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Abstract 

Low-carbon power generation technologies such as wind, solar and carbon capture and storage are 

expected to play major roles in a decarbonized world. However, currently high cost may weaken 

the competitiveness of these technologies. One important cost reduction mechanism is the “learning 

by doing”, through which cumulative deployment results in technology costs decline. In this paper, 

a 14-region global energy system model (Global TIMES model) is applied to assess the impacts of 

technology diffusion on power generation portfolio and CO2 emission paths out to the year 2050. 

This analysis introduces three different technology learning approaches, namely standard 

endogenous learning, multiregional learning and multi-cluster learning. Four types of low-carbon 

power generation technologies (wind, solar, coal-fired and gas-fired CCS) undergo endogenous 

technology learning. The modelling results show that: 1) technology diffusion can effectively reduce 

the long-term abatement costs and the welfare losses caused by carbon emission mitigation; 2) from 

the perspective of global optimization, developed countries should take the lead in low-carbon 

technologies’ deployment; and 3) the establishment of an effective mechanism for technology 

diffusion across boundaries can enhance the capability and willingness of developing countries to 

cut down their CO2 emission. 
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1. Introduction 

In order to limit global warming to 2 °C or even 1.5°, both energy supply side and demand side need 

to be changed. The core of such transformation lies in the large-scale use of low-carbon technology 

on the supply side and the improvement of energy efficiency and fuel- and technology- switching 

on the end-use side. The advancement in low-carbon technologies can improve energy efficiency, 

reduce the cost of energy-saving technologies and non-fossil energy technologies, reduce 
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dependency on fossil fuels, and avoid the rapid growth of CO2 and other greenhouse gases. The 

IPCC 5th Assessment Report also highlights the importance of technological advances for stabilizing 

greenhouse gas concentrations [1]. In the current world of economic globalization, the exchange of 

capital, products and materials across boundaries has created a ground for international technology 

progress and diffusion [2]. The global spill-over of knowledge and technology allow a country to 

take advantage of international resources to build its own technological reserves and develop low-

carbon technologies effectively and rapidly. The Paris Agreement stressed the importance of 

technical cooperation in achieving emission reductions, “the urgent need to enhance the provision 

of finance, technology and capacity-building support by developed country Parties, in a predictable 

manner, to enable enhanced pre-2020 action by developing country Parties.”[3]  

 

In energy system models, technological change is currently modelled either endogenously or 

exogenously [4]. The way in which the technological changes (cost and efficiency) are modelled in 

energy system models, often influence the model results, i.e., energy system development pathways 

and resulting energy system costs. Therefore, more and more models are beginning to consider 

endogenous technology learning (ETL), to investigate the impact of technology progress on energy 

systems [5-13]. Mattsson and Wene (1997) [5] modelled technology learning endogenously to solar 

photovoltaic (PV) and fuel cell in the GENIE model to assess the technology lock-in effect. The 

main conclusion is that early research investment is nee ded to reduce production costs. Seebregts 

et al. (2000) [6] attempt to introduce ETL in Western European MARKAL model. Their study 

focuses on technology learning and spillover effects of new technologies, such as wind and fuel cell. 

Model results show that technology learning and spillover significantly reduce policy costs. 

Gritsevskyi and Nakicenovic (2000) [7] explored ETL in MESSAGE model with consideration of 

scale effects and clusters effects of linked technologies. Their study also focused on technology 

uncertainty and long-term cost and benefit. Iyer et al. (2015)[11] applied technology learning and 

spillover endogenously in wind power and solar PV in GCAM model to explore the global and 

regional technology development strategies to achieve a long-term climate mitigation target. Their 

model results show that international cooperation in the deployment of low-carbon technologies can 

lead to substantial gains when achieving the global goal. 

 

Technology learning is usually applied to a set of technologies which are competing or potentially 

complementary. Sano et al (2005) [8] modelled ETL of fuel cell, wind and PV power in DNE21+ 

model. Rao et al. (2006) [9] included wind, PV and hydrogen production technologies in a hybrid 

model MESSAGE-MACRO. Barreto and Kypreos (2004) [10] have estimated learning by doing for 

PV, fuel cells and wind turbine. Iyer et al. (2015) [11] assessed wind and solar PV only. In this study, 

learning is applied to a set of low-carbon power generation technologies - wind, solar and CCS, 

which are important technology options in future low-carbon technology portfolio. 

 

Most studies apply ETL to technologies individually. Several studies have examined the “cluster 

learning” phenomenon, which a cluster of technologies shares a common component that linked 

and learn together [6, 12, 13]. De Feber et al. (2002) [13] modelled ETL in fuel cell which leads to cost 

decline in transportation technologies. Seebregts et al. (2000) [6] applied learning to five clusters: 



wind turbines, solar PV, fuel cells, gasifiers and gas turbines. Anandarajah et al. (2013) [12] modelled 

multi-cluster learning in key vehicle components, namely automotive batteries, fuel cells, and 

electric drivetrains, which are shared across different transportation modes (buses, HGVs, cars). In 

Global TIMES model, several CCS generation technologies can obviously comprise multiple 

clusters. We incorporate a multi-cluster learning approach, applying learning for four types of coal- 

and gas-fired generation technologies, namely post-combustion coal CCS, oxyfuel combustion coal 

CCS, integrated gasification combined cycle with CCS (IGCC CCS) and natural gas combined cycle 

with CCS (NGCC CCS).  

 

In this paper, technology learning is endogenously modelled in three different approaches into a 14-

region energy system model Global TIMES to analyze the impact of technology progress and 

technology diffusion under the Shared Socio-economic Pathways (SSPs)[14-17], which provides a 

systematic scenario framework differentiated by socio-economic challenges to climate change 

mitigation and adaptation. It seems to be unique to model different endogenous technology learning 

mechanism under SSPs framework. The rest of the paper is organized as follows: Section 2 is a 

methodological section that describes the framework of Global TIMES model integrated with 

endogenous technology learning module; Section 3 provides the basic assumptions and scenario 

definition; Section 4 presents and discusses the model results and the conclusions are provided in 

Section 5. 

2. Methodology 

2.1 Overview of Global TIMES model 

The TIMES (The Integrated MARKAL and EFOM System) is a combination of the MARKAL 

(Market Allocation Model) and EFOM (Energy Flow Optimization Model) developed and 

maintained by the ETSAP (Energy Technological System Analysis Program) of IEA (International 

Energy Agency) [18] . The Global TIMES, which is developed based on China MARKAL[19-21] and 

China TIMES [22-30], is a 14-region global energy system model built on TIMES framework with a 

modelling period of 40 years from 2010 to 2050 with 5-year reporting period. It is a powerful and 

reliable technology rich bottom-up tool to study energy system development and carbon mitigation 

assessment for each of the regions. Global TIMES incorporates the whole energy system, including 

energy supply, energy conversion, transmission and end-use demand sector. Five demand sectors, 

namely agriculture, industry, commercial, residential and transportation, are modelled and further 

disaggregated into 26 sub-sectors in the Global TIMES. The model determines the least-cost mix of 

technologies and fuels to meet the projected energy service demands for a given social economic 

development scenario. The model is calibrated based on 2010 historical data from a series of 

statistics and reports and the main modeling results for the year 2015 are also calibrated to available 

publications [31-35]. In this study, the Global TIMES model has been further improved by integrating 

an endogenous technology learning module to apply technology learning endogenously for low 

carbon electricity generation technologies. Figure 1 shows the region map of Global TIMES. 

 



 

Figure 1: Regions in Global TIMES model 

This paper focuses on the power sector which is becoming more and more important to low carbon 

society. In the model, we modelled more than 60 power generation technologies including existing 

and advanced low carbon technologies such as nuclear, hydro, onshore wind, offshore wind, solar 

photovoltaic (PV), concentrating solar power (CSP), biomass, CCS and etc.  

2.2 Endogenous technology learning framework in Global TIMES 

Technology learning reflects the fact that with the accumulation of certain factors (e.g. knowledge, 

experience, utilization, etc.), technology may see cost decline. Several patterns of technology 

learning are observed by researches: learning by doing, learning by researching, learning by using, 

etc.[36]. However, it is difficult to consider all these learning patterns in the Global TIMES model. 

Nevertheless, in order to assess the cost reduction of low-carbon technologies, we modelled the 

learning by doing mechanism by introducing a one-factor learning curve into Global TIMES. 

Learning by doing is a concept which allows the evaluation of reduction in capital cost when a 

technology’s cumulative capacity increases. In Global TIMES, only the investment cost undergoes 

learning. The learning curve is expressed by an exponential regression: 
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where 0C  and 0Q  are the initial investment cost and initial capacity, tC  and tQ  are 

investment cost and cumulative installed capacity at time t,   is the elasticity of learning by doing. 

From Eq. (1) we can determine the progress ratio (PR) and learning rate (LR): 

1 2PR LR      (2) 

The progress ratio represents the investment cost declines while the cumulative capacity doubles. 



 

2.2.1 Multiregional learning 

Some technologies have obvious regional characteristics [37]. The research, development, use and 

improvement processes of these technologies can results-in regional technology accumulation. 

However, such kind of technology accumulation is difficult to spread to other regions due to their 

obvious regional characteristics. For example, land management, irrigation, housing heating and 

cooking. In the learning curve-based technology development, the technology learning module 

described above (Section 2.2), the learning of a technology can only be gained through the 

deployment of the technology itself. Literature in technology learning shows that some technologies 

can be rapidly commercialized through a global technology accumulation, such as wind power, PV, 

steel making and some other technologies [37]. Thus, this paper models a global technology 

accumulation, assuming full spillover of knowledge and technologies across the regions modelled 

in the Global TIMES, using a multiregional learning approach to represent technology diffusion 

across boundaries. In order to model multiregional learning, we have created an additional region, 

called “Manufacturing”, where the learning technologies are developed and made available to all 

the “real” regions in the model to use them. The manufacturing region consists only the set of 

learning technologies which undergoes ETL. In other “real” regions, the learning technologies are 

represented with all attributes except the investment cost. The following constraint is defined to 

ensure that learning in the Manufacturing Region can spread to all “real” regions: 
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where _ lVAR NCAP  is the newly installed capacity in region l, M represents the Manufacturing 

Region and l=1 to L represents each “real” region. 

2.2.2 Multi-cluster learning 

Another interesting variation of ETL literature is “multi-cluster learning”, which is modelled in this 

study. Some technologies can rapidly diffuse and benefit other technologies which have common 

or similar core components. For example, IGCC, natural gas combined cycle and biomass 

gasification generation require one common component – the gas turbines. Through cluster learning, 

if we apply endogenous technology learning to gas turbines, the technology learning of gas turbines 

will benefit all these technologies. When we have more than one component that undergo ETL, then 

it is called a multi-cluster learning (Anandarajah et al, 2013). 

 

Four types of CCS generation technologies, namely post-combustion coal CCS, oxyfuel combustion 

coal ccs, IGCC with CCS, and NGCC with CCS, are modeled through the multi-cluster learning 

approach in this study. This approach reflects that a cluster of technologies which share the same 

component – the “key component” – can benefit from each other’s deployment and learn together. 

For example, air separation unit (ASU) plays the role as a key component. Oxy-fuel combustion 

with CCS and IGCC with CCS are technologies in the cluster in which ASU is used. Five 



components undergo ETL in the multi-cluster learning approach, and are linked to the generation 

technologies in which they are deployed in the model in an explicit manner (Figure 2). The 

phenomenon of multi-cluster learning is modelled in Global TIMES via the following modification 

of the formulation: 
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where _ iVAR NCAP  is the newly installed capacity of technology i, k represents the “key 

component” and l=1 to L represents technologies use component k. This ensures that learning on k 

spreads to all members of its cluster. Each of these component technologies is linked to power 

generation technologies that use them. For instance, a natural gas combined cycle uses a combined 

cycle and an anime CO2 capture system. A post combustion CCS power plant, in contrast, uses an 

anime CO2 capture system but no combined cycle; while an oxyfuel combustion power plant 

contains a gasifier. Components learn regardless of the technology they deploy. For example, cost 

reductions result from the deployment of ASU in IGCC also lead to cost reductions of ASU in oxy-

fuel combustion. Table 1 shows the technologies undergo mulita-cluster learning in Global TIMES 

and the “key component” they use. 

 

 

Figure 2: Multi-cluster learning framework in Global TIMES 

 

Table 1: Technologies undergo multi-cluster learning and their key components 

Technology type Key component 

 Air Gasifier Combined CO2 Capture CO2 Capture 



Separation 

Unit 

Cycle (anime 

system) 

(water-gas 

shift) 

Post-combustion coal 

CCS  

× × × √ × 

Oxyfuel combustion 

coal CCS 

√ × × × × 

Integrated 

Gasification 

Combined Cycle with 

CCS 

√ √ √ × √ 

Natural Gas 

Combined Cycle with 

CCS 

× × √ √ × 

 

2.3 Data sources 

This paper establishes a global energy technology database based on literature research, which 

provides the technical data for the energy system optimization model. Global TIMES contains more 

than 100 kinds of energy conversion and processing technology, covering the energy extraction, 

power generation and other processing and conversion technologies. The data for this study are 

mainly taken from the International Energy Agency (IEA) [39], the National Renewable Energy 

Laboratory (NREL) [40], the Energy Technology System Analysis Program (ETSAP) [41, 42], the 

National Pacific Northwest National Laboratory (PNNL) [43], the University College London (UCL) 

[43] and other research institutions. Table 2 presents the key parameters (progress ratio, initial cost 

and initial capacity) related to technology learning. These parameters are based on deployment level 

in 2010, which is the base year of the model. All costs are presented in 2005 US$. Progress ratios 

were collected from a series of literature review [45-52] . 

Table 2 Data on key learning technologies and components [45-52] 

 Initial cost 

($/kW) 

Initial capacity 

(GW) 

Progress 

ratio 

Onshore wind 1797 194.1 92% 

Offshore wind 3310 2.9 91% 

Solar photovoltaic 1978 36.3 82% 

Concentrated solar power 4979 1.3 90% 

Post-combustion coal CCS 5640 - 97% 

Oxyfuel combustion coal CCS 6560 - 97% 

Integrated Gasification Combined Cycle 

with CCS 

6600 - 95% 

Natural Gas Combined Cycle with CCS 3860 - 96% 

Air Separation Unit 310 - 90% 

Gasifier 562 - 91% 

Combined Cycle 621 - 90% 



CO2 Capture (anime system) 318 - 90% 

CO2 Capture (water-gas shift) 234 - 97% 

 

 

3. Scenarios 

In order to explore the effect of technology progress and technology diffusion on the global climate 

target, three kinds of scenarios are designed: reference scenarios, long-term climate change 

mitigation scenarios and technology learning scenarios (Table 3). 

 

The Reference Scenario (REF) serves as the basis for the analysis with no climate policy in it. The 

socio-economic data is taken from IIASA’s SSP2 Scenario [14-17]. This scenario investigates the 

energy system development pathway without the consideration of climate goal. Technology costs 

are modelled under exogenous assumptions. 

 

The Long-term Mitigation Scenario (LTM) is a greenhouse gases (GHGs) reduction scenario, in 

which a constraint of global cumulative carbon budget of 897 Gt CO2 during 2015-2050 is applied, 

taken from literatures [1,54] for the Representation Concentration Pathways 2.6 (RCP2.6). No 

assumption on how the emission budget is distributed among regions in the model has been made. 

However, mitigation policies, in particular, NDCs (National Determined Contributions) for different 

countries/regions for the year 2025 or 2030 are considered in the model. Then, the Global TIEMS 

model will determine the optimal mitigation pathways and technology/fuel mix in the modeling 

period for different regions with global cost minimized to meet the cumulative carbon budget.  

 

The technology learning scenarios contain three different scenarios. On the basis of Long-term 

Mitigation scenario, four types of power generation technologies – wind power, solar energy, coal 

CCS and natural gas CCS – were selected to simulate the effects of different technology learning 

approaches on the global energy system. In the ETL1 scenario, the standard approach of endogenous 

technology learning is used for the four types of technologies mentioned above, i.e. the technology 

investment decreases as the cumulative installed capacity of the technology in the region increases; 

The ETL2 scenario introduces a global diffusion equation for the four types of technologies, with a 

reduction in the cost of technology being affected by the global cumulative installed capacity; on 

the basis of the ETL2 scenario, the ETL3 considered multi-cluster learning mechanism for coal and 

natural gas CCS technologies, taking into account the coupling effects between them. 

Table 3 Scenario definition 

Scenario Global cumulative CO2 

constraint 

Technological progress assumptions 

Wind Solar Coal CCS Natural Gas CCS 

REF None Exogenous assumptions 

LTM 897 Gt Exogenous assumptions 

ETL1 897 Gt Standard endogenous learning 

ETL2 897 Gt Multiregional learning 

ETL3 897 Gt Multiregional 

learning 

Multiregional learning & multi-

cluster learning 



 

4. Results and analysis 

4.1 Transition of power sector structure 

In order to achieve global long-term emission reduction targets, the energy system needs to change. 

The model results suggest that power generation sector is the most important energy conversion 

sector and the main sector of energy transformation. In 2050, the global electricity generation reach 

43102 and 65768 TWh under REF and LTM scenarios, respectively. Moreover, as a high efficiency 

energy carrier, electricity increases its share under mitigation target in the end-use fuel portfolio. 

The share of electricity in the final energy consumption is 43.7% in 2050 under LTM scenario, much 

higher than the 22.7% in the REF scenario. Under the LTM scenario, traditional coal-, oil- and gas-

fired power generation technologies will gradually be phased out, while renewable energy, nuclear 

power and CCS technology will gradually take the lead. Traditional coal power generation will peak 

in 2015, reaching the amount of 8876 TWh, and will decline gradually thereafter. In 2050, its 

capacity is of only about 10% of the 2010 level, accounting for about 1.4% of total generating 

capacity. The continuous decline in coal means that installed capacity and generations of nuclear, 

wind and solar increase significantly during the planning period. Under LTM, wind and solar 

capacity will reach 3768 and 5326 GW by 2050, respectively. 

 

It can be seen from Figure 3 that, in ETL1 scenario, global electricity generation and capacity is 

comparable to LTM’s level before 2030. After 2030, due to the increase in cumulative installed 

capacity of renewable power generation technologies, learning mechanism drives their cost decline 

and enhanced their expansion. In 2050, wind, solar, coal CCS and natural gas CCS power generation 

will increase by 2190, 526, 1095 and 657 TWh respectively compared with LTM scenario. The 

installed capacity of wind power and solar energy will increase rapidly from 2030 on, and the 

increment of wind power capacity will mainly appear in areas with cost advantages such as WEU 

and CHN. The increase of solar energy capacity mainly appears in IND, AFR, ODA and other 

regions with abundant solar energy resources. Coal CCS and natural gas CCS capacity start to grow 

in 2030, and will first appear in the developed countries and regions.  
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Figure 3: Global electricity capacity (left) and generation by technology (right) under LTM and ETL1 

The four types of low-carbon power technologies (wind, solar, coal CCS and natural CCS) benefit 

from the global experience as the multiregional learning mechanism is introduced. Their investment 

cost will fall much faster in scenario ETL2 than in ETL1 as the global installed capacity increases. 

From global perspective, their installed capacity will be higher than the ETL1 scenario. But the 

development paths of different regions vary. At present, wind and solar power in Asian countries 

such as China and India are growing rapidly. It is the world’s largest renewable energy power 

generation market. China alone accounted for 23% of global renewable energy generation by 

2015[53]. In ETL1 scenario, since wind and PV have certain technology accumulation in these areas, 

they will become popularized in CHN and IND after 2030, and the installed capacity will grow 

rapidly. With the multiregional learning approach introduced by the ETL2 scenario, developed 

countries and regions such as WEU and the USA will also deploy more wind power and PV than 

the LTM scenario after 2030 (Figure 4), leading to lower generation costs of these technologies. 

This is because Global TIMES is to determine the optimization of global energy system but optimal 

for every region. Even if additional solar PV and wind may not be locally preferable strategies for 

WEU and USA, it is clearly optimal for the world because it enables faster diffusion in developing 

regions which are usually blessed with better resource potential and rely on technology spillovers 

from the developed countries. Unlike wind and solar PV, CCS technology is still in the R&D and 

demonstration stage, with a lower level of global technology accumulation and higher investment 

cost. In the context of the global technology diffusion under ETL2 scenario, the increase in installed 

capacities of both CCS technologies are not as much as wind and solar power. It implies that without 

the consideration of multi-cluster learning mechanism, the investment in currently preferable 

technologies (wind and solar) may lead to a lock-in in such technologies in the energy system. 



 

2
0

3
0

2
0

4
0

2
0

5
0  

2
0

3
0

2
0

4
0

2
0

5
0  

2
0

3
0

2
0

4
0

2
0

5
0  

2
0

3
0

2
0

4
0

2
0

5
0 --

0

50

100

150

200

INDCHNWEU

G
W

 Wind

USA

 

2
0

3
0

2
0

4
0

2
0

5
0  

2
0

3
0

2
0

4
0

2
0

5
0  

2
0

3
0

2
0

4
0

2
0

5
0  

2
0

3
0

2
0

4
0

2
0

5
0 --

0

50

100

150

200

250

INDCHNWEU

G
W

 Solar

USA

 

2
0

3
0

2
0

4
0

2
0

5
0  

2
0

3
0

2
0

4
0

2
0

5
0  

2
0

3
0

2
0

4
0

2
0

5
0  

2
0

3
0

2
0

4
0

2
0

5
0 --

0

10

20

30

40

50

INDCHNWEU

G
W

 Coal CCS

USA

 

2
0

3
0

2
0

4
0

2
0

5
0  

2
0

3
0

2
0

4
0

2
0

5
0  

2
0

3
0

2
0

4
0

2
0

5
0  

2
0

3
0

2
0

4
0

2
0

5
0 --

0

10

20

30

40

50

INDCHNWEU

G
W

 Gas CCS

USA

 

Figure 4: Increment of installed capacity under ETL2 compared with LTM 

If experience gained from low-carbon technology can diffuse to other closely linked technologies, 

all associated technologies may become more cost-competitive. In the ETL3 scenario, the natural 

gas CCS technology will be first adopted in 2030 in WEU and USA (Figure 5). This is due to the 

relatively low cost of natural gas / shale gas resources in the USA and WEU, as well as the relatively 

lower R&D investment costs. Early deployment of natural gas CCS in these regions drives cost 

reduction in other associated technologies and in other regions of the world through the multi-

clusters and multiregional learning mechanism. As a result, there are more installed capacity of gas-

fired and coal-fired CCS technologies in each region. This also proves again that, for the developed 

countries, the deployment of new technologies may outperform local optima due to spillover 

benefits in other regions, which is the optimal option for the world.  
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Figure 5: Increment of installed capacity under ETL3 compared with LTM 

The "learning by doing" technology learning mechanism provides more cost-effective technology 

choices for the world to achieve long-term mitigation target. In the context of technology diffusion, 

this technology learning effect has public good characteristics. The promotion of low-carbon 

technologies in one country can increase the global technology knowledge stock, so that the cost in 

other regions and countries fall faster. Take CHN region for an example, driven by the learning 

curve, the levelized cost of electricity (LCOE) of wind, solar PV, IGCC CCS and NGCC CCS 

technologies in technology learning scenarios (ETL1, ETL2 and ETL3) are significantly lower than 

that of the LTM scenario’s level. For example, under ETL1 scenario, the LCOE of onshore wind 

and solar PV is about 78% and 75% of the LTM level in 2050 (Figure 6). Under ETL2 scenario, the 

installed capacity of onshore wind and solar PV in CHN will not increase significantly before 2030. 

But thanks to the contribution of the developed countries to the global technology accumulation, 

the cost of onshore wind and solar photovoltaic will decline at a faster rate after 2030, reaching 64% 

and 61% of LTM's level by 2050. In ETL3 scenario, due to the multi-cluster learning mechanism 

among CCS technologies, the LCOE of CCS technologies in ETL3 scenario decline faster than that 

in LTM scenario. By 2050, the LCOE of IGCC CCS and NGCC CCS is 34.5% and 36.8% lower 

than LTM scenario. It implies that through multi-cluster technology learning, the two types of CCS 

technology can become more competitive than wind power and solar photovoltaic in the medium-

long future. Taking into account the issue of renewable energy absorptive capability, CCS 

technologies are important to achieve low-carbon transition for global energy system. 
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Figure 6: Change of LCOE of different technologies in CHN across scenarios 

4.2 Impact on regional mitigation 

In the Reference Scenario, global energy-related CO2 emissions will increase year by year. By 2050, 

the global energy-related emissions will reach 1.73 times of 2010 level, with an annual growth rate 

of 1.39%. The accumulated CO2 emission is 1455 Gt during 2015-2050. It will be difficult to 

achieve the target of controlling global warming at or below 2 °C of the pre-industrial level by the 

end of this century, which could have very serious consequences for the global ecology and the 

living environment. Therefore, in order to achieve global climate target, measures must be taken to 

control greenhouse gas emissions, especially those related to energy activities. To achieve long-term 

emission reduction targets, the cumulative global emissions between 2015 and 2050 need to fall by 

41% under LTM scenario (the constraint of cumulative budget of 897 GtCO2 introduced) compared 

with REF. It requires immediate emission mitigation after 2015. In 2030 and 2050, global CO2 

emissions reduce by 17% and 51%, respectively, on the 2010 basis. China, India, Africa, Latin 

America, and other Asian countries need to peak in the year of 2015, 2030, 2025, 2015 and 2030 

respectively and their peak levels are 9.6, 2.6, 1.2, 1.6 and 2.7 billion tons respectively, as shown in 

Figure 7. Given that these countries and regions are still in the process of industrialization and 

urbanization, their energy system should expand to support their future economic development. But 

the limited carbon budget does not allow these countries and regions to rely heavily on fossil energy, 

which are undoubtedly a huge challenge to these countries to solve their economic development 

problems. 
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Figure 7: Regional emission pathway under REF (left) and LTM (right) 

Regional emissions vary across the technology learning scenarios. In LTM scenario, the global 

emissions reductions between 2015 and 2050 will occur mainly in region CHN, USA, IND and 

WEU, accounting for 20.34%, 13.5%, 11.96% and 8.44% of the cumulative global emission 

reductions. These regions have several common characteristics: either their future energy 

consumption grow fast, so that they have great mitigation potential, such as CHN, IND, AFR, etc.; 

or they are blessed with large amount of renewable resources or technical advantages, such as the 

USA, WEU, JAP and so on. In ETL1 scenario, the low-carbon technologies in these regions are 

developing at a slightly faster rate than the rest of the world, and their mitigation contribution will 

increase. In ETL1, cumulative emissions reductions in CHN, IND, USA and WEU are 139.1, 83.0, 

95.9 and 60.7 Gt, 1.4%, 2.4%, 4.2% and 5.3% higher than their cumulative mitigation amount under 

LTM scenario respectively. Although the cost of advanced low-carbon power generation 

technologies, such as wind power, solar photovoltaic and CCS, are still high in developing countries, 

the technology experience of these technologies in developed countries can be spread to developing 

countries and regions through multiregional learning mechanism under ETL2 and ETL3 scenarios. 

From a long-term perspective, the technology diffusion mechanism will allow developing countries 

and regions to have more cost-effective technology options to achieve long-term emission reduction 

targets, which will improve the capability and willingness of developing countries and regions to 

reduce CO2 emissions. Taking the ETL3 scenario as an example, the cumulative reductions between 

2015 and 2050 in CHN, IND and AFR are 143.2, 85.2 and 58.8 Gt, accounting for 20.53%, 12.22% 

and 8.42% of the global total respectively, which are 0.19, 0.26 and 0.21 percentage points higher 

than that of the LTM scenario. This is also a win-win result for developed countries. Because under 

a global carbon cap, the increase of cumulative reductions of developing countries means more 

emission space for developed countries. It illustrates the importance of multi-regional technology 

cooperation. 

4.3 Impact on carbon abatement cost 



Technological learning and technology diffusion mechanisms will ease the difficulty to achieve 

global and regional long-term emission mitigation targets as they can reduce technologies cost and 

increase the technology diffusion rate. The establishment of effective international technical 

cooperation mechanisms, as envisaged in the Paris Agreements, would effectively reduce long-term 

mitigation pressure. 

 

First of all, technology diffusion can effectively reduce long-term abatement costs around the world. 

The development of energy system is path-dependent. Without international technology cooperation 

or diffusion, the global energy system may lock-in into traditional carbon-intensive technologies, 

resulting in higher abatement costs in the future. Technology diffusion can reduce the promotion 

cost of low-carbon technologies and enhanced the near-term greenhouse gas mitigation. In the 

context of a global emission budget, emission reductions have public goods characteristics. A 

country’s near-term reduction activities not only increase its future emission space, but also affect 

other parts of the world, thereby reducing long-term abatement costs. Figure 8 shows the abatement 

cost for USA, WEU, CHN and IND in 2050 are 3.5%, 2.0%, 3.6% and 4.0% of GDP respectively 

in the LTM scenario. Due to the deployment of more new technologies, the abatement costs of USA 

and WEU under ETL2 and ETL3 scenarios in 2030 are higher than those under LTM scenario. 

However, due to the technology cost reduction by technology learning, abatement costs in all 

regions have different degrees of decline beyond 2030 compared with LTM scenario. Under ETL3 

scenario, for example, the ratio of abatement cost to GDP in USA, WEU, CHN and IND will be 0.6, 

0.2, 0.9 and 0.8 percentage points lower than those in LTM scenario in 2050. 
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Figure 8: Ratio of the abatement cost to GDP in 2050 

Secondly, technology diffusion can reduce the welfare loss caused by greenhouse gas mitigation. 

The implementation of a global CO2 emission cap requires more investment in expensive low 



carbon technologies which will increase the energy system cost to meet the given energy services 

demands, or reduces energy service demand resulting to welfare loss. In LTM scenario, welfare loss 

is about 1.73% to GDP in 2050, as shown in Figure 9. Technology diffusion will result in an 

alleviation in the energy services demand reduction, due to two reasons. The first is the rapid 

development of low-carbon power technology makes the power sector contributes more to the total 

mitigation, which increases the long-term emission space for the end-use sectors, reducing the 

mitigation pressure on end-use sectors. The second is technology diffusion can reduce the cost of 

low-carbon power generation technology, thus reduce the overall electricity supply costs. This will 

meanwhile decrease the energy supply prices. The combined effect of these two causes will lead to 

a slight decrease in the energy service demand reduction of the end-use sectors, as well as in welfare 

losses. Under ETL1, ETL2 and ETL3 scenario, the ratio of global welfare loss to GDP in 2050 are 

1.64%, 1.49% and 1.35%, respectively, which are 0.09, 0.24 and 0.38 percentage points lower than 

the value of LTM scenario in the same year. 
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Figure 9: Ratio of welfare losses to GDP under different scenarios 

Finally, technology diffusion can bring other benefits. On the one hand, the accelerating promotion 

of low-carbon technologies caused by technology diffusion is likely to promote the new energy 

industry and -economic growth. Hansen et al. (2003) suggested that the wind power promotion 

strategy in Denmark can raise the competitiveness of the Danish wind industry and also 

compensated for welfare losses owing to early deployment of wind energy [55]. As shown in Figure 

10, the development of low-carbon technologies makes the global investment in power sector higher 

than LTM scenarios. In 2050, the total investment in ETL1, ETL2 and ETL3 scenario will be 0.82%, 

0.84% and 0.86% of GDP respectively, which is 0.07, 0.09 and 0.11 percentage points higher than 

that of the LTM scenario. Most of the new investment is in wind power, solar photovoltaic, CCS 



and other low-carbon technologies, which will greatly promote the development of related upstream 

and downstream industries and domestic economic growth. On the other hand, the rapid promotion 

of low-carbon technologies can enhance the diversity of energy systems, reduce dependency on 

external fossil fuels, and thus enhance national energy security. 
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Figure 10 Ratio of investment cost of power sector to GDP across scenarios 

5. Conclusion 

This paper developed the electricity technology portfolio and estimated CO2 emissions in different 

regions of the world during 2015 - 2050, by using a partial-equilibrium model, Global TIMES 

developed by Tsinghua University. We also assessed the impacts of technology learning and 

technology diffusion on low-carbon power generation technology, regional emission pathways and 

abatement costs through scenario analysis. 

 

To control the global temperature rise below 2 °C or even 1.5 °C, energy-related CO2 emissions will 

have to peak as soon as possible and then to achieve absolute great reduction before the first half of 

this century. Basically, all countries’ emission space will be severely limited after 2015. Global 

energy systems need to undergo a profound low carbon transformation, especially in the power 

sector. Traditional coal-fired power plants need to be phased out meanwhile substantial increases in 

nuclear power, wind power and solar power and other low low-carbon power generation 

technologies are necessary. Under LTM, wind and solar PV will reach 3768 and 5326 GW by 2050 

respectively. 

 



Technology learning and technology diffusion have a positive effect on the global realization of 

long-term climate targets. The introduction of endogenous technology learning could increase the 

global installed capacity of wind power, solar PV, coal CCS and natural gas CCS by 970, 312, 221 

and 150 GW respectively in 2050. In the context of global technology diffusion, the cost of low-

carbon technologies will gradually decline with the global technology experience accumulation. 

From the perspective of global optimization, developed countries should take the lead in low-carbon 

technologies’ R&D and investment. It would be beneficial for developed countries to promote 

transfer of advanced technologies to developing countries through technology cooperation to cope 

with global long-term mitigation target. 

The establishment of an effective mechanism for international technology transfer and cooperation 

will improve the mitigation capability and willingness of developing countries and regions. The 

cumulative emission reductions of China, India and Africa under ETL3 scenario between 2015 and 

2050 are expected to increase 5.81, 4.02 and 2.98 GtCO2 respectively compared with LTM scenario. 

At the same time, technology diffusion can effectively reduce the long-term abatement costs around 

the world, reduce the welfare losses caused by emission reductions, and bring other benefits such 

as promoting development of new energy industries and enhancing regional energy security. 

 

In short, technology diffusion through regional cooperation can reduce the global cost of carbon 

mitigation. The international community have realized the importance of technology cooperation 

and several technology-focused cooperation and mechanism have been established, e.g. Mission 

Innovation, South-South Cooperation, Energy and Climate Partnership of Americas, etc. In order to 

control the global temperature rise below 2 °C or even 1.5 °C, the international community need to 

further strengthen bilateral and multilateral cooperation on low carbon technology innovation, 

development and deployment. 
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