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ABSTRACT
Genetic improvement uses automated search to �nd improved ver-
sions of existing software. Typically software is modi�ed using
either delete, copy or replace operations at the level of source code,
its abstract syntax tree, binary or assembly representaion. Impres-
sive improvements have been achieved through this approach, yet
research in the use of other search operators is largely unexplored.
We propose several ways for devising new search operators for
improvement of non-functional properties using a genetic improve-
ment apporach.
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1 INTRODUCTION
Genetic improvement (GI) uses automated search to �nd improved
versions of existing software. Even though this area of software
engineering is relatively new, with the name being coined by Har-
man et al. in 2012 [5], it has already yielded impressive results.
For example, Langdon and Harman’s GI framework [8] found a
version of a 50 000 line software system that is 70 times faster than
the original, while Bruce et al. [3] reduced energy consumption of
software by up to 25% using GI.

The typical GI process involves the use of genetic programming
to modify code at the source code level or to make changes to its ab-
stract syntax tree, binary or assembly representation. Other search
approaches have been used less frequently, such as random search
and hill climbing [1], although not in the context of improvement
of non-functional software properties.

Perhaps due to the legacy of genetic programming, the most fre-
quently used search operators for improvement of non-functional
properties of software have been the delete, copy and replace mu-
tation operators. Researchers in genetic improvement have been
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applying this now standard approach to report improvements on
various existing software.

More �ne-grained changes at the expression level have also been
tried in the work on deep parameter tuning [17]. However, these
are restricted to the standard operators used in mutation testing.
With introduction of constraint-reasoning in the �eld of automated
program repair, more complex statement-level changes have been
applied [12–14]. These are, however, limited partly due to the ex-
pressiveness of the constraints in constraint solvers. Therefore,
there is a need for greater analysis into which search operators lead
to good solutions when using genetic improvement. An example
idea was presented in a workshop paper by Wu et al., where they
proposed the use of higher-order mutants [6].

We propose to take a step back and derive new ways of modifying
code in a genetic improvement framework.

2 SOURCES OF NEW OPERATORS
We present three sources for deriving new mutation operators
for the purpose of improvement of non-functional properties of
software using genetic improvement.

2.1 Repository Mining
We propose to use existing solutions produced by software de-
velopers in devising new search operators. It has been recently
shown [18] that a surprisingly large percentage of code snippets
available on software developer fora, such as StackExchange1, al-
ready contain executable code. We propose to mine changes made
by software developers in open-source projects (GitHub repository2

is one source of such code, containing over 38 million projects) with
particular focus on improvement of the software property of in-
terest, such as runtime e�ciency. The results can then be used to
devise new mutation operators in the form of templates. These
could be then automatically transplanted into the original code dur-
ing search, provided the required constraints are met. Restrictions
on the data structures, for instance, might need to be considered
to produce compilable software variants. Given that in previous
work [15] signi�cant runtime improvements have been achieved
by transplanting code from other software variants, we propose to
allow for the operators to reuse code not necessarily from the code
to be improved itself.

In the automated program repair �eld, templates have already
been used to �x bugs [7, 10, 11]. We could also draw from the latest
approach proposed by Long et al. [11]. They created templates
at the abstract syntax tree level. Therefore, the derived templates
operate on a tree rather than source code level as is common in
mutation testing.

1http://stackexchange.com/
2https://github.com/
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2.2 Constraints
In order to increase the compilation chance of mutated code, pro-
�ling and grammars have been used to restrict the code change
locations. Furthermore, as previously pointed out, most of the ge-
netic improvement work to date reuses the same search, or in other
words, mutation operators. Therefore, we propose to take inspira-
tion from automated software repair work, in particular angelic
debugging [13]. We propose to pro�le the code to �nd the most
time consuming fragments and abstract program conditionals and
variable assignments and derive value ranges for these such that
all the training test data still pass. This is a novel idea; variation on
the deep parameter tuning work with angelic execution replacing
mutation testing operators.

The power of genetic improvement lies in potentially making
arbitrary changes to the code. Therefore, we propose to combine
templates derived from the repository mining stage and new an-
gelic parameters with traditional genetic improvement operators
to widen the pool of software modi�cations. We propose to inves-
tigate the e�cacy of each of these techniques by measuring the
e�ect of each type of changes on the �tness of modi�ed software
variants. Furthermore, we propose to test various search operator
combinations in a systematic way.

2.3 Software Diversity
Throughout the genetic improvement process thousands (if not
more) of software variants are being produced. Even though changes
that are being made to the code are mostly random, high compila-
tion rates are still being reported (e.g., 70-80% by Petke et al. [15]).
There have been several studies showing that software is more
robust than initially thought [9, 16]. Schulte et al. [16] de�ned the
term software “mutational robustness" in terms of changes to com-
puter code. They also de�ned a “neutral mutation" to be a random
change that does not change program’s behaviour as de�ned by
program speci�cation and its test suite. Therefore, those neutral
mutants can still change the code semantics.

The concept of software mutational robustness is closely related
to the goals of n-version programming [4] that aims to create di-
verse software variants that exhibit the same behaviour. Software
diversity is useful for increasing its resilience against repeated
software attacks [2, 4]. The genetic improvement approach can
thus be used to create several software variants for this purpose.
Schulte et al. [16] conducted several empirical studies, showing that
37% of software mutations were neutral, that is, 37% of the created
software variants produced the same behaviour modulo test suite.

Insights from studies on mutational robustness can be utilised in
the genetic improvement of non-functional software properties as
follows. Given that high percentage of mutants created in such stud-
ies have no e�ect on program behaviour (modulo test suite), these
are great candidates for �nding a software version that improves
upon some non-functional property. Therefore, one could run dif-
ferent versions of the same software within di�erent environments,
picking the best version in terms of, for example, runtime e�ciency
for that environment.

Furthermore, analysis of the various software mutants can yield
to new search operators in the form of parameters that could be
tuned. One obvious example is loop perforation. However, given

the randomness of changes produced by GI, by analysing the dif-
ferent neutral mutants, one could identify structures that are more
amendable to mutation. Therefore, not only new operators could
be derived for the purpose of non-functional property optimisation,
but the search itself could be more targeted towards more “robust"
parts of the code.

3 CONCLUSIONS
Genetic improvement techniques have been successfully used to
optimise various non-functional properties of software, ranging
from runtime [8] through energy consumption [3] to memory con-
sumption [17]. We propose to extend the standard set of search
operators (delete, copy and replace) with new ways of mutating
code. We proposed three ways of deriving such operators. We hope
that we will inspire researchers in genetic improvement to pursue
novel ways of modifying software and thus lead to further impres-
sive empirical results and further growth of this exciting �eld of
research.
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