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ABSTRACT 

Aim: Protected areas have become pivotal to the modern conservation planning toolbox but a limited 

understanding of marine macroecology is hampering their efficient design and implementation in 

pelagic environments. We explored the respective contributions of environmental factors and human 

impacts in capturing the distribution of an assemblage of commercially valuable, large-bodied, open-

water predators (tunas, marlins, and mackerels). 

Location: Western Australia. 

Time period: 1997-2006. 

Major taxa studied: Pelagic fishes. 

Methods: We compiled ten years of commercial fishing records from the Sea Around Us Project and 

derived relative abundance indices from standardised catch rates while accounting for confounding 

effects of effort, year, and gear type. We used these indices to map pelagic hotspots over a 0.5°-

resolution grid, and built random forests to estimate the importance of 33 geophysical, oceanographic 

and anthropogenic predictors in explaining their locations. We additionally examined the spatial 

congruence between these hotspots and an extensive network of marine reserves, and determined 

whether patterns of co-occurrence deviated from random expectations using null model simulations.  

Results: (1) We identify several pelagic hotspots off the coast of Western Australia. (2) 

Geomorphometrics explained up to 50% of the variance in relative abundance of pelagic fishes, and 

submarine canyon presence ranked as the most influential variable in the North bioregion. Seafloor 

complexity, geodiversity, salinity, temperature variability, primary production, ocean energy, current 

regimes and human impacts were also identified as important predictors. (3) Spatial overlap between 

hotspots and marine reserves was limited, with most high-abundance areas primarily found in zones 

where anthropogenic activities are subject to few regulations. 
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Main conclusions: This study reveals geomorphometrics as valuable indicators of the distribution of 

mobile fish species and highlights the relevance of harnessing static topography as a key element in 

any blueprint for ocean zoning and spatial management. 
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INTRODUCTION 

The past decades have seen unprecedented changes in the abundance of marine living resources. 

Despite divergent perspectives on the present status and future prospects of the world’s fisheries 

(Daan et al., 2011; Froese et al., 2012), overexploitation since the 1950s is widely accepted as a 

catalyst of modern declines in elasmobranchs (sharks, skates and rays) and teleosts globally (Letessier 

et al., 2017). Although efforts to rebuild fisheries are now underway in several ecosystems (Worm et 

al., 2009), their success to date remains relatively modest as insufficient control on current 

exploitation rates often precludes recovery, even for resilient stocks that may have adapted to 

moderate levels of extractive pressure (Neubauer et al., 2013). 

In this context, a new generation of multilateral environmental treaties has emerged to reverse the 

large-scale erosion of biodiversity. The United Nations Convention on Biological Diversity (CBD, 

http://www.cbd.int/) is perhaps one of the best-known examples, and presently bind 196 countries to 

take legislative and policy action to tackle the loss of threatened species. A key element of the 

convention’s strategic plan is Aichi Target 11, which commits to expand the coverage of marine 

reserves (MRs) to at least 10% of the world’s ocean by 2020. While the ecological and socio-

economic merits of MRs are well established in coastal systems (e.g. Angulo-Valdés & Hatcher, 

2010; Kerwath et al., 2013), their utility in pelagic environments remains more contentious, in part 

due to the perception that mobile species require protection over too large a geographic space to be 

logistically, politically or financially practical to implement or enforce (Kaplan et al., 2010). 

However, such assumptions rarely account for heterogeneous population structuring (Grewe et al., 

2015), partial migration, residency, site fidelity, philopatry (Chapman et al., 2015), evolutionary 

reductions in mobility (Mee et al., 2017), and predictable aggregative behaviour in upper-trophic level 

organisms (e.g. Kessel et al., 2014). There is now growing consensus that even mobile predators with 

extensive home ranges such as seabirds (Young et al., 2015), cetaceans (Gormley et al., 2012), turtles 

(Scott et al., 2012), fishes (Kerwath et al., 2009) and sharks (White et al., 2017) can benefit from 

spatial closures (Breen et al., 2015), provided mortality rates do not rise disproportionately in adjacent 

http://www.cbd.int/
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unprotected waters as a result of effort displacement (Powers & Abeare, 2009). This is especially true 

where reserves strategically encompass core habitat areas or sites in which key life-cycle events 

perennially occur (Hooker et al., 2011).  

Sparse ecological data in remote offshore waters (i.e. beyond the territorial sea baseline, both within 

EEZs and beyond; Webb et al., 2010) make the direct identification of critical habitat difficult, and 

call for robust surrogates of biological diversity to predict, delineate and prioritise candidate sites for 

zoning (McArthur et al., 2010). Complex topography has been recognised as a determinant of wildlife 

dynamics across numerous taxa (Bouchet et al., 2015), which suggests that locating protected areas 

over sites of rugged terrain could yield a range of conservation gains (Harris & Whiteway, 2009; 

Michael et al., 2014). Worm et al. (2003), Morato et al. (2008) and Morato et al. (2010) illustrated 

this possibility in the open ocean by showing that North Atlantic and Pacific seamounts were 

important centres of taxonomic richness of special interest for the management of threatened 

vertebrates. Nevertheless, whether static topography could be widely used as a key element in ocean 

planning remains to be investigated in other ocean basins and for different types of geomorphologies. 

Submarine canyons, for instance, are prominent and commonly occurring physical seabed features 

throughout the world’s oceans. While their role as drivers of primary productivity, plankton 

abundance and benthic biomass is well documented (Fernandez-Arcaya et al., 2017), our 

understanding of their importance to pelagic megafauna remains nascent, and somewhat skewed 

towards marine mammals (e.g. Moors-Murphy, 2014). 

Here, we combine long-term landings and fishing effort datasets from the Sea Around Us Project 

(SAUP, http://www.seaaroundus.org) with a recent reclassification of Australian submarine canyons 

(Huang et al., 2014) to (1) determine the location of abundance hotspots for a suite of commercially 

important predatory pelagic fishes within the western part of Australia’s exclusive economic zone 

(hereafter ‘wEEZ’); (2) examine associations between these hotspots and an array of abiotic variables 

including seabed topography on a continental scale; and (3) assess their spatial congruence with a 

subset of Australia’s 3.1 million km2 national network of Commonwealth Marine Reserves 

(http://www.environment.gov.au/topics/marine/marine-reserves). 

http://www.seaaroundus.org/
http://www.environment.gov.au/topics/marine/marine-reserves)
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METHODS  

Fish and environmental data 

Annual commercial fishing records for the wEEZ were extracted from the quality-checked databases 

compiled by SAUP, but did not include the recent catch reconstructions that capture estimates of 

recreational and illegal fishing (Pauly & Zeller, 2016). These data are global, readily accessible 

(http://www.seaaroundus.org/data/), transparent, vetted through extensive peer-review, and were 

adopted as the only spatially resolved dataset available that currently allowed analyses at macro-

ecological scales. Landings (in tonnes) originated primarily from yearly catch reports (corrected for 

discarded bycatch) produced by the Food and Agriculture Organization (FAO) (Watson et al., 2005; 

see Appendix S1 in Supplementary Information). Effort statistics were obtained from an array of 

public domain sources (Watson et al., 2013), and standardised to a common unit of vessel engine 

power and operation time (kilowatt sea days, kwsd), following Anticamara et al. (2011). Both catch 

and effort were disaggregated into a grid of 0.5° (latitude) x 0.5° (longitude) spatial cells using a rule-

based algorithm, a technical description of which is provided elsewhere (Watson et al., 2004; Watson 

et al., 2013). The full dataset used here spanned the period 1950-2006 and comprised 5,640,222 

entries of 111 species and higher taxa, representing a total catch of 3.11 million tonnes extracted over 

3.35 million km2 of the eastern Indian Ocean between 93-129°E and 8-39°S. 

We also collated a biophysical dataset composed of 51 variables computed over the same half-degree 

square cells as the fisheries data (Tables 1 & S1 in Supporting Information). Most of these variables 

were geomorphometrics (measures of seabed complexity, n=20) assembled from existing archives 

curated by Geoscience Australia, including a newly revised digital catalogue of submarine canyons 

(Huang et al., 2014). Recognising that mesoscale hydrographic features attract mobile megafauna 

(Scales et al., 2014) and that human activities can affect spatial patterns in biodiversity by driving 

changes in species composition and abundances (Navarro et al., 2015), the dataset also comprised a 

number of oceanographic factors (n=14; Tables 1 & S1) as well as indices of cumulative 

anthropogenic threats (n=3; Tables 1 & S1). 

http://www.seaaroundus.org/data/
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Data processing 

Our stepwise approach to data preparation and analysis is illustrated in Fig. 1, and a brief description 

of each step follows below (see Appendix S1 for full details). Analyses were carried out in R 3.3.1 

and Matlab 2012a. 

Gear matching 

Catch and effort were estimated independently. Landing records were segregated by species and 

fishing method, and were well-resolved both spatially and temporally. In contrast, the effort data were 

incomplete and reported on the basis of gear rather than taxa. To guarantee compatibility between the 

two datasets, we re-allocated every fishing gear type to one of five discrete and mutually exclusive 

categories, namely gillnet (GIL), seine (SEI), trawl (TRW), line (LIN), and miscellaneous (OTH) 

(Fig. S2). We used this classification key as a common denominator to pair all landings with a 

corresponding value of effort for any combination of year x grid cell using a purpose-built Microsoft 

Access query. 

Filtering 

We filtered the data to generate a time series spanning the period 1997-2006, excluding all demersal 

or bentho-pelagic species caught, and all grid cells situated outside the continental wEEZ (Appendix 

S1 and Table S2). Catch records for unidentified species were discarded, and those only reported in 

families and genera were reapportioned to confirmed species in proportion to their relative 

contribution to the total family- or genus-specific catch. Finally, gears contributing less than 5% of 

total landings were omitted, effectively removing all benthic fishing from our study area. Clear 

outliers (see Appendix S1 for definition), including particularly small coastal grid cells and 

exaggerated estimates of effort, were also excluded (Table S2). 
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Geographic partitioning 

To control for spatial non-stationarity, we subdivided the consolidated data into four contiguous 

bioregions: North, Gascoyne, West and South. These reflected broadly homogeneous environmental 

conditions and biological assets (Fig. S3), consistent with management boundaries recognised by the 

Western Australian Department of Fisheries (http://www.fish.wa.gov.au/).  

Imputation of missing effort data 

Although the filtered landings achieved full temporal and spatial coverage with a positive catch value 

for each grid cell x year combination, available effort estimates were incomplete and required 

reconstructing in locations where none existed (Fig. S4). We performed gap-filling on the effort 

matrix using the smoothn package (http://www.biomecardio.com/matlab/smoothn.html) introduced by 

Garcia (2010), which applies penalised regression to smooth evenly-gridded data in multi-

dimensional space. The algorithm was executed on a 3D space-time cube (year x latitude x longitude) 

of effort values, summed across fishing gear types due to data scarcity in some grid cells (Fig. S5). 

After imputation, effort predictions were re-allocated to all gears proportionally to their original usage 

rate in (i) each cell x year when cell-level data existed or (ii) the bioregion as a whole when cell-level 

data were missing. 

Catch rate standardisation 

The use of fisheries-dependent data for ecological inference hinges on standardising the catch-per-

unit-effort (CPUE) to control for confounding elements that may affect catchability (Maunder & Punt, 

2004). We constructed lognormal generalised linear models (GLMs) to standardise CPUE values for 

each bioregion (Fig. S6) across year, fishing gear category, grid cell, and species body weight (as a 

proxy for size-mediated gear selectivity, Appendix S1). A subset of nine plausible models was 

assessed and competing formulations ranked based on their second-order (corrected) Akaike’s 

information criterion scores (AICc, Table 2). We forced the inclusion of grid cell as a factor in all 

models, but its interaction with year was not considered owing to the paucity of records on a per year 

http://www.fish.wa.gov.au/
http://www.biomecardio.com/matlab/smoothn.html
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and cell basis. Following Francis (1999), the 𝛽 coefficients of the grid cell term were scaled to 

canonical form to guarantee invariance to the choice of baseline level. Scaled values were taken as 

relative fish abundance indices and calculated as: 𝛽𝑖
′ =

𝛽𝑖

�̅�
, where �̅� is the geometric mean of all 𝛽𝑠, 

defined as �̅� = √∏ 𝛽𝑖𝑗
𝑛𝑗
𝑗=1

𝑛𝑗

. 

Random forests 

We gauged quantitative relationships between predictor variables and abundance indices with random 

forests (Breiman, 2001), using the party R package (Strobl et al., 2009) to construct 2,000 unbiased 

conditional inference trees of fish abundance (on the log scale) in each bioregion (Strobl et al., 2007). 

For comparison, we developed models from both the full environmental dataset and a reduced set 

comprising geomorphometrics only. We also assessed the importance of each predictor through 

unconditional permutation (Strobl et al., 2008), and determined how many top-ranking variables 

should be designated as truly ‘important’ by implementing a modified version of the recursive 

selection protocol described by Sabatia and Burkhart (2014) (see Appendix S1 for full details). 

Hotspot detection 

Bartolino et al. (2011b) proposed cumulative relative frequency distributions (CRFDs) as a simple 

way of delineating spatial hotspots in a continuous parameter of interest (e.g. density, diversity). The 

method is objective and preferable to the more traditional Getis-Ord Gi* or Moran’s I, which rely 

heavily on a priori user-selected settings (Bartolino et al., 2011a). We obtained CRFD curves by 

plotting the relative values of fish abundance indices in each bioregion against their own frequency 

distribution. The majority of CRFDs derived from biological data should increase monotonically and 

approach an upper asymptote, such that tangents to the curve can then be interpreted as rates of 

accumulation, with high-density areas (hotspots) characterised by tangent slopes less than 45°. Instead 

of empirically approximating tangents from pairs of adjacent points, we fitted local polynomial 

regressions (LOESS smoothers, obtained from the R package fANCOVA; Wang, 2010) to the CRFDs 

(Fig. S7), with smoothing span widths chosen according to the bias-corrected AICc. This approach is 
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less sensitive to noise and enables a more robust detection of fish hotspots that reflects fundamental 

ecological signals rather than data idiosyncrasies. 

Spatial overlap between MRs and hotspots 

We matched hotspots with MRs and measured their spatial congruence according to Jaccard’s 

similarity coefficient J (Real & Vargas, 1996). We developed null models to determine the probability 

of obtaining these patterns by chance, with the null expectation that hotspots could occur anywhere 

within each bioregion. Following Leroux et al. (2007), this was achieved by randomly selecting 

without replacement the same number of grid cells as identified hotspots, calculating J, and reiterating 

this permutation 10,000 times. We then compared the simulated distribution of Jaccard indices to the 

corresponding observed values via two-sample Mann-Whitney-Wilcoxon tests. The same steps were 

followed to quantify overlap with MNPs. 

Uncertainty propagation 

Estimates of variance for relative abundance indices, predictor rankings, hotspot thresholds and 

Jaccard values were acquired by applying a non-parametric bootstrapping procedure, which 

resampled the CPUE data randomly and with replacement 100 times. 

RESULTS 

Fish landings and abundance indices 

The catch data consisted of 23 pelagic species (22 teleosts, one elasmobranch), of which 12 are highly 

migratory (Annex I of the 1982 Convention on the Law of the Sea, Table S3). Mackerels and tunas 

dominated, with six species (Katsuwonus pelamis, skipjack tuna; Thunnus maccoyii, southern bluefin 

tuna; Thunnus albacares, yellowfin tuna; Thunnus obesus, bigeye tuna; Scomberomorus commerson, 

narrow-banded Spanish mackerel; and Trachurus declivis, greenback horse mackerel) making up 

nearly 75% of all landings over the ten years of the study. Northern fisheries contributed nearly twice 
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as much to total catches (37%) as those operating in other bioregions (18% Gascoyne, 23% West, 

22% South). 

The GLM formulation that minimised the AICc contained a three-way interaction between year, 

fishing gear category, and species body weight (Table 2). Bootstrap catch rate standardisation models 

explained between 45% and 50% of the deviance (mean adjusted R2 and 95% percentile confidence 

interval — North: 0.5 [0.49 - 0.5]; Gascoyne: 0.44 [0.43 - 0.45]; West: 0.48 [0.46 - 0.49]; South: 0.45 

[0.44 - 0.47]. Fish abundance was highest in the North bioregion (spatial regional mean ± SD: 15.7 ± 

54.1), followed by the South (2.6 ± 4.7), Gascoyne (1.7 ± 1.4) and West (1.6 ± 2.5) in that order (Fig. 

S8). Model prediction uncertainty, expressed as the coefficient of variation of bootstrap values, 

showed a reverse pattern, being largest in the South (mean regional CV ± SD: 0.36 ± 0.07), relative to 

the West (0.31 ± 0.05), Gascoyne (0.27 ± 0.05) and North (0.23 ± 0.06) (Fig. S9). 

Pelagic hotspots 

Numerous hotspots of fish abundance, and clusters thereof, were consistently identified, with a high 

frequency of inclusion in bootstrap resamples (Fig. 2). These included areas adjacent to the Scott reefs 

(14.1°S, 121.8°E), the edge of the Exmouth Plateau and the Argo-Rowley terrace (17°S, 117°E), 

offshore waters northwest of Barrow Island (20.8°S, 115.4°E), the length of Ningaloo Reef peninsula 

(22.5°S, 113.5°E) south to Shark Bay (26°S, 114°E), Rottnest Island and the Perth canyon (31.9°S, 

115.1°E), Geographe Bay (33.6°S, 115.3°E),  and the vicinity of Cape Leeuwin (35°S, 115.1°E), as 

well as along a significant stretch of the southern coastline from the Bremer Basin (35.5°S, 119.5°E), 

east to the western half of the Great Australian Bight (32°S, 129°E). 

Random forest models built on the full set of biophysical predictors explained between 24-70% of the 

out-of-bag variance (R2) in fish abundance (Appendix S1 and Table 3). Geomorphometrics accounted 

for more than half of this percentage in all cases, and although reduced models suffered a loss of 

predictive power, performance remained satisfactory, particularly in the North (R2 in excess of 50%). 

The number and order of predictors selected as important also varied spatially (Fig. 3 and Table S4). 

For example, canyon presence in neighbouring cells (CANadj) was the top-ranked parameter in the 



13 

 

North (bootstrap mean rank ± SD: 1.06 ± 0.28), closely followed by fractal dimension (FRD; 2.28 ± 

0.55). In contrast, the Gascoyne bioregion was clearly oceanography-driven, with sea surface 

temperature variability (SSTstd; 1.0 ± 0.0) and annual mean primary production (PP; 2.27 ± 0.51) 

emerging as the most influential pair. Likewise, the West was dominated by PP (1.79 ± 0.89), ocean 

energy (L3; 2.01 ± 0.98) and regional circulation regimes (L2; 2.45 ± 0.92), whereas in the South, L3 

(1.0 ± 0.0), dominant geomorphic features (FEATdom; 2.0 ± 0.0) and east-west current velocity 

(CUREW; 3.62 ± 0.59) were most important (Fig. 3). Despite this variation in variable importance, 

measures of static topographic complexity, including canyon attributes, comprised an average of 34% 

of the top 10 splitting variables and 43% of all predictors retained after variable selection. Despite 

lower mean ranks, some metrics exhibited particularly high selection frequencies, e.g. geodiversity 

(FEATcount; 100% in the North and 75% in the West), the contour index (CI; 91% in the West and 

the South), and to a lesser extent canyon orientation (CANorient; 58% in the South) or canyon 

distribution (CANadj; 56% in the West). A small number of predictors including CANadj, SAL, PP, 

or SSTstd were recurrently important throughout the entire wEEZ. By contrast, the frequency of 

chlorophyll peak index (FCPI) was of relatively trivial importance, as retained in 17% of bootstrap 

runs on average in only three of the four bioregions. Two human presence indicators (Hi and Him) 

were especially dominant (mean rank less than 10 and frequency above 80%) in the North and the 

South bioregions.  

Spatial overlap 

Hotspots occupied a mean area of 198,017 (95% percentile CI: [153,398 – 239,884]) km2 across 

bioregions (n=77 [60 - 94] cells, i.e. 8.4% of total) and were most abundant in the North (30% [18 - 

40] of the cumulative number of hotspots in the entire wEEZ) but most prevalent in Gascoyne (12% 

[7 - 17] of the number of grid cells in the bioregion). In comparison, MR coverage was 796,110 km2 

(n=316 cells) and was more prominent in the North (32% of the cumulative number of reserve cells in 

the entire wEEZ) but widest in the West (39% of the number of grid cells in the bioregion). 

Congruence was highest in the North bioregion, although Jaccard scores remained generally very low 

everywhere (< 0.2), suggesting that a substantial proportion of the MR network as a whole does not 
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intersect hotspots (Fig. 4). All Mann-Whitney-Wilcoxon tests were significant (null permutation 

models, p < 0.01), and hotspots coincided with reserves less frequently than expected by chance alone 

in all bioregions but the North. Overlap with marine national parks was substantially lower than with 

the wider MRs in both the Gascoyne and West bioregions. This trend was only marginally reversed in 

the North and South. 

DISCUSSION 

Our study offers quantitative insights into the occurrence patterns of an assemblage of highly mobile, 

pelagic predatory fishes in the eastern Indian Ocean. Prediction maps revealed several fish hotspots 

along the northwestern, southwestern and southern continental shelves of Western Australia, broadly 

consistent with findings from previous research. For example, tuna and billfish species richness peaks 

in similar parts of the North and Gascoyne bioregions (Trebilco et al., 2011), and analyses of 

movement behaviour in tiger sharks (Galeocerdo cuvier, Ferreira et al., 2015) and pygmy blue whales 

(Balaenoptera musculus brevicauda, Double et al., 2014) indicate that pelagic hotspots coincide with 

home range cores and areas of distinctly higher occupancy times in both species (Fig. S11). These 

congruent spatial patterns suggest a potential common basis to hotspot formation across multiple taxa 

(Bouchet et al., 2015). Higher relative abundance was also inferred at a number of discrete sites, 

confirming their importance to marine megafauna (Fig. S8). These included the seasonally productive 

Bremer basin, a foraging ground for white sharks (Carcharodon carcharias) and killer whales 

(Orcinus orca), the Albany canyon group, a favourable habitat for sperm whales (Physeter 

macrocephalus) (Johnson et al., 2016), the Recherche Archipelago, the Rowley Shoals, the Ashmore, 

Scott, Cartier and Ningaloo reefs (Sleeman et al., 2007) or to a lesser degree the waters off Dirk 

Hartog Island (Letessier et al., 2013). 

Importantly, we add to a growing body of literature demonstrating that mobile top predators 

congregate at discrete and perennial sites (Graham et al., 2016). As international support for 

expanding the world’s marine reserve coverage continues to rise (Singleton & Roberts, 2014), the 

hotspot concept may become particularly appropriate in guiding long-term MR placement and 



15 

 

focusing research attention and resources on regions of persistently high ecological value for mobile 

species, whilst conferring maximum conservation benefits per dollar invested. Such information will 

be crucial as designing reserves is notoriously difficult and constrained by the costs of sampling vast 

volumes of ocean (Letessier et al., 2017) as well as by the necessity to accommodate a broad gamut of 

socio-economic and geopolitical interests. Thus far, most extant pelagic MRs have been established 

opportunistically without reliance on well-defined scientific criteria (Roberts, 2000) and/or residually 

where there is little perceived conflict with resource users (Devillers et al., 2015). In many 

information-poor settings such as offshore waters, surrogate-based approaches may thus be the only 

viable option for improvement (McArthur et al., 2010). If so, the main difficulty will then lie in 

identifying not only a universally accepted operational definition of what constitutes a hotspot, an 

exercise so far thwarted by mixed interpretations (Bouchet et al., 2015), but also reliable proxies that 

can predict hotspot locations and possibly their change through time. Both will require the creation of 

standardised operating procedures that reconcile the numerous ways in which hotspots are measured 

(Marchese, 2015), importance scores calculated and predictors pruned (Szymczak et al., 2016). 

Methodological biases notwithstanding, conflicting results from empirical studies have fuelled 

controversy about the application of abiotic surrogates to conservation planning scenarios (c.f. 

Stevens & Connolly, 2004 and Rees et al., 2014). Such disputes likely stem from unresolved 

questions regarding the spatial and temporal stability of surrogate relationships or the effects of data 

quality and availability on indicator performance (Mellin, 2015). However, as efforts to test the 

validity of explanatory variables continue to be made, it will become easier to draw generalisations 

and identify those that perform consistently better across ecosystems, regions and scales (Sutcliffe et 

al., 2015). Geomorphometrics have generally remained broadly unvalidated proxies of oceanic 

biodiversity (though see Worm et al., 2003; Morato et al., 2010) in part because large portions of the 

seafloor are yet to be mapped and the majority of seamounts, submarine canyons and other prominent 

features around the world are still poorly explored (Huvenne & Davies, 2014). This suggests that 

weak correlations between static topography and predator hotspots may, at least historically, more 

likely reflect sporadic and uneven sampling than the absence of genuine wildlife-habitat relationships. 
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Syntheses are also beginning to emerge that highlight the value of using geodiversity to prioritise 

areas for biological conservation (Beier et al., 2015). Here, we have confirmed the value of 

geomorphometry by showing that it can be a good predictor of fish abundance on a macro-ecological 

scale, and highlighting several indices of topographic complexity with consistent relationships with 

pelagic biodiversity. That said, not all geomorphometrics were equally important. For instance, 

reflecting Huang et al. (2014)’s observations that the Australian margin is both physically and 

morphologically heterogeneous, submarine canyon metrics were outperformed in some bioregions but 

not others. We see two possible explanations for this. Firstly, the formation and maintenance of open-

ocean hotspots may demand a suite of interacting oceanographic and bio-physical forces that are not 

associated with all canyons or topographic features (e.g. upwellings, fronts, eddies, physical retention 

of prey; Hazen et al., 2013). Secondly, some canyons may only provide favourable conditions for 

pelagic fish species episodically. If the latter is true, the relatively coarse temporal and spatial 

resolution of our data may not have been sufficient to reveal such variable relationships. This could be 

the case for canyon heads, which were not retained as important predictors of hotspots in our analysis 

but which are frequently reported to be sustained by cyclical upwelling events (Rennie et al., 2009). 

Similarly, the Oceanic Shoals Commonwealth Marine Reserve (11.5°S, 128.5°E) was here identified 

as a cold spot of fish abundance despite records of seasonally elevated pelagic diversity (Nichol et al., 

2013).  

In order to fully explore the hotspot spectrum, and more robustly prioritise candidate areas for 

protection, a conceptual shift is warranted whereby hotspots are no longer defined in purely 

geographical terms, but are rather mapped in the four dimensions of latitude, longitude, time and 

depth, with explicit evaluations of their levels of intra/inter-annual variability (Santora & Veit, 2013). 

Despite being essential to long-term resource management, such evaluations of hotspot persistence are 

seldom attempted in practice (Santora & Sydeman, 2015). A natural way of quantifying the 

consistency of hotspots through time is to determine the frequency with which a given site exceeds a 

chosen hotness level. Piacenza et al. (2015) proposed a ‘universal’ threshold in the form of a mean 

value across years, whereas Santora and Veit (2013) recommended that one standard deviation above 
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a grand regional mean (> 1SD) be used as a common cut-off to align with previous work on remotely-

sensed patterns in ocean colour (Suryan et al., 2012) and krill and whale distributions (Santora & 

Reiss, 2011). Though pragmatic, neither approach was feasible in this study and future efforts should 

be made to characterise hotspot variability based on finer-scale time series data.  

Assessing the processes underpinning the environmental preferences of wildlife species is a major 

challenge in the pelagic realm. The trophodynamics and habitat usage of tunas, billfishes and their 

relatives are complex, dynamic and niche-dependent such that species occupying temperate or tropical 

eco-regions may exhibit contrasting tolerance for, and responses to, similar environmental signals 

(Arrizabalaga et al., 2015). Such non-stationarity (illustrated in Fig. S10) may be mediated, and 

further complicated by, biotic interactions of varying intensity and direction across latitudes 

(Schemske et al., 2009). This may explain why temperature, kinetic energy, oxygen concentration and 

salinity are often seen as important predictors of biogeographic range but a mechanistic understanding 

of their influence is often missing in the literature. For example, the role of salinity, a consistently 

high-scoring variable in all bioregions (Table S4), in determining the occurrence of pelagic species, is 

particularly obscure albeit some evidence exists that haline fronts may be indirectly linked with 

reproductive success (e.g. Alvarez-Berastegui et al., 2014), prey density and therefore favourable 

foraging areas (e.g. Maury et al., 2001). Remotely-sensed measurements of ocean colour and their 

derivatives, such as FCPI, are more readily interpretable, but may lack explanatory power (Table S4) 

if the target organisms sit several trophic levels above primary producers (Grémillet et al., 2008), 

track productivity at depth by following the deep scattering layer or chlorophyll maxima and/or time 

lags occur between chlorophyll peaks and resource availability for consumers (Navarro et al., 2015).  

Few studies have investigated the relative contribution of anthropogenic factors in controlling the 

distribution of ocean wildlife (Navarro et al., 2016). Distributional shifts caused by climate change or 

overfishing have been documented in some species (Fromentin et al., 2014), but relationships with 

cumulative, distal factors can prove complex and taxon-specific (Navarro et al., 2015). As such, 

disentangling the respective effects of oceanographic conditions, migratory behaviour, density-

dependence, exploitation history and population structure on habitat selection remains a significant 
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challenge. Here, the prevalence of human impact measures (Hi and Him), especially in the north of 

the wEEZ, is unsurprising as this region boasts a diverse array of active and productive industries (e.g. 

petroleum, tourism, shipping, defence) earmarked for accelerated growth in coming decades. Further 

research is however needed to define the strength, directionality and persistence of their impacts on 

individual species at both population and organism levels. Comprehensive syntheses of contemporary 

pressures and their trends should greatly facilitate this process. 

Against a backdrop of limited global marine protection (Costello & Ballantine, 2015) and a failure of 

conventional management to halt declines in ocean health, support for the implementation of place-

based conservation strategies such as marine reserves is rapidly growing. In the past, MRs have 

largely mirrored the static frameworks that proved successful on land, yet recognition of the more 

fluid and three-dimensional nature of the pelagic realm has prompted calls for more complex dynamic 

ocean management (DOM) approaches that can harness near real-time data to provide adaptive and 

flexible responses to changes in the distribution and behaviour of species, habitats and resource users 

alike (Maxwell et al., 2015). Although a valid and pragmatic concept, successful examples of its 

execution remain few (but see Dunn et al., 2016) and restricted to developed countries with sufficient 

logistical capacity and financial means to make DOM a viable option. That said, with access to 

technology rapidly expanding, DOM should become increasingly feasible in the future. This does not 

imply that static reserves are ill-suited to mobile organisms. Indeed, mounting evidence suggests that 

even migratory species can benefit from static closures as (i) protecting part of an animal’s range or 

life cycle contributes to reducing overall mortality, (ii) pelagic species are not necessarily as far-

ranging as previously believed (White et al., 2017) and tend to aggregate around predictable 

bathymetric and hydrographic features, (iii) their rates of residency, philopatry or site fidelity have 

generally been underestimated, (iv) static MRs ought to be easier to enforce and therefore more likely 

to bear tangible benefits in species conservation, and (v) neglecting the potential for evolution of 

individual movement rates has compromised expectations of MR effectiveness (Mee et al., 2017). In 

this context, Australia recently declared a national network of MRs that occupies more than a third of 

its entire jurisdiction (ca. 3.1 million km2). This areal coverage is exceptional by international 



19 

 

standards, however, the reserve system in its current form provides low levels of protection equality 

across habitats and bathymetric classes (Barr & Possingham, 2013). Our analysis demonstrates 

(despite some caveats, see Appendix S1) that other natural assets, namely hotspots of mobile 

predatory wildlife, are also significantly under-represented. Whilst the declaration of the network has 

been a milestone in Australia’s ecosystem-based approach to conservation, work remains to be done 

to ensure the framework in place is ecologically coherent and enables rapid progress towards the new 

target set by the IUCN 2014 Sydney World Parks Congress to have at least 30% of ocean 

environments afforded strict protection within the next fifteen years. Of course, marine reserves are 

just one conservation tool and are not a blanket solution to the problem of declining fish populations 

and biodiversity loss (Allison et al., 1998). They can, however, complement management efforts 

focused on setting and enforcing sustainable exploitation levels, controlling illegal fishing, mitigating 

pollution, capping fleet capacities, decreasing reliance on destructive gear, and reducing bycatch rates. 

We also recognise that the mission statement of the world’s protected area portfolio has expanded far 

beyond the original objectives the first reserves were created to fulfil in the early 1900s. Today, MRs 

are not only promoted as a means of preserving iconic wildlife/seascapes, but also to help bolster 

national economies, increase tourism, support the livelihood of local communities, alleviate poverty, 

replenish depleted stocks, and provide resilience in the face of environmental change. The relevance 

of MRs for pelagic species will therefore need to be balanced against these and numerous other goals. 

Here, we have provided empirical evidence that geomorphometrics can be meaningful proxies of 

macro-ecological patterns in pelagic marine species, a notion long suspected to be true but seldom 

comprehensively tested (with some exceptions; e.g. Worm et al., 2003; Morato et al., 2010). We also 

reinforced the notion that landing statistics can be instructive in a biogeographical context 

(Reygondeau et al., 2012), provided they are handled with care, transparency, and with a thorough 

understanding of their limitations in addressing specific questions. Appropriate use of these data is 

critical as they provide some of the most spatially and temporally extensive information available for 

marine organisms, making them relevant as inputs in spatial planning within the data-limited pelagic 

ocean. Moreover, we demonstrate that significant opportunities to advance existing conservation 
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frameworks await within offshore waters. The establishment of a global “hotspot repository” (Hazen 

et al., 2013), to which this study contributes, is an essential step in developing an effective and 

flexible system of ocean management. 
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TABLES 249 

Table 1. Summary of explanatory variables. Only the top 15 random forest predictors from each bioregion are shown (Fig. 3). See Table S1 in the 250 

Supplementary Information for the full list and links to data sources. Geomorphometrics encompass both “bathymetric / topographic” and “geologic” 251 

parameters. d.u.: ‘dimensionless unit’. 252 

VARIABLE NAME UNIT STATE ECOLOGICAL INTERPRETATION 

Bathymetric / topographic 

CI Contour index  d.u. Static 
Vertical circulation and mixing, eddy formation, prey refugia, prey 

entrapment 

CRS Cross-sectional curvature  rad.m-1 Static 
Vertical circulation and mixing, eddy formation, prey refugia, prey 

entrapment 

FRD Fractal dimension  d.u. Static 
Vertical circulation and mixing, eddy formation, prey refugia, prey 

entrapment 

LSRI Land surface ruggedness index  d.u. Static 
Vertical circulation and mixing, eddy formation, prey refugia, prey 

entrapment 

RUG Rugosity  d.u. Static 
Vertical circulation and mixing, eddy formation, prey refugia, prey 

entrapment 

Geologic 

CAN 
Presence/absence of one or more 

submarine canyons  
d.u. Static Breeding/spawning habitat, migration cue, prey availability 

CANpercent Percentage of grid cell area 
% Static Breeding/spawning habitat, migration cue, prey availability 
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occupied by submarine canyons  

CANhead 
Presence/absence of one or more 

canyon heads  
d.u. Static Productivity (upwelling), food availability, feeding ground 

CANadj 
Number of adjacent cells containing 

submarine canyons  
d.u. Static Population connectivity, larval dispersal 

CANdepth 
Maximum canyon depth within a 

cell  
m Static Prey availability, breeding/spawning habitat 

FEATcount 
Number of distinct geomorphic 

features within a cell  
d.u. Static Prey and habitat diversity 

FEATdom Dominant geomorphic feature class  d.u. Static Prey availability, breeding/spawning habitat 

Oceanographic 

CUREW East-west current velocity  m.s-1 Dynamic 
Nutrient inputs, oxygenation, enhanced productivity, larval drift and 

juvenile recruitment 

CURNS North-south current velocity   m.s-1 Dynamic 
Nutrient inputs, oxygenation, enhanced productivity, larval drift and 

juvenile recruitment 

FFD 
Daily sea surface temperature 

frontal frequency  
% Dynamic Food availability, migration cue 

L2 Regional circulation regimes  d.u. Dynamic Eddy formation, enhanced primary and secondary production 

L3 Ocean energy  d.u. Dynamic Prey availability, breeding habitat, feeding success, larval growth rates 

MIX Mixed layer depth  m Dynamic Prey availability, physiological tolerance, oxygen availability 
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PP Annual mean primary production  
mg C.m-

2.d-1 
Dynamic Prey availability 

PPstd 
Standard deviation of annual mean 

primary production  

mg C.m-

2.d-1 
Dynamic Prey availability 

SAL Annual mean salinity at the surface  PSU Dynamic Prey availability, physiological tolerance, hatching rate 

SSTstd 
Standard deviation of sea surface 

temperature  
°C Dynamic Spawning cue, breeding habitat, metabolic stress 

WAT Water mass at surface  d.u. Dynamic Prey availability, physiological tolerance 

Anthropogenic 

Hi Mean cumulative human impact  d.u. Dynamic Mortality, sub-lethal disturbance, displacement 

Hir 
Range of cumulative human 

impacts  
d.u. Dynamic Mortality, sub-lethal disturbance, displacement 

Him 
Maximum cumulative human 

impact  
d.u. Dynamic Mortality, sub-lethal disturbance, displacement 

 253 
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Table 2. Model selection summary from the GLM standardisation of pelagic fish catch rates. The best model (with minimum second-order Akaike 254 

Information Criterion AICc and maximum adjusted R2) is shown in bold. ΔAICc quantifies the difference in AICc score between the current and best models. 255 

α is the intercept, ε is the residual variation, log(E) and log(A) are offset terms for fishing effort and water surface area respectively, and the standard notation 256 

‘x’ represents all covariate main effects and their associated interactions. Weights are the species-specific values reported in Table S3. 257 

 

  Model formulation 

  

North Gascoyne West South 

ΔAICc Adj. R2 ΔAICc Adj. R2 ΔAICc Adj. R2 ΔAICc Adj. R2 

log(Catch) ~ α + Cell + Year + log(E) + log(A) + ε 23,976 0.355 9372.1 0.204 10,611 0.235 9,911 0.203 

log(Catch) ~ α + Cell + Year + Gear + log(E) + log(A) + ε 10,541 0.456 4687.1 0.347 6,445 0.356 8,411 0.256 

log(Catch) ~ α + Cell + Year + Gear + Weight + log(E) + log(A) + ε 4,928 0.459 3063.7 0.347 3,997 0.369 1936.6 0.384 

log(Catch) ~ α + Cell + Year + Gear + Weight + Dport + log(E) + log(A) + ε 4,928 0.459 3063.7 0.347 3,997 0.369 1936.6 0.384 

log(Catch) ~ α + Cell + Year + Gear x Weight + log(E) + log(A) + ε 3,739 0.468 2838.1 0.354 3604.9 0.380 1249.3 0.404 

log(Catch) ~ α + Cell + Year + Gear x Dport + log(E) + log(A) + ε 10,389 0.457 3940.2 0.368 5,326 0.385 8,281 0.261 

log(Catch) ~ α + Cell + Year x Dport + Gear + Weight + log(E) + log(A) + ε 4,478 0.463 2425.5 0.365 3613.2 0.380 1785.1 0.389 

log(Catch) ~ α + Cell + Year x Gear + Weight + Dport + log(E) + log(A) + ε 3,182 0.472 767.8 0.409 956.3 0.445 988.3 0.412 

log(Catch) ~ α + Cell + Year x Gear x Weight + log(E) + log(A) + ε 0 0.493 0 0.428 0 0.467 0 0.440 
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Table 3. Predictive accuracy of the random forest models of pelagic fish abundance. Values represent bootstrap means (with associated 95% percentile 258 

confidence intervals). Performance is evaluated on the out-of-bag data (see Appendix S1). RMSE stands for the root mean squared error, and R2 represents 259 

the percentage of variance explained. 260 

Input Performance metric Bioregions 

North Gascoyne West South 

All variables RMSE 1.58 (1.54 - 1.61) 1.0 (0.93 - 1.05) 0.77 (0.73 - 0.83) 1.07 (1.02 - 1.11) 

All variables R2 0.70 (0.69 - 0.71) 0.44 (0.39 - 0.48) 0.24 (0.19 - 0.29) 0.5 (0.46 - 0.54) 

Geomorphometrics RMSE 1.93 (1.9 - 1.96) 1.16 (1.1 - 1.21) 0.81 (0.76 - 0.87) 1.23 (1.17 - 1.27) 

Geomorphometrics R2 0.51 (0.5 - 0.52) 0.19 (0.16 - 0.24) 0.17 (0.12 - 0.23) 0.33 (0.3 - 0.37) 

  261 
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FIGURES 262 

 263 

Figure 1. Graphic representation of the grooming and analysis of the Sea Around Us Project (SAUP) data. 264 
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 265 

Figure 2. Pelagic fish hotspots derived from the SAUP data. Hotspot probability was derived as the 266 

frequency with which each grid cell was selected as a hotspot across n=100 bootstrap iterations, with 267 

darker tones denoting higher values. Submarine canyons (Huang et al., 2014) are overlaid in black. 268 
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269 
Figure 3. Summary of predictor importance in the random forest models. Each bioregion is assigned a 270 

different colour scheme and position on the wheel, from the outer (North) to the inner rings (South). 271 

Darker tones indicate predictors that both ranked highly and consistently (across bootstrap resamples), 272 

as per the bivariate key. Predictors that were not retained following variable selection (see Appendix 273 

S1 for details) are shown in grey. Canyon attributes are identified in black, topographic variables in 274 

dark grey and all remaining predictors in light grey (left). A full list of variable abbreviations is 275 

provided in Table S1. 276 
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 277 

Figure 4. Congruence between pelagic fish hotspots and marine reserves. Overlap is measured as the 278 

Jaccard similarity coefficient J, which ranges from 0 (no overlap) to 1 (complete overlap). Lighter and 279 

darker colours capture the distribution of values under random null models (n=10,000) and empirical 280 

bootstrap resamples (n=100) respectively. Mean values are shown as filled circles, and their 281 

associated 95% percentile confidence intervals (CIs) as solid lines. CMR: Commonwealth Marine 282 

Reserves (all zones), MNP = Marine National Parks (no-take zones only). 283 

 


