised from pursuing the issue. Another possible criticism might

be that the weakness is trivial, and would be silently fixed in any construction using the

model.

We show that some state of the art constructions, as [NFHF09, LPY12b, LPY12a], are

susceptible to this attack. Specifically, their membership certificates are not bound to the

epochs of their issuance. As a result, a member can sign w.r.t. earlier epochs. We stress that

neither the authors of those schemes claimed their schemes were immune against such an

issue nor that their models were supposed to capture such an attack. Thus, such an issue

might not be a problem for the applications they originally had in mind, but only in a more

general case.

In order to have strong security guarantees from the different constructions, a rigorous

and unified security model is necessary. This is the aim of this work as we believe this

is a challenging problem that needs to be addressed, especially given the relevance of the

primitive.

7.1.2 Contributions

We take a close look at the security definitions of fully dynamic group signatures. We

provide a rigorous security model that generalises to the different design paradigms. In

7.2. Syntax and Security of Fully Dynamic Group Signatures 139

particular, our model covers both accumulator based and revocation list based approaches.

Our model offers stringent security definitions and takes into account some attacks which

were not considered by existing models. We give different flavors of our security definitions

which capture both cases when the authorities’ keys are adversarially generated and when

such keys are honestly generated. We also show that our security definitions imply existing

definitions for static and partially dynamic group signatures.

In the process, we identify a subtle difference between accumulator based and revo-

cation list based approaches. Specifically, we identify a simple attack against traceability

inherent to constructions following the latter approach and which is not captured by existing

models. The attack allows a group member to sign w.r.t. intervals prior to her joining the

group. The security notion modelled by current definitions prevents users from signing only

if they are explicitly revoked.

To address this, our traceability definition models a stricter security notion: users are

not authorised to sign unless they are non-revoked and are active (i.e. part of the group)

at the time interval associated with the signature. We note this is already implied in the

accumulator based approach: the signer proves membership in the current version of the

group at the time of signing. We also propose a number of possible fixes to this issue in

some existing schemes.

Finally, we show that a fully dynamic group signature scheme obtained from the

generic construction of accountable ring signatures given in Sect. 6.3 is secure w.r.t. the

stronger variant of our security definitions.

Outline. We present our model for fully dynamic group signatures in Section 7.2 and show

that it implies existing definitions for static and partially dynamic group signatures. In

Section 7.4 we analyse the security of three existing fully dynamic group signature schemes

in our model.

7.2 Syntax and Security of Fully Dynamic Group Signatures
The parties involved in a Fully Dynamic Group Signature (FDGS) are: a group manager

GM who authorises who can join the group; a tracing manager TM who can revoke

anonymity by opening signatures; a set of users, each with a unique identity i ∈ N, who

are potential group members. Users can join/leave the group at any time at the discretion of

the group manager. We assume the group manager will regularly publish some information

infoτ , associated with a distinct index τ (hereafter referred to as epoch). We assume that

140 Chapter 7. Fully Dynamic Group Signatures

τ can be recovered given infoτ and vice versa (i.e. there is bijection between the epochs

and associated information). The information depicts changes to the group, for instance,

it could include the current members of the group (as in accumulator-based constructions)

or those who have been excluded from the group (as, e.g. required by constructions based

on revocation lists). As in existing models, we assume that anyone can verify the well-

formedness and authenticity of the published group information. By combining the group

information for the current epoch with that of the preceding one, any party can identify the

list of members who have been revoked at the current epoch. We assume that the epochs

preserve the order in which their corresponding information was published. More precisely,

for all τ1,τ2 ∈ T (T being the space of epochs) we require that τ1 < τ2 if infoτ1 preceded

infoτ2 .

Unlike existing models, which assume honestly generated authorities’ keys, we sepa-

rate the generation of the authorities’ keys from that of the public parameters, which might

need to be generated by a trusted party. This allows us (where appropriate) to define strin-

gent security that protects against adversarial authorities who might generate their keys

maliciously. Our definitions can be adapted straight away to work for the weaker setting

where authorities’ keys are generated honestly as in existing models. For the sake of gener-

ality, we define the group key generation as a joint protocol between the group and tracing

managers. Clearly, it is desirable in some cases to avoid such interaction and allow authori-

ties to generate their own keys independently. This is a special case of our general definition

where the protocol is regarded as two one-sided protocols.

An FDGS scheme consists of the following polynomial-time algorithms:

• GSetup(1λ)→ crs: is run by a trusted third party. On input a security parameter λ ,

it outputs public parameters crs. The algorithm also initialises the registration table

reg.

• 〈GKGenGM(crs),GKGenT M(crs)〉: is an interactive protocol between algorithms

GKGenGM and GKGenT M run by GM and TM, respectively, to generate their re-

spective private keys as well as the rest of the group public key gpk. The input to both

algorithms is the public parameters crs. If completed successfully, the private output

of GKGenGM is a secret manager key msk, whereas its public output is a public key

mpk, and the initial group information info. The private output of GKGenT M is the

secret tracing key tsk, whereas its public output is a public key tpk. The group public

7.2. Syntax and Security of Fully Dynamic Group Signatures 141

key is then set to gpk := (crs,mpk, tpk).

• UKGen(1λ)→ (usk[i],upk[i]): outputs a secret/public key pair (usk[i], upk[i]) for

user i. We assume the public key table upk to be publicly available (possibly via

PKI) so that anyone can get authentic copies of it.

• 〈Join(infoτcurrent ,gpk, i,usk[i]), Issue(infoτcurrent ,msk, i,upk[i])〉: is an interactive proto-

col between a user i (who has already obtained a personal key pair, i.e. ran the UKGen

algorithm) and the group manager GM. Upon successful completion, i becomes a

member of the group. The final state of the Issue algorithm is stored in the registra-

tion table at index i (i.e. reg[i]), whereas that of the Join algorithm is stored in gsk[i].

The epoch τcurrent is part of the output of both parties.

We assume that the protocol takes place over a secure (i.e. private and authentic)

channel. The protocol is initiated by calling Join. The manager may update the group

information after running this protocol. The registration table reg stores additional

information used by the group manager and the tracing manager for updating and

tracing, depending on the scheme specifics.

• UpdateGroup(gpk,msk, infoτcurrent ,S, reg)→ infoτnew : is run by the group manager

to update the group information while also advancing the epoch. It takes as input

the group manager’s secret key msk, a (possibly empty) set S of active members

to be removed from the group and the registration table reg, it outputs a new group

information infoτnew and might also update the registration table reg. If there has been

no changes to the group information, the algorithm returns ⊥ to indicate that no new

information has been issued. The algorithm aborts if any i ∈ S has not run the join

protocol.

• Sign(gpk,gsk[i], infoτ ,m)→ Σ: on input the group public key gpk, a user’s group

signing key gsk[i], the group information infoτ at epoch τ , and a message m, outputs

a group signature Σ on m by the group member i. If the user owning gsk[i] is not an

active member of the group at epoch τ , the algorithm returns ⊥.

• Verify(gpk, infoτ ,m,Σ)→ 1/0: is a deterministic algorithm checking whether Σ is a

valid group signature on m at epoch τ and outputs a bit accordingly.

• Trace(gpk, tsk, infoτ , reg,m,Σ)→ (i,πTrace): is a deterministic algorithm which is run

142 Chapter 7. Fully Dynamic Group Signatures

by the tracing manager. It returns an identity i> 0 of the group member who produced

Σ plus a proof πTrace attesting to this fact. If the algorithm is unable to trace the

signature to a particular group member, it returns (0,πTrace) to indicate that it could

not attribute the signature.

• Judge(gpk, i, infoτ ,πTrace,upk[i],m,Σ)→ 1/0 : is a deterministic algorithm which on

input the group public key gpk, a user identity i, the group information at epoch τ , a

tracing proof πTrace, the user’s public key upk[i] (which is ⊥ if it does not exist), a

message m, and a signature Σ, outputs 1 if πTrace is a valid proof that i produced Σ,

and outputs 0 otherwise.

ADDITIONAL ALGORITHM. We will also use the following polynomial-time algorithm

which is only used in the security games to ease composition.

IsActive(infoτ , reg, i)→ 1/0 : returns 1 if the user i is an active member of the group at

epoch τ and 0 otherwise.

7.2.1 Security of Fully Dynamic Group Signatures

The security requirements of a fully dynamic group signature are: correctness, anonymi-

ty, non-frameability, traceability and tracing soundness. To define those requirements, we

use a set of games in which the adversary has access to a set of oracles. The following

global lists are maintained: HUL is a list of honest users; CUL is a list of corrupt users

whose personal secret keys have been chosen by the adversary; BUL is a list of bad users

whose personal and group signing keys have been revealed to the adversary; SL is a list of

signatures obtained from the Sign oracle; CL is a list of challenge signatures obtained from

the challenge oracle.

The details of the following oracles are given in Fig. 7.1.

UToM(i) adds an honest user i to the group at the current epoch.

CI(i,pk) creates a new corrupt user whose public key upk[i] is chosen by the adversary.

This is called in preparation for calling the SndToM oracle.

SndToM(i,Min) used to engage in the Join-Issue protocol with the honest, Issue-executing

group manager.

SndToU(i,Min) used to engage in the Join-Issue protocol with an honest, Join-executing

user i on behalf of the corrupt group manager.

7.2. Syntax and Security of Fully Dynamic Group Signatures 143

UToM(i)

� If i ∈ HUL∪CUL Then Return ⊥.
� (usk[i],upk[i])← UKGen(1λ).
� HUL := HUL∪{i}, gsk[i] :=⊥,deciIssue := cont.
� stiJoin := (τcurrent,gpk, i,usk[i]).
� stiIssue := (τcurrent,msk, i,upk[i]).
� (stiJoin,MIssue,deciJoin)← Join(stiJoin,⊥).
� While (deciIssue = cont and deciJoin = cont) Do
◦ (stiIssue,MJoin,deciIssue)← Issue(stiIssue,MIssue).
◦ (stiJoin,MIssue,deciJoin)← Join(stiJoin,MJoin).

� If deciIssue = accept Then reg[i] := stiIssue.
� If deciJoin = accept Then gsk[i] := stiJoin.
� Return upk[i].

SndToU(i,Min)

� If i ∈ CUL∪BUL Then Return ⊥.
� If i /∈ HUL Then
◦ HUL := HUL∪{i}.
◦ (usk[i],upk[i])← UKGen(1λ).
◦ gsk[i] :=⊥, Min :=⊥.

� If deciJoin 6= cont Then Return ⊥.
� If stiJoin is undefined
◦ stiJoin := (τcurrent,gpk, i,usk[i]).

� (stiJoin,Mout,deciJoin)← Join(stiJoin,Min)

� If deciJoin = accept Then gsk[i] := stiJoin.
� Return (Mout,deciJoin).

Trace(m,Σ, infoτ)

� Return (⊥,⊥) if Verify(gpk, infoτ ,m,Σ) = 0.
� Return (⊥,⊥) if (m,Σ,τ) ∈ CL.
� Return Trace(gpk, tsk, infoτ , reg,m,Σ).

ReadReg(i)

� Return reg[i].

Reveal(i)
� Return ⊥ if i /∈ HUL\ (CUL∪BUL).
� BUL := BUL∪{i}.
� Return (usk[i],gsk[i]).

CI(i,pk)

� Return ⊥ if i ∈ HUL∪CUL.
� CUL := CUL∪{i}.
� upk[i] := pk, deciIssue := cont.
� Return accept.

SndToM(i,Min)

� Return ⊥ if i 6∈ CUL.
� Return ⊥ if deciIssue 6= cont.
� stiIssue := (τcurrent,msk, i,upk[i]).
� (stiIssue,Mout,deciIssue)← Issue(stiIssue,Min).
� If deciIssue = accept Then reg[i] := stiIssue.
� Return (Mout,deciIssue).

Sign(i,m,τ)

� Return ⊥ if i /∈ HUL or gsk[i] =⊥ or infoτ =⊥.
� Return ⊥ if IsActive(infoτ , reg, i) = 0.
� Σ← Sign(gpk,gsk[i], infoτ ,m).
� SL := SL∪{(i,m,Σ,τ)}.
� Return Σ.

Chalb(infoτ , i0, i1,m)

� Return ⊥ if i0 /∈ HUL or i1 /∈ HUL.
� Return ⊥ if ∃b ∈ {0,1} s.t. gsk[ib] =⊥.
� Return ⊥ if ∃b ∈ {0,1} s.t. IsActive(infoτ , reg, ib) = 0.
� Σ← Sign(gpk,gsk[ib], infoτ ,m).
� CL := CL∪{(m,Σ,τ)}.
� Return Σ.

ModifyReg(i,val)
� reg[i] := val.

UpdateGroup(S)
� Return UpdateGroup(gpk,msk, infoτcurrent ,S, reg).

Figure 7.1: Details of the oracles used in the security games

ReadReg(i) returns the registration information reg[i] of user i.

ModifyReg(i,val) modifies the entry reg[i], setting reg[i] := val. For brevity we will assume

ModifyReg also provides the functionality of ReadReg.

Reveal(i) returns the personal secret key usk[i] and group signing key gsk[i] of group mem-

ber i.

Sign(i,m,τ) returns a signature on the message m by the group member i for epoch τ as-

suming the corresponding group information infoτ is defined.

Chalb(infoτ , i0, i1,m) is a left-right oracle for defining anonymity. The adversary chooses

an epoch τ , the group information infoτ , two identities (i0, i1), and a message m and

144 Chapter 7. Fully Dynamic Group Signatures

receives a group signature by member ib for b← {0,1} for the chosen epoch. It is

required that both challenge users are active members at epoch τ . The adversary can

only call this oracle once.

Trace(m,Σ, infoτ) returns the identity of the signer of the signature Σ on m w.r.t. infoτ if the

signature was not obtained from the Chalb oracle.

UpdateGroup(S) allows the adversary to update the group. S here is the set of the active

members to be removed from the group.

The following security requirements are defined by the games in Fig. 7.2.

Correctness. This requirement guarantees that signatures produced by honest, non-revoked

users are accepted by the Verify algorithm and that the honest tracing manager can identify

the signer of such signatures. In addition, the Judge algorithm accepts the tracing manager’s

decision.

Formally, an FDGS scheme is (perfectly) correct if for all λ ∈ N, the advantage

AdvCorr
FDGS,A(λ) := Pr[ExpCorr

FDGS,A(λ) = 1]

is negligible (in λ) for all adversaries A.

Note that the above definition of (perfect) correctness protects against even unbounded

adversaries. If computational correctness suffices, i.e. when we consider correctness only

against computationally-bounded adversaries, we can drop the last three lines from the cor-

rectness game in Fig. 7.2. Computational correctness of the Trace and Judge algorithms is

implied by the other requirements.

(Full) Anonymity. This requires that signatures do not reveal the identity of the group

member who produced them. In the game, the adversary, A, can corrupt any user and fully

corrupt the group manager by choosing her key. We require that both challenge users are

active members of the group at the chosen epoch. Also, note that a Trace query on the

challenge signature will fail.

As A can learn the personal secret and group signing keys of any user, including the

challenge users, our definition captures full key exposure attacks.

The adversary chooses an epoch, the group information for that epoch, a message and

two group members and gets a signature by either member and wins if she correctly guesses

7.2. Syntax and Security of Fully Dynamic Group Signatures 145

Experiment: ExpCorr
FDGS,A(λ)

− crs← GSetup(1λ); HUL := /0.

−
(
(msk,mpk, info),(tsk, tpk)

)
← ⟪GKGenGM(crs),GKGenT M(crs)⟫.

− gpk := (crs,mpk, tpk).

−
(

i,m,τ
)
←AUToM,ReadReg,UpdateGroup

(
gpk, info

)
.

− If i /∈ HUL or gsk[i] =⊥ or infoτ =⊥ or IsActive(infoτ , reg, i) = 0 Then Return 0.
− Σ← Sign(gpk,gsk[i], infoτ ,m).
− If Verify(gpk, infoτ ,m,Σ) = 0 Then Return 1.
− (i∗,πTrace)← Trace(gpk, tsk, infoτ , reg,m,Σ).
− If i 6= i∗ Then Return 1.
− If Judge(gpk, i, infoτ ,πTrace,upk[i],m,Σ) = 0 Then Return 1, Else Return 0.

Experiment: ExpAnon-b
FDGS,A(λ)

− crs← GSetup(1λ);HUL,CUL,BUL,SL,CL := /0.

−
(

stinit,msk,mpk, info
)
←A〈·,GKGenT M(crs)〉(init : crs).

− Return 0 if GKGenT M did not accept or A’s output is not well-formed.
− Parse the output of GKGenT M as (tsk, tpk) and set gpk := (crs,mpk, tpk).

− b∗←AUToM,CI,SndToU,Reveal,Trace,ModifyReg,Chalb
(

play : stinit,gpk
)
.

− Return b∗.

Experiment: ExpNon-Frame
FDGS,A (λ)

− crs← GSetup(1λ);HUL,CUL,BUL,SL := /0.
− (stinit, info,msk,mpk, tsk, tpk)←A(init : crs).
− Return 0 if A’s output is not well-formed otherwise set gpk := (crs,mpk, tpk).

−
(

m,Σ, i,πTrace, infoτ

)
←ACI,SndToU,Reveal,Sign,ModifyReg

(
play : stinit,gpk

)
.

− If Verify(gpk, infoτ ,m,Σ) = 0 Then Return 0.
− If Judge(gpk, i, infoτ ,πTrace,upk[i],m,Σ) = 0 Then Return 0.
− If i /∈ HUL\BUL or (i,m,Σ,τ) ∈ SL Then Return 0 Else Return 1.

Experiment: ExpTrace
FDGS,A(λ)

− crs← GSetup(1λ);HUL,CUL,BUL,SL := /0.

−
(

stinit, tsk, tpk
)
←A〈GKGenGM(crs),·〉(init : crs).

− Return 0 if GKGenGM did not accept or A’s output is not well-formed.
− Parse the output of GKGenGM as (msk,mpk, info). Set gpk := (crs,mpk, tpk).

−
(

m,Σ,τ
)
←AUToM,CI,SndToM,Reveal,Sign,ReadReg,UpdateGroup

(
play : stinit,gpk, info

)
.

− If Verify(gpk, infoτ ,m,Σ) = 0 Then Return 0.
− (i,πTrace)← Trace(gpk, tsk, infoτ , reg,m,Σ).
− If IsActive(infoτ , reg, i) = 0 Then Return 1.
− If i = 0 or Judge(gpk, i, infoτ ,πTrace,upk[i],m,Σ) = 0 Then Return 1 Else Return 0.

Experiment: ExpTrace-Sound
FDGS,A (λ)

− crs← GSetup(1λ); CUL := /0.
− (stinit, info,msk,mpk, tsk, tpk)←A(init : crs).
− Return 0 if A’s output is not well-formed otherwise set gpk := (crs,mpk, tpk).

−
(

m,Σ,{ii,πTracei}2
i=1, infoτ

)
←ACI,ModifyReg

(
play : stinit,gpk

)
.

− If Verify(gpk, infoτ ,m,Σ) = 0 Then Return 0.
− If i1 = i2 or i1 =⊥ or i2 =⊥ Then Return 0.
− If ∃i ∈ {1,2} s.t. Judge(gpk, ii, infoτ ,πTracei ,upk[ii],m,Σ) = 0 Then Return 0.
− Return 1.

Figure 7.2: Security games for fully dynamic group signatures

146 Chapter 7. Fully Dynamic Group Signatures

the member. Without loss in generality, we allow the adversary a single call to the challenge

oracle. A hybrid argument (similar to that used in [BSZ05]) can be used to prove that this

is sufficient.

Formally, an FDGS scheme is (fully) anonymous if for all λ ∈ N, the advantage

AdvAnon
FDGS,A(λ) is negligible (in λ) for all PPT adversaries A, where

AdvAnon
FDGS,A(λ) :=

∣∣Pr[ExpAnon-0
FDGS,A(λ) = 1]−Pr[ExpAnon-1

FDGS,A(λ) = 1]
∣∣ .

Non-Frameability. This ensures that even if the rest of the group as well as the tracing and

group managers are fully corrupt, they cannot produce a signature that can be attributed to

an honest member who did not produce it.

In the game, the adversary can fully corrupt both the group and tracing managers.

She even chooses the keys of both managers. Thus, our definition is stronger than existing

models. We just require that the framed member is honest.

Formally, an FDGS scheme is non-frameable if for all λ ∈ N, the advantage

AdvNon-Frame
FDGS,A (λ) := Pr[ExpNon-Frame

FDGS,A (λ) = 1]

is negligible (in λ) for all PPT adversaries A.

Remark 1. In the game variant we give in Fig. 7.2, we allow the adversary to generate the

tracing manager’s key herself. While, as we show later, there are schemes which satisfy this

strong variant of the definition, such definition might be too strong to be satisfied by some

existing schemes. A weaker variant of the definition is where the tracing key is generated

by the challenger rather than the adversary. This requires replacing lines 2-4 in the game

in Fig. 7.2 by the following:

− (stinit, info,msk,mpk)←A〈·,GKGenT M(crs)〉(init : crs).
− Return 0 if A’s output is not well-formed or GKGenT M did not accept.
− Let (tsk, tpk) be the output of GKGenT M. Set gpk := (crs,mpk, tpk).

−
(

m,Σ, i,πTrace, infoτ

)
←ACI,SndToU,Reveal,Sign,ModifyReg

(
play : stinit,gpk, tsk

)
.

Traceability. This ensures that the adversary cannot produce a signature that cannot be

traced to an active member of the group at the chosen epoch. In the game, the adversary can

corrupt any user and even chooses the tracing key of the tracing manager. The adversary

7.2. Syntax and Security of Fully Dynamic Group Signatures 147

is not given the group manager’s secret key as this would allow her to create dummy users

which are thus untraceable. Note that unlike [LPY12b, LPY12a, NFHF09], our definition

captures that a member of the group should not be able to sign w.r.t. epochs prior to her

joining the group since we do not restrict the adversary’s forgery to be w.r.t. to the current

epoch (i.e. the current version of the group information). The adversary wins if she produces

a signature whose signer cannot be identified or is an inactive member at the chosen epoch.

The adversary also wins if the Judge algorithm does not accept the tracing decision on the

forgery.

Formally, an FDGS scheme is traceable if for all λ ∈ N, the advantage

AdvTrace
FDGS,A(λ) := Pr[ExpTrace

FDGS,A(λ) = 1]

is negligible (in λ) for all PPT adversaries A.

Remark 2. To get an honestly-generated tracing key variant of the game in Fig. 7.2, we

replace lines 2-5 in the game in Fig. 7.2 by the following lines:

−
(
(msk,mpk, info),(tsk, tpk)

)
← ⟪GKGenGM(crs),GKGenT M(crs)⟫.

− Set gpk := (crs,mpk, tpk).

−
(

m,Σ,τ
)
←AUToM,CI,SndToM,Reveal,Sign,ModifyReg,UpdateGroup

(
play : stinit,gpk, info, tsk

)
.

Tracing Soundness. As recently defined by [SSE+12] in the context of partially dynamic

group signatures, this requirement ensures that even if both the group and the tracing man-

agers as well as all members of the group collude, they cannot produce a valid signature

that traces to two different members (this is a different, stronger setting than in the Trace-

ability property above). Such a requirement is vital for many applications. For example,

applications where signers get rewarded or where we need to stop abusers shifting blame to

others.

In the definition, the adversary can fully corrupt all parties involved and wins if she

produces a valid signature and valid tracing proofs that the signature traces to different

(possibly corrupt) users. We may also consider a stronger variant where the adversary wins

by producing a signature that traces to different epochs.

Formally, an FDGS scheme has tracing soundness if for all λ ∈ N,

AdvTrace-Sound
FDGS,A (λ) := Pr[ExpTrace-Sound

FDGS,A (λ) = 1]

148 Chapter 7. Fully Dynamic Group Signatures

is negligible (in λ) for all PPT adversaries A.

Remark 3. To get an honestly-generated tracing key variant of the game in Fig. 7.2, we

replace lines 2-4 in the game in Fig. 7.2 by the following lines:

−
(

stinit,msk,mpk, info
)
←A〈·,GKGenT M(crs)〉(init : crs).

− Return 0 if GKGenT M did not accept or A’s output is not well-formed.
− Parse the output of GKGenT M as (tsk, tpk) and set gpk := (crs,mpk, tpk).

−
(

m,Σ,{ii,πTracei}2
i=1, infoτ

)
←ACI,ModifyReg

(
play : stinit,gpk, tsk

)
.

7.2.2 Comparison with Existing Models

Models used by accumulator-based constructions, e.g. [BS01,CL02,TX03,AST01,Ngu05,

NFHF09], the vast majority of which are stated informally, are specific to that particular

design paradigm and do not generalise to other construction approaches. Moreover, most

of them do not take into account some of the attacks that arise in a more formal setting. For

instance, some models only protect against partially but not fully corrupt tracing managers

and do not capture the tracing soundness requirement. On the other hand, models used

by other design approaches, e.g. [NFHF09, LPY12b, LPY12a] are also specific to those

approaches and have their own shortcomings. For instance, as discussed earlier, the models

used by the state-of-the-art constructions by Libert et al. [LPY12b,LPY12a] and Nakanishi

et al. [NFHF09] do not prevent a group member from being able to sign w.r.t. time intervals

before she joined the group. This is an attack that can be problematic in some applications

of the primitive. In the traceability game used in [NFHF09] as well as the misidentification

game used in [LPY12b, LPY12a], the adversary is required to output a signature that is

valid w.r.t. the current interval (epoch) and therefore the definitions do not capture the attack

we highlight. We stress that the authors of the concerned models never claimed that their

models cover such an attack as it might not be a problem for their intended applications.

The traceability issue we shed light on does not apply to accumulator based models.

In these settings, when the group changes, an update is published containing a list of the

currently active group members and most constructions work by having the signer prove

membership in such a list. Therefore, even if a malicious member tries to sign w.r.t. an

earlier version of the group information, she still has to prove she is a member of the group

at the concerned interval.

7.3. Recovering Other Models 149

−
(

m,Σ, infoτ

)
←ACI,SndToU,Reveal,Sign,ModifyReg

(
play : stinit,gpk

)
.

− If Verify(gpk, infoτ ,m,Σ) = 0 Then Return 0.
− (i,πTrace)← Trace(gpk, tsk, infoτ , reg,m,σ)
− If i /∈ HUL\BUL or (i,m,Σ,τ) ∈ SL Then Return 0 Else Return 1.

Figure 7.3: Modified non-frameability game.

In addition [NFHF09,LPY12b,LPY12a] only consider a partially but not fully corrupt

tracing manager in the non-frameability game. Moreover, they do not capture the require-

ment that a signature should only trace to one member (i.e. tracing soundness). The latter is

vital for many applications of the primitive.

Another distinction from existing models is that our model allows maliciously gen-

erated authorities’ keys when applicable. Therefore, it offers more stringent security than

existing models which rely on such keys being generated honestly.

7.3 Recovering Other Models

We give security reductions which relate our model to other well-known models for group

signatures. All these models assume honest key generation, for both group and tracing

managers, which is a special case of our model. We consider three models. First, the model

for static group signatures given in [BMW03]. We then consider two models for partially

dynamic groups from [BSZ05] and [KY06].

7.3.1 Static Group Signatures [BMW03]

We note that we can recover static group signatures [BMW03] from our group signatures.

We fix the group manager as the designated opener and include tsk in the group master

secret key. In the setup, group members generate their key pairs and interact with the group

manager to join the group. Their Open algorithm does not output proofs, as their model

does not use a Judge algorithm, so we define a variant of our non-frameability game from

Fig. 7.2 where we replace the last 4 lines in the game in Fig. 7.2 by the ones in Fig. 7.3.

This gives a sensible and compatible definition which allows us to recover the model

from the fully dynamic scheme.

Static group signatures are just fully dynamic group signatures with no joining, issuing,

or group updates. Correctness follows trivially from the correctness of the fully dynamic

group signature scheme. [BMW03]-full-anonymity follows from (full) anonymity of the

fully dynamic group signature scheme, while [BMW03]-full-traceability follows from our

150 Chapter 7. Fully Dynamic Group Signatures

traceability and non-frameability requirements. We now give an explicit construction and

security reductions which show how our model relates to [BMW03].

GSGKg(1λ ,1n)→ (GSgpk,GSgmsk,GSgsk)

� crs← GSetup(1λ).
�
(
(msk,mpk, info),(tsk, tpk)

)
← ⟪GKGenGM(crs),GKGenT M(crs)⟫.

� Set gpk := (crs,mpk, tpk).
� For each user:
◦ Run (usk[i],upk[i])← UKGen(1λ).
◦ Run 〈Join(info,gpk, i,usk[i]), Issue(info,msk, i,upk[i])〉.
� Set GSgmsk := (gpk, tsk, info, reg), GSgpk := (gpk, info)
� Set GSgsk[i] := (gpk,gsk[i], info).

GSGSig(GSgsk[i],m)→ σ

� Parse GSgpk as (gpk, info) and GSgsk[i] as (gpk,gsk[i], info).
� Return Sign(gpk,gsk[i], info,m).

GSGV f (GSgpk,m,σ)→ 0/1
� Parse GSgpk as (gpk, info).
� Return Verify(gpk, info,m,σ).

GSOpen(GSgmsk,m,σ)→{i}∪{⊥}
� Parse GSgpk as (gpk, info) and GSgmsk as (gpk, tsk, info, reg).
� Run (i,πTrace)← Trace(gpk, tsk, infoτ , reg,m,σ).
� Return i.

Figure 7.4: Static group signatures [BMW03] from our group signatures

Theorem 10. The construction of Fig. 7.4 is a secure static group signature scheme in the

sense of [BMW03], if GS is correct, anonymous, non-frameable (in the Fig. 7.3 variant),

traceable and tracing-sound.

Proof. Correctness is straightforward to verify. Next we prove full-anonymity. Suppose that

there exists an efficient adversary B who successfully breaks the [BMW03]-full-anonymity

of the static group signature scheme with probability that is not negligible, with respect to a

particular group of users. We construct an efficient adversary A for the (full) anonymity of

the fully dynamic group signature scheme. While initializing the fully dynamic scheme, A

behaves honestly, so that all parameters are honestly generated. Next, A adds users to the

scheme using the UToM oracle to create the group of users for B, and learns their signing

keys using the Reveal oracle. Now, A is able to start B on input (GSgpk,GSgsk). A can

answer B’s Open queries using her Trace oracle. When B outputs his challenge (i0, i1,m),

7.3. Recovering Other Models 151

A calls Chalb(info, i0, i1,m) and gets a challenge signature σ∗ which she forwards to B as

the challenge signature. Again, using the Trace oracle, A can answer B’s Open queries

as long as they do not involve the challenge signature σ∗. Eventually, when B outputs his

guess b∗, A returns b∗ in her game. Clearly, if B wins his game, A also wins her game with

the same probability. Therefore, the (full) anonymity of the full dynamic scheme implies

full-anonymity of the static scheme.

Finally, we turn our attention to full-traceability. Suppose that there exists an ef-

ficient adversary B who successfully breaks the [BMW03]-full-traceability of the static

group signature scheme w.r.t. a particular group of users with non-negligible probability.

Using B which produces with non-negligible probability (m,σ) which cannot be opened

in the [BMW03]-full-traceability game, we construct an efficient adversary A1 against the

traceability of the fully dynamic group signature scheme. Adversary A1 behaves honestly

while initializing the fully dynamic scheme, so that all parameters are honestly generated.

As part of the initialization, A1 generates the tracing key tsk for the fully dynamic scheme,

so she knows GSgmsk. Next, A1 adds users to the scheme using the UToM oracle to create

the group of users for B. Now, A1 starts B on input (GSgmsk,GSgpk). Adversary A1 an-

swers signature queries from B using her own Sign oracle if the user requested by B has not

been already corrupted. If the secret key of the user in question has already been revealed

to B, A1 uses the user’s secret signing key to answer signing queries w.r.t. that user. A1 is

also able to answer B’s corrupt queries using her Reveal oracle. When B outputs (m,σ),

the probability that σ cannot be opened is non-negligible, so A1 can use these to output

(m,σ ,τ) to break the traceability of the fully dynamic scheme.

Therefore, if traceability holds, we conclude that when B produces (m,σ) and

successfully breaks full-traceability, we have with overwhelming probability that

Open(gmsk,m,σ) = i for some i. This will allow us to construct an efficient adversary

A2 against the non-frameability of the fully dynamic group signature scheme. Similarly to

A1, adversary A2 behaves honestly while initializing the fully dynamic scheme, so that all

parameters are honestly generated. As part of the initialization, A2 gets the tracing man-

ager’s key tsk for the fully dynamic scheme, so she knows GSgmsk. Note that unlikeA1,A2

additionally has the full dynamic group signature group manager’s secret key msk. A2 can

add users to the group using her SndToU oracle. Now,A2 starts B on input (GSgmsk,GSgpk).

A2 answers B’s sign queries using her own Sign oracle if the user in question is honest or

152 Chapter 7. Fully Dynamic Group Signatures

directly if she knows the secret key of the user. Also, she can reveal the user’s secret key

requested by B using her Reveal oracle. Now, when B breaks full-traceability, he outputs

(m,σ) such that Open(gmsk,m,σ) = i for some i, with overwhelming probability. It fol-

lows that (m,σ) is a valid signature, and that B did not request a signature for m from user i,

nor did B request the signing key of i. Therefore, A2 can use (m,σ) to break the variant of

non-frameability (Fig. 7.3) of the fully dynamic group signature scheme, with probability

negligibly different from the success probability of B. This shows that full-traceability of

the static scheme of [BMW03] is implied by the traceability and non-frameability of the

fully dynamic scheme.

7.3.2 Partially Dynamic Group Signatures [BSZ05]

Fully dynamic group signatures also imply the partially dynamic group signatures of

[BSZ05] in the case where nobody is removed from the group. Anonymity, non-

frameability and traceability all follow from our corresponding definitions. Correctness

follows trivially from the correctness of the fully dynamic group signature scheme.

We now give an explicit construction (in Fig. 7.5) and security reductions which show

how our model relates to [BSZ05].

Theorem 11. The construction in Fig. 7.5 is a secure partially dynamic group signature

scheme in the sense of [BSZ05], if GS is correct, anonymous, non-frameable, traceable and

tracing-sound.

Proof. Correctness follows trivially from the correctness of the fully dynamic group signa-

ture scheme.

Next we prove anonymity. Suppose that there exists an efficient adversary B

who successfully breaks the [BSZ05]-anonymity of the partially dynamic group signa-

ture scheme. We construct an efficient adversary A for the anonymity of the fully dy-

namic group signature scheme. While initializing the fully dynamic scheme, A behaves

honestly, so that all parameters are honestly generated, but A knows the group man-

ager’s secret key msk, and thus knows DGSik. Adversary A sets DGSgpk := gpk =

(crs,mpk, tpk, info) and starts B on (DGSgpk,DGSik). Adversary B has access to oracles

Ch,Open,SndToU,WReg,USK,CrptU, which directly correspond to the oracles thatA has

access to, namely Chalb,Trace,SndToU, ModifyReg,Reveal,CrptU. Therefore,A can sim-

ulate all necessary oracles for B. When B calls the challenge oracle Ch on (i0, i1,m), adver-

sary A calls her challenge oracle Chalb on (infoτcurrent , i0, i1,m) where τcurrent is the current

7.3. Recovering Other Models 153

DGSGKg(1λ)→ (DGSgpk,DGSik,DGSok)

� crs← GSetup(1λ).
�
(
(msk,mpk, info),(tsk, tpk)

)
← ⟪GKGenGM(crs),GKGenT M(crs)⟫.

� Set gpk := (crs,mpk, tpk, info).
� Set DGSgpk := gpk, DGSik := (gpk,msk) and DGSok := (gpk, tsk).

DGSUKg(1λ)→ (DGSupk[i],DGSusk[i])

� Return UKGen(1λ).

〈Join, Iss〉
� Run 〈Join(infoτcurrent ,gpk, i,usk[i]), Issue(infoτcurrent ,msk, i,upk[i])〉,
with the issuer modifying reg[i] if accepting, and the Join algorithm
outputting DGSgsk[i] = (gpk,gsk[i], infoτ).

DGSGSig(DGSgpk,DGSgsk[i],m)→ σ

� Parse DGSgpk as gpk and DGSgsk[i] as (gpk,gsk[i], infoτ).
� Σ← Sign(gpk,gsk[i], infoτcurrent ,m).
� Return σ = (Σ,τcurrent).

DGSGV f (DGSgpk,m,σ)→ 0/1
� Parse DGSgpk as gpk and σ as (Σ,τ).
� Return Verify(gpk, infoτ ,m,Σ).

DGSOpen(DGSgpk,DGSok,DGSreg,m,σ)→ (i,πTrace)

� Set DGSgpk as gpk, DGSok as (gpk, tsk) and σ as (Σ,τ).
� Return Trace(gpk, tsk, infoτ , reg,m,Σ).

DGSJudge(DGSgpk, j,DGSupk[j],m,σ ,πTrace)→ 0/1
� Parse DGSgpk as gpk and σ as (Σ,τ).
� Return Judge(gpk, j, infoτ ,πTrace,upk[j],m,Σ).

Figure 7.5: Group signatures [BSZ05] from our group signatures.

epoch. Once A gets back a signature Σ from her oracle, she passes σ = (Σ,τcurrent) to B as

the answer. Whenever B outputs his final bit guess b∗, A returns b∗ as her answer. We have

that A breaks anonymity of the fully dynamic group signature whenever B successfully

breaks anonymity of the partially dynamic scheme. Thus, the former anonymity definition

implies the latter.

Next, we prove traceability. Assume there exists an efficient adversary B who

successfully breaks the [BSZ05]-traceability of the partially dynamic scheme. We

construct an efficient adversary A against the traceability of the fully dynamic group

signature scheme. While initializing the fully dynamic scheme, A behaves hon-

154 Chapter 7. Fully Dynamic Group Signatures

estly, so that all parameters are honestly generated, but A knows the tracing man-

ager’s secret key tsk, so she knows DGSok. Adversary A sets DGSgpk := gpk =

(crs,mpk, tpk, info) and starts B on (DGSgpk,DGSok). Adversary B has access to ora-

cles SndToI,AddU,RReg,USK,CrptU, which directly correspond to some of the oracles A

has access to, namely SndToM,AddU,ReadReg,Reveal,CrptU. Therefore, A can simulate

all necessary oracles for B. When B outputs (m,σ) where σ = (Σ,τ),A returns (m,Σ,τ) in

her game. Now, whenever B breaks [BSZ05]-traceability, A breaks the traceability of the

fully dynamic scheme. This shows that traceability of fully dynamic schemes implies the

same for partially dynamic schemes, in the sense of [BSZ05].

Finally, we prove non-frameability. Suppose that there exists an efficient ad-

versary B who successfully breaks the [BSZ05]-non-frameability of the partially dy-

namic group signature scheme. We construct an efficient adversary A against the

non-frameability of the fully dynamic group signature scheme. While initializing

the fully dynamic scheme, A behaves honestly, so that all parameters are honestly

generated, but A knows the tracing manager’s secret key tsk and the issuer’s secret

key msk. Therefore, A knows DGSik,DGSok. Adversary A sets DGSgpk := gpk =

(crs,mpk, tpk, info) and starts B on (DGSgpk,DGSok,DGSik). Adversary B has access

to oracles SndToU,WReg,GSig,USK,CrptU, which directly correspond to some of the

oracles that A has access to, namely SndToU,ModifyReg,Sign,Reveal,CrptU. There-

fore, A can simulate all necessary oracles for B. Whenever B outputs (m,σ , i,πTrace)

where σ = (Σ,τ), A returns (m,Σ, i,πTrace, infoτ) in her game. Therefore, whenever B

breaks the non-frameability of the partially dynamic scheme, A succeeds in breaking

the non-frameability of the fully dynamic scheme. This shows that non-frameability of

fully dynamic schemes implies the same for partially dynamic schemes, in the sense

of [BSZ05].

7.3.3 Partially Dynamic Group Signatures [KY06]

Finally, we consider the partially-dynamic model of [KY06]. We fix the group manager

as the designated opener and set (msk, tsk) to be the group master secret key. Our group

info and registration table generalise their public state string. Their Join algorithm runs our

user key-generation and Join/Issue algorithms. The membership certificate is then the user’s

public key along with the group information, and the membership secret is the user’s private

key. Again, their Open algorithm does not output proofs, and the model does not have a

7.3. Recovering Other Models 155

judge algorithm. Therefore, as in the case of [BMW03] we modify our non-frameability

game from Fig. 7.2 where we replace the last 4 lines in the game in Fig. 7.2 with those in

Fig. 7.3.

Correctness follows trivially from the correctness of the fully dynamic group signa-

ture scheme. Security against misidentification-attacks follows from traceability, security

against framing-attacks follows from non-frameability, and anonymity follows from the

(full) anonymity of the fully dynamic group signature.

We now give an explicit construction (in Fig. 7.6) and security reductions which show

how our model relates to [KY06].

Setup(1λ)→ (Y,S)
� crs← GSetup(1λ).
�
(
(msk,mpk, info),(tsk, tpk)

)
← 〈GKGenGM(crs),GKGenT M(crs)〉.

� Set gpk := (crs,mpk, tpk).
� Set S := (msk, tsk), Y := (gpk, info).
� Set St := (Stusers,Sttrans) := (/0, reg).

Join
This is an interactive protocol between a user and the group manager.
� The user runs (usk[i],upk[i])← UKGen(1λ).
� Both parties run 〈Join(infoτcurrent ,gpk, i,usk[i]), Issue(infoτcurrent ,msk, i,upk[i])〉.
� The user receives private outputi,certi,seci :=i,(upk[i], infoτ),gsk[i]
� Set transcripti := reg[i].
� After a successful execution, the state is updated,
with Stusers := Stusers∪{i} and Sttrans := Sttrans||i, transcripti.

Sign(Y,certi,seci,m)→ σ

� Parse Y as (gpk, info) and seci as gsk[i].
� Σ← Sign(gpk,gsk[i], infoτcurrent ,m).
� Return σ = (Σ,τcurrent).

Verify(Y,m,σ)→>/⊥
� Parse Y as (gpk, info) and σ as (Σ,τ).
� Let b = Verify(gpk, infoτ ,m,Σ).
� Return > if b = 1, or ⊥ if b = 0.

Open(m,σ ,Y,S,St)→ i ∈ Stusers∪{⊥}
� Parse Y as (gpk, info), S as (msk, tsk), σ as (Σ,τ), and Sttrans as reg.
� Run (i,πTrace)← Trace(gpk, tsk, infoτ , reg,m,Σ).
� Return i if i ∈ Stusers, or ⊥ if i = 0.

Figure 7.6: Group signatures [KY06] from our group signatures

156 Chapter 7. Fully Dynamic Group Signatures

Theorem 12. The construction in Fig. 7.6 is is a secure partially dynamic group signature

scheme in the sense of [KY06] if GS is correct, anonymous, non-frameable, traceable and

tracing-sound. .

Proof. We begin by proving correctness. User tagging soundness and join soundness are

both trivial by construction of the Setup and Join algorithms. Signing soundness and

opening soundness both follow trivially from the correctness of the fully dynamic group

signature scheme.

Next we prove security against misidentification-attacks. Suppose that B is an efficient

adversary against the misidentification-attack game of [KY06]. As stated in [KY06], with-

out loss of generality, we may consider an adversary who controls all users in the system,

and wins the misidentification-attack game by providing a signature which fails to open

to any user. We construct an efficient adversary A against the traceability of the fully dy-

namic group signature scheme. While initializing the fully dynamic scheme, A behaves

honestly, so that all parameters are honestly generated, but A knows the tracing key tsk. In

the misidentification-attack game, B has access to oracles Qpub,Qread ,Qopen and Qa− join.

Adversary A can simulate all of those oracles using the information available to her in her

traceability game as well as the oracles she has access to in her game. The oracle Qpub

is easy to simulate. The oracle Qread corresponds directly to ReadReg. The oracle Qopen

can be easily simulated by A, since A possesses the tracing key tsk. Also, Qa− join can be

simulated using CrptU and SndToM. Therefore, A can run B, successfully simulating all

oracles, and when B outputs (m,σ), where σ = (Σ,τ), A outputs (m,Σ,τ) as her answer in

her traceability game. Whenever B succeeds in breaking security against misidentification

attacks, A breaks traceability. Therefore, traceability of the fully dynamic group signature

implies security against misidentification attacks.

Next, we prove security against framing-attacks. Suppose that B is an efficient

adversary against the framing-attack game of [KY06]. We construct an efficient ad-

versary A against the non-frameability of the fully dynamic group signature scheme.

While initializing the fully dynamic scheme, A behaves honestly, so that all parameters

are honestly generated, but A knows msk, tsk. In his game, B has access to oracles

Qpub,Qkey,Qb− join,Qread ,Qwrite,Qsign. Using the information available to her in her game

as well as the oracles she has access to in her non-frameability game, A can simulate all

of B’s oracles. The oracle Qpub is easy to simulate. The oracle Qkey is easy to simulate

7.4. On the Security of Some Existing Schemes 157

since A knows msk and tsk. The oracle Qb− join directly corresponds to SndToU. Ora-

cle Qread ,Qwrite are easily simulated by A since A possesses msk and has access to the

ModifyReg oracle. Also, A can simulate the Qsign oracle for B using her own Sign ora-

cle. This means that A can run B to obtain (m,σ) where σ = (Σ,τ). Note in [KY06],

users created by Qb− join are honest users whose private keys have not been revealed to B.

Therefore, a user i framed by B will be in HUL\BUL, unless A explicitly calls her Reveal

oracle on i. Given the output (m,σ) produced by B, A outputs (m,Σ, infoτ) as her answer

in her game. Adversary A successfully breaks the non-frameability of the fully dynmic

group signatures whenever B wins in his framing-attack game. Therefore, non-frameability

of our fully dynamic group signatures implies security against framing attacks in the sense

of [KY06].

Finally, we prove anonymity. Suppose B is an efficient adversary against the

anonymity game of [KY06]. We construct an efficient adversary A against the anonymity

of the fully-dynamic group signature scheme. While initializing the fully dynamic scheme,

A behaves honestly, so that all parameters are honestly generated, but A knows msk. In

the anonymity game of [KY06], B has access to oracles Qpub,Qa− join,Qread ,Qopen. The

oracle Qpub is easy to simulate. The oracle Qa− join can be easily simulated using CrptU

and knowledge of msk. Similarly, Qread can be simulated using msk. Lastly, Qopen can be

simulated by A by making use of her own Trace oracle. This means that A can simulate

the anonymity game for B, using Chalb on the current epoch τ to provide B with a chal-

lenge signature σ = (Σ,τ). Now, when B returns a bit b∗, A returns that as her answer in

her game. It is clear that whenever B succeeds in winning the [KY06] anonymity game, A

breaks (full) anonmity of the fully dynamic group signature. Therefore, anonymity of fully

dynamic group signatures implies that of partially dynamic group signatures in the sense

of [KY06].

7.4 On the Security of Some Existing Schemes

Here we take a closer look at some of the existing fully dynamic schemes and investigate

whether or not they are secure using our proposed model.

We show that the state-of-the-art certificate-based schemes in [LPY12b, LPY12a] and

[NFHF09] are all susceptible to an attack against traceability which allows any user to sign

w.r.t. an epoch predating her joining. In our model this directly breaks traceability, as the

signature is w.r.t. an epoch in which the signer was not active. We note that our attack does

158 Chapter 7. Fully Dynamic Group Signatures

not contradict the original security proofs of the schemes, but instead highlights that our

definition is stronger. We also show that it is easy to repair the schemes at a reasonable cost.

At first glance, our attack is the dual of a well known issue with many revocation

systems. If a user is revoked and anonymity is maintained, the revoked user is able to

produce back-dated signatures that still verify. The difference here is that while the revoked

user was authorised to be part of the group for the epoch in question, in our attack the

signing user was in fact not authorised to sign for the group. If the adversary is able to

block the opening of this signature (e.g. via legal action), its existence would implicitly

frame the group’s past membershipas the signature would be attributed to them.

7.4.1 Libert et al. Schemes [LPY12b, LPY12a]

In [LPY12a], users are assigned leaves of a complete binary tree and given a membership

certificate containing a unique tag identifying the user, and a commitment to the path from

the root to the user’s leaf in the tree. Note that the certificate is not bound to the epoch at

which the user joined the group. In fact, users joining does not change infoτ or the epoch τ

itself.

Revocation is based on the subset difference method [NNL01], using disjoint sets Ski,ui

for i = 1, . . . ,m which cover non-revoked users. Sets are represented by two nodes, a node

ki and one of its descendants node ui, and cover all leaves of the sub-tree rooted at node ki

which are not leaves of the sub-tree rooted at ui. Revocations trigger epoch changes with

infoτ updated with a new cover.

To sign, the group member anonymously proves that she holds a membership cer-

tificate, and that the node indicated by the certificate belongs to one of those sets. More

precisely, the user proves that her leaf is a descendant of node ki but not a descendant of

node ui for some i ∈ [m].

Since user certificates are not bound to epochs and leaves are covered until their cor-

responding users are revoked, it is simple to break traceability: a user can join and then

produce a signature for an epoch that predates her joining. A similar argument also applies

to the variant of the scheme given in [LPY12b].

Theorem 13. The fully dynamic scheme of Libert et al. [LPY12a] does not satisfy our

traceability definition even w.r.t. honestly generated tracing manager’s keys.

Proof. Consider the following strategy in the traceability experiment: the adversary asks to

join as a user i1 at epoch τ1. User i1 gets assigned the leaf l1. Then at a later epoch, τ2, the

7.4. On the Security of Some Existing Schemes 159

adversary asks to join as a second user i2. Finally, the adversary signs using the credentials

of i2 but for epoch τ1.

We can check by inspection that all subproofs in the back-dated signature go through.

The crucial observation is that at epoch τ1, the leaf l2 is not revoked and thus must be

covered by one of the Ski,ui sets. As the proof verifies and i2 used a legitimate certificate,

opening the signature will be successful and indicate i2 as the signer. The adversary wins,

as i2 was not active at epoch τ1.

A possible countermeasure against the above attack is to regard unassigned leaves

as revoked until they are assigned. This is simple to do as the scheme does not bound the

number of revoked users. We do however need to re-examine the number of subsets required

to express this, as the 2|R|−1 bound for |R| revoked users may now seem impractical. If

we assume leaves are allocated sequentially to users, we can bound the number of subsets

by 2|R1|+ log(|N \R2|) where R2 is the set of leaves pending allocation and R1 is the

set of leaves allocated to users who were later revoked. Thus, our fix is only marginally

more expensive than the base system and much more efficient than a naive analysis would

indicate.

If proving set membership/intervals can be done efficiently (and depending on how the

epoch counter is implemented), another possible fix is to bind membership certificates to

the join epoch and then get the signer to prove that their join epoch is not later than the

signing epoch.

7.4.2 Nakanishi et al. Scheme [NFHF09]

The scheme of Nakanishi et al. [NFHF09] is another certificate-based scheme in the random

oracle model. It achieves constant time for both signing and signature verification, relative

to the size of the group and the number of revoked users.

A user’s group membership certificate consists of a signature on (x, ID) produced by

the group manager, where x is a secret owned by the user and ID is a unique integer the

manager assigned to her. The group manager can revoke users by issuing revocation lists

infoτ . Each list consists of a sequence of open integer intervals (Ri,Ri+1) signed by the

manager, whose endpoints are all the revoked ID’s. At each epoch τ , a signer fetches the

current infoτ and proves, as part of the signature, that her ID is contained in one interval of

the revocation list. If the ID lies between two revoked users’ identities, it means it is not an

endpoint and so she has not been revoked.

160 Chapter 7. Fully Dynamic Group Signatures

As in other certificate-based constructions, verifiers only know of revoked members,

not active ones and, similarly to [LPY12a], the time of joining is not taken into account. This

allows users to sign with respect to any epoch prior to joining the group, which represents

an attack against our traceability definition.

Theorem 14. The Nakanishi et al. [NFHF09] fully dynamic group signature scheme does

not satisfy our traceability definition.

Proof. LetA be an adversary against the traceability game. The adversary adds user i to the

group at epoch τ . Since the user is not revoked, her ID is not an endpoint in any interval of

the revocation list infoτ , as for all previous epochs. Therefore,A could easily produce valid

signatures for i to any epoch τ̄ < τ . Since these signatures trace back to a user which was

inactive at the interval with which the signature is associated,A succeeds in the traceability

game.

The scheme could be easily immunised against the above attack. A first solution, as

for [LPY12a], is to initialise the revocation list with all ID’s of users that have not joined the

group yet. When the manager assigns an ID to a new user, he updates reg and the revocation

list infoτ . This way, the signature size is not affected. On the other hand, revocation lists

are now proportional to the size of the maximum number of users, instead of the number of

revoked users.

An alternative countermeasure requires the group manager to include the joining

epochs in the certificates by signing (x, ID,τjoin), where x is a secret owned by user ID

and τjoin is the joining epoch. A signer then needs to include in the signature a proof that

τjoin is not greater than the signing epoch. To realise the latter, one can use membership

proof techniques from [TS06, CCS08] which are already used in the original scheme. This

would increase the cost of signing and verifying by only a constant factor. The new member-

ship proof would require the group manager to provide signatures for every elapsed epoch,

which could be appended, for instance, to the revocation list. This makes revocation lists

grow linearly with the number of revoked users as well as the number of epochs.

7.4.3 Scheme based on Sect. 6.3

In Sect. 6.3, we gave a generic construction of accountable ring signatures, where every

signature can be traced back to a user in the ring. We also showed how one can obtain fully

dynamic group signatures from accountable ring signatures and gave an efficient instantia-

7.4. On the Security of Some Existing Schemes 161

tion in the random oracle model, based on the DDH assumption. That instantiation yields

signatures of logarithmic size (w.r.t. the size of the ring), while signing is quasi-linear, and

signature verification requires a linear number of operations.

Each user has a secret key and an associated verification key. To sign, users first encrypt

their verification key. Then, via a membership proof, they provide a signature of knowledge

showing that the verification key belongs to the ring, and that they know the corresponding

secret key. We will now prove this construction is secure w.r.t. the stronger variant of our

model i.e. w.r.t. adversarially generated authorities’ keys..

In what follows, note that each epoch τ specifies an instance of the accountable ring

signature scheme with ring Rτ . Algorithms from the accountable ring signature scheme are

labelled with ARS. We assume that the epoch can be appended to a message using the ||

operation, and removed again without ambiguity.

An accountable ring signature scheme does not involve a group manager. Hence, to

construct a group signature, we assume the existence of a functionality GMg, which allows

a group manager’s key-pair to be derived as (gmk,msk)←GMg(1λ), and initialises a group

information board which is visible to all parties, but can only be modified by a party with

msk.

The construction of a fully dynamic group signature from an accountable ring signature

is presented in Fig. 7.7.

Theorem 15. The generic group signature scheme construction (Sect. 6.2.1) from the ac-

countable ring signature scheme of Sect. 6.3 satisfies our definitions for a secure, fully-

dynamic group signature scheme.

Proof. We begin by proving correctness. For simplicity and without loss in generality, we

reduce the computational variant of the correctness requirement, i.e. where the last three

lines in the correctness game in Fig. 7.2 are dropped (see Section 7.2.1), to the perfect

correctness of the accountable ring signature. Let A be an adversary against the (computa-

tional) correctness of the fully dynamic group signature scheme. We construct an adversary

B against the (perfect) correctness of the accountable ring signature scheme. On receiving

(pp,sk) from his game, B sets crs = pp and chooses (tpk, tsk) and (mpk,msk) by himself.

He also initialises reg and info. Note that B can compute vk corresponding to sk by comput-

ing vk = ARSUKGen(pp,sk). Now, B sets gpk := (crs,mpk, tpk) and startsA on (gpk, info).

Since B knows msk, he can simulate all oracle queries for A. Let q be a polynomial upper

162 Chapter 7. Fully Dynamic Group Signatures

GSetup(1λ)→ crs

� Compute crs := pp← ARSSetup(1λ).
� Initialise reg and a counter τ := 0.

〈GKGenGM(crs),GKGenT M(crs)〉
� The group and tracing managers participate in an interactive protocol to generate
(tpk, tsk)← ARSOKGen(pp) and (mpk,msk)← GMg(1λ).
� Set gpk := (crs,mpk, tpk), and initialise info.

UKGen(1λ)→ (usk[i],upk[i])
� Return (usk[i],upk[i])← ARSUKGen(pp).

〈Join(τ,gpk, i,usk[i]), Issue(τ,msk, i,upk[i])〉
� The group manager and a new user i who already has a key-pair undergo an interactive
protocol to register i.
� Upon completion, the group manager uses msk to update reg with the transcript.
� Set gsk[i] = usk[i].

UpdateGroup(gpk,msk, infocurrent,S, reg)→ infonew
� If Rnew is different from Rcurrent then increment the counter τ

� The new group information infonew contains the current group Rnew and the public keys of
the members as well as the counter τ .

Sign(gpk,gsk[i], infoτ ,m)→ Σ

� Denote the group for the current epoch by Rτ . This is part of infoτ .
� Return Σ← ARSSign(tpk,m||τ,Rτ ,gsk[i]).

Verify(gpk, infoτ ,m,Σ)→ 1/0
� Return ARSV f y(tpk,m||τ,Rτ ,Σ).

Trace(gpk, tsk, infoτ , reg,m,Σ)→ (i,πTrace)
� Return ARSOpen(m||τ,Rτ ,Σ, tsk).

Judge(gpk, i, infoτ ,πTrace,upk[i],m,Σ)→ 1/0
� Return ARSJudge(tpk,m||τ,Rτ ,Σ,upk[i],πTrace).

IsActive(infoτ , reg, i)
� Check infoτ to see if user i is in Rτ , and returns 0/1 accordingly.

Figure 7.7: Construction of a fully dynamic group signature from an accountable ring
signature

7.4. On the Security of Some Existing Schemes 163

bound on the number of UToM queries A can make in her game. Adversary B randomly

chooses an index i← {1, . . . ,q} and sets the challenge key pair (vk,sk) of his game as

the keys of the i-th user i∗ queried to the UToM oracle: (usk[i∗],upk[i∗]) := (sk,vk). By

construction, user keys do not depend on i, so the simulation is perfect. Whenever A suc-

ceeds in breaking correctness by returning (i,m,τ), B succeeds when i = i∗ by returning

(tpk,m||τ,Rτ). Note that i is independent of the success probability of A. Hence, the suc-

cess probability of B is that of A divided by a factor of q, and thus correctness of the fully

dynamic group signature scheme follows.

For anonymity, suppose thatA is an adversary against the anonymity of the group sig-

nature scheme. We construct an adversary B against the anonymity of the accountable ring

signature scheme. Adversary B gets crs := pp and pk from his anonymity game. He sets

tpk := pk and interacts withA on behalf of the tracing manager of the fully dynamic group

signature scheme to get (msk,mpk, info). Note that B does not know dk corresponding to

pk and hence does not know the secret tracing key tsk of the tracing manager. B now sets

gpk := (crs,mpk, tpk) and initialises reg. For all oracles except Trace and Chalb, B is able

to simulate all queries of A by himself and return the result, since B knows all necessary

keys. If A queries (m,Σ, infoτ) to her Trace oracle, B can simulate the oracle by querying

(m||τ,Rτ ,Σ) to his Open oracle and forwards the answer to A. If A queries (infoτ , i0, i1,m)

to her Chalb oracle, B simulates the oracle by querying (m||τ,Rτ ,gsk[i0],gsk[i1]) to his

Chalb oracle and returns the answer to A. Eventually, when A outputs her guess b∗, B re-

turns b∗ as his answer in his game. It is clear that both adversaries have the same advantage.

Therefore, by anonymity of the accountable ring signature scheme, the fully dynamic group

signature scheme satisfies our full anonymity definition.

Next, we prove non-frameability. Let A be an adversary against the non-frameability

of the fully dynamic group signature scheme. We construct an adversary B attacking the

full-unforgeability of the accountable ring signature scheme. Given pp, B starts A on

crs := pp and receives (info,msk,mpk, tsk, tpk) using which B can compute gpk which he

forwards to A. Now, for all oracles except SndToU, Reveal and Sign, B is able to simulate

all queries of A by himself and return the result. For the other three oracles, B can simulate

those successfully by consulting his own oracles UKGen,Sign and RevealU if necessary.

Eventually, when A outputs (m,Σ, i,πTrace, infoτ), B returns (tpk,upk[i],m||τ,Rτ ,Σ,πTrace)

in his game. Clearly, if A wins her game, B succeeds in breaking the full unforgeability

164 Chapter 7. Fully Dynamic Group Signatures

of the accountable ring signature since his output satisfies the first clause of the winning

condition.

Next, we prove traceability. Let A be an adversary against the traceability of the fully

dynamic group signature scheme. We construct an adversary B against the traceability of

the accountable ring signature scheme. Given pp, B sets crs := pp, generates (msk,mpk)

and initialises reg and info. He interacts with A on behalf the group manager in order to

obtain (tsk, tpk). He sets gpk := (crs,mpk, tpk) and forwards (gpk, info) to A. Now, B is

able to simulate all of the oracle queries ofA. Eventually, whenA outputs (m,Σ,τ) where Σ

is a valid signature, B returns (tsk,m||τ,Rτ ,Σ) in his game. We have three cases to consider

depending on how A wins her game. If i is inactive group member at epoch τ , then i /∈ Rτ .

If i = 0 then again i /∈ Rτ . The final case is that the group signature judge algorithm returns

0. The probability of success of B is the same as that of A. Thus, by the traceability of

the accountable ring signature scheme, the fully dynamic group signature scheme satisfies

traceability.

Finally, we prove tracing-soundness. Let A be an adversary against the tracing-

soundness of the fully dynamic group signature scheme. We construct an adversary B

against the tracing-soundness of the accountable ring signature scheme. Given pp, B ini-

tialises reg and sets crs := pp. He starts A on crs to get (info,msk,mpk, tsk, tpk). He sets

gpk := (crs,mpk, tpk) which he then forwards to A. Note that all A’s oracle calls can be

simulated by B since he has the required keys. Eventually, A halts by responding with

a tuple
(

m,Σ, i1,πTrace1 , i2,πTrace2 , infoτ

)
. By construction, Σ returned by A is a valid ac-

countable ring signature on m that traces to two different users. Adversary B returns
(

m||τ,

Σ, tpk,upk[i1],upk[i2],πTrace1 ,πTrace2

)
as his output in his game. Clearly, if A wins her

game, B wins his game with the same advantage. Thus, if the accountable ring signature

scheme satisfies tracing soundness so does the fully dynamic group signature scheme.

Chapter 8

Helios Ballot Copying Revisited

In this chapter and the next we will develop two different answers to the problem of voting

receipts. Intuitively, a receipt is information that enables a voter to fully reproduce her ballot

as posted in an election’s bulletin board. This can lead to issues with coercion, as a voter

who can take possession of a receipt can be bribed in a verifiable way.

In the case of Helios [Adi08], the protections against receipts (and coercive attacks

in general) are minimal. The code running the voting booth aims to prevent receipts by

allowing voters to either audit or cast a ballot. If a ballot is audited, the vote and randomness

used is revealed (so that it can be checked later), but the voter cannot cast it. If it is cast,

the the randomness is not displayed to the voter. However, in the usual case, Helios would

be deployed as a web application which users would use by visiting the election web page

using their personal computers. Thus, a user who is technically proficient, (or who is given

ready-built tools) is able to circumvent the “cast or audit” restriction. In fact, it is possible

to both extract and inject ballot parameters from and into the voting booth application.

As such, the Helios voting system suggests that it should not be used for elections

where the risk of coercion is high. Thus, the simple answer to voting receipts is to try

and combat them. In this chapter however, we develop a different possibility: we use the

divertibility of the zero knowledge protocols used in Helios to build a secure ballot copying

protocol.

Cortier & Smyth [CS11] explored ballot copying in the Helios e-voting platform as an

attack against privacy. They also pointed out that their approach to ballot copying could be

detected by a modified Helios. In an earlier version of this work, [DC12] revisited ballot

copying from a different viewpoint: as a tool to prevent vote diffusion (the division of votes

among multiple weak candidates) and to lessen the effect of established voting blocs. This

166 Chapter 8. Helios Ballot Copying Revisited

approach is based on blinding the ballot casting protocol to create an undetectable copy. A

willing voter can cooperate with a prospective copier, helping the copier produce a blinded

copy of his ballot without revealing his vote. We prove that Helios is unable to detect the

copying. The possibility of such cooperation between voters is manifested only in internet

voting and as such is a fundamental difference between internet and booth voting.

While the techniques of [DC12] are sound, there are two outstanding issues. First, the

copying protocol gives zero knowledge only against honest copiers unless we opt to break

compatibility with Helios. Second, as Smyth and Bernhard [SB13] point out, the (informal)

security guarantees can be misleading. In particular, the act of producing a copy may reveal

information about one’s vote via the election’s result even if the copying protocol itself is

zero knowledge. We correct both issues, producing a fully zero knowledge protocol for

ballot copying without breaking compatibility with Helios.

The research presented in this chapter is joint work with Yvo Desmedt, and significantly

updates work published in [DC12]. The author contributed to the investigation by designing

the updated, full zero knowledge, protocol and providing the appropriate proofs as well as

updating the discussion on privacy.

8.1. Introduction 167

8.1 Introduction

Helios [Adi08] is a web-based, universally verifiable Internet voting system. To facilitate

universal verifiability, Helios ballots are encrypted and public. Ballots are cast over the

Internet via a web browser. By way of controlling their web browser, users have full control

over the ballots they submit (see Sect. 8.2.1), making them susceptible to coercion. If a

voter is bribed or threatened, they can be instructed to vote in a particular way and keep

the randomness used as a receipt. This way, a potential coercer can check if they complied

or not. Helios is thus best suited for use in low-coercion environments. This might appear

to limit its use to “low-stakes” elections but may not necessarily be the case. In Estonian

parliamentary elections [Est10] for example, the ability of overwriting a vote with a later

one is used in place of coercion resistance. As such, it is conceivable that a system like

Helios might be used in a high profile election.

Even though Helios has been based on 30 years of sound cryptographic primitives, pre-

vious works have described attacks against Helios compromising both secrecy [CS11] and

correctness [ED10]. Furthermore, the exact security achieved by the Helios construction

was the subject of active research [BPW12, SB13]. Other systems [RRI15, GCG15] build

upon Helios with the intention of improving its security or robustness.

Our work here has a different goal though: blinded ballot copying. A blinded copy of

a ballot is a copy that cannot be detected as such. Instead of a forced relationship between

coerced and coercer, this form of ballot copying relies on the cooperation of both parties,

and is based on trust rather than threats or bribes. This demonstrates how the lack of receipt

freeness hides an unspecified property of Helios: the ability to create blinded copies of

votes. In fact, it can be expanded upon to build a secondary system on top of it. The

potential for this was also mentioned in [BGP11], independently of [DC11].

Assume that Alice and Bob are coworkers. Clint and Donnie are candidates for the

“employee of the year award”. Bob has recently returned from a project abroad and is

unsure about the two candidates. He would like to ask Alice whom he trusts. Alice does

not want to reveal her choice so as not to upset the other candidate. Our goal is to provide a

system where Alice (the voter) can assist Bob (the copier) in producing a copy of her ballot

whilst ensuring that:

• Bob will not learn anything about Alice’s vote that is not also revealed by the election

results, and his possessing of a copy of her vote.

168 Chapter 8. Helios Ballot Copying Revisited

• Alice cannot distinguish the ballot that is produced by the system from a random valid

ballot. Therefore, the copier is explicitly given the option of backing out (by using

his own choice instead of the copied one) undetected.

• Helios (or any observer) cannot recognise the ballot produced by the system as a copy.

Such a system would allow groups of voters to organise around a trusted figure, partly

avoiding the spoiler effect [Arr63] prevalent in plurality elections, thus increasing the weight

of their vote and the possibility of obtaining a desired result (to the degree where trust in the

original voter is well-deserved).

However, increasing the weight of one’s vote carries privacy implications1. If Bob

copies Alice’s vote and Clint only gets a single vote in the tally, then Alice’s vote is revealed.

This parallels the discussion of privacy in the event of a unanimous election. The privacy

definitions used in the area (e.g. Def.21) overcome this problem by running two bulletin

boards: a real one (which is properly tallied) and a fake one (which is not, and only contains

null ballots). The adversary interacts with the real board, submitting the vote preferences of

honest users or potentially maliciously crafted ballots for corrupt ones. The interactions are

mirrored in the fake board, but honest votes are replaced with zeros. The challenge for the

adversary is to correctly guess which board is visible to him during the experiment. Thus,

to maintain privacy, ballot copying needs to be able to copy the ballots that exist in the real

board irrespective of which board is visible.

8.2 Background

The work presented in this chapter is based on modifying the protocols used by Helios so

that they involve three parties (voter, copier, Helios) instead of just two. As such, we need

to explain the design and operation of Helios before describing the modifications.

An important feature implemented by Helios is universal verifiability [SK95,CGS97b]:

any party, even one uninvolved in the election can opt to verify the integrity of an election

that uses Helios. This is achieved by making the ballots cast by each voter publicly acces-

sible on a bulletin board, albeit encrypted with the ElGamal [Elg85] cryptosystem.

Each ballot also contains a proof of its validity which can be verified without requiring

specific knowledge or access and without revealing the contents of the ballot. The proofs of

1We are thankful to Ben Smyth and David Bernhard for pointing out [SB13] that the original wording about
Alice’s privacy was too strong.

8.2. Background 169

validity are based on a disjunctive version of the Chaum-Pedersen protocol [CDS94,CP93]

previously used in [CGS97b]. This ensures that no invalid ballots have been accepted and

that no ballot tampering has taken place. The public list of ballots also guards against the

election officials injecting votes from unregistered voters if the registration list is public. As

the encryption scheme used is additively homomorphic, the product of all encrypted votes

is an encryption of the sum of all votes. Since the encrypted ballots are all public, there is no

way for a corrupt server to tamper with the product in an undetected way. The vote sum is

obtained by the election trustees using threshold decryption. Each trustee is able to provide

a partial decryption factor along with a proof of correctness for his individual calculations.

The partial decryption factors are then combined to arrive at the decrypted result. Again,

once the partial decryption factors have been made public there is no opportunity for foul

play.

In this section we will analyze the parts of Helios that are relevant to this work. We will

start by briefly mentioning the relevant parts of the Helios Implementation before moving to

the cryptographic design. The design of Helios 3.5 is based on the ElGamal cryptosystem

[Elg85], used for encrypting votes and homomorphic tallying. It also uses disjunctive zero-

knowledge proofs of equality to ensure ballot validity.

8.2.1 Helios Implementation

As mentioned in [Hel11] Helios has 4 main components: an election builder, a voting booth,

a ballot casting server and an audit server. From the perspective of ballot copying, we are

mostly concerned with the inner workings of the voting booth since we need to be able to

extract data in order to capture the encryption randomness and also inject it to allow the

copied and blinded ballot to be actually submitted. The ballot casting server concerns us

only with respect to the tests performed against incoming ballots, according to the Helios

specifications [Hel11]. The workings of the other two components are not relevant.

VOTING BOOTH. The Helios voting booth is a fairly complex web application, that reads

the parameters of an election, presents the user with the questions he can vote on, encrypts

his choices and calculates the appropriate proofs to construct a valid ballot and then allows

the user to either audit or submit it.

The voting booth in Helios 3 is implemented in HTML and JavaScript. For perfor-

mance reasons, older versions of the voting booth required Java to perform the modular

arithmetic operations required in the encryption and proof construction, while keeping the

170 Chapter 8. Helios Ballot Copying Revisited

encryption logic in JavaScript. Another option added later was for the ballot construction to

be performed on the server and the results forwarded to the browser. However, more recent

versions of Helios include a high performance JavaScript library for handling large integers,

removing the need for external plugins, or server-side calculations.

The randomness used in the encryption is only revealed if the user chooses to audit his

ballot in which case he will need to create a new one before voting. This is implemented as

a weak form of coercion resistance, (namely, receipt freeness) but is easily bypassed2 if the

voter executes a JavaScript command during the preparation of the ballot.

VOTING BOOTH TAMPERING. Web browsers allow users to run their own javascript

commands, to be executed in the context of the currect web-page. Thus, a user can sim-

ply cause the browser to output the randomness as well as the vote contained in a ballot,

just before it is cast. Since the commands are executed in the full context of the web-

page one can take advantage of the functions provided by the voting booth, e.g. call-

ing BOOTH.encrypted ballot.get audit trail(); instead of manually read-

ing the ballot parameters. Similarly, if a voter is given a pre-made ballot by a coercer, they

only need to overwrite the existing data structure representing their ballot with the pre-made

one.

Executing JavaScript commands might be difficult for the average user, but in this

instance, the commands in question may be stored as “bookmarklets”. A bookmarklet is a

bookmark that contains a javascript code instead of a location. When it is clicked, the code

is run in the context of the page currently displayed. For Helios, it is simple to construct a

bookmarklet that extracts the vote and randomness used to create a ballot (i.e a receipt) as

well as one that injects a specific ballot to the voting booth page. Thus a user only needs the

technical expertise to install a bookmarklet (i.e drag & drop it to their bookmark bar) and

click it at the appropriate time in order to tamper with the voting booth.

We note that the techniques described in the rest of this Chapter do not represent an

attack on the helios Voting Booth, or new vulnerabilities to be abused: the potential for

receipt extraction and ballot injection is inherent in the current implementation of Helios

and browser environment.

BALLOT CASTING SERVER. After the ballot is constructed and saved as a JSON

(JavaScript Object Notation) [Cro06] object, the voting booth submits it to the ballot cast-

2In fact, early versions of Helios included a “Coerce Me!” button [Adi08] which revealed the encryption
randomness without invalidating the ballot.

8.2. Background 171

ing server using the HTTP POST method. The ballot casting server then checks the ballot

for validity and compares it against already cast ballots and rejects it, if it is identical to a

previous one.

8.2.2 Vote Representation

In Helios, the homomorphic property of ElGamal (Sect.3.3.5) is used in order to calculate an

encrypted sum of votes from individual encrypted ballots without the need to decrypt them

individualy. However, ElGamal is multiplicatively homomorphic, whereas vote tallies are

sums. In order to bridge this gap, Helios uses a variant of the encoding used in [CGS97b].

where votes of “no” are represented as 1 and votes of “yes” as g. In this way, the product

of n votes vi of which m are “yes” will be ∏
n
i=1 vi = gm i.e. the log of the product will be

the sum of the votes i.e. the scheme is additively homomorphic. Most elections have more

options than “yes” and “no”, so Helios models them as a series of “yes-no” questions about

each option, with a limit on the number of “yes” answers equal to the number of selections

allowed in the original question. For example, given a question with 3 choices, from which

exactly one may be selected, a vote would be of the form:

V = (α0,β0),(α1,β1),(α2,β2)

= (gr0 ,gm0 ·hr0),(gr1 ,gm1 ·hr1),(gr2 ,gm2 ·hr2)

In the above vote, ri represents the randomness used in the encryption and mi the

answers of the voter to each of the 3 options. We note that a vote of the above form might

be invalid, for example if mi > 1 for some i, or if every mi is 1, even though the election

parameters only allow the voter to choose one option. A particularly insidious voter might

even have m0 = −100, making his vote cancel out 100 honest votes for the first option.

Helios guards against this by requiring the voter to provide a zero-knowledge proof of his

ballot’s validity. Helios supports threshold ElGamal, which involves multiple trustees in

order to ensure that there is no single point of failure with regard to voter privacy, but this

is not relevant to this work.

8.2.3 Validity Checks

As seen in the above example, a voter must provide a proof that the value of his vote falls

into the range permitted by the election parameters. As such, she must prove that the indi-

172 Chapter 8. Helios Ballot Copying Revisited

vidual vote for each option is either a “yes” or a “no” and furthermore that the total number

of “yes” votes is within the range of the allowed number of selections. In more concrete

terms, the voter is asked to prove that each mi is either 0 or 1 (an individual proof in Helios

terminology), and that the sum ∑
n−1
i=0 mi is inside the range of allowed selections as specified

in the election’s definition (a total proof).

The checks of validity used by Helios are non-interactive disjunctive zero knowledge

proofs of equality between discrete logs. In the rest of this section, we will offer a brief

overview of the underlying concepts as well as their use in Helios.

8.2.4 Disjunctive Proofs of Equality between Discrete Logarithms.

To prove that an encrypted individual vote (α,β) is valid one must prove that the corre-

sponding plaintext is either g0 = 1, in which case logg α = logh β , or g1 in which case

logg α = logh β/g. As the prover needs to prove the disjunction of the two statements we

have a disjunctive proof.

Total proofs can be carried out in the same way, the difference being that for individual

proofs the range of exponents is always [0,1] whereas for total votes it ranges from the

minimum number of selections to the maximum. For total proofs the ciphertext used is the

homomorphic product of the individual ciphertexts.

The Chaum-Pedersen protocol [CP93] for discrete log equality is essentially a parallel

version of the Schnorr protocol [Sch91]. We note that the Chaum-Pedersen protocol as well

as the underlying Schnorr protocol are Σ-protocols and this only achieve honest verifier zero

knowledge. There is no known simulator for dishonest adversaries [CP93]. In regular usage

this is sidestepped using the Fiat-Shamir heuristic.

Let g,h be elements of Ggroup of order q. Suppose α = gw,β = hw. A prover with

private input w is trying to prove that logg α = logh β . The protocol is as follows:

Protocol 1. Equality of Discrete Logs [CP93]

Prover: Let a := gr and b := hr for r← Zp. Send a,b to the Verifier.

Verifier: Choose c← Zp. Send c to the Prover.

Prover: Let s := cw+ r. Send s to the Verifier.

Verifier: Accept if gs = aαc and hs = bβ c.

8.2. Background 173

Cramer et al. provide a construction for disjunctive proofs [CDS94, FS90] where the

prover can prove one statement from a set and simulate proofs for the other ones, without

the verifier knowing which of the subproofs are simulated. In the context of Helios, this

allows the voter to indicate that the plaintext of his ballot is one out of a number of allowed

values without revealing which one.

In order to apply the construction of Cramer et al. [CDS94] to the Chaum-Pedersen

protocol [CP93], we use the simulator to produce the proofs corresponding to the false

statements:

Protocol 2. Chaum-Pedersen Protocol Simulation

Simulated Proof: Choose random challenge c and response s. Let the commitments be

a = gs/αc and b = hs/(β/gv)c.

Verification: Check that gs = a ·αc and that hs = b · (β/gv)c.

In order to force the voter to provide at least one honest proof, he is not given complete

choice of the challenges. The Verifier is allowed to specify the sum of the challenges used

in the subproofs. This allows the voter to simulate all but one of the Chaum-Pedersen proofs

and let the challenge of the real subproof be as a balancing factor in the sum. Suppose the

voter needs to prove that the value v encoded by (α,β) = (gr,hrgv) is in [min,max]. He

will simulate the proofs for i ∈ [min,max]\{v} and produce a real proof for i = v.

Protocol 3. Disjunctive Chaum-Pedersen Protocol.

Prover: For i ∈ [min,max] \ {v}: Choose challenge ci ← Zp and response si ← Zp. Let

the commitments be ai := gsi/αci and bi := hsi/(β/gi)ci . Let (av,bv) = (gw,hw) for

w← Zp. Send (ai,bi), for i ∈ [min,max].

Verifier: Send x← Zp.

Prover: Let cv := x−∑i 6=v ci and sv := rcv +w. Send (ci,si), for i ∈ [min,max].

Verifier: Check if gsi = a · αci and that hsi = b · (β/gi)ci for i ∈ [min,max]. Check if

x = ∑
max
i=min ci. Accept only if all checks passed.

8.2.5 Non-Interactive Proofs.

For practical reasons, Helios implements the above protocol offline rather than online. This

requires less communication with the Helios server and does not require the Helios server

174 Chapter 8. Helios Ballot Copying Revisited

to hold the state of proof protocols in progress. This is done by way of the Fiat-Shamir

heuristic (Sect. 3.4.6) which replaces the random challenge issued by the verifier with a

hash of the commitments.

This facilitates universal verifiability since the generation of the challenge is beyond

the control of the (potentially dishonest) Helios server. Additionally, the entirety of the

ballot generation can be performed by the voter with the result being submitted to Helios for

verification. This eliminates the need for the server to hold state between multiple sessions,

which can have performance as well as security implications.

For example, suppose we have an election with 3 options of which exactly one may

be selected (as in the vote example). We follow the notation of protocol 3 in that ai,bi

represent the commitments of a proof, si the solution and ci the challenge. The individual

proofs would then be of the form:

πi = ((ai,0,bi,0,ai,1,bi,1),(ci,0,si,0, ,ci,1,si,1)), for i ∈ {0,1,2} (8.1)

And the total proof would be of the form:

πΣ = ((aΣ,1,bΣ,1),(cΣ,1,sΣ,1))

To check if one of the above proofs is valid, Helios would set T := H(amin,bmin,

· · · ,amax,bmax) and run the last step of protocol 3.

In the interest of readability, for the rest of this text we will limit ourselves to ballots

consisting of a single encrypted “yes”-“no” vote and it’s corresponding proof of validity.

Blind signatures [Cha83, CP93], involve signing a document through an intermediary

(in our case, the copier) without the original signer (the voter) being able to trace the end

product. Blind signatures have been suggested by Chaum [Cha83] for use with anonymous

electronic cash, where banks sign “coins” proving their authenticity but are unable to trace

their use, and voting where authorities can supply signed blank ballots to authenticated

voters but are then unable to track them once filled.

Divertible proofs [OO90, DGB88] are a similar notion to blind signatures, but in an

online setting. An intermediate party is introduced between the prover and verifier, playing

the role of the verifier against the prover and that of the prover against the verifier. The

intermediate is called a warden in some cases (for example, if he is introduced to enforce to

8.3. A Ballot-Blinding Protocol 175

ensure honest behaviour) or a man in the middle in others. In this chapter we will refer to

the warden as the copier.

8.3 A Ballot-Blinding Protocol

We will describe ballot-blinding in two parts. We will first describe vote-blinding, i.e. how a

copier can unilaterally rerandomise the vote contained in a ballot (making it indistinguish-

able to a random one assuming the DDH problem is hard) while performing appropriate

modifications to keep the attached proofs valid. We note that this is contingent on Helios

using the weak [BPW12] version of the Fiat-Shamir transformation (i.e. the challenge is

produced as a hash of the prover’s first message and does not depend on the statement).

Since this rerandomization does not change the prover’s first message or the challenges

used inside the proofs, it is trivial to detect.

On the other hand, the non-malleability [FKMV12] of the Fiat-Shamir transformation

does not give us much hope of unilaterally randomizing the proofs. A trivial solution would

be for the voter to publish the randomness used in her ballot. This would enable blinded

copying but would would also completely sacrifice her privacy! For that reason, we need

an online proof-blinding protocol between a willing voter (who has already cast a ballot)

and a copier. The protocol allows the copier to produce a “new” proof of knowledge for the

encrypted vote.

The copier can combine the two parts: first he obtains a new (indistinguishable) proof

of validity of the voter’s encrypted vote and then he re-encrypts the encrypted vote making

it indistinguishable as well. The result is a ballot that is equivalent to the original in that it

contains the same vote but indistinguishable from it. Moreover, it does not leak the original

vote. In the event that Helios moves to use the strong Fiat-Shamir transformation, the copier

would need to perform both blinding operations concurrently. As this is not currently the

case, we opt to present the two operations separately for simplicity.

8.4 Vote Blinding

We describe a transformation that a copier can perform to an already cast ballot that is based

on re-encrypting the vote contained in the ballot. Because of the re-encryption, the proof

contained in the ballot must also be modified to stay valid.

Given a vote (α,β) = (gr,hrgv),v ∈ 0,1, a copier is able to re-encrypt it as (α ′,β ′) =

(gr+z,hr+zgv),v ∈ 0,1. To do that, he does not need knowledge of r as he can simply

176 Chapter 8. Helios Ballot Copying Revisited

calculate (α ′,β ′) = (gzα,hzβ).

Lemma 11. If z is chosen to be uniformly random in Zp then (α ′,β ′) is indistinguishable

from a random vote by adversaries who cannot solve the DDH problem, regardless of them

knowing r or v.

Proof. Suppose we have an adversary A who can, given (g,h) and (α,β),(α ′,β ′) de-

termine if (α ′,β ′) is a re-encryption of (α,β) or not. Equivalently, A can determine if

(α ′/α,β ′/β) is an encryption of 0, i.e of the form gσ ,hσ . As h = gx, (h,α ′/α,β ′/β) is a

DH tuple. This enables us to build a DDH solver as follows:

Given a DDH instance (gk,h,u,v) where gk = (G,q,g), pick random ρ,ψ ← Zq, set

(α,β) := (gρ ,hρ ·gψ), and let (α ′,β ′) := (u ·α,v ·β). Give g,h and (α,β),(α ′,β ′) to the

vote distinguisher A, accept the tuple if A accepts and reject it if it rejects.

Furthermore, if the copier has access to a valid proof for (α,β) he can transform it to

a valid proof for (α ′,β ′).

Lemma 12. If (V,P) is a valid ballot, with V = (α,β) as in (8.1) and P =

((a0,b0,a1,b1),(c0,s0,c1,s1)) as in Protocol 3, then ((gzα,hzβ),(a0,b0,a1,b1),(c0,s0 +

c0z,c1,s1 + c1z)) is also a valid ballot and vice versa.

Proof. If ai = gsi/αci holds then ai = gsi+ciz/(gzα)ci also holds. Similarly, if bi =

hsi/(β/gi)ci holds then bi = hsi+ciz/(hzβ/gi)ci also holds. For the opposite direction we

note that re-applying the transformation for −z produces the original ballot.

The above transformation can be used as a variant of the attack described in [CS11]

since it provides another way of replaying ballots without copying them verbatim. Nonethe-

less, the attack variant can be stopped in a similar way to the one suggested by Cortier and

Smyth, i.e by checking the commitments ai,bi and challenges ci of the proof, which remain

unchanged. Thus, a future version of Helios could defend against the attack by modifying

the ballot casting server to reject votes which reuse past commitment values.

8.5 Proof Blinding
It is clear from the above discussion that blinding the entire ballot is necessary. However,

proof blinding protocol requires two assumptions: First, that original voter cooperates with

the the copier and second, that the voter has access to the randomness used in encrypting

8.5. Proof Blinding 177

his ballot (i.e a receipt). Fortunately, the second assumption can be fulfilled in the current

Helios implementation. At the same time, since the active consent of the original voter is

required, our work is of no use to an attacker. If the attacker is able to force the original voter

to reveal their randomness, he is directly violating their privacy. Similarly, if an attacker is

able to force somebody to submit a “sealed” ballot, sight-unseen, there is not need for a

copying protocol to effectively steal their vote.

We start by presenting the protocol of [DC12] for reference before moving on to our

version.

8.5.1 The proof blinding protocol of [DC12]

Suppose the voter has cast an encrypted vote (α,β) = (gr,hrgv),v∈ 0,1 with an appropriate

proof, and the copier is requesting a different proof in order to copy it. Note that (α,β) is

public but (r,v) is private to the voter. Since the hash function H() is public, Helios does not

take part in the protocol. The notation used for the commitments is the same as in Protocol

3, but the roles of the parties are different. The voter still takes the role of the prover, but the

copier takes the role of an intermediate verifier who ultimately submits the resulting ballot

to Helios.

Protocol 4. Proof Blinding Protocol

Voter Choose w← Zp and let av := gw,bv := hw. Let φ := 1− v and choose cφ ,sφ ← Zp

and let aφ := gsφ /αcφ and bφ := hsφ /(β/gφ)cφ .

Send (a0,b0,a1,b1) to the copier.

Copier Choose ∆0,∆1,k0,k1← Zp. Let Ai := aigki/α∆i , Bi := bihki/(β/gi)∆i for i = 0,1. Let

c := H(A0,B0,A1,B1) be the challenge that Helios would issue. Let C := c−∆0−∆1.

Send C to the voter.

Voter Let cv :=C− cφ and let sv := w+ rcv.

Send (c0,s0,c1,s1) to copier as a reply.

Copier Check that C = c0 + c1, ai = gsi/αci and bi = hsi/(β/gi)ci for i = 0,1. If yes, accept

and let Ci := ci+∆i and Si := si+ki. Let V :=((α,β),(A0,B0,A1,B1),(C0,S0,C1,S1))

and submit V to Helios. Otherwise, reject.

While the protocol is complete and sound, it only achieves honest verifier zero knowl-

edge; [DC12] also features a full zero knowledge alternative, but at the cost of breaking

178 Chapter 8. Helios Ballot Copying Revisited

compatibility with Helios. This is problematic in itself, but also does little to help us with

constructing a security reduction that enables us to simulate copying one ballot while actu-

ally copying another.

8.5.2 New Proof Blinding Protocol

We suggest a simple addition to protocol 4 that not only gives full (computational) zero

knowledge, but also requires no additional rounds of interaction or changes to Helios. Fur-

thermore, our fix is fairly general and could be used in other applications where a HVZK

proof is to be diverted. The main idea is to allow the prover to change the statement but

only after proving it is equivalent to the original. In normal use, this is inconsequential, and

the additional proof means that the change does not impact soundness. At the same time,

if the simulator has a trapdoor for the equivalence proof (in our case this means program-

ming the random oracle) it is simple to obtain zero knowledge by making the new statement

independent of the original.

This not only enables us to prove full zero knowledge but also gives us an important

tool for ballot privacy: the adversary can ask to copy ballot B and the reduction can use

statement switching to provide him with B′.

Suppose the voter has cast an encrypted vote (α,β) = (gr,hrgv),v ∈ 0,1 with an ap-

propriate proof, and the copier is requesting a different proof in order to copy it. Note that

(α,β) is public but (r,v) is private to the voter.

Protocol 5. Proof Blinding Protocol

Voter Choose r̃ ← Zp, let π be a non-interactive Chaum-Pedersen proof that (α̃, β̃) =

(gr̃,hr̃) have the same discrete log w.r.t (g,h). Let α ′ = αα̃ , β ′ = ββ̃ and r′ = r+ r̃.

Choose w← Zp and let av := gw,bv := hw. Let φ := 1− v and cφ ,sφ ← Zp and let

aφ := gsφ /α ′cφ and bφ := hsφ /(β ′/gφ)cφ . Send (α̃, β̃ ,π),(a0,b0,a1,b1) to the copier.

Copier Reject if π does not verify. Let α ′ = αα̃ , beta′ = ββ̃ . Choose ∆0,∆1,k0,k1← Zp. Let

Ai := aigki/α ′∆i , Bi := bihki/(β ′/gi)∆i for i = 0,1. Let c := H(A0,B0,A1,B1) be the

challenge that Helios would issue. Let C := c−∆0−∆1, send C to the voter.

Voter Let cv :=C− cφ and let sv := w+ r′cv, send (c0,s0,c1,s1) to the copier.

Copier Check that C = c0 +c1, ai = gsi/α ′ci and bi = hsi/(β ′/gi)ci for i = 0,1. If yes, accept

and let Ci := ci+∆i and Si := si+ki. Let V :=((α ′,β ′),(A0,B0,A1,B1),(C0,S0,C1,S1))

8.5. Proof Blinding 179

and send V to Helios. Otherwise, reject.

We will now examine Protocol 5 with regard to correctness, soundness, indistinguisha-

bility and zero knowledge.

Lemma 13. The new proof blinding protocol is complete and furthermore if an honest

copier accepts then the resulting ballot V will be accepted by Helios.

Proof. Completeness holds trivially. Indeed, we have:

• C = c0 + c1 since the voter calculates cv :=C− cφ in Step 3.

• For i = φ , we have aφ = gsφ /α ′cφ and bφ = hsφ /(β ′/gφ)cφ from Step 1.

• For i = v, we must check if av = gsv/α ′cv=gw+rcv/α ′cv which holds since av = gw

(from Step 1) and αcv = grcv . Similarly: bv = hsv/(β ′/gv)cv = hw+rcv/(β ′/gv)cv holds

since bv = hw and β ′/gv = hr.

For the second property, we need to show that C0 +C1 = H(A0,B0,A1,B1) and that

given that ai = gsi/α ′ci and bi = hsi/(β ′/gi)ci hold (since the copier has access to a valid

vote) it also holds that: Ai = gSi/α ′Ci and Bi = hSi/(β ′/gi)Ci . This is straightforward by

substituting the blinded variables Ai, Bi, Ci, Si with their definitions.

Lemma 14. Protocol 5 is 2-special sound.

Proof. Suppose a voter can (given the same first message (α̃, β̃ ,π),(a0,b0,a1,b1), and

given that π verifies) provide answers to two different challenges C,C′. This means that

for the two answers (c0,s0,c1,s1) and (c′0,s
′
0,c
′
1,s
′
1), we must have ci 6= c′i for at least one

i ∈ {0,1}. We will now show that such a voter can calculate a witness for the vote’s validity

(i.e. the encryption randomness used in encrypting the vote).:

ai = gsi/α
′c
i and ai = gs′i/α

′c′i we have:

gsi/α
′ci = gs′i/α

′c′i

gsi−s′i = α
′ci−c′i thus:

logg α
′ =

ci− c′i
si− s′i

.

This gives us r′ the logarithm of a′. To obtain the logarithm of α , one needs to subtract

r̃, the logarithm of α̃ . This can be obtained in the same fashion from the proof on knowledge

π .

180 Chapter 8. Helios Ballot Copying Revisited

Lemma 15. Given the view of the original voter, the blinded proof of knowledge

((A0,B0,A1,B1),(C0,S0,C1,S1)) is unconditionally indistinguishable from a valid proof

produced independently.

Proof. We observe that Ci = ci +∆i and Si = si + ki with ∆i and ki being uniformly random

in Zp. Thus, the challenges and responses are independent of the ones used in the original

proof. For the commitments, we note that given (C0,S0,C1,S1), the values of (A0,B0,A1,B1)

are uniquely determined (because for any valid proof: Ai = gSi/α ′Ci and Bi = hSi/(β ′/gi)Ci),

so if a voter is able to distinguish (A0,B0,A1,B1),(C0,S0,C1,S1) from an independent proof

he would also be able to distinguish (C0,S0,C1,S1) which we showed to be distributed

identically.

Our goal is to ensure that the blinded protocol does not leak the value of the voter’s

vote to one of the other parties.

Lemma 16. Protocol 5 achieves computational zero-knowledge in the random oracle

model, under the DDH assumption.

Proof. We will describe a simulator. Intuitively, the simulator will program the random

oracle to fake π so that it can switch to a fresh α ′,β ′ that is independent of α,β . It will then

follow the same strategy as an honest prover.

The simulator first samples r′← Zp, v← {0,1}. It then sets (α ′,β ′) = (gr′ ,hr′), and

α̃ = α ′/α , β̃ = β ′/β . It then produces a proof πs that α̃, β̃ share discrete logs as fol-

lows: it selects a challenge eπ and answer sπ and programs the random oracle so that

H(gsπ/α̃ ′eπ ,hsπ/β̃ eπ) = eπ . Then, π = ((gsπ/α̃eπ ,hsπ/β̃ eπ),sπ).

From this point on, the simulator follows the same protocol as the prover: w← Zp

and let av := gw,bv := hw. Let φ := 1− v and cφ ,sφ ← Zp and let aφ := gsφ /α ′cφ and

bφ := hsφ /(β ′/gφ)cφ . Then, it sends (α̃, β̃ ,π),(a0,b0,a1,b1) to its copier oracle to receive

a challenge, and replies as the standard prover would.

We now compare the distributions of real and simulated transcripts. First we point out

that if the simulator correctly guesses v to have the same value as the plaintext of α,β , the

transcript is distributed identically to a real one. Thus, an efficient distinguisher between

real and simulated transcripts would also distinguish between simulated transcripts with

“correct” and “incorrect” guesses. This directly breaks the IND-CPA security of ElGamal.

8.6. Further Work 181

We can also use the above simulator to prove that the protocol is also zero-knowledge

with respect to the final prover, Helios. Since the Fiat-Shamir heuristic [FS87] is used

to replace the verifier’s challenge with a hash of the the prover’s commitments, Helios is

unable to deviate from honest behaviour.

We also point out that the simulator may also be run with the value of v given as an

input, without impacting zero knowledge. This is key to reconciling copying and privacy

as it enables us to provide a copying oracle to the adversary: if the adversary is seeing the

“real” board we allow him to copy as normal but if he is seeing the “fake” one, we use the

simulator with the vote from the “real” board.

8.5.3 A Combined Protocol for Blinded Copying

The vote blinding transformation of Sect. 8.4 and the proof blinding protocol (Protocol 4)

can each partially blind a ballot (the vote and the proof respectively). They can be easily

combined to completely blind a ballot as follows: The copier executes the proof blinding

protocol with the cooperation of the voter but does not submit the resulting ballot V . Instead,

he proceeds to apply the vote blinding transformation to V , producing V ′ which he then

submits to Helios. If Helios switches to the strong Fiat-Shamir transformation, the two

protocols need to be combined

Theorem 16. The combined ballot copying protocol is complete, sound and zero-knowledge

in the random oracle model. Furthermore, assuming the DDH assumption holds, the ballots

produced are accepted by Helios and indistinguishable from random valid ballots, even for

the voter.

Proof. Completeness, soundness and honest-verifier zero-knowledge under the random or-

acle model are satisfied by the proof copying protocol and are not impacted by the transfor-

mation (Lemma 12). Indistinguishability holds because of Lemmata 11 and 15.

8.6 Further Work

We have described a protocol which enables voters to allow people who trust them to copy

their vote without revealing it in the process. This can be used as an alternative to public

endorsements. In settings where one person’s expertise or judgement is well regarded our

protocol offers the ability for others to trust his judgement without forcing him to reveal

his opinion –this can be especially important in small, local elections where revealing one’s

182 Chapter 8. Helios Ballot Copying Revisited

vote can lead to rivalries (of course in a small or close election the tally [DK05] or even the

result might reveal information).

Blinded vote copying would also reduce the power of traditional voting blocs. A voting

bloc is a club or special interest group that coordinates its voting. They achieve stronger

[Pen46] representation compared to individual voters by not diffusing their votes. The trust

requirements for blinded vote copying are more relaxed than in a typical voting bloc since

the “leader” does not need to make his vote public. By making the creation of voting

blocs easier we thus create a more even voting field without needing to change the electoral

system.

It would also be interesting to replace the original voter with a coalition of voters, es-

sentially providing a framework (thus avoiding the complexity of secure multi-party com-

putation) for holding a primary election amongst the members of the coalition. This can

lower the barrier for creating a voting bloc further since there is no need for a single person

to be singled out as the decision maker.

Finally, a voting system built with copying in mind may be able to provide users with a

stronger mix of functionality and security. The high risk of coercion present in Helios might

be too high a price to pay for vote copying. Building support for copying into the protocol

may allow us to obtain similar functionality without relying on receipts.

Chapter 9

BeleniosRF

Returning to the issue of receipt freeness, we now offer a more orthodox approach. We

propose a new voting scheme, BeleniosRF, that offers both receipt-freeness and verifiability.

It is receipt-free in a strong sense, meaning that even dishonest voters cannot prove how

they voted. Furthermore, we achieve receipt freeness without burdening the user with any

additional effort (as in the case of revoting as an anti-coercion strategy).

We provide a game-based definition of receipt-freeness for voting protocols with non-

interactive ballot casting, which we name strong receipt-freeness (sRF). To our knowledge,

sRF is the first game-based definition of receipt-freeness in the literature, and it has the

merit of being particularly concise and simple. Built upon the Helios protocol, BeleniosRF

inherits its simplicity and does not require any anti-coercion strategy from the voters. We

implement BeleniosRF and show its feasibility on a number of platforms, including desktop

computers and smartphones.

The research presented in this chapter is joint work with Véronique Cortier, Georg Fuchs-

bauer and David Galindo, and was published in [CCFG16]. The author contributed to the

investigation mainly in designing the voting protocol and SRC scheme in collaboration with

Georg Fuchsbauer. The author also contributed the implementation and the majority of the

benchmarking.

9.1 Introduction

Electronic voting protocols should achieve two antagonistic security goals: privacy and ver-

ifiability. Additionally, they must be practical, from a usability, operational, and efficiency

point of view. Privacy can be expressed via several, increasingly demanding security prop-

erties.

• Basic ballot privacy guarantees that no one can learn how a voter voted.

• Receipt-freeness ensures that a voter cannot prove to anyone how she voted. While

privacy protects honest voters, receipt-freeness aims at protecting vote privacy even

when voters willingly (or unwillingly) interact with an attacker.

• Coercion-resistance should allow an honest voter to cast her vote even if she is, dur-

ing some time, fully under the control of an attacker. Coercion-resistance typically

requires revoting.

Conversely, verifiability ensures that voters’ ballots are included in the ballot box (indi-

vidual verifiability), that the result corresponds to the content of the ballot box (universal

verifiability) and that ballots come only from voters entitled to vote (eligibility verifiability).

Helios [Adi08, AdMPQ09] is a scheme that “only” achieves privacy and verifiability

and is based on a voting system by Cramer, Gennaro and Schoenmakers [CGS97b] with

modifications proposed by Benaloh [Ben07]. As emphasised by its authors, Helios should

only be used in low-coercion environments. Indeed, a voter may easily reveal how she voted

by exhibiting the randomness used by her device to compute her ballot (Sect. 8.2.1); one

can then re-encrypt the claimed vote and check if the encryption is contained in the public

bulletin board. Helios is thus not receipt-free if we assume voters have a reasonable amount

of control of their devices.

To our knowledge, Civitas [JCJ05, CCM08] is the only scheme that achieves both

verifiability and coercion-resistance, without requiring a great deal of interaction between

the ballot box or the election authorities and the voter (such as [BT94,CLW08]). While the

scheme is a foundational work, it seems difficult to use it in large-scale elections mainly for

two reasons. First, its coercion resistance design requires that voters must be allowed to cast

multiple ballots, with checks against duplicates taking place during tallying. This involves

each cast ballot being checked against each other, requiring O(n2) operations –where n is

the number of received ballots, which opens the way to denial-of-service attacks. Second,

9.1. Introduction 185

to achieve coercion-resistance, a voter should be able to adopt an anti-coercion strategy (in

Civitas, a voter has to lie about her true credential) and then later revote for her true choice

once she is freed from the attacker. We believe that this scenario is unrealistic in many

cases, as it requires cryptographic skills and a heavy infrastructure to realise an untappable

channel (e.g. in-person registration).

It is also worth noticing that in most countries revoting is not allowed, as for example

in Australia, France, Spain, Switzerland and the United Kingdom. The only exceptions we

are aware of are Estonia and the Internet voting pilots for the parliamentary elections in

2011 and 2013 in Norway. Indeed, casting a vote is usually seen as an official act that a

citizen should perform with care and revoting is perceived as “changing one’s mind”. Most

election authorities are strongly opposed to this practice. While this way of thinking might

be a cultural aspect inherited from traditional paper ballot systems, it is foreseeable that it

will take time before countries change their electoral rules in order to adopt a revote policy.

9.1.1 Our Contributions

Building upon a recent variant of Helios, called Belenios [CGGI14, GCG15], and a cryp-

tographic primitive called signatures on randomizable ciphertexts [BFPV11a], we propose

a receipt-free version of Helios, which we call BeleniosRF. In our scheme a voter cannot

prove how she voted, even if she is provided with all the ballot material by the coercer. In-

terestingly, our scheme does not demand any strategy of the voter; in particular, it does not

require the active participation of a voter to deceive a coercer that is asking for a receipt. For

example, a voter does not need to lie or produce fake credentials as in Civitas, she simply

has no way to prove how she voted. This represents a huge improvement in usability from

the voter’s point of view: all that is required of the voter is to vote.

We show that our scheme BeleniosRF is receipt-free in a strong sense, meaning that

even a dishonest voter using a voting client that has been tampered with cannot prove

how she voted. We formalise this property, called strong receipt-freeness (sRF), via a

game-based definition building on the privacy definition recently proposed by Bernhard

et al. [BCG+15]. We view this formal definition of receipt-freeness, which applies to non-

interactive ballot casting protocols, as the first contribution of this work. We call it strong

receipt-freeness to emphasise that in non-interactive protocols an attacker has less room to

build a receipt. Indeed, in the absence of interaction the adversary does not obtain informa-

tion from the voting server apart from what is displayed on the bulletin board; hence any

186 Chapter 9. BeleniosRF

receipt must be built by the adversary locally and before submitting the ballot.

We claim sRF is the first game-based receipt-freeness definition in the literature ac-

counting for a voter that is corrupted during the voting phase. Additionally, sRF has the

merit of being simple and concise, potentially allowing for simpler proofs. In doing so we

give a new formulation for the receipt-freeness definition by Benaloh and Tuinstra [BT94]

and highlight that receipt-freeness can be achieved without asking the voters to vote sev-

eral times and cancel previously submitted ballots, and without requiring an untappable

channel. All we need to assume is that the attacker is not permanently eavesdropping the

communication between the voting server and the voter, an assumption made by all previous

constructions of receipt-free or coercion-resistant voting schemes.

A key ingredient of BeleniosRF is a randomization service, a role that we assume is

played by the voting server (also called ballot box), but which could be played by a different

server. The randomization service is in charge of re-randomizing the ballot cast by a voter.

BeleniosRF’s receipt-freeness then relies on the fact that the randomness contained in the

ballot displayed in the bulletin board is not under the control of the voter. Both the voter and

the randomization service contribute to the randomness that is implicit in the voter’s ballot

as displayed on the bulletin board. In fact, in light of the impossibility result of [CFP+10],

the existence of a randomization agent is assumed in most constructions that claim to be

receipt-free. Here however, we do not rely on letting voters vote multiple times or on the

existence of a trusted token for each voter (such as e.g. [Oka97, HS00, CLW08, Hir10]).

The foremost challenge in achieving receipt-freeness non-interactively and via a ran-

domization service is to prevent the latter from changing the voter’s intent when re-

randomizing. The only existing non-interactive proposal [BFPV11a] claiming receipt-

freeness uses a powerful cryptographic primitive called signatures on randomizable ci-

phertexts. It consists of a signature scheme and a public-key encryption scheme that is

randomizable (that is, given a ciphertext, anyone can create a fresh ciphertext of the same

plaintext—without knowing it). The primitive provides an additional functionality: given a

signature on a ciphertext, anyone can randomise the ciphertext and adapt the signature to

the new ciphertext, that is, produce a signature that is valid on the new ciphertext—and all

that knowing neither the decryption key nor the signing key nor the plaintext. On the other

hand, unforgeability guarantees that it is infeasible to compute a signature on a ciphertext

that encrypts a message of which no encryption has been signed.

9.2. Comparison to Related Work 187

Alas, Blazy et al. [BFPV11a] did not provide a receipt-freeness definition nor a proof.

By exhibiting a ballot-copying attack adapted from [CS13], we demonstrate that their

scheme is not receipt-free, worse, it is not even ballot-private. Our scheme fixes the Blazy

et al. construction by binding the ciphertexts to voters, while still inheriting the randomiz-

ability from Groth-Sahai non-interactive proofs [GS08], upon which the previous proposal

heavily relies, this provides the required non-malleability needed to thwart the attack.

We start with giving a new instantiation of signatures on randomizable ciphertexts,

which we show yields an RCCA-secure public-key encryption scheme [CKN03], from

which we build a non-interactive1 receipt-free e-voting scheme as follows:

• As in Belenios, each voter has a personal signature key pair, in addition to authenti-

cation means to the ballot box (typically a login and password).

• Each voter encrypts and signs their ballot and includes a proof of knowledge to pre-

vent ballot malleability.

• Upon receiving a ballot, the server re-randomises the ballot (including the signature

and proof) and adapts the corresponding signature and proof before publishing it.

• While only the re-randomised version is posted on the bulleting board, we can still

check the signature and proof as are part of the re-randomisation.

Receipt-freeness comes from the fact that a voter no longer has control over, nor knowledge

of, the randomness used to form the final ballot stored in the ballot box. On the other hand,

even after the voting server re-randomises the ballot cast by the voter’s voting device, the

voter can still verify that her legitimate ballot is present, as the re-randomised ciphertext

comes with a signature that is valid under the voter’s verification key. By unforgeability of

the signature primitive, the vote cannot have been altered by the ballot box, which we show

implies verifiability.

Our final contribution consists of assessing the feasibility of BeleniosRF; for this pur-

pose we implemented and measured the efficiency of a Javascript voting client (see Section

9.7).

9.2 Comparison to Related Work
Our definition requires that an adversary cannot distinguish whether a voter votes for either

a or b, even if the attacker provides the voter in advance with all the cryptographic material
1After successful authentication between the voter and the ballot box, ballot casting is non-interactive.

188 Chapter 9. BeleniosRF

(such as randomness to be used to cast the ballot). Interestingly, this definition does not

require the voter to follow a “strategy” to fool the coercer.

BeleniosRF has one disadvantage compared to Helios and Belenios: it requires that

voters generate keys by themselves and have them endorsed by a registrar. Helios does not

use signatures on ballots, whereas Belenios opts to have the keys be generated centrally and

distributed to voters.

What makes BeleniosRF different, is the rerandomization of ballots, which is used to

guarantee receipt-freeness. If the registrar knows a users private signing key, and it colludes

with the voting server collude, they could undetectably change a voter’s choice. This is

because (rerandomized) signatures on different ciphertexts encrypting the same message

cannot be linked. Thus, the registrar could sign a malicious ballot using a voter’s key, and

the voting server would pretend that the malicious ballot is a rerandomization of the one

cast. Helios and Belenios are immune to this, since they do not use rerandomization (or

even ballot signing, in the case of Helios).

This solution differs from the Belenios approach, where voters receive their signing

keys from the registrar for the sake of usability. This is just another manifestation of the

usual tension between usability, privacy and verifiability in e-voting systems (and computer

security systems in general), in the sense that increasing one of them entails a decrease of

at least one of the others. One may opt to instead use an issuing registrar (as opposed to an

endorsing one) may still be used, but requires that either the voting server or the registrar

remain honest (cf. Section 9.6.3).

9.3 Receipt-Freeness

We now formally define receipt-freeness and start by providing the syntax of a voting sys-

tem, inspired by [CGGI14, BCG+15].

9.3.1 Syntax of a Voting System

Election systems typically involve several entities. For the sake of simplicity we consider

each entity to consist of only one individual but note that all of them could be thresholdised.

1. Election administrator: denoted by E , is responsible for setting up the election; it pub-

lishes the identities id of eligible voters, the list of candidates and the result function ρ

of the election (typically counting the number of votes received by every candidate).

2. Registrar: denoted byR, is responsible for registering the public credentials of users

9.3. Receipt-Freeness 189

after verifying the users control the corresponding secret ones .

3. Trustee: denoted by T , is in charge of tallying and publishing a final result.

4. Voters: the eligible voters are denoted by id1, . . . , idτ .

5. Ballot-box (voting server) manager: denoted by B, is responsible for processing and

storing valid ballots in the ballot box BB, and for publishing PBB, the public view of

BB, also called (public) bulletin board.

The following syntax considers single-pass schemes, that is, systems where voters only

have to post a single message to the board, i.e. ballot casting is non-interactive. A vot-

ing protocol V = (Setup,Register,Vote,Valid,Append,Publish,VerifyVote,Tally,Verify)

is relative to a family of result functions {ρτ}τ≥1 for τ ∈ N, with ρτ : Vτ → R, where V

is the set of admissible votes and R is the result space.

Setup(1λ), on input a security parameter 1λ , outputs an election public/secret key pair

(pk,sk), where pk could contain a list of credentials L. We let pk be an implicit

input of the remaining algorithms.

Register(id), is an interactive protocol between the registrar and a user with identifier

id. The user creates uskid and its public credential upkid, and forwards upkid to the

registrar along with a proof of knowledge of the corresponding secret key, πid. The

registrar, after checking, πid adds it to the list L = {upkid}.

Vote(id,upk,usk,v) is run by voter id with credentials upk, usk to cast her vote v ∈ V. It

outputs a ballot b, which is sent to the voting server (possibly through an authenticated

channel).

Valid(BB,b) takes as input the ballot box BB and a ballot b and checks the validity of the

latter. It returns > for valid ballots and ⊥ for invalid ones (e.g. ill-formed, containing

duplicated ciphertext from the ballot box. . .).

Append(BB,b) updates BB with the ballot b. Typically, this consists in adding b as a new

entry to BB, but more involved actions might be possible (as in our scheme).

Publish(BB) outputs the public view PBB of BB. Often one simply has Publish(BB) =

BB.

VerifyVote(PBB, id,upk,usk,b) is run by voters for checking that their ballots will be

included in the tally. On inputs the public board PBB, a ballot b, and the voter’s

identity and credentials id,usk,upk, it returns > or ⊥.

190 Chapter 9. BeleniosRF

Tally(BB,sk) on inputs the ballot box BB and the secret key sk, outputs the tally r and a

proof of correct tabulation Π. If the election is declared invalid then r :=⊥.

Verify(PBB,r,Π), on inputs the public bulletin board PBB and (r,Π), checks whether Π

is a valid proof of correct tallying for r. If so, it returns >, and ⊥ otherwise.

The exact implementation of these algorithms depends on the concrete voting proto-

col. In particular, the notion of public and private credentials of a voter varies a lot. For

example upkid might be simply the identity of the voter or may correspond to her signature-

verification key.

9.3.2 Strong Receipt-Freeness

Intuitively, privacy ensures that an adversary cannot learn the vote of an honest voter.

Receipt-freeness furthermore guarantees that a voter cannot prove how she voted, even if

she willingly provides information to, or follows instructions by, the adversary. This cap-

tures the seminal intuition from Benaloh and Tuinstra [BT94]. The latter insisted that a

reasonably private electronic voting protocol should emulate traditional voting in a voting

booth: it should allow voters to conceal their individual votes and, at the same time, prevent

them from revealing their vote. Voters should not be able to give away the privacy of their

vote granted by the voting protocol, even if they are willing to.

Building upon a definition of privacy recently introduced [BCG+15], we argue that

this requirement can be formalised for single-pass schemes by simply providing the adver-

sary with an additional oracle OreceiptLR, which allows him to submit his own ballots on

behalf of a dishonest voter. Apart from immediately implying ballot privacy, this simple

formalization captures several important scenarios:

• A voter who wants to convince a vote buyer of how she voted may prepare her ballot

in an arbitrary way that allows him to construct a convincing receipt (e.g., consider

a voter that uses biased random coins to build her ballot and to prove how she voted

[GGR09]).

• A voter that might have been corrupted before the ballot casting phase may just follow

the instructions given to her by the adversary (as in [JCJ05]).

• A voter can record, but also forge, its interaction with the ballot box (as in [BT94]).

As in previous formal or intuitive definitions of receipt-freeness, we assume the adver-

sary is not monitoring the interaction between the voter and the voting server. However, the

9.3. Receipt-Freeness 191

voter can record this interaction, and later on present this information (or any transformation

thereof) to the adversary.

Formally, we consider two games, Game 0 and Game 1, defined by the oracles in

Figure 9.1. In both games BB0 and BB1 are ballot boxes that start out empty. Box BB0

corresponds to the real election (that will be tallied) and BB1 is a fake ballot box which the

adversary’s task is to distinguish from BB0. In Game β the adversary has indirect access to

BBβ , that is, she can see the public part of that box at any time. The game Exp
srf,β
A,V provides

an adversary A access to the oracles defined in Figure 9.1, which intuitively proceed as

follows:

Oinit generates secret and public keys for the election; the public key is returned to the

adversary. If β = 1, it also returns auxiliary information aux to be used by a simulator

SimProof introduced below.

Oreg, on input an identifier id, initialises id’s credentials (upk,usk) by running

Register(id). It gives upk to the adversary.

Ocorrupt is used by the attacker to obtain the credentials (upk,usk) of a registered voter.

OvoteLR, a left-or-right oracle, takes two potential votes (v0,v1) for an honest user id,

produces ballots b0 and b1 for these votes and places them in the ballot boxes (one in

BB0 and one in BB1), provided that v0,v1 ∈ V.

Ocast allows the adversary to cast a ballot b on behalf of any party. If the ballot is valid

with respect to BBβ , it is placed in both ballot boxes.

OreceiptLR allows an adversarial voter id to cast a ballot b1 in BB1 and a ballot b0 in BB0.

If each ballot b0,b1 is valid with respect to its respective ballot box, then the ballots

are appended by running Append(BB0,b0) and Append(BB1,b1). This allows the

adversary to encode special instructions in the ballots that could later serve as the

basis for a vote receipt (e.g. as in [GGR09]).

Oboard models the adversary’s ability to see the publishable part of the board. It returns

Publish(BBβ).

Otally allows the adversary to see the result of the election. In both games the result is

obtained by tallying a valid BB0; the proof of correct tabulation is however simulated

in the second world, i.e., for β = 1.

192 Chapter 9. BeleniosRF

Oinit
for β = 0

(pk,sk)← Setup(1k)
return pk

for β = 1

(pk,sk,aux)← SimSetup(1k)
return pk

Oreg(id)
If id was not previously
queried, then run Register(id)
and set
U := U ∪{(id,upkid,uskid)}
return upkid.

OcorruptU(id)
On a registered voter id, output
(upkid,uskid) and set
CU := CU ∪{(id,upkid)}.

Ocast(id,b)
If Valid(BBβ ,b) =⊥ then
return ⊥. Else
Append(BB0,b)
Append(BB1,b).

OvoteLR(id,v0,v1)

If v0 /∈ V or v1 /∈ V then
return ⊥. Otherwise:
b0 := Vote(id,upkid,uskid,v0)
b1 := Vote(id,upkid,uskid,v1)
Append(BB0,b0);
Append(BB1,b1)

OreceiptLR(id,b0,b1)

If id /∈ CU return ⊥.
If Valid(BB0,b0) = ⊥ or
Valid(BB1,b1) =⊥
return ⊥. Else
Append(BB0,b0)
Append(BB1,b1)

Oboard()
Return Publish(BBβ)

Otally() for β = 0
(r,Π)← Tally(BB0,sk)
return (r,Π)

Otally() for β = 1
(r,Π)← Tally(BB0,sk)
Π′← SimProofaux(BB1,r)
return (r,Π′)

Figure 9.1: Oracles defining experiments Exp
srf,β
A,V (λ) for β = 0,1. The games differ in

the way the tallying oracle creates auxiliary data, in the board displayed to the adversary in
response to Oboard queries, and the board against which ballots are validated.

We demand that the adversary first calls Oinit, then oracles Oreg,OcorruptU,OvoteLR,

Ocast,OreceiptLR,Oboard in any order, and any number of times. Finally, A can call

Otally; after it receives its reply, A must return a guess of the bit β . The guess bit is the

result returned by the game.

Inherited from ballot privacy [BCG+15], Definition 30 uses simulators SimSetup

and SimProof to model the fact that the proof should not reveal anything, as it is “zero-

knowledge”.

Definition 30 (sRF). Let V = (Setup,Register,Vote,Valid,Append,VerifyVote,Publish,

Tally,Verify) be a voting protocol for a set ID of voter identities and a result function ρ .

We say that V has strong receipt-freeness if there exist algorithms SimSetup and SimProof

such that no efficient adversary can distinguish between games Expsrf,0
B,V (λ) and Expsrf,1

B,V (λ)

defined by the oracles in Figure 9.1; that is, for any efficient algorithm A the following is

negligible in λ : ∣∣ Pr
[
Expsrf,0

A,V (λ) = 1
]
−Pr

[
Expsrf,1

A,V (λ) = 1
]∣∣ .

9.3. Receipt-Freeness 193

In protocols with non-interactive ballot casting an adversary does not receive any out-

put from its interaction with the ballot box (apart from the public view of the protocol run),

the sRF adversary must therefore build a receipt using local data only, and before casting the

ballot. An adversary might encode arbitrary instructions in bβ , for instance making those

instructions dependent on the vote vβ ; e.g. he could set the least significant bit of bβ equal

to vβ ∈ {0,1}. Intuitively, strong receipt-freeness implies that a ballot b0 could be replaced

by a ballot b1, both submitted via the oracle OreceiptLR, without the adversary noticing.

Thus a receipt, i.e. a proof for a certain vote having been cast, cannot exist as OreceiptLR

captures all what a RF adversary can do.

This definition does not assume that the voter is capable of successfully applying some

anti-coercion strategy (in contrast to [MN06]). We believe this to be important in practice

for two reasons. First, this is of course much easier to use: with our definition, the system is

receipt-free by construction and there is no need to instruct voters how they should proceed

to lie about their vote. Second, we need not assume that revoting is allowed (our definition

accommodates any revoting policy though, including no revote). This is important since

most countries forbid revoting.

As expected, strong receipt-freeness trivially implies BPRIV privacy [BCG+15], since

BPRIV equals sRF except that there is no oracle OreceiptLR.

Helios. Under the RF definition provided in [KZZ15] the Helios protocol would be receipt-

free. In contrast, under our definition Helios is not receipt-free. Indeed, if the adversary

is allowed to cast different ballots b0,b1 to the ballot boxes BB0,BB1, respectively, then

distinguishing Game 0 from Game 1 is trivial. This is due to the fact that in Helios PBB

contains the encryption of the votes, so it suffices for an adversary to produce different

encryptions c,d and check which one is showing up when calling oracle Oboard.

Interestingly, we believe that a Helios instantiation in which voting devices are built

upon trusted hardware tokens that conceal the randomness used for encryption (as proposed

by Magkos et al. [MBC01]) satisfies sRF, when interpreting trusted tokens as preventing

A from accessing the OreceiptLR oracle—in which case sRF collapses to ballot privacy.

This shows the flexibility of our definition. Moreover, we are confident that the same result

applies to [KZZ15].

194 Chapter 9. BeleniosRF

9.4 Building Blocks

Before describing our voting scheme, we first present the necessary cryptographic building

blocks.

9.4.1 Assumptions and Primitives

We will work in asymmetric bilinear groups and assume the existence of a bilinear-group

generator GrpGen, which on input 1λ outputs (p,G1,G2,g1,g2,GT ,e), where p is a prime

of length λ , G1,G2 and GT are cyclic groups of order p, g1 is a generator of G1, g2 is a

generator of G2, and e is a bilinear map e : G1×G2→GT such that e(g1,g2) generates GT .

The following was discussed in [BLS04, p. 304] and defined in [BFPV11a].

Definition 31 (CDH+). The CDH+ assumption holds for GrpGen if for G = (p,G1,G2,

g1,g2,GT ,e)←GrpGen(1λ), and for a,b←Zp, for every p.p.t. adversary given (G,ga
1,g

a
2,g

b
1),

the probability that it outputs gab
1 is negligible in λ .

The next assumption implies the security of ElGamal encryption in both groups G1 and G2:

Definition 32 (SXDH). The Symmetric external Diffie-Hellman assumption (SXDH) holds

for GrpGen if for G = (p,G1,G2,g1,g2,GT ,e)←GrpGen(1λ), a,b,c←Zp and for both i ∈

{1,2}, p.p.t. adversaries only distinguish (G,ga
i ,g

b
i ,g

ab
i) from (G,ga

i ,g
b
i ,g

c
i) with advantage

negligible in λ .

Variant ElGamal Encryption. In this chapter we will use a variation of the ElGamal

encryption scheme from Section 3.3.5. This is to improve efficiency in the proofs that

follow. The difference is that the message now lies in the component containing the public

key instead of the one containing the generator.

We will define encryption for messages in G1 from an asymmetric bilinear group G =

(p,G1,G2,g1,g2,GT ,e) and show that it is randomizable.

KeyGen(G, i): Choose d←Zp and define P := gd
1 . Return (pk = P,dk = d).

Encrypt(P,M;r): Using randomness r ∈ Zp, output c = (c1 := gr
1,c2 := M ·Pr).

Decrypt(d,c = (c1,c2)): Output M := c2 · c−d
1 .

Random(P,c = (c1,c2);r′): Using randomness r′ ∈ Zp, output c′ := (c1 ·gr′
1 ,c2 ·Pr′).

9.4. Building Blocks 195

This scheme is IND-CPA secure assuming hardness of DDH in G1, which fol-

lows from SXDH. It is perfectly randomizable as Random(pk,Encrypt(pk,M;r);r′) =

Encrypt(pk,M;r+ r′).

Groth-Sahai Proofs. Groth-Sahai (GS) proofs [GS08] allow us to prove satisfiability of

equations involving group elements from G1 or G2 and scalars. We will use them to prove

consistency and knowledge of encryptions. On input a bilinear group G, SetupGS outputs

a common reference string (CRS) crs ∈ G4
1×G4

2. The CRS is used to commit to group

elements X ∈ G1, which we denote by C1(X), and elements Y ∈ G2, denoted by C2(Y).

Moreover, C′i(x) denotes a commitment to a scalar, which can be made in G1 (i = 1) and G2

(i = 2). The GS system lets us prove that committed values satisfy certain equations.

Under a CRS computed via SetupGS, commitments are perfectly binding and the

proofs are perfectly sound. That is, the values uniquely determined by the commitments

satisfy the proved equation. Moreover, the committed values can be extracted using an

extraction trapdoor ξ that can be computed together with the CRS. We denote this by

(crs,ξ)←Setup
(x)
GS (G).

There is an alternative CRS-generation algorithm Setup
(h)
GS , which outputs (crs′, td).

Commitments made under crs′ contain no information about the committed value and the

trapdoor td allows simulation of proofs. As CRSs output by SetupGS and Setup
(h)
GS are indis-

tinguishable under SXDH, GS proofs are computationally zero-knowledge. Moreover, GS

proofs are randomizable [FP09], that is, given commitments and proofs, one can (without

knowing the witness) create a fresh set of commitments and proofs.

9.4.2 Signatures on Randomizable Ciphertexts

The primitive introduced by Blazy et al. [BFPV11a] consists of the following algorithms:

Setup, on input the security parameter 1λ , outputs the parameters (such as the bilinear

group); SKeyGen outputs a pair of signing key and verification key (sk,vk), EKeyGen out-

puts a pair of encryption and decryption key (pk,dk). SKeyGen together with Sign and

Verify constitutes a signature scheme and EKeyGen with Encrypt and Decrypt a public-key

encryption scheme.

As the signature and the encryption scheme are used together, these algorithms have

extensions Sign+ and Verify+, which additionally take the encryption key pk as input; and

Encrypt+, Decrypt+, which also take the verification key vk.

Randomizability. The main feature of signatures on randomizable ciphertexts (SRC) is an

196 Chapter 9. BeleniosRF

algorithm Random+, which takes pk, vk, a ciphertext c under pk and a signature σ on c

valid under vk, and outputs a re-randomization c′ of c together with a signature σ ′, valid

on c′.

An output of Random+ is distributed like a fresh encryption of the plaintext of c and

a fresh signature on it; formally, for all messages m, (pk,dk) ∈ [EKeyGen(G)], (vk,sk) ∈

[SKeyGen(G)], c ∈ [Encrypt+(pk,vk,m)], σ ∈ [Sign+(sk,pk,c)], the following two random

variables are equally distributed:

 c′←Encrypt+(pk,vk,m);

σ ′←Sign+(sk,pk,c′);
: (c′,σ ′)

≈ [(c′,σ ′)←Random+(pk,vk,c,σ) : (c′,σ ′)
]

.

Unforgeability. Unforgeability of signatures on randomizable ciphertext is defined via the

following experiment: The challenger computes a signature key pair and an encryption key

pair (sk,vk), (dk,pk) and runs the adversary on (vk,pk,dk). It is also given access to an

oracle Sign+(sk,pk, ·), which it can query adaptively on ciphertexts c1, . . . ,cq of its choice.

Finally, the adversary outputs a pair (c∗,σ∗) and wins if Verify+(vk,pk,c∗,σ∗) = 1 and

m = Decrypt+(dk,vk,c∗) is different from all mi := Decrypt+(dk,vk,ci).

9.5 Our SRC Construction

At a high level, we need a construction that enforces our restricted message space and is

malleable enough to be re-randomised but no more. The first requirement ensures that

voters can only submit valid ballots, while the second gives us privacy via randomization

while preventing copying or tampering attacks. Specifically, we use GS proofs to ensure

validity and prevent copying or producing ballots related to those of another user. We use

signatures to ensure integrity, meaning a randomiser cannot change the ballot contents.

9.5.1 Asymmetric Waters signature scheme.

Blazy et al. [BFPV11a] define a variant of Waters’ signature scheme [Wat05] for asym-

metric groups that is perfectly randomizable and which they prove secure under the CDH+

assumption.

Setup(1λ ,1k): To sign messages m = (m1, . . . ,mk) ∈ {0,1}k, generate (p,G1,G2,g1

,g2,GT ,e)←GrpGen(1λ), choose z←G1, u = (u0, . . . ,uk)← Gk+1
1 , define F(m) :=

u0 ∏
k
i=1 umi

i . Output pp = (p,G1,G2,GT ,e,g1,g2,z,u).

9.5. Our SRC Construction 197

SKeyGen(pp): Choose x←Zp, define X1 := gx
1, X2 := gx

2, Y := zx; output the public key

vk = (pp,X1,X2) and the secret key sk = (pp,Y).

Sign(sk = (pp,Y),m;s): For randomness s ∈ Zp, return the signature σ defined as

(
σ1 := Y ·F(m)s, σ2 := gs

1, σ3 := gs
2
)
.

Verif(vk = (pp,X1,X2),m,σ): Output 1 if both of the following hold and 0 otherwise:

e(σ1,g2) = e(z,X2) · e(F(m),σ3) e(σ2,g2) = e(g1,σ3)

Random((pp,X1,X2),F,σ ;s′): For randomness s′ ∈ Zp, output σ ′ := (σ1 ·Fs′ , σ2 ·gs′
1 , σ3 ·

gs′
2).

Note that for Random it suffices to know the hash F = F(m) of the signed message. The

scheme is perfectly randomizable, as for any ((pp,X1,X2),(pp,Y)) ∈ [SKeyGen(pp)] and

m,s,s′ we have Random((X1,X2),F(m),Sign(Y,m;s),s′) = Sign(Y,m;s+ s′).

Remark 4. Blazy et al. [BFPV11a] show that their signature scheme also satisfies a

(stronger) EUF-CMA notion, where the adversary’s signing queries are of the form

(m,R,T) and if e(T,g2) = e(R,X2) then the oracle returns an additional signature element

σ4 = Rs.

9.5.2 Our SRC scheme.

We will combine ElGamal encryption, Groth-Sahai proofs and Waters signatures to create

an SRC scheme. Our construction extends that of [BFPV11a], so that it immediately yields

an RCCA-secure encryption scheme (defined below) and ultimately a strongly receipt-free

e-voting scheme.

Our scheme is defined for a polynomial-size message spaceM = {0,1}k, that is, we

assume k to be logarithmic in the security parameter. Messages m are encrypted as ElGamal

ciphertexts of F(m). Decryption works by decrypting a ciphertext to F and then looking for

m with F = F(m). We define a function H and add a third ciphertext element c3 = H(vk)r,

which will tie the ciphertext to the verification key for which it is produced.

We moreover add Cm, Groth-Sahai commitments to the message bits, and a commit-

ment CT to X r
1 , which is needed for the security reduction (it corresponds to T from Re-

mark 4). Finally, we add GS proofs which show consistency of these commitments, and

198 Chapter 9. BeleniosRF

consistency of the additional ciphertext element c3. In more detail, in order to show a com-

ponent Cmi of Cm contains a bit, we require commitments in both groups (C1,m,i,C2,m,i) and

proofs π ′i . A commitment Cr to the randomness r is used to prove consistency of the values

c1 with Cr, c2 with Cr and {Cm,i}k
i=1, c3 with Cr, as well as CT with X1 and Cr.

Now, given ciphertext elements c1 = gr
1 and c2 = F(m) ·Pr, the crucial observation is

that, due to the interoperability of ElGamal encryption and Waters signatures, a signer can

produce an encryption of a signature on the plaintext, without knowing the latter: setting

σ1” = cs
1 = grs

1 and σ2 := Y · cs
2 = Y · F(m)s ·Prs yields an encryption under P of the first

Waters signature element Y ·F(m)s. This is completed to a full signature by (gs
1,g

s
2). Finally,

in order to enable full randomization of ciphertext/signature pairs, we also include Ps in the

signature.

Let Setup (for Waters signatures), SetupGS (for Groth-Sahai proofs) and KeyGen (for

ElGamal encryption) be defined as above, and H : {0,1}?→G1 be defined as

H(x) := h1 ·hH ′(vk)
2 (9.1)

for h = (h1,h2) ∈G2
1 and a collision-resistant hash function H ′ : {0,1}?→ Zp. Our scheme

is given in Figure 9.2. It is based on the scheme from [BFPV11a], to which we add the cru-

cial ciphertext elements c3 and πV . Unforgeability still holds, as the reduction can program

the random oracle so it knows the logarithm of H(vk), and thus simulate c3.

We omit the specific structure of the proofs in πππ as they will not be relevant to the rest

of this work. Informally, πm ensures the message is valid, and πT and πV tie the ciphertext

to vk. Under a binding CRS, the bitwise commitments enable us to extract the message

even in the absence of the decryption key.

Theorem 17. The SRC scheme (Setup,EKeyGen,SKeyGen,Encrypt+, Decrypt+, Sign+,

Verify+, Random+) defined in Figure 9.2 is unforgeable under the CDH+ assumption.

Remark 5. We will prove a stronger statement, namely that our SRC scheme is unforgeable

even when the adversary only needs to output a “partial” forgery (c1,c2,{C1,m,i,C2,m,i},

Cr,πr,πm),(σ1,σ2,σ3,σ4), i.e., it need not contain c3,CT ,πT ,πV and σ5.

Moreover, note that one can also decrypt ciphertexts using the extraction trapdoor ξ

for GS proofs to recover m from Cm, sidestepping the inefficient hash inversion. We let

EKeyGen(x) denote key generation that returns ξ instead of dk.

9.5. Our SRC Construction 199

EKeyGen(1λ ,1k):
pp := (G,z,u)←Setup(1λ ,1k)

crs←SetupGS(G); h←G2
1

(P,dk)←KeyGen(G,1)
return pk := (pp,crs,h,P), dk.

Encrypt+((pp,crs,h,P),vk = (pp,X1,X2),m;r):
Compute, with H defined by h as in (9.1):

c1 := gr
1 c2 := F(m) ·Pr

c3 := H(vk)r

Make commitments C: For i = 1, . . . ,k:

C1,m,i := C′1(mi) C2,m,i := C′2(mi)

CT := C1(X r
1) Cr := C′2(r)

Compute GS proofs πππ for the following
(with r being the value committed in Cr;
mi in C2,m,i; and w in CT):
• πr proves gr

1 = c1.
• πm consists of:

π ′i proving mi is a bit for all i;
π ′m proving c2 = u0 ∏

k
i=1 umi

i ·Pr.
• πT proves X r

1 = w.
• πV proves H(vk)r = c3.

Return c := (c1,c2,c3,C,πππ).

Sign+(sk = (pp,Y),(pp,crs,h,P),c;s):
If πππ is not valid for C,vk,P, return ⊥.
Else return

σ1 := cs
1 σ2 := Y · cs

2 (9.2)

σ3 := gs
1 σ4 := gs

2 σ5 := Ps

Random+(vk,(pp,crs,h,P),c,σ ;(r′,s′)):
Let c = (c1,c2,c3,C,πππ); set:

c1
′ := c1 ·gr′

1 c2
′ := c2 ·Pr′

c3
′ := c3 ·H(vk)r′

σ1
′ := σ1 · cs′

1 ·σ r′
3 ·gr′·s′

1

σ2
′ := σ2 · cs′

2 ·σ r′
5 ·Pr′·s′

σ3
′ := σ3 ·gs′

1 σ4
′ := σ4 ·gs′

2

σ5
′ := σ5 ·Ps′

Set C′r = Cr · C2(r′), adapt πr,πT ,πV ac-
cordingly.
Randomise all commitments and proofs
to C′ and πππ ′.
Return (c′1,c

′
2,c
′
3,C
′,πππ ′) and σ ′.

Verify+((pp,X1,X2),(pp,crs,h,P),
(c1,c2,c3,C,πππ),σ):

Return 1 iff πππ verifies and the following
hold:

e(σ1,g2) = e(c1,σ4) (9.3a)

e(σ2,g2) = e(z,X2)e(c2,σ4) (9.3b)

e(σ3,g2) = e(g1,σ4) e(σ5,g2) = e(P,σ4)

(9.3c)

Decrypt+(dk,(pp,crs,h,P),vk,c):
Let c = (c1,c2,c3,C,πππ).
If πππ is not valid, return ⊥
Else let F := Decrypt(dk,c = (c1,c2));
browse M and return the first m with
F(m) = F .

Figure 9.2: Our SRC scheme

Proof. The proof is by reduction from unforgeability of Waters signatures. The reduction

obtains a verification key vk including parameters pp. It simulates EKeyGen by running

(crs,ξ)←Setup
(x)
GS (G), (P,d)←KeyGen(G,1) and choosing h←G2

1, and runs the adversary

on vk,pk := (pp,crs,h,P) and dk := d. If the adversary queries a signature on a valid tuple

c = (c1,c2,c3,C,πππ), the reduction uses ξ to extract m and T = X r
1 from C (note that by

soundness of πππ , we have m = Decrypt+(dk,vk,c)). The reduction makes a special query,

as defined in Remark 4, (m,c1,T) to its signing oracle (note that c1,T satisfy e(T,g2) =

e(c1,X2)); it obtains a signature (τ1 = YF(m)s,τ2 = gs
1,τ3 = gs

2,τ4 = cs
1); it defines (letting

r be the unknown randomness in (c1,c2,c3)) σ1 := τ4 = grs
1 , σ2 := τ1 · τd

4 = YF(m)sPrs,

σ3 := τ2 = gs
1, σ4 := τ3 = gs

2, σ5 := τd
2 = Ps, which is distributed as an SCR signature on c.

200 Chapter 9. BeleniosRF

Let {m1, . . . ,mq} be the extracted (equivalently: decrypted) messages of the signing

queries. Assume the adversary outputs a (partial) valid forgery, namely one which only

contains (c1,c2,σ1,σ2,σ3,σ4), commitments Cm,Cr and proofs πr,πm. The reduction ex-

tracts m from Cm. Then soundness of πr and πm ensures that for some r we have c1 = gr
1

and c2 = F(m)Pr (and thus m = Decrypt+(dk,vk,c)).

Moreover, let s be such that σ4 = gs
2. Since the forgery is valid, from Verify+ we

have: σ1 = grs
1 (from (9.3a)), σ2 = YF(m)sPrs (from (9.3b)) and σ3 = gs

1 (from (9.3c)).

The reduction sets σ∗1 := σ2 ·σ−d
1 =YF(m)s, σ∗2 := σ3 = gs

1 and σ∗3 := σ4 = gs
2 and returns

(m,σ∗). This is a valid Waters forgery, as σ∗ is valid for m and m /∈ {m1, . . . ,mq} (otherwise

the adversary would not have won the SRC unforgeability game).

9.5.3 RCCA-Secure Encryption from SRC

As a next step towards our voting protocol, we show that our SRC scheme, contrary to

the one from [BFPV11a], yields an RCCA-secure [CKN03] encryption scheme, as defined

next.

CCA-security (Sect. 3.3.6) is the standard notion for public-key encryption and im-

plies that ciphertexts are non-malleable. It states that for an efficient adversary which after

choosing m0,m1 receives c∗ it should be impossible to decide whether c∗ encrypts m0 or m1,

even when given an oracle that decrypts any ciphertext c 6= c∗. For randomizable schemes

this notion is unachievable, as the adversary could submit a randomization of the chal-

lenge ciphertext to the decryption oracle. The strongest achievable notion for randomizable

schemes is RCCA, where whenever the oracle receives an encryption of m0 or m1, it returns

a special symbol >.

Based on our SRC scheme (Sect. 9.5.2) we define the following candidate RCCA en-

cryption scheme for a polynomial-size message space {0,1}k, and show it to be secure. The

construction is a shim designed to adapt SRC to RCCA which is necessary as SRC and

RCCA have different functionalities.

KeyGen is defined as EKeyGen.

Encrypt(pk,m): Run (vk,sk)←SKeyGen(pp); c←Encrypt+(pk,vk,m);σ←Sign+(sk,pk,c);

return c = (c,σ ,vk).

Decrypt(dk,(c,σ ,vk)): If Verify+(vk,pk,c,σ)=1, return m := Decrypt+(dk,vk,c); else

return ⊥.

9.6. BeleniosRF 201

Random is defined as Random+.

The adversary is free to create fresh vk,sk and run Encrypt itself or use it as an oracle

(representing an attack against users with unknown secret keys).

Theorem 18. The above encryption scheme for polynomial-size message spaces is RCCA-

secure under the SXDH and the CDH+ assumption.

Proof. Intuitively, ciphertexts hide the message, since under SXDH we could replace the

commitments and proofs in the challenge ciphertext by simulated ones and under DDH, we

could replace c2 = F(m)Pr by a random element, so the ciphertext would contain no more

information about the message. The difficulty is that we need to simulate the decryption

oracle. For this we program the hash function H: let vk∗ be the key contained in the

challenge ciphertext; we choose a,b←Zp and set h1 = P−a·H ′(vk∗) · gb
1 and h2 = Pa, which

is distributed correctly and set H(vk) = Pa(H ′(vk)−H ′(vk∗)) ·gb
1. For a well-formed ciphertext

containing vki 6= vk∗, we then have c2 · (c3 ·c−b
1)−1/(a(H ′(vk)−H ′(vk∗))) = c2 ·P−r = c2 ·c−d

1 =

Decrypt(d,(c1,c2)), meaning we can use c3 to decrypt without knowing d; for the challenge

ciphertext under vk∗ we have c3 = gbr
1 , so we can embed a DDH challenge.

The reduction can thus answer decryption queries containing some vk 6= vk∗, but not

if it contains vk∗. However, if an adversary submits a valid ciphertext with vk∗ which does

not encrypt the challenge message, then it would break SRC unforgeability, so security of

our SRC scheme implies that the adversary cannot make this type of query.

9.6 BeleniosRF
In this section we define Belenios Receipt-Free (BeleniosRF), a strongly receipt-free voting

protocol that builds on [BFPV11a, CGGI14].

9.6.1 Overview

The election public/secret key pair (pk,sk) is an encryption/extraction key pair generated

via EKeyGen(x) (i.e the extractable variant of the key genarator – cf. Remark 5), and user

key pairs (upk,usk) are signature keys generated by SKeyGen. A user casts a vote by

encrypting it via Encrypt+ under pk w.r.t. his upk, and uses usk to then sign the ciphertext

via Sign+ (together, this corresponds to a ciphertext of our RCCA encryption scheme from

Section 9.5.3).

When the ballot box receives a valid ballot, it randomises it via Random+ and imme-

diatelly publishes the resulting ciphertext/signature pair on the public bulletin board PBB.

202 Chapter 9. BeleniosRF

Users can verify that their vote is present, since they can verify the adaptation of their sig-

nature on their now-randomised ciphertexts.

Tallying follows standard techniques of e-voting: our construction allows for homo-

morphic tallying as well as shuffling. In the first case, we take advantage of the special

structure of GS commitments, which allow us to calculate a partial tally for each option

by adding the corresponding commitment across voters, and then decrypting the resulting

commitment (with proof of correctness).

Using shuffling, the encrypted votes are re-randomised and shuffled (and a proof of

correct execution of this is generated) via an algorithm Shuffle. Then the ballots are de-

crypted (again accompanied with a proof that this was done correctly) and the result is

published. These proofs make the tallying process publicly verifiable.

We now describe the homomorphic tallying version, where V= {0,1}k, and the result

function is simple vector addition.

The scheme VBeleniosRF is based on the SCR scheme from Section 9.5 and consists of

the following algorithms:

Setup(1λ ,1k): Compute (pk,sk)←EKeyGen(x)(1λ ,1k), produce a Fiat-Shamir random or-

acle proof Πσ that crs, contained in pk, is binding. Return (pk∗ = (pk,Πσ),sk).

Register(id): On (implicit) input pk=(pp,crs,h,P), the user runs (upkid,uskid)←SKeyGen(pp)

and produces πid, a Fiat-Shamir random oracle proof proof that user id knows uskid corre-

sponding to upkid. The registrar checks πid and if it is valid and upkid /∈ L it adds upkid to

L.

Vote(id,upk,usk,v) is used by a voter to create a ballot b for vote v ∈ V. It computes

c← Encrypt+(pk,upk,v) and σ ← Sign+(usk,pk,c); and returns b := (id,upk,c,σ).

Valid(BB,b) first checks that the ballot b is valid, i.e., that it is well-formed and the signature

is correct. Formally, it parses b as (id,upk,c,σ) and checks if

– id corresponds to an eligible voter from ID and upk corresponds to the registration of

user id;

– Verify+(upk,pk,c,σ) = 1.

If any step fails, it returns ⊥; otherwise, it returns >.

Append(BB,b = (id,upk,c,σ)) randomises (c,σ) as (c′,σ ′) ← Random+(upk,pk,c,σ)

and appends to BB a randomised version b′ = (id,upk,c′,σ ′) of b.

9.6. BeleniosRF 203

Publish(BB) takes every entry b=(id,upk,c,σ) in BB and removes elements id,c3,CT ,πT ,πV

and σ5, constructing b̂ :=
(
upk,(c1,c2,Cm,Cr,πr,πm),(σ1,σ2,σ3,σ4)

)
. It then adds b̂ to

PBB,2 and returns PBB.

VerifyVote(PBB, id,upk,usk,b) browses PBB for an entry b̂ containing upk. If none exists,

it returns ⊥. For entry b̂ :=
(
upk=(pp,X1,X2),(c1,c2,Cm,Cr,πr,πm),(σ1,σ2,σ3,σ4)

)
if πr

and πm are valid and

e(σ1,g2) = e(c1,σ4) e(σ2,g2) = e(z,X2) · e(c2,σ4) e(σ3,g2) = e(g1,σ4)

then return >, else return ⊥.

Tally(BB,sk) consists of the following steps. Let N be the number of ballots.

– Parse each ballot b ∈ BB as b = (id(b),upk(b),c(b),σ (b)).

– If there is any ballot b that does not pass Valid(BB,b), output (r =⊥,PBB,Πd = /0).

– Let {C(b)
1,m,i}k

i=1 be the commitments in C(b)
m contained in c(b). Compute Ti :=

∑b∈BBC(b)
1,m,i. The tally ti for candidate i is produced by decrypting Ti with the GS

extraction key ξ = sk.

– Produce the result r = (t1, . . . , tk) and Πd , a Fiat-Shamir proof of correct extraction.

– Output (r,PBB,Πd).

Verify(PBB,r,Πσ ,Πd) simply verifies Πσ w.r.t. crs and Πd w.r.t. PBB and the result r.

9.6.2 Receipt-Freeness

We now show that BeleniosRF satisfies strong receipt-freeness, as defined in Definition 30.

Note that this in particular implies vote privacy of BeleniosRF.

Theorem 19. VBeleniosRF is strongly receipt-free under the SXDH assumption in the

random-oracle model.

Proof. The proof uses the ideas of that of Theorem 18. The main one is again to use hash-

function programmability and to decrypt a ciphertext (c1,c2,c3) using components c2 and

c3 instead of the GS commitments. This will allow us to switch to a hiding CRS, for which

the commitments would not be extractable. By randomizability of our SCR scheme and of

2As noted in Remark 5, these are precisely the elements that guarantee unforgeability, which assures a voter
that the plaintext of his encrypted vote was not altered.

204 Chapter 9. BeleniosRF

Groth-Sahai proofs, instead of re-randomizing the ballots in PBB, we can simply recompute

them. Finally, having switched to a hiding CRS and a simulated ROM proof thereof, we are

able to replace the adversary’s view with uniformly distributed values, irrespective of β .

We proceed by a sequence of hybrid games, which we show are indistinguishable:

Hybrid (βββ ,0) is the sRF game Exp
srf,β
A,V (Definition 30 and Figure 9.1).

Hybrid (βββ ,1) is the same game as Hybrid (β ,0) for β = 1; for β = 0 the difference is that

the Fiat-Shamir proofs for the CRS and the tally are simulated.

Hybrid (β ,0) → Hybrid (β ,1): Since ROM proofs can be perfectly simulated by using

random-oracle programmability, the two hybrid games are distributed equivalently.

Hybrid (βββ ,2) is defined as Hybrid (β ,1), except for how h is chosen. For a,b←Zp we

define h1 := gb
1 and h2 := Pa (as in Theorem 18 but setting H ′(vk∗) := 0).

Hybrid (β ,1)→ Hybrid (β ,2): It is immediate that both games are distributed equivalently.

Hybrid (βββ ,3) is defined as Hybrid (β ,2), but the result is computed differently: each ballot

bi = (idi,upki,ci,σi) is decrypted as Fi := ci,2 · (ci,3 · c−b
i,1)
−1/(a·upki) and vote vi is defined as

the smallest vi ∈ {0,1}k satisfying F(vi) = Fi. The result is r = (t1, . . . , tk) with t j = ∑i vi, j.

Hybrid (β ,2) → Hybrid (β ,3): Perfect soundness of the GS proofs contained in ci guar-

antees that this alternative way of decryption leads to the same result as extracting the bits

of vi from the commitments (we ignore collisions in F which only occur with negligible

probability).

Hybrid (βββ ,4) is defined as Hybrid (β ,3), except that PBB is computed differently: for ballot

bi, after extracting vi, instead of re-randomizing bi, we freshly compute b̂i for user i with

uski = (pp,Yi) as follows: we pick ri,si←Zp to set

ci,1 := gri
1 ci,2 := F(vi) ·Pri σi,1 := csi

1 σi,2 := Yi · csi
2 σi,3 := gsi

1 σi,4 := gsi
2

and using witnesses ri and vi, we compute Ci,m,Ci,r and πi,r,πi,m. We set b̂i =
(
upki,(ci,1,ci,2,

Ci,m,Ci,r,πi,r,πi,m),(σi,1,σi,2,σi,3,σi,4)
)
.

Hybrid (β ,3) → Hybrid (β ,4): By re-randomizability of our SCR scheme and GS proofs,

re-randomised ciphertexts, signatures and proofs are distributed exactly as freshly computed

ones. The two hybrids are thus equally distributed.

9.6. BeleniosRF 205

Hybrid (βββ ,5) is defined as Hybrid (β ,4), except that the CRS contained in pk is set up in

hiding mode, i.e., computed via Setup
(h)
GS .

Hybrid (β ,4)→ Hybrid (β ,5): By the properties of GS proofs, the two hybrids are indistin-

guishable under the SXDH assumption.

Hybrid (βββ ,6) is defined as Hybrid (β ,5), except that the commitments and proofs published

in PBB are simulated.

Hybrid (β ,5)→Hybrid (β ,6): By the properties of GS proofs, under a hiding CRS regularly

computed proofs and simulated proofs are distributed equivalently; the two hybrids are thus

equally distributed.

Hybrid (βββ ,7) is defined as Hybrid (β ,6), except that for every i, when computing PBB

entry b̂i, ci,2 is computed as ci,2 := F(vi) ·gwi
1 for wi←Zp.

Hybrid (β ,6) → Hybrid (β ,7): The two hybrids are indistinguishable under the DDH as-

sumption in G1, which is proved as follows: we first note that in Hybrid (β ,6), d (the

decryption key with P = gd
1) is not used anywhere, and ri is only used to compute ci,1 and

ci,2 (since the GS commitments and proofs are simulated).

We give a reduction from DDH to distinguishing Hybrids 6 and 7. Let (P = gd
1 ,R =

gr
1,W) be a DDH instance, where either W is random or W = gd·r

1 . By random self-

reducibility of DDH [BBM00] we can create arbitrarily many instances (P,Ri,Wi), where

Ri = gri
1 for some uniformly random ri, and Wi is independently random if W was, or

Wi = gd·ri
1 if W = gd·r

1 .

The simulator now sets pk := (pp,crs,P), with P from the instance, and ci,1 := Ri and

ci,2 := F(vi) ·Wi. If Wi = Pri then this is distributed as in Hybrid (β ,6), whereas if Wi is

random, this is distributed as in Hybrid (β ,7).

Observe that Hybrid (0,7) and Hybrid (1,7) are equally distributed, since in both games

every ciphertext (ci,1,ci,2) is a uniformly random pair. We have thus constructed a sequence

of hybrid games Hybrid (0,0), . . . , Hybrid (0,7), Hybrid (1,7), . . . , Hybrid (1,0) which are

indistinguishable under SXDH and of which the first one corresponds to the sRF game

with β = 0 and the last is the sRF game with β = 1. This concludes the proof of strong

receipt-freeness of BeleniosRF.

Remark 6. We note that our scheme can be easily modified and proven secure in the stan-

dard model if we assume a trusted CRS: drop Πσ in Setup and use GS proofs for Πd .

206 Chapter 9. BeleniosRF

9.6.3 Verifiability

We consider strong verifiability from [CGGI14], which intuitively ensures that the result of

the election reflects the votes of:

• All voters who properly checked that their ballot appears in the bulletin board at the

end of the election. In BeleniosRF, a voter should check that one ballot in PBB is

signed with her credential.

• A subset of the voters who did not perform that final check. A voters may stop after

casting her vote, thus there is no guarantee that her ballot made it into the ballot box.

However, if the ballot is present, it should not be possible to modify the corresponding

vote.

• At most all corrupted voters. In particular, an adversary should not be able to add

more votes than the number of voters he controls.

We refer the reader to [CGGI14] for the formal definition and point out that strong veri-

fiability assumes that voting devices are honest. We first note that BeleniosRF cannot be

strongly verifiable if revoting is allowed. Indeed, if a voter first casts a ballot b1 for a can-

didate v1, but later changes her mind and votes for v2, casting a new ballot b2, a malicious

voting server may force the voter to keep the initial vote v1 by re-randomizing b1 instead of

b2, and the voter would not be able to detect it. Therefore, in what follows, we assume that

a no-revote policy is applied. We believe that no-revoting is not a real restriction since, as

discussed in the introduction, this actually corresponds to the most common setting used in

practice. By slightly generalizing the strong-verifiability transformation in [CGGI14, Sec-

tion 4], we are able to show:

Theorem 20. BeleniosRF is strongly verifiable, if the underlying signature on randomiz-

able ciphertexts scheme is unforgeable and either: (a) the ballot box is honest or (b) the

registration protocol is zero-knowledge.

Let us summarise the main ideas behind our argument. The transformation to strong

verifiability in [CGGI14] consists in the voter signing with her private signing key usk a

ballot b obtained via an existing voting protocol that is weakly verifiable (roughly speaking,

weak verifiability assumes that the voting server is honest, e.g., it does not modify nor erase

ballots). Next, the voter sends the triple (upk,b,σ) to the voting server. The latter, after

validating the ballot b and verifying its signature σ , adds the triple (upk,b,σ) to the ballot

9.7. Efficiency of BeleniosRF 207

box. At the end of the election, the voter checks that her ballot (upk,b,σ) appears in PBB

by a simple search. (i.e. she checks that (upk,b,σ) ∈ PBB).

We generalise this transformation by allowing the voting server to add a transformed

triple (upk,b′,σ ′) to the ballot box on input the voter’s ballot (upk,b,σ), such that poten-

tially b 6= b′ and σ 6= σ ′ (in the original construction, one simply sets b′ = b and σ ′ = σ). In

our generalised transformation, the voter on input her cast ballot (upk,b,σ) checks whether

there exists an entry (upk,b′,σ ′) in PBB such that (b′,σ ′) verifies under her key upk. Due

to unforgeability of randomizable signatures on ciphertexts (cf. Section 9.5) and because of

the no-revoting policy, this check guarantees that the new ballot b′ displayed in the bulletin

board contains the same vote as the original ballot b cast by the voter.

If we opt to use an issuing (as opposed to an endorsing) registar, strong verifiability

assumes that either the ballot box (i.e. the re-randomization server) or the registrar is honest.

As pointed out in Section 9.2, the security of the generalised transformation described in

the previous paragraph is jeopardised if this trust assumption is violated, as the existence

of an entry (upk,b′,σ ′) in PBB would no longer guarantee that b′ contains the choice cast

by the voter. In fact, an attacker controlling both an issuing registar and the voting server

can insert entries (upk,b′,σ ′) in PBB that pass all tests but modified the voter’s choice.

This is due to the fact that the registrar knows each voter’s private signing key. An obvious

countermeasure is to let each voter generate their own signing key pair and simply ask the

registrar to include the corresponding verification key in the list of eligible keys for the

election.

Alternatively, one can thresholdise the role of the registrar (who simply sends a private

signing key to each voter) so it becomes less likely for the attacker to obtain a voter’s private

key.

9.7 Efficiency of BeleniosRF

The ballot encryption scheme we introduced is somewhat involved, especially since we

use bit-by-bit Groth-Sahai proofs. For this reason, we benchmarked ballot creation on a

number of potential client devices. We built a JavaScript implementation [bel16] of the

voting process (encrypt, sign, prove) using the CertiVox IoT Crypto Library [Cer15]. We

used a BN curve on a 254-bit prime field. We considered the values k = 1,5,10 and 25. For

homomorphic tallying, as used in Section 9.6, k represents the number of candidates in an

election. If we switch to shuffle-based tallying, k is the length of the message, which means

208 Chapter 9. BeleniosRF

we can support up to 2k candidates.

As seen in Table 9.1, recent devices can complete the required cryptographic opera-

tions in reasonable time for small values of k. We see that while the linear cost associated

with the message size is the dominant factor, the constant factor is not negligible for low-end

devices. While slower than the current Helios or Belenios implementation (which do not

use elliptic curves), performance is acceptable, especially for modern devices. Moreover,

we note that our implementation is single-threaded with only rudimentary optimizations

(e.g taking advantage of the fact that the message bits must be 0 or 1). By constructing

proofs incrementally as the ballot is filled, we could amortise the linear part of the cost.

Alternatively, we may increase performance by coding a native client, e.g. a smartphone

app.

We expect that server performance for BeleniosRF will be less of a bottleneck. Com-

pared to Helios, the main additional cost is verifying our Groth-Sahai proofs, which is dom-

inated by ca. 64(k + 1) pairings, reducible to 4(k + 35) using techniques from [BFI+10]

and [GHR15]. Given the timings provided by Beuchat et al. [BGDM+10], we expect a

throughput of roughly 5 ballots/second/core for k = 10. Additionally, checks can be amor-

tised throughout the voting period, as ballots come in.

9.8 The Blazy et al. Voting Protocol is not Ballot-Private

Blazy et al. [BFPV11a], who introduced the notion of signatures on randomizable cipher-

texts, proposed to use this primitive for a receipt-free e-voting protocol. Their ballot-

creation and -casting protocol workflow is as follows:

• The voter sends ballot

b =
(
vk, c = {v}r

pk, σ
vk,s
c ,π

t,v∈{0,1}
pk

)
,

Device k = 1 k = 5 k = 10 k = 25
2013 Laptop –i7-4650U 1.00s 2.43s 4.02s 9.24s
2010 Desktop –i3-530 1.49s 3.46s 5.92s 13.62s
2014 Tablet –Exynos 5420 6.97s 12.91s 21.92s 47.26s
2016 Phone –SD 810 2.75s 6.26s 10.39s 22.19s
2014 Phone –SD 801 5.55s 13.12s 22.70s 48.06s
2012 Phone –A6 9.04s 18.65s 29.96s 63.77s

Table 9.1: Time to encrypt, sign and perform GS proofs for ballots with a k-bit payload.
This allows for up to k candidates with homomorphic tallying, or 2k using shuffles.

9.9. Conclusions 209

where r,s, t ∈Zp denote the randomness used for encrypting the vote v, signing the resulting

ciphertext c and creating the NIZK proof π , respectively.

• The server re-randomises the ballot b to b′ as follows:(
vk, c = {v}r′

pk, σ
vk,s′
c , π

t ′,v∈{0,1}
pk

)
, where r′,s′, t ′←Zp.

Similarly to BeleniosRF, the server can only re-randomise legitimate signatures, mean-

ing that any new ballot b′ that contains a valid signature w.r.t. vk must originate from a ballot

b that has been previously created by the voter, and thus b and b′ contain the same vote.

An attack on ballot privacy. However, the above ballot casting workflow is not ballot

private, let alone receipt-free. The following is a ballot replay attack, which is known to

break ballot privacy [CS11]:

• Honest voter sends b =
(
vk, c = {v}r

pk, σ
vk,s
c ,π

t,v∈{0,1}
pk

)
.

• Server re-randomises the ballot b as

b′ =
(
vk, c = {v}r′

pk, σ
vk,s′
c , π

t ′,v∈{0,1}
pk

)
and displays it on the public bulletin board.

• Dishonest voter with credentials (v̄k, s̄k) and knowledge of target ballot b′

– Copies c = {v}r′
pk, π

t ′,v ∈{0,1}
pk and re-randomises it to c̄ = {v}r̄

pk, π
t̄,v ∈{0,1}
pk ;

– Signs c̄ with s̄k yielding σ
v̄k,s̄
c̄ ;

– Sends ballot b̄ =
(
vk, c̄ = {v}r̄

pk, σ
v̄k,s̄
c̄ , π̄

t̄,v ∈{0,1}
pk

)
.

These instructions allow any voter with knowledge of a ballot b to produce an

independent-looking ballot b̄, that will be accepted by the voting server and effectively

contains a copy of the vote in b. Thus, the voting protocol [BFPV11a] is not ballot-private.

(Note that due to re-randomizing being allowed, the ballot box cannot discard copied votes,

as they look like legitimate ones.)

9.9 Conclusions
We introduced the notion of strong receipt-freeness, where a malicious voter (i.e. vote-

selling or coerced) cannot produce a receipt proving how she voted, whether the voter de-

cided to act maliciously before, during or after casting the ballot. Even if the voter reveals

to the coercer/vote-buyer the randomness used to seal the vote, the adversary cannot be

convinced that the revealed coins correspond to the actual randomness used by the voter.

210 Chapter 9. BeleniosRF

Our adversarial model is close to the spirit of the seminal work on receipt-freeness

by Benaloh and Tuinstra [BT94]. Moreover, our definition builds on the recent work

[BCG+15], inheriting a simple, concise, and game-based definition. Such definitions are

well-known for easing the job of conceiving and writing security proofs; a point we confirm

by giving a new e-voting protocol that satisfies our definition in bilinear groups under the

SXDH assumption in pairing groups, in the random oracle model. The protocol is built

using ideas from a previous work [BFPV11a] that claimed to have solved this problem. We

show however that the previous voting scheme was not ballot-private, which is weaker than

receipt-freeness.

To the best of our knowledge, this is the first scheme that is both receipt-free (in a

strong sense) and has universal verifiability (in the sense of strong verifiability [CGGI14]),

without requiring the existence of an untappable channel, or the use of secure hardware

tokens. We only require that the receipt-freeness adversary is not eavesdropping the com-

munication between the voter and the voting server, and the existence of a re-randomization

service. As a result, we overcome the impossibility result [CFP+10], stating no scheme can

be receipt-free and universally verifiable without an untappable channel (this is for instance

the case of JCJ/Civitas [JCJ05]). We achieve this by relying on a ballot box server that is

charged with re-randomising ballots, and at the same time precluded from changing their

contents, in a publicly verifiable way [BFPV11a]. Finally, we showed the feasibility of our

approach by implementing a voting client in Javascript and measuring its performance in a

number of platforms.

Chapter 10

Conclusions

Throughout this work we examined protocols that aim to enforce correct behaviour between

(perhaps untrusting) participants. In some examples this is direct, e.g. in the case of pre-

venting a malicious voter from posting a stuffed ballot. In the case of multi-user signatures

this enforcement is more indirect, and lies with the potential for anonymity to be revoked

(of course, in the context of revoking anonymity, direct enforcement is again necessary).

None the less, most of the “targets” of the presented research have a history of move-

ment. Efficiency is always a priority in practical applications, and can often enable new

applications by itself (e.g highly efficient verification enables the outsourcing of compu-

tations [PHGR13]). The notion of security is also evolving, not only because attacks can

become more sophisticated, but also because we discover gaps in our modelling or our

assumptions. With that in mind, some future directions seem promising in particular:

The Protocol of Chapter 5 is highly efficient, and achieves impressively small proof

sizes given its setting. At the same time, the verification time against pairing-based systems

such as [PHGR13] is much higher. It would be interesting to see if the iterative reduction

technique used can be exported to other applications in the same setting.

The DFN-based construction of Chapter 4 removes the reliance on complexity leverag-

ing and demonstrates that culpable soundness can be justifiably used in some applications.

However, it relies on the somewhat inefficient Okamoto-Uchiyama [OU98] cryptosystem,

where Paillier [Pai99] or a variant such as [DJN10] might prove more efficient. Addition-

ally, it only covers a somewhat restricted range of protocols. As such, generalizing it to

be more expressive is a natural direction. In the same chapter, the delayed message board

breaks convention with most current approaches, so it would also be worthwhile to exam-

ine whether this requirement can be removed, or alternatively harnessed independently as a

212 Chapter 10. Conclusions

potential avenue for improvements: it might be possible to omit revealing contents message

board at all by forcing the board to complete a proof certifying they are correct.

A link between multi-user signatures and voting exists by means of list signa-

tures [CSST06], which are akin to group signatures where each user is limited in the number

of times they can sign. It would be interesting to see if the efficient accountable ring sig-

nature scheme of chapter 6 can be used to produce a list signature apart from a group one

(Chap. 7). At the same time, the ring-based construction would also be amenable to self-

organizing communities in a similar fashion to self-tallying voting systems [KY02].

BeleniosRF, presented in Chapter 9 obtains good security properties at a low concep-

tual cost for the voter. While its prover efficiency is acceptable, optimizations might help

make it practical for mobile devices sooner rather than later. Being mobile-friendly is more

than a matter of convenience for BeleniosRF: as revoting is not currently supported, voting

early increases security since users who have voted cannot be coerced. Alternatively, if full

coercion resistance is implemented, mobile usage might be made more difficult as coercion-

resistant protocols are typically heavier. Additionally, as BeleniosRF gives good solution

to the issue of receipts in Helios-like systems (on which the copying system of Chapter 8

relies), it would be interesting to re-examine copying as a potential planned feature of a vot-

ing system (rather than unplanned, but technically feasible). As such it could be compared

to alternative voting and tallying systems such as STV [BO91].

Bibliography

[AC11] Jordi Puiggalı́ Allepuz and Sandra Guasch Castelló. Internet voting system

with cast as intended verification. In VoteID’11. Springer, 2011.

[ACHdM05] Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and Breno

de Medeiros. Practical group signatures without random oracles. IACR Cryp-

tology ePrint Archive, 2005.

[ACJT00] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical

and provably secure coalition-resistant group signature scheme. In Advances

in Cryptology – CRYPTO 2000, pages 255–270, 2000.

[Adi08] Ben Adida. Helios: Web-based Open-Audit Voting. In USENIX Security

Symposium 2008, pages 335–348, 2008.

[AdMPQ09] Ben Adida, Olivier de Marneffe, Olivier Pereira, and Jean-Jacques

Quisquater. Electing a university president using open-audit voting: Anal-

ysis of real-world use of Helios. In EVT/WOTE 2009, 2009.

[AHO10] Masayuki Abe, Kristiyan Haralambiev, and Miyako Ohkubo. Signing on

elements in bilinear groups for modular protocol design. IACR Cryptology

ePrint Archive, 2010.

[Arr63] Kenneth J. Arrow. Social Choice and Individual Values. Yale University

Press, New Haven, 2nd edition, 1963.

[AST01] Giuseppe Ateniese, Dawn Song, and Gene Tsudik. Quasi-efficient revocation

of group signatures. IACR Cryptology ePrint Archive, 2001:101, 2001.

214 Bibliography

[BBM00] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryp-

tion in a multi-user setting: Security proofs and improvements. In Advances

in Cryptology – EUROCRYPT 2000. Springer, 2000.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In

Advances in Cryptology – CRYPTO 2004, pages 41–55, 2004.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure

proofs of knowledge. Journal of Computer and System Sciences, 37(2):156–

189, 1988.

[BCC04] Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous at-

testation. In Conference on Computer and Communications Security - CCS

2004, pages 132–145. ACM, 2004.

[BCC+15] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens

Groth, and Christophe Petit. Short accountable ring signatures based on

DDH. In European Symposium on Research in Computer Security – ES-

ORICS 2015, 2015.

[BCC+16a] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, and Jens

Groth. Foundations of fully dynamic group signatures. In Conference on

Applied Cryptography and Network Security – ACNS 2016, pages 117–136.

Springer, 2016.

[BCC+16b] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe

Petit. Efficient zero-knowledge arguments for arithmetic circuits in the dis-

crete log setting. In Advances in Cryptology – EUROCRYPT 2016, pages

327–357. Springer, 2016.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From ex-

tractable collision resistance to succinct non-interactive arguments of knowl-

edge, and back again. In Innovations in Theoretical Computer Science –

ITCS 2012, pages 326–349, 2012.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive

composition and bootstrapping for SNARKS and proof-carrying data. In

Bibliography 215

Symposium on Theory of Computing Conference – STOC 2013, pages 111–

120, 2013.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and

Madars Virza. SNARKs for C: verifying program executions succinctly and

in Zero Knowledge. In Advances in Cryptology – CRYPTO 2013, pages 90–

108, 2013.

[BCG+15] David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira, and

Bogdan Warinschi. A comprehensive analysis of game-based ballot privacy

definitions. In IEEE Security and Privacy 2015. IEEE Computer Society,

2015.

[BCKL08] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya.

P-signatures and noninteractive anonymous credentials. In Theory of Cryp-

tography Conference – TCC 2008, pages 356–374. Springer, 2008.

[BCN+10] Patrik Bichsel, Jan Camenisch, Gregory Neven, Nigel P. Smart, and Bogdan

Warinschi. Get shorty via group signatures without encryption. In Security

and Cryptography for Networks - SCN 2010, pages 381–398, 2010.

[BCNP04] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally

composable protocols with relaxed set-up assumptions. In Foundations of

Computer Science – FOCS 2004, FOCS ’04, pages 186–195. IEEE, 2004.

[BCP+11] David Bernhard, Véronique Cortier, Olivier Pereira, Ben Smyth, and Bogdan

Warinschi. Adapting Helios for provable ballot privacy. In European Sym-

posium on Research in Computer Security – ESORICS 2011, pages 335–354.

Springer, 2011.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Suc-

cinct non-interactive zero knowledge for a von neumann architecture. In

USENIX Security Symposium 2014, pages 781–796, 2014.

[bel16] BeleniosRF –Voting Client Core. https://gist.github.com/

pyrros/4fddd7d49ae7c9c935f5d6a9a27d14c3, 2016.

https://gist.github.com/pyrros/4fddd7d49ae7c9c935f5d6a9a27d14c3
https://gist.github.com/pyrros/4fddd7d49ae7c9c935f5d6a9a27d14c3

216 Bibliography

[Ben07] Josh Benaloh. Ballot casting assurance via voter-initiated poll station audit-

ing. In EVT/WOTE 2007, 2007.

[BFI+10] Olivier Blazy, Georg Fuchsbauer, Malika Izabachene, Amandine Jambert,

Hervé Sibert, and Damien Vergnaud. Batch groth–sahai. In Conference on

Applied Cryptography and Network Security – ACNS 2010. Springer, 2010.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-

knowledge and its applications. In Symposium on Theory of Computing Con-

ference – STOC ’88, pages 103–112. ACM, 1988.

[BFP+01] Olivier Baudron, Pierre-Alain Fouque, David Pointcheval, Jacques Stern, and

Guillaume Poupard. Practical multi-candidate election system. In Symposium

on Principles of distributed computing – PODC 2001, pages 274–283. ACM,

2001.

[BFPV11a] Olivier Blazy, Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud.

Signatures on randomizable ciphertexts. In Public Key Cryptography – PKC

2011, pages 403–422. Springer, 2011.

[BFPV11b] Olivier Blazy, Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud.

Signatures on randomizable ciphertexts. In Public Key Cryptography - PKC

2011. Springer, 2011.

[BG11] Katharina Bräunlich and Rüdiger Grimm. Formalization of receipt-freeness

in the context of electronic voting. In Availability, Reliability and Security

2011. IEEE Computer Society, 2011.

[BG12] Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for cor-

rectness of a shuffle. In Advances in Cryptology – EUROCRYPT 2012, pages

263–280, 2012.

[BG13] Stephanie Bayer and Jens Groth. Zero-knowledge argument for polynomial

evaluation with application to blacklists. In Advances in Cryptology – EU-

ROCRYPT 2013, pages 646–663, 2013.

[BGDM+10] Jean-Luc Beuchat, Jorge E González-Dı́az, Shigeo Mitsunari, Eiji Okamoto,

Francisco Rodrı́guez-Henrı́quez, and Tadanori Teruya. High-speed software

Bibliography 217

implementation of the optimal ate pairing over barreto–naehrig curves. In

Pairing-Based Cryptography – Pairing 2010. Springer, 2010.

[BGP11] Philippe Bulens, Damien Giry, and Olivier Pereira. Running mixnet-based

elections with Helios. In Electronic Voting Technology Workshop/Workshop

on Trustworthy Elections – EVT/WOTE 2011, 2011.

[BKM09] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures:

Stronger definitions, and constructions without random oracles. Journal of

Cryptology, 22(1):114–138, 2009.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil

pairing. Journal of Cryptology, 17(4), 2004.

[BMW03] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of

group signatures: Formal definitions, simplified requirements, and a con-

struction based on general assumptions. In Advances in Cryptology – EURO-

CRYPT 2003, pages 614–629, 2003.

[BO91] John J Bartholdi and James B Orlin. Single transferable vote resists strategic

voting. Social Choice and Welfare, 8(4):341–354, 1991.

[BPW12] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to prove

yourself: Pitfalls of the fiat-shamir heuristic and applications to helios. In

Advances in Cryptology – ASIACRYPT 2012, pages 626–643. Springer, 2012.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A

paradigm for designing efficient protocols. In Conference on Computer and

Communications Security - CCS ’93, pages 62–73. ACM, 1993.

[Bri04] E. Brickell. An efficient protocol for anonymously providing assurance of

the container of a private key. Submitted to the Trusted Computing Group,

2004.

[BS01] Emmanuel Bresson and Jacques Stern. Efficient revocation in group signa-

tures. In Public Key Cryptography - PKC 2001, pages 190–206, 2001.

218 Bibliography

[BS04] Dan Boneh and Hovav Shacham. Group signatures with verifier-local revoca-

tion. In Conference on Computer and Communications Security - CCS 2004,

pages 168–177. ACM, 2004.

[BSZ05] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signa-

tures: The case of dynamic groups. In CT-RSA 2005, volume 3376 of LNCS,

pages 136–153. Springer, 2005.

[BT94] Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections (ex-

tended abstract). In Symposium on Theory of Computing Conference – STOC

’94, pages 544–553. ACM, 1994.

[BW06] Xavier Boyen and Brent Waters. Compact group signatures without random

oracles. In Advances in Cryptology – EUROCRYPT 2006, volume 4004 of

Lecture Notes in Computer Science, pages 427–444, 2006.

[BW07] Xavier Boyen and Brent Waters. Full-domain subgroup hiding and constant-

size group signatures. In Public Key Cryptography - PKC 2007, pages 1–15.

Springer, 2007.

[BY86] Josh C Benaloh and Moti Yung. Distributing the power of a government to

enhance the privacy of voters. In Symposium on Principles of distributed

computing – PODC 1986, pages 52–62. ACM, 1986.

[Cam97] Jan Camenisch. Efficient and generalized group signatures. In Advances

in Cryptology – EUROCRYPT ’97, volume 1233 of LNCS, pages 465–479.

Springer, 1997.

[Can89] David G Cantor. On arithmetical algorithms over finite fields. Journal of

Combinatorial Theory, Series A, 50(2):285–300, 1989.

[CCFG16] Pyrros Chaidos, Véronique Cortier, Georg Fuchsbauer, and David Galindo.

Beleniosrf: A non-interactive receipt-free electronic voting scheme. In Con-

ference on Computer and Communications Security - CCS 2016, pages 1614–

1625. ACM, 2016.

Bibliography 219

[CCM08] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas: To-

ward a secure voting system. In IEEE Security and Privacy 2008. IEEE

Computer Society, 2008.

[CCS08] Jan Camenisch, Rafik Chaabouni, and Abhi Shelat. Efficient protocols for

set membership and range proofs. In Advances in Cryptology – ASIACRYPT

2008, pages 234–252. Springer, 2008.

[CD98] Ronald Cramer and Ivan Damgård. Zero-knowledge proofs for finite field

arithmetic; or: Can zero-knowledge be for free? In Advances in Cryptology

– CRYPTO 1998, pages 424–441, 1998.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial

knowledge and simplified design of witness hiding protocols. In Advances in

Cryptology – CRYPTO’94, pages 174–187. Springer, 1994.

[CEC+08] David Chaum, Aleks Essex, Richard Carback, Jeremy Clark, Stefan Popove-

niuc, Alan Sherman, and Poorvi Vora. Scantegrity: end-to-end voter-

verifiable optical-scan voting. IEEE Security and Privacy, 6(3), 2008.

[Cer15] CertiVox. A Cryptographic Library for the Internet of Things. https:

//github.com/CertiVox/MiotCL, 2015.

[CF85] JD Cohen and MJ Fisher. A robust and verifiable cryptographically secure

election system. In Foundations of Computer Science – FOCS ’85, pages

372–382, 1985.

[CFP+10] Benoı̂t Chevallier-Mames, Pierre-Alain Fouque, David Pointcheval, Julien

Stern, and Jacques Traoré. On some incompatible properties of voting

schemes. In EVT/WOTE 2010, 2010.

[CFSY96] Ronald Cramer, Matthew Franklin, Berry Schoenmakers, and Moti Yung.

Multi-authority secret-ballot elections with linear work. In Advances in Cryp-

tology – EUROCRYPT’96, pages 72–83. Springer, 1996.

[CG96] Ran Canetti and Rosario Gennaro. Incoercible multiparty computation (ex-

tended abstract). In Foundations of Computer Science – FOCS ’96. IEEE

Computer Society, 1996.

https://github.com/CertiVox/MiotCL
https://github.com/CertiVox/MiotCL

220 Bibliography

[CG05] Jan Camenisch and Jens Groth. Group signatures: Better efficiency and new

theoretical aspects. In Security in Communication Networks - SCN 2004,

pages 120–133, 2005.

[CG15] Pyrros Chaidos and Jens Groth. Making sigma-protocols non-interactive

without random oracles. In Public Key Cryptography – PKC 2015, pages

650–670. Springer, 2015.

[CGGI13] Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Iz-

abachène. Distributed ElGamal á la Pedersen: Application to Helios. In

Privacy in the Electronic Society, WPES ’13, pages 131–142. ACM, 2013.

[CGGI14] Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Iz-

abachène. Election verifiability for Helios under weaker trust assumptions. In

European Symposium on Research in Computer Security – ESORICS 2014.

Springer, 2014.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle method-

ology, revisited. Journal of the ACM (JACM), 51(4):557–594, 2004.

[CGS97a] R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally ef-

ficient multi-authority election scheme. European transactions on Telecom-

munications, 8(5):481–490, 1997.

[CGS97b] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and

optimally efficient multi-authority election scheme. In Advances in Cryptol-

ogy – EUROCRYPT ’97. Springer, 1997.

[Cha81] David L. Chaum. Untraceable electronic mail, return addresses, and digital

pseudonyms. Commun. ACM, 24(2):84–90, February 1981.

[Cha83] D. Chaum. Blind signatures for untraceable payments. In Advances in Cryp-

tology – CRYPTO ’83, volume 82, pages 199–203, 1983.

[CKN03] Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing chosen-

ciphertext security. In Advances in Cryptology – CRYPTO 2003. Springer,

2003.

Bibliography 221

[CKS09] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. An accumulator

based on bilinear maps and efficient revocation for anonymous credentials.

In Public Key Cryptography - PKC 2009, pages 481–500. Springer, 2009.

[CL02] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and applica-

tion to efficient revocation of anonymous credentials. In Advances in Cryp-

tology – CRYPTO 2002, pages 61–76, 2002.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous

credentials from bilinear maps. In Advances in Cryptology – CRYPTO 2004,

pages 56–72, 2004.

[CL06] Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In

Advances in Cryptology – CRYPTO 2006, volume 4117 of LNCS, pages 78–

96. Springer, 2006.

[CLW08] Sherman S. M. Chow, Joseph K. Liu, and Duncan S. Wong. Robust receipt-

free election system with ballot secrecy and verifiability. In Network and

Distributed System Security Symposium 2008. The Internet Society, 2008.

[CM98] Jan Camenisch and Markus Michels. A group signature scheme with im-

proved efficiency. In Advances in Cryptology – ASIACRYPT ’98, pages 160–

174. Springer, 1998.

[CMFPT06] B. Chevallier-Mames, P.A. Fouque, D. Pointcheval, and J. Traoré. On some

incompatible properties of voting schemes. In Workshop On Trustworthy

Elections – WOTE’06. Citeseer, 2006.

[CP93] D. Chaum and T. Pedersen. Wallet databases with observers. In Advances in

Cryptology – CRYPTO’92, pages 89–105. Springer, 1993.

[Cro06] D. Crockford. Javascript object notation. http://www.ietf.org/rfc/rfc4627.txt,

July 2006.

[CS97] Jan Camenisch and Markus Stadler. Efficient group signature schemes for

large groups (extended abstract). In Advances in Cryptology – CRYPTO ’97,

pages 410–424, 1997.

222 Bibliography

[CS98] Ronald Cramer and Victor Shoup. A practical public-key encryption schemes

secure against adaptive chosen ciphertext attack. In Advances in Cryptology

– CRYPTO’98, pages 13–25. Springer, 1998.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm

for adaptive chosen ciphertext secure public-key encryption. In Advances in

Cryptology – EUROCRYPT 2002, pages 45–64. Springer, 2002.

[CS11] Véronique Cortier and Ben Smyth. Attacking and fixing Helios: An analysis

of ballot secrecy. In Computer Security Foundations Symposium – CSF’11,

2011.

[CS13] Véronique Cortier and Ben Smyth. Attacking and fixing Helios: An analysis

of ballot secrecy. Journal of Computer Security, 21(1), 2013.

[CSST06] Sébastien Canard, Berry Schoenmakers, Martijn Stam, and Jacques Traoré.

List signature schemes. Discrete Applied Mathematics, pages 189 – 201,

2006. Coding and Cryptography.

[CvH91] David Chaum and Eugène van Heyst. Group signatures. In Advances in

Cryptology – EUROCRYPT ’91, pages 257–265, 1991.

[Dam92] Ivan Damgård. Non-interactive circuit based proofs and non-interactive per-

fect zero-knowledge with preprocessing. In Advances in Cryptology – EU-

ROCRYPT’92, pages 341–355. Springer, 1992.

[Dan15] George Danezis. petlib: A python library that implements a number of pri-

vacy enhancing technologies (PETs), 2015.

[DC11] Yvo Desmedt and Pyrros Chaidos. Blinding ballot copying in Helios: from

Condorcet to IACR. In Advances in Cryptology – CRYPTO 2011 Rump Ses-

sion, 2011.

[DC12] Yvo Desmedt and Pyrros Chaidos. Applying divertibility to blind ballot

copying in the helios internet voting system. In European Symposium on

Research in Computer Security – ESORICS 2012, pages 433–450. Springer,

2012.

Bibliography 223

[DF90] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Advances in

Cryptology – CRYPTO’89, pages 307–315. Springer, 1990.

[DFN06] Ivan Damgård, Nelly Fazio, and Antonio Nicolosi. Non-interactive zero-

knowledge from homomorphic encryption. In Theory of Cryptography Con-

ference – TCC 2006, pages 41–59. Springer, 2006.

[DGB88] Y. Desmedt, C. Goutier, and S. Bengio. Special uses and abuses of the Fiat-

Shamir passport protocol. In Advances in Cryptology – CRYPTO ’87, pages

21–39, 1988.

[DGS03] Ivan Damgård, Jens Groth, and Gorm Salomonsen. The theory and imple-

mentation of an electronic voting system. In Secure Electronic Voting, pages

77–99. Springer, 2003.

[DJ03] Ivan Damgård and Mads Jurik. A length-flexible threshold cryptosystem

with applications. In Information Security and Privacy – ACISP 2003, pages

350–364. Springer, 2003.

[DJN10] Ivan Damgård, Mads Jurik, and Jesper Buus Nielsen. A generalization of

Paillier’s public-key system with applications to electronic voting. Interna-

tional Journal of Information Security, 9(6):371–385, 2010.

[DK05] Y. Desmedt and K. Kurosawa. Electronic voting: Starting over? Information

Security, pages 329–343, 2005.

[DKNS04] Yevgeniy Dodis, Aggelos Kiayias, Antonio Nicolosi, and Victor Shoup.

Anonymous identification in ad hoc groups. In Christian Cachin and Jan

Camenisch, editors, Advances in Cryptology – EUROCRYPT 2004, pages

609–626. Springer, 2004.

[DKR06] Stéphanie Delaune, Steve Kremer, and Mark Ryan. Coercion-resistance

and receipt-freeness in electronic voting. In Computer Security Foundations

Workshop – CSFW 2006. IEEE Computer Society, 2006.

[DP06] Cécile Delerablée and David Pointcheval. Dynamic fully anonymous short

group signatures. In Progressing Cryptology - VIETCRYPT 2006, pages 193–

210, 2006.

224 Bibliography

[DVDGA12] Denise Demirel, Jeroen Van De Graaf, and Roberto Araújo. Improving helios

with everlasting privacy towards the public. EVT/WOTE, 2012.

[ED10] Saghar Estehghari and Yvo Desmedt. Exploiting the client vulnerabilities

in internet e-voting systems: hacking Helios 2.0 as an example. In Elec-

tronic Voting Technology Workshop/Workshop on Trustworthy Elections –

EVT-WOTE ’10, pages 1–9. USENIX Association, 2010.

[Elg85] Taher Elgamal. A public key cryptosystem and a signature scheme based on

discrete logarithms. Information Theory, IEEE Transactions on, 31(4):469 –

472, Jul 1985.

[Est10] Estonian National Electoral Committee. E-voting system -general overview,

2010.

[Fel87] Paul Feldman. A practical scheme for non-interactive verifiable secret shar-

ing. In Foundations of Computer Science – FOCS ’87, pages 427–438. IEEE,

1987.

[FI05] Jun Furukawa and Hideki Imai. An efficient group signature scheme from

bilinear maps. In ACISP, pages 455–467, 2005.

[Fis05] Marc Fischlin. Communication-efficient non-interactive proofs of knowledge

with online extractors. In Advances in Cryptology – CRYPTO 2005, pages

152–168. Springer, 2005.

[FKMV12] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele

Venturi. On the non-malleability of the Fiat-Shamir transform. In Progress

in Cryptology – INDOCRYPT, pages 60–79. Springer, 2012.

[FP09] Georg Fuchsbauer and David Pointcheval. Proofs on encrypted values in

bilinear groups and an application to anonymity of signatures. In Pairing-

Based Cryptography – Pairing 2009. Springer, 2009.

[FS87] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identi-

fication and signature problems. In Advances in Cryptology – CRYPTO ’86,

pages 186–194. Springer, 1987.

Bibliography 225

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding

protocols. In Symposium on Theory of Computing Conference – STOC 1990,

pages 416–426. ACM, 1990.

[FS08] Eiichiro Fujisaki and Koutarou Suzuki. Traceable ring signature. IEICE

Transactions, 91-A(1):83–93, 2008.

[FY04] Jun Furukawa and Shoko Yonezawa. Group signatures with separate and

distributed authorities. In Security in Communication Networks – SCN 2004,

pages 77–90, 2004.

[FZ13] Matthew K. Franklin and Haibin Zhang. Unique ring signatures: A practical

construction. In Financial Cryptography and Data Security – FC 2013, pages

162–170. Springer, 2013.

[GCG15] Stéphane Glondu, Véronique Cortier, and Pierrick Gaudry. Belenios – Ver-

ifiable online voting system. http://belenios.gforge.inria.fr,

2015.

[GGI+14] Craig Gentry, Jens Groth, Yuval Ishai, Chris Peikert, Amit Sahai, and

Adam Smith. Using fully homomorphic hybrid encryption to minimize non-

interative zero-knowledge proofs. Journal of Cryptology, pages 1–24, 2014.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.

Quadratic span programs and succinct NIZKs without PCPs. In Advances

in Cryptology – EUROCRYPT 2013, pages 626–645. Springer, 2013.

[GGR09] Ryan W. Gardner, Sujata Garera, and Aviel D. Rubin. Coercion resistant

end-to-end voting. In Financial Cryptography and Data Security – FC 2009.

Springer, 2009.

[GH98] Oded Goldreich and Johan Håstad. On the complexity of interactive proofs

with bounded communication. Information Processing Letters, 67(4):205–

214, 1998.

[GHR15] Alonso González, Alejandro Hevia, and Carla Ràfols. Qa-nizk arguments

in asymmetric groups: new tools and new constructions. In Advances in

Cryptology – ASIACRYPT 2015. Springer, 2015.

http://belenios.gforge.inria.fr

226 Bibliography

[GI08] Jens Groth and Yuval Ishai. Sub-linear zero-knowledge argument for cor-

rectness of a shuffle. In Advances in Cryptology – EUROCRYPT 2008, pages

379–396. 2008.

[Gjø12] Kristian Gjøsteen. The norwegian internet voting protocol. In VoteID’11,

pages 1–18, 2012.

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-

Shamir paradigm. In Foundations of Computer Science – FOCS 2003, FOCS

’03, pages 102–113. IEEE, 2003.

[GK14] Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to leak

a secret and spend a coin. In Advances in Cryptology – EUROCRYPT 2015,

page 764, 2014.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-

plexity of interactive proof systems. SIAM Journal on computing, 18(1):186–

208, 1989.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing

but their validity or all languages in NP have zero-knowledge proof systems.

Journal of the ACM, 38(3):691–729, 1991.

[GMY06] Juan a. Garay, Philip MacKenzie, and Ke Yang. Strengthening zero-

knowledge protocols using signatures. Journal of Cryptology, 19(2):169–

209, 2006.

[Gol11] Oded Goldreich. Studies in Complexity and Cryptography, chapter Basing

Non-interactive Zero-knowledge on (Enhanced) Trapdoor Permutations: The

State of the Art, pages 406–421. Springer, 2011.

[GOM16] Irene Giacomelli, Claudio Orlandi, and Jesper Madsen. ZKBoo: Faster zero-

knowledge for boolean circuits. In USENIX Security Symposium 2016, pages

1069–1083. USENIX Association, 2016.

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninter-

active zero-knowledge. Journal of the ACM, 59(3):11:1–11:35, 2012.

Bibliography 227

[GQ88] Louis C. Guillou and Jean-Jacques Quisquater. A practical zero-knowledge

protocol fitted to security microprocessor minimizing both trasmission and

memory. In Advances in Cryptology – EUROCRYPT 1998, pages 123–128,

1988.

[Gro04a] Jens Groth. Efficient maximal privacy in boardroom voting and anonymous

broadcast. In Financial Cryptography and Data Security – FC 2004, pages

90–104. Springer, 2004.

[Gro04b] Jens Groth. Honest verifier zero-knowledge arguments applied. PhD thesis,

University of Aarhus, 2004.

[Gro06] Jens Groth. Simulation-sound NIZK proofs for a practical language and con-

stant size group signatures. In Advances in Cryptology – ASIACRYPT 2006,

pages 444–459. Springer, 2006.

[Gro07] Jens Groth. Fully anonymous group signatures without random oracles. In

Advances in Cryptology – ASIACRYPT 2007, pages 164–180, 2007.

[Gro09a] Jens Groth. Efficient zero-knowledge arguments from two-tiered homomor-

phic commitments. In Advances in Cryptology – ASIACRYPT 2009, pages

431–448, 2009.

[Gro09b] Jens Groth. Linear algebra with sub-linear zero-knowledge arguments. In

Advances in Cryptology – CRYPTO 2009, pages 192–208, 2009.

[Gro10a] Jens Groth. Short non-interactive zero-knowledge proofs. In Advances in

Cryptology – ASIACRYPT 2010, pages 341–358. Springer, 2010.

[Gro10b] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments.

In Advances in Cryptology – ASIACRYPT 2010, pages 321–340. Springer,

2010.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bi-

linear groups. In Advances in Cryptology – EUROCRYPT 2008. Springer,

2008.

[GS12] Jens Groth and Amit Sahai. Efficient noninteractive proof systems for bilin-

ear groups. SIAM Journal on Computing, 41(5):1193–1232, 2012.

228 Bibliography

[GVW02] Oded Goldreich, Salil Vadhan, and Avi Wigderson. On interactive proofs

with a laconic prover. Computational Complexity, 11(1-2):1–53, 2002.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive argu-

ments from all falsifiable assumptions. In Symposium on Theory of Comput-

ing Conference – STOC 2011, pages 99–108. ACM, 2011.

[Hel11] Helios Voting. Helios v3 verification specs.

http://documentation.heliosvoting.org/verification-specs/helios-v3-

verification-specs, August 2011.

[Hir10] Martin Hirt. Receipt-free K-out-of-L voting based on ElGamal encryption.

In EVT/WOTE 2010. Springer, 2010.

[HK11] F Hao and MN Kreeger. Every vote counts: ensuring integrity in dre-based

voting system. Technical report, Technical Report, 2011.

[HN06] Martin Hirt and Jesper Buus Nielsen. Robust multiparty computation with

linear communication complexity. In Advances in Cryptology – CRYPTO

2006, CRYPTO’06, pages 463–482. Springer, 2006.

[HS00] Martin Hirt and Kazue Sako. Efficient receipt-free voting based on homomor-

phic encryption. In Advances in Cryptology – EUROCRYPT 2000. Springer,

2000.

[HS12] James Heather and Steve Schneider. A formal framework for modelling co-

ercion resistance and receipt freeness. In Formal Methods 2012. Springer,

2012.

[IAC] International Association for Cryptologic Research, elections. Page at

http://www.iacr.org/elections/.

[JCJ05] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant elec-

tronic elections. In Workshop on Privacy in the Electronic Society 2005.

ACM, 2005.

[JdV06] Hugo L. Jonker and Erik P. de Vink. Formalising receipt-freeness. In Infor-

mation Security 2006. Springer, 2006.

http://www. iacr.org/elections/

Bibliography 229

[JSI96] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated ver-

ifier proofs and their applications. In Advances in Cryptology – EURO-

CRYPT’96, pages 143–154. Springer, 1996.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In

Symposium on Theory of Computing Conference – STOC 1992, pages 723–

732, 1992.

[KP98] Joe Kilian and Erez Petrank. An efficient noninteractive zero-knowledge

proof system for NP with general assumptions. Journal of Cryptology,

11(1):1–27, 1998.

[KT09] Ralf Küsters and Tomasz Truderung. An epistemic approach to coercion-

resistance for electronic voting protocols. In Security and Privacy – S&P

2009. IEEE Computer Society, 2009.

[KTV15] Oksana Kulyk, Vanessa Teague, and Melanie Volkamer. Extending Helios to-

wards private eligibility verifiability. In E-Voting and Identity 2015. Springer,

2015.

[KTY04] Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Traceable signatures. In

Advances in Cryptology – EUROCRYPT 2004, pages 571–589, 2004.

[KY02] Aggelos Kiayias and Moti Yung. Self-tallying elections and perfect ballot

secrecy. In Public Key Cryptography – PKC 2002, pages 141–158. Springer,

2002.

[KY05] Aggelos Kiayias and Moti Yung. Group signatures with efficient concur-

rent join. In Advances in Cryptology – EUROCRYPT 2005, pages 198–214.

Springer, 2005.

[KY06] Aggelos Kiayias and Moti Yung. Secure scalable group signature with dy-

namic joins and separable authorities. IJSN, 1(1/2):24–45, 2006.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size com-

mitments to polynomials and their applications. In Advances in Cryptology

– ASIACRYPT 2010, pages 177–194, 2010.

230 Bibliography

[KZZ15] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. End-to-end ver-

ifiable elections in the standard model. In Advances in Cryptology – EURO-

CRYPT 2015. Springer, 2015.

[Len05] Arjen K Lenstra. Key lengths. Wiley, 2005.

[Lim00] Chae Hoon Lim. Efficient multi-exponentiation and application to

batch verification of digital signatures, 2000. Manuscript available at

http://dasan.sejong.ac.kr/∼chlim/pub/multi exp.ps.

[Lin03] Yehuda Lindell. Parallel coin-tossing and constant-round secure two-party

computation. Journal of Cryptology, 16(3):143–184, 2003.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-

interactive zero-knowledge arguments. In Theory of Cryptography Confer-

ence – TCC 2012, pages 169–189, 2012.

[LLNW14] Adeline Langlois, San Ling, Khoa Nguyen, and Huaxiong Wang. Lattice-

based group signature scheme with verifier-local revocation. In Public-Key

Cryptography – PKC 2014, pages 345–361, 2014.

[LPY12a] Benoı̂t Libert, Thomas Peters, and Moti Yung. Group signatures with almost-

for-free revocation. In Advances in Cryptology – CRYPTO 2012, pages 571–

589, 2012.

[LPY12b] Benoı̂t Libert, Thomas Peters, and Moti Yung. Scalable group signatures

with revocation. In Advances in Cryptology – EUROCRYPT 2012, pages

609–627, 2012.

[LV09] Benoı̂t Libert and Damien Vergnaud. Group signatures with verifier-local

revocation and backward unlinkability in the standard model. In Cryptology

and Network Security - CANS, pages 498–517, 2009.

[LWW04] Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. Linkable spontaneous

anonymous group signature for ad hoc groups. In ACISP, volume 3108, pages

325–335, 2004.

Bibliography 231

[MBC01] Emmanouil Magkos, Mike Burmester, and Vassilios Chrissikopoulos.

Receipt-freeness in large-scale elections without untappable channels. In E-

Commerce, E-Business, E-Government 2001. Kluwer, 2001.

[Mic94] Silvio Micali. Cs proofs. In Foundations of Computer Science – FOCS ’94,

pages 436–453. IEEE, 1994.

[MN06] Tal Moran and Moni Naor. Receipt-free universally-verifiable voting with

everlasting privacy. In Advances in Cryptology – CRYPTO 2006. Springer,

2006.

[Möl01] Bodo Möller. Algorithms for multi-exponentiation. In Selected Areas in

Cryptography – SAC 2001, pages 165–180. Springer, 2001.

[MR08] Bodo Möller and Andy Rupp. Faster multi-exponentiation through caching:

accelerating (EC) DSA signature verification. In Security and Cryptography

for Networks – SCN 2008, pages 39–56. Springer, 2008.

[NF05] Toru Nakanishi and Nobuo Funabiki. Verifier-local revocation group signa-

ture schemes with backward unlinkability from bilinear maps. In Advances

in Cryptology – ASIACRYPT 2005, pages 533–548, 2005.

[NFHF09] Toru Nakanishi, Hiroki Fujii, Yuta Hira, and Nobuo Funabiki. Revocable

group signature schemes with constant costs for signing and verifying. In

Public Key Cryptography - PKC 2009, pages 463–480, 2009.

[Ngu05] Lan Nguyen. Accumulators from bilinear pairings and applications. In CT-

RSA 2005, pages 275–292. Springer, 2005.

[NNL01] Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing

schemes for stateless receivers. In Advances in Cryptology – CRYPTO 2001,

pages 41–62, 2001.

[NS04] Lan Nguyen and Reihaneh Safavi-Naini. Efficient and provably secure

trapdoor-free group signature schemes from bilinear pairings. In Advances

in Cryptology – ASIACRYPT 2004, pages 372–386, 2004.

232 Bibliography

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against

chosen ciphertext attacks. In Symposium on Theory of Computing Conference

– STOC 1990, STOC 2013, pages 427–437. ACM, 1990.

[Oka97] Tatsuaki Okamoto. Receipt-free electronic voting schemes for large scale

elections. In Security Protocols 97. Springer, 1997.

[Oli06] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA,

2006.

[OO90] Tatsuaki Okamoto and Kazuo Ohta. Divertible zero knowledge interactive

proofs and commutative random self-reducibility. In Advances in Cryptology

– EUROCRYPT ’98, pages 134–149. Springer, 1990.

[OU98] Tatsuaki Okamoto and Shigenori Uchiyama. A new public-key cryptosystem

as secure as factoring. In Advances in Cryptology – EUROCRYPT’98, pages

308–318. Springer, 1998.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residu-

osity classes. In Advances in Cryptology – EUROCRYPT’99, pages 223–238.

Springer, 1999.

[Ped91] Torben P. Pedersen. Non-interactive and information-theoretic secure verifi-

able secret sharing. In Advances in Cryptology – CRYPTO ’91, volume 576

of LNCS, pages 129–140. Springer, 1991.

[Pen46] Lionel Sharples Penrose. The elementary statistics of majority voting. Jour-

nal of the Royal Statistical Society, 109(1):53–57, 1946.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:

Nearly practical verifiable computation. In Security and Privacy – S&P 2013,

pages 238–252. IEEE, 2013.

[RBH+09] Peter YA Ryan, David Bismark, James A Heather, Steve A Schneider, and

Zhe Xia. The Prêt à Voter verifiable election system. IEEE Transactions on

Information Forensics and Security, 4, 2009.

Bibliography 233

[RRI15] Peter Y A Ryan, Peter B Roenne, and Vincenzo Iovino. Selene: Voting with

transparent verifiability and coercion-mitigation. Cryptology ePrint Archive,

Report 2015/1105, 2015. http://eprint.iacr.org/.

[RS91] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof

of knowledge and chosen ciphertext attack. In Advances in Cryptology –

CRYPTO ’91, pages 433–444. Springer, 1991.

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In

Advances in Cryptology – ASIACRYPT 2001, pages 552–565. Springer, 2001.

[SB13] Ben Smyth and David Bernhard. Ballot secrecy and ballot independence

coincide. In European Symposium on Research in Computer Security – ES-

ORICS 2013, pages 463–480. Springer, 2013.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal

of Cryptology, 4(3):161–174, 1991.

[Seo11] Jae Hong Seo. Round-efficient sub-linear zero-knowledge arguments for lin-

ear algebra. In Public Key Cryptography – PKC 2011, pages 387–402, 2011.

[SFD+14] Drew Springall, Travis Finkenauer, Zakir Durumeric, Jason Kitcat, Harri

Hursti, Margaret MacAlpine, and J. Alex Halderman. Security analysis of

the estonian internet voting system. In Conference on Computer and Com-

munications Security - CCS 2014. ACM, 2014.

[Sho01] Victor Shoup. NTL: A library for doing number theory, 2001.

[SK95] Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme. In Ad-

vances in Cryptology – EUROCRYPT’95, pages 393–403. Springer, 1995.

[Son01] Dawn Xiaodong Song. Practical forward secure group signature schemes. In

Conference on Computer and Communications Security - CCS 2001, pages

225–234. ACM, 2001.

[SSE+12] Yusuke Sakai, Jacob C. N. Schuldt, Keita Emura, Goichiro Hanaoka, and

Kazuo Ohta. On the security of dynamic group signatures: Preventing sig-

nature hijacking. In Public Key Cryptography - PKC 2012, pages 715–732,

2012.

http://eprint.iacr.org/

234 Bibliography

[TS06] Isamu Teranishi and Kazue Sako. k-times anonymous authentication with

a constant proving cost. In Public Key Cryptography - PKC 2006, pages

525–542, 2006.

[TX03] Gene Tsudik and Shouhuai Xu. Accumulating composites and improved

group signing. In Advances in Cryptology – ASIACRYPT 2003, pages 269–

286, 2003.

[VV09] Carmine Ventre and Ivan Visconti. Co-sound zero-knowledge with pub-

lic keys. In Progress in Cryptology–AFRICACRYPT 2009, pages 287–304.

Springer, 2009.

[Wat05] Brent R. Waters. Efficient identity-based encryption without random oracles.

In Advances in Cryptology – EUROCRYPT 2005. Springer, 2005.

[Wik08] Douglas Wikström. Simplified submission of inputs to protocols. In Security

and Cryptography for Networks – SCN 2008, pages 293–308. Springer, 2008.

[XY04] Shouhuai Xu and Moti Yung. Accountable ring signatures: A smart card

approach. In CARDIS, volume 153 of IFIP, pages 271–286. Springer, 2004.

	Introduction
	Non-Interactive Zero Knowledge
	Protocols for Arithmetic Circuits
	Multiuser Signatures
	Voting and Receipt Freeness
	Structure

	Literature Review
	Zero Knowledge
	Non-Interactive Zero Knowledge
	Circuit-Based Protocols

	Multi-user Signatures
	Group Signatures
	Ring Signatures
	Accountable Ring Signatures

	Internet Voting
	Homomorphic Tallying
	Helios Ballot Copying
	Receipt Freeness and Coercion Resistance

	Background & Definitions
	Notation
	Setting
	Cyclic Groups & The Discrete Logarithm Assumption
	One-way functions

	Encrypting and Commiting
	Commitment Schemes
	Pedersen Commitments
	Public-Key Encryption
	IND-CPA Security
	ElGamal Encryption
	IND-CCA Security

	Zero Knowledge
	Relations and NP-Languages
	Interactive Protocols
	Zero Knowledge Arguments of Knowledge
	A general forking lemma
	Non-Interactive Zero-Knowledge (NIZK) Proofs
	The Fiat-Shamir heuristic.
	Signature of Knowledge
	Non-Interactive Designated Verifier Zero Knowledge Arguments

	Non-Interactive Zero Knowledge without Random Oracles
	Introduction
	Contribution

	Preliminaries
	Strongly Additively Homomorphic Encryption
	Okamoto-Uchiyama encryption OU98
	-protocols with Linear Answers and Unique Identifiable Challenges
	-protocol for additively homomorphic encryption of 0 or 1.

	Transformation
	Non-interactive Designated Verifier Arguments for Statements about Ciphertexts
	Circuit Satisfiability

	Applications in Voting with Homomorphic Tallying
	Voting Schemes with Delayed Bulletin Boards
	A Referendum Voting Scheme
	Efficiency

	Efficient Protocols for Arithmetic Circuits
	Introduction
	Contributions

	Related Work
	Preliminaries
	Arithmetic Circuits
	Full zero knowledge & non-interactivity

	Commitments to Polynomials
	Main idea for standard polynomials.
	Extension to Laurent polynomials.
	Evaluation Protocol.
	Security Properties.
	Efficiency.

	Recursive Argument for Inner Product Evaluation
	Main Idea
	Formal description
	Security Analysis.
	Efficiency.

	Logarithmic Communication Argument for Arithmetic Circuit Satisfiability
	Reduction of Circuit Satisfiability to a Hadamard Matrix Product and Linear Constraints.
	Reduction to a Single Polynomial Equation.
	Square Root Communication Argument
	Breaking the Square Root Barrier
	Formal Description
	Security Analysis.
	Efficiency.

	Implementation using Python
	Performance Comparison

	Accountable Ring Signatures
	Introduction
	Contributions

	Defining Accountable Ring Signatures
	Ring and Group Signatures from Accountable Ring Signatures

	Constructing Accountable Ring Signatures
	Building Blocks
	Design
	Security

	Efficient Instantiation
	Committed bits
	List Containing Encryption of 1
	Correct Signature
	Correct Opening
	Efficiency of our schemes

	Fully Dynamic Group Signatures
	Introduction
	Motivation
	Contributions

	Syntax and Security of Fully Dynamic Group Signatures
	Security of Fully Dynamic Group Signatures
	Comparison with Existing Models

	Recovering Other Models
	Static Group Signatures BMW03
	Partially Dynamic Group Signatures BSZ05
	Partially Dynamic Group Signatures KY06

	On the Security of Some Existing Schemes
	Libert et al. Schemes LPY12a,LPY12b
	Nakanishi et al. Scheme NFHF09
	Scheme based on Sect. 6.3

	Helios Ballot Copying Revisited
	Introduction
	Background
	Helios Implementation
	Vote Representation
	Validity Checks
	Disjunctive Proofs of Equality between Discrete Logarithms.
	Non-Interactive Proofs.

	A Ballot-Blinding Protocol
	Vote Blinding
	Proof Blinding
	The proof blinding protocol of desmedt2012applying
	New Proof Blinding Protocol
	A Combined Protocol for Blinded Copying

	Further Work

	BeleniosRF
	Introduction
	Our Contributions

	Comparison to Related Work
	Receipt-Freeness
	Syntax of a Voting System
	Strong Receipt-Freeness

	Building Blocks
	Assumptions and Primitives
	Signatures on Randomizable Ciphertexts

	Our SRC Construction
	Asymmetric Waters signature scheme.
	Our SRC scheme.
	RCCA-Secure Encryption from SRC

	BeleniosRF
	Overview
	Receipt-Freeness
	Verifiability

	Efficiency of BeleniosRF
	The Blazy et al. Voting Protocol is not Ballot-Private
	Conclusions

	Conclusions

