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a b s t r a c t

A model-free algorithm is developed for the reactive control of a wave energy converter.
Artificial neural networks are used to map the significant wave height, wave energy period,
and the power take-off damping and stiffness coefficients to the mean absorbed power and
maximum displacement. These values are computed during a time horizon spanning mul-
tiple wave cycles, with data being collected throughout the lifetime of the device so as to
train the networks off-line every 20 time horizons. Initially, random values are selected for
the controller coefficients to achieve sufficient exploration. Afterwards, a Multistart opti-
mization is employed, which uses the neural networks within the cost function. The aim
of the optimization is to maximise energy absorption, whilst limiting the displacement
to prevent failures. Numerical simulations of a heaving point absorber are used to analyse
the behaviour of the algorithm in regular and irregular waves. Once training has occurred,
the algorithm presents a similar power absorption to state-of-the-art reactive control.
Furthermore, not only does dispensing with the model of the point-absorber dynamics
remove its associated inaccuracies, but it also enables the controller to adapt to variations
in the machine response caused by ageing.
� 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

With a possible resource of up to 2.1 TW of power worldwide [1], wave energy can become an important future energy
resource, thus decreasing society’s greenhouse gas emissions. At the moment, the wave energy industry is not mature yet:
numerous Wave Energy Converter (WEC) devices have been developed, but none has been established as the best design yet.
Reference [2] provides a thorough review of some of the most promising recent technologies. Point absorbers are an estab-
lished type of offshore WECs [2]. They comprise of a floating body, whose dimensions are small relative to the characteristic
wavelength, excited by ocean waves that drive a power take-off (PTO) system, which absorbs energy. WECs are envisioned to
be installed in groups, i.e. wave farms, so as to reap the benefits of economies of scale [3]. However, for simplicity we analyse
a single, axisymmetric unit subject to motions in heave.
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Over the years, various control schemes have been proposed for the maximization of energy absorption of WECs, with
[4,5] presenting comprehensive reviews of the initial and recent studies in the field. In theory, optimal power generation
can be obtained through complex-conjugate control, since it regulates the system so as to achieve resonance with the incom-
ing waves [4]. Nevertheless, this is impractical in reality due to the associated large motions of, and loads on, the machine in
extreme seas. Thus, alternative control strategies have been implemented, which consider physical constraints on the
motions, forces and power rating of the WEC [3].

Latching, model-predictive and simple-but-effective control are real-time techniques for the control of WECs. With latch-
ing control, first developed by [6], there is an alternation over a wave cycle of stages when the device is linearly damped and
locked in place by the PTO system. Resonance is achieved by regulating the duration of each phase [7]. Model predictive con-
trol computes at each time step the force that maximizes energy absorption during a future time horizon [8,9]. Simple-but-
effective control applies a force that is calculated by fitting a narrow-banded function to the wave excitation force [10].
While the scaling of latching control to wave farms poses serious problems, [11] have applied model predictive control to
multi-body WECs, and [12,13] to an array of three point absorbers. Although these methods include limits on the response
and loading of WECs, their behaviour is strongly influenced by the quality of the forecast wave excitation force and of the
model of the device dynamics [5]. In addition, model predictive control presents a very high computational cost associated
with the real-time optimization. Simple-but-effective control results in similar power generation to model predictive con-
trol, but presents a simpler implementation [5].

An alternative type of control strategies relies on time-averaged sea states, thus assuming stationary wave conditions
over a prescribed time [3]. With reactive control, simulations are run to calculate the combination of PTO damping and stiff-
ness coefficients that maximise the generated energy in each sea state. Resistive control represents a specific case, where the
stiffness term is zero. Force and displacement constraints can be included within the numerical model and cost function,
respectively. While this technique may be associated with lower energy extraction than on-line control strategies [13], it
is less computationally intensive and presents a simple implementation. Furthermore, the control scheme can be easily
extended to the treatment of wave farms, as considered by [3].

All aforementioned methods are strongly affected by the accuracy of the model of the body dynamics they use. For this
reason, modelling errors can result in a drop in the generated power. Additionally, the control strategies cannot adapt to
changes in the response of theWEC caused by its ageing, with marine biofouling playing a major role. Therefore, in a previous
article the authors have developed an algorithm for resistive control based on reinforcement learning that learns the optimal
PTO damping coefficient in every sea state directly from experience [14]. This work has been extended to the reactive control
of a point absorber in [15]. In contrast to resistive control, reactive control can lead tomuch higher efficiencies but requires an
extension of the search space to two variables, namely the PTO damping and stiffness coefficients. For this reason, learning
time in each sea state can become very long depending on the refinement of the discretization of the PTO coefficients. Fur-
thermore, continuous values of the control parameters could result in higher efficiencies. Artificial Neural Networks (ANNs)
represent an alternative set of machine learning algorithms which are popular in the computer science industry. They can
yield smooth, non-linear function approximations [16] and therefore provide an elegant solution to the above two problems
with reinforcement learning. ANNs have been used to provide real-time system identification for WEC dynamics by [17,18].
Furthermore, [17] have successfully applied the ANNs model to the control of the AWS Archimedes Swing WEC.

Here, ANNs will be applied for the first time to the reactive control of a point absorber. Hence, they are employed to map
the sea state conditions averaged over a time interval and the applied PTO coefficients to the mean power and maximum
displacement that occur over the duration of the time interval. The resulting mapping will be used to select optimal PTO
damping and stiffness coefficient at the start of each time interval, once learning has been completed. Numerical simulations
are run in both regular and irregular waves to test the efficiency and convergence properties of the proposed control
algorithm.
2. Reactive control of a point absorber

2.1. System description

A point-absorber with an electromechanical PTO is considered, as for example analysed by [19] or proposed by [20].
Removing the hydraulic stage in the power conversion process results in an increase in efficiency [20]. Furthermore, as
opposed to direct-drive PTO, the use of smaller, cheaper rotating generators is still possible [20].

As shown in Fig. 1, the movement of the float is converted into rotational motion through a mechanical stage. This mech-
anism drives a generator, which can be of a permanent magnet design as proposed by [20]. A variable-frequency converter
delivers the generated power to the electrical grid at the requested frequency. The controller controls the generator through
the machine-side converter in order to maximise energy absorption. The grid-side converter keeps a constant DC-link volt-
age and controls the active and reactive power transmitted to the network [21].

In order to select optimal control actions, the controller requires the heaving body displacement, z, and velocity, _z, as well
as the wave elevation, f. While the former two variables are inferred from on-board accelerometers, the latter is usually pro-
vided by an separate wave buoy for the whole wave farm. Furthermore, the generated power P is obtained from the electric
PTO system.
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Fig. 1. Scehmatic diagram of the WEC with its electromechanical PTO.
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2.2. Hydrodynamics modelling

The hydrodynamic model has been obtained as in [14]. With the assumptions of small body motions and linear wave the-
ory, it is possible to express the response of the point absorber through the superposition of inertial, hydrostatic, radiation,
excitation and control forces [22]. Therefore, modelling the radiation force according to Cummins [23], it is possible to obtain
the following time-domain equation of motion of the WEC [24]:
M þ A3;3ð1Þð Þ€zðtÞ þ
Z t

0
K3;3ðt � sÞ _zðsÞdsþ C3;3zðtÞ ¼ F3ðtÞ þ FPTOðtÞ; ð1Þ
with the index 3 expressing heaving motions. M is the float mass, C3;3 the hydrostatic stiffness coefficient, A3;3ð1Þ the added
mass at infinite wave frequency, and K3;3ðtÞ the radiation impulse response function. The panel-code WAMIT has been used
for their determination. The right-hand side of (1) comprises of the sum of the PTO force, FPTO, and the wave excitation force,
F3. The derivation of (1), as well as a more thorough explanation can be found in [25].

Eq. (1) is shown graphically in Fig. 2. The radiation force is approximated through a state-space system in order to speed
up the simulations. The state-space matrices have been computed as described in [24].

2.3. Reactive control

As can be seen in Fig. 2, with reactive control the sum of a damping and a stiffness term yields the PTO force [3]:
FPTOðtÞ ¼ BPTO _zðtÞ þ CPTOzðtÞ: ð2Þ

In electromechanical PTO units, variations in the generator excitation current or the power converter conduction angle

result in changes in the PTO damping and stiffness coefficients [5], BPTO and CPTO respectively. As we deal with BPTO and
CPTO directly in this article for simplicity, the method may in fact be applied to hydraulic or direct-drive PTO systems as well.
Fig. 2. Block diagram employed in the computation of the float dynamics.
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The control force is actually clipped at �FMax owing to the physical limits of the PTO system. In Fig. 2, this is represented
through a saturation block. The calculation of the generated power with reactive control is standard [25], and given by [3]:
Table 1
Signific

Hs (m
Te (s
Dura
No. r
PðtÞ ¼ gFPTOðtÞ _zðtÞ if FPTOðtÞ _zðtÞ > 0
FPTOðtÞ _zðtÞ=g if FPTOðtÞ _zðtÞ 6 0

�
; ð3Þ
with g being the PTO efficiency.
Including the effects of force saturation, it is possible to maximize the energy extraction through the selection of suitable

PTO damping and stiffness coefficients, which depend on the wave energy period, Te, and the significant wave height, Hs. In
regular waves, these correspond to the wave period and height respectively. Furthermore, the float displacement is to be
bounded to jzj < zMax so as to avoid structural damage in highly energetic waves. This means that the buoy should be pre-
vented from reaching the end stops of the mechanical system, with the limits derived during the design stage. Hence, the
optimal PTO damping and stiffness coefficients, BPTO;opt and CPTO;opt respectively, need to be chosen so that they maximise
the generated power, while abiding by the displacement constraint.

At the moment, the state-of-the-art approach for reactive control is to pre-calculate BPTO;opt and CPTO;opt for a set of discrete
sea states, generating a matrix. The simulations are run using a time-domain model similar to the one described here in order
to account for the force saturation. Once the point absorber is at sea, the controller meets the PTO coefficients associated
with the encountered sea state through the power electronics. However, this technique suffers from modelling errors,
and it cannot recognized changes in the WEC dynamics caused by its ageing.

3. ANN-based reactive control of WECs

In order to obtain a model-free control with a continuous search space, the authors propose to use ANNs to learn from
experience the mapping between the mean absorbed power and the maximum PTO displacement, and the sea state and
the PTO damping and stiffness coefficients. This corresponds to system identification. However, rather than being on-line
as in [17,18], due to their statistical nature these parameters are computed from the data collected over a number of wave
cycles based on the observation that the energy content of waves changes with wave groups [26]. In particular, the length of
the time interval or time horizon is selected to be long enough to ensure the full decay of transient effects associated with a
change in PTO coefficients. As a result, the coefficients from previous time intervals do not greatly affect the data in the cur-
rent interval so that simpler feedforward ANNs can be used instead of autoregressive and local recurrent ANNs [16].

Hence, in order to train the ANNs, values of Hs; Te;BPTO;CPTO, the mean absorbed power, Pavg, and max z are collected for
each time horizon throughout the operation of the device, as entries of the training vector. The estimates for Pavg and max jzj
can be expressed through the functions f Hs; Te;BPTO;CPTOð Þ and g Hs; Te;BPTO;CPTOð Þ respectively. The trained ANNs will then
be fed to optimization functions in order to find the optimal PTO damping and stiffness coefficients for every new time hori-
zon based on the forecast sea state conditions.

3.1. Application of ANNs to the reactive control of WECs

ANNs are a class of supervised learning algorithms [16]. Taking inspiration from their biological equivalent, they present a
network of interconnected nodes, or neurons. Each neuron is a computational unit that maps input to output values. By com-
bining multiple neurons in a number of layer, so that the output of the neurons in one layer becomes the input to the neu-
rons in the next layer, ANNs can be used to fit non-linear functions with a large number of input values.

As aforementioned, in this work ANNs are employed in order to map the mean generated power and the maximum dis-
placement at the PTO to Hs; Te;BPTO and CPTO. This is achieved through a multi-layer, feedforward ANN with two output vari-
ables: Pavg and max jzj.

In order to select a suitable size for the ANN, a preliminary study was conducted to assess the performance of possible
network configurations in estimating the mean absorbed power (hence, ignoring max jzj and reducing the number of output
variables to one). In particular, a single hidden layer with 5, 10, and 100 neurons, and two hidden layers with 5, 10 and 25
neurons each have been considered. For each configuration, 25 cases have been generated as the combination of 5 different
random initializations of the weight matrices [27] and 5 training and test datasets. In fact, a single training dataset has been
sampled from simulations in irregular waves for the sea states in Table 1, which has also been used to pre-initialize the ANN-
based control in Section 4.3. According to standard practice with ANN training [27], the whole set has been subdivided into
the five distinct training and test sets by randomly reordering it, and each time selecting the first 250 points for the test set
ant wave height, energy wave period and duration of the wave traces used for the analysis of the ANN-based control in irregular waves.

) 2 1 1 1 2 2 3 3 3
) 8 8 9 10 9 10 10 9 8
tion (hr) 3 3 3 3 3 3 3 3 3
epetitions 2 2 2 2 2 2 2 2 2
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(about 10%) and the remaining 2239 samples for the training set (approximately 90%). For each case, the ANN has been
trained using the training samples, and then used to estimate Pavg for the test set. The mean square error between the pre-
diction and the actual mean generated power value has been calculated, as well as the overall computing time required for
the ANN implementation described below. Afterwards, the mean and standard deviation of these values have been com-
puted for each network configuration, and plotted in Fig. 3.

From Fig. 3, it is clear that the decision on the size of the ANN should be based on a compromise between performance
and accuracy. On the one hand, denser networks result in greater memory requirements and computational cost, as shown in
Fig. 3a. In particular, it is interesting to notice that the configuration with two hidden layers with 10 neurons each, which
contains a total of 100 connections between the two hidden layers, presents a much lower computational cost than a single
layer with 100 neurons, mainly due to implementation reasons. On the other hand, the deeper the network, the greater the
number of features that can be matched from the original function; similarly, the greater the number of neurons, the more
complex the fitted function shape [16]. An example is the lower mean square error associated with the configurations with
10 neurons as compared with those with 5 in Fig. 3b. Nevertheless, an excessive number of neurons can result in overfitting
the input data [27], i.e. fitting the random noise in addition to the underlying relationship, which is highly undesirable since
the ANN is expected to generalise the shape of the Pavg and max jzj curves. In Fig. 3b, this evidently occurs for a single hidden
layer with 100 neurons and two hidden layers with 25 neurons each. Although a single hidden layer seems to perform best,
this preliminary study has been carried out on a relatively small dataset, considering only a limited number of sea states.
Fig. 3. Mean central processing unit (CPU) time (a) and mean square error (MSE) (b) associated with the prediction of the mean generated power for
different ANN configurations in terms of hidden layers and neurons for 5 weight initializations and 5 training and test sets. The upper bar corresponds to the
sum of the mean value and half the standard deviation, while the lower bar to the minimum value of all cases in order to prevent negative values.
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Therefore, it has been preferred to use a configuration with two hidden layers each with 10 neurons in order to represent the
possible extra features associated with the additional sea states. Additionally, this results in only a minor increase in com-
putational time. Similar results are obtained from the mapping of the maximum displacement.

A schematic diagram of the feedforward ANN can be seen in Fig. 4. The network presents an input layer with 4 neurons
(one for each input variable), two hidden layers with m ¼ 10 and n ¼ 10 neurons each, and an output layer with two output
variables. Furthermore, it is possible to see that the input and hidden layers have an additional bias term, which is required
to find the intercept of the fitted functions at each stage in the ANN [27]. Each layer l presents input and output variables,
which are expressed as xl and yl respectively in vector notation. The input variables correspond to y1, while the output to y4.
The signal between each two matrices is multiplied by weight matrices W i, with i ¼ 1;2;3. The weight matrices for the bias
terms are represented as bi.

Given the input data for one training example, y1, it is possible to obtain y4, the ANN estimate for the output by propa-
gating the signal from one layer to the next one. Using this technique, known as forward propagation, the input and output
vectors of each layer l ¼ 2;3;4 can be computed for each training point in matrix notation, which is convenient from a pro-
gramming perspective, as follows [27]:
xl ¼ W l�1yl�1 þ bl�1; ð4Þ
yl ¼ elðxlÞ: ð5Þ
In (5), el denotes the activation function of the neurons in each layer. Fig. 4 shows that the two hidden layers use the tanh
activation function, while the output layer presents a linear activation function. The hyperbolic tangent is a standard smooth,
non-linear activation function, which is superior to the sigmoid function, as its output is zero-centred [16]. As described in
[16], for a small number of layers, as in this case, tanh is preferred over rectified linear units, which are standard in deep
learning. The linear activation function is employed in the output layer in order to return a real value, not bounded within
�1 as would be the case if tanh had been used instead.

The mapping between input and output is dictated by the weights of the ANN [16]. Hence, learning can occur by tuning
these parameters based on the training data so as to minimize an objective function, which is a measure of the error between
actual and predicted output. In order to update the weight matrices, it is necessary to calculate a gradient matrix that indi-
cates the change in the error due to a change in each weight. The gradient matrices are computed by propagating the error
signal, or sensitivity, sl, from the output layer to the input layer in a process known as backpropagation [27]:
s4 ¼ � ytr � y4ð Þ � _e4ðx4Þ
sl ¼ WT

l slþ1

� �
� _elðxlÞ;

ð6Þ
where � indicates the Hadamard, or element-wise, product, and _el the first derivative of the activation function of each layer.

ytr indicates the exact output of each training sample, i.e. the variables the ANNs should fit. Therefore, ytr ¼ Pavg max jzjT . The
change in the weight matrices is given by [27]:
DW l ¼ slþ1yT
l ; ð7Þ

Dbl ¼ yl: ð8Þ

The equations above are used if the ANNs are trained using one training sample at a time, such as when the simple gra-

dient descent scheme is applied [27]. Nevertheless, batch-mode training, i.e. employing multiple training samples at a time,
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is much more efficient. For this reason, the highly efficient Levenberg–Marquardt backpropagation training algorithm has
been adopted instead [27]. A detailed explanation of the method, including the necessary extra equations, can be found
in [28,27] in matrix notation. The implementation within the Mathworks neural networks toolbox has been used in this
work, with the default settings.

It is important to notice that the input variables, i.e. Hs; Te;BPTO and CPTO, need to be normalized through their mean and
standard deviation before being fed to the ANNs for training. Furthermore, the mean power values have also been normal-
ized with respect to the maximum (for positive values) and minimum (for negative values). This has been necessary because
the points lying on the BPTO ¼ 0 boundary of the search space presented excessively high negative power values that seri-
ously affected the quality of the function fit.
3.2. Multistart optimization

At the start of every new time horizon, the controller should select the PTO damping and stiffness coefficients that will
result in maximum energy extraction for the predicted sea state during the horizon, in compliance with the constraint on the
PTO displacement. This is clearly a non-linear optimization problem, since both Pavg and max jzj are non-linear functions of
Hs; Te;BPTO and CPTO. In addition, the values of the PTO damping and stiffness coefficients must be bounded within sensible
values, so that the problem is constrained as well.

By removing the dependence on the significant wave height and wave energy period from functions f and g due to space
limitations for display purposes, the cost function can be expressed at the start of each new time horizon h as follows:
cðhÞ ¼
�f BPTO;CPTOð Þ if jg BPTO; CPTOð Þj 6 zMax

þ1 if jg BPTO; CPTOð Þj > zMax

8><
>: ð9Þ
subject to:
Bmin 6 BPTO 6 BMax; Cmin 6 CPTO 6 CMax:
The values of the maximum and minimm allowable PTO damping and stiffness coefficients can be derived using accurate,
non-linear models during the design stage in order to prevent damage to the generator in the most energetic sea states likely
to be encountered, where the buoy velocity and displacement are highest.

Genetic and other nature-inspired algorithms have been extensively used recently for the solution of non-linear opti-
mization problems that present multiple minima, as in this case [29]. Nevertheless, in this work, a strong emphasis is given
to performance, since the optimization needs to be repeated at the start of each new time interval. For this reason, it has been
preferred to use the Multistart algorithm [30]. This technique consists in generating a number of start points, sampled ran-
domly within the BPTO;CPTO search space. Although convergence is not assured, a large number of starting points greatly
increase the chances. A value of 100 starting points has been selected for this reason. From each point, an optimization is
run using a non-linear, constrained programming solver. In particular, the Mathworks functions MultiStart and fmincon have
been used respectively. The main advantage of this technique over alternative methods, such as global search, is its simple
parallel implementation, which can result in large savings in computational time. For instance, one Multistart optimization
using the cost function in (9) takes 8.62 s on a quad-core, i7 computer with 16 GB RAM, whereas a global search takes
29.20 s. A greater number of cores and an implementation in a lower-order language, such as C or Fortran, can result in even
greater computational savings.
3.3. Algorithm

Fig. 5 shows the algorithm for the ANN-based reactive control of the point absorber described in this article. As aforemen-
tioned, a time-averaged approach is used, where new values of BPTO and CPTO are selected at the start of every new time hori-
zon h and applied throughout its duration DðhÞ. On the one hand, a longer duration is preferable for the power averaging and
sea state statistical analysis so as to produce less noisy training data. On the other hand, a shorter time span can result in
faster training. Furthermore, the controller would be able to track changes in the sea state on a smaller time scale, thus mov-
ing towards real-time control and possibly higher energy extraction. For these reasons, DðhÞ ¼ 20TeðhÞ has been chosen in
both regular and irregular waves.

As can be seen from Fig. 5, the first step in every time horizon is to predict the significant wave height and energy wave
period during the time interval. Different approaches have been proposed for this problem, with example methods being
Kalman filters, deterministic sea wave prediction [31], autoregressive models [32], and even ANNs [33]. Although these stud-
ies analyse the wave elevation, which is forecast with accuracy only 15 s into the future, it is assumed that similar strategies
can be found for the forecast of the statistical wave conditions for one time horizon. For simplicity, in this initial work the
actual values for Hs and Te have been used, since the wave traces employed in the simulations are known in advance. HsðhÞ
and TeðhÞ are then used to update the count of the number of observations in the current discrete sea state, s. For this purpose
a table, N, is employed, with an entry for each discrete sea state with ranges of 1 m and 1 s for each dimension respectively.
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During the first Ni visits to each discrete sea state, the values of the PTO damping and stiffness coefficients are selected
randomly to ensure initial exploration. Once NðsÞ > Ni, the Multistart optimization can be run using the cost function in (9)
in order to find the optimal coefficients, BPTO;opt and CPTO;opt, for the forecast significant wave height and energy wave period.
However, the ANN estimates f and g can be very inaccurate initially. For this reason, BPTO and CPTO are in fact selected ran-
domly within a region around the optimum that shrinks with the number of data points collected in the sea state:
BPTO ¼ BPTO;opt þ DBPTO; ð10Þ
where
DBPTO ¼ ðr � 0:5Þ � rangeðBPTOÞ � 0:9NðsÞ�Ni ; ð11Þ
with r ¼ ½0;1� a random number. The same applies to CPTO. Upper and lower bounds are used to ensure the chosen values lie
within the desired range. As more data points are collected in the optimal region, the accuracy of the ANN fit increases.

Once BPTO and CPTO are chosen and applied, measurements are employed to compute the mean absorbed power, max-
imum PTO displacement and actual HsðhÞ and TeðhÞ during the time interval. These values are in fact calculated using
the data only after an initial time of 8TeðhÞ within the current horizon h in order to exclude the initial transient effects.
This relatively long time also ensures that the time required for the Multistart optimization does not become an issue.
Once the desired values are obtained, they are stored in memory as a data sample so that they can be used for training
the ANN.

The ANN is trained every Nh ¼ 20 time horizons, employing 90% of training points. The remaining 10% of the samples is
used for validation and hence to check the quality of the fit. Each sample presents Hs; Te;BPTO;CPTO as input, and Pavg and
max jzj as output. The larger the number of training points, the less the risk of overfitting the data and the more accurate
the estimates of the ANN. However, this will also cause an increase in training time and, more importantly, it may result
in an excessive memory requirement. Therefore, for a practical application, it is expected that the number of training points
will be limited to a large number, say 106. Care will be needed in order to ensure that a similar number of data points is kept
for each discrete sea state when overriding old data with new readings, as well as to explore a broad range of BPTO and CPTO

values so as to aid the training of the ANN.



E. Anderlini et al. / International Journal of Marine Energy 19 (2017) 207–220 215
4. Simulation results

4.1. Simulation system

The proposed algorithm has been tested using the same point absorber as in [22,14]: a floating vertical cylinder with 5-m
radius and 8-m draught. Deep water is assumed in the determination of the hydrodynamic coefficients, with the radiation
approximation state-space vector presenting five entries as in [14]. Similarly, the hydrodynamic model in Fig. 2 has been
arranged in a state-space system and discretized using a first-order accurate Euler scheme, with a sampling time of 0.1 s.
The same PTO force saturation and float displacement limits of 1 MN and �5 m respectively have also been adopted, as well
as a PTO efficiency of 75%.

Fig. 6 shows graphically the program used for the simulation of the WEC. Instead of sensors installed on a wave buoy, in
the simulations a wave model provides the wave elevation record as in [14], as can be seen in Fig. 1. For irregular waves, the
wave elevation is computed as the superposition of multiple individual wave components, whose amplitude is derived from
the specified wave spectrum [26]. A value of 0.005 rad/s has been selected for the circular wave frequency step, since this
value is smaller than the Nyquist frequency for a 15-min window so as to prevent a repetition of the wave trace [34]. There-
fore, each trace of irregular waves is generated as the combination of 15-min-long time series, where the random number
generator is initialized with a different seed for each component. In order to smooth the connection between the separate
traces, a 20-point filter is employed over the last and first of each consecutive time series. The wave elevation time series has
a dual purpose: on the one hand, it is used to establish Hs and Te in each time horizon [26]; on the other hand, the convo-
lution integral of the wave elevation and diffraction impulse response function produces the wave excitation force [35].

The search space has been limited to within Bmin ¼ 0 and BMax ¼ 2 MNs/m, and Cmin ¼ �1 MN/m and CMax ¼ 0 for the PTO
damping and stiffness coefficients respectively. A wider search space has been selected for the PTO damping coefficient in
order to prevent damage in large waves, when greater damping and no stiffness are required. Nevertheless, the larger the
search space, the longer the learning time; hence, an excessive search space needs to be avoided.

For the first 15 min of the simulations, no control force is applied in order to let the system dynamics settle. For this rea-
son, all wave traces are in fact generated with an extra 15-min interval at the start.

4.2. Results in regular waves

In regular waves, a 6-h-long wave trace with unit amplitude and a wave period of 8 s has been analysed. As can be seen in
Fig. 7a and Fig. 7b, the ANN-based algorithm learns successfully the optimal PTO damping and stiffness coefficients respec-
tively. In particular, the optimal values (dotted lines) have been obtained with a Multistart optimization using a wave trace
lasting 20 min and the analysedWECmodel. Fig. 7c shows the difference in the mean power generated with ANN-based con-
trol and state-of-the-art reactive control, where Pavg;opt ¼ 176:24 kW. A value of Ni ¼ 40 has been used.

4.3. Results in irregular waves

In irregular waves, even within a single sea state, the significant wave height and wave energy period do vary, if they are
measured within a short time interval like 20Te. Since reinforcement learning in [14,15] employs discrete states, it was pos-
sible to show the convergence behaviour of the algorithm in one sea state only. Conversely, the accuracy of ANNs is greatly
improved and the effects of overfitting greatly reduced the wider the range of their samples [27] and thus the wider the
range of sea conditions. For this reason, the proposed ANN-based reactive control algorithm is run for the 9 wave traces
shown in Table 1. Each wave time series is generated with a Bretschneider spectrum (thus, broad-banded) [26] and lasts
3 h. Although these wave traces have been simulated independently due to computational constraints, they should be trea-
ted as a continuous, time series where 9 independent sea states are observed in the order provide in Table 1, with a value of
Ni ¼ 120 being used. In particular, for each wave trace the list of samples is initialized with the values observed in the pre-
vious runs. The series of a sea states is repeated another time but with a different seed number to the random number gen-
erator for a total wave trace with an overall duration of 54 h (excluding the 15 min required for the initialization of each
wave trace).
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Fig. 7. PTO damping (a) and stiffness (b) coefficients obtained from the ANN-based control as compared with the optimal value in regular waves with
Hs ¼ 2 m and Te ¼ 8 s. (c) shows the difference in the corresponding mean generated power.
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The learning behaviour of the proposed ANN-based reactive control algorithm in irregular waves is displayed in a com-
pact way in Fig. 8. The figure shows the controller performance for the first wave trace, i.e. Hs ¼ 2 m and Te ¼ 8 s. In partic-
ular, the very first run (when the list of samples is empty at the start) is shown with dotted lines and labelled as ”initial”,
since learning has just been initialized. The system is simulated in the same wave conditions again after the control has been
applied for 54 h in the wave traces shown in Table 1. The corresponding performance is shownwith continuous lines in Fig. 8
and labelled as ‘‘trained”, since learning has completed by then with a large number of samples being available for the train-
ing of the ANN. Furthermore, in this case the exploration rate has almost fully decayed, as the discrete sea state has already
been experienced for 6 h. Additionally, the optimal value for the PTO coefficients and the corresponding absorbed energy is
calculated running a MultiStart optimization of the WEC model in the same wave trace.

5. Discussion

5.1. Regular waves

As shown in Fig. 7, the ANN-based algorithm learns the optimal PTO damping and stiffness coefficients in regular waves
within 4 h after being randomly initialized. In the figures, it is possible to recognize three distinct regions: an initial region
where completely random actions are selected (NðsÞ 6 Ni), a section where random actions are taken around the expected

optimum within a shrinking range (until 0:9NðsÞ�Ni ! 0), and a final part where convergence has been reached. Within this
last region, it is interesting to notice three random points (after approximately 5.5 h). These are caused by the Multistart
algorithm converging towards the wrong local optimum in the corresponding time horizons. This is a possibility that needs
to be taken into account when designing the control for an actual device, with its probability decreasing with the number of



Fig. 8. PTO damping (a) and stiffness (b) coefficients adopted by the ANN-based control at the start and after 54-h of training in the wave conditions shown
in Table 1 in irregular waves with Hs ¼ 2 m and Te ¼ 8 s. Additionally, (a) and (b) display the results of state-of-the-art reactive control. The corresponding
curves for the absorbed energy are plotted in (c).
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starting points. Nevertheless, the low computational cost means this optimization method is still preferred over global
search or genetic algorithms. Oddly, the three random points also provide the ANNs with the missing training points for per-
fect convergence to the optimal PTO coefficients.

It should be noted that the ANN-based algorithm presents faster learning than reinforcement learning, which requires
approximately 6 h in regular waves with resistive control and 8 h with reactive control in [14,15], respectively.

5.2. Irregular waves

The convergence of the algorithm to the optimal PTO coefficients in irregular waves is shown by the ”trained” lines in
Fig. 8. Oscillations in the values obtained with the ANN-based control are due to changes in wave conditions over the smaller
time scale of 20Te. The energy absorption is almost identical to state-of-the-art reactive control applied using the optimal
coefficients for the WEC model in this wave trace.

In this case, the comparison in learning performance between reinforcement learning and ANNs is harder to understand.
At first sight, 54 h may seem like a very long learning time. However, this corresponds to 6 h of learning time per discrete sea
state, which is less than the 10 h required by reinforcement learning in a single sea state of irregular waves for resistive con-
trol in [14]. Once a sufficient number of points is obtained, the ANN can generalise the information to unseen sea states, thus
further reducing the learning time as compared with reinforcement learning with discrete states. In addition, the conver-
gence time should be assessed in the context of the lifetime of a WEC, which is expected to be 20–25 years long [25].

In this work, discrete sea states have been analysed, each lasting 3 h due to practical issues with the code implementation.
In reality, the energy content in waves changes uniformly in time (hence, not through discrete sea states), with the duration
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of a typical sea state being 0.5 to 6 h [26]. Since Pavg and max jzj can be considered to be purely dependent on the values of
BPTO;CPTO;Hs and Te in the current time interval, the samples of the ANN are independent of past data. Therefore, the algo-
rithm can be safely applied to realistic, continuously varying wave conditions. In fact, the quality of the mapping provided by
the ANN is expected to improve in continuously varying sea states, which result in a broader range of samples [27]. Further-
more, under realistic wave conditions, the ANN-based reactive control is expected to result in higher energy absorption than
state-of-the-art reactive control, since the latter uses a look-up table with discrete sea states, thus being less responsive to
changes in wave energy over a shorter time scale. Additionally, the ANN-based method can adapt to changes in the device
dynamics with time, e.g. due to marine growth.

5.3. Practical considerations

Although ANNs are a supervised learning strategy, they are employed here in an approach reminiscent of reinforcement
learning, which is unsupervised, and that entails exploration. This may result in damage to and even failure of the device if
explorative negative actions are selected at the wrong time, e.g. a high PTO stiffness coefficient with low damping in highly
energetic waves. Strategies that rely on explorations suffer from this problem, but the ANN-based control is more affected
than reinforcement learning because:

� reinforcement learning [15] makes a step change in the PTO coefficients at the start of each interval. Hence, it is difficult
to encounter highly negative situations, since the algorithm corrects the PTO coefficients as soon as it starts receiving neg-
ative feedback on the actions it has selected in that particular sea state. Conversely, the proposed ANN-based method is
able to explore the whole search space during the first observations of a particular discrete sea state.

� the quality of the mapping produced by the ANN is improved for a wider range of samples. Hence, in order to improve the
training process, the algorithm is incentivized to explore most combinations of the PTO coefficients in each sea state.

In order to prevent failure or damage to the WEC, two practical possibilities should be investigated:

� initializing the ANN with samples pre-generated using accurate, non-linear models of the WEC. In particular, simulations
should be run using extreme values of the PTO coefficients so that once the algorithm is applied on the real-device, the
Multi-Start optimization should home in onto the optimal conditions rather than risk selecting extreme control settings.

� an alternative approach consists in initially applying state-of-the-art reactive control with the look-up table approach and
slowly changing the PTO coefficients in each sea state. The collected data will be then employed for the training of the
ANN, and then the proposed algorithm will be applied. This process is designed to remove the exploration stage from
the presented scheme, focusing only on the supervised nature of ANN algorithms.

At the moment, exact knowledge of the values of Hs and Te during the following time horizon is assumed. In practice,
errors will be associated with the estimation method [31–33]. Nevertheless, including information on the expected future
wave excitation is a fundamental tool for the control of WECs in order to try to achieve optimal performance [5]. This is
a further improvement over the reinforcement learning algorithm proposed in [15], since the study assumed the wave height
and period to be identical between neighbouring horizons.

As compared with reinforcement learning, the selection of the control action with the proposed method requires greater
computational power. Nevertheless, an on-line implementation is completely feasible with modern hardware and parallel
computing. As described in Section 3.3, the control strategy consists in two main stages. On the one hand, the weight of
the ANNs are updated every 20 algorithm steps, using all training points (at most, say, 106). This process occurs off-line, with
the older weights not being overwritten on the memory until the new ones are ready, so that computing time is not an issue.
On the other hand, at every time step, a new training point is collected (minimal computation effort), and a new action is
selected through the Multistart optimization. This process is speeded up through parallel processing, and possibly an imple-
mentation in a low-order computational language, e.g. C. As described in Section 3.2, one optimization using the current sim-
ulation in Matlab and a quad-core i7 computer with 16 GB RAM takes less than 9 s. This period is less than 10% of the
minimal expected time horizon duration, namely 100 s for a 5-s wave energy period, which is the smallest encountered
in typical sea states [26]. Hence, computation efficiency is not critical in this case, since the rate of change of the plant is
much slower than that of the control algorithm.

Real-time strategies are more efficient than time-averaged methods for the control of WECs [5]. Hence, although machine
learning schemes are interesting due to their model-free approach of the WEC control problem, they will need to be applied
in real-time in order to compete with model-predictive control. The application of real-time system identification with ANNs
to real-time strategies, such as model predictive control, will be investigated in the future.
6. Conclusion

In this article, an on-line, model-free strategy has been developed for the reactive control of WECs using ANNs. The aim is
to maximise energy absorption, whilst limiting the PTO displacement to prevent failure in energetic sea conditions. A simple
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model of a point absorber has been employed to analyse the behaviour of the algorithm. Firstly, regular waves show that the
strategy learns rapidly the optimal PTO damping and stiffness coefficients because of their periodicity. A longer convergence
time is necessary in irregular waves, since the ANNs require a greater number of training samples in order to learn the map-
ping between the mean absorbed power and PTO displacement, and the significant wave height, wave energy period, and the
PTO damping and stiffness coefficients. Nevertheless, this ensures the scheme can recognize variations in the wave condi-
tions on a shorter time scale than state-of-the-art reactive control, which uses discrete sea states. Furthermore, implemen-
tation on a full-scale WEC is simple, as the technique is independent of models of the machine dynamics. More importantly,
this method is able to treat changes in the device response as the structure is affected by marine biofouling.
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