
Research Article

Statistics
in Medicine

Received XXXX

(www.interscience.wiley.com) DOI: 10.1002/sim.0000

Mendelian randomization incorporating
uncertainty about pleiotropy
John R Thompson1∗ Cosetta Minelli2, Jack Bowden3, Fabiola Del Greco M5,
Dipender Gill6, Elinor M Jones7, Chin Yang Shapland8, Nuala A Sheehan1

Mendelian randomization (MR) requires strong assumptions about the genetic instruments, of which the most
difficult to justify relate to pleiotropy. In a two-sample MR different methods of analysis are available if we are
able to assume, M1: no pleiotropy (fixed effects meta-analysis), M2: that there may be pleiotropy but that the
average pleiotropic effect is zero (random effects meta-analysis), M3: that the average pleiotropic effect is non-zero
(MR-Egger). In the latter two cases we also require that the size of the pleiotropy is independent of the size of the
effect on the exposure. Selecting one of these models without good reason would run the risk of misrepresenting the
evidence for causality. The most conservative strategy would be to use M3 in all analyses as this makes the weakest
assumptions, but such an analysis gives much less precise estimates and so should be avoided whenever stronger
assumptions are credible. We consider the situation of a two-sample design when we are unsure which of these
three pleiotropy models is appropriate. The analysis is placed within a Bayesian framework and Bayesian model
averaging (BMA) is used. We demonstrate that even large samples of the scale used in genome-wide meta-analysis
may be insufficient to distinguish the pleiotropy models based on the data alone. Our simulations show that BMA
provides a reasonable trade-off between bias and precision. BMA is recommended whenever there is uncertainty
about the nature of the pleiotropy.
Copyright c© 0000 John Wiley & Sons, Ltd.
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1. Introduction

Mendelian randomization (MR) is an epidemiological instrumental variable analysis that uses genetic variants as the
instruments and as such it provides a way of investigating causal exposure-outcome relationships using observational data
[1]. Many early applications of MR used a single genetic variant with a well-established association with the exposure.
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To ensure that such an analysis is valid, researchers have to be confident that the genetic variant satisfies three core
assumptions; (1) the variant is related to the exposure, (2) the variant is independent of the confounders and (3) the variant
is independent of the outcome given the exposure and the confounders [2]. These assumptions imply that the variant will
not have a pleiotropic effect on the outcome, that is, there will be no effect of the variant that acts on the outcome through
a pathway that does not pass through the exposure [3]. The lack of pleiotropy is not testable from the data and so has to
be assessed on biological grounds. As a consequence, the most reliable MR studies are restricted to using genetic variants
with a well-understood biological function.

In a classic MR study the exposure, outcome and genetic instrument are measured on the same sample of subjects
but such studies are usually limited in sample size with the result that the test of causality has low power and the
estimates of the size of the causal effect are not very precise [4, 5]. When the sample size cannot be increased, an
alternative way to improve precision is to find an instrument that has a stronger association with the exposure. To this
end, researchers have used genetic risk scores based on several genetic variants chosen for their known association with
the exposure [6, 7]. Assuming that the risk score is more predictive of the exposure than is any one instrument, then
the precision of the MR estimate will improve, although it will be necessary to understand the biology of all of the variants.

In the era of genome-wide association studies (GWAS) there has been a dramatic rise in the number of potential
instruments that could be used in MR studies. For some easily measured and strongly genetic traits, such as height,
there are now hundreds of genetic variants that could be suitable [8]. To harness these data, researchers have started to
adopt a two-sample design in which the variant-exposure information comes from one GWAS and the variant-outcome
information comes from a second GWAS [9, 10, 11, 12]. Such data provide valid MR estimates provided that the
variant-exposure relationship is the same in both study populations and, of course, that the other MR assumptions hold
for all of the variants. This means that we need to be confident that none of the variants has a pleiotropic effect.

In a two-sample design, instead of creating a risk score that combines the variants into a single instrument, separate MR
analyses can be performed with each variant in turn and then the MR estimates can be combined in a meta-analysis over
the variants. Assuming no heterogeneity, each MR analysis will estimate the same causal exposure-outcome effect and a
pooled estimate can be obtained by an inverse variance weighted fixed effects meta-analysis. What is more, any evidence
of heterogeneity in the meta-analysis would suggest that some or all of the variants produce biased estimates and a
possible explanation for this is pleiotropy [13]. A meta-analysis thus offers a mechanism for testing homogeneity, used as
a proxy for the no pleiotropy assumption, although it will not tell us which variants are valid instruments and which are not.

With the growth in the number of available instruments, it has become more important to look for statistical methods
that are robust to pleiotropy. One possible argument is that in a set of well-selected variants, pleiotropy is likely to be
small and to act randomly, sometimes increasing the MR estimate and sometimes decreasing it. The overall impact would
be to increase the heterogeneity between variant-specific estimates but on average to give the correct result. When this
assumption is reasonable, the correct two-sample MR analysis will take the form of a random effects meta-analysis over
the variants [14].

When the effects of pleiotropy do not cancel, a random effects meta-analysis would not be valid but as Bowden et al.
[15] noted, an analysis that mirrors Egger regression, as used in meta-analysis to detect publication bias, would provide
valid MR estimates under the weaker assumption that the sizes of the pleiotropic effects are independent of the sizes of the
corresponding variant-exposure effects; they called this the Instrument Strength Independent of Direct Effect (InSIDE)
assumption and the analysis was named MR-Egger regression. Effectively this analysis performs a weighted regression of
the variant-outcome effect estimates on the variant-exposure estimates, so that the intercept reflects the average pleiotropy
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over the set of variants and the slope provides an unbiased MR estimate.

When there is no strong evidence to favour one set of pleiotropy assumptions over another, it would be misleading to
select one form of analysis and only to present its results. The evidence for causality can be very different under the three
forms of analysis and reporting the results under a single model for pleiotropy ignores our model uncertainty.

Unfortunately, MR-Egger regression analysis usually provides much less precision than a random effects meta-analysis
and in turn a random effects meta-analysis is less precise than a fixed effects meta-analysis. The issue of model choice
is therefore critically important and it is not sensible always to use MR-Egger regression on the grounds that it makes
the weakest assumptions. Rarely will there be sufficient biological or external experimental information about the extent
of pleiotropy to enable an MR model to be chosen with complete confidence and to select the model using the data that
will subsequently be analysed can lead to bias and over-optimistic inferences [16, 17]. For this reason, many researchers
have advocated averaging the estimates over a set of plausible models, see [18] for a Bayesian review or [19] for a
discussion from a frequentist perspective. One advantage of the Bayesian approach to model averaging is that it gives
the posterior model probabilities, which provide a natural set of weights for the model averaging. This approach has
found wide-spread application in many fields, including epidemiology and genetics. For instance, Stephens and Balding
recommended averaging over additive and non-additive genetic models [20], and model averaging has also been proposed
for prioritizing genetic associations [21], combining models of gene-gene or gene-environment interaction [22, 23], for
analysing microarray experiments [24], and for handling different covariate patterns [25].

When model averaged estimates are used, we have to accept that point estimates will provide a biased estimate
of the causal effect because the method averages over different models that cannot all be correct. Although the
relevance of frequentist properties to Bayesian analysis is debatable [26], the gain in model averaging comes from
a bias-variance trade-off that produces better prediction with smaller root mean square error [27, 18]. The idea
of a bias-variance trade-off underlies the benefits of k-class estimators for instrumental variable analysis [28] and has
recently been used in a non-Bayesian context to combine two-stage least squares and ordinary least squares estimates [29].

In this paper we demonstrate how Bayesian model averaging enables us to make an appropriate adjustment for our
uncertainty about the pattern of pleiotropy. In section 2, we introduce our notation and describe the three MR models that
we will consider. These are placed in a Bayesian context in sections 3 and 4. The simulations in section 5 illustrate the
benefits of model averaging and its ability to quantify the impact of our uncertainty about the pattern of pleiotropy and
also demonstrates the impact of assuming the wrong model. In section 6, Bayesian model averaging is applied to an MR
of the effect of age at menarche on lung function.

2. Meta-analysis of variant-specific estimates

Suppose that we have selected M independent genetic variants G j , j = 1, . . . ,M to act as instruments in a two-sample
Mendelian randomization. The first study provides estimates, γ̂ j , and standard errors s j for the variant-exposure effects
γ j and the second study provides estimates, 0̂ j , and standard errors S j for the variant-outcome effects 0 j .

Assuming that the true sizes of the variant-exposure effects, γ j , are the same in both study populations, that the second
study has N subjects and that in that study the unobserved exposure, X , and observed outcome, Y , follow linear models
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with error terms ε and υ then we have,

xi = α0 j + γ j gi j + εi j i = 1, . . . , N j = 1, . . . ,M (1)

yi = α1 + βxi + υi .

where gi j is the value of genetic variant j for subject i .

Least squares regression with the second equation would give a biased estimate of β because, although the core MR
assumptions imply that the errors are independent of the genetic variants, they are not necessarily independent of X .
Substituting one equation into the other,

yi = α
∗

1 j + βγ j gi j + υ
∗

i j (2)

where α∗1 j = α1 + βα0 j and υ∗i j = υi + βεi j . The error term in this derived relationship is assumed independent of the
genetic variant so that regression analysis provides unbiased estimates of the coefficient of G j . What is more, since
0 j = βγ j we can obtain M Wald or ratio estimates of the causal exposure-outcome effect β as,

β̂ j = 0̂ j/γ̂ j j = 1, . . . ,M (3)

where estimates γ̂ j are taken from the first study.

We will refer to this model in which there is no pleiotropy as model one (M1) and under this model we can obtain a
pooled estimate of β using inverse variance weighted fixed effects meta-analysis [30].

β̂ =

∑M
j=1 β̂ j/V j∑M
j=1 1/V j

. (4)

When s j , the standard error of γ̂ j , is negligible the variance, V j , of β̂ j can be estimated by S2
j /γ̂

2
j . The delta method can

be used to obtain estimates of V j that allow for the uncertainty in γ̂ j [31], but these have to be used with care as such
estimates are correlated with the estimate of β̂ j and this correlation can introduce its own bias into β̂ [11].

We consider pleiotropy in the form of a direct effect on the outcome via secondary pathways so that,

yi = α1 j + βxi + ψ j gi j + υi j . (5)

Now substitution gives,
yi = α

∗

1 j + (βγ j + ψ j )gi j + υ
∗

i j (6)

and the Wald estimator will estimate β + ψ j/γ j rather than β. If we are to meta-analyse the Wald estimators then we need
to make the assumption that errors due to pleiotropy, ψ j/γ j , will cancel so that

E
{
ψ j

γ j

}
= 0 (7)

which is slightly different from the more natural assumption of cancelling pleiotropy E
{
ψ j
}
= 0.

We will refer to the model in which the pleiotropy is assumed to cancel (i.e. E
{
ψ j
}
= 0) as model M2 and the model

in which the errors in the Wald estimators cancel (i.e. E
{
ψ j/γ j

}
= 0) as model M2a . Under M2a the pooled estimate of
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β can now be obtained by random effects meta-analysis,

β̂ =

∑M
j=1 β̂ j/(V j + τ

2)∑M
j=1 1/(V j + τ 2)

(8)

where τ 2 is the variance of the terms ψ j/γ j . This estimator will be consistent under model M2a and consistent under
model M2 provided that the pleiotropy, ψ j , is independent of the size of the genetic effect, γ j . This is the InSIDE
assumption introduced by Bowden et al. in the context of MR-Egger regression [15], see also [32, 14].

When we are unwilling to assume that the pleiotropy cancels, we are left with the relationship,

0 j = βγ j + ψ j (9)

which we might fit via a regression of the estimates,

0̂ j = µ+ βγ̂ j + ζ j (10)

where µ is the average of the ψ j and the zero-centred error term ζ j depends on the estimation error in 0̂ j and the
amount of pleiotropy, ψ j . The error terms will vary in size from variant to variant, so we might represent this by writing
V ar(ζ j ) = σ

2
j .

A useful diagnostic plot is obtained by plotting 0̂ j against γ̂ j [15], in this plot the slope will represent β and the intercept
will represent µ. Alternatively we can divide through by γ̂ j and obtain,

0̂ j

γ̂ j
= β̂ j = β +

µ

γ̂ j
+
ζ j

γ̂ j
(11)

and a second diagnostic plot is obtained by plotting β̂ j against 1/γ̂ j . In this plot the intercept represents β and any slope
represents directional pleiotropy, µ. Similar plots have been suggested for MR when a single variant is measured in
multiple studies [33, 34].

Bowden et al. [15] noticed that this regression has the same structure as was assumed by Egger and colleagues when
testing for publication bias [35]. We will get a consistent estimate of β from the regression provided that estimates of
the variant-exposure effect γ̂ j are independent of the errors ζ j . If the sampling error in 0̂ j and γ̂ j are random then this
assumption requires the InSIDE assumption that γ j is independent of ψ j . We refer to this as model three (M3). One
small problem with the proposal in [15] is that they suggested fitting MR-Egger regression using weighted least squares
with weights inversely proportional to V j as in equation (4). It would perhaps be better to use weights that are inversely
proportion to V j + τ

2 as in equation (8), but such an analysis would not have been as easy to implement with standard
regression software. In the following section we develop a Bayesian analysis equivalent to the least squares analysis with
the weights of equation (8).

3. Bayesian Analysis

In this section we develop a Bayesian formulation of the meta-analysis models from section 2 in which M1, M2 and M3

are nested. Under a Bayesian model we are required to place distributions over the effect sizes of genetic variants on X
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and Y and over the size of the pleiotropy. We do this by assuming that the discrete distributions over the set of genetic
variants in the MR can be approximated by continuous normal distributions, although it would be perfectly possible to
adapt these models to allow other distributional forms. Under model M3 the estimates 0̂ j and γ̂ j will be related by the
regression equation,

M3 : 0̂ j = µ+ βγ̂ j + ζ j . (12)

We will adopt the convention that each of the variants is coded so that the effect on the exposure, γ j is positive. This
convention is not necessary but does simplify the coding of the model as it will only require a single intercept µ rather
than µ for positive γ j and−µ for negative γ j . The diagnostic plots mentioned in section 2 are also easier to interpret when
all γ j are positive. The pooled estimate of the exposure-outcome effect is given by the slope and the average pleiotropy is
given by the intercept and the variance of the pleiotropy forms part of the variance of ζ j since under independence of the
error terms,

V ar(ζ j ) = V ar(ψ j )+ S2
j . (13)

Provided that we can make the InSIDE assumption that ψ j is independent of γ j and assuming random estimation errors
in γ̂ j and 0̂ j , then ζ j will be independent of γ̂ j and we will be able to estimate β from the regression. In the Bayesian
formulation we further assume that the pleiotropy terms, ψ j , come from a common distribution with

V ar(ψ j ) = τ
2. (14)

Under M2 the pleiotropy cancels so that the intercept µ is zero and the regression line passes through the origin.

M2 : 0̂ j = βγ̂ j + ζ j (15)

and here we still require the InSIDE assumption to hold.

Under M1 there is no pleiotropy, i.e. ψ j = 0 for all j , so,

M1 : 0̂ j = βγ̂ j + ζ
∗

j (16)

where
V ar(ζ ∗j ) = S2

j . (17)

In a Bayesian analysis it is a simple matter to allow for the uncertainty in the estimate of the variant-exposure effect,
γ j , that is ignored in most Mendelian randomization analyses of a two-sample design; see Burgess et al. and Bowden et
al. for examples of papers that adjust for this uncertainty in a non-Bayesian analysis [36, 37]. We simply replace model
M3 with,

M3 : 0̂ j = µ+ βγ j + ζ j (18)

and create a hierarchical structure in which we assume a normal distribution for the sampling error,

γ̂ j ∼ N(γ j , ω
2
j ). (19)

We could then approximateω j by the standard error s j Applying de Finetti’s theorem, those variant-exposure effects about
which our prior opinions are exchangeable, can be treated as being independently drawn from a common distribution. In
our examples we assume a normal distribution but in real data sets the distribution could be adapted to fit with our beliefs
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about the variant-exposure effects, see Gelman et al. Chapter 5 for a discussion [38].

γ j ∼ N(m, v) (20)

with m and v estimated from the data. A similar hierarchical structure can be used to allow for variant-exposure sampling
error in models M2 and M1. In all analyses we ignore the uncertainty in the standard errors s j and S j .

3.1. Bayesian model averaging

Let θ represent the full set of parameters, (β, µ, τ 2). Under M2, θ = (β, 0, τ 2) and under M1, θ = (β, 0, 0). The dataset
for the analysis, D, will contain the estimates 0̂ j and γ̂ j and their standard errors S j and s j . The joint posterior will be
given by

P(θ,Mk |D) ∝ P(D|θ,Mk)P(θ |Mk)P(Mk) k = 1, 2, 3.

The researcher must specify their prior beliefs in the three models, P(Mk), and their prior distributions for the relevant
parameters given each model, P(θ |Mk).

The OpenBUGS code given in the supplement will fit this mixture of models using the method of Carlin and Chib [39]
in which we introduce an indicator variable, T , to represent the current model choice. From the output, we can use the
chain of values of T to estimate the posterior model probabilities, P(Mk |D), and we can extract the parts of the chain
for which T = Mk in order to estimate the posterior distributions of the parameters, P(θ |Mk, D). The model averaged
posterior P(θ |D) is obtained from the entire chain irrespective of T . In particular, we will be interested in the marginal
posterior P(β|D), which will estimate the exposure-outcome effect allowing for our model uncertainty.

The Bayes Factor is a commonly used measure of the support for one model over another as provided by the data.
The Bayes Factor can be derived from the model averaging Markov chain Monte Carlo (MCMC) analysis by taking
the posterior model probabilities, P(Mk |D), and contrasting them with the priors, P(Mk). The Bayes Factor BF21 that
measures the support for M2 over M1 is calculated from

BF21 =
P(M2|D)
P(M1|D)

/
P(M2)

P(M1)
.

A commonly used threshold for judging Bayes Factors is to take values over 20 as indicating that the data provide
strong evidence in favour of one model over another and values over 150 as indicating very strong evidence [40]. In our
analyses we start with equal priors on all models so strong evidence requires a posterior model probability over 0.952
and very strong evidence requires a model probability over 0.993. In cases where the data do provide strong evidence for
choosing one model over another, the model averaged estimates will be heavily dominated by that choice of model and
will naturally follow the model that the Bayes Factor would have chosen.

4. Choice of Priors

Applied researchers are usually happy to use Bayesian methods with vague or non-informative priors, but many of
them are concerned when a prior has a noticeable influence on the posterior distribution. In contrast many theoretical
researchers argue that truly non-informative priors do not exist [41]. In the context of Mendelian randomization it is much
harder to limit oneself to minimally informative priors because our conclusions will depend on what we believe about

Statist. Med. 0000, 00 1–29 Copyright c© 0000 John Wiley & Sons, Ltd. www.sim.org 7
Prepared using simauth.cls



Statistics
in Medicine modelling uncertainty about pleiotropy

pleiotropy and this information cannot come from the data alone. Causality cannot be deduced from observational data
without external knowledge.

A sensible prior for β might be based on epidemiological studies that have attempted to adjust for known confounders
between the exposure and the outcome. Under M3, the likely size of µ might be influenced by whether we expect
positive or negative pleiotropy. For instance, if pleiotropy is suspected because of an effect through an identified third
factor, W , then we may have external information about both the effects of W on Y and of the genetic variants on
W . Under M2 and M3, the prior for τ 2 will need to be scaled to fit with the anticipated size of the effect of the
variants on the outcome and the anticipated severity of the pleiotropy. Sometimes it is helpful to think of the size
of the pleiotropy relative to the size of the variant-exposure effect. It is not necessary to have the same prior for τ 2

under M2 and M3 but, in practice, it is unlikely that we will have the external information to distinguish the two conditions.

We fitted the models using OpenBUGS 3.2.2 (www.openbugs.net), in which the MCMC algorithm needs to update
the full vector of parameters, θ , even under M1 and M2 when some of the values are assumed known, so the algorithm
requires us to define pseudo priors, that is priors for updating µ and τ 2 when we are fitting models that assume them to
be zero. The choice of the pseudo priors will not affect any of the posterior distributions but it can have a big impact on
the speed of convergence of the MCMC algorithm. If informative priors are used for M3 then those same priors are likely
to be good choices for the pseudo priors under M1 and M2. While if non-informative priors are used, it will be necessary
to define more restrictive pseudo priors in order to obtain convergence in a reasonable time.

5. Simulations

5.1. Design

In order to investigate the properties of Bayesian model averaging of MR analyses, we simulated data consisting of 50
independent genetic variants taken from a two-sample design in which there were either 50,000 subjects in each sample or
5,000 subjects in each sample. Allele frequencies were randomly selected between 0.1 and 0.9 and the variant-exposure
effects were randomly generated from a normal distribution with mean 0.15 and standard deviation 0.04. The variance of
the exposure was set to 2 so that on average each variant explained 0.47% of the variance and together the 50 variants
are expected to explain 24% of the variance in the exposure. This is a larger proportion of the variance than is usually
explained by the genetic variants in an MR but is chosen to emphasise the patterns and to avoid the extra complexity
of weak instrument effects. Pleiotropy was assigned independently of the genetic effect on exposure by drawing it
from a normal distribution with mean, m p, and standard deviation sp, under model M1: m p = sp = 0, under M2:
m p = 0, sp 6= 0 and under M3: m p 6= 0, sp 6= 0. Two exposure-outcome relationships were investigated, one in which
there was no causal association (β = 0) and one in which the exposure was directly responsible for 25% of the variance in
the outcome (β = 0.5). Confounding was introduced by allowing 50% of the unexplained variance in both the exposure
and outcome to depend on a common random factor.

In order to summarise the size of the pleiotropy we calculated the statistic,

MAPR = 100×Median
{∣∣∣∣ψ j/σY

γ j/σX

∣∣∣∣} .
This is the Median Absolute Pleiotropy Ratio, that is the percentage ratio of the variant’s pleiotropic effect size on a
standardized outcome divided by the variant’s effect on a standardized exposure. To create the standardized scales we
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divide by the standard deviations of the outcome and exposure, σY and σX . When the pleiotropy, ψ j , is not zero-centred,
MAPR approaches the average standardized pleiotropy as a percentage of the average standardized variant-exposure
effect size, and when the average pleiotropy is zero, MAPR is about 0.7 times the standard deviation in the standardized
pleiotropy as a percentage of the typical standardized variant-exposure effect size.

All analyses were performed with equal prior probabilities for the three models. Realistically vague priors were placed
on the other parameters, that is to say priors that had a negligible effect on the posterior but which ruled out such extreme
values that the performance of the algorithm might be affected. β was given a normal prior with mean 0 and standard
deviation 10. When analysing by MR-Egger, a vague normal prior with mean 0 and standard deviation 10 was placed
on the regression intercept. The precision of the heterogeneity was given a gamma prior with parameters 2 and 0.00005;
this makes the expected heterogeneity due to pleiotropy have a precision of 40,000, equivalent to a standard deviation
of 0.005. These priors are plotted in the supplement as Figures S.1 to S.3 in which they are contrasted with the more
informative priors used in the sensitivity analysis.

5.2. Illustrative simulation

To illustrate the model averaging and to help investigate the mixing, we simulated a single dataset of 50 genetic variants
with random allele frequencies in the range 0.1 to 0.9 in two GWAS of size 50,000. The true variant-exposure effects
were drawn from a normal distribution with mean 0.15 and standard deviation 0.04 and the true pleiotropy was drawn
from an independent normal distribution with mean 0.06 and standard deviation 0.025. In this example our measure of
the impact of pleiotropy, MAPR, is approximately 40%. The true causal exposure-outcome effect size, β, was set to 0.5.
These data follow model M3 and the InSIDE assumption holds because of the independence between the exposure effect
size and the pleiotropy.

Figure 1 shows the two diagnostic plots for the simulated data. Estimated lines from an analysis of the illustrative data
have been added to these diagnostic plots. The lines corresponding to M1 are not shown for this particular example as M1

is not supported by these data. In the left hand type of plot, models M1 and M2 would produce lines through the origin
with different amounts of variation about the line, while M3 would produce a line that does not pass through the origin.
The slope of the lines corresponds to the exposure-outcome effect size, β. In the right hand type of plot, M1 and M2

would produce horizontal lines again with different variances and M3 would create a sloping line. In the right hand plot,
the intercept with the y-axis corresponds to the estimate of β.

Figure 2 shows trace plots of a run of 10,000 following a burn-in of 1,000. The data were simulated under M3 but only
34% of the chain was spent in the MR-Egger model (M3) while 66% of the time the analysis favoured the random effects
model (M2). So the non-zero intercept in the regression is not sufficiently obvious that model M2 can be ruled out, but
the excess variance about zero is sufficient to rule out the fixed effects model, M1. The estimates of the intercept, µ, are
small and positive when in M3, while µ is fixed at zero under M2 so those values in the trace plot are merely random
values from the pseudo prior and should be ignored. The estimates of the exposure-outcome effect are very different
under models M2 and M3 and the precision also differs; under M2 the MR estimates of β are higher (mean 0.91 vs 0.63)
and more precise. The standard deviation of the heterogeneity is larger under M2 because there is no average pleiotropic
shift from zero to help explain the heterogeneity.

A smoothed estimate of the posterior distribution for β is shown by the solid line in Figure 3. The model averaged
posterior mean is 0.82 but we must be careful how this is interpreted because values of β close to 0.8 are very poorly
supported by the evidence. The analysis suggests that either β is around 0.63 or it is around 0.91. In a model averaged
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Figure 1. Diagnostic plots for a single simulated dataset. The solid line shows the model fit under M3 and the dashed line shows the fit under M2.

Figure 2. Illustrative trace plots for the analysis of a single simulated dataset

analysis, the posterior distributions are likely to be multi-modal, so it is important to report the whole posterior and to
interpret the usual summary statistics with caution.

5.3. Length of chain and number of simulations

Figure 2 was generated from a chain of length 10,000 after a burn-in of 1,000. Re-running the analysis with random
starting values showed that a chain of this length is insufficient to give reproducible estimates of the posterior model
probabilities. By trial and error, we found that 10 chains for analysing the dataset shown in Figure 1, each with a burn-in
of 10,000 and a length 500,000 thinned by 10 to a length 50,000, gave a posterior probability for M3 that averaged 37.0%
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Figure 3. Smoothed estimate of the model averaged posterior distribution for the causal effect, β (solid line). Model specific posterior distribution estimates scaled to have area
equal to the posterior model probability are shown as dashed lines.

with a between chain standard deviation of 2.6% and for the model averaged posterior mean of the causal effect, the
average over the 10 chains was 0.812 and the standard deviation was 0.008. The necessary run length can be reduced by
centring the explanatory variables in a Bayesian regression [42], but centring changes the meaning of the intercept. In this
problem the intercept is a meaningful parameter about which we may have some prior knowledge and so we decided not
to centre.

If we were to analyse 100 random datasets simulated under exactly the same scenario as was used in the illustrative
example, then the average posterior model probabilities would have two sources of variability; one from the MCMC
analysis of each dataset and the other from the variation between datasets generated under the same scenario. The standard
error of the average performance due to MCMC error will be 0.26% and the corresponding standard error for the model
averaged posterior means of β will be 0.0008. The standard error of the posterior model probabilities in the simulations
of section 5.5 was up to 2.5%, so this run length is such that MCMC error makes a very small contribution to the results.
The standard error of the posterior mean for β across datasets was negligible in comparison at about 0.001.

5.4. Mixed Simulation

The first simulation consists of 100 random datasets generated with equal probability of having (i) no pleiotropy (M1),
(ii) zero-centred pleiotropy (M2) or (iii) non-zero mean pleiotropy (M3). Details of the specific parameters used are given
in the supplement. The datasets were analysed in four ways, (i) always using a fixed effect model (M1), (ii) always using
a random-effects model (M2), (iii) always using MR-Egger regression (M3) and (iv) always using model averaging. The
results are shown in Figure 4. Within each graph the 100 datasets are sorted so that those with no pleiotropy are on the
left, those with zero-centred pleiotropy are in the middle and those with non-zero-centred pleiotropy are on the right. The
corresponding root mean square errors (rmse) of the point estimates of β (posterior means) about the true value of 0.5 are
shown in Table 1.
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The top left plot of Figure 4 shows the results when the data were analysed using a Bayesian Mendelian randomization
based on a fixed effects model. This analysis assumes no pleiotropy. The analysis performed very well when the data were
generated without pleiotropy (rmse=0.0099), but performance declined when the data were generated with zero-centred
pleiotropy (rmse=0.0814) and performance is visibly poor to the right of the plot when the data were generated with
directional pleiotropy (rmse=0.5551).

Table 1 confirms the pattern that is evident from the plot. Performance is optimal if we match the analysis with the
model used to simulate the data, however in practice, we do not know what model should be used, so it is important to
see what happens if the wrong analysis is used. Fixed and random effects analyses perform very poorly when directional
pleiotropy is present. MR-Egger is best for data with directional pleiotropy but performance is noticeablly sub-optimally
when either there is no pleiotropy (rmse 0.0311 vs 0.0099) or the pleiotropy is zero-centred (rmse 0.1977 vs 0.0814).
Model averaging offers a method of analysis that stays close to optimal whatever the true pleiotropy model because it
learns which analysis model is appropriate from the data.

Figure 4. Posterior means and 95% credible intervals for 100 random datasets. The datasets are sorted within each graph so that those without pleiotropy are on the left, those with
zero-centred pleiotropy are in the middle and those with non-zero mean pleiotropy are on the right. The four graphs show analysis by a fixed effects model (M1), a random effects
model (M2), MR-Egger regression (M3) and model averaging.

Table 1. Root mean square errors (rmse) of the point estimates (posterior means) that are displayed in figure 4

Simulated pleiotropy
Analysis none zero-centred directional

Fixed Effects 0.0099 0.0814 0.5551
Random Effects 0.0099 0.0472 0.5263

MR-Egger 0.0311 0.1977 0.2036
Model average 0.0099 0.0481 0.2853
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5.5. Average performance

Figure 4 and Table 1 demonstrate the benefit of the model averaging when there is relatively strong information in the
data to help determine which model should be used. In the following simulations we consider the situation in which
the amount of zero-centred or directional pleiotropy is small, so that it is harder to determine which model should be
used. The results in terms of rmse are given in the supplement as Tables S.1 to S.3. They show the same pattern as that
seen in Table 1. MR-Egger has large rmse because of the added uncertainty in its estimates and only becomes optimal
in situations where the pleiotropy is strongly directional. Uncertainty in MR-Egger estimates will be greatest when there
is little variation in the effects of the variants on the intermediate [14]. With weakly directional pleiotropy it is better to
use a random effects meta-analysis in place of MR-Egger even though it would be biased. Model averaging performs as
well as a random effects meta-analysis in these situations and stays close to optimal when the directional pleiotropy is
stronger, hence it is the best method to use when there is any uncertainty about the true pattern of pleiotropy.

Table 2 shows the results when the data were simulated under M1, that is with no pleiotropy and elaborates on the left
hand thirds of the graphs in Figure 4. Each dataset was analysed four times, once assuming M1 (fixed effects assuming
no pleiotropy), once under M2 (random effects assuming zero-centred pleiotropy), once under M3 (MR-Egger assuming
directional pleiotropy) and once using model averaging. We analysed the data either allowing for uncertainty in the
estimate of the variant-exposure effect or treating the estimated variant-exposure value as exact (s j =0). The model
averaged analyses spend most of their time in M1 with occasional visits to M2 and almost never prefer M3. Small sample
sizes make model determination more difficult so they make it more likely that M2 will be used even though the data
were simulated under M1. The penalty for using M2 is seen in a small increase in the posterior standard deviation. When
the studies have large samples, allowance for uncertainty in the variant-expsoure effect size makes little difference but the
impact is greater when the sample sizes are smaller and acts such that we are less likely to conclude that a random effect
analysis is needed because the uncertainty in the variant-exposure effect accounts for some of the observed heterogeneity.
Allowing for possible non-zero pleiotropy by using the Bayesian equivalent of MR-Egger would inflate the posterior
standard deviation by a factor of about 4.

Table 3 shows the results when the data were simulated under M2, that is with pleiotropy that cancels so that the
average pleiotropy, m p, is zero. All of these simulations were carried out using the model that adjusts for uncertainty
in the variant-exposure effect sizes. With small pleiotropic variance, sp=0.005, MAPR=2%, the model averaging has
difficulty distinguishing between M1 and M2 particularly with small sample sizes but the posterior distributions of β
under M1 and M2 are very similar. Medium pleiotropy was defined to have sp=0.02 and this makes MAPR equal to about
10% and this was large enough to lead the analysis to favour M2. Large pleiotropy was defined to have sp=0.04 so that
MAPR was about 19%. Now the analysis detects M2 with almost complete certainty but is rarely drawn into thinking that
non-zero pleiotropy (M3) might be appropriate. Although assuming no pleiotropy will not lead to bias in these scenarios,
it will lead to an under-estimate of the uncertainty.

Table 4 shows the results when the data are simulated under M3, that is with pleiotropy that does not cancel so that the
average pleiotropy is non-zero. A small pleiotropic mean and variance was defined as m p=0.01 and sp=0.005; this meant
that the MAPR was 7%. Large samples favoured M2 but occasionally visited M1 and M3, while with small sample sizes
the analyses were drawn toward M1 because they could not be sure of either the non-zero effect or the heterogeneity.
The posterior standard deviation under MR-Egger regression (M3) was around 4 times that under the fixed or random
effects models. A small pleiotropic mean and medium variance was defined as m p=0.01 and sp=0.02, which increased
MAPR to 11%. The preference for M2 over M1 increased but once again the analysis rarely considered MR-Egger. A
large pleiotropic mean and small variance was defined as m p=0.04 and sp=0.005, which meant a MAPR of 27%. In large
samples the analysis was able to detect the need for M3 but in small samples the non-zero average pleiotropy was not
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detected and the small variance led the analysis towards M1. A large pleiotropic mean and medium variance was defined
as m p=0.04 and sp=0.02, which meant a MAPR of 27% just as is was with large mean and small variance. The increased
variance has the effect of making it harder for the analysis to determine that the intercept is non-zero and thus that M3 is
the underlying model.

Table 2. Results for 100 datasets simulated without pleiotropy (under M1) and analysed with different assumptions about
the pleiotropy. mean=average posterior mean, sd=average posterior standard deviation, the model averaged results include

the posterior belief in each model.

Analysis Model
Fixed effects Random effects MR-Egger Model Average

β mean sd mean sd mean sd M1 M2 M3 mean sd

Without adjusting for variant-exposure uncertainty
Small samples (n=5,000)

0.0 0.00 0.029 0.00 0.029 0.00 0.095 90% 10% 0% 0.00 0.029
0.5 0.48 0.028 0.48 0.029 0.31 0.092 70% 27% 3% 0.47 0.045
Large samples (n=50,000)

0.0 0.00 0.009 0.00 0.010 0.01 0.040 98% 2% 0% 0.00 0.009
0.5 0.50 0.009 0.50 0.010 0.47 0.040 89% 11% 0% 0.50 0.010
Adjusting for variant-exposure uncertainty
Small samples (n=5,000)

0.0 0.00 0.030 0.00 0.030 0.02 0.140 90% 10% 0% 0.00 0.031
0.5 0.50 0.032 0.50 0.033 0.46 0.141 89% 11% 0% 0.50 0.033
Large samples (n=50,000)

0.0 0.00 0.009 0.00 0.010 0.01 0.039 99% 1% 0% 0.00 0.009
0.5 0.50 0.010 0.50 0.011 0.49 0.041 98% 2% 0% 0.50 0.010

5.6. Impact of the priors

The effect of changing the prior model probabilities can be calculated without further simulations. For instance, if the
analysis with equal prior model probabilities 0.33:0.33:0.33 were to lead to posterior model probabilities 0.95:0.05:0.00
then the Bayes factor, BF12, would be 19. Changing the prior probabilities to 0.1:0.5:0.4 would not alter the Bayes Factor so
the ratio of posterior model probabilities would be 19x0.1/0.5=3.8, this would correspond to posterior model probabilities
of P(M1|D)=0.79 and P(M2|D)=0.21. The model averaged posterior mean estimate could also be calculated from the
original analysis as it is a weighted average of the estimates under the different models and these will not change,

E {β} = P(M1|D)E {β|M1, D} + P(M2|D)E {β|M2, D} + P(M3|D)E {β|M3, D} .

More difficult to assess is the impact of changes to the priors on the model parameters α, β and τ 2. Changing these
priors will impact on the Bayes Factors and hence change the posterior model probabilities as well as the posterior
parameter distributions. To investigate this effect we took the scenario described in the highlighted 12th row of Table 4
where the sample size was 50,000, β = 0.5 and the pleiotropy was generated from N(0.045,0.01) so that MAPR=25%.
With vague priors model M3 is preferred but neither of the other models can be ruled out completely.

In Table 5 the baseline analysis used non-informative priors, that is to say priors that conveyed little information
about the exact parameter values but which gave little support to extreme values of the parameters. We used N(0,sd=10)
priors for α and β and a G(2,0.00005) prior for the precision, which implies a mean precision of 40,000, corresponding
to a typical standard deviation for the pleiotropy of 0.005. We contrasted these results with those obtained when more
informative priors were used. Taking one parameter at a time we used an informative prior that was either correctly
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Table 3. Results for data simulated with zero-centred pleiotropy (M2) and analysed with different assumptions about the
pleiotropy. mean=average posterior mean, sd=average posterior standard deviation, the model averaged results include the

posterior belief in each model.

Analysis Model
Fixed effects Random effects MR-Egger Model Average

β mean sd mean sd mean sd M1 M2 M3 mean sd

Small pleiotropic variance: MAPR=2%
Small samples (n=5,000)

0.0 0.00 0.029 0.00 0.030 0.01 0.143 50% 49% 0% 0.00 0.032
0.5 0.50 0.032 0.50 0.033 0.46 0.145 51% 49% 0% 0.49 0.036
Large samples (n=50,000)

0.0 0.00 0.009 0.00 0.011 0.00 0.038 44% 56% 0% 0.00 0.010
0.5 0.50 0.010 0.50 0.011 0.51 0.041 47% 53% 0% 0.50 0.012
Medium pleiotropic variance: MAPR=10%
Small samples (n=5,000)

0.0 0.00 0.029 0.00 0.031 0.03 0.161 38% 60% 1% 0.00 0.040
0.5 0.50 0.032 0.50 0.034 0.56 0.162 42% 57% 1% 0.49 0.044
Large samples (n=50,000)

0.0 0.00 0.009 0.00 0.020 0.00 0.048 0% 99% 1% 0.00 0.023
0.5 0.51 0.010 0.51 0.020 0.63 0.049 0% 99% 1% 0.50 0.024
Large pleiotropic variance: MAPR=19%
Small samples (n=5,000)

0.0 0.00 0.030 0.00 0.044 -0.03 0.239 3% 93% 3% 0.00 0.083
0.5 0.51 0.033 0.49 0.037 1.01 0.238 6% 88% 6% 0.43 0.096
Large samples (n=50,000)

0.0 0.00 0.010 0.00 0.037 0.02 0.115 0% 99% 1% 0.00 0.043
0.5 0.52 0.011 0.50 0.037 0.52 0.115 0% 99% 1% 0.50 0.046

centred, centred so as to under-estimate the true parameter value, or to over-estimate it. The informative priors are shown
in the supplement as Figures S.1 to S.3.

The informative priors only operate under some of the models, for instance the prior on µ is only relevent to model M3.
As a result choosing an informative prior can make one of the models seem less appropriate and hence affect the model
selection as well as the parameter estimates.

6. Age at menarche and lung function

This example concerns the effect of age at menarche, X , measured in years on lung function in particular on forced vital
capacity (FVC) Y , measured in ml, a spirometric measure of lung restriction. Sex hormones are known to affect lung
function, and there has been interest in assessing whether the timing of sexual development can influence lung function
later on in life. In women, observational evidence has suggested an association between earlier menarche and lower FVC
in adulthood, but confounding could not be ruled out [43]. Based on the findings of a GWA meta-analysis on 182,416
women from 57 studies published by Perry et al. [44], 122 SNPs were identified that have a genome-wide significant
effect on age at menarche. We then examined the effect of those SNPs on FVC using lung function GWA data on 2,829
adolescent women aged 14-17 years from two studies, the Avon Longitudinal Study of Parents and Children (ALSPAC)
[45] and Northern Finland Birth cohort of 1986 (NFBC 1986) [46], and separately analysed the effect of those SNPs on
adult lung function using data on 46,924 adult women aged 27-69 years from three studies, the European Community
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Table 4. Results for data simulated under a directional pleiotropy model (M3) and analysed with different assumptions
about the pleiotropy. mean=average posterior mean, sd=average posterior standard deviation, the model averaged results

include the posterior belief in each model. The highlighted simulation in row 10 is investigated further in Table 4.

Analysis Model
Fixed effects Random effects MR-Egger Model Average

β mean sd mean sd mean sd M1 M2 M3 mean sd

Small pleiotropic mean, small variance: MAPR=7%
Small samples (n=5,000)

0.0 0.07 0.030 0.07 0.030 0.01 0.138 50% 49% 0% 0.06 0.032
0.5 0.56 0.033 0.56 0.034 0.45 0.140 51% 49% 1% 0.55 0.040
Large samples (n=50,000)

0.0 0.06 0.009 0.06 0.011 0.00 0.039 37% 61% 2% 0.06 0.014
0.5 0.56 0.010 0.56 0.012 0.51 0.041 47% 52% 1% 0.56 0.015
Small pleiotropic mean, medium variance: MAPR=11%
Small samples (n=5,000)

0.0 0.07 0.030 0.06 0.031 0.05 0.160 38% 61% 0% 0.06 0.040
0.5 0.57 0.033 0.57 0.034 0.54 0.158 43% 56% 1% 0.55 0.044
Large samples (n=50,000)

0.0 0.06 0.009 0.06 0.020 -0.02 0.046 0% 99% 1% 0.06 0.026
0.5 0.57 0.011 0.56 0.020 0.61 0.050 0% 98% 2% 0.56 0.027
Large pleiotropic mean, small variance: MAPR=27%
Small samples (n=5,000)

0.0 0.25 0.031 0.25 0.031 -0.02 0.138 48% 49% 3% 0.23 0.056
0.5 0.75 0.036 0.75 0.037 0.46 0.144 48% 44% 7% 0.71 0.077
Large samples (n=50,000)

0.0 0.25 0.010 0.25 0.013 0.00 0.039 0% 5% 95% 0.01 0.047
0.5 0.75 0.011 0.75 0.014 0.50 0.042 6% 11% 83% 0.53 0.061
Large pleiotropic mean, medium variance: MAPR=27%
Small samples (n=5,000)

0.0 0.26 0.031 0.26 0.033 -0.01 0.163 36% 57% 7% 0.22 0.075
0.5 0.76 0.037 0.76 0.038 0.53 0.152 44% 51% 5% 0.72 0.068
Large samples (n=50,000)

0.0 0.25 0.010 0.25 0.022 -0.01 0.047 0% 70% 30% 0.15 0.076
0.5 0.76 0.012 0.75 0.023 0.61 0.050 0% 74% 26% 0.66 0.072

Respiratory Health Survey (ECRHS) [47], Northern Finland Birth cohort of 1966 (NFBC 1966) [48], and UK Biobank
[49]. Mendelian randomization analyses were performed separately in adolescents and adults. Details of this Mendelian
randomization study are reported elsewhere [50].

6.1. Adolescent women

Figure 5 shows the diagnostic plots for the data on adolescent women. The trace plots are shown in Figure S.4 of the
supplement. The chain spends 86% of its time in model M1 suggesting that there is little indication of pleiotropy. It does
however spend 10% of the iterations in M2 and 3% in M3 so some pleiotropy cannot be ruled out. Under M1 the posterior
mean and standard deviation for the causal age at menarche-lung function effect are -55.2 and 25.3 and under M2 the
corresponding figures are very similar at -55.2 and 25.5. However under M3 the estimated effect size drops to -21.5 and
the posterior standard deviation increases considerably to 64.2. The model averaged result has a posterior mean of -54.1
with a standard deviation of 28.2.
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Table 5. Impact of the priors. Averages across the 100 datasets corresponding to row 10 of Table 4 when an informative
prior is placed on one of the parameters. mean=average posterior mean, sd=average posterior standard deviation.

parameter M1 M2 M3 mean sd

Non-informative priors
6% 11% 83% 0.53 0.061

Correctly centred informative prior
β 2% 3% 94% 0.51 0.050
µ 19% 77% 4% 0.74 0.018

τ−2 30% 6% 64% 0.58 0.079
Informative prior that underestimates the parameter

β 0% 0% 100% 0.41 0.044
µ 4% 11% 85% 0.70 0.032

τ−2 100% 0% 0% 0.75 0.012
Informative prior that overestimates the parameter

β 17% 55% 28% 0.70 0.048
µ 20% 80% 0% 0.75 0.014

τ−2 11% 12% 76% 0.54 0.069

Figure 5. Diagnostic plots for adolescent women. The solid line shows the model fit under M3 and the dashed line shows the fit under M2 or M1.

6.2. Adult women

Figure 6 shows the diagnostic plots for the data on adult women. The trace plots are shown in Figure S.5 in the supplement.
The chain never visits M1 suggesting strongly that there is pleiotropy. It spends 81% of the iterations in M2 and 19% in
M3 so it favours pleiotropy that cancels but cannot rule out a directional effect. Under M2 the posterior mean and standard
deviation for the causal age at menarche-lung function effect are 19.9 and 14.4, while under M3 the corresponding figures
are -3.6 and 27.1. The model averaged result has a posterior mean of 15.5 with a standard deviation of 19.8.

6.3. Conclusion

Taken together these data suggest a negative causal effect of later age at menarche on lung function in adolescents and
a positive effect in adults, although uncertainty over pleiotropy creates large uncertainty in the latter estimate. These
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Figure 6. Diagnostic plots for adult women. The solid line shows the model fit under M3 and the dashed line shows the fit under M2.

findings confirm the patterns found in the same data by Gill and colleagues [50] who performed the MR analysis after
excluding possibly pleiotropic SNPs (SNPs previously associated with secondary phenotypes that affect lung function)
and showed strong evidence of a positive effect (44.6ml; 95%CI: 17.2 to 69.9; p=0.001).

This example illustrates the importance of time in an MR. Both the variant-age at menarche (GX) and the variant-lung
function (GY) estimates relate to life-time effects of the genes, but X is observed in the early teenage years while in our
two analyses the outcome Y is observed later in adolsecence or in adulthood. Not only might the effect of X on Y differ
depending on the ages of the subject in the study, but it is perfectly possible that the pleiotropic effects will also vary
with age, which could explain why we see more pleiotropy in the analysis of adult lung function. It is always important to
consider the ages of the subjects when interpreting a two-sample MR.

7. Discussion

Mendelian randomization (MR) gives us the potential to draw causal conclusions from observational data. Unfortunately
MR replaces traditional epidemiological assumptions, such as no unmeasured confounding and no reverse causation,
with other assumptions, most importantly the assumption of no pleiotropy, that is to say, the genetic instruments must not
affect the outcome through any pathway that does not pass through the exposure of interest. Like the assumption of no
unmeasured confounding, the assumption of no pleiotropy cannot be justified based on the observational data alone but
requires external knowledge of the problem.

Two-sample MR requires its own extra assumptions. First it assumes that the variant-exposure effects measured
in the first sample will be valid estimates of the unmeasured variant-exposure effects in the second sample. Any
gene-environment interaction would have the potential to cause this assumption to be violated. Second, although the
design of an MR offers some protection against reverse causation, external knowledge of the time ordering between
the exposure measured in one sample and the outcome measured in the other is usually required. This time ordering
may not be straightforward, especially when the exposures or outcomes are the result of life-long influences. In our
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example, menarche clearly precedes adult lung function but lung function can be seen as a life-long process with
early lung development in the womb, growth during childhood and adolescence, a peak in lung performance in early
adulthood and then a gradual decline. Genes that affect early lung development will almost inevitably have some impact
on adult lung function; were it the case that early lung development affects age at menarche then early lung development
would be a confounder between exposure and outcome and it is a key assumption of any MR that the chosen genetic
variants do not affect confounders. This assumption would be violated and the MR would be invalid. It is tempting to
obtain genome-wide association estimates from two-samples and to automatically apply MR, but this is dangerous and
potentially very misleading unless one has a deep understanding of the structure of the relationships between genetic
variants, exposure and outcome.

A two-sample MR can be viewed as a meta-analysis over the set of genetic instruments and depending on what
is believed about pleiotropy, this meta-analysis can be undertaken in different ways. A fixed effects meta-analysis is
appropriate when there is no pleiotropy, a random effects meta-analysis is appropriate when the pleiotropy cancels in
the sense that the average over all instruments is zero and MR-Egger is best when the pleiotropy is directional. We have
placed these three methods within a Bayesian framework and used model averaging to provide estimates that allow for
our uncertainty about the nature of the pleiotropy.

In creating a Bayesian analysis that encompasses the three models for pleiotropy, we have pointed out a slight difference
between the Bayesian model with non-directional pleiotropy (M2) and a random effects meta-analysis (M2a) in that the
former assumes that the expected pleiotropy is zero and requires the InSIDE assumption, while the latter assumes that
the expected ratio between the pleiotropy and the effect on the exposure is zero. It is dificult to imagine circumstances in
which E

{
ψ j/γ j

}
would be zero unless it were the case that the two assumptions of M2 held, so in practice, the difference

is unlikely to be important.

The root mean square errors (rmse) is a measure that combines bias and variance and the benefits of model averaging
in terms of rmse were evident in all of our simulations, see Tables 2, S.1 to S.3. Clearly we could out-perform model
averaging if we knew the correct model, but we never do, and analyses that assume a single model will underestimate the
full uncertainty in the results. It is an attractive feature of model averaging that when the evidence points strongly to one of
the models, then the model average results will move close to that solution, but when there is no strong evidence to favour
one particular model then the analysis will correctly capture that uncertainty. However, despite its useful properties, it
is well to remember that model averaging only averages over a specified list of alternative models. Were it the case that
none of the models in the list adequately captures the relationships in the data, then performance could be poor.

One of the aspects of Bayesian methods that many people find difficult is the specification of the priors; the results
will depend not just on the priors for the models but also on the priors on the parameters of those models. It is common
practice to adopt non-informative priors so as to allow the data to dominate the solution. There are two arguments against
this in the context of MR; first, the analysis is already subjective because of the choices that are made when selecting
the variants and picking the models over which we will average, and second, the data alone are unlikely to be sufficient
to provide useful estimates. Particularly in the case of MR-Egger regression, the estimates provided by MR are very
imprecise and may be unstable due to impact of unusual estimates from a few variants. As Table 5 shows, well-informed
prior distributions can help overcome these limitations although, of course, very poorly informed prior knowledge could
make things worse. It is important that the researchers treat the specification of prior distributions as an integral part of
the study and only use prior distributions that they really believe in. Anyone reading a report of an MR study, whether it
is Bayesian or not, should pay particular attention to the assumptions made by the researchers and interpret the findings
in the light of those assumptions. Often Bayesian analyses are clearer because they make those assumptions explicit.
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The Bayesian approach offers two advantages beyond the quantification of model uncertainty. First we can incorporate
prior beliefs about the model parameters and even when these are relatively vague they can still act to limit the range of
the posterior and avoid some of the instability that is associated with weak instruments. Second, the Bayesian approach
offers a simple way for allowing for the uncertainty associated with the variant-exposure estimates, although this is not
an automatic process and some thought needs to go into modelling of the distribution of the variant-exposure effects.
For instance, it may not be reasonable to assume normally distributed variant effects when the estimates come from a
discovery sample that is subject to the Winner’s curse [51].

The model averaging algorithm is required to move freely between the three models but if the models differ because
the posterior of the causal estimate is very different under two of the models then it may be difficult to get the chain to
jump from one model to the other. The result would be poor mixing and a very long chain would be required in order to
achieve convergence, especially for the posterior model probabilities. The mixing of the algorithm used in this paper is
controlled by the choice of the pseudo priors, that is the distributions from which we draw values for parameters not in
the current model. These pseudo priors need to be chosen with care so that they generate values appropriate to the other
model options and avoid values that would make some models a poor fit to the data. Other algorithms that could be used
for model averaging have been reviewed by Han and Carlin [52] and might be worth investigating in the context of MR.

The approach adopted in this paper could be extended in various ways. Obviously we could incorporate other model
choices, for example we could have a variation on MR-Egger that allows a non-zero average pleiotropy but no excess
heterogeneity, this would correspond to a fixed amount of pleiotropy affecting all of the variants. We decided not to
include this possibility in our analyses because it seems biologically implausible. Bowden et al. [14] have noted the
advantages of using a multiplicative random effects model that assumes zero-centred pleiotropy but is more robust to
directional pleiotropy and this could also be included as an option in the Bayesian model averaging. Yet another option
would be to allow different subsets of the genetic variants to have different patterns of pleiotropy, so for example, some
genetic variants might not exhibit any pleiotropy so that M1 would be appropriate for them, while other genetic variants
might be subject to zero-centred pleiotropy and require M2.

Another interesting extension of model averaging would be for one-sample MR. In a one-sample study one typically has
access to the individual participant data (IPD) and so it would not be necessary to model the summary statistics. A Bayesian
IPD model of a large number genetic variants is perfectly possible but would be computationally very demanding, so that
it would be tempting to model the summary statistics as an approximation. Unfortunately summary statistics for GX and
GY calculated on the same subjects would not be independent and the model would need to be adjusted to account for
the correlation. This explains why the meta-analysis methods and MR-Egger regression were developed for two-sample
studies.

Since Mendelian randomization requires untestable assumptions it will never be a method that is completely defined
by the data, but rather it will always require external, biological information about the genetic instruments. Unfortunately
MR is not a black box analysis that can be conducted by downloading GWAS data on variant-exposure and variant-
outcome and combining them in some automatic manner. MR without biology is dangerous and has the potential to be
very misleading; given this, it is natural to adopt a Bayesian approach to the analysis that enables our biological knowledge
to be integrated with the data.
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8. Online Supplement

8.1. OpenBUGS code

The OpenBUGS code given below performs model averaging allowing for uncertainty in the variant-exposure effect sizes
as in Tables 3 and 4 of the main paper. The code is written in terms of the precision so that t in the code represents the
reciprocal of the variance and itau2=1/τ 2. T is the model indicator that can take values 1,2,3. The data supplied to the
program contains N=number of instruments, x[] and y[] , containing the estimates γ̂ j , 0̂ j respectively, pg[] containing
1/s2

j and vG[] containing S2
j , the prior model probabilities, p[], and the parameters of the priors.

Under all three models we assume a normal prior for β with mean MB and precision PB. Under M3 the intercept
mu has a normal prior with mean PA and precision PB. Under M1 and M2 the intercept is zero so the values of mu are
generated from a normal pseudo prior with mean zero and precision 100; this helps mixing between models since these
values correspond to the approximate scale on which the simulations were created. The pleiotropy terms under M2 and
M3 have a precision itau2 that is given a G(GA,GB) prior.

model {

T ˜ dcat(p[])

for( i in 1:N ) {

z[i] ˜ dnorm(m,t)

x[i] ˜ dnorm(z[i],pg[i])

m[i] <- mu*equals(T,3) + beta*z[i]

pr[i] <- 1/(vG[i]+step(T-1.5)/itau2)

y[i] ˜ dnorm(m[i],pr[i])

}

ta <- 100 - (100-PA)*equals(T,3)

mu ˜ dnorm(MA,ta)

beta ˜ dnorm(MB,PB)

at <- 1*equals(T,1) + GA*step(T-1.5)

bt <- 0.001*equals(T,1) + GB*step(T-1.5)

itau2 ˜ dgamma(at,bt)

m ˜ dnorm(0.2,0.1)

t ˜ dgamma(0.1,0.001)

}

The priors on m and t need to be chosen to be appropriate for the particular problem. To remove the adjustment for
uncertainty in the measurement of the gene-intermediate estimates the priors on m and t should be dropped and the loop
should be replaced by,

for( i in 1:N ) {

m[i] <- mu*equals(T,3) + beta*x[i]

pr[i] <- 1/(vG[i]+step(T-1.5)/itau2)

y[i] ˜ dnorm(m[i],pr[i])

}
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8.2. Mixed simulation

Data for the mixed simulation shown in Figure 4 were generated so that there was an equal probability of no pleiotropy
(M1), zero-centred pleiotrop (M2) or non zero-centred pleiotropy (M3). The true value of the effect of X on Y, β, was fixed
to be 0.5. The effects of the genetic variants on X were generated from a Normal(0.2,0.05) distribution. Under M2 and M3

the precision of the pleiotropy was generated from a Gamma(10,0.04) distribution and under M3 the mean pleiotropy was
generated from uniform(-0.2,0.2) distribution. Two-sample data were generated with both sample sizes equal to 50,000.

8.3. Average performance

Tables showing the root mean square errors corresponding to the simulations in Tables 2, 3 and 4.

Table S.1. Root mean square errors for 100 datasets simulated without pleiotropy (under M1). Corresponding to Table 2

Analysis Model
β Fixed effects Random effects MR-Egger Model Average

Without adjusting for variant-exposure uncertainty
Small samples (n=5,000)

0.0 0.029 0.029 0.094 0.029
0.5 0.034 0.034 0.213 0.051
Large samples (n=50,000)

0.0 0.010 0.010 0.039 0.010
0.5 0.011 0.010 0.051 0.010
Adjusting for variant-exposure uncertainty
Small samples (n=5,000)

0.0 0.030 0.030 0.134 0.030
0.5 0.028 0.028 0.134 0.038
Large samples (n=50,000)

0.0 0.010 0.010 0.041 0.010
0.5 0.011 0.011 0.043 0.011
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Table S.2. Root mean square errors for 100 datasets simulated with zero-centred pleiotropy (under M2). Corresponding
to Table 3

Analysis Model
β Fixed effects Random effects MR-Egger Model Average

Small pleiotropic variance: MAPR=2%
Small samples (n=5,000)

0.0 0.033 0.032 0.168 0.027
0.5 0.036 0.036 0.147 0.032
Large samples (n=50,000)

0.0 0.012 0.012 0.040 0.011
0.5 0.010 0.010 0.046 0.011
Medium pleiotropic variance: MAPR=10%
Small samples (n=5,000)

0.0 0.035 0.035 0.216 0.040
0.5 0.040 0.040 0.194 0.040
Large samples (n=50,000)

0.0 0.020 0.020 0.103 0.022
0.5 0.025 0.022 0.167 0.023
Large pleiotropic variance: MAPR=19%
Small samples (n=5,000)

0.0 0.051 0.049 0.761 0.118
0.5 0.050 0.048 0.736 0.176
Large samples (n=50,000)

0.0 0.043 0.039 0.160 0.042
0.5 0.046 0.039 0.156 0.042
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Table S.3. Root mean square errors for 100 datasets simulated with directional pleiotropy (under M3). Corresponding to
Table 4

Analysis Model
β Fixed effects Random effects MR-Egger Model Average

Small pleiotropic mean, small variance: MAPR=7%
Small samples (n=5,000)

0.0 0.072 0.071 0.150 0.064
0.5 0.073 0.071 0.137 0.061
Large samples (n=50,000)

0.0 0.063 0.063 0.041 0.061
0.5 0.066 0.065 0.044 0.062
Small pleiotropic mean, medium variance: MAPR=11%
Small samples (n=5,000)

0.0 0.076 0.076 0.213 0.067
0.5 0.082 0.080 0.181 0.069
Large samples (n=50,000)

0.0 0.066 0.065 0.120 0.062
0.5 0.073 0.066 0.156 0.062
Large pleiotropic mean, small variance: MAPR=27%
Small samples (n=5,000)

0.0 0.257 0.257 0.152 0.240
0.5 0.249 0.248 0.137 0.232
Large samples (n=50,000)

0.0 0.253 0.252 0.043 0.064
0.5 0.254 0.252 0.045 0.097
Large pleiotropic mean, medium variance: MAPR=27%
Small samples (n=5,000)

0.0 0.262 0.261 0.215 0.235
0.5 0.268 0.266 0.166 0.242
Large samples (n=50,000)

0.0 0.255 0.251 0.111 0.200
0.5 0.265 0.255 0.157 0.207
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8.4. Impact of the priors

Figure S.1. Realistically vague prior for β times 50 (blue), correctly centred informative prior (red), over and under centred priors (black). True parameter value shown as a vertical
line.

Figure S.2. Realistically vague prior for µ times 1000 (blue), correctly centred informative prior (red), over and under centred priors (black). True parameter value shown as a
vertical line.
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Figure S.3. Realistically vague prior for the precision (blue), correctly centred informative prior (red), over and under centred priors (black). True parameter value shown as a
vertical line.
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8.5. Trace plots for age at menarche and lung function

Figure S.4. Trace plots for adolescent women.

Figure S.5. Trace plots for adult women.
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