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Abstract—A brain-computer interface (BCI) enables users
to communicate through a computer using only their brain
signals, by extracting brain signal features containing information
representative of the user’s intent, and can be used in a wide
variety of areas such as entertainment, rehabilitation, or assistive
technologies. In this paper, two novel normalization methods are
assessed with the aim of improving the quality of the extracted
features: Baseline-Corrected canonical correlation analysis (BC-
CCA), and Scaled CCA. Both methods are found to be able to
improve classification accuracy in conditions using frequencies
with a large range, whilst BC-CCA is the superior of the two,
improving SSVEP detection accuracy by as much as 9.22%.

Keywords—brain-computer interface, BCI, SSVEP, normaliza-
tion, EEG.

I. INTRODUCTION

A brain-computer interface (BCI) is operated using brain-
generated information, thereby providing the user with an alter-
native communication or control channel that does not require
the brain’s normal peripheral nerve and muscle pathways [1].
Operating a BCI is a multi-step process [2], which involves
acquiring a signal from the user’s brain, preprocessing it to
reduce artifacts, extracting useful features that can be used to
make inferences about the user’s current cognitive state, and
then translating these features into a form that can be used to
communicate with an external device, and finally, providing
feedback so the user can see that the BCI is working (Fig. 1)
and adjust their approach if necessary. Overall, BCIs can be
viewed as an inter-cognitive communication system [3], which
transfers the brain’s neural signals into an alternative format,
providing the user with the ability to communicate directly
with external devices. In the last few years, BCI has begun to
find its place within the field of Cognitive Infocommunications
(CogInfoCom), including studies into using brainwaves to
operate a mobile robot [4], and detecting a user’s mental
arousal levels using a BCI [5].

There are several methods for operating a BCI [6]; one
of the most popular involves exploiting the brain’s steady-
state visually evoked potential (SSVEP [7]) response. SSVEPs
are a phase-locked brain response triggered by fixing the
user’s gaze upon a repetitive visual stimulus (RVS) such as
a flashing light [8], or a reversing pattern [9]. The SSVEP is
produced by groups of neurons which output a repetitive signal
matching the RVS frequency, maintained for the duration of
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the fixation period. Correctly identifying the user’s SSVEP
frequency allows a correct command to be sent to the BCI. The
SSVEP response can be detected by recording brain activity
from electrodes placed around the occipital and parietal lobes
[10], and interpreting the brain signal using classification
algorithms. SSVEP-BCls are popular due to their short training
time, high classification rate [11], and the fact that they
can be detected using non-invasive neuroimaging methods
such as electroencephalography (EEG). They have been used
in a diverse range of applications, including BClI-controlled
computer games [12], exoskeletons [13], wheelchairs [14],
[15], and robotic humanoids [16].

Currently, two of the most popular methods for SSVEP
feature extraction are: canonical correlation analysis (CCA,
[17], [18], [19], [20], [21]), which calculates the correlation
between the user’s EEG signal and the target frequencies,
and power spectral density analysis (PSDA, [22], [23]), which
uses frequency components of the EEG signal as features for
classification. CCA has a high accuracy and does not need
training data. One problematic characteristic of EEG is that
the EEG frequency components from low frequencies tend to
have higher power than those from high frequencies, making
them easier to detect, and leaving a BCI naturally skewed in
favour of low frequency SSVEPs. One way to minimize this
bias is to only use stimulus frequencies from the same range.
However, it would be preferable to adjust our feature extraction
methods in a way that gives a balanced result. Having access to
more stimulus frequencies means more unique commands can
be sent, thus providing a higher information transfer rate. It
is noted in [24] that uneven distribution between classification
accuracy of classes leads to a skewed performance, whereas the
ideal BCI will have an equal chance of selecting any command.
This skewness can be alleviated by normalization, also known
as feature scaling, which standardizes features based on some
relationship within or between feature groups, and reduces
the impact of extreme values and/or the difference between
features of different classes.

The goal of this research is to improve the classification
accuracy of SSVEP-BCIs by normalizing the extracted features
from different classes, thereby increasing the chances of high
frequency SSVEP responses being correctly identified. Specif-
ically, we compare two novel methods aimed at improving the
BCT’s ability to send information by improving the quality of
the features produced during the feature extraction process.



We call these methods Baseline-Corrected CCA and Scaled-
CCA. There have been numerous papers exploring different
aspects of the BCI process; however, to the authors’ knowledge
there is currently very little research into SSVEP normalization
methods.

II. PREVIOUS WORK

A number of studies have used methods of normalizing
EEG signals for SSVEP detection. Nakanishi and colleagues
[19] took CCA features from their target frequencies and
normalized them against CCA features from neighbouring fre-
quency bands, to help compensate for poorer classification with
higher frequency RVS. They found that these features could
perform as well as (and sometimes outperform) the standard
CCA, and performance improved as the number of neighbours
increased. Castillo et al. [22] applied a similar method of
normalizing features against neighbouring frequencies using
PSDA, where they would normalize against a single value to
find the largest ratio. This led to a more accurate BCI and
had less variance than the PSDA. Despite a relatively low
SNR of the high-frequency visual input, Sakurada et al. [25]
created a high frequency SSVEP-BCI with good three-class
classification accuracy, normalizing all the RVS frequencies
against the inter-trial average of spectral power across the
fixation period, and also against competing frequencies. In
effect each normalized SSVEP amplitude was the baseline
corrected amplitude with the mean amplitude of the (baseline-
corrected) competitors subtracted from it. Diez et al. [26]
had participants operate a BCI-controlled navigation robot
using SSVEP features from high-frequency (f > 35 Hz)
RVS. These features were normalized against the periodogram
of baseline data collected prior to the study. There was no
direct comparison with other normalization methods as this
was a navigation study. However, all participants were able
to successfully operate the BCI using the baseline-corrected
features.

The previous literature illustrates that there are a variety
of different ways to improve SSVEP performance using nor-
malization techniques. However, the majority of studies focus
on PSDA-based techniques, whereas the current state-of-the-
art SSVEP-BCI algorithms use CCA and CCA-based methods.
Previous research has indicated that it is possible to improve
CCA performance using normalization methods, and also that
data from the pre-fixation period can be used to normalize
the SSVEP response across frequencies, albeit with PSDA.
Therefore, based on previous research and the characteristics
of EEG, we hypothesize that: (1) SSVEP-BCI performance can
be improved by using CCA data from the pre-fixation period,
and that; (2) normalization techniques will cause the greatest
improvement for classifying RVS frequencies that have a wide
range between them.

III. METHODOLOGY
A. Participants

Participants were 17 healthy students recruited using the
university mailing system (4 female, 13 male) with a mean
age of 26.5 years old.
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Fig. 1. BCI block diagram

Fig. 2. SSVEP stimulus screen layout

B. SSVEP Stimulus

An RVS was created and displayed on a separate computer,
using code written on MATLAB (MathWorks Inc.) plugin
Psychtoolbox ( [27], [28], [29]. Eight SSVEP stimulus fre-
quencies: 6.66, 7.5, 8.57, 10, 12, 15, 20, and 30 Hz, were
produced using the method outlined by Cecotti et al. [30], and
displayed on a 60 Hz screen in a 3x3 layout, as shown in Fig.
2. These are the only RVS frequencies that can be reliably
displayed on a 60 Hz monitor using this method.

C. Data Collection

Each participant’s EEG activity was recorded as they gazed
at the on-screen stimulus, using a Neuroelectrics! Enobio
20-channel EEG system with AgCl electrodes, referenced
to the right mastoid. In a single group of eight trials, the
participant was instructed (via the fixation cross) to gaze at
subsequent stimulus squares in a left-to-right, top-to-bottom
fashion, meaning the frequency values increased for each of
the eight trials. This pattern was repeated for all 30 groups of
trials, giving a total of 240 trials, which took 30 minutes per
participant. Each individual trial lasted seven seconds: a two-
second fixation period, followed by five seconds of SSVEP
stimulation (Fig. 3). Participants were given a one-minute
break every nine minutes. During recording, participants were
seated 60 cm away from the screen, in a room with reduced
natural light.

1 www.neuroelectrics.com
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D. Standard CCA Feature Extraction

CCA is a method for identifying the underlying correla-
tion between two multidimensional variables, and has been
successfully used to perform unsupervised SSVEP detection
[17], [18]. For two multidimensional variables X and Y with
weighted linear combinations * = X”Wx and y = Y Wy,
CCA works by finding the weight vectors Wx and Wy
which maximise the correlation between x and y. This is
accomplished by solving the following optimisation problem:
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where F|[x] represents the expected value of z, and p is the
correlation value, which is maximised with respect to weight
vectors Wx and Wy, thereby calculating the canonical cor-
relation between X and Y.

In the case of SSVEP detection, X € R“*S is a mul-
tidimensional EEG signal with C' channels and S samples.
Y; € R*M*S5 is a multidimensional set of reference signals
based on stimulus frequency f, with 2N, individual sine waves
and S samples, where IV, is the number of harmonics. The
sine waves are assembled into a matrix [17]:

sin(27 ft)
cos(27 ft)
Y = : )
sin(27w Np, ft)
cos(2m Ny, ft)

where ¢ is the time in seconds. By performing CCA on X
and Y7 for all f, the stimulation frequency with the maximal
canonical correlation value can be identified, which is selected
as the estimated SSVEP frequency.

One of the main advantages of using CCA in SSVEP-BCIs
is that it can be used without any training data. In order to
retain these benefits, this study is focused on normalization
methods that can classify commands without the use of train-
ing data. For convenience, CCA without any normalization
methods applied will be referred to as Standard CCA from
this point onwards. As noted in Section I, SSVEPs elicited by
higher frequency RVS are harder to detect. As such, two new
methods aimed at improving the accuracy of Standard CCA
through the use of pre-trial normalization have been proposed.

E. Proposed Methods: Pre-Trial Normalization

Three CCA methods are compared in this paper; they are
described below along with plots of their correlation values
across time for a single participant (values are averaged across
30 trials).

Standard CCA: This is CCA without any normalization
method applied (Fig. 4)

Baseline-Corrected CCA: BC-CCA subtracts baseline corre-
lation values from the Standard CCA correlation scores at the
target time (Fig. 5);

Scaled CCA: This method divides the Standard CCA correla-
tion scores at the target time by the baseline correlation values
(Fig. 6).

The first step of applying either normalization method
requires data from the pre-trial fixation period, during which
no RVS is displayed on-screen (Fig. 3). A baseline correlation
score is calculated across the pre-fixation period by calculating
the maximum canonical correlation for each class multiple
times using an overlapping window. Taking the mean of these
scores gives a single value for each class, which will be termed
the “baseline p” for convenience. This can be calculated for
each class using:

K
1
baselinep = 7 Z p(w;, Yy) 3)
i=1

where K is the total number of time windows used, and w;
represents the ith time window of data.

Later in the trial, the baseline p can be used to perform
normalization against the Standard CCA correlation scores
using either BC-CCA:

BCCCA = p(x,Yy) — baselinep %)

or Scaled CCA:

p(SC, Yf)

scaledCCA = -
baselinep

&)

with the maximum value across classes selected as the classi-
fier output.

F. Method Application

Normalization requires calculating the correlation coef-
ficients for each class several times during a single trial.
To achieve this, the EEG data was downsampled to 250
Hz and separated into analysis windows using MATLAB
plugin FieldTrip [31]. Each analysis window contained one
second of data, filtered from 1-49 Hz using a zero-phase
Butterworth band-pass filter with two seconds of data padding
on either side. The p values of each class were calculated
for every analysis window. The start points of the analy-
sis windows, that is, the left corners, were positioned as
follows: the windows for calculating baseline p were offset
to tA = [-2,-1.8,—1.6,—1.4,—1.2] seconds, relative to
t0 (stimulus onset). These overlapping one-second windows
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Fig. 6. Scaled canonical correlation coefficients

effectively covered most of the two-second period between
the previous trial and stimulus onset of the current trial. The
analysis windows for calculating Standard CCA was offset to
tA = 1 second relative to t0, in order to avoid the “dead
time” [32], the period occurring after RVS onset but before
the SSVEP response reaches maximum effectiveness.

Offline analysis tests were conducted using four different
frequencies at a time, as four commands can provide enough
degrees of freedom to control many simple games or assistive
devices. As mentioned in section III-B, data was collected
from eight RVS frequencies. However, frequencies that are
multiples of one another can cause inter-harmonic interference;
for example a 10 Hz RVS can elicit a 20 Hz SSVEP response.
As a result, these frequencies should not be used together
in a BCIL. To circumvent this problem, the eight available

TABLE 1. FREQUENCY COMBINATION GROUPS
Condition Freq. 1 Freq. 2 Freq. 3 Freq. 4 Range
Low 6.66 Hz 7.5 Hz 8.57 Hz 12 Hz 5.34 Hz
Medium 8.57 Hz 12 Hz 15 Hz 20 Hz 11.43 Hz
Wide Range | 6.66 Hz | 8.57 Hz 12 Hz 30 Hz 2343 Hz
TABLE II. MEAN ACCURACY ACROSS CONDITIONS
Condition Standard CCA (%) BC-CCA (%) Scaled CCA (%)
Low 73.48 72.99 71.13
Medium 64.46 71.72 70.20
Wide Range 57.84 67.06 64.41

stimulus frequencies were separated into three conditions: Low
Frequency, Medium Frequency, and Wide Range conditions
(Table I). These three conditions allowed for combinations of
RVS frequencies contained the lowest possible, the highest
possible, and the widest range of RVS frequencies possible
that had no inter-frequency interference within the first three
harmonics. The 10 Hz RVS was not included in any condition,
as there were only two RVS frequencies (8.57 and 12 Hz)
with which it shared no harmonics within this range. Analysis
included all 30 trials for each class, giving a total of 120 trials
per condition. Each trial had Standard CCA, Scaled CCA, and
BC-CCA applied to it.

IV. RESULTS

Each participant had their data (120 trials per condition,
three conditions) analysed using the Standard CCA, Scaled
CCA, and BC-CCA methods (Fig. 7). The highest accura-
cies were found in the Low Frequency condition (mean =
72.53%), followed by the Medium Frequency condition (mean
= 68.79%), with the lowest accuracies found in the Wide
Range condition (mean = 63.11%). Standard CCA has a
very slightly improved performance in the Low Frequency
condition (+0.49%); however, both Scaled CCA and BC-CCA
outperformed it in the other conditions (Table II), with BC-
CCA outperforming it by 7.26% in the Medium Frequency
condition, and by 9.22% in the Wide Range condition. A
closer look at the Wide Range condition (Table III) shows that
this effect is fairly consistent across participants, with only
one user performing better using Standard CCA. Separating
participants into performance-based groups using Tan et al.’s
[33] threshold for acceptable BCI control accuracy (>70%
accuracy) produces 11 higher accuracy participants versus 6
lower accuracy participants. The performance of these groups
in the Wide Range condition suggests that the majority of
improvements are made by the more accurate participants
(Fig. 8, +11.81%), with less change attributed to the less
accurate participants (Fig. 9, +4.45%). Fig. 8 shows that the
normalization techniques improved the performance of the
more accurate participants, with the lower quartile of the
normalized box plots almost equalling the upper quartile of
the standard CCA box plot. It also shows an increased range
in accuracy between the minimum and maximum scores when
using normalization. Fig. 9 shows that normalization made
little difference in the less accurate participants.



80

70 I

60

50

40

Classification accuracy (%)

I standard CCA

[sc-cca

[ Iscaled CCA
[1

Low Medium Wide
Frequency condition

Fig. 7. Mean classification accuracy

TABLE I11. CLASSIFICATION ACCURACY (WIDE RANGE CONDITION)
Participant | Standard CCA (%) | BC-CCA (%) | Scaled-CCA (%) |

1 3333 34.17 3333
2 75.83 87.50 89.17
3 50 50.83 49.17
4 75 87.50 83.33
5 35 40 44.17
6 61.67 70.83 70.83
7 76.67 96.67 90
8 50.83 57.50 51.67
9 55.83 64.17 66.67
10 35.83 41.67 42.50
1 26.67 34.17 30.83
12 61.67 74.17 74.17
13 72.50 85.83 86.67
14 70 87.50 80.83
15 74.17 94.17 85
16 70 80 70
17 58.33 5333 46.67

Mean 57.84 67.06 64.41
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Fig. 8. Higher accuracy participants (wide condition)

V. DISCUSSION

This study has investigated the problem of whether it is
possible to further improve CCA performance without the use
of training data, through the application of pre-trial normaliza-
tion methods. The results show that it is indeed possible, and its
effectiveness is dependent upon the RVS frequencies selected
for use. Both Scaled CCA and BC-CCA were found to be
effective in some cases: for low frequencies BC-CCA (-0.49%)
and Scaled CCA (-2.35%) were outperformed by Standard
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Fig. 9. Lower accuracy participants (wide condition)

CCA; however, for medium frequencies, BC-CCA (+7.26%)
and Scaled CCA (+5.74%) both had a higher accuracy than
Standard CCA, and both outperformed it again for wide range
frequencies (BC-CCA = +9.22%, Scaled CCA = +6.57%).
The results support both the hypotheses that SSVEP-BCI
performance can be improved using CCA data from the pre-
fixation period, and that trials from wide-ranged frequencies
would have the greatest improvement. As expected Standard
CCA classification accuracy deteriorates as the range between
RVS frequencies increases, while it stays fairly consistent
when normalization methods are applied.

As shown by the plots of each method’s canonical coef-
ficient values across time (Figs. 4, 5, and 6), BC-CCA and
Scaled CCA appear to minimize the difference between the
CCA coefficients, thereby making it more likely that weaker
SSVEP responses such as at 20 and 30 Hz can be correctly
detected. However, it is unclear why BC-CCA appears to
perform better than Scaled CCA on a fairly consistent basis.
As it is a baseline correction method, BC-CCA preserves
the changes of each frequencies correlation score over time,
relative to itself; it simply equalizes their value at t0. Whereas,
Scaled CCA effectively applies a penalty to frequencies with
a high baseline p, and applies that to their correlation score
at every time point which should theoretically allow weaker
frequencies a stronger response. This should give some insight
into why the methods perform differently, although further
work is required to determine which situations are preferable
for each method.

Future work should look at whether training data can be
used to further improve the results of BC-CCA and Scaled
CCA, and test their effectiveness with a larger number of
frequencies. A more structured approach to selecting the pre-
trial fixation period may reduce the computations required for
real-time control.

VI. CONCLUSION

BC-CCA and Scaled CCA were both found to be effective
normalization methods, mitigating the decrease in BCI perfor-
mance seen as the distance between frequencies increases, thus
allowing a greater range of visual stimulus frequencies to be
selected. Of all the methods investigated, BC-CCA was found
to be the most effective.
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