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A B S T R A C T

In this article, reinforcement learning is used to obtain optimal reactive control of a two-body point absorber. In
particular, the Q-learning algorithm is adopted for the maximization of the energy extraction in each sea state.
The controller damping and stiffness coefficients are varied in steps, observing the associated reward, which
corresponds to an increase in the absorbed power, or penalty, owing to large displacements. The generated
power is averaged over a time horizon spanning several wave cycles due to the periodicity of ocean waves,
discarding the transient effects at the start of each new episode. The model of a two-body point absorber is
developed in order to validate the control strategy in both regular and irregular waves. In all analysed sea states,
the controller learns the optimal damping and stiffness coefficients. Furthermore, the scheme is independent of
internal models of the device response, which means that it can adapt to variations in the unit dynamics with
time and does not suffer from modelling errors.

1. Introduction

Wave power is a renewable energy resource that can considerably
contribute to the future energy generation thus reducing society's
dependence on fossil fuels. Although a potential of up to 2.1 TW of
power has been estimated globally (Gunn and Stock-Williams, 2012),
wave energy converter (WEC) devices are not economically viable yet,
despite a large number of different designs having been suggested
(Falcão, 2010). The design of an effective control strategy is funda-
mental in order to address this problem, since it can result in
substantial gains in absorbed energy without additional hardware
costs.

Over the years, different control strategies have been proposed for
the maximization of power extraction of WECs. A review of the first
studies can be found in Salter et al. (2002), while Ringwood et al.
(2014) presents a review of recent techniques. From hydrodynamic
considerations, complex-conjugate control would theoretically provide
optimal energy absorption by achieving resonance between the WEC
and the incident waves (Salter et al., 2002). Nevertheless, delivering
optimal control may be infeasible in reality due to the associated
excessive motions and loads in extreme waves. Hence, alternative
suboptimal control schemes have been implemented, which include

physical constraints on the motions, forces and power rating of the
device (Ringwood et al., 2014).

Latching, declutching, model-predictive and simple-but-effective
control are instances of real-time WEC control schemes. Firstly
suggested by Budal and Falnes (1977), latching control achieves
resonance conditions by adjusting the time period when the machine
is locked in place through a dedicated mechanism (Babarit et al., 2004;
Babarit and Clément, 2006). During the remaining part of the wave
cycle, the device motions are linearly damped. Declutching control
presents a similar concept, but in this case the power take-off (PTO)
system is disconnected during part of the wave cycle through a by-pass
valve (with hydraulic PTOs) as opposed to being fixed in place (Babarit
et al., 2009). Model predictive control applies at each time step the
force that is expected to result in maximum energy absorption over a
future time horizon (Brekken, 2011; Hals et al., 2011; Li and Belmont,
2014a; Richter et al., 2014). Simple-but-effective control obtains an
estimate for the optimal controller force by modelling the current
excitation force as a narrow-banded function (Fusco and Ringwood,
2013). These control strategies can include constrains on the motions
and loading of WECs. While it is hard to scale latching control to farms
of WECs, model predictive control has been successfully implemented
for multi-body devices and even small array problems (Richter et al.,
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2013; Oetinger and Magaña, 2014; Li and Belmont, 2014b; Amann and
Magaña, 2015; Oetinger et al., 2015). However, model predictive
control presents high computational requirements. Simple-but-effec-
tive control results in similar performance, but with a simpler
implementation (Ringwood et al., 2014). Nevertheless, these methods
are strongly affected by the accuracy of the prediction of the future
wave excitation force, usually over a short time horizon, as well as of
the model of the machine dynamics (Ringwood et al., 2014).

Resistive and reactive control represent alternative types of
schemes that rely on time-averaged sea states, so that stationary wave
conditions are assumed (Salter et al., 2002). Numerical simulations are
performed so as to obtain the PTO damping (resistive control) or
combination of damping and stiffness (reactive control) that result in
maximum energy absorption in each sea state (Nambiar, 2015). It is
possible to include force saturation within the numerical model and
displacement constraints in the cost function. On the one hand, these
techniques may present a lower efficiency as compared with on-line
control schemes. On the other hand, resistive and reactive control are
conceptually simple to understand, and they present much lower
computational costs than real-time methods. Furthermore, they are
easily scalable to multi-body or multiple-device problems, as for
instance shown by Nambiar (2015).

The aforementioned schemes suffer from a significant problem: the
optimal control action is determined based on internal models of the
body dynamics. Therefore, modelling errors can severely affect the
performance of these algorithms, with significant drops in efficiency. In
addition, these control strategies do not account for changes in the
device dynamics over time, e.g. due to slow marine growth or sudden
non-critical subsystem failures. For these reasons, the authors have
proposed the application of reinforcement learning (RL) to resistive
control in a previous work (Anderlini, 2016). With this machine
learning algorithm, the controller learns the optimal PTO damping
coefficient in every sea state directly from experience. Penalties for
large displacements are included to prevent failures in extreme waves.

In this article, the developed control strategy based on RL is
generalised to reactive control. Although WECs are expected to be
deployed in arrays so as to exploit the advantage of economies of scale
(Nambiar, 2015), we consider a single, axisymmetric device for
simplicity. In particular, a more realistic WEC than that in Anderlini
(2016) is analysed: a two-body point absorber, similar to the reference
model 3 in Neary and Previsic (2014), Previsic et al. (2014) and Yu
et al. (2015). Point absorbers, which extract energy by resisting the
motions of a small floating body subject to wave loading through a PTO
system, represent a well-understood and simple offshore WEC tech-
nology (Falcão, 2010). The performance of the algorithm is assessed in
both regular and irregular waves.

2. Optimal reactive control of a point absorber

2.1. System description

In this work, the reference model 3 point absorber developed by
Sandia National Laboratories is used as a case study. This decision is
based on its realistic design, while it is still possible to approximate its
motions with a simple model. Furthermore, it is well documented in
the literature. The development of the WEC is described in Neary and
Previsic (2014) in detail. Previsic et al. (2014) and Yu et al. (2015)
present experimental measurements that have been used to quantify its
performance. The device is a floating, moored, axisymmetric point
absorber that comprises of two bodies, whose relative motion due to
wave excitation results in absorbed energy.

The selected point absorber features a hydraulic PTO system as
shown in Fig. 1, as envisioned by Neary and Previsic (2014). The
mechanical energy associated with the relative motion between the
float and the reaction plate is converted into electrical energy through a
hydraulic stage. The advantages of a hydraulic PTO unit, whose design

is inspired by Henderson (2006); Falcão (2007); Forehand et al.
(2016), are its robustness, capacity for energy storage and speed
control. Furthermore, no expensive, fully-rated power converters are
necessary because through the PTO system it is possible to control the
output current (Forehand et al., 2016).

As shown in Fig. 1, the point absorber comprises of two bodies: a
float and a reaction plate connected to a vertical spar. The wave
excitation causes the float and reaction plate to move. However, the
oscillations of the reaction plate present a much lower magnitude than
the float because of the higher inertia, viscous drag and depth of the
plate. Hence, the motion difference is used to drive a two-way, single-
degree-of-freedom ram that pumps high-pressure oil into the circuit. A
rectifying valve prevents flow reversal. Furthermore, the flow is
smoothed out through a gas accumulator system. In the reference
model 3 (Neary and Previsic, 2014), this comprises of four high-
pressure (HP) cylinders and a low-pressure reservoir, designed to
prevent cavitation (Forehand et al., 2016). The flow drives a hydraulic
motor, which is connected to an induction generator. The produced
electrical power is fed into the national grid after the voltage is stepped
up through a transformer.

As can be seen from Fig. 1, the input variables to the controller are
the generated power, P, the displacement and velocity at the PTO, xPTO
and ẋPTO, respectively, and the wave elevation, ζ, from which the sea
state is derived. The controller then adjusts the flow in the hydraulic
circuit by opening or closing the valves connected to the accumulators.
This corresponds to changing the damping and stiffness in the system.

2.2. Optimum reactive control

In reactive control, the controller force is calculated as the sum of a
damping and a stiffness term [19]:

F t B x t C x t( ) = − ˙ ( ) − ( ),PTO PTO PTO PTO PTO (1)

where xPTO is the displacement at the PTO. It is assumed that the PTO
damping and stiffness coefficients, BPTO and CPTO, respectively, can be
modified by changing the pressure within the hydraulic circuit. By
varying BPTO and CPTO directly, the developed algorithm can be easily
applied also to other PTO systems such as electromechanical or direct-
drive.

In reality, the PTO force is saturated with a limit FMax due to the
generator rating, as shown in Fig. 6 in Section 4.1. The generated
power P can be calculated as:

P t F t x t( ) = − ( ) ˙ ( ),gen PTO PTO (2)

and the power fed into the grid is given by:

⎧⎨⎩P t
ηP P
P η P

( ) =
if ≥ 0, (a)

/ if < 0. (b)
gen gen

gen gen (3)

For simplicity, in (3) a single measure is employed for the overall
efficiency of the PTO unit: η=80% (Neary and Previsic, 2014). In (2),

Fig. 1. Diagram of the point absorber with its hydraulic PTO.
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Pgen is the generated power. From (3) it is clear that with reactive
control not only is power extracted from the waves, but during part of
the wave cycle it is also fed into the environment in order to increase
the motions of the device through resonance and thus increase energy
absorption (Salter et al., 2002). From this behaviour comes the name of
the algorithm ”reactive control”.

The optimal PTO damping and stiffness coefficients that result in
maximum energy extraction depend on the wave period in regular
waves (Tedeschi et al., 2011) or the energy wave period, Te, in irregular
waves. If the force saturation is included, the optimum BPTO and CPTO

values become also functions of the significant wave height, Hs.
Similarly, the maximum displacement at the PTO, which is of interest
to prevent failures in extreme waves, is also a function of the sea state,
given by Hs and Te.

The state-of-the-art optimum reactive control algorithm employs a
tabular approach, where the optimal PTO damping and stiffness
coefficients are stored in a table for the main sea states that are
encountered at the operational site, given by the combinations of a
number of discrete values of BPTO and CPTO. During the operation of the
WEC, the controller tries to achieve the prescribed PTO stiffness and
damping coefficients in the current sea state through the hydraulic PTO
system. The optimal coefficients are usually pre-calculated using an
optimization algorithm, such as the Nelder-Mead simplex algorithm as
in Nambiar (2015), with a time-domain hydrodynamic model. For this
reason, this technique can be affected by modelling errors and it cannot
account for changes in the device response with time, e.g. due to ageing
or marine biofouling.

3. Reinforcement learning control

In reinforcement learning, the controller learns an optimal beha-
viour, or policy, from direct interaction with the environment. In this
work, the on-line, off-policy Q-learning algorithm (Sutton and Barto,
1998) is selected as in Anderlini (2016). With this strategy, at each time
step n the agent, which is in a specific state sn, selects an action an. As a
result of the interaction with the surrounding environment, the
controller lands in a new state, sn+1, while observing a reward, rn+1,
which depends on the outcome of the chosen action. The action
selection, modelled as a Markov decision process, depends on the
value function, which is a measure of the expected future reward. By
considering present as well as future rewards, RL is able to learn the
optimal policy with time for the maximization of the total reward
(Sutton and Barto, 1998).

Model-free RL techniques employ the action-value table Q, which
presents an entry for every combination of discrete states and actions.
For instance, Q s a( , )n n represents the action-value for the current state
and action. The one-step update of the Q-learning algorithm is given by
Sutton and Barto (1998):

⎡
⎣⎢

⎤
⎦⎥Q Q Q Qs a s a α r γ s a s a( , ) = ( , ) + + max ( , ′) − ( , ) ,n n n n n n n n

a A
n n n n n+1 +1

′∈
+1

(4)

where αn is defined as the learning rate, which determines the
proportion of previous learning that is retained in the update of the
action-value table, and γn is the discount factor, which can be used to
stress either current or future rewards.

3.1. Application to the reactive control of wave energy converters

Fig. 2 shows how Q-learning is used to learn the optimal combina-
tion of PTO damping and stiffness coefficients in each sea state without
relying on any internal models of the device dynamics. At each step of
the algorithm, the controller selects a step change in the coefficients
(action), which is implemented by the PTO unit (agent). After interac-
tion with the waves (the environment is represented by the point

absorber subjected to ocean waves), the controller receives a reward,
which is a function of the generated power, and moves to a new state,
as given by the significant wave height, the energy wave period, and the
PTO damping and stiffness coefficients.

The generated power must be averaged over multiple wave cycles so
as to ensure transient effects from step changes in BPTO andCPTO do not
affect the learning process. In particular, a longer time is required in
irregular waves due to their random nature. Hence, the averaging is
performed over a time horizon, H, during which the state sn and action
an are constant. As a result, the time steps of the Q-learning algorithm
now have length H. As a new action is selected, there is an immediate
change of state to sn+1 and a new averaging process.

3.1.1. State space
As aforementioned, the selected state variables are the significant

wave height, the energy wave period, and the PTO damping and
stiffness coefficients. Hence, the adopted RL state space is given by:

⎧
⎨
⎪⎪

⎩
⎪⎪

⎫
⎬
⎪⎪

⎭
⎪⎪

S s s H T B B

i I
j J

k K
l L

= | = ( , , , ),

= 1: ,
= 1: ,
= 1: ,
= 1:

.i j k l i j k l, , , s, e, PTO, PTO,

(5)

The choice of I, J, K, and L is based on a compromise between
avoiding slow convergence associated with large values and ensuring
sufficient learning accuracy, which may be affected by small values. In
particular, due to the extra state variable as compared with resistive
control (Anderlini, 2016) the learning time can become an issue with
reactive control if large values are selected. I and J are usually
determined by the wave resource at the deployment site. Typical ranges
of the significant wave height and energy wave period are H = [0, 9]s m
and T = [5, 14]e s, in steps of 1 m and 1 s, respectively Holthuijsen
(2007). With a hydraulic PTO system, K and L are set by the number of
accumulators.

3.1.2. Action space
For reactive control, the action is a combination of increase,

decrease, or not change the PTO damping and stiffness coefficients.
This gives 9 possible actions as opposed to only 3 in the case of resistive
control (Anderlini, 2016). It has been preferred, however, to vary only
one variable at a time in order to limit the action-state space thus
decreasing the size of the Q-table. This has a direct consequence on the
overall learning time. The action space A is now given by:

A a B C B C= { |[(−Δ , 0), (0, −Δ ), (0, 0), (+Δ , 0), (0, +Δ )]},PTO PTO PTO PTO

(6)

where BΔ PTO and CΔ PTO are predefined step changes in the PTO
damping and stiffness coefficients respectively.

The RL states corresponding to the minimum or maximum PTO
damping and stiffness coefficients, i.e. BPTO,1, B KPTO, , CPTO,1 and C LPTO, ,
present a smaller action state to prevent the controller from exceeding
the state space boundary. For instance, for C LPTO, , the action CΔ PTO is
invalid.

3.1.3. Reward
In this work, the same reward function, which represents the goal

Fig. 2. Block diagram of the RL control of the point absorber.
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the controller needs to maximise, as in Anderlini (2016) is used. As
shown in Fig. 2, the reward is dependent on the absorbed power.
Nevertheless, the significant wave height can have stronger influence
on the mean generated power, Pavg, than variations in BPTO and CPTO. As
a result, P H/avg s

2 is used instead because the absorbed power is
proportional to the square of the significant wave height
(Holthuijsen, 2007). Additionally, in order to help the learning process
by filtering out the noise associated with random seas, the reward
function is in fact based on the mean value of a numberM of Pavg values
(which are themselves time-averaged) for each RL state. This is
necessary because of the discretization of the state variables and the
stochastic nature of irregular waves. Hence, the M most recent P H/avg s

2

values are stored for each RL state in a matrix, R, which presents at
most n M·s entries so as to prevent memory issues, where ns is the total
number of states, n I J K L= · · ·s . Thus, the mean value corresponding to
each state can be calculated and then expressed with the vector
m R s m= 〈 ( , )〉m M=1:( ∨end) of size ns, with 〈〉 indicating the averaging
process. In this vector, the states are arranged with a vectorised version
of (5) so that the discrete values of BPTO correspond to the innermost
loop, CPTO the inner middle loop, Te the outer middle loop and Hs the
outermost loop.

In order to speed up the learning process, it is advantageous to
present a cost function that is equal to one at the optimum and zero
everywhere else. This is achieved by first normalizing the values of
m by the maximum in each sea state, i.e. for the same Hs and Te.
This means that the maximum value is searched between the indices
o s K L K L= floor(( − 1)/( · ))· · + 1n and p s K L K L= floor(( − 1)/( · ))· ·n

K L+ · of the vector m. Then, the normalized values should be raised
to a very high power, u=25, so that the optimum will present a value of
one and the other terms will tend to zero. This process is necessary
because the location of the optimum is unknown, and results in the
algorithm giving greater importance to the optimum over suboptimal
PTO coefficients, even if they result in mean generated power with only
a slightly smaller magnitude. Fig. 3 enables the user to fully understand
this point, which is of primary importance in the derivation of a
suitable reward function for the control of WECs. As an example in
Fig. 3, the reward function is assumed to be given by a Weibull
distribution (Holthuijsen, 2007) with scale and shape parameters 0.6
and 1.5 respectively, whose values are normalized. From Fig. 3, it is
clear that a greater value of u corresponds to a more pronounced
peakiness. However, a plateau is reached for large values.

Additionally, with reactive control, negative mean power values are
possible, which may present a magnitude greater than the maximum
power by which the corresponding value in m is normalized. In this
case, it is best not to raise them to a power, so that a preliminary
reward function is given by:

⎧

⎨
⎪⎪

⎩
⎪⎪

⎡
⎣⎢

⎤
⎦⎥

m
m

m

m
m

m
w s

s
s

s

s
s

s
( ) =

〈 ( )〉
max 〈 ( )〉

if ( ) > 0, (a)

〈 ( )〉
max 〈 ( )〉

if ( ) ≤ 0. (b)
n

n

s o p

u

n

n

s o p
n

= :

= : (7)

For greater clarity, the calculation of the reward function is shown
graphically in Fig. 4 for the final step of the RL algorithm using the
simulation in Fig. 10 in Section 5.2. As is described in Section 5.2, this
data is generated from running the algorithm in an 8-h-long wave trace
in one sea state of irregular waves, which simulates the behaviour of the
controller in a realistic scenario. Looking at the table R, it is possible to
make two observations. Firstly, despite the length of the wave trace
being analysed (which corresponds to the duration of the controller
operation), not all RL states (i.e. rows of the table) present fully M
entries, which means they have been encountered for less than M times
(with M = 25 in this simulation). Secondly, even for each state, the
values of P H/avg s

2 can present a wide range due to the variation in wave
energy for the same discrete sea state. This is the main reason behind
selecting a relatively large value of M, which should result in outliers
playing a minor role in the calculation of the vector of the mean values,
m. In Fig. 4, only one sea state is used, so that all entries of m are
normalized with respect to the maximum power. However, if more sea
states were present, it would be sufficient to update the portion of m
corresponding to the current sea state only as defined by indices o and
p in (7). Finally, Fig. 4 shows that the use of a high value of the power
u, where u=25 is used in this case, results in a smaller reward being
associated with suboptimal combinations of the PTO damping and
stiffness coefficients, as expected from Fig. 3.

Furthermore, some combinations of PTO damping and stiffness
coefficients may result in large motions in extreme waves that may lead
to failure. For this reason, a penalty, −2, is returned whenever the
magnitude of the maximum displacement at the PTO exceeds a set
value, xPTO,Max . Hence, the complete reward function is given by:

⎧⎨⎩r
w s x x

x x
=

( ) if | max( )| ≤ , (a)
− 2 if | max( )| > . (b)n

n
+1

PTO PTO,Max

PTO PTO,Max (8)

3.1.4. Exploration strategy, learning rate and discount factor
Particularly at the start of the learning process, it is advantageous

for the agent to try unseen actions in new states, which is a process
known as exploration. As the learning progresses, the controller can
shift towards the selection of actions that result in greater reward
(exploitation), since there is greater confidence in their values. In this
work, this has been achieved through an ϵ-greedy exploration strategy,
which results in the following action selection at each step of the Q-
learning algorithm (Sutton and Barto, 1998):

⎧⎨⎩
Q

a
s a

=
argmax ( , ′) with probability1 − ϵ , (a)

random action with probabilityϵ . (b)n
a A n n n

n

′∈

(9)

In order to ensure exploration at the start and then shift the focus to
exploitation, the exploration rate ϵ ∈ [0, 1]n is calculated as:

⎧⎨⎩
N

N N
ϵ =

ϵ if ≤ 0, (a)
ϵ / if > 0, (b)n

0

0 (10)

where NN s a N= ∑ ( , ) −i n n i=1:5 min ϵ, with na=5 indicating the number of
actions. N is the matrix containing the count of the number of visits to
each state action pair, Nmin ϵ is the minimum number of visits to each
state for an initial random exploration, and ϵ0 is the initial exploration
rate. The selection of Nmin ϵ and ϵ0 should be based on a compromise.
Higher values of these variables ensure greater exploration (with ϵ = 10
indicating completely random initial actions) and thus increase the
chances of the algorithm converging towards the optimum behaviour.
At the same time, lower values, particularly for Nmin ϵ, reduce the time
during which random actions are taken, with the WEC exhibiting

Fig. 3. Influence of u on the peakiness of the reward function, based on the example of a
normalized Weibull distribution with scale and shape parameters 0.6 and 1.5 respec-
tively.
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suboptimal performance. Hence, values of N = 25min ϵ and ϵ = 0.60 have
been selected as a good choice for the specific case study being analysed
in this work. If a greater number of RL states is used, the value of Nmin ϵ
should be increased.

Similarly, the learning rate α ∈ [0, 1]n should also decrease as the
learning goes on. Nevertheless, a slower decay is sought in order to
ensure the controller keeps on updating the Q-table throughout the
exploration stage:

⎧⎨⎩
N

N Nα
α s a N
α s a s a N

= if ( , ) ≤ , (a)
/ ( , ) if ( , ) > , (b)n

n n n α

n n n n n n α

0 min

0 min (11)

where N αmin indicates the number of visits to each state-action pair
before reducing the learning rate. As for the exploration rate, a higher
learning rate aids the learning process, but a slower decay slows the
convergence time of the state-action value function (Sutton and Barto,
1998). It is common practice to select the learning rate to be lower than
the exploration rate. For this reason, α = 0.40 is chosen. Additionally,
N N<αmin min ϵ should be selected because the decay of the exploration
rate depends on the number of visits to each state (for any actions),
while that of the learning rate on the number of visits to each state-
action pair. In the case of the presented reactive control, there are 5
actions for each state, so that N N= /5αmin min ϵ is chosen.

The learning and exploration rates should be reset on a predefined,
regular basis so as to account for changes in the WEC dynamics over
time, e.g. due to marine growth or non-critical subsystem failure.
Furthermore, a discount factor γ = 0.95 is employed. This is used to
discount only slightly the future rewards the Q-learning algorithm
receives.

3.2. Algorithm

The proposed Q-learning algorithm for the reactive control of WECs
can be seen in Fig. 5. The first step consists of the initialization of all
variables. Q and N are matrices of dimensions n n×s a. R is a vector of
vectors, whose dimensions are at most n M×s , with M=10 in regular
waves and M=25 in irregular waves. As in Anderlini (2016), the entries
of R are pre-calculated in a run in a similar wave trace, whilst taking
random actions. It is expected that R will be pre-initialized using
simulations also for the full-scale device: as the WEC begins to operate,
R will be updated using actual sensor data. In addition, since some
combinations of PTO damping and stiffness coefficients can result in
very large motions, it is necessary to initialize the Q-table during a pre-
training stage using simulations in order to prevent failure in extreme
waves.

After the initialization stage, the algorithm is run indefinitely until

maintenance is due. At every time step, the selected PTO damping and
stiffness coefficients are implemented by the controller through the
PTO system. Furthermore, the generated power and the displacement
at the PTO are sampled in order to update respectively the mean
absorbed power and the maximum displacement value in each time
horizon. In particular, the power averaging is performed only after T8 e
have passed in order to remove transient effects due to change in BPTO
or CPTO. A longer time is required than for resistive control in Anderlini
(2016), since a change in PTO stiffness coefficient can cause large
motions. Additionally, the time horizon lasts T20 e in both regular and
irregular waves. This results in a speed-up in convergence as compared
with T30 z in Anderlini (2016), whilst still ensuring the algorithm is
stable.

From Fig. 5, the Q-learning update at the end of each episode can
be seen. The values of the significant wave height and energy wave
period are computed using spectral analysis and Fast Fourier
Transforms (FFT) from the record of the wave elevation with a
unidirectional wave spectrum for simplicity (Holthuijsen, 2007).

Fig. 4. Calculating the reward w (excluding penalties for large motions) at one step of the RL algorithm in irregular waves. This corresponds to the last step in 10 in Section 5.2.

Fig. 5. Flowchart of the Q-learning algorithm for the reactive control of WECs.
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4. Simulation system

4.1. Hydrodynamic model

The analysed WEC is described in Section 2.1 and shown in Fig. 1.
Greater information on the device and its dimensions and properties
can be found in Neary and Previsic (2014), Previsic et al. (2014) and Yu
et al. (2015). Assuming linear wave theory and small body motions, the
response of the device can be obtained from the superposition of the
inertial, hydrostatic, viscous, radiation, diffraction and incident forces
in addition to the control force (Falnes, 2005). The two-body problem
can be thus modelled with a twelve-degree-of-freedom model.
However, by considering only planar motion, i.e. surge, heave and
pitch, and the axisymmetric geometry of both float and reaction plate,
which means heave is decoupled from surge and pitch (Falnes, 2005), it
is possible to simplify the model to the coupled heave degrees of
freedom of the two bodies. Therefore, using Cummins’ formulation for
the radiation force (Cummins, 1962), it is possible to express the
equations of motion of the device in the time domain with the following
matrix notation:

∫M A x K x Cx f f

f

t t τ τ τ t t t

t

( + (∞)) ¨ ( ) + ( − ) ˙ ( )d + ( ) = ( ) + ( )

+ ( ).

t

0
ex PTO

v (12)

M is the inertia matrix, which can be obtained using the data in
Previsic et al. (2014), and C the stiffness matrix. The calculation of the
heave hydrostatic stiffness for the float is standard (Falnes, 2005),
whose dimensions can be found in Previsic et al. (2014), with the sea
water density ρ = 1025 kg/m3 and the gravitational acceleration
g=9.81 m/s2. The reaction plate and spar do not present any hydro-
static stiffness because they are fully submerged. Nevertheless, a
stiffness term of 10 MN/m, which is likely to be provided by the
mooring system, is specified in order to prevent an unstable behaviour
with reactive control.

In (12), K is the radiation impulse response function matrix, and
A(∞) the added mass matrix at infinite wave frequency. These
variables can be computed using the commercial program WAMIT,
where the geometry is created following the dimensions in Previsic
et al. (2014). In particular, panels are included at the waterline within
the float contour so as to remove the effects of irregular frequencies
(WAMIT, 2013). Furthermore, the bottom is left with a hole where the
top of the spar fits. Similarly, the top of the spar is left without panels.
Care has been taken in ensuring there is a match in the position of the
points lying on the inner border of the bottom of the float and on the
outer border of the top of the spar to prevent errors in the solution.
This arrangement results in incorrect volume and hydrostatic calcula-
tions, but in an accurate computation of the radiation and diffraction
coefficients. In addition, the use of dipoles on the reaction plate has
been found to result in instabilities in the radiation approximation,
described hereafter. For this reason, it has been preferred to model the
reaction plate as a thicker plate, with a thickness of 3 m (1/10th of the
diameter (Previsic et al., 2014)). This approximation has been found to
have only a minor effect on the radiation coefficients in heave.

In (12), fex is the excitation force vector, which is calculated from
the convolution of the excitation impulse response function, also
obtained via WAMIT, and the wave elevation as described in Falnes
(2005). According to Newton's 3rd law of action and reaction,
f F F= [ , − ]TPTO PTO PTO is the controller force vector, with FPTO being
computed as in (1). For this simple case, the displacement and velocity
at the PTO can be obtained from the difference in the displacement and
velocity of the two bodies: x xx t t t( ) = ( ) − ( )PTO 3 9 , where 3 and 9
indicate the heave degree of freedom of the float and reaction plate
respectively according to standard practice. The viscous drag force, fv,
can be calculated with Morison's equation (Morison et al., 1950). While
no drag force has been modelled on the water-piercing float, its

contribution is expected to be non-negligible on the motions of the
reaction plate. Since the magnitude of the velocity of the reaction plate
is relatively small in all sea states analysed in this article, a constant
drag coefficient C = 5D is employed, taken from Previsic et al. (2014).

Fig. 6 shows the expression of (12) in a block diagram. In order to
reduce the computational requirements of the hydrodynamic model,
the radiation convolution integral is approximated by a state-space
formulation as in (Anderlini, 2016). Frequency-domain system identi-
fication is employed so as to obtain state-space matrices Ass, Bss, Css,
and Dss according to the procedure described by Forehand et al. (2016),
with D = 0ss . The matrix D is used to calculate the viscous drag force.
All its entries are zero, except for D C ρπR= 0.59,9 D plate

2 , where R = 15plate
m is the radius of the reaction plate (Previsic et al., 2014). In addition,
the hydrodynamic model in Fig. 6 has been solved numerically using a
first-order accurate Euler scheme with a sampling time of tΔ = 0.1 s.

4.2. Simulation model

Numerical simulations have been run for the reference model 3
two-body point absorber, whose dimensions can be found in Previsic
et al. (2014). The maximum PTO force that can be exerted due to the
generator rating has been assumed to be F = 1 MNMax , while the
magnitude of the maximum displacement at the PTO has been limited
to x = 5 mPTO,Max .

The program employed for the simulations is summarized in Fig. 7.
While a buoy will record the wave elevation in practice as shown in
Fig. 1, a wave model is used to generate the wave elevation time series
in Fig. 7. On the one hand, the wave elevation is used to obtain Hs and
Te. On the other hand, it is required for the calculation of the wave
excitation force through the diffraction convolution integral (Falnes,
2005).

In order to generate the wave elevation in irregular waves, the
amplitude wave spectrum S ω( ) needs to be specified for a number of

Fig. 6. Block diagram used for the calculation of the motions of the float and reaction
plate.

Fig. 7. Workflow diagram of the program used to simulate the point absorber.
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circular wave frequencies (Holthuijsen, 2007), ω. The individual wave
components are superimposed to calculate ζ, each having a wave
amplitude A ω S ω ω( ) = 2 ( )Δ , where ωΔ is the circular frequency step
(Falnes, 2005). ωΔ should be selected smaller than the Nyquist
frequency in order to prevent a repetition of the wave trace (Franklin
et al., 2008). This is particularly problematic, since it is evident from
Section 5.2 that very long wave traces are required for the RL algorithm
to converge. For this reason, it has been preferred to generate the wave
trace as the combination of 15-min long wave traces, where a different
seed for the random number generator is used for each one.
Furthermore, a 20-point filter is used over the last and first 20 s of
each trace in order to smoothen the connection. Therefore,

ωΔ = 0.005 rad/s has been used, since it meets the Nyquist criterion
(Franklin et al., 2008), which has been possible by fitting the diffraction
coefficients generated by WAMIT with a high-order polynomial.

For simplicity, the PTO damping coefficient is assumed to range
from 0 to 4.2 MNs/m in steps of 1.4 MNs/m, so that K=4. Similarly,
the PTO stiffness coefficient is taken to range from −3.6 MN/m to
0 MN/m in steps of 1.2 MN/m, so that L=4. These values have been
selected as they fully enclose the optimal coefficients for the analysed
sea states. As a result of the choice of PTO damping and stiffness
coefficients, 16 RL states are used when a single sea state, as given by
Hs and Te, is considered. Nevertheless, for a more realistic implementa-
tion a finer resolution and a wider range are expected.

5. Simulation results

The learning capabilities of the algorithm are assessed in both
regular and irregular waves. Since the same time horizon length has
been selected in both cases, the same wave trace length of 8 h has been
employed as opposed to Anderlini (2016), where a longer time series
was required in irregular waves. The hydrodynamic model is initialized
for 15 min to prevent numerical instabilities, although this trace is not
reported in the plots. Additionally, the RL response is validated against
optimal reactive control, whose coefficients are obtained from Nelder-
Mead simplex optimizations (Nambiar, 2015) in 20-min-long wave
traces.

5.1. Regular waves

A single sea state, i.e. I J= = 1, has been analysed in regular waves,
with unit amplitude and a wave period of 8 s Fig. 8a and b compare the
curves of the PTO damping and stiffness coefficients respectively with
time as selected by the Q-learning algorithm against the optimal values.
The difference in the corresponding mean absorbed power and the
optimal mean generated power of 260.5 kW can be seen in Fig. 8c.

In addition, the reward function is plotted against the PTO damping
and stiffness coefficients in Fig. 9 for the same sea state. In particular,
two values have been used for u, the power of the normalized power in
(7). Note that because the displacement limit is not reached, r=w in
this case ((7) and (8)). The case of u=1 corresponds to purely the
normalized mean generated power values, while u=25 is used in the
actual cost function in this article.

5.2. Irregular waves

Similarly, a single sea state, with a significant wave height of 2 m
and a peak wave period of 9.25 s is considered in irregular waves as a
proof of concept. From the FFT analysis, the energy wave period for the
generated wave trace is 8 s. As per the regular waves case, I J= = 1 so
that the RL problem reduces to 16 states.

In Fig. 10a and b, it is possible to see the PTO damping and stiffness
coefficients respectively adopted by the RL control scheme as compared
with the optimal values in this sea state. Fig. 10c shows the difference
in the corresponding mean absorbed power, with the mean generated
power obtained by using the optimal coefficients being 90.582 kW.

6. Discussion

6.1. Regular waves

As is clear from Fig. 8, in regular waves the Q-learning algorithm
learns the optimal PTO coefficients in approximately six hours from a
random start (Q 0= ). This is almost double the time required by the
control scheme for resistive control in Anderlini (2016) mainly due to
the longer time horizon employed: T20 e as opposed to T10 z, with the
energy wave period being typically greater than the zero-crossing mean

Fig. 8. Time variation of the PTO damping (a) and stiffness (b) coefficients chosen by the
RL control as compared with the respective optimal values in regular waves of unit
amplitude and a wave period of 8 s (c) shows the difference between the corresponding
mean generated power and the optimal mean generated power.

Fig. 9. Reward function for all possible configurations of the PTO damping and stiffness
coefficient for the device in regular waves with H = 2 ms and T = 8 se using two values for

u.

E. Anderlini et al. Ocean Engineering xxx (xxxx) xxx–xxx

7



wave period. In fact, a shorter time horizon may be used considering
the deterministic nature of regular waves. Additionally, the conver-
gence time is strongly dependent on the number of discrete BPTO and
CPTO values employed, with only 16 states currently being used.

In Fig. 8, it is also interesting to notice the random initial behaviour
of the controller due to the selected exploration strategy, which enables
the agent to visit most states. As the learning progresses, the explora-
tion rate tends to zero and the algorithm chooses the optimal,
exploitative actions.

In order to meet the requirements of the linear wave theory
assumption of the hydrodynamic model, a short wave height has been
chosen. As a result, the prescribed maximum PTO displacement is
never exceeded. Hence, the penalty term in (8) is not applied. If it were,
the controller would be expected to select a higher PTO damping
coefficient, as in Anderlini (2016) for resistive control. Conversely, a
PTO stiffness coefficient with a smaller, if not zero, magnitude is
forecast, as the controller tries to move away from resonance. On the
other hand, the force reaches the saturation limit even in this mild sea
state. However, a bang-bang behaviour similar to the one in Anderlini
(2016) is not observed with reactive control.

In Fig. 9, it is interesting to compare the developed cost function
(u=25) with the original normalized generated mean power surface
(u=1) for the same sea state. As can be seen, raising the non-
dimensional power values to a high power results in a much peakier
reward function, similar to what is observed in Fig. 3 for an example
function. This is highly desirable, since it enables the controller to learn
more quickly what the optimal action is, as there is a more significant
gain associated with it as compared with suboptimal solutions. This
results in a considerable speed-up in the convergence time as opposed

to the case of u=1. Even higher values of the power u may be required
for a finer mesh of PTO damping and stiffness coefficients, since this
can present a flatter region around the optimum. As aforementioned,
this approach is necessary because the actual position of the optimum
is unknown, with the best reward function in terms of convergence
time being the one that presenting a value of +1 at the optimum and 0
everywhere else.

It is important to notice that raising negative normalized mean
generated power values to a high value of u is strongly undesirable.
This would have the effect of decreasing the magnitude of the reward as
for positive power values, but in this case it would actually mean
increasing the reward associated with suboptimal points. It would be
even worse to use an even value for u, since it would turn negative
mean generated power values into positive ones, thus teaching the
controller a completely wrong policy. Hence, positive values of u for
negative normalized mean generated power values must be avoided at
all costs.

6.2. Irregular waves

From Fig. 10, it is evident that the developed statistical reward
function is effective in ensuring convergence in irregular waves as well,
despite their stochastic nature. Furthermore, since the same horizon
time length is employed as per the regular waves run, the learning time
is no greater as opposed to the study by Anderlini (2016). Nevertheless,
the challenge that irregular waves pose to the convergence of the
correct action selection can be understood by comparing Fig. 8c and
Fig. 10c, where the much more oscillatory nature of the mean absorbed
power in irregular waves is clear.

A typical sea state has a duration that ranges between 30 min and
6 h (Holthuijsen, 2007). Hence, even though the learning time is
smaller than in Anderlini (2016) despite the larger number of states,
convergence is still unlikely to be achieved before there is a variation in
the significant wave height and energy wave period. However, as shown
in Anderlini (2016) for irregular waves with multiple sea states, the Q-
learning algorithm applied to the control of WECs is able to pick up the
learning process from where it left off the last time it encountered a
particular sea state. This represents the main advantage of reinforce-
ment learning over traditional optimization algorithms, which would
be unable to identify whether a change in the cost function is due to a
change in the PTO damping or stiffness coefficients or due to noise in
the wave energy.

In a realistic application, a finer grid of BPTO and CPTO values would
be desired in order to deal with a large range of sea states.
Nevertheless, this may increase the learning time excessively. The Q-
table is expected to be pre-initialized through numerical simulations in
order to prevent selecting PTO settings that result in excessive motions
in energetic sea states, which could be a real problem with reactive
control. In addition, the exploration and learning rates should be reset
every season so as to check if there have been variations in the device
response over time, e.g. due to slow marine growth or abrupt non-
critical subsystems failure. Since the operational life of WEC technol-
ogies is envisioned to be 20–25 years, a relatively poor performance
during the initial stages of operation should be more than offset by
increases in the absorbed wave power throughout a devices operating
life through the removal of modelling errors.

Finally, it is important to understand that RL is proposed as a
method to remove the dependence of existing WEC control strategies
from hydrodynamic models. In RL, the controller is independent of the
plant. In this work, a hydrodynamic model based on potential flow
theory with some non-linear, viscous effects is used to simulate the
plant. Nevertheless, as shown for instance in Anderlini (in preparation)
for resistive control, RL control is able to converge towards the optimal
policy even in the presence of strong non-linear effects associated with
the PTO system. Hence, due to its model-free nature, RL is expected to
perform well even when applied to non-linear numerical models, such

Fig. 10. Time variation of the PTO damping (a) and stiffness (b) coefficients chosen by
the RL control as compared with the respective optimal values in irregular waves with
H = 2s m and T = 8e s. (c) shows the difference between the corresponding mean

generated power and the optimal mean generated power.
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as CFD, or even in experimental or prototype testing. However, the
overall controller performance is only as good as the control scheme
itself, with reactive control representing a significant improvement over
resistive control treated in the previous study (Anderlini, 2016).

7. Conclusions

The authors have presented an on-line, model free strategy for the
reactive control of WECs using RL, building on a previous study on
resistive control. The algorithm has been validated through a numerical
model of a two-body point absorber which assumes linear wave theory.
In both regular and irregular waves the controller is shown to learn the
optimal PTO damping and stiffness coefficients that result in maximum
energy absorption. In order to achieve convergence in irregular waves,
a statistical reward function has been developed, which averages over
multiple mean absorbed power values in each sea state. As the control
scheme is independent of internal models of the device response, it is
simple to implement on a real, full-scale WEC. Additionally, it can
adapt to variations in the machine conditions over time, e.g. due to
ageing or marine biofouling. Although the Q-table has been randomly
initialized, in a real application it is expected to be pre-calculated
through simulations in order to prevent the adoption of actions that
may cause failures in extreme waves. The action-values will then be
slowly substituted by the actual measured data during operation with
corresponding necessary adjustments. Finally, this method, which has
already been generalised to the application to multi-body devices in
this work since a previous study (Anderlini, 2016), can be further
extended to the treatment of arrays of devices.
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